hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
0e2ac2a60c3063978b147bfb67157472d909a524690f8788b6ca78685363aeb4 | """
A Printer for generating readable representation of most sympy classes.
"""
from __future__ import print_function, division
from typing import Any, Dict
from sympy.core import S, Rational, Pow, Basic, Mul, Number
from sympy.core.mul import _keep_coeff
from .printer import Printer, print_function
from sympy.printing.precedence import precedence, PRECEDENCE
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
from sympy.utilities import default_sort_key
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
"sympy_integers": False,
"abbrev": False,
"perm_cyclic": True,
"min": None,
"max": None,
} # type: Dict[str, Any]
_relationals = dict() # type: Dict[str, str]
def parenthesize(self, item, level, strict=False):
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
return "(%s)" % self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, str):
return expr
elif isinstance(expr, Basic):
return repr(expr)
else:
return str(expr)
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
PREC = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
l.extend([sign, "(%s)" % t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign == '+':
sign = ""
return sign + ' '.join(l)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_Not(self, expr):
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
def _print_And(self, expr):
return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"])
def _print_Or(self, expr):
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
def _print_Xor(self, expr):
return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (self._print(expr.func), self._print(expr.arg))
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_ConditionSet(self, s):
args = tuple([self._print(i) for i in (s.sym, s.condition)])
if s.base_set is S.UniversalSet:
return 'ConditionSet(%s, %s)' % args
args += (self._print(s.base_set),)
return 'ConditionSet(%s, %s, %s)' % args
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars))
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(d[key]))
items.append(item)
return "{%s}" % ", ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return 'Domain: ' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('Domain: ' + self._print(d.symbols) + ' in ' +
self._print(d.set))
else:
return 'Domain on ' + self._print(d.symbols)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_TribonacciConstant(self, expr):
return 'TribonacciConstant'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_Interval(self, i):
fin = 'Interval{m}({a}, {b})'
a, b, l, r = i.args
if a.is_infinite and b.is_infinite:
m = ''
elif a.is_infinite and not r:
m = ''
elif b.is_infinite and not l:
m = ''
elif not l and not r:
m = ''
elif l and r:
m = '.open'
elif l:
m = '.Lopen'
else:
m = '.Ropen'
return fin.format(**{'a': a, 'b': b, 'm': m})
def _print_AccumulationBounds(self, i):
return "AccumBounds(%s, %s)" % (self._print(i.min),
self._print(i.max))
def _print_Inverse(self, I):
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
def _print_Lambda(self, obj):
expr = obj.expr
sig = obj.signature
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=default_sort_key)
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if str(dir) == "+":
return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0)))
else:
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print,
(e, z, z0, dir)))
def _print_list(self, expr):
return "[%s]" % self.stringify(expr, ", ")
def _print_MatrixBase(self, expr):
return expr._format_str(self)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def strslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return ':'.join(map(lambda arg: self._print(arg), x))
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
strslice(expr.rowslice, expr.parent.rows) + ', ' +
strslice(expr.colslice, expr.parent.cols) + ']')
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
prec = precedence(expr)
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = expr.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
factors = [self.parenthesize(a, prec, strict=False) for a in args]
return '*'.join(factors)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
sign = ""
if c.is_number:
re, im = c.as_real_imag()
if im.is_zero and re.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
elif re.is_zero and im.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
return sign + '*'.join(
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
)
def _print_ElementwiseApplyFunction(self, expr):
return "{0}.({1})".format(
expr.function,
self._print(expr.expr),
)
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Order(self, expr):
if not expr.variables or all(p is S.Zero for p in expr.point):
if len(expr.variables) <= 1:
return 'O(%s)' % self._print(expr.expr)
else:
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
else:
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
def _print_Ordinal(self, expr):
return expr.__str__()
def _print_Cycle(self, expr):
return expr.__str__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
from sympy.utilities.exceptions import SymPyDeprecationWarning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
if not expr.size:
return '()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
s = s.replace(',', '')
return s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % self._print(expr.array_form)
return 'Permutation([], size=%s)' % self._print(expr.size)
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
use = full = self._print(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Subs(self, obj):
expr, old, new = obj.args
if len(obj.point) == 1:
old = old[0]
new = new[0]
return "Subs(%s, %s, %s)" % (
self._print(expr), self._print(old), self._print(new))
def _print_TensorIndex(self, expr):
return expr._print()
def _print_TensorHead(self, expr):
return expr._print()
def _print_Tensor(self, expr):
return expr._print()
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "*".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
return expr._print()
def _print_PermutationGroup(self, expr):
p = [' %s' % self._print(a) for a in expr.args]
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
def _print_Pi(self, expr):
return 'pi'
def _print_PolyRing(self, ring):
return "Polynomial ring in %s over %s with %s order" % \
(", ".join(map(lambda rs: self._print(rs), ring.symbols)),
self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "Rational function field in %s over %s with %s order" % \
(", ".join(map(lambda fs: self._print(fs), field.symbols)),
self._print(field.domain), self._print(field.order))
def _print_FreeGroupElement(self, elm):
return elm.__str__()
def _print_GaussianElement(self, poly):
return "(%s + %s*I)" % (poly.x, poly.y)
def _print_PolyElement(self, poly):
return poly.str(self, PRECEDENCE, "%s**%s", "*")
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
return numer + "/" + denom
def _print_Poly(self, expr):
ATOM_PREC = PRECEDENCE["Atom"] - 1
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % exp)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
from sympy.polys.polyerrors import PolynomialError
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
for index, item in enumerate(gens):
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
gens[index] = item[1:len(item) - 1]
return format % (' '.join(terms), ', '.join(gens))
def _print_UniversalSet(self, p):
return 'UniversalSet'
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr, rational=False):
"""Printing helper function for ``Pow``
Parameters
==========
rational : bool, optional
If ``True``, it will not attempt printing ``sqrt(x)`` or
``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
instead.
See examples for additional details
Examples
========
>>> from sympy.functions import sqrt
>>> from sympy.printing.str import StrPrinter
>>> from sympy.abc import x
How ``rational`` keyword works with ``sqrt``:
>>> printer = StrPrinter()
>>> printer._print_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._print_Pow(sqrt(x), rational=False)
'sqrt(x)'
>>> printer._print_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._print_Pow(1/sqrt(x), rational=False)
'1/sqrt(x)'
Notes
=====
``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
so there is no need of defining a separate printer for ``sqrt``.
Instead, it should be handled here as well.
"""
PREC = precedence(expr)
if expr.exp is S.Half and not rational:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
# Note: Don't test "expr.exp == -S.Half" here, because that will
# match -0.5, which we don't want.
return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base)))
if expr.exp is -S.One:
# Similarly to the S.Half case, don't test with "==" here.
return '%s/%s' % (self._print(S.One),
self.parenthesize(expr.base, PREC, strict=False))
e = self.parenthesize(expr.exp, PREC, strict=False)
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
# but just check to be sure.
if e.startswith('(Rational'):
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
self.parenthesize(expr.exp, PREC, strict=False))
def _print_Integer(self, expr):
if self._settings.get("sympy_integers", False):
return "S(%s)" % (expr)
return str(expr.p)
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Rationals(self, expr):
return 'Rationals'
def _print_Reals(self, expr):
return 'Reals'
def _print_Complexes(self, expr):
return 'Complexes'
def _print_EmptySet(self, expr):
return 'EmptySet'
def _print_EmptySequence(self, expr):
return 'EmptySequence'
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
if self._settings.get("sympy_integers", False):
return "S(%s)/%s" % (expr.p, expr.q)
return "%s/%s" % (expr.p, expr.q)
def _print_PythonRational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
return "%d/%d" % (expr.p, expr.q)
def _print_Fraction(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] is True:
strip = False
elif self._settings["full_prec"] is False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
if rv.startswith('-.0'):
rv = '-0.' + rv[3:]
elif rv.startswith('.0'):
rv = '0.' + rv[2:]
if rv.startswith('+'):
# e.g., +inf -> inf
rv = rv[1:]
return rv
def _print_Relational(self, expr):
charmap = {
"==": "Eq",
"!=": "Ne",
":=": "Assignment",
'+=': "AddAugmentedAssignment",
"-=": "SubAugmentedAssignment",
"*=": "MulAugmentedAssignment",
"/=": "DivAugmentedAssignment",
"%=": "ModAugmentedAssignment",
}
if expr.rel_op in charmap:
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
self._print(expr.rhs))
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
self._relationals.get(expr.rel_op) or expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_ComplexRootOf(self, expr):
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_GroebnerBasis(self, basis):
cls = basis.__class__.__name__
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
exprs = "[%s]" % ", ".join(exprs)
gens = [ self._print(gen) for gen in basis.gens ]
domain = "domain='%s'" % self._print(basis.domain)
order = "order='%s'" % self._print(basis.order)
args = [exprs] + gens + [domain, order]
return "%s(%s)" % (cls, ", ".join(args))
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if not args:
return "set()"
return '{%s}' % args
def _print_frozenset(self, s):
if not s:
return "frozenset()"
return "frozenset(%s)" % self._print_set(s)
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Identity(self, expr):
return "I"
def _print_ZeroMatrix(self, expr):
return "0"
def _print_OneMatrix(self, expr):
return "1"
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return str(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Transpose(self, T):
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
def _print_Uniform(self, expr):
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
def _print_Quantity(self, expr):
if self._settings.get("abbrev", False):
return "%s" % expr.abbrev
return "%s" % expr.name
def _print_Quaternion(self, expr):
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_Dimension(self, expr):
return str(expr)
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_Zero(self, expr):
if self._settings.get("sympy_integers", False):
return "S(0)"
return "0"
def _print_DMP(self, p):
from sympy.core.sympify import SympifyError
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
ring = self._print(p.ring)
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
def _print_DMF(self, expr):
return self._print_DMP(expr)
def _print_Object(self, obj):
return 'Object("%s")' % obj.name
def _print_IdentityMorphism(self, morphism):
return 'IdentityMorphism(%s)' % morphism.domain
def _print_NamedMorphism(self, morphism):
return 'NamedMorphism(%s, %s, "%s")' % \
(morphism.domain, morphism.codomain, morphism.name)
def _print_Category(self, category):
return 'Category("%s")' % category.name
def _print_Manifold(self, manifold):
return manifold.name.name
def _print_Patch(self, patch):
return patch.name.name
def _print_CoordSystem(self, coords):
return coords.name.name
def _print_BaseScalarField(self, field):
return field._coord_sys.symbols[field._index].name
def _print_BaseVectorField(self, field):
return 'e_%s' % field._coord_sys.symbols[field._index].name
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
return 'd%s' % field._coord_sys.symbols[field._index].name
else:
return 'd(%s)' % self._print(field)
def _print_Tr(self, expr):
#TODO : Handle indices
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
def _print_Str(self, s):
return self._print(s.name)
@print_function(StrPrinter)
def sstr(expr, **settings):
"""Returns the expression as a string.
For large expressions where speed is a concern, use the setting
order='none'. If abbrev=True setting is used then units are printed in
abbreviated form.
Examples
========
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def _print_Str(self, s):
# Str does not to be printed same as str here
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
@print_function(StrReprPrinter)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|
77d336349871e6e47615f089807d63aef04de1a2ddb6e6965752ef12b70be13c | """
A Printer which converts an expression into its LaTeX equivalent.
"""
from typing import Any, Dict
import itertools
from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
from sympy.core.compatibility import default_sort_key
from sympy.utilities.iterables import has_variety
import re
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which sympy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': 'A',
'Beta': 'B',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': 'E',
'Zeta': 'Z',
'Eta': 'H',
'Theta': r'\Theta',
'Iota': 'I',
'Kappa': 'K',
'Lambda': r'\Lambda',
'Mu': 'M',
'Nu': 'N',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': 'O',
'Pi': r'\Pi',
'Rho': 'P',
'Sigma': r'\Sigma',
'Tau': 'T',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': 'X',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'X',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp', ])
# Variable name modifiers
modifier_dict = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[{ ]*[-+0-9]'), # match
)
def latex_escape(s):
"""
Escape a string such that latex interprets it as plaintext.
We can't use verbatim easily with mathjax, so escaping is easier.
Rules from https://tex.stackexchange.com/a/34586/41112.
"""
s = s.replace('\\', r'\textbackslash')
for c in '&%$#_{}':
s = s.replace(c, '\\' + c)
s = s.replace('~', r'\textasciitilde')
s = s.replace('^', r'\textasciicircum')
return s
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings = {
"full_prec": False,
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
"decimal_separator": "period",
"perm_cyclic": True,
"parenthesize_super": True,
"min": None,
"max": None,
} # type: Dict[str, Any]
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
try:
self._settings['imaginary_unit_latex'] = \
imaginary_unit_table[self._settings['imaginary_unit']]
except KeyError:
self._settings['imaginary_unit_latex'] = \
self._settings['imaginary_unit']
def _add_parens(self, s):
return r"\left({}\right)".format(s)
# TODO: merge this with the above, which requires a lot of test changes
def _add_parens_lspace(self, s):
return r"\left( {}\right)".format(s)
def parenthesize(self, item, level, is_neg=False, strict=False):
prec_val = precedence_traditional(item)
if is_neg and strict:
return self._add_parens(self._print(item))
if (prec_val < level) or ((not strict) and prec_val <= level):
return self._add_parens(self._print(item))
else:
return self._print(item)
def parenthesize_super(self, s):
"""
Protect superscripts in s
If the parenthesize_super option is set, protect with parentheses, else
wrap in braces.
"""
if "^" in s:
if self._settings['parenthesize_super']:
return self._add_parens(s)
else:
return "{{{}}}".format(s)
return s
def doprint(self, expr):
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy import Integral, Product, Sum
if expr.is_Mul:
if not first and _coeff_isneg(expr):
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if (not last and
any([expr.has(x) for x in (Integral, Product, Sum)])):
return True
return False
def _needs_add_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr):
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr):
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
ls = [self._print(o) for o in expr.args]
return self._deal_with_super_sub(expr.__class__.__name__) + \
r"\left(%s\right)" % ", ".join(ls)
def _print_bool(self, e):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif _coeff_isneg(term):
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.exceptions import SymPyDeprecationWarning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(expr)
if expr.size == 0:
return r"\left( \right)"
lower = [self._print(arg) for arg in expr.array_form]
upper = [self._print(arg) for arg in range(len(lower))]
row1 = " & ".join(upper)
row2 = " & ".join(lower)
mat = r" \\ ".join((row1, row2))
return r"\begin{pmatrix} %s \end{pmatrix}" % mat
def _print_AppliedPermutation(self, expr):
perm, var = expr.args
return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var))
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
strip = False if self._settings['full_prec'] else True
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
if self._settings['decimal_separator'] == 'comma':
mant = mant.replace('.','{,}')
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
if self._settings['decimal_separator'] == 'comma':
str_real = str_real.replace('.','{,}')
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr):
from sympy.core.power import Pow
from sympy.physics.units import Quantity
from sympy.simplify import fraction
separator = self._settings['mul_symbol_latex']
numbersep = self._settings['mul_symbol_latex_numbers']
def convert(expr):
if not expr.is_Mul:
return str(self._print(expr))
else:
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and
isinstance(x.base, Quantity)))
return convert_args(args)
def convert_args(args):
_tex = last_term_tex = ""
for i, term in enumerate(args):
term_tex = self._print(term)
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(term_tex):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
# XXX: _print_Pow calls this routine with instances of Pow...
if isinstance(expr, Mul):
args = expr.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
return convert_args(args)
include_parens = False
if _coeff_isneg(expr):
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
numer, denom = fraction(expr, exact=True)
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_Pow(self, expr):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \
and self._settings['root_notation']:
base = self._print(expr.base)
expq = expr.exp.q
if expq == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (expq, base)
else:
tex = r"\sqrt[%d]{%s}" % (expq, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] \
and expr.exp.is_Rational \
and expr.exp.q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
p, q = expr.exp.p, expr.exp.q
# issue #12886: add parentheses for superscripts raised to powers
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_Rational and expr.exp.is_negative and \
expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# things like 1/x
return self._print_Mul(expr)
else:
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
else:
tex = r"%s^{%s}"
return self._helper_print_standard_power(expr, tex)
def _helper_print_standard_power(self, expr, template):
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return template % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
o1 = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = '(' + self._print(v) + ')'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Derivative(self, expr):
if requires_partial(expr.expr):
diff_symbol = r'\partial'
else:
diff_symbol = r'd'
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol,
self.parenthesize_super(self._print(x)),
self._print(num))
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex)
if any(_coeff_isneg(i) for i in expr.args):
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=True,
strict=True))
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=False,
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, d%s" % self._print(symbol[0])
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, d%s" % self._print(symbol))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
is_neg=any(_coeff_isneg(i) for i in expr.args),
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func):
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\'):
name = func
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr, exp=None):
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = [
"asin", "acos", "atan",
"acsc", "asec", "acot",
"asinh", "acosh", "atanh",
"acsch", "asech", "acoth",
]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = "arc" + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
func_tex = self._hprint_Function(func)
func_tex = self.parenthesize_super(func_tex)
name = r'%s^{%s}' % (func_tex, exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
def _print_ElementwiseApplyFunction(self, expr):
return r"{%s}_{\circ}\left({%s}\right)" % (
self._print(expr.function),
self._print(expr.expr),
)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _print_IdentityFunction(self, expr):
return r"\left( x \mapsto x \right)"
def _hprint_variadic_function(self, expr, exp=None):
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (str(expr.func).lower(),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Determinant = _print_Abs
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy import Equivalent, Implies
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg \left(%s\right)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym):
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, exp)
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec):
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (exp, tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (exp, tex)
return r"\zeta%s" % tex
def _print_stieltjes(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"_{%s}" % self._print(expr.args[0])
if exp is not None:
return r"\gamma%s^{%s}" % (tex, exp)
return r"\gamma%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (exp, tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def __print_mathieu_functions(self, character, args, prime=False, exp=None):
a, q, z = map(self._print, args)
sup = r"^{\prime}" if prime else ""
exp = "" if not exp else "^{%s}" % exp
return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp)
def _print_mathieuc(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, exp=exp)
def _print_mathieus(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, exp=exp)
def _print_mathieucprime(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp)
def _print_mathieusprime(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp)
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr, style='plain'):
if expr in self._settings['symbol_names']:
return self._settings['symbol_names'][expr]
return self._deal_with_super_sub(expr.name, style=style)
_print_RandomSymbol = _print_Symbol
def _deal_with_super_sub(self, string, style='plain'):
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# apply the style only to the name
if style == 'bold':
name = "\\mathbf{{{}}}".format(name)
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_MatrixBase(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str % r"\\".join(lines)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = None
if x[1] == dim:
x[1] = None
return ':'.join(self._print(xi) if xi is not None else '' for xi in x)
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' +
latexslice(expr.rowslice, expr.parent.rows) + ', ' +
latexslice(expr.colslice, expr.parent.cols) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True)
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
return r"%s^{\dagger}" % self._print(mat)
def _print_MatMul(self, expr):
from sympy import MatMul, Mul
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s\bmod{%s}\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True), self._print(expr.args[1]),
exp)
return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'], strict=True),
self._print(expr.args[1]))
def _print_HadamardProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \circ '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_HadamardPower(self, expr):
if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]:
template = r"%s^{\circ \left({%s}\right)}"
else:
template = r"%s^{\circ {%s}}"
return self._helper_print_standard_power(expr, template)
def _print_KroneckerProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \otimes '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol):
return "\\left(%s\\right)^{%s}" % (self._print(base),
self._print(exp))
else:
return "%s^{%s}" % (self._print(base), self._print(exp))
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr, style=self._settings[
'mat_symbol_style'])
def _print_ZeroMatrix(self, Z):
return r"\mathbb{0}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{0}"
def _print_OneMatrix(self, O):
return r"\mathbb{1}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{1}"
def _print_Identity(self, I):
return r"\mathbb{I}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{I}"
def _print_PermutationMatrix(self, P):
perm_str = self._print(P.args[0])
return "P_{%s}" % perm_str
def _print_NDimArray(self, expr):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
def _printer_tensor_indices(self, name, indices, index_map={}):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_PartialDerivative(self, expr):
if len(expr.variables) == 1:
return r"\frac{\partial}{\partial {%s}}{%s}" % (
self._print(expr.variables[0]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
else:
return r"\frac{\partial^{%s}}{%s}{%s}" % (
len(expr.variables),
" ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
def _print_UniversalSet(self, expr):
return r"\mathbb{U}"
def _print_frac(self, expr, exp=None):
if exp is None:
return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0])
else:
return r"\operatorname{frac}{\left(%s\right)}^{%s}" % (
self._print(expr.args[0]), exp)
def _print_tuple(self, expr):
if self._settings['decimal_separator'] == 'comma':
sep = ";"
elif self._settings['decimal_separator'] == 'period':
sep = ","
else:
raise ValueError('Unknown Decimal Separator')
if len(expr) == 1:
# 1-tuple needs a trailing separator
return self._add_parens_lspace(self._print(expr[0]) + sep)
else:
return self._add_parens_lspace(
(sep + r" \ ").join([self._print(i) for i in expr]))
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
if self._settings['decimal_separator'] == 'comma':
return r"\left[ %s\right]" % \
r"; \ ".join([self._print(i) for i in expr])
elif self._settings['decimal_separator'] == 'period':
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
else:
raise ValueError('Unknown Decimal Separator')
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
return tex
def _print_Heaviside(self, expr, exp=None):
tex = r"\theta\left(%s\right)" % self._print(expr.args[0])
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
if self._settings['decimal_separator'] == 'comma':
items = "; ".join(map(self._print, items))
elif self._settings['decimal_separator'] == 'period':
items = ", ".join(map(self._print, items))
else:
raise ValueError('Unknown Decimal Separator')
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
dots = object()
if s.has(Symbol):
return self._print_Basic(s)
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return (r"\left\{" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right\}")
def __print_number_polynomial(self, expr, letter, exp=None):
if len(expr.args) == 2:
if exp is not None:
return r"%s_{%s}^{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), exp,
self._print(expr.args[1]))
return r"%s_{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), self._print(expr.args[1]))
tex = r"%s_{%s}" % (letter, self._print(expr.args[0]))
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_bernoulli(self, expr, exp=None):
return self.__print_number_polynomial(expr, "B", exp)
def _print_bell(self, expr, exp=None):
if len(expr.args) == 3:
tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for
el in expr.args[2])
if exp is not None:
tex = r"%s^{%s}%s" % (tex1, exp, tex2)
else:
tex = tex1 + tex2
return tex
return self.__print_number_polynomial(expr, "B", exp)
def _print_fibonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "F", exp)
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_tribonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "T", exp)
def _print_SeqFormula(self, s):
dots = object()
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cup ".join(args_str)
def _print_Complement(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \setminus ".join(args_str)
def _print_Intersection(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cap ".join(args_str)
def _print_SymmetricDifference(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \triangle ".join(args_str)
def _print_ProductSet(self, p):
prec = precedence_traditional(p)
if len(p.sets) >= 1 and not has_variety(p.sets):
return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets)
return r" \times ".join(
self.parenthesize(set, prec) for set in p.sets)
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Rationals(self, i):
return r"\mathbb{Q}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
expr = s.lamda.expr
sig = s.lamda.signature
xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets))
xinys = r" , ".join(r"%s \in %s" % xy for xy in xys)
return r"\left\{%s\; |\; %s\right\}" % (self._print(expr), xinys)
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s \mid %s \right\}" % \
(vars_print, self._print(s.condition))
return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; |\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
return self._print_Add(s.truncate()) + r' + \ldots'
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_LambertW(self, expr):
if len(expr.args) == 1:
return r"W\left(%s\right)" % self._print(expr.args[0])
return r"W_{%s}\left(%s\right)" % \
(self._print(expr.args[1]), self._print(expr.args[0]))
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_TransferFunction(self, expr):
from sympy.core import Mul, Pow
num, den = expr.num, expr.den
res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
return self._print_Mul(res)
def _print_Series(self, expr):
args = list(expr.args)
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
return ' '.join(map(parens, args))
def _print_Parallel(self, expr):
args = list(expr.args)
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
return ' '.join(map(parens, args))
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Parallel, Series
num, tf = expr.num, TransferFunction(1, 1, expr.num.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den]
if isinstance(num, Series) and isinstance(expr.den, Series):
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
elif isinstance(num, Series) and isinstance(expr.den, TransferFunction):
if expr.den == tf:
den = Parallel(tf, Series(*num_arg_list))
else:
den = Parallel(tf, Series(*num_arg_list, expr.den))
elif isinstance(num, TransferFunction) and isinstance(expr.den, Series):
if num == tf:
den = Parallel(tf, Series(*den_arg_list))
else:
den = Parallel(tf, Series(num, *den_arg_list))
else:
if num == tf:
den = Parallel(tf, *den_arg_list)
elif expr.den == tf:
den = Parallel(tf, *num_arg_list)
else:
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
numer = self._print(num)
denom = self._print(den)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_Manifold(self, manifold):
string = manifold.name.name
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
name = r'\text{%s}' % name
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Patch(self, patch):
return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold))
def _print_CoordSystem(self, coordsys):
return r'\text{%s}^{\text{%s}}_{%s}' % (
self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold)
)
def _print_CovarDerivativeOp(self, cvd):
return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (exp, tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (exp, tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def _print_Str(self, s):
return str(s.name)
def _print_float(self, expr):
return self._print(Float(expr))
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_mpq(self, expr):
return str(expr)
def emptyPrinter(self, expr):
# default to just printing as monospace, like would normally be shown
s = super().emptyPrinter(expr)
return r"\mathtt{\text{%s}}" % latex_escape(s)
def translate(s):
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
@print_function(LatexPrinter)
def latex(expr, **settings):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
full_prec: boolean, optional
If set to True, a floating point number is printed with full precision.
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or
the empty string. Defaults to ``[``.
mat_str : string, optional
Which matrix environment string to emit. ``smallmatrix``, ``matrix``,
``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix``
for matrices of no more than 10 columns, and ``array`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode``
is set to ``plain``, then the resulting code will not be delimited at
all (this is the default). If ``mode`` is set to ``inline`` then inline
LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or
``equation*``, the resulting code will be enclosed in the ``equation``
or ``equation*`` environment (remember to import ``amsmath`` for
``equation*``), unless the ``itex`` option is set. In the latter case,
the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``, ``ldot``,
``dot``, or ``times``.
order: string, optional
Any of the supported monomial orderings (currently ``lex``, ``grlex``,
or ``grevlex``), ``old``, and ``none``. This parameter does nothing for
Mul objects. Setting order to ``old`` uses the compatibility ordering
for Add defined in Printer. For very large expressions, set the
``order`` keyword to ``none`` if speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``plain`` (default) or ``bold``. If set to ``bold``,
a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are "i" (default)
and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so
"ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
decimal_separator : string, optional
Specifies what separator to use to separate the whole and fractional parts of a
floating point number as in `2.5` for the default, ``period`` or `2{,}5`
when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon
separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when
``comma`` is chosen and [1,2,3] for when ``period`` is chosen.
parenthesize_super : boolean, optional
If set to ``False``, superscripted expressions will not be parenthesized when
powered. Default is ``True``, which parenthesizes the expression when powered.
min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in
fixed-point format.
max: Integer or None, optional
Sets the upper bound for the exponent to print floating point numbers in
fixed-point format.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types :class:`list`,
:class:`tuple`, and :class:`dict`:
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
Unsupported types are rendered as monospaced plaintext:
>>> print(latex(int))
\mathtt{\text{<class 'int'>}}
>>> print(latex("plain % text"))
\mathtt{\text{plain \% text}}
See :ref:`printer_method_example` for an example of how to override
this behavior for your own types by implementing ``_latex``.
.. versionchanged:: 1.7.0
Unsupported types no longer have their ``str`` representation treated as valid latex.
"""
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings):
r"""
This function generates a LaTeX equation with a multiline right-hand side
in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment.
Parameters
==========
lhs : Expr
Left-hand side of equation
rhs : Expr
Right-hand side of equation
terms_per_line : integer, optional
Number of terms per line to print. Default is 1.
environment : "string", optional
Which LaTeX wnvironment to use for the output. Options are "align*"
(default), "eqnarray", and "IEEEeqnarray".
use_dots : boolean, optional
If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``.
Examples
========
>>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I
>>> x, y, alpha = symbols('x y alpha')
>>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y))
>>> print(multiline_latex(x, expr))
\begin{align*}
x = & e^{i \alpha} \\
& + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using at most two terms per line:
>>> print(multiline_latex(x, expr, 2))
\begin{align*}
x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using ``eqnarray`` and dots:
>>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True))
\begin{eqnarray}
x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{eqnarray}
Using ``IEEEeqnarray``:
>>> print(multiline_latex(x, expr, environment="IEEEeqnarray"))
\begin{IEEEeqnarray}{rCl}
x & = & e^{i \alpha} \nonumber\\
& & + \sin{\left(\alpha y \right)} \nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{IEEEeqnarray}
Notes
=====
All optional parameters from ``latex`` can also be used.
"""
# Based on code from https://github.com/sympy/sympy/issues/3001
l = LatexPrinter(**settings)
if environment == "eqnarray":
result = r'\begin{eqnarray}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{eqnarray}'
doubleet = True
elif environment == "IEEEeqnarray":
result = r'\begin{IEEEeqnarray}{rCl}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{IEEEeqnarray}'
doubleet = True
elif environment == "align*":
result = r'\begin{align*}' + '\n'
first_term = '= &'
nonumber = ''
end_term = '\n\\end{align*}'
doubleet = False
else:
raise ValueError("Unknown environment: {}".format(environment))
dots = ''
if use_dots:
dots=r'\dots'
terms = rhs.as_ordered_terms()
n_terms = len(terms)
term_count = 1
for i in range(n_terms):
term = terms[i]
term_start = ''
term_end = ''
sign = '+'
if term_count > terms_per_line:
if doubleet:
term_start = '& & '
else:
term_start = '& '
term_count = 1
if term_count == terms_per_line:
# End of line
if i < n_terms-1:
# There are terms remaining
term_end = dots + nonumber + r'\\' + '\n'
else:
term_end = ''
if term.as_ordered_factors()[0] == -1:
term = -1*term
sign = r'-'
if i == 0: # beginning
if sign == '+':
sign = ''
result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs),
first_term, sign, l.doprint(term), term_end)
else:
result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign,
l.doprint(term), term_end)
term_count += 1
result += end_term
return result
|
ec9afd669de02ca59c52dab0c69e75ca6ab3874483f32750f2dc312f73bbf78e | """Printing subsystem driver
SymPy's printing system works the following way: Any expression can be
passed to a designated Printer who then is responsible to return an
adequate representation of that expression.
**The basic concept is the following:**
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
Which Method is Responsible for Printing?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The whole printing process is started by calling ``.doprint(expr)`` on the printer
which you want to use. This method looks for an appropriate method which can
print the given expression in the given style that the printer defines.
While looking for the method, it follows these steps:
1. **Let the object print itself if it knows how.**
The printer looks for a specific method in every object. The name of that method
depends on the specific printer and is defined under ``Printer.printmethod``.
For example, StrPrinter calls ``_sympystr`` and LatexPrinter calls ``_latex``.
Look at the documentation of the printer that you want to use.
The name of the method is specified there.
This was the original way of doing printing in sympy. Every class had
its own latex, mathml, str and repr methods, but it turned out that it
is hard to produce a high quality printer, if all the methods are spread
out that far. Therefore all printing code was combined into the different
printers, which works great for built-in sympy objects, but not that
good for user defined classes where it is inconvenient to patch the
printers.
2. **Take the best fitting method defined in the printer.**
The printer loops through expr classes (class + its bases), and tries
to dispatch the work to ``_print_<EXPR_CLASS>``
e.g., suppose we have the following class hierarchy::
Basic
|
Atom
|
Number
|
Rational
then, for ``expr=Rational(...)``, the Printer will try
to call printer methods in the order as shown in the figure below::
p._print(expr)
|
|-- p._print_Rational(expr)
|
|-- p._print_Number(expr)
|
|-- p._print_Atom(expr)
|
`-- p._print_Basic(expr)
if ``._print_Rational`` method exists in the printer, then it is called,
and the result is returned back. Otherwise, the printer tries to call
``._print_Number`` and so on.
3. **As a fall-back use the emptyPrinter method for the printer.**
As fall-back ``self.emptyPrinter`` will be called with the expression. If
not defined in the Printer subclass this will be the same as ``str(expr)``.
.. _printer_example:
Example of Custom Printer
^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, we have a printer which prints the derivative of a function
in a shorter form.
.. code-block:: python
from sympy import Symbol
from sympy.printing.latex import LatexPrinter, print_latex
from sympy.core.function import UndefinedFunction, Function
class MyLatexPrinter(LatexPrinter):
\"\"\"Print derivative of a function of symbols in a shorter form.
\"\"\"
def _print_Derivative(self, expr):
function, *vars = expr.args
if not isinstance(type(function), UndefinedFunction) or \\
not all(isinstance(i, Symbol) for i in vars):
return super()._print_Derivative(expr)
# If you want the printer to work correctly for nested
# expressions then use self._print() instead of str() or latex().
# See the example of nested modulo below in the custom printing
# method section.
return "{}_{{{}}}".format(
self._print(Symbol(function.func.__name__)),
''.join(self._print(i) for i in vars))
def print_my_latex(expr):
\"\"\" Most of the printers define their own wrappers for print().
These wrappers usually take printer settings. Our printer does not have
any settings.
\"\"\"
print(MyLatexPrinter().doprint(expr))
y = Symbol("y")
x = Symbol("x")
f = Function("f")
expr = f(x, y).diff(x, y)
# Print the expression using the normal latex printer and our custom
# printer.
print_latex(expr)
print_my_latex(expr)
The output of the code above is::
\\frac{\\partial^{2}}{\\partial x\\partial y} f{\\left(x,y \\right)}
f_{xy}
.. _printer_method_example:
Example of Custom Printing Method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, the latex printing of the modulo operator is modified.
This is done by overriding the method ``_latex`` of ``Mod``.
>>> from sympy import Symbol, Mod, Integer
>>> from sympy.printing.latex import print_latex
>>> # Always use printer._print()
>>> class ModOp(Mod):
... def _latex(self, printer):
... a, b = [printer._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
Comparing the output of our custom operator to the builtin one:
>>> x = Symbol('x')
>>> m = Symbol('m')
>>> print_latex(Mod(x, m))
x\\bmod{m}
>>> print_latex(ModOp(x, m))
\\operatorname{Mod}{\\left( x,m \\right)}
Common mistakes
~~~~~~~~~~~~~~~
It's important to always use ``self._print(obj)`` to print subcomponents of
an expression when customizing a printer. Mistakes include:
1. Using ``self.doprint(obj)`` instead:
>>> # This example does not work properly, as only the outermost call may use
>>> # doprint.
>>> class ModOpModeWrong(Mod):
... def _latex(self, printer):
... a, b = [printer.doprint(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This fails when the `mode` argument is passed to the printer:
>>> print_latex(ModOp(x, m), mode='inline') # ok
$\\operatorname{Mod}{\\left( x,m \\right)}$
>>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
$\\operatorname{Mod}{\\left( $x$,$m$ \\right)}$
2. Using ``str(obj)`` instead:
>>> class ModOpNestedWrong(Mod):
... def _latex(self, printer):
... a, b = [str(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This fails on nested objects:
>>> # Nested modulo.
>>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
\\operatorname{Mod}{\\left( \\operatorname{Mod}{\\left( x,m \\right)},7 \\right)}
>>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
\\operatorname{Mod}{\\left( ModOpNestedWrong(x, m),7 \\right)}
3. Using ``LatexPrinter()._print(obj)`` instead.
>>> from sympy.printing.latex import LatexPrinter
>>> class ModOpSettingsWrong(Mod):
... def _latex(self, printer):
... a, b = [LatexPrinter()._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left( %s,%s \\right)}" % (a,b)
This causes all the settings to be discarded in the subobjects. As an
example, the ``full_prec`` setting which shows floats to full precision is
ignored:
>>> from sympy import Float
>>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
\\operatorname{Mod}{\\left( 1.00000000000000 x,m \\right)}
>>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
\\operatorname{Mod}{\\left( 1.0 x,m \\right)}
"""
from __future__ import print_function, division
from typing import Any, Dict, Type
import inspect
from contextlib import contextmanager
from functools import cmp_to_key, update_wrapper
from sympy import Basic, Add
from sympy.core.core import BasicMeta
from sympy.core.function import AppliedUndef, UndefinedFunction, Function
@contextmanager
def printer_context(printer, **kwargs):
original = printer._context.copy()
try:
printer._context.update(kwargs)
yield
finally:
printer._context = original
class Printer(object):
""" Generic printer
Its job is to provide infrastructure for implementing new printers easily.
If you want to define your custom Printer or your custom printing method
for your custom class then see the example above: printer_example_ .
"""
_global_settings = {} # type: Dict[str, Any]
_default_settings = {} # type: Dict[str, Any]
printmethod = None # type: str
@classmethod
def _get_initial_settings(cls):
settings = cls._default_settings.copy()
for key, val in cls._global_settings.items():
if key in cls._default_settings:
settings[key] = val
return settings
def __init__(self, settings=None):
self._str = str
self._settings = self._get_initial_settings()
self._context = dict() # mutable during printing
if settings is not None:
self._settings.update(settings)
if len(self._settings) > len(self._default_settings):
for key in self._settings:
if key not in self._default_settings:
raise TypeError("Unknown setting '%s'." % key)
# _print_level is the number of times self._print() was recursively
# called. See StrPrinter._print_Float() for an example of usage
self._print_level = 0
@classmethod
def set_global_settings(cls, **settings):
"""Set system-wide printing settings. """
for key, val in settings.items():
if val is not None:
cls._global_settings[key] = val
@property
def order(self):
if 'order' in self._settings:
return self._settings['order']
else:
raise AttributeError("No order defined.")
def doprint(self, expr):
"""Returns printer's representation for expr (as a string)"""
return self._str(self._print(expr))
def _print(self, expr, **kwargs):
"""Internal dispatcher
Tries the following concepts to print an expression:
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
"""
self._print_level += 1
try:
# If the printer defines a name for a printing method
# (Printer.printmethod) and the object knows for itself how it
# should be printed, use that method.
if (self.printmethod and hasattr(expr, self.printmethod)
and not isinstance(expr, BasicMeta)):
return getattr(expr, self.printmethod)(self, **kwargs)
# See if the class of expr is known, or if one of its super
# classes is known, and use that print function
# Exception: ignore the subclasses of Undefined, so that, e.g.,
# Function('gamma') does not get dispatched to _print_gamma
classes = type(expr).__mro__
if AppliedUndef in classes:
classes = classes[classes.index(AppliedUndef):]
if UndefinedFunction in classes:
classes = classes[classes.index(UndefinedFunction):]
# Another exception: if someone subclasses a known function, e.g.,
# gamma, and changes the name, then ignore _print_gamma
if Function in classes:
i = classes.index(Function)
classes = tuple(c for c in classes[:i] if \
c.__name__ == classes[0].__name__ or \
c.__name__.endswith("Base")) + classes[i:]
for cls in classes:
printmethod = '_print_' + cls.__name__
if hasattr(self, printmethod):
return getattr(self, printmethod)(expr, **kwargs)
# Unknown object, fall back to the emptyPrinter.
return self.emptyPrinter(expr)
finally:
self._print_level -= 1
def emptyPrinter(self, expr):
return str(expr)
def _as_ordered_terms(self, expr, order=None):
"""A compatibility function for ordering terms in Add. """
order = order or self.order
if order == 'old':
return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty))
elif order == 'none':
return list(expr.args)
else:
return expr.as_ordered_terms(order=order)
class _PrintFunction:
"""
Function wrapper to replace ``**settings`` in the signature with printer defaults
"""
def __init__(self, f, print_cls: Type[Printer]):
# find all the non-setting arguments
params = list(inspect.signature(f).parameters.values())
assert params.pop(-1).kind == inspect.Parameter.VAR_KEYWORD
self.__other_params = params
self.__print_cls = print_cls
update_wrapper(self, f)
def __repr__(self) -> str:
return repr(self.__wrapped__)
def __call__(self, *args, **kwargs):
return self.__wrapped__(*args, **kwargs)
@property
def __signature__(self) -> inspect.Signature:
settings = self.__print_cls._get_initial_settings()
return inspect.Signature(
parameters=self.__other_params + [
inspect.Parameter(k, inspect.Parameter.KEYWORD_ONLY, default=v)
for k, v in settings.items()
],
return_annotation=self.__wrapped__.__annotations__.get('return', inspect.Signature.empty)
)
def print_function(print_cls):
""" A decorator to replace kwargs with the printer settings in __signature__ """
def decorator(f):
return _PrintFunction(f, print_cls)
return decorator
|
c9f0f3a9a89dfbb82dbc9e05f49bda55e8ad7902c6fe95890eeb0eaac0da0231 | """
C code printer
The C89CodePrinter & C99CodePrinter converts single sympy expressions into
single C expressions, using the functions defined in math.h where possible.
A complete code generator, which uses ccode extensively, can be found in
sympy.utilities.codegen. The codegen module can be used to generate complete
source code files that are compilable without further modifications.
"""
from __future__ import print_function, division
from typing import Any, Dict, Tuple
from functools import wraps
from itertools import chain
from sympy.core import S
from sympy.codegen.ast import (
Assignment, Pointer, Variable, Declaration, Type,
real, complex_, integer, bool_, float32, float64, float80,
complex64, complex128, intc, value_const, pointer_const,
int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped
)
from sympy.printing.codeprinter import CodePrinter, requires
from sympy.printing.precedence import precedence, PRECEDENCE
from sympy.sets.fancysets import Range
# These are defined in the other file so we can avoid importing sympy.codegen
# from the top-level 'import sympy'. Export them here as well.
from sympy.printing.codeprinter import ccode, print_ccode # noqa:F401
# dictionary mapping sympy function to (argument_conditions, C_function).
# Used in C89CodePrinter._print_Function(self)
known_functions_C89 = {
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
"sin": "sin",
"cos": "cos",
"tan": "tan",
"asin": "asin",
"acos": "acos",
"atan": "atan",
"atan2": "atan2",
"exp": "exp",
"log": "log",
"sinh": "sinh",
"cosh": "cosh",
"tanh": "tanh",
"floor": "floor",
"ceiling": "ceil",
}
known_functions_C99 = dict(known_functions_C89, **{
'exp2': 'exp2',
'expm1': 'expm1',
'log10': 'log10',
'log2': 'log2',
'log1p': 'log1p',
'Cbrt': 'cbrt',
'hypot': 'hypot',
'fma': 'fma',
'loggamma': 'lgamma',
'erfc': 'erfc',
'Max': 'fmax',
'Min': 'fmin',
"asinh": "asinh",
"acosh": "acosh",
"atanh": "atanh",
"erf": "erf",
"gamma": "tgamma",
})
# These are the core reserved words in the C language. Taken from:
# http://en.cppreference.com/w/c/keyword
reserved_words = [
'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do',
'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int',
'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static',
'struct', 'entry', # never standardized, we'll leave it here anyway
'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while'
]
reserved_words_c99 = ['inline', 'restrict']
def get_math_macros():
""" Returns a dictionary with math-related macros from math.h/cmath
Note that these macros are not strictly required by the C/C++-standard.
For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably
via a compilation flag).
Returns
=======
Dictionary mapping sympy expressions to strings (macro names)
"""
from sympy.codegen.cfunctions import log2, Sqrt
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
return {
S.Exp1: 'M_E',
log2(S.Exp1): 'M_LOG2E',
1/log(2): 'M_LOG2E',
log(2): 'M_LN2',
log(10): 'M_LN10',
S.Pi: 'M_PI',
S.Pi/2: 'M_PI_2',
S.Pi/4: 'M_PI_4',
1/S.Pi: 'M_1_PI',
2/S.Pi: 'M_2_PI',
2/sqrt(S.Pi): 'M_2_SQRTPI',
2/Sqrt(S.Pi): 'M_2_SQRTPI',
sqrt(2): 'M_SQRT2',
Sqrt(2): 'M_SQRT2',
1/sqrt(2): 'M_SQRT1_2',
1/Sqrt(2): 'M_SQRT1_2'
}
def _as_macro_if_defined(meth):
""" Decorator for printer methods
When a Printer's method is decorated using this decorator the expressions printed
will first be looked for in the attribute ``math_macros``, and if present it will
print the macro name in ``math_macros`` followed by a type suffix for the type
``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80.
"""
@wraps(meth)
def _meth_wrapper(self, expr, **kwargs):
if expr in self.math_macros:
return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real))
else:
return meth(self, expr, **kwargs)
return _meth_wrapper
class C89CodePrinter(CodePrinter):
"""A printer to convert python expressions to strings of c code"""
printmethod = "_ccode"
language = "C"
standard = "C89"
reserved_words = set(reserved_words)
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'dereference': set(),
'error_on_reserved': False,
'reserved_word_suffix': '_',
} # type: Dict[str, Any]
type_aliases = {
real: float64,
complex_: complex128,
integer: intc
}
type_mappings = {
real: 'double',
intc: 'int',
float32: 'float',
float64: 'double',
integer: 'int',
bool_: 'bool',
int8: 'int8_t',
int16: 'int16_t',
int32: 'int32_t',
int64: 'int64_t',
uint8: 'int8_t',
uint16: 'int16_t',
uint32: 'int32_t',
uint64: 'int64_t',
} # type: Dict[Type, Any]
type_headers = {
bool_: {'stdbool.h'},
int8: {'stdint.h'},
int16: {'stdint.h'},
int32: {'stdint.h'},
int64: {'stdint.h'},
uint8: {'stdint.h'},
uint16: {'stdint.h'},
uint32: {'stdint.h'},
uint64: {'stdint.h'},
}
# Macros needed to be defined when using a Type
type_macros = {} # type: Dict[Type, Tuple[str, ...]]
type_func_suffixes = {
float32: 'f',
float64: '',
float80: 'l'
}
type_literal_suffixes = {
float32: 'F',
float64: '',
float80: 'L'
}
type_math_macro_suffixes = {
float80: 'l'
}
math_macros = None
_ns = '' # namespace, C++ uses 'std::'
# known_functions-dict to copy
_kf = known_functions_C89 # type: Dict[str, Any]
def __init__(self, settings=None):
settings = settings or {}
if self.math_macros is None:
self.math_macros = settings.pop('math_macros', get_math_macros())
self.type_aliases = dict(chain(self.type_aliases.items(),
settings.pop('type_aliases', {}).items()))
self.type_mappings = dict(chain(self.type_mappings.items(),
settings.pop('type_mappings', {}).items()))
self.type_headers = dict(chain(self.type_headers.items(),
settings.pop('type_headers', {}).items()))
self.type_macros = dict(chain(self.type_macros.items(),
settings.pop('type_macros', {}).items()))
self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(),
settings.pop('type_func_suffixes', {}).items()))
self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(),
settings.pop('type_literal_suffixes', {}).items()))
self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(),
settings.pop('type_math_macro_suffixes', {}).items()))
super(C89CodePrinter, self).__init__(settings)
self.known_functions = dict(self._kf, **settings.get('user_functions', {}))
self._dereference = set(settings.get('dereference', []))
self.headers = set()
self.libraries = set()
self.macros = set()
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
""" Get code string as a statement - i.e. ending with a semicolon. """
return codestring if codestring.endswith(';') else codestring + ';'
def _get_comment(self, text):
return "// {0}".format(text)
def _declare_number_const(self, name, value):
type_ = self.type_aliases[real]
var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const})
decl = Declaration(var)
return self._get_statement(self._print(decl))
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
rows, cols = mat.shape
return ((i, j) for i in range(rows) for j in range(cols))
@_as_macro_if_defined
def _print_Mul(self, expr, **kwargs):
return super(C89CodePrinter, self)._print_Mul(expr, **kwargs)
@_as_macro_if_defined
def _print_Pow(self, expr):
if "Pow" in self.known_functions:
return self._print_Function(expr)
PREC = precedence(expr)
suffix = self._get_func_suffix(real)
if expr.exp == -1:
literal_suffix = self._get_literal_suffix(real)
return '1.0%s/%s' % (literal_suffix, self.parenthesize(expr.base, PREC))
elif expr.exp == 0.5:
return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
elif expr.exp == S.One/3 and self.standard != 'C89':
return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
else:
return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base),
self._print(expr.exp))
def _print_Mod(self, expr):
num, den = expr.args
if num.is_integer and den.is_integer:
return "(({}) % ({}))".format(self._print(num), self._print(den))
else:
return self._print_math_func(expr, known='fmod')
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
suffix = self._get_literal_suffix(real)
return '%d.0%s/%d.0%s' % (p, suffix, q, suffix)
def _print_Indexed(self, expr):
# calculate index for 1d array
offset = getattr(expr.base, 'offset', S.Zero)
strides = getattr(expr.base, 'strides', None)
indices = expr.indices
if strides is None or isinstance(strides, str):
dims = expr.shape
shift = S.One
temp = tuple()
if strides == 'C' or strides is None:
traversal = reversed(range(expr.rank))
indices = indices[::-1]
elif strides == 'F':
traversal = range(expr.rank)
for i in traversal:
temp += (shift,)
shift *= dims[i]
strides = temp
flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset
return "%s[%s]" % (self._print(expr.base.label),
self._print(flat_index))
def _print_Idx(self, expr):
return self._print(expr.label)
@_as_macro_if_defined
def _print_NumberSymbol(self, expr):
return super(C89CodePrinter, self)._print_NumberSymbol(expr)
def _print_Infinity(self, expr):
return 'HUGE_VAL'
def _print_NegativeInfinity(self, expr):
return '-HUGE_VAL'
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if expr.has(Assignment):
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) {" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else {")
else:
lines.append("else if (%s) {" % self._print(c))
code0 = self._print(e)
lines.append(code0)
lines.append("}")
return "\n".join(lines)
else:
# The piecewise was used in an expression, need to do inline
# operators. This has the downside that inline operators will
# not work for statements that span multiple lines (Matrix or
# Indexed expressions).
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
self._print(e))
for e, c in expr.args[:-1]]
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
def _print_ITE(self, expr):
from sympy.functions import Piecewise
_piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True))
return self._print(_piecewise)
def _print_MatrixElement(self, expr):
return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
strict=True), expr.j + expr.i*expr.parent.shape[1])
def _print_Symbol(self, expr):
name = super(C89CodePrinter, self)._print_Symbol(expr)
if expr in self._settings['dereference']:
return '(*{0})'.format(name)
else:
return name
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{0} {1} {2}".format(lhs_code, op, rhs_code)
def _print_sinc(self, expr):
from sympy.functions.elementary.trigonometric import sin
from sympy.core.relational import Ne
from sympy.functions import Piecewise
_piecewise = Piecewise(
(sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True))
return self._print(_piecewise)
def _print_For(self, expr):
target = self._print(expr.target)
if isinstance(expr.iterable, Range):
start, stop, step = expr.iterable.args
else:
raise NotImplementedError("Only iterable currently supported is Range")
body = self._print(expr.body)
return ('for ({target} = {start}; {target} < {stop}; {target} += '
'{step}) {{\n{body}\n}}').format(target=target, start=start,
stop=stop, step=step, body=body)
def _print_sign(self, func):
return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0]))
def _print_Max(self, expr):
if "Max" in self.known_functions:
return self._print_Function(expr)
def inner_print_max(args): # The more natural abstraction of creating
if len(args) == 1: # and printing smaller Max objects is slow
return self._print(args[0]) # when there are many arguments.
half = len(args) // 2
return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % {
'a': inner_print_max(args[:half]),
'b': inner_print_max(args[half:])
}
return inner_print_max(expr.args)
def _print_Min(self, expr):
if "Min" in self.known_functions:
return self._print_Function(expr)
def inner_print_min(args): # The more natural abstraction of creating
if len(args) == 1: # and printing smaller Min objects is slow
return self._print(args[0]) # when there are many arguments.
half = len(args) // 2
return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % {
'a': inner_print_min(args[:half]),
'b': inner_print_min(args[half:])
}
return inner_print_min(expr.args)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, str):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_token = ('{', '(', '{\n', '(\n')
dec_token = ('}', ')')
code = [line.lstrip(' \t') for line in code]
increase = [int(any(map(line.endswith, inc_token))) for line in code]
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def _get_func_suffix(self, type_):
return self.type_func_suffixes[self.type_aliases.get(type_, type_)]
def _get_literal_suffix(self, type_):
return self.type_literal_suffixes[self.type_aliases.get(type_, type_)]
def _get_math_macro_suffix(self, type_):
alias = self.type_aliases.get(type_, type_)
dflt = self.type_math_macro_suffixes.get(alias, '')
return self.type_math_macro_suffixes.get(type_, dflt)
def _print_Type(self, type_):
self.headers.update(self.type_headers.get(type_, set()))
self.macros.update(self.type_macros.get(type_, set()))
return self._print(self.type_mappings.get(type_, type_.name))
def _print_Declaration(self, decl):
from sympy.codegen.cnodes import restrict
var = decl.variable
val = var.value
if var.type == untyped:
raise ValueError("C does not support untyped variables")
if isinstance(var, Pointer):
result = '{vc}{t} *{pc} {r}{s}'.format(
vc='const ' if value_const in var.attrs else '',
t=self._print(var.type),
pc=' const' if pointer_const in var.attrs else '',
r='restrict ' if restrict in var.attrs else '',
s=self._print(var.symbol)
)
elif isinstance(var, Variable):
result = '{vc}{t} {s}'.format(
vc='const ' if value_const in var.attrs else '',
t=self._print(var.type),
s=self._print(var.symbol)
)
else:
raise NotImplementedError("Unknown type of var: %s" % type(var))
if val != None: # Must be "!= None", cannot be "is not None"
result += ' = %s' % self._print(val)
return result
def _print_Float(self, flt):
type_ = self.type_aliases.get(real, real)
self.macros.update(self.type_macros.get(type_, set()))
suffix = self._get_literal_suffix(type_)
num = str(flt.evalf(type_.decimal_dig))
if 'e' not in num and '.' not in num:
num += '.0'
num_parts = num.split('e')
num_parts[0] = num_parts[0].rstrip('0')
if num_parts[0].endswith('.'):
num_parts[0] += '0'
return 'e'.join(num_parts) + suffix
@requires(headers={'stdbool.h'})
def _print_BooleanTrue(self, expr):
return 'true'
@requires(headers={'stdbool.h'})
def _print_BooleanFalse(self, expr):
return 'false'
def _print_Element(self, elem):
if elem.strides == None: # Must be "== None", cannot be "is None"
if elem.offset != None: # Must be "!= None", cannot be "is not None"
raise ValueError("Expected strides when offset is given")
idxs = ']['.join(map(lambda arg: self._print(arg),
elem.indices))
else:
global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)])
if elem.offset != None: # Must be "!= None", cannot be "is not None"
global_idx += elem.offset
idxs = self._print(global_idx)
return "{symb}[{idxs}]".format(
symb=self._print(elem.symbol),
idxs=idxs
)
def _print_CodeBlock(self, expr):
""" Elements of code blocks printed as statements. """
return '\n'.join([self._get_statement(self._print(i)) for i in expr.args])
def _print_While(self, expr):
return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs(
apply=lambda arg: self._print(arg)))
def _print_Scope(self, expr):
return '{\n%s\n}' % self._print_CodeBlock(expr.body)
@requires(headers={'stdio.h'})
def _print_Print(self, expr):
return 'printf({fmt}, {pargs})'.format(
fmt=self._print(expr.format_string),
pargs=', '.join(map(lambda arg: self._print(arg), expr.print_args))
)
def _print_FunctionPrototype(self, expr):
pars = ', '.join(map(lambda arg: self._print(Declaration(arg)),
expr.parameters))
return "%s %s(%s)" % (
tuple(map(lambda arg: self._print(arg),
(expr.return_type, expr.name))) + (pars,)
)
def _print_FunctionDefinition(self, expr):
return "%s%s" % (self._print_FunctionPrototype(expr),
self._print_Scope(expr))
def _print_Return(self, expr):
arg, = expr.args
return 'return %s' % self._print(arg)
def _print_CommaOperator(self, expr):
return '(%s)' % ', '.join(map(lambda arg: self._print(arg), expr.args))
def _print_Label(self, expr):
return '%s:' % str(expr)
def _print_goto(self, expr):
return 'goto %s' % expr.label
def _print_PreIncrement(self, expr):
arg, = expr.args
return '++(%s)' % self._print(arg)
def _print_PostIncrement(self, expr):
arg, = expr.args
return '(%s)++' % self._print(arg)
def _print_PreDecrement(self, expr):
arg, = expr.args
return '--(%s)' % self._print(arg)
def _print_PostDecrement(self, expr):
arg, = expr.args
return '(%s)--' % self._print(arg)
def _print_struct(self, expr):
return "%(keyword)s %(name)s {\n%(lines)s}" % dict(
keyword=expr.__class__.__name__, name=expr.name, lines=';\n'.join(
[self._print(decl) for decl in expr.declarations] + [''])
)
def _print_BreakToken(self, _):
return 'break'
def _print_ContinueToken(self, _):
return 'continue'
_print_union = _print_struct
class C99CodePrinter(C89CodePrinter):
standard = 'C99'
reserved_words = set(reserved_words + reserved_words_c99)
type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), {
complex64: 'float complex',
complex128: 'double complex',
}.items()))
type_headers = dict(chain(C89CodePrinter.type_headers.items(), {
complex64: {'complex.h'},
complex128: {'complex.h'}
}.items()))
# known_functions-dict to copy
_kf = known_functions_C99 # type: Dict[str, Any]
# functions with versions with 'f' and 'l' suffixes:
_prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2'
' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan'
' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf'
' erfc tgamma lgamma ceil floor trunc round nearbyint rint'
' frexp ldexp modf scalbn ilogb logb nextafter copysign').split()
def _print_Infinity(self, expr):
return 'INFINITY'
def _print_NegativeInfinity(self, expr):
return '-INFINITY'
def _print_NaN(self, expr):
return 'NAN'
# tgamma was already covered by 'known_functions' dict
@requires(headers={'math.h'}, libraries={'m'})
@_as_macro_if_defined
def _print_math_func(self, expr, nest=False, known=None):
if known is None:
known = self.known_functions[expr.__class__.__name__]
if not isinstance(known, str):
for cb, name in known:
if cb(*expr.args):
known = name
break
else:
raise ValueError("No matching printer")
try:
return known(self, *expr.args)
except TypeError:
suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else ''
if nest:
args = self._print(expr.args[0])
if len(expr.args) > 1:
paren_pile = ''
for curr_arg in expr.args[1:-1]:
paren_pile += ')'
args += ', {ns}{name}{suffix}({next}'.format(
ns=self._ns,
name=known,
suffix=suffix,
next = self._print(curr_arg)
)
args += ', %s%s' % (
self._print(expr.func(expr.args[-1])),
paren_pile
)
else:
args = ', '.join(map(lambda arg: self._print(arg), expr.args))
return '{ns}{name}{suffix}({args})'.format(
ns=self._ns,
name=known,
suffix=suffix,
args=args
)
def _print_Max(self, expr):
return self._print_math_func(expr, nest=True)
def _print_Min(self, expr):
return self._print_math_func(expr, nest=True)
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99
for i in indices:
# C arrays start at 0 and end at dimension-1
open_lines.append(loopstart % {
'var': self._print(i.label),
'start': self._print(i.lower),
'end': self._print(i.upper + 1)})
close_lines.append("}")
return open_lines, close_lines
for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma'
' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh '
'atanh erf erfc loggamma gamma ceiling floor').split():
setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func)
class C11CodePrinter(C99CodePrinter):
@requires(headers={'stdalign.h'})
def _print_alignof(self, expr):
arg, = expr.args
return 'alignof(%s)' % self._print(arg)
c_code_printers = {
'c89': C89CodePrinter,
'c99': C99CodePrinter,
'c11': C11CodePrinter
}
|
bc852787c5aec9cd06aeed70d4e8d4421e031c777f5fb5ffcd08743554ed59de | """
A MathML printer.
"""
from typing import Any, Dict
from sympy import sympify, S, Mul
from sympy.core.compatibility import default_sort_key
from sympy.core.function import _coeff_isneg
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import \
precedence_traditional, PRECEDENCE, PRECEDENCE_TRADITIONAL
from sympy.printing.pretty.pretty_symbology import greek_unicode
from sympy.printing.printer import Printer, print_function
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
class MathMLPrinterBase(Printer):
"""Contains common code required for MathMLContentPrinter and
MathMLPresentationPrinter.
"""
_default_settings = {
"order": None,
"encoding": "utf-8",
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_symbol_style": "plain",
"mul_symbol": None,
"root_notation": True,
"symbol_names": {},
"mul_symbol_mathml_numbers": '·',
} # type: Dict[str, Any]
def __init__(self, settings=None):
Printer.__init__(self, settings)
from xml.dom.minidom import Document, Text
self.dom = Document()
# Workaround to allow strings to remain unescaped
# Based on
# https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\
# please-dont-escape-my-strings/38041194
class RawText(Text):
def writexml(self, writer, indent='', addindent='', newl=''):
if self.data:
writer.write('{}{}{}'.format(indent, self.data, newl))
def createRawTextNode(data):
r = RawText()
r.data = data
r.ownerDocument = self.dom
return r
self.dom.createTextNode = createRawTextNode
def doprint(self, expr):
"""
Prints the expression as MathML.
"""
mathML = Printer._print(self, expr)
unistr = mathML.toxml()
xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace')
res = xmlbstr.decode()
return res
def apply_patch(self):
# Applying the patch of xml.dom.minidom bug
# Date: 2011-11-18
# Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\
# -toprettyxml-and-silly-whitespace/#best-solution
# Issue: http://bugs.python.org/issue4147
# Patch: http://hg.python.org/cpython/rev/7262f8f276ff/
from xml.dom.minidom import Element, Text, Node, _write_data
def writexml(self, writer, indent="", addindent="", newl=""):
# indent = current indentation
# addindent = indentation to add to higher levels
# newl = newline string
writer.write(indent + "<" + self.tagName)
attrs = self._get_attributes()
a_names = list(attrs.keys())
a_names.sort()
for a_name in a_names:
writer.write(" %s=\"" % a_name)
_write_data(writer, attrs[a_name].value)
writer.write("\"")
if self.childNodes:
writer.write(">")
if (len(self.childNodes) == 1 and
self.childNodes[0].nodeType == Node.TEXT_NODE):
self.childNodes[0].writexml(writer, '', '', '')
else:
writer.write(newl)
for node in self.childNodes:
node.writexml(
writer, indent + addindent, addindent, newl)
writer.write(indent)
writer.write("</%s>%s" % (self.tagName, newl))
else:
writer.write("/>%s" % (newl))
self._Element_writexml_old = Element.writexml
Element.writexml = writexml
def writexml(self, writer, indent="", addindent="", newl=""):
_write_data(writer, "%s%s%s" % (indent, self.data, newl))
self._Text_writexml_old = Text.writexml
Text.writexml = writexml
def restore_patch(self):
from xml.dom.minidom import Element, Text
Element.writexml = self._Element_writexml_old
Text.writexml = self._Text_writexml_old
class MathMLContentPrinter(MathMLPrinterBase):
"""Prints an expression to the Content MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter4.html
"""
printmethod = "_mathml_content"
def mathml_tag(self, e):
"""Returns the MathML tag for an expression."""
translate = {
'Add': 'plus',
'Mul': 'times',
'Derivative': 'diff',
'Number': 'cn',
'int': 'cn',
'Pow': 'power',
'Max': 'max',
'Min': 'min',
'Abs': 'abs',
'And': 'and',
'Or': 'or',
'Xor': 'xor',
'Not': 'not',
'Implies': 'implies',
'Symbol': 'ci',
'MatrixSymbol': 'ci',
'RandomSymbol': 'ci',
'Integral': 'int',
'Sum': 'sum',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'cot': 'cot',
'csc': 'csc',
'sec': 'sec',
'sinh': 'sinh',
'cosh': 'cosh',
'tanh': 'tanh',
'coth': 'coth',
'csch': 'csch',
'sech': 'sech',
'asin': 'arcsin',
'asinh': 'arcsinh',
'acos': 'arccos',
'acosh': 'arccosh',
'atan': 'arctan',
'atanh': 'arctanh',
'atan2': 'arctan',
'acot': 'arccot',
'acoth': 'arccoth',
'asec': 'arcsec',
'asech': 'arcsech',
'acsc': 'arccsc',
'acsch': 'arccsch',
'log': 'ln',
'Equality': 'eq',
'Unequality': 'neq',
'GreaterThan': 'geq',
'LessThan': 'leq',
'StrictGreaterThan': 'gt',
'StrictLessThan': 'lt',
'Union': 'union',
'Intersection': 'intersect',
}
for cls in e.__class__.__mro__:
n = cls.__name__
if n in translate:
return translate[n]
# Not found in the MRO set
n = e.__class__.__name__
return n.lower()
def _print_Mul(self, expr):
if _coeff_isneg(expr):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(self._print_Mul(-expr))
return x
from sympy.simplify import fraction
numer, denom = fraction(expr)
if denom is not S.One:
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('divide'))
x.appendChild(self._print(numer))
x.appendChild(self._print(denom))
return x
coeff, terms = expr.as_coeff_mul()
if coeff is S.One and len(terms) == 1:
# XXX since the negative coefficient has been handled, I don't
# think a coeff of 1 can remain
return self._print(terms[0])
if self.order != 'old':
terms = Mul._from_args(terms).as_ordered_factors()
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('times'))
if coeff != 1:
x.appendChild(self._print(coeff))
for term in terms:
x.appendChild(self._print(term))
return x
def _print_Add(self, expr, order=None):
args = self._as_ordered_terms(expr, order=order)
lastProcessed = self._print(args[0])
plusNodes = []
for arg in args[1:]:
if _coeff_isneg(arg):
# use minus
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(lastProcessed)
x.appendChild(self._print(-arg))
# invert expression since this is now minused
lastProcessed = x
if arg == args[-1]:
plusNodes.append(lastProcessed)
else:
plusNodes.append(lastProcessed)
lastProcessed = self._print(arg)
if arg == args[-1]:
plusNodes.append(self._print(arg))
if len(plusNodes) == 1:
return lastProcessed
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('plus'))
while plusNodes:
x.appendChild(plusNodes.pop(0))
return x
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
root = self.dom.createElement('piecewise')
for i, (e, c) in enumerate(expr.args):
if i == len(expr.args) - 1 and c == True:
piece = self.dom.createElement('otherwise')
piece.appendChild(self._print(e))
else:
piece = self.dom.createElement('piece')
piece.appendChild(self._print(e))
piece.appendChild(self._print(c))
root.appendChild(piece)
return root
def _print_MatrixBase(self, m):
x = self.dom.createElement('matrix')
for i in range(m.rows):
x_r = self.dom.createElement('matrixrow')
for j in range(m.cols):
x_r.appendChild(self._print(m[i, j]))
x.appendChild(x_r)
return x
def _print_Rational(self, e):
if e.q == 1:
# don't divide
x = self.dom.createElement('cn')
x.appendChild(self.dom.createTextNode(str(e.p)))
return x
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('divide'))
# numerator
xnum = self.dom.createElement('cn')
xnum.appendChild(self.dom.createTextNode(str(e.p)))
# denominator
xdenom = self.dom.createElement('cn')
xdenom.appendChild(self.dom.createTextNode(str(e.q)))
x.appendChild(xnum)
x.appendChild(xdenom)
return x
def _print_Limit(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
x_1 = self.dom.createElement('bvar')
x_2 = self.dom.createElement('lowlimit')
x_1.appendChild(self._print(e.args[1]))
x_2.appendChild(self._print(e.args[2]))
x.appendChild(x_1)
x.appendChild(x_2)
x.appendChild(self._print(e.args[0]))
return x
def _print_ImaginaryUnit(self, e):
return self.dom.createElement('imaginaryi')
def _print_EulerGamma(self, e):
return self.dom.createElement('eulergamma')
def _print_GoldenRatio(self, e):
"""We use unicode #x3c6 for Greek letter phi as defined here
http://www.w3.org/2003/entities/2007doc/isogrk1.html"""
x = self.dom.createElement('cn')
x.appendChild(self.dom.createTextNode("\N{GREEK SMALL LETTER PHI}"))
return x
def _print_Exp1(self, e):
return self.dom.createElement('exponentiale')
def _print_Pi(self, e):
return self.dom.createElement('pi')
def _print_Infinity(self, e):
return self.dom.createElement('infinity')
def _print_NaN(self, e):
return self.dom.createElement('notanumber')
def _print_EmptySet(self, e):
return self.dom.createElement('emptyset')
def _print_BooleanTrue(self, e):
return self.dom.createElement('true')
def _print_BooleanFalse(self, e):
return self.dom.createElement('false')
def _print_NegativeInfinity(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(self.dom.createElement('infinity'))
return x
def _print_Integral(self, e):
def lime_recur(limits):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
bvar_elem = self.dom.createElement('bvar')
bvar_elem.appendChild(self._print(limits[0][0]))
x.appendChild(bvar_elem)
if len(limits[0]) == 3:
low_elem = self.dom.createElement('lowlimit')
low_elem.appendChild(self._print(limits[0][1]))
x.appendChild(low_elem)
up_elem = self.dom.createElement('uplimit')
up_elem.appendChild(self._print(limits[0][2]))
x.appendChild(up_elem)
if len(limits[0]) == 2:
up_elem = self.dom.createElement('uplimit')
up_elem.appendChild(self._print(limits[0][1]))
x.appendChild(up_elem)
if len(limits) == 1:
x.appendChild(self._print(e.function))
else:
x.appendChild(lime_recur(limits[1:]))
return x
limits = list(e.limits)
limits.reverse()
return lime_recur(limits)
def _print_Sum(self, e):
# Printer can be shared because Sum and Integral have the
# same internal representation.
return self._print_Integral(e)
def _print_Symbol(self, sym):
ci = self.dom.createElement(self.mathml_tag(sym))
def join(items):
if len(items) > 1:
mrow = self.dom.createElement('mml:mrow')
for i, item in enumerate(items):
if i > 0:
mo = self.dom.createElement('mml:mo')
mo.appendChild(self.dom.createTextNode(" "))
mrow.appendChild(mo)
mi = self.dom.createElement('mml:mi')
mi.appendChild(self.dom.createTextNode(item))
mrow.appendChild(mi)
return mrow
else:
mi = self.dom.createElement('mml:mi')
mi.appendChild(self.dom.createTextNode(items[0]))
return mi
# translate name, supers and subs to unicode characters
def translate(s):
if s in greek_unicode:
return greek_unicode.get(s)
else:
return s
name, supers, subs = split_super_sub(sym.name)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
mname = self.dom.createElement('mml:mi')
mname.appendChild(self.dom.createTextNode(name))
if not supers:
if not subs:
ci.appendChild(self.dom.createTextNode(name))
else:
msub = self.dom.createElement('mml:msub')
msub.appendChild(mname)
msub.appendChild(join(subs))
ci.appendChild(msub)
else:
if not subs:
msup = self.dom.createElement('mml:msup')
msup.appendChild(mname)
msup.appendChild(join(supers))
ci.appendChild(msup)
else:
msubsup = self.dom.createElement('mml:msubsup')
msubsup.appendChild(mname)
msubsup.appendChild(join(subs))
msubsup.appendChild(join(supers))
ci.appendChild(msubsup)
return ci
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Pow(self, e):
# Here we use root instead of power if the exponent is the reciprocal
# of an integer
if (self._settings['root_notation'] and e.exp.is_Rational
and e.exp.p == 1):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('root'))
if e.exp.q != 2:
xmldeg = self.dom.createElement('degree')
xmlci = self.dom.createElement('ci')
xmlci.appendChild(self.dom.createTextNode(str(e.exp.q)))
xmldeg.appendChild(xmlci)
x.appendChild(xmldeg)
x.appendChild(self._print(e.base))
return x
x = self.dom.createElement('apply')
x_1 = self.dom.createElement(self.mathml_tag(e))
x.appendChild(x_1)
x.appendChild(self._print(e.base))
x.appendChild(self._print(e.exp))
return x
def _print_Number(self, e):
x = self.dom.createElement(self.mathml_tag(e))
x.appendChild(self.dom.createTextNode(str(e)))
return x
def _print_Derivative(self, e):
x = self.dom.createElement('apply')
diff_symbol = self.mathml_tag(e)
if requires_partial(e.expr):
diff_symbol = 'partialdiff'
x.appendChild(self.dom.createElement(diff_symbol))
x_1 = self.dom.createElement('bvar')
for sym, times in reversed(e.variable_count):
x_1.appendChild(self._print(sym))
if times > 1:
degree = self.dom.createElement('degree')
degree.appendChild(self._print(sympify(times)))
x_1.appendChild(degree)
x.appendChild(x_1)
x.appendChild(self._print(e.expr))
return x
def _print_Function(self, e):
x = self.dom.createElement("apply")
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_Basic(self, e):
x = self.dom.createElement(self.mathml_tag(e))
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_AssocOp(self, e):
x = self.dom.createElement('apply')
x_1 = self.dom.createElement(self.mathml_tag(e))
x.appendChild(x_1)
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_Relational(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
x.appendChild(self._print(e.lhs))
x.appendChild(self._print(e.rhs))
return x
def _print_list(self, seq):
"""MathML reference for the <list> element:
http://www.w3.org/TR/MathML2/chapter4.html#contm.list"""
dom_element = self.dom.createElement('list')
for item in seq:
dom_element.appendChild(self._print(item))
return dom_element
def _print_int(self, p):
dom_element = self.dom.createElement(self.mathml_tag(p))
dom_element.appendChild(self.dom.createTextNode(str(p)))
return dom_element
_print_Implies = _print_AssocOp
_print_Not = _print_AssocOp
_print_Xor = _print_AssocOp
def _print_FiniteSet(self, e):
x = self.dom.createElement('set')
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_Complement(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('setdiff'))
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_ProductSet(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('cartesianproduct'))
for arg in e.args:
x.appendChild(self._print(arg))
return x
# XXX Symmetric difference is not supported for MathML content printers.
class MathMLPresentationPrinter(MathMLPrinterBase):
"""Prints an expression to the Presentation MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter3.html
"""
printmethod = "_mathml_presentation"
def mathml_tag(self, e):
"""Returns the MathML tag for an expression."""
translate = {
'Number': 'mn',
'Limit': '→',
'Derivative': 'ⅆ',
'int': 'mn',
'Symbol': 'mi',
'Integral': '∫',
'Sum': '∑',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'cot': 'cot',
'asin': 'arcsin',
'asinh': 'arcsinh',
'acos': 'arccos',
'acosh': 'arccosh',
'atan': 'arctan',
'atanh': 'arctanh',
'acot': 'arccot',
'atan2': 'arctan',
'Equality': '=',
'Unequality': '≠',
'GreaterThan': '≥',
'LessThan': '≤',
'StrictGreaterThan': '>',
'StrictLessThan': '<',
'lerchphi': 'Φ',
'zeta': 'ζ',
'dirichlet_eta': 'η',
'elliptic_k': 'Κ',
'lowergamma': 'γ',
'uppergamma': 'Γ',
'gamma': 'Γ',
'totient': 'ϕ',
'reduced_totient': 'λ',
'primenu': 'ν',
'primeomega': 'Ω',
'fresnels': 'S',
'fresnelc': 'C',
'LambertW': 'W',
'Heaviside': 'Θ',
'BooleanTrue': 'True',
'BooleanFalse': 'False',
'NoneType': 'None',
'mathieus': 'S',
'mathieuc': 'C',
'mathieusprime': 'S′',
'mathieucprime': 'C′',
}
def mul_symbol_selection():
if (self._settings["mul_symbol"] is None or
self._settings["mul_symbol"] == 'None'):
return '⁢'
elif self._settings["mul_symbol"] == 'times':
return '×'
elif self._settings["mul_symbol"] == 'dot':
return '·'
elif self._settings["mul_symbol"] == 'ldot':
return '․'
elif not isinstance(self._settings["mul_symbol"], str):
raise TypeError
else:
return self._settings["mul_symbol"]
for cls in e.__class__.__mro__:
n = cls.__name__
if n in translate:
return translate[n]
# Not found in the MRO set
if e.__class__.__name__ == "Mul":
return mul_symbol_selection()
n = e.__class__.__name__
return n.lower()
def parenthesize(self, item, level, strict=False):
prec_val = precedence_traditional(item)
if (prec_val < level) or ((not strict) and prec_val <= level):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(item))
return brac
else:
return self._print(item)
def _print_Mul(self, expr):
def multiply(expr, mrow):
from sympy.simplify import fraction
numer, denom = fraction(expr)
if denom is not S.One:
frac = self.dom.createElement('mfrac')
if self._settings["fold_short_frac"] and len(str(expr)) < 7:
frac.setAttribute('bevelled', 'true')
xnum = self._print(numer)
xden = self._print(denom)
frac.appendChild(xnum)
frac.appendChild(xden)
mrow.appendChild(frac)
return mrow
coeff, terms = expr.as_coeff_mul()
if coeff is S.One and len(terms) == 1:
mrow.appendChild(self._print(terms[0]))
return mrow
if self.order != 'old':
terms = Mul._from_args(terms).as_ordered_factors()
if coeff != 1:
x = self._print(coeff)
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
mrow.appendChild(x)
mrow.appendChild(y)
for term in terms:
mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul']))
if not term == terms[-1]:
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
mrow.appendChild(y)
return mrow
mrow = self.dom.createElement('mrow')
if _coeff_isneg(expr):
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(x)
mrow = multiply(-expr, mrow)
else:
mrow = multiply(expr, mrow)
return mrow
def _print_Add(self, expr, order=None):
mrow = self.dom.createElement('mrow')
args = self._as_ordered_terms(expr, order=order)
mrow.appendChild(self._print(args[0]))
for arg in args[1:]:
if _coeff_isneg(arg):
# use minus
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('-'))
y = self._print(-arg)
# invert expression since this is now minused
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('+'))
y = self._print(arg)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_MatrixBase(self, m):
table = self.dom.createElement('mtable')
for i in range(m.rows):
x = self.dom.createElement('mtr')
for j in range(m.cols):
y = self.dom.createElement('mtd')
y.appendChild(self._print(m[i, j]))
x.appendChild(y)
table.appendChild(x)
if self._settings["mat_delim"] == '':
return table
brac = self.dom.createElement('mfenced')
if self._settings["mat_delim"] == "[":
brac.setAttribute('close', ']')
brac.setAttribute('open', '[')
brac.appendChild(table)
return brac
def _get_printed_Rational(self, e, folded=None):
if e.p < 0:
p = -e.p
else:
p = e.p
x = self.dom.createElement('mfrac')
if folded or self._settings["fold_short_frac"]:
x.setAttribute('bevelled', 'true')
x.appendChild(self._print(p))
x.appendChild(self._print(e.q))
if e.p < 0:
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(mo)
mrow.appendChild(x)
return mrow
else:
return x
def _print_Rational(self, e):
if e.q == 1:
# don't divide
return self._print(e.p)
return self._get_printed_Rational(e, self._settings["fold_short_frac"])
def _print_Limit(self, e):
mrow = self.dom.createElement('mrow')
munder = self.dom.createElement('munder')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('lim'))
x = self.dom.createElement('mrow')
x_1 = self._print(e.args[1])
arrow = self.dom.createElement('mo')
arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
x_2 = self._print(e.args[2])
x.appendChild(x_1)
x.appendChild(arrow)
x.appendChild(x_2)
munder.appendChild(mi)
munder.appendChild(x)
mrow.appendChild(munder)
mrow.appendChild(self._print(e.args[0]))
return mrow
def _print_ImaginaryUnit(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ⅈ'))
return x
def _print_GoldenRatio(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('Φ'))
return x
def _print_Exp1(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ⅇ'))
return x
def _print_Pi(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('π'))
return x
def _print_Infinity(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('∞'))
return x
def _print_NegativeInfinity(self, e):
mrow = self.dom.createElement('mrow')
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode('-'))
x = self._print_Infinity(e)
mrow.appendChild(y)
mrow.appendChild(x)
return mrow
def _print_HBar(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ℏ'))
return x
def _print_EulerGamma(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('γ'))
return x
def _print_TribonacciConstant(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('TribonacciConstant'))
return x
def _print_Dagger(self, e):
msup = self.dom.createElement('msup')
msup.appendChild(self._print(e.args[0]))
msup.appendChild(self.dom.createTextNode('†'))
return msup
def _print_Contains(self, e):
mrow = self.dom.createElement('mrow')
mrow.appendChild(self._print(e.args[0]))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∈'))
mrow.appendChild(mo)
mrow.appendChild(self._print(e.args[1]))
return mrow
def _print_HilbertSpace(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ℋ'))
return x
def _print_ComplexSpace(self, e):
msup = self.dom.createElement('msup')
msup.appendChild(self.dom.createTextNode('𝒞'))
msup.appendChild(self._print(e.args[0]))
return msup
def _print_FockSpace(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ℱ'))
return x
def _print_Integral(self, expr):
intsymbols = {1: "∫", 2: "∬", 3: "∭"}
mrow = self.dom.createElement('mrow')
if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits):
# Only up to three-integral signs exists
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)]))
mrow.appendChild(mo)
else:
# Either more than three or limits provided
for lim in reversed(expr.limits):
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(intsymbols[1]))
if len(lim) == 1:
mrow.appendChild(mo)
if len(lim) == 2:
msup = self.dom.createElement('msup')
msup.appendChild(mo)
msup.appendChild(self._print(lim[1]))
mrow.appendChild(msup)
if len(lim) == 3:
msubsup = self.dom.createElement('msubsup')
msubsup.appendChild(mo)
msubsup.appendChild(self._print(lim[1]))
msubsup.appendChild(self._print(lim[2]))
mrow.appendChild(msubsup)
# print function
mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"],
strict=True))
# print integration variables
for lim in reversed(expr.limits):
d = self.dom.createElement('mo')
d.appendChild(self.dom.createTextNode('ⅆ'))
mrow.appendChild(d)
mrow.appendChild(self._print(lim[0]))
return mrow
def _print_Sum(self, e):
limits = list(e.limits)
subsup = self.dom.createElement('munderover')
low_elem = self._print(limits[0][1])
up_elem = self._print(limits[0][2])
summand = self.dom.createElement('mo')
summand.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
low = self.dom.createElement('mrow')
var = self._print(limits[0][0])
equal = self.dom.createElement('mo')
equal.appendChild(self.dom.createTextNode('='))
low.appendChild(var)
low.appendChild(equal)
low.appendChild(low_elem)
subsup.appendChild(summand)
subsup.appendChild(low)
subsup.appendChild(up_elem)
mrow = self.dom.createElement('mrow')
mrow.appendChild(subsup)
if len(str(e.function)) == 1:
mrow.appendChild(self._print(e.function))
else:
fence = self.dom.createElement('mfenced')
fence.appendChild(self._print(e.function))
mrow.appendChild(fence)
return mrow
def _print_Symbol(self, sym, style='plain'):
def join(items):
if len(items) > 1:
mrow = self.dom.createElement('mrow')
for i, item in enumerate(items):
if i > 0:
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(" "))
mrow.appendChild(mo)
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(item))
mrow.appendChild(mi)
return mrow
else:
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(items[0]))
return mi
# translate name, supers and subs to unicode characters
def translate(s):
if s in greek_unicode:
return greek_unicode.get(s)
else:
return s
name, supers, subs = split_super_sub(sym.name)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
mname = self.dom.createElement('mi')
mname.appendChild(self.dom.createTextNode(name))
if len(supers) == 0:
if len(subs) == 0:
x = mname
else:
x = self.dom.createElement('msub')
x.appendChild(mname)
x.appendChild(join(subs))
else:
if len(subs) == 0:
x = self.dom.createElement('msup')
x.appendChild(mname)
x.appendChild(join(supers))
else:
x = self.dom.createElement('msubsup')
x.appendChild(mname)
x.appendChild(join(subs))
x.appendChild(join(supers))
# Set bold font?
if style == 'bold':
x.setAttribute('mathvariant', 'bold')
return x
def _print_MatrixSymbol(self, sym):
return self._print_Symbol(sym,
style=self._settings['mat_symbol_style'])
_print_RandomSymbol = _print_Symbol
def _print_conjugate(self, expr):
enc = self.dom.createElement('menclose')
enc.setAttribute('notation', 'top')
enc.appendChild(self._print(expr.args[0]))
return enc
def _print_operator_after(self, op, expr):
row = self.dom.createElement('mrow')
row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"]))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(op))
row.appendChild(mo)
return row
def _print_factorial(self, expr):
return self._print_operator_after('!', expr.args[0])
def _print_factorial2(self, expr):
return self._print_operator_after('!!', expr.args[0])
def _print_binomial(self, expr):
brac = self.dom.createElement('mfenced')
frac = self.dom.createElement('mfrac')
frac.setAttribute('linethickness', '0')
frac.appendChild(self._print(expr.args[0]))
frac.appendChild(self._print(expr.args[1]))
brac.appendChild(frac)
return brac
def _print_Pow(self, e):
# Here we use root instead of power if the exponent is the
# reciprocal of an integer
if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and
self._settings['root_notation']):
if e.exp.q == 2:
x = self.dom.createElement('msqrt')
x.appendChild(self._print(e.base))
if e.exp.q != 2:
x = self.dom.createElement('mroot')
x.appendChild(self._print(e.base))
x.appendChild(self._print(e.exp.q))
if e.exp.p == -1:
frac = self.dom.createElement('mfrac')
frac.appendChild(self._print(1))
frac.appendChild(x)
return frac
else:
return x
if e.exp.is_Rational and e.exp.q != 1:
if e.exp.is_negative:
top = self.dom.createElement('mfrac')
top.appendChild(self._print(1))
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._get_printed_Rational(-e.exp,
self._settings['fold_frac_powers']))
top.appendChild(x)
return top
else:
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._get_printed_Rational(e.exp,
self._settings['fold_frac_powers']))
return x
if e.exp.is_negative:
top = self.dom.createElement('mfrac')
top.appendChild(self._print(1))
if e.exp == -1:
top.appendChild(self._print(e.base))
else:
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._print(-e.exp))
top.appendChild(x)
return top
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._print(e.exp))
return x
def _print_Number(self, e):
x = self.dom.createElement(self.mathml_tag(e))
x.appendChild(self.dom.createTextNode(str(e)))
return x
def _print_AccumulationBounds(self, i):
brac = self.dom.createElement('mfenced')
brac.setAttribute('close', '\u27e9')
brac.setAttribute('open', '\u27e8')
brac.appendChild(self._print(i.min))
brac.appendChild(self._print(i.max))
return brac
def _print_Derivative(self, e):
if requires_partial(e.expr):
d = '∂'
else:
d = self.mathml_tag(e)
# Determine denominator
m = self.dom.createElement('mrow')
dim = 0 # Total diff dimension, for numerator
for sym, num in reversed(e.variable_count):
dim += num
if num >= 2:
x = self.dom.createElement('msup')
xx = self.dom.createElement('mo')
xx.appendChild(self.dom.createTextNode(d))
x.appendChild(xx)
x.appendChild(self._print(num))
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(d))
m.appendChild(x)
y = self._print(sym)
m.appendChild(y)
mnum = self.dom.createElement('mrow')
if dim >= 2:
x = self.dom.createElement('msup')
xx = self.dom.createElement('mo')
xx.appendChild(self.dom.createTextNode(d))
x.appendChild(xx)
x.appendChild(self._print(dim))
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(d))
mnum.appendChild(x)
mrow = self.dom.createElement('mrow')
frac = self.dom.createElement('mfrac')
frac.appendChild(mnum)
frac.appendChild(m)
mrow.appendChild(frac)
# Print function
mrow.appendChild(self._print(e.expr))
return mrow
def _print_Function(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mi')
if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]:
x.appendChild(self.dom.createTextNode('ln'))
else:
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
y = self.dom.createElement('mfenced')
for arg in e.args:
y.appendChild(self._print(arg))
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_mathml_numbers']
mrow = self.dom.createElement('mrow')
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(mant))
mrow.appendChild(mn)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(separator))
mrow.appendChild(mo)
msup = self.dom.createElement('msup')
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode("10"))
msup.appendChild(mn)
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(exp))
msup.appendChild(mn)
mrow.appendChild(msup)
return mrow
elif str_real == "+inf":
return self._print_Infinity(None)
elif str_real == "-inf":
return self._print_NegativeInfinity(None)
else:
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(str_real))
return mn
def _print_polylog(self, expr):
mrow = self.dom.createElement('mrow')
m = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('Li'))
m.appendChild(mi)
m.appendChild(self._print(expr.args[0]))
mrow.appendChild(m)
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(expr.args[1]))
mrow.appendChild(brac)
return mrow
def _print_Basic(self, e):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(mi)
brac = self.dom.createElement('mfenced')
for arg in e.args:
brac.appendChild(self._print(arg))
mrow.appendChild(brac)
return mrow
def _print_Tuple(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
for arg in e.args:
x.appendChild(self._print(arg))
mrow.appendChild(x)
return mrow
def _print_Interval(self, i):
mrow = self.dom.createElement('mrow')
brac = self.dom.createElement('mfenced')
if i.start == i.end:
# Most often, this type of Interval is converted to a FiniteSet
brac.setAttribute('close', '}')
brac.setAttribute('open', '{')
brac.appendChild(self._print(i.start))
else:
if i.right_open:
brac.setAttribute('close', ')')
else:
brac.setAttribute('close', ']')
if i.left_open:
brac.setAttribute('open', '(')
else:
brac.setAttribute('open', '[')
brac.appendChild(self._print(i.start))
brac.appendChild(self._print(i.end))
mrow.appendChild(brac)
return mrow
def _print_Abs(self, expr, exp=None):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('close', '|')
x.setAttribute('open', '|')
x.appendChild(self._print(expr.args[0]))
mrow.appendChild(x)
return mrow
_print_Determinant = _print_Abs
def _print_re_im(self, c, expr):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'fraktur')
mi.appendChild(self.dom.createTextNode(c))
mrow.appendChild(mi)
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(expr))
mrow.appendChild(brac)
return mrow
def _print_re(self, expr, exp=None):
return self._print_re_im('R', expr.args[0])
def _print_im(self, expr, exp=None):
return self._print_re_im('I', expr.args[0])
def _print_AssocOp(self, e):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(mi)
for arg in e.args:
mrow.appendChild(self._print(arg))
return mrow
def _print_SetOp(self, expr, symbol, prec):
mrow = self.dom.createElement('mrow')
mrow.appendChild(self.parenthesize(expr.args[0], prec))
for arg in expr.args[1:]:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(symbol))
y = self.parenthesize(arg, prec)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_Union(self, expr):
prec = PRECEDENCE_TRADITIONAL['Union']
return self._print_SetOp(expr, '∪', prec)
def _print_Intersection(self, expr):
prec = PRECEDENCE_TRADITIONAL['Intersection']
return self._print_SetOp(expr, '∩', prec)
def _print_Complement(self, expr):
prec = PRECEDENCE_TRADITIONAL['Complement']
return self._print_SetOp(expr, '∖', prec)
def _print_SymmetricDifference(self, expr):
prec = PRECEDENCE_TRADITIONAL['SymmetricDifference']
return self._print_SetOp(expr, '∆', prec)
def _print_ProductSet(self, expr):
prec = PRECEDENCE_TRADITIONAL['ProductSet']
return self._print_SetOp(expr, '×', prec)
def _print_FiniteSet(self, s):
return self._print_set(s.args)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
brac = self.dom.createElement('mfenced')
brac.setAttribute('close', '}')
brac.setAttribute('open', '{')
for item in items:
brac.appendChild(self._print(item))
return brac
_print_frozenset = _print_set
def _print_LogOp(self, args, symbol):
mrow = self.dom.createElement('mrow')
if args[0].is_Boolean and not args[0].is_Not:
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(args[0]))
mrow.appendChild(brac)
else:
mrow.appendChild(self._print(args[0]))
for arg in args[1:]:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(symbol))
if arg.is_Boolean and not arg.is_Not:
y = self.dom.createElement('mfenced')
y.appendChild(self._print(arg))
else:
y = self._print(arg)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if expr == expr.zero:
# Not clear if this is ever called
return self._print(expr.zero)
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
mrow = self.dom.createElement('mrow')
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x:x[0].__str__())
for i, (k, v) in enumerate(inneritems):
if v == 1:
if i: # No + for first item
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('+'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
elif v == -1:
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
else:
if i: # No + for first item
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('+'))
mrow.appendChild(mo)
mbrac = self.dom.createElement('mfenced')
mbrac.appendChild(self._print(v))
mrow.appendChild(mbrac)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('⁢'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
return mrow
def _print_And(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '∧')
def _print_Or(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '∨')
def _print_Xor(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '⊻')
def _print_Implies(self, expr):
return self._print_LogOp(expr.args, '⇒')
def _print_Equivalent(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '⇔')
def _print_Not(self, e):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('¬'))
mrow.appendChild(mo)
if (e.args[0].is_Boolean):
x = self.dom.createElement('mfenced')
x.appendChild(self._print(e.args[0]))
else:
x = self._print(e.args[0])
mrow.appendChild(x)
return mrow
def _print_bool(self, e):
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
return mi
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
return mi
def _print_Range(self, s):
dots = "\u2026"
brac = self.dom.createElement('mfenced')
brac.setAttribute('close', '}')
brac.setAttribute('open', '{')
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
for el in printset:
if el == dots:
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(dots))
brac.appendChild(mi)
else:
brac.appendChild(self._print(el))
return brac
def _hprint_variadic_function(self, expr):
args = sorted(expr.args, key=default_sort_key)
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode((str(expr.func)).lower()))
mrow.appendChild(mo)
brac = self.dom.createElement('mfenced')
for symbol in args:
brac.appendChild(self._print(symbol))
mrow.appendChild(brac)
return mrow
_print_Min = _print_Max = _hprint_variadic_function
def _print_exp(self, expr):
msup = self.dom.createElement('msup')
msup.appendChild(self._print_Exp1(None))
msup.appendChild(self._print(expr.args[0]))
return msup
def _print_Relational(self, e):
mrow = self.dom.createElement('mrow')
mrow.appendChild(self._print(e.lhs))
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(x)
mrow.appendChild(self._print(e.rhs))
return mrow
def _print_int(self, p):
dom_element = self.dom.createElement(self.mathml_tag(p))
dom_element.appendChild(self.dom.createTextNode(str(p)))
return dom_element
def _print_BaseScalar(self, e):
msub = self.dom.createElement('msub')
index, system = e._id
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._variable_names[index]))
msub.appendChild(mi)
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._name))
msub.appendChild(mi)
return msub
def _print_BaseVector(self, e):
msub = self.dom.createElement('msub')
index, system = e._id
mover = self.dom.createElement('mover')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._vector_names[index]))
mover.appendChild(mi)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('^'))
mover.appendChild(mo)
msub.appendChild(mover)
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._name))
msub.appendChild(mi)
return msub
def _print_VectorZero(self, e):
mover = self.dom.createElement('mover')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode("0"))
mover.appendChild(mi)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('^'))
mover.appendChild(mo)
return mover
def _print_Cross(self, expr):
mrow = self.dom.createElement('mrow')
vec1 = expr._expr1
vec2 = expr._expr2
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('×'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
return mrow
def _print_Curl(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('×'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Divergence(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('·'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Dot(self, expr):
mrow = self.dom.createElement('mrow')
vec1 = expr._expr1
vec2 = expr._expr2
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('·'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
return mrow
def _print_Gradient(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Laplacian(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∆'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Integers(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℤ'))
return x
def _print_Complexes(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℂ'))
return x
def _print_Reals(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℝ'))
return x
def _print_Naturals(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℕ'))
return x
def _print_Naturals0(self, e):
sub = self.dom.createElement('msub')
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℕ'))
sub.appendChild(x)
sub.appendChild(self._print(S.Zero))
return sub
def _print_SingularityFunction(self, expr):
shift = expr.args[0] - expr.args[1]
power = expr.args[2]
sup = self.dom.createElement('msup')
brac = self.dom.createElement('mfenced')
brac.setAttribute('close', '\u27e9')
brac.setAttribute('open', '\u27e8')
brac.appendChild(self._print(shift))
sup.appendChild(brac)
sup.appendChild(self._print(power))
return sup
def _print_NaN(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('NaN'))
return x
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(name))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
if len(e.args) == 1:
return sub
# TODO: copy-pasted from _print_Function: can we do better?
mrow = self.dom.createElement('mrow')
y = self.dom.createElement('mfenced')
for arg in e.args[1:]:
y.appendChild(self._print(arg))
mrow.appendChild(sub)
mrow.appendChild(y)
return mrow
def _print_bernoulli(self, e):
return self._print_number_function(e, 'B')
_print_bell = _print_bernoulli
def _print_catalan(self, e):
return self._print_number_function(e, 'C')
def _print_euler(self, e):
return self._print_number_function(e, 'E')
def _print_fibonacci(self, e):
return self._print_number_function(e, 'F')
def _print_lucas(self, e):
return self._print_number_function(e, 'L')
def _print_stieltjes(self, e):
return self._print_number_function(e, 'γ')
def _print_tribonacci(self, e):
return self._print_number_function(e, 'T')
def _print_ComplexInfinity(self, e):
x = self.dom.createElement('mover')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∞'))
x.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('~'))
x.appendChild(mo)
return x
def _print_EmptySet(self, e):
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('∅'))
return x
def _print_UniversalSet(self, e):
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('𝕌'))
return x
def _print_Adjoint(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('†'))
sup.appendChild(mo)
return sup
def _print_Transpose(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('T'))
sup.appendChild(mo)
return sup
def _print_Inverse(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
sup.appendChild(self._print(-1))
return sup
def _print_MatMul(self, expr):
from sympy import MatMul
x = self.dom.createElement('mrow')
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
x.appendChild(mo)
for arg in args[:-1]:
x.appendChild(self.parenthesize(arg, precedence_traditional(expr),
False))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('⁢'))
x.appendChild(mo)
x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr),
False))
return x
def _print_MatPow(self, expr):
from sympy.matrices import MatrixSymbol
base, exp = expr.base, expr.exp
sup = self.dom.createElement('msup')
if not isinstance(base, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(base))
sup.appendChild(brac)
else:
sup.appendChild(self._print(base))
sup.appendChild(self._print(exp))
return sup
def _print_HadamardProduct(self, expr):
x = self.dom.createElement('mrow')
args = expr.args
for arg in args[:-1]:
x.appendChild(
self.parenthesize(arg, precedence_traditional(expr), False))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∘'))
x.appendChild(mo)
x.appendChild(
self.parenthesize(args[-1], precedence_traditional(expr), False))
return x
def _print_ZeroMatrix(self, Z):
x = self.dom.createElement('mn')
x.appendChild(self.dom.createTextNode('𝟘'))
return x
def _print_OneMatrix(self, Z):
x = self.dom.createElement('mn')
x.appendChild(self.dom.createTextNode('𝟙'))
return x
def _print_Identity(self, I):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('𝕀'))
return x
def _print_floor(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('close', '\u230B')
x.setAttribute('open', '\u230A')
x.appendChild(self._print(e.args[0]))
mrow.appendChild(x)
return mrow
def _print_ceiling(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('close', '\u2309')
x.setAttribute('open', '\u2308')
x.appendChild(self._print(e.args[0]))
mrow.appendChild(x)
return mrow
def _print_Lambda(self, e):
x = self.dom.createElement('mfenced')
mrow = self.dom.createElement('mrow')
symbols = e.args[0]
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(symbols)
mrow.appendChild(symbols)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('↦'))
mrow.appendChild(mo)
mrow.appendChild(self._print(e.args[1]))
x.appendChild(mrow)
return x
def _print_tuple(self, e):
x = self.dom.createElement('mfenced')
for i in e:
x.appendChild(self._print(i))
return x
def _print_IndexedBase(self, e):
return self._print(e.label)
def _print_Indexed(self, e):
x = self.dom.createElement('msub')
x.appendChild(self._print(e.base))
if len(e.indices) == 1:
x.appendChild(self._print(e.indices[0]))
return x
x.appendChild(self._print(e.indices))
return x
def _print_MatrixElement(self, e):
x = self.dom.createElement('msub')
x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True))
brac = self.dom.createElement('mfenced')
brac.setAttribute("close", "")
brac.setAttribute("open", "")
for i in e.indices:
brac.appendChild(self._print(i))
x.appendChild(brac)
return x
def _print_elliptic_f(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝖥'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
y.setAttribute("separators", "|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_elliptic_e(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝖤'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
y.setAttribute("separators", "|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_elliptic_pi(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝛱'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
if len(e.args) == 2:
y.setAttribute("separators", "|")
else:
y.setAttribute("separators", ";|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_Ei(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('Ei'))
x.appendChild(mi)
x.appendChild(self._print(e.args))
return x
def _print_expint(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('E'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_jacobi(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:3]))
x.appendChild(y)
x.appendChild(self._print(e.args[3:]))
return x
def _print_gegenbauer(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('C'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_chebyshevt(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('T'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_chebyshevu(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('U'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_legendre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_assoc_legendre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_laguerre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('L'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_assoc_laguerre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('L'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_hermite(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('H'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
@print_function(MathMLPrinterBase)
def mathml(expr, printer='content', **settings):
"""Returns the MathML representation of expr. If printer is presentation
then prints Presentation MathML else prints content MathML.
"""
if printer == 'presentation':
return MathMLPresentationPrinter(settings).doprint(expr)
else:
return MathMLContentPrinter(settings).doprint(expr)
def print_mathml(expr, printer='content', **settings):
"""
Prints a pretty representation of the MathML code for expr. If printer is
presentation then prints Presentation MathML else prints content MathML.
Examples
========
>>> ##
>>> from sympy.printing.mathml import print_mathml
>>> from sympy.abc import x
>>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE
<apply>
<plus/>
<ci>x</ci>
<cn>1</cn>
</apply>
>>> print_mathml(x+1, printer='presentation')
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
"""
if printer == 'presentation':
s = MathMLPresentationPrinter(settings)
else:
s = MathMLContentPrinter(settings)
xml = s._print(sympify(expr))
s.apply_patch()
pretty_xml = xml.toprettyxml()
s.restore_patch()
print(pretty_xml)
# For backward compatibility
MathMLPrinter = MathMLContentPrinter
|
83edc743b6fd03b6162074948383c7cb4f2b82c9ed9b2228d246a98a54ec0ccd | from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.symbol import Symbol
from sympy.core.numbers import Integer, Rational, Float
from sympy.printing.repr import srepr
__all__ = ['dotprint']
default_styles = (
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})
)
slotClasses = (Symbol, Integer, Rational, Float)
def purestr(x, with_args=False):
"""A string that follows ```obj = type(obj)(*obj.args)``` exactly.
Parameters
==========
with_args : boolean, optional
If ``True``, there will be a second argument for the return
value, which is a tuple containing ``purestr`` applied to each
of the subnodes.
If ``False``, there will not be a second argument for the
return.
Default is ``False``
Examples
========
>>> from sympy import Float, Symbol, MatrixSymbol
>>> from sympy import Integer # noqa: F401
>>> from sympy.core.symbol import Str # noqa: F401
>>> from sympy.printing.dot import purestr
Applying ``purestr`` for basic symbolic object:
>>> code = purestr(Symbol('x'))
>>> code
"Symbol('x')"
>>> eval(code) == Symbol('x')
True
For basic numeric object:
>>> purestr(Float(2))
"Float('2.0', precision=53)"
For matrix symbol:
>>> code = purestr(MatrixSymbol('x', 2, 2))
>>> code
"MatrixSymbol(Str('x'), Integer(2), Integer(2))"
>>> eval(code) == MatrixSymbol('x', 2, 2)
True
With ``with_args=True``:
>>> purestr(Float(2), with_args=True)
("Float('2.0', precision=53)", ())
>>> purestr(MatrixSymbol('x', 2, 2), with_args=True)
("MatrixSymbol(Str('x'), Integer(2), Integer(2))",
("Str('x')", 'Integer(2)', 'Integer(2)'))
"""
sargs = ()
if not isinstance(x, Basic):
rv = str(x)
elif not x.args:
rv = srepr(x)
else:
args = x.args
sargs = tuple(map(purestr, args))
rv = "%s(%s)"%(type(x).__name__, ', '.join(sargs))
if with_args:
rv = rv, sargs
return rv
def styleof(expr, styles=default_styles):
""" Merge style dictionaries in order
Examples
========
>>> from sympy import Symbol, Basic, Expr
>>> from sympy.printing.dot import styleof
>>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
... (Expr, {'color': 'black'})]
>>> styleof(Basic(1), styles)
{'color': 'blue', 'shape': 'ellipse'}
>>> x = Symbol('x')
>>> styleof(x + 1, styles) # this is an Expr
{'color': 'black', 'shape': 'ellipse'}
"""
style = dict()
for typ, sty in styles:
if isinstance(expr, typ):
style.update(sty)
return style
def attrprint(d, delimiter=', '):
""" Print a dictionary of attributes
Examples
========
>>> from sympy.printing.dot import attrprint
>>> print(attrprint({'color': 'blue', 'shape': 'ellipse'}))
"color"="blue", "shape"="ellipse"
"""
return delimiter.join('"%s"="%s"'%item for item in sorted(d.items()))
def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True):
""" String defining a node
Examples
========
>>> from sympy.printing.dot import dotnode
>>> from sympy.abc import x
>>> print(dotnode(x))
"Symbol('x')_()" ["color"="black", "label"="x", "shape"="ellipse"];
"""
style = styleof(expr, styles)
if isinstance(expr, Basic) and not expr.is_Atom:
label = str(expr.__class__.__name__)
else:
label = labelfunc(expr)
style['label'] = label
expr_str = purestr(expr)
if repeat:
expr_str += '_%s' % str(pos)
return '"%s" [%s];' % (expr_str, attrprint(style))
def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True):
""" List of strings for all expr->expr.arg pairs
See the docstring of dotprint for explanations of the options.
Examples
========
>>> from sympy.printing.dot import dotedges
>>> from sympy.abc import x
>>> for e in dotedges(x+2):
... print(e)
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
"""
if atom(expr):
return []
else:
expr_str, arg_strs = purestr(expr, with_args=True)
if repeat:
expr_str += '_%s' % str(pos)
arg_strs = ['%s_%s' % (a, str(pos + (i,)))
for i, a in enumerate(arg_strs)]
return ['"%s" -> "%s";' % (expr_str, a) for a in arg_strs]
template = \
"""digraph{
# Graph style
%(graphstyle)s
#########
# Nodes #
#########
%(nodes)s
#########
# Edges #
#########
%(edges)s
}"""
_graphstyle = {'rankdir': 'TD', 'ordering': 'out'}
def dotprint(expr,
styles=default_styles, atom=lambda x: not isinstance(x, Basic),
maxdepth=None, repeat=True, labelfunc=str, **kwargs):
"""DOT description of a SymPy expression tree
Parameters
==========
styles : list of lists composed of (Class, mapping), optional
Styles for different classes.
The default is
.. code-block:: python
(
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})
)
atom : function, optional
Function used to determine if an arg is an atom.
A good choice is ``lambda x: not x.args``.
The default is ``lambda x: not isinstance(x, Basic)``.
maxdepth : integer, optional
The maximum depth.
The default is ``None``, meaning no limit.
repeat : boolean, optional
Whether to use different nodes for common subexpressions.
The default is ``True``.
For example, for ``x + x*y`` with ``repeat=True``, it will have
two nodes for ``x``; with ``repeat=False``, it will have one
node.
.. warning::
Even if a node appears twice in the same object like ``x`` in
``Pow(x, x)``, it will still only appear once.
Hence, with ``repeat=False``, the number of arrows out of an
object might not equal the number of args it has.
labelfunc : function, optional
A function to create a label for a given leaf node.
The default is ``str``.
Another good option is ``srepr``.
For example with ``str``, the leaf nodes of ``x + 1`` are labeled,
``x`` and ``1``. With ``srepr``, they are labeled ``Symbol('x')``
and ``Integer(1)``.
**kwargs : optional
Additional keyword arguments are included as styles for the graph.
Examples
========
>>> from sympy.printing.dot import dotprint
>>> from sympy.abc import x
>>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE
digraph{
<BLANKLINE>
# Graph style
"ordering"="out"
"rankdir"="TD"
<BLANKLINE>
#########
# Nodes #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
"Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
"Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
<BLANKLINE>
#########
# Edges #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
}
"""
# repeat works by adding a signature tuple to the end of each node for its
# position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the
# Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0].
graphstyle = _graphstyle.copy()
graphstyle.update(kwargs)
nodes = []
edges = []
def traverse(e, depth, pos=()):
nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat))
if maxdepth and depth >= maxdepth:
return
edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat))
[traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)]
traverse(expr, 0)
return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'),
'nodes': '\n'.join(nodes),
'edges': '\n'.join(edges)}
|
262b6250300b3f96dbeb912c6bef04ad9970899f75bc1f7413adc2ca5f32b03c | """
A Printer for generating executable code.
The most important function here is srepr that returns a string so that the
relation eval(srepr(expr))=expr holds in an appropriate environment.
"""
from typing import Any, Dict
from sympy.core.function import AppliedUndef
from sympy.core.mul import Mul
from mpmath.libmp import repr_dps, to_str as mlib_to_str
from .printer import Printer, print_function
class ReprPrinter(Printer):
printmethod = "_sympyrepr"
_default_settings = {
"order": None,
"perm_cyclic" : True,
} # type: Dict[str, Any]
def reprify(self, args, sep):
"""
Prints each item in `args` and joins them with `sep`.
"""
return sep.join([self.doprint(item) for item in args])
def emptyPrinter(self, expr):
"""
The fallback printer.
"""
if isinstance(expr, str):
return expr
elif hasattr(expr, "__srepr__"):
return expr.__srepr__()
elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
l = []
for o in expr.args:
l.append(self._print(o))
return expr.__class__.__name__ + '(%s)' % ', '.join(l)
elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
return "<'%s.%s'>" % (expr.__module__, expr.__name__)
else:
return str(expr)
def _print_Add(self, expr, order=None):
args = self._as_ordered_terms(expr, order=order)
nargs = len(args)
args = map(self._print, args)
clsname = type(expr).__name__
if nargs > 255: # Issue #10259, Python < 3.7
return clsname + "(*[%s])" % ", ".join(args)
return clsname + "(%s)" % ", ".join(args)
def _print_Cycle(self, expr):
return expr.__repr__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
from sympy.utilities.exceptions import SymPyDeprecationWarning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
if not expr.size:
return 'Permutation()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
return 'Permutation%s' %s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % str(expr.array_form)
return 'Permutation([], size=%s)' % expr.size
trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size
use = full = str(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Function(self, expr):
r = self._print(expr.func)
r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
return r
def _print_FunctionClass(self, expr):
if issubclass(expr, AppliedUndef):
return 'Function(%r)' % (expr.__name__)
else:
return expr.__name__
def _print_Half(self, expr):
return 'Rational(1, 2)'
def _print_RationalConstant(self, expr):
return str(expr)
def _print_AtomicExpr(self, expr):
return str(expr)
def _print_NumberSymbol(self, expr):
return str(expr)
def _print_Integer(self, expr):
return 'Integer(%i)' % expr.p
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Reals(self, expr):
return 'Reals'
def _print_EmptySet(self, expr):
return 'EmptySet'
def _print_EmptySequence(self, expr):
return 'EmptySequence'
def _print_list(self, expr):
return "[%s]" % self.reprify(expr, ", ")
def _print_dict(self, expr):
sep = ", "
dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()]
return "{%s}" % sep.join(dict_kvs)
def _print_set(self, expr):
if not expr:
return "set()"
return "{%s}" % self.reprify(expr, ", ")
def _print_MatrixBase(self, expr):
# special case for some empty matrices
if (expr.rows == 0) ^ (expr.cols == 0):
return '%s(%s, %s, %s)' % (expr.__class__.__name__,
self._print(expr.rows),
self._print(expr.cols),
self._print([]))
l = []
for i in range(expr.rows):
l.append([])
for j in range(expr.cols):
l[-1].append(expr[i, j])
return '%s(%s)' % (expr.__class__.__name__, self._print(l))
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_NaN(self, expr):
return "nan"
def _print_Mul(self, expr, order=None):
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
nargs = len(args)
args = map(self._print, args)
clsname = type(expr).__name__
if nargs > 255: # Issue #10259, Python < 3.7
return clsname + "(*[%s])" % ", ".join(args)
return clsname + "(%s)" % ", ".join(args)
def _print_Rational(self, expr):
return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))
def _print_PythonRational(self, expr):
return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)
def _print_Fraction(self, expr):
return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))
def _print_Float(self, expr):
r = mlib_to_str(expr._mpf_, repr_dps(expr._prec))
return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec)
def _print_Sum2(self, expr):
return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
self._print(expr.a), self._print(expr.b))
def _print_Str(self, s):
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
def _print_Symbol(self, expr):
d = expr._assumptions.generator
# print the dummy_index like it was an assumption
if expr.is_Dummy:
d['dummy_index'] = expr.dummy_index
if d == {}:
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
else:
attr = ['%s=%s' % (k, v) for k, v in d.items()]
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.name), ', '.join(attr))
def _print_CoordinateSymbol(self, expr):
d = expr._assumptions.generator
if d == {}:
return "%s(%s, %s)" % (
expr.__class__.__name__,
self._print(expr.coordinate_system),
self._print(expr.index)
)
else:
attr = ['%s=%s' % (k, v) for k, v in d.items()]
return "%s(%s, %s, %s)" % (
expr.__class__.__name__,
self._print(expr.coordinate_system),
self._print(expr.index),
', '.join(attr)
)
def _print_Predicate(self, expr):
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
def _print_AppliedPredicate(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg)
def _print_str(self, expr):
return repr(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.reprify(expr, ", ")
def _print_WildFunction(self, expr):
return "%s('%s')" % (expr.__class__.__name__, expr.name)
def _print_AlgebraicNumber(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.root), self._print(expr.coeffs()))
def _print_PolyRing(self, ring):
return "%s(%s, %s, %s)" % (ring.__class__.__name__,
self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "%s(%s, %s, %s)" % (field.__class__.__name__,
self._print(field.symbols), self._print(field.domain), self._print(field.order))
def _print_PolyElement(self, poly):
terms = list(poly.terms())
terms.sort(key=poly.ring.order, reverse=True)
return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))
def _print_FracElement(self, frac):
numer_terms = list(frac.numer.terms())
numer_terms.sort(key=frac.field.order, reverse=True)
denom_terms = list(frac.denom.terms())
denom_terms.sort(key=frac.field.order, reverse=True)
numer = self._print(numer_terms)
denom = self._print(denom_terms)
return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
def _print_FractionField(self, domain):
cls = domain.__class__.__name__
field = self._print(domain.field)
return "%s(%s)" % (cls, field)
def _print_PolynomialRingBase(self, ring):
cls = ring.__class__.__name__
dom = self._print(ring.domain)
gens = ', '.join(map(self._print, ring.gens))
order = str(ring.order)
if order != ring.default_order:
orderstr = ", order=" + order
else:
orderstr = ""
return "%s(%s, %s%s)" % (cls, dom, gens, orderstr)
def _print_DMP(self, p):
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
if p.ring is not None:
ringstr = ", ring=" + self._print(p.ring)
else:
ringstr = ""
return "%s(%s, %s%s)" % (cls, rep, dom, ringstr)
def _print_MonogenicFiniteExtension(self, ext):
# The expanded tree shown by srepr(ext.modulus)
# is not practical.
return "FiniteExtension(%s)" % str(ext.modulus)
def _print_ExtensionElement(self, f):
rep = self._print(f.rep)
ext = self._print(f.ext)
return "ExtElem(%s, %s)" % (rep, ext)
@print_function(ReprPrinter)
def srepr(expr, **settings):
"""return expr in repr form"""
return ReprPrinter(settings).doprint(expr)
|
be7c03c222270bc1d31a18bbed4ee599909d007d2f1effe23a5259b39b0b1bdf | from __future__ import print_function, division
from typing import Any, Dict
from sympy.core.compatibility import is_sequence
from sympy.external import import_module
from sympy.printing.printer import Printer
import sympy
from functools import partial
theano = import_module('theano')
if theano:
ts = theano.scalar
tt = theano.tensor
from theano.sandbox import linalg as tlinalg
mapping = {
sympy.Add: tt.add,
sympy.Mul: tt.mul,
sympy.Abs: tt.abs_,
sympy.sign: tt.sgn,
sympy.ceiling: tt.ceil,
sympy.floor: tt.floor,
sympy.log: tt.log,
sympy.exp: tt.exp,
sympy.sqrt: tt.sqrt,
sympy.cos: tt.cos,
sympy.acos: tt.arccos,
sympy.sin: tt.sin,
sympy.asin: tt.arcsin,
sympy.tan: tt.tan,
sympy.atan: tt.arctan,
sympy.atan2: tt.arctan2,
sympy.cosh: tt.cosh,
sympy.acosh: tt.arccosh,
sympy.sinh: tt.sinh,
sympy.asinh: tt.arcsinh,
sympy.tanh: tt.tanh,
sympy.atanh: tt.arctanh,
sympy.re: tt.real,
sympy.im: tt.imag,
sympy.arg: tt.angle,
sympy.erf: tt.erf,
sympy.gamma: tt.gamma,
sympy.loggamma: tt.gammaln,
sympy.Pow: tt.pow,
sympy.Eq: tt.eq,
sympy.StrictGreaterThan: tt.gt,
sympy.StrictLessThan: tt.lt,
sympy.LessThan: tt.le,
sympy.GreaterThan: tt.ge,
sympy.And: tt.and_,
sympy.Or: tt.or_,
sympy.Max: tt.maximum, # Sympy accept >2 inputs, Theano only 2
sympy.Min: tt.minimum, # Sympy accept >2 inputs, Theano only 2
sympy.conjugate: tt.conj,
sympy.core.numbers.ImaginaryUnit: lambda:tt.complex(0,1),
# Matrices
sympy.MatAdd: tt.Elemwise(ts.add),
sympy.HadamardProduct: tt.Elemwise(ts.mul),
sympy.Trace: tlinalg.trace,
sympy.Determinant : tlinalg.det,
sympy.Inverse: tlinalg.matrix_inverse,
sympy.Transpose: tt.DimShuffle((False, False), [1, 0]),
}
class TheanoPrinter(Printer):
""" Code printer which creates Theano symbolic expression graphs.
Parameters
==========
cache : dict
Cache dictionary to use. If None (default) will use
the global cache. To create a printer which does not depend on or alter
global state pass an empty dictionary. Note: the dictionary is not
copied on initialization of the printer and will be updated in-place,
so using the same dict object when creating multiple printers or making
multiple calls to :func:`.theano_code` or :func:`.theano_function` means
the cache is shared between all these applications.
Attributes
==========
cache : dict
A cache of Theano variables which have been created for Sympy
symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
:class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
ensure that all references to a given symbol in an expression (or
multiple expressions) are printed as the same Theano variable, which is
created only once. Symbols are differentiated only by name and type. The
format of the cache's contents should be considered opaque to the user.
"""
printmethod = "_theano"
def __init__(self, *args, **kwargs):
self.cache = kwargs.pop('cache', dict())
super(TheanoPrinter, self).__init__(*args, **kwargs)
def _get_key(self, s, name=None, dtype=None, broadcastable=None):
""" Get the cache key for a Sympy object.
Parameters
==========
s : sympy.core.basic.Basic
Sympy object to get key for.
name : str
Name of object, if it does not have a ``name`` attribute.
"""
if name is None:
name = s.name
return (name, type(s), s.args, dtype, broadcastable)
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
"""
Get the Theano variable for a Sympy symbol from the cache, or create it
if it does not exist.
"""
# Defaults
if name is None:
name = s.name
if dtype is None:
dtype = 'floatX'
if broadcastable is None:
broadcastable = ()
key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
if key in self.cache:
return self.cache[key]
value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
self.cache[key] = value
return value
def _print_Symbol(self, s, **kwargs):
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, dtype=dtype, broadcastable=bc)
def _print_AppliedUndef(self, s, **kwargs):
name = str(type(s)) + '_' + str(s.args[0])
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
def _print_Basic(self, expr, **kwargs):
op = mapping[type(expr)]
children = [self._print(arg, **kwargs) for arg in expr.args]
return op(*children)
def _print_Number(self, n, **kwargs):
# Integers already taken care of below, interpret as float
return float(n.evalf())
def _print_MatrixSymbol(self, X, **kwargs):
dtype = kwargs.get('dtypes', {}).get(X)
return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
def _print_DenseMatrix(self, X, **kwargs):
if not hasattr(tt, 'stacklists'):
raise NotImplementedError(
"Matrix translation not yet supported in this version of Theano")
return tt.stacklists([
[self._print(arg, **kwargs) for arg in L]
for L in X.tolist()
])
_print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
def _print_MatMul(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = children[0]
for child in children[1:]:
result = tt.dot(result, child)
return result
def _print_MatPow(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = 1
if isinstance(children[1], int) and children[1] > 0:
for i in range(children[1]):
result = tt.dot(result, children[0])
else:
raise NotImplementedError('''Only non-negative integer
powers of matrices can be handled by Theano at the moment''')
return result
def _print_MatrixSlice(self, expr, **kwargs):
parent = self._print(expr.parent, **kwargs)
rowslice = self._print(slice(*expr.rowslice), **kwargs)
colslice = self._print(slice(*expr.colslice), **kwargs)
return parent[rowslice, colslice]
def _print_BlockMatrix(self, expr, **kwargs):
nrows, ncols = expr.blocks.shape
blocks = [[self._print(expr.blocks[r, c], **kwargs)
for c in range(ncols)]
for r in range(nrows)]
return tt.join(0, *[tt.join(1, *row) for row in blocks])
def _print_slice(self, expr, **kwargs):
return slice(*[self._print(i, **kwargs)
if isinstance(i, sympy.Basic) else i
for i in (expr.start, expr.stop, expr.step)])
def _print_Pi(self, expr, **kwargs):
return 3.141592653589793
def _print_Piecewise(self, expr, **kwargs):
import numpy as np
e, cond = expr.args[0].args # First condition and corresponding value
# Print conditional expression and value for first condition
p_cond = self._print(cond, **kwargs)
p_e = self._print(e, **kwargs)
# One condition only
if len(expr.args) == 1:
# Return value if condition else NaN
return tt.switch(p_cond, p_e, np.nan)
# Return value_1 if condition_1 else evaluate remaining conditions
p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
return tt.switch(p_cond, p_e, p_remaining)
def _print_Rational(self, expr, **kwargs):
return tt.true_div(self._print(expr.p, **kwargs),
self._print(expr.q, **kwargs))
def _print_Integer(self, expr, **kwargs):
return expr.p
def _print_factorial(self, expr, **kwargs):
return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
def _print_Derivative(self, deriv, **kwargs):
rv = self._print(deriv.expr, **kwargs)
for var in deriv.variables:
var = self._print(var, **kwargs)
rv = tt.Rop(rv, var, tt.ones_like(var))
return rv
def emptyPrinter(self, expr):
return expr
def doprint(self, expr, dtypes=None, broadcastables=None):
""" Convert a Sympy expression to a Theano graph variable.
The ``dtypes`` and ``broadcastables`` arguments are used to specify the
data type, dimension, and broadcasting behavior of the Theano variables
corresponding to the free symbols in ``expr``. Each is a mapping from
Sympy symbols to the value of the corresponding argument to
``theano.tensor.Tensor``.
See the corresponding `documentation page`__ for more information on
broadcasting in Theano.
.. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html
Parameters
==========
expr : sympy.core.expr.Expr
Sympy expression to print.
dtypes : dict
Mapping from Sympy symbols to Theano datatypes to use when creating
new Theano variables for those symbols. Corresponds to the ``dtype``
argument to ``theano.tensor.Tensor``. Defaults to ``'floatX'``
for symbols not included in the mapping.
broadcastables : dict
Mapping from Sympy symbols to the value of the ``broadcastable``
argument to ``theano.tensor.Tensor`` to use when creating Theano
variables for those symbols. Defaults to the empty tuple for symbols
not included in the mapping (resulting in a scalar).
Returns
=======
theano.gof.graph.Variable
A variable corresponding to the expression's value in a Theano
symbolic expression graph.
"""
if dtypes is None:
dtypes = {}
if broadcastables is None:
broadcastables = {}
return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
global_cache = {} # type: Dict[Any, Any]
def theano_code(expr, cache=None, **kwargs):
"""
Convert a Sympy expression into a Theano graph variable.
Parameters
==========
expr : sympy.core.expr.Expr
Sympy expression object to convert.
cache : dict
Cached Theano variables (see :class:`TheanoPrinter.cache
<TheanoPrinter>`). Defaults to the module-level global cache.
dtypes : dict
Passed to :meth:`.TheanoPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.TheanoPrinter.doprint`.
Returns
=======
theano.gof.graph.Variable
A variable corresponding to the expression's value in a Theano symbolic
expression graph.
"""
if not theano:
raise ImportError("theano is required for theano_code")
if cache is None:
cache = global_cache
return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
r"""
Get value of ``broadcastables`` argument to :func:`.theano_code` from
keyword arguments to :func:`.theano_function`.
Included for backwards compatibility.
Parameters
==========
inputs
Sequence of input symbols.
dim : int
Common number of dimensions for all inputs. Overrides other arguments
if given.
dims : dict
Mapping from input symbols to number of dimensions. Overrides
``broadcastables`` argument if given.
broadcastables : dict
Explicit value of ``broadcastables`` argument to
:meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged.
Returns
=======
dict
Dictionary mapping elements of ``inputs`` to their "broadcastable"
values (tuple of ``bool``\ s).
"""
if dim is not None:
return {s: (False,) * dim for s in inputs}
if dims is not None:
maxdim = max(dims.values())
return {
s: (False,) * d + (True,) * (maxdim - d)
for s, d in dims.items()
}
if broadcastables is not None:
return broadcastables
return {}
def theano_function(inputs, outputs, scalar=False, *,
dim=None, dims=None, broadcastables=None, **kwargs):
"""
Create a Theano function from SymPy expressions.
The inputs and outputs are converted to Theano variables using
:func:`.theano_code` and then passed to ``theano.function``.
Parameters
==========
inputs
Sequence of symbols which constitute the inputs of the function.
outputs
Sequence of expressions which constitute the outputs(s) of the
function. The free symbols of each expression must be a subset of
``inputs``.
scalar : bool
Convert 0-dimensional arrays in output to scalars. This will return a
Python wrapper function around the Theano function object.
cache : dict
Cached Theano variables (see :class:`TheanoPrinter.cache
<TheanoPrinter>`). Defaults to the module-level global cache.
dtypes : dict
Passed to :meth:`.TheanoPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.TheanoPrinter.doprint`.
dims : dict
Alternative to ``broadcastables`` argument. Mapping from elements of
``inputs`` to integers indicating the dimension of their associated
arrays/tensors. Overrides ``broadcastables`` argument if given.
dim : int
Another alternative to the ``broadcastables`` argument. Common number of
dimensions to use for all arrays/tensors.
``theano_function([x, y], [...], dim=2)`` is equivalent to using
``broadcastables={x: (False, False), y: (False, False)}``.
Returns
=======
callable
A callable object which takes values of ``inputs`` as positional
arguments and returns an output array for each of the expressions
in ``outputs``. If ``outputs`` is a single expression the function will
return a Numpy array, if it is a list of multiple expressions the
function will return a list of arrays. See description of the ``squeeze``
argument above for the behavior when a single output is passed in a list.
The returned object will either be an instance of
``theano.compile.function_module.Function`` or a Python wrapper
function around one. In both cases, the returned value will have a
``theano_function`` attribute which points to the return value of
``theano.function``.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.printing.theanocode import theano_function
A simple function with one input and one output:
>>> f1 = theano_function([x], [x**2 - 1], scalar=True)
>>> f1(3)
8.0
A function with multiple inputs and one output:
>>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
>>> f2(3, 4, 2)
5.0
A function with multiple inputs and multiple outputs:
>>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
>>> f3(2, 3)
[13.0, -5.0]
See also
========
dim_handling
"""
if not theano:
raise ImportError("theano is required for theano_function")
# Pop off non-theano keyword args
cache = kwargs.pop('cache', {})
dtypes = kwargs.pop('dtypes', {})
broadcastables = dim_handling(
inputs, dim=dim, dims=dims, broadcastables=broadcastables,
)
# Print inputs/outputs
code = partial(theano_code, cache=cache, dtypes=dtypes,
broadcastables=broadcastables)
tinputs = list(map(code, inputs))
toutputs = list(map(code, outputs))
#fix constant expressions as variables
toutputs = [output if isinstance(output, theano.Variable) else tt.as_tensor_variable(output) for output in toutputs]
if len(toutputs) == 1:
toutputs = toutputs[0]
# Compile theano func
func = theano.function(tinputs, toutputs, **kwargs)
is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
# No wrapper required
if not scalar or not any(is_0d):
func.theano_function = func
return func
# Create wrapper to convert 0-dimensional outputs to scalars
def wrapper(*args):
out = func(*args)
# out can be array(1.0) or [array(1.0), array(2.0)]
if is_sequence(out):
return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
else:
return out[()]
wrapper.__wrapped__ = func
wrapper.__doc__ = func.__doc__
wrapper.theano_function = func
return wrapper
|
e9b7673a7ad9aeba420d4229f7aba0b54bfd56be5f58e90da6ef7d82378f7289 | """Integration method that emulates by-hand techniques.
This module also provides functionality to get the steps used to evaluate a
particular integral, in the ``integral_steps`` function. This will return
nested namedtuples representing the integration rules used. The
``manualintegrate`` function computes the integral using those steps given
an integrand; given the steps, ``_manualintegrate`` will evaluate them.
The integrator can be extended with new heuristics and evaluation
techniques. To do so, write a function that accepts an ``IntegralInfo``
object and returns either a namedtuple representing a rule or
``None``. Then, write another function that accepts the namedtuple's fields
and returns the antiderivative, and decorate it with
``@evaluates(namedtuple_type)``. If the new technique requires a new
match, add the key and call to the antiderivative function to integral_steps.
To enable simple substitutions, add the match to find_substitutions.
"""
from typing import Dict as tDict, Optional
from collections import namedtuple, defaultdict
import sympy
from sympy.core.compatibility import reduce, Mapping, iterable
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_not
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.functions.special.polynomials import OrthogonalPolynomial
from sympy.functions.elementary.piecewise import Piecewise
from sympy.strategies.core import switch, do_one, null_safe, condition
from sympy.core.relational import Eq, Ne
from sympy.polys.polytools import degree
from sympy.ntheory.factor_ import divisors
from sympy.utilities.misc import debug
ZERO = sympy.S.Zero
def Rule(name, props=""):
# GOTCHA: namedtuple class name not considered!
def __eq__(self, other):
return self.__class__ == other.__class__ and tuple.__eq__(self, other)
__neq__ = lambda self, other: not __eq__(self, other)
cls = namedtuple(name, props + " context symbol")
cls.__eq__ = __eq__
cls.__ne__ = __neq__
return cls
ConstantRule = Rule("ConstantRule", "constant")
ConstantTimesRule = Rule("ConstantTimesRule", "constant other substep")
PowerRule = Rule("PowerRule", "base exp")
AddRule = Rule("AddRule", "substeps")
URule = Rule("URule", "u_var u_func constant substep")
PartsRule = Rule("PartsRule", "u dv v_step second_step")
CyclicPartsRule = Rule("CyclicPartsRule", "parts_rules coefficient")
TrigRule = Rule("TrigRule", "func arg")
ExpRule = Rule("ExpRule", "base exp")
ReciprocalRule = Rule("ReciprocalRule", "func")
ArcsinRule = Rule("ArcsinRule")
InverseHyperbolicRule = Rule("InverseHyperbolicRule", "func")
AlternativeRule = Rule("AlternativeRule", "alternatives")
DontKnowRule = Rule("DontKnowRule")
DerivativeRule = Rule("DerivativeRule")
RewriteRule = Rule("RewriteRule", "rewritten substep")
PiecewiseRule = Rule("PiecewiseRule", "subfunctions")
HeavisideRule = Rule("HeavisideRule", "harg ibnd substep")
TrigSubstitutionRule = Rule("TrigSubstitutionRule",
"theta func rewritten substep restriction")
ArctanRule = Rule("ArctanRule", "a b c")
ArccothRule = Rule("ArccothRule", "a b c")
ArctanhRule = Rule("ArctanhRule", "a b c")
JacobiRule = Rule("JacobiRule", "n a b")
GegenbauerRule = Rule("GegenbauerRule", "n a")
ChebyshevTRule = Rule("ChebyshevTRule", "n")
ChebyshevURule = Rule("ChebyshevURule", "n")
LegendreRule = Rule("LegendreRule", "n")
HermiteRule = Rule("HermiteRule", "n")
LaguerreRule = Rule("LaguerreRule", "n")
AssocLaguerreRule = Rule("AssocLaguerreRule", "n a")
CiRule = Rule("CiRule", "a b")
ChiRule = Rule("ChiRule", "a b")
EiRule = Rule("EiRule", "a b")
SiRule = Rule("SiRule", "a b")
ShiRule = Rule("ShiRule", "a b")
ErfRule = Rule("ErfRule", "a b c")
FresnelCRule = Rule("FresnelCRule", "a b c")
FresnelSRule = Rule("FresnelSRule", "a b c")
LiRule = Rule("LiRule", "a b")
PolylogRule = Rule("PolylogRule", "a b")
UpperGammaRule = Rule("UpperGammaRule", "a e")
EllipticFRule = Rule("EllipticFRule", "a d")
EllipticERule = Rule("EllipticERule", "a d")
IntegralInfo = namedtuple('IntegralInfo', 'integrand symbol')
evaluators = {}
def evaluates(rule):
def _evaluates(func):
func.rule = rule
evaluators[rule] = func
return func
return _evaluates
def contains_dont_know(rule):
if isinstance(rule, DontKnowRule):
return True
else:
for val in rule:
if isinstance(val, tuple):
if contains_dont_know(val):
return True
elif isinstance(val, list):
if any(contains_dont_know(i) for i in val):
return True
return False
def manual_diff(f, symbol):
"""Derivative of f in form expected by find_substitutions
SymPy's derivatives for some trig functions (like cot) aren't in a form
that works well with finding substitutions; this replaces the
derivatives for those particular forms with something that works better.
"""
if f.args:
arg = f.args[0]
if isinstance(f, sympy.tan):
return arg.diff(symbol) * sympy.sec(arg)**2
elif isinstance(f, sympy.cot):
return -arg.diff(symbol) * sympy.csc(arg)**2
elif isinstance(f, sympy.sec):
return arg.diff(symbol) * sympy.sec(arg) * sympy.tan(arg)
elif isinstance(f, sympy.csc):
return -arg.diff(symbol) * sympy.csc(arg) * sympy.cot(arg)
elif isinstance(f, sympy.Add):
return sum([manual_diff(arg, symbol) for arg in f.args])
elif isinstance(f, sympy.Mul):
if len(f.args) == 2 and isinstance(f.args[0], sympy.Number):
return f.args[0] * manual_diff(f.args[1], symbol)
return f.diff(symbol)
def manual_subs(expr, *args):
"""
A wrapper for `expr.subs(*args)` with additional logic for substitution
of invertible functions.
"""
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, (Dict, Mapping)):
sequence = sequence.items()
elif not iterable(sequence):
raise ValueError("Expected an iterable of (old, new) pairs")
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
new_subs = []
for old, new in sequence:
if isinstance(old, sympy.log):
# If log(x) = y, then exp(a*log(x)) = exp(a*y)
# that is, x**a = exp(a*y). Replace nontrivial powers of x
# before subs turns them into `exp(y)**a`, but
# do not replace x itself yet, to avoid `log(exp(y))`.
x0 = old.args[0]
expr = expr.replace(lambda x: x.is_Pow and x.base == x0,
lambda x: sympy.exp(x.exp*new))
new_subs.append((x0, sympy.exp(new)))
return expr.subs(list(sequence) + new_subs)
# Method based on that on SIN, described in "Symbolic Integration: The
# Stormy Decade"
inverse_trig_functions = (sympy.atan, sympy.asin, sympy.acos, sympy.acot, sympy.acsc, sympy.asec)
def find_substitutions(integrand, symbol, u_var):
results = []
def test_subterm(u, u_diff):
if u_diff == 0:
return False
substituted = integrand / u_diff
if symbol not in substituted.free_symbols:
# replaced everything already
return False
debug("substituted: {}, u: {}, u_var: {}".format(substituted, u, u_var))
substituted = manual_subs(substituted, u, u_var).cancel()
if symbol not in substituted.free_symbols:
# avoid increasing the degree of a rational function
if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var):
deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()])
deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()])
if deg_after > deg_before:
return False
return substituted.as_independent(u_var, as_Add=False)
# special treatment for substitutions u = (a*x+b)**(1/n)
if (isinstance(u, sympy.Pow) and (1/u.exp).is_Integer and
sympy.Abs(u.exp) < 1):
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
match = u.base.match(a*symbol + b)
if match:
a, b = [match.get(i, ZERO) for i in (a, b)]
if a != 0 and b != 0:
substituted = substituted.subs(symbol,
(u_var**(1/u.exp) - b)/a)
return substituted.as_independent(u_var, as_Add=False)
return False
def possible_subterms(term):
if isinstance(term, (TrigonometricFunction,
*inverse_trig_functions,
sympy.exp, sympy.log, sympy.Heaviside)):
return [term.args[0]]
elif isinstance(term, (sympy.chebyshevt, sympy.chebyshevu,
sympy.legendre, sympy.hermite, sympy.laguerre)):
return [term.args[1]]
elif isinstance(term, (sympy.gegenbauer, sympy.assoc_laguerre)):
return [term.args[2]]
elif isinstance(term, sympy.jacobi):
return [term.args[3]]
elif isinstance(term, sympy.Mul):
r = []
for u in term.args:
r.append(u)
r.extend(possible_subterms(u))
return r
elif isinstance(term, sympy.Pow):
r = []
if term.args[1].is_constant(symbol):
r.append(term.args[0])
elif term.args[0].is_constant(symbol):
r.append(term.args[1])
if term.args[1].is_Integer:
r.extend([term.args[0]**d for d in divisors(term.args[1])
if 1 < d < abs(term.args[1])])
if term.args[0].is_Add:
r.extend([t for t in possible_subterms(term.args[0])
if t.is_Pow])
return r
elif isinstance(term, sympy.Add):
r = []
for arg in term.args:
r.append(arg)
r.extend(possible_subterms(arg))
return r
return []
for u in possible_subterms(integrand):
if u == symbol:
continue
u_diff = manual_diff(u, symbol)
new_integrand = test_subterm(u, u_diff)
if new_integrand is not False:
constant, new_integrand = new_integrand
if new_integrand == integrand.subs(symbol, u_var):
continue
substitution = (u, constant, new_integrand)
if substitution not in results:
results.append(substitution)
return results
def rewriter(condition, rewrite):
"""Strategy that rewrites an integrand."""
def _rewriter(integral):
integrand, symbol = integral
debug("Integral: {} is rewritten with {} on symbol: {}".format(integrand, rewrite, symbol))
if condition(*integral):
rewritten = rewrite(*integral)
if rewritten != integrand:
substep = integral_steps(rewritten, symbol)
if not isinstance(substep, DontKnowRule) and substep:
return RewriteRule(
rewritten,
substep,
integrand, symbol)
return _rewriter
def proxy_rewriter(condition, rewrite):
"""Strategy that rewrites an integrand based on some other criteria."""
def _proxy_rewriter(criteria):
criteria, integral = criteria
integrand, symbol = integral
debug("Integral: {} is rewritten with {} on symbol: {} and criteria: {}".format(integrand, rewrite, symbol, criteria))
args = criteria + list(integral)
if condition(*args):
rewritten = rewrite(*args)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return _proxy_rewriter
def multiplexer(conditions):
"""Apply the rule that matches the condition, else None"""
def multiplexer_rl(expr):
for key, rule in conditions.items():
if key(expr):
return rule(expr)
return multiplexer_rl
def alternatives(*rules):
"""Strategy that makes an AlternativeRule out of multiple possible results."""
def _alternatives(integral):
alts = []
count = 0
debug("List of Alternative Rules")
for rule in rules:
count = count + 1
debug("Rule {}: {}".format(count, rule))
result = rule(integral)
if (result and not isinstance(result, DontKnowRule) and
result != integral and result not in alts):
alts.append(result)
if len(alts) == 1:
return alts[0]
elif alts:
doable = [rule for rule in alts if not contains_dont_know(rule)]
if doable:
return AlternativeRule(doable, *integral)
else:
return AlternativeRule(alts, *integral)
return _alternatives
def constant_rule(integral):
integrand, symbol = integral
return ConstantRule(integral.integrand, *integral)
def power_rule(integral):
integrand, symbol = integral
base, exp = integrand.as_base_exp()
if symbol not in exp.free_symbols and isinstance(base, sympy.Symbol):
if sympy.simplify(exp + 1) == 0:
return ReciprocalRule(base, integrand, symbol)
return PowerRule(base, exp, integrand, symbol)
elif symbol not in base.free_symbols and isinstance(exp, sympy.Symbol):
rule = ExpRule(base, exp, integrand, symbol)
if fuzzy_not(sympy.log(base).is_zero):
return rule
elif sympy.log(base).is_zero:
return ConstantRule(1, 1, symbol)
return PiecewiseRule([
(rule, sympy.Ne(sympy.log(base), 0)),
(ConstantRule(1, 1, symbol), True)
], integrand, symbol)
def exp_rule(integral):
integrand, symbol = integral
if isinstance(integrand.args[0], sympy.Symbol):
return ExpRule(sympy.E, integrand.args[0], integrand, symbol)
def orthogonal_poly_rule(integral):
orthogonal_poly_classes = {
sympy.jacobi: JacobiRule,
sympy.gegenbauer: GegenbauerRule,
sympy.chebyshevt: ChebyshevTRule,
sympy.chebyshevu: ChebyshevURule,
sympy.legendre: LegendreRule,
sympy.hermite: HermiteRule,
sympy.laguerre: LaguerreRule,
sympy.assoc_laguerre: AssocLaguerreRule
}
orthogonal_poly_var_index = {
sympy.jacobi: 3,
sympy.gegenbauer: 2,
sympy.assoc_laguerre: 2
}
integrand, symbol = integral
for klass in orthogonal_poly_classes:
if isinstance(integrand, klass):
var_index = orthogonal_poly_var_index.get(klass, 1)
if (integrand.args[var_index] is symbol and not
any(v.has(symbol) for v in integrand.args[:var_index])):
args = integrand.args[:var_index] + (integrand, symbol)
return orthogonal_poly_classes[klass](*args)
def special_function_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol], properties=[lambda x: not x.is_zero])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c', exclude=[symbol])
d = sympy.Wild('d', exclude=[symbol], properties=[lambda x: not x.is_zero])
e = sympy.Wild('e', exclude=[symbol], properties=[
lambda x: not (x.is_nonnegative and x.is_integer)])
wilds = (a, b, c, d, e)
# patterns consist of a SymPy class, a wildcard expr, an optional
# condition coded as a lambda (when Wild properties are not enough),
# followed by an applicable rule
patterns = (
(sympy.Mul, sympy.exp(a*symbol + b)/symbol, None, EiRule),
(sympy.Mul, sympy.cos(a*symbol + b)/symbol, None, CiRule),
(sympy.Mul, sympy.cosh(a*symbol + b)/symbol, None, ChiRule),
(sympy.Mul, sympy.sin(a*symbol + b)/symbol, None, SiRule),
(sympy.Mul, sympy.sinh(a*symbol + b)/symbol, None, ShiRule),
(sympy.Pow, 1/sympy.log(a*symbol + b), None, LiRule),
(sympy.exp, sympy.exp(a*symbol**2 + b*symbol + c), None, ErfRule),
(sympy.sin, sympy.sin(a*symbol**2 + b*symbol + c), None, FresnelSRule),
(sympy.cos, sympy.cos(a*symbol**2 + b*symbol + c), None, FresnelCRule),
(sympy.Mul, symbol**e*sympy.exp(a*symbol), None, UpperGammaRule),
(sympy.Mul, sympy.polylog(b, a*symbol)/symbol, None, PolylogRule),
(sympy.Pow, 1/sympy.sqrt(a - d*sympy.sin(symbol)**2),
lambda a, d: a != d, EllipticFRule),
(sympy.Pow, sympy.sqrt(a - d*sympy.sin(symbol)**2),
lambda a, d: a != d, EllipticERule),
)
for p in patterns:
if isinstance(integrand, p[0]):
match = integrand.match(p[1])
if match:
wild_vals = tuple(match.get(w) for w in wilds
if match.get(w) is not None)
if p[2] is None or p[2](*wild_vals):
args = wild_vals + (integrand, symbol)
return p[3](*args)
def inverse_trig_rule(integral):
integrand, symbol = integral
base, exp = integrand.as_base_exp()
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
match = base.match(a + b*symbol**2)
if not match:
return
def negative(x):
return x.is_negative or x.could_extract_minus_sign()
def ArcsinhRule(integrand, symbol):
return InverseHyperbolicRule(sympy.asinh, integrand, symbol)
def ArccoshRule(integrand, symbol):
return InverseHyperbolicRule(sympy.acosh, integrand, symbol)
def make_inverse_trig(RuleClass, base_exp, a, sign_a, b, sign_b):
u_var = sympy.Dummy("u")
current_base = base
current_symbol = symbol
constant = u_func = u_constant = substep = None
factored = integrand
if a != 1:
constant = a**base_exp
current_base = sign_a + sign_b * (b/a) * current_symbol**2
factored = current_base ** base_exp
if (b/a) != 1:
u_func = sympy.sqrt(b/a) * symbol
u_constant = sympy.sqrt(a/b)
current_symbol = u_var
current_base = sign_a + sign_b * current_symbol**2
substep = RuleClass(current_base ** base_exp, current_symbol)
if u_func is not None:
if u_constant != 1 and substep is not None:
substep = ConstantTimesRule(
u_constant, current_base ** base_exp, substep,
u_constant * current_base ** base_exp, symbol)
substep = URule(u_var, u_func, u_constant, substep, factored, symbol)
if constant is not None and substep is not None:
substep = ConstantTimesRule(constant, factored, substep, integrand, symbol)
return substep
a, b = [match.get(i, ZERO) for i in (a, b)]
# list of (rule, base_exp, a, sign_a, b, sign_b, condition)
possibilities = []
if sympy.simplify(2*exp + 1) == 0:
possibilities.append((ArcsinRule, exp, a, 1, -b, -1, sympy.And(a > 0, b < 0)))
possibilities.append((ArcsinhRule, exp, a, 1, b, 1, sympy.And(a > 0, b > 0)))
possibilities.append((ArccoshRule, exp, -a, -1, b, 1, sympy.And(a < 0, b > 0)))
possibilities = [p for p in possibilities if p[-1] is not sympy.false]
if a.is_number and b.is_number:
possibility = [p for p in possibilities if p[-1] is sympy.true]
if len(possibility) == 1:
return make_inverse_trig(*possibility[0][:-1])
elif possibilities:
return PiecewiseRule(
[(make_inverse_trig(*p[:-1]), p[-1]) for p in possibilities],
integrand, symbol)
def add_rule(integral):
integrand, symbol = integral
results = [integral_steps(g, symbol)
for g in integrand.as_ordered_terms()]
return None if None in results else AddRule(results, integrand, symbol)
def mul_rule(integral):
integrand, symbol = integral
# Constant times function case
coeff, f = integrand.as_independent(symbol)
next_step = integral_steps(f, symbol)
if coeff != 1 and next_step is not None:
return ConstantTimesRule(
coeff, f,
next_step,
integrand, symbol)
def _parts_rule(integrand, symbol):
# LIATE rule:
# log, inverse trig, algebraic, trigonometric, exponential
def pull_out_algebraic(integrand):
integrand = integrand.cancel().together()
# iterating over Piecewise args would not work here
algebraic = ([] if isinstance(integrand, sympy.Piecewise)
else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)])
if algebraic:
u = sympy.Mul(*algebraic)
dv = (integrand / u).cancel()
return u, dv
def pull_out_u(*functions):
def pull_out_u_rl(integrand):
if any([integrand.has(f) for f in functions]):
args = [arg for arg in integrand.args
if any(isinstance(arg, cls) for cls in functions)]
if args:
u = reduce(lambda a,b: a*b, args)
dv = integrand / u
return u, dv
return pull_out_u_rl
liate_rules = [pull_out_u(sympy.log), pull_out_u(*inverse_trig_functions),
pull_out_algebraic, pull_out_u(sympy.sin, sympy.cos),
pull_out_u(sympy.exp)]
dummy = sympy.Dummy("temporary")
# we can integrate log(x) and atan(x) by setting dv = 1
if isinstance(integrand, (sympy.log, *inverse_trig_functions)):
integrand = dummy * integrand
for index, rule in enumerate(liate_rules):
result = rule(integrand)
if result:
u, dv = result
# Don't pick u to be a constant if possible
if symbol not in u.free_symbols and not u.has(dummy):
return
u = u.subs(dummy, 1)
dv = dv.subs(dummy, 1)
# Don't pick a non-polynomial algebraic to be differentiated
if rule == pull_out_algebraic and not u.is_polynomial(symbol):
return
# Don't trade one logarithm for another
if isinstance(u, sympy.log):
rec_dv = 1/dv
if (rec_dv.is_polynomial(symbol) and
degree(rec_dv, symbol) == 1):
return
# Can integrate a polynomial times OrthogonalPolynomial
if rule == pull_out_algebraic and isinstance(dv, OrthogonalPolynomial):
v_step = integral_steps(dv, symbol)
if contains_dont_know(v_step):
return
else:
du = u.diff(symbol)
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
# make sure dv is amenable to integration
accept = False
if index < 2: # log and inverse trig are usually worth trying
accept = True
elif (rule == pull_out_algebraic and dv.args and
all(isinstance(a, (sympy.sin, sympy.cos, sympy.exp))
for a in dv.args)):
accept = True
else:
for rule in liate_rules[index + 1:]:
r = rule(integrand)
if r and r[0].subs(dummy, 1).equals(dv):
accept = True
break
if accept:
du = u.diff(symbol)
v_step = integral_steps(sympy.simplify(dv), symbol)
if not contains_dont_know(v_step):
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
def parts_rule(integral):
integrand, symbol = integral
constant, integrand = integrand.as_coeff_Mul()
result = _parts_rule(integrand, symbol)
steps = []
if result:
u, dv, v, du, v_step = result
debug("u : {}, dv : {}, v : {}, du : {}, v_step: {}".format(u, dv, v, du, v_step))
steps.append(result)
if isinstance(v, sympy.Integral):
return
# Set a limit on the number of times u can be used
if isinstance(u, (sympy.sin, sympy.cos, sympy.exp, sympy.sinh, sympy.cosh)):
cachekey = u.xreplace({symbol: _cache_dummy})
if _parts_u_cache[cachekey] > 2:
return
_parts_u_cache[cachekey] += 1
# Try cyclic integration by parts a few times
for _ in range(4):
debug("Cyclic integration {} with v: {}, du: {}, integrand: {}".format(_, v, du, integrand))
coefficient = ((v * du) / integrand).cancel()
if coefficient == 1:
break
if symbol not in coefficient.free_symbols:
rule = CyclicPartsRule(
[PartsRule(u, dv, v_step, None, None, None)
for (u, dv, v, du, v_step) in steps],
(-1) ** len(steps) * coefficient,
integrand, symbol
)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
# _parts_rule is sensitive to constants, factor it out
next_constant, next_integrand = (v * du).as_coeff_Mul()
result = _parts_rule(next_integrand, symbol)
if result:
u, dv, v, du, v_step = result
u *= next_constant
du *= next_constant
steps.append((u, dv, v, du, v_step))
else:
break
def make_second_step(steps, integrand):
if steps:
u, dv, v, du, v_step = steps[0]
return PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
else:
steps = integral_steps(integrand, symbol)
if steps:
return steps
else:
return DontKnowRule(integrand, symbol)
if steps:
u, dv, v, du, v_step = steps[0]
rule = PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
def trig_rule(integral):
integrand, symbol = integral
if isinstance(integrand, sympy.sin) or isinstance(integrand, sympy.cos):
arg = integrand.args[0]
if not isinstance(arg, sympy.Symbol):
return # perhaps a substitution can deal with it
if isinstance(integrand, sympy.sin):
func = 'sin'
else:
func = 'cos'
return TrigRule(func, arg, integrand, symbol)
if integrand == sympy.sec(symbol)**2:
return TrigRule('sec**2', symbol, integrand, symbol)
elif integrand == sympy.csc(symbol)**2:
return TrigRule('csc**2', symbol, integrand, symbol)
if isinstance(integrand, sympy.tan):
rewritten = sympy.sin(*integrand.args) / sympy.cos(*integrand.args)
elif isinstance(integrand, sympy.cot):
rewritten = sympy.cos(*integrand.args) / sympy.sin(*integrand.args)
elif isinstance(integrand, sympy.sec):
arg = integrand.args[0]
rewritten = ((sympy.sec(arg)**2 + sympy.tan(arg) * sympy.sec(arg)) /
(sympy.sec(arg) + sympy.tan(arg)))
elif isinstance(integrand, sympy.csc):
arg = integrand.args[0]
rewritten = ((sympy.csc(arg)**2 + sympy.cot(arg) * sympy.csc(arg)) /
(sympy.csc(arg) + sympy.cot(arg)))
else:
return
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol
)
def trig_product_rule(integral):
integrand, symbol = integral
sectan = sympy.sec(symbol) * sympy.tan(symbol)
q = integrand / sectan
if symbol not in q.free_symbols:
rule = TrigRule('sec*tan', symbol, sectan, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, sectan, rule, integrand, symbol)
return rule
csccot = -sympy.csc(symbol) * sympy.cot(symbol)
q = integrand / csccot
if symbol not in q.free_symbols:
rule = TrigRule('csc*cot', symbol, csccot, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, csccot, rule, integrand, symbol)
return rule
def quadratic_denom_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c', exclude=[symbol])
match = integrand.match(a / (b * symbol ** 2 + c))
if match:
a, b, c = match[a], match[b], match[c]
if b.is_extended_real and c.is_extended_real:
return PiecewiseRule([(ArctanRule(a, b, c, integrand, symbol), sympy.Gt(c / b, 0)),
(ArccothRule(a, b, c, integrand, symbol), sympy.And(sympy.Gt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))),
(ArctanhRule(a, b, c, integrand, symbol), sympy.And(sympy.Lt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))),
], integrand, symbol)
else:
return ArctanRule(a, b, c, integrand, symbol)
d = sympy.Wild('d', exclude=[symbol])
match2 = integrand.match(a / (b * symbol ** 2 + c * symbol + d))
if match2:
b, c = match2[b], match2[c]
if b.is_zero:
return
u = sympy.Dummy('u')
u_func = symbol + c/(2*b)
integrand2 = integrand.subs(symbol, u - c / (2*b))
next_step = integral_steps(integrand2, u)
if next_step:
return URule(u, u_func, None, next_step, integrand2, symbol)
else:
return
e = sympy.Wild('e', exclude=[symbol])
match3 = integrand.match((a* symbol + b) / (c * symbol ** 2 + d * symbol + e))
if match3:
a, b, c, d, e = match3[a], match3[b], match3[c], match3[d], match3[e]
if c.is_zero:
return
denominator = c * symbol**2 + d * symbol + e
const = a/(2*c)
numer1 = (2*c*symbol+d)
numer2 = - const*d + b
u = sympy.Dummy('u')
step1 = URule(u,
denominator,
const,
integral_steps(u**(-1), u),
integrand,
symbol)
if const != 1:
step1 = ConstantTimesRule(const,
numer1/denominator,
step1,
const*numer1/denominator,
symbol)
if numer2.is_zero:
return step1
step2 = integral_steps(numer2/denominator, symbol)
substeps = AddRule([step1, step2], integrand, symbol)
rewriten = const*numer1/denominator+numer2/denominator
return RewriteRule(rewriten, substeps, integrand, symbol)
return
def root_mul_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c')
match = integrand.match(sympy.sqrt(a * symbol + b) * c)
if not match:
return
a, b, c = match[a], match[b], match[c]
d = sympy.Wild('d', exclude=[symbol])
e = sympy.Wild('e', exclude=[symbol])
f = sympy.Wild('f')
recursion_test = c.match(sympy.sqrt(d * symbol + e) * f)
if recursion_test:
return
u = sympy.Dummy('u')
u_func = sympy.sqrt(a * symbol + b)
integrand = integrand.subs(u_func, u)
integrand = integrand.subs(symbol, (u**2 - b) / a)
integrand = integrand * 2 * u / a
next_step = integral_steps(integrand, u)
if next_step:
return URule(u, u_func, None, next_step, integrand, symbol)
@sympy.cacheit
def make_wilds(symbol):
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
m = sympy.Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)])
n = sympy.Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)])
return a, b, m, n
@sympy.cacheit
def sincos_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.sin(a*symbol)**m * sympy.cos(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def tansec_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.tan(a*symbol)**m * sympy.sec(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def cotcsc_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.cot(a*symbol)**m * sympy.csc(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def heaviside_pattern(symbol):
m = sympy.Wild('m', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
g = sympy.Wild('g')
pattern = sympy.Heaviside(m*symbol + b) * g
return pattern, m, b, g
def uncurry(func):
def uncurry_rl(args):
return func(*args)
return uncurry_rl
def trig_rewriter(rewrite):
def trig_rewriter_rl(args):
a, b, m, n, integrand, symbol = args
rewritten = rewrite(a, b, m, n, integrand, symbol)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return trig_rewriter_rl
sincos_botheven_condition = uncurry(
lambda a, b, m, n, i, s: m.is_even and n.is_even and
m.is_nonnegative and n.is_nonnegative)
sincos_botheven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (((1 - sympy.cos(2*a*symbol)) / 2) ** (m / 2)) *
(((1 + sympy.cos(2*b*symbol)) / 2) ** (n / 2)) ))
sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3)
sincos_sinodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - sympy.cos(a*symbol)**2)**((m - 1) / 2) *
sympy.sin(a*symbol) *
sympy.cos(b*symbol) ** n))
sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3)
sincos_cosodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - sympy.sin(b*symbol)**2)**((n - 1) / 2) *
sympy.cos(b*symbol) *
sympy.sin(a*symbol) ** m))
tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
tansec_seceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + sympy.tan(b*symbol)**2) ** (n/2 - 1) *
sympy.sec(b*symbol)**2 *
sympy.tan(a*symbol) ** m ))
tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
tansec_tanodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (sympy.sec(a*symbol)**2 - 1) ** ((m - 1) / 2) *
sympy.tan(a*symbol) *
sympy.sec(b*symbol) ** n ))
tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0)
tan_tansquared = trig_rewriter(
lambda a, b, m, n, i, symbol: ( sympy.sec(a*symbol)**2 - 1))
cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
cotcsc_csceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + sympy.cot(b*symbol)**2) ** (n/2 - 1) *
sympy.csc(b*symbol)**2 *
sympy.cot(a*symbol) ** m ))
cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
cotcsc_cotodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (sympy.csc(a*symbol)**2 - 1) ** ((m - 1) / 2) *
sympy.cot(a*symbol) *
sympy.csc(b*symbol) ** n ))
def trig_sincos_rule(integral):
integrand, symbol = integral
if any(integrand.has(f) for f in (sympy.sin, sympy.cos)):
pattern, a, b, m, n = sincos_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
sincos_botheven_condition: sincos_botheven,
sincos_sinodd_condition: sincos_sinodd,
sincos_cosodd_condition: sincos_cosodd
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_tansec_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / sympy.cos(symbol): sympy.sec(symbol)
})
if any(integrand.has(f) for f in (sympy.tan, sympy.sec)):
pattern, a, b, m, n = tansec_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
tansec_tanodd_condition: tansec_tanodd,
tansec_seceven_condition: tansec_seceven,
tan_tansquared_condition: tan_tansquared
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_cotcsc_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / sympy.sin(symbol): sympy.csc(symbol),
1 / sympy.tan(symbol): sympy.cot(symbol),
sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol)
})
if any(integrand.has(f) for f in (sympy.cot, sympy.csc)):
pattern, a, b, m, n = cotcsc_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
cotcsc_cotodd_condition: cotcsc_cotodd,
cotcsc_csceven_condition: cotcsc_csceven
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_sindouble_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[sympy.sin(2*symbol)])
match = integrand.match(sympy.sin(2*symbol)*a)
if match:
sin_double = 2*sympy.sin(symbol)*sympy.cos(symbol)/sympy.sin(2*symbol)
return integral_steps(integrand * sin_double, symbol)
def trig_powers_products_rule(integral):
return do_one(null_safe(trig_sincos_rule),
null_safe(trig_tansec_rule),
null_safe(trig_cotcsc_rule),
null_safe(trig_sindouble_rule))(integral)
def trig_substitution_rule(integral):
integrand, symbol = integral
A = sympy.Wild('a', exclude=[0, symbol])
B = sympy.Wild('b', exclude=[0, symbol])
theta = sympy.Dummy("theta")
target_pattern = A + B*symbol**2
matches = integrand.find(target_pattern)
for expr in matches:
match = expr.match(target_pattern)
a = match.get(A, ZERO)
b = match.get(B, ZERO)
a_positive = ((a.is_number and a > 0) or a.is_positive)
b_positive = ((b.is_number and b > 0) or b.is_positive)
a_negative = ((a.is_number and a < 0) or a.is_negative)
b_negative = ((b.is_number and b < 0) or b.is_negative)
x_func = None
if a_positive and b_positive:
# a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2
x_func = (sympy.sqrt(a)/sympy.sqrt(b)) * sympy.tan(theta)
# Do not restrict the domain: tan(theta) takes on any real
# value on the interval -pi/2 < theta < pi/2 so x takes on
# any value
restriction = True
elif a_positive and b_negative:
# a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2
constant = sympy.sqrt(a)/sympy.sqrt(-b)
x_func = constant * sympy.sin(theta)
restriction = sympy.And(symbol > -constant, symbol < constant)
elif a_negative and b_positive:
# b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi
constant = sympy.sqrt(-a)/sympy.sqrt(b)
x_func = constant * sympy.sec(theta)
restriction = sympy.And(symbol > -constant, symbol < constant)
if x_func:
# Manually simplify sqrt(trig(theta)**2) to trig(theta)
# Valid due to assumed domain restriction
substitutions = {}
for f in [sympy.sin, sympy.cos, sympy.tan,
sympy.sec, sympy.csc, sympy.cot]:
substitutions[sympy.sqrt(f(theta)**2)] = f(theta)
substitutions[sympy.sqrt(f(theta)**(-2))] = 1/f(theta)
replaced = integrand.subs(symbol, x_func).trigsimp()
replaced = manual_subs(replaced, substitutions)
if not replaced.has(symbol):
replaced *= manual_diff(x_func, theta)
replaced = replaced.trigsimp()
secants = replaced.find(1/sympy.cos(theta))
if secants:
replaced = replaced.xreplace({
1/sympy.cos(theta): sympy.sec(theta)
})
substep = integral_steps(replaced, theta)
if not contains_dont_know(substep):
return TrigSubstitutionRule(
theta, x_func, replaced, substep, restriction,
integrand, symbol)
def heaviside_rule(integral):
integrand, symbol = integral
pattern, m, b, g = heaviside_pattern(symbol)
match = integrand.match(pattern)
if match and 0 != match[g]:
# f = Heaviside(m*x + b)*g
v_step = integral_steps(match[g], symbol)
result = _manualintegrate(v_step)
m, b = match[m], match[b]
return HeavisideRule(m*symbol + b, -b/m, result, integrand, symbol)
def substitution_rule(integral):
integrand, symbol = integral
u_var = sympy.Dummy("u")
substitutions = find_substitutions(integrand, symbol, u_var)
count = 0
if substitutions:
debug("List of Substitution Rules")
ways = []
for u_func, c, substituted in substitutions:
subrule = integral_steps(substituted, u_var)
count = count + 1
debug("Rule {}: {}".format(count, subrule))
if contains_dont_know(subrule):
continue
if sympy.simplify(c - 1) != 0:
_, denom = c.as_numer_denom()
if subrule:
subrule = ConstantTimesRule(c, substituted, subrule, substituted, u_var)
if denom.free_symbols:
piecewise = []
could_be_zero = []
if isinstance(denom, sympy.Mul):
could_be_zero = denom.args
else:
could_be_zero.append(denom)
for expr in could_be_zero:
if not fuzzy_not(expr.is_zero):
substep = integral_steps(manual_subs(integrand, expr, 0), symbol)
if substep:
piecewise.append((
substep,
sympy.Eq(expr, 0)
))
piecewise.append((subrule, True))
subrule = PiecewiseRule(piecewise, substituted, symbol)
ways.append(URule(u_var, u_func, c,
subrule,
integrand, symbol))
if len(ways) > 1:
return AlternativeRule(ways, integrand, symbol)
elif ways:
return ways[0]
elif integrand.has(sympy.exp):
u_func = sympy.exp(symbol)
c = 1
substituted = integrand / u_func.diff(symbol)
substituted = substituted.subs(u_func, u_var)
if symbol not in substituted.free_symbols:
return URule(u_var, u_func, c,
integral_steps(substituted, u_var),
integrand, symbol)
partial_fractions_rule = rewriter(
lambda integrand, symbol: integrand.is_rational_function(),
lambda integrand, symbol: integrand.apart(symbol))
cancel_rule = rewriter(
# lambda integrand, symbol: integrand.is_algebraic_expr(),
# lambda integrand, symbol: isinstance(integrand, sympy.Mul),
lambda integrand, symbol: True,
lambda integrand, symbol: integrand.cancel())
distribute_expand_rule = rewriter(
lambda integrand, symbol: (
all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args)
or isinstance(integrand, sympy.Pow)
or isinstance(integrand, sympy.Mul)),
lambda integrand, symbol: integrand.expand())
trig_expand_rule = rewriter(
# If there are trig functions with different arguments, expand them
lambda integrand, symbol: (
len({a.args[0] for a in integrand.atoms(TrigonometricFunction)}) > 1),
lambda integrand, symbol: integrand.expand(trig=True))
def derivative_rule(integral):
integrand = integral[0]
diff_variables = integrand.variables
undifferentiated_function = integrand.expr
integrand_variables = undifferentiated_function.free_symbols
if integral.symbol in integrand_variables:
if integral.symbol in diff_variables:
return DerivativeRule(*integral)
else:
return DontKnowRule(integrand, integral.symbol)
else:
return ConstantRule(integral.integrand, *integral)
def rewrites_rule(integral):
integrand, symbol = integral
if integrand.match(1/sympy.cos(symbol)):
rewritten = integrand.subs(1/sympy.cos(symbol), sympy.sec(symbol))
return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol)
def fallback_rule(integral):
return DontKnowRule(*integral)
# Cache is used to break cyclic integrals.
# Need to use the same dummy variable in cached expressions for them to match.
# Also record "u" of integration by parts, to avoid infinite repetition.
_integral_cache = {} # type: tDict[Expr, Optional[Expr]]
_parts_u_cache = defaultdict(int) # type: tDict[Expr, int]
_cache_dummy = sympy.Dummy("z")
def integral_steps(integrand, symbol, **options):
"""Returns the steps needed to compute an integral.
This function attempts to mirror what a student would do by hand as
closely as possible.
SymPy Gamma uses this to provide a step-by-step explanation of an
integral. The code it uses to format the results of this function can be
found at
https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.
Examples
========
>>> from sympy import exp, sin
>>> from sympy.integrals.manualintegrate import integral_steps
>>> from sympy.abc import x
>>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \
# doctest: +NORMALIZE_WHITESPACE
URule(u_var=_u, u_func=exp(x), constant=1,
substep=PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), True),
(ArccothRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False),
(ArctanhRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False)],
context=1/(_u**2 + 1), symbol=_u), context=exp(x)/(exp(2*x) + 1), symbol=x)
>>> print(repr(integral_steps(sin(x), x))) \
# doctest: +NORMALIZE_WHITESPACE
TrigRule(func='sin', arg=x, context=sin(x), symbol=x)
>>> print(repr(integral_steps((x**2 + 3)**2 , x))) \
# doctest: +NORMALIZE_WHITESPACE
RewriteRule(rewritten=x**4 + 6*x**2 + 9,
substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x),
ConstantTimesRule(constant=6, other=x**2,
substep=PowerRule(base=x, exp=2, context=x**2, symbol=x),
context=6*x**2, symbol=x),
ConstantRule(constant=9, context=9, symbol=x)],
context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x)
Returns
=======
rule : namedtuple
The first step; most rules have substeps that must also be
considered. These substeps can be evaluated using ``manualintegrate``
to obtain a result.
"""
cachekey = integrand.xreplace({symbol: _cache_dummy})
if cachekey in _integral_cache:
if _integral_cache[cachekey] is None:
# Stop this attempt, because it leads around in a loop
return DontKnowRule(integrand, symbol)
else:
# TODO: This is for future development, as currently
# _integral_cache gets no values other than None
return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol),
symbol)
else:
_integral_cache[cachekey] = None
integral = IntegralInfo(integrand, symbol)
def key(integral):
integrand = integral.integrand
if isinstance(integrand, TrigonometricFunction):
return TrigonometricFunction
elif isinstance(integrand, sympy.Derivative):
return sympy.Derivative
elif symbol not in integrand.free_symbols:
return sympy.Number
else:
for cls in (sympy.Pow, sympy.Symbol, sympy.exp, sympy.log,
sympy.Add, sympy.Mul, *inverse_trig_functions,
sympy.Heaviside, OrthogonalPolynomial):
if isinstance(integrand, cls):
return cls
def integral_is_subclass(*klasses):
def _integral_is_subclass(integral):
k = key(integral)
return k and issubclass(k, klasses)
return _integral_is_subclass
result = do_one(
null_safe(special_function_rule),
null_safe(switch(key, {
sympy.Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule), \
null_safe(quadratic_denom_rule)),
sympy.Symbol: power_rule,
sympy.exp: exp_rule,
sympy.Add: add_rule,
sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule), \
null_safe(heaviside_rule), null_safe(quadratic_denom_rule), \
null_safe(root_mul_rule)),
sympy.Derivative: derivative_rule,
TrigonometricFunction: trig_rule,
sympy.Heaviside: heaviside_rule,
OrthogonalPolynomial: orthogonal_poly_rule,
sympy.Number: constant_rule
})),
do_one(
null_safe(trig_rule),
null_safe(alternatives(
rewrites_rule,
substitution_rule,
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
partial_fractions_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
cancel_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.log,
*inverse_trig_functions),
parts_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
distribute_expand_rule),
trig_powers_products_rule,
trig_expand_rule
)),
null_safe(trig_substitution_rule)
),
fallback_rule)(integral)
del _integral_cache[cachekey]
return result
@evaluates(ConstantRule)
def eval_constant(constant, integrand, symbol):
return constant * symbol
@evaluates(ConstantTimesRule)
def eval_constanttimes(constant, other, substep, integrand, symbol):
return constant * _manualintegrate(substep)
@evaluates(PowerRule)
def eval_power(base, exp, integrand, symbol):
return sympy.Piecewise(
((base**(exp + 1))/(exp + 1), sympy.Ne(exp, -1)),
(sympy.log(base), True),
)
@evaluates(ExpRule)
def eval_exp(base, exp, integrand, symbol):
return integrand / sympy.ln(base)
@evaluates(AddRule)
def eval_add(substeps, integrand, symbol):
return sum(map(_manualintegrate, substeps))
@evaluates(URule)
def eval_u(u_var, u_func, constant, substep, integrand, symbol):
result = _manualintegrate(substep)
if u_func.is_Pow and u_func.exp == -1:
# avoid needless -log(1/x) from substitution
result = result.subs(sympy.log(u_var), -sympy.log(u_func.base))
return result.subs(u_var, u_func)
@evaluates(PartsRule)
def eval_parts(u, dv, v_step, second_step, integrand, symbol):
v = _manualintegrate(v_step)
return u * v - _manualintegrate(second_step)
@evaluates(CyclicPartsRule)
def eval_cyclicparts(parts_rules, coefficient, integrand, symbol):
coefficient = 1 - coefficient
result = []
sign = 1
for rule in parts_rules:
result.append(sign * rule.u * _manualintegrate(rule.v_step))
sign *= -1
return sympy.Add(*result) / coefficient
@evaluates(TrigRule)
def eval_trig(func, arg, integrand, symbol):
if func == 'sin':
return -sympy.cos(arg)
elif func == 'cos':
return sympy.sin(arg)
elif func == 'sec*tan':
return sympy.sec(arg)
elif func == 'csc*cot':
return sympy.csc(arg)
elif func == 'sec**2':
return sympy.tan(arg)
elif func == 'csc**2':
return -sympy.cot(arg)
@evaluates(ArctanRule)
def eval_arctan(a, b, c, integrand, symbol):
return a / b * 1 / sympy.sqrt(c / b) * sympy.atan(symbol / sympy.sqrt(c / b))
@evaluates(ArccothRule)
def eval_arccoth(a, b, c, integrand, symbol):
return - a / b * 1 / sympy.sqrt(-c / b) * sympy.acoth(symbol / sympy.sqrt(-c / b))
@evaluates(ArctanhRule)
def eval_arctanh(a, b, c, integrand, symbol):
return - a / b * 1 / sympy.sqrt(-c / b) * sympy.atanh(symbol / sympy.sqrt(-c / b))
@evaluates(ReciprocalRule)
def eval_reciprocal(func, integrand, symbol):
return sympy.ln(func)
@evaluates(ArcsinRule)
def eval_arcsin(integrand, symbol):
return sympy.asin(symbol)
@evaluates(InverseHyperbolicRule)
def eval_inversehyperbolic(func, integrand, symbol):
return func(symbol)
@evaluates(AlternativeRule)
def eval_alternative(alternatives, integrand, symbol):
return _manualintegrate(alternatives[0])
@evaluates(RewriteRule)
def eval_rewrite(rewritten, substep, integrand, symbol):
return _manualintegrate(substep)
@evaluates(PiecewiseRule)
def eval_piecewise(substeps, integrand, symbol):
return sympy.Piecewise(*[(_manualintegrate(substep), cond)
for substep, cond in substeps])
@evaluates(TrigSubstitutionRule)
def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
func = func.subs(sympy.sec(theta), 1/sympy.cos(theta))
func = func.subs(sympy.csc(theta), 1/sympy.sin(theta))
func = func.subs(sympy.cot(theta), 1/sympy.tan(theta))
trig_function = list(func.find(TrigonometricFunction))
assert len(trig_function) == 1
trig_function = trig_function[0]
relation = sympy.solve(symbol - func, trig_function)
assert len(relation) == 1
numer, denom = sympy.fraction(relation[0])
if isinstance(trig_function, sympy.sin):
opposite = numer
hypotenuse = denom
adjacent = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.asin(relation[0])
elif isinstance(trig_function, sympy.cos):
adjacent = numer
hypotenuse = denom
opposite = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.acos(relation[0])
elif isinstance(trig_function, sympy.tan):
opposite = numer
adjacent = denom
hypotenuse = sympy.sqrt(denom**2 + numer**2)
inverse = sympy.atan(relation[0])
substitution = [
(sympy.sin(theta), opposite/hypotenuse),
(sympy.cos(theta), adjacent/hypotenuse),
(sympy.tan(theta), opposite/adjacent),
(theta, inverse)
]
return sympy.Piecewise(
(_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
)
@evaluates(DerivativeRule)
def eval_derivativerule(integrand, symbol):
# isinstance(integrand, Derivative) should be True
variable_count = list(integrand.variable_count)
for i, (var, count) in enumerate(variable_count):
if var == symbol:
variable_count[i] = (var, count-1)
break
return sympy.Derivative(integrand.expr, *variable_count)
@evaluates(HeavisideRule)
def eval_heaviside(harg, ibnd, substep, integrand, symbol):
# If we are integrating over x and the integrand has the form
# Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol)
# then there needs to be continuity at -b/m == ibnd,
# so we subtract the appropriate term.
return sympy.Heaviside(harg)*(substep - substep.subs(symbol, ibnd))
@evaluates(JacobiRule)
def eval_jacobi(n, a, b, integrand, symbol):
return Piecewise(
(2*sympy.jacobi(n + 1, a - 1, b - 1, symbol)/(n + a + b), Ne(n + a + b, 0)),
(symbol, Eq(n, 0)),
((a + b + 2)*symbol**2/4 + (a - b)*symbol/2, Eq(n, 1)))
@evaluates(GegenbauerRule)
def eval_gegenbauer(n, a, integrand, symbol):
return Piecewise(
(sympy.gegenbauer(n + 1, a - 1, symbol)/(2*(a - 1)), Ne(a, 1)),
(sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(sympy.S.Zero, True))
@evaluates(ChebyshevTRule)
def eval_chebyshevt(n, integrand, symbol):
return Piecewise(((sympy.chebyshevt(n + 1, symbol)/(n + 1) -
sympy.chebyshevt(n - 1, symbol)/(n - 1))/2, Ne(sympy.Abs(n), 1)),
(symbol**2/2, True))
@evaluates(ChebyshevURule)
def eval_chebyshevu(n, integrand, symbol):
return Piecewise(
(sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(sympy.S.Zero, True))
@evaluates(LegendreRule)
def eval_legendre(n, integrand, symbol):
return (sympy.legendre(n + 1, symbol) - sympy.legendre(n - 1, symbol))/(2*n + 1)
@evaluates(HermiteRule)
def eval_hermite(n, integrand, symbol):
return sympy.hermite(n + 1, symbol)/(2*(n + 1))
@evaluates(LaguerreRule)
def eval_laguerre(n, integrand, symbol):
return sympy.laguerre(n, symbol) - sympy.laguerre(n + 1, symbol)
@evaluates(AssocLaguerreRule)
def eval_assoclaguerre(n, a, integrand, symbol):
return -sympy.assoc_laguerre(n + 1, a - 1, symbol)
@evaluates(CiRule)
def eval_ci(a, b, integrand, symbol):
return sympy.cos(b)*sympy.Ci(a*symbol) - sympy.sin(b)*sympy.Si(a*symbol)
@evaluates(ChiRule)
def eval_chi(a, b, integrand, symbol):
return sympy.cosh(b)*sympy.Chi(a*symbol) + sympy.sinh(b)*sympy.Shi(a*symbol)
@evaluates(EiRule)
def eval_ei(a, b, integrand, symbol):
return sympy.exp(b)*sympy.Ei(a*symbol)
@evaluates(SiRule)
def eval_si(a, b, integrand, symbol):
return sympy.sin(b)*sympy.Ci(a*symbol) + sympy.cos(b)*sympy.Si(a*symbol)
@evaluates(ShiRule)
def eval_shi(a, b, integrand, symbol):
return sympy.sinh(b)*sympy.Chi(a*symbol) + sympy.cosh(b)*sympy.Shi(a*symbol)
@evaluates(ErfRule)
def eval_erf(a, b, c, integrand, symbol):
if a.is_extended_real:
return Piecewise(
(sympy.sqrt(sympy.pi/(-a))/2 * sympy.exp(c - b**2/(4*a)) *
sympy.erf((-2*a*symbol - b)/(2*sympy.sqrt(-a))), a < 0),
(sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) *
sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))), True))
else:
return sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) * \
sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a)))
@evaluates(FresnelCRule)
def eval_fresnelc(a, b, c, integrand, symbol):
return sympy.sqrt(sympy.pi/(2*a)) * (
sympy.cos(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) +
sympy.sin(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)))
@evaluates(FresnelSRule)
def eval_fresnels(a, b, c, integrand, symbol):
return sympy.sqrt(sympy.pi/(2*a)) * (
sympy.cos(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) -
sympy.sin(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)))
@evaluates(LiRule)
def eval_li(a, b, integrand, symbol):
return sympy.li(a*symbol + b)/a
@evaluates(PolylogRule)
def eval_polylog(a, b, integrand, symbol):
return sympy.polylog(b + 1, a*symbol)
@evaluates(UpperGammaRule)
def eval_uppergamma(a, e, integrand, symbol):
return symbol**e * (-a*symbol)**(-e) * sympy.uppergamma(e + 1, -a*symbol)/a
@evaluates(EllipticFRule)
def eval_elliptic_f(a, d, integrand, symbol):
return sympy.elliptic_f(symbol, d/a)/sympy.sqrt(a)
@evaluates(EllipticERule)
def eval_elliptic_e(a, d, integrand, symbol):
return sympy.elliptic_e(symbol, d/a)*sympy.sqrt(a)
@evaluates(DontKnowRule)
def eval_dontknowrule(integrand, symbol):
return sympy.Integral(integrand, symbol)
def _manualintegrate(rule):
evaluator = evaluators.get(rule.__class__)
if not evaluator:
raise ValueError("Cannot evaluate rule %s" % repr(rule))
return evaluator(*rule)
def manualintegrate(f, var):
"""manualintegrate(f, var)
Compute indefinite integral of a single variable using an algorithm that
resembles what a student would do by hand.
Unlike :func:`~.integrate`, var can only be a single symbol.
Examples
========
>>> from sympy import sin, cos, tan, exp, log, integrate
>>> from sympy.integrals.manualintegrate import manualintegrate
>>> from sympy.abc import x
>>> manualintegrate(1 / x, x)
log(x)
>>> integrate(1/x)
log(x)
>>> manualintegrate(log(x), x)
x*log(x) - x
>>> integrate(log(x))
x*log(x) - x
>>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
atan(exp(x))
>>> integrate(exp(x) / (1 + exp(2 * x)))
RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
>>> manualintegrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> manualintegrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> manualintegrate(tan(x), x)
-log(cos(x))
>>> integrate(tan(x), x)
-log(cos(x))
See Also
========
sympy.integrals.integrals.integrate
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
result = _manualintegrate(integral_steps(f, var))
# Clear the cache of u-parts
_parts_u_cache.clear()
# If we got Piecewise with two parts, put generic first
if isinstance(result, Piecewise) and len(result.args) == 2:
cond = result.args[0][1]
if isinstance(cond, Eq) and result.args[1][1] == True:
result = result.func(
(result.args[1][0], sympy.Ne(*cond.args)),
(result.args[0][0], True))
return result
|
3e197757e1a924a82f58194bc6c1e29b703fad954ebad9d1e70495e9db3b4970 | """ Integral Transforms """
from sympy.core import S
from sympy.core.compatibility import reduce, iterable
from sympy.core.function import Function
from sympy.core.relational import _canonical, Ge, Gt
from sympy.core.numbers import oo
from sympy.core.symbol import Dummy
from sympy.integrals import integrate, Integral
from sympy.integrals.meijerint import _dummy
from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.matrices.matrices import MatrixBase
##########################################################################
# Helpers / Utilities
##########################################################################
class IntegralTransformError(NotImplementedError):
"""
Exception raised in relation to problems computing transforms.
This class is mostly used internally; if integrals cannot be computed
objects representing unevaluated transforms are usually returned.
The hint ``needeval=True`` can be used to disable returning transform
objects, and instead raise this exception if an integral cannot be
computed.
"""
def __init__(self, transform, function, msg):
super().__init__(
"%s Transform could not be computed: %s." % (transform, msg))
self.function = function
class IntegralTransform(Function):
"""
Base class for integral transforms.
This class represents unevaluated transforms.
To implement a concrete transform, derive from this class and implement
the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)``
functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`.
Also set ``cls._name``. For instance,
>>> from sympy.integrals.transforms import LaplaceTransform
>>> LaplaceTransform._name
'Laplace'
Implement ``self._collapse_extra`` if your function returns more than just a
number and possibly a convergence condition.
"""
@property
def function(self):
""" The function to be transformed. """
return self.args[0]
@property
def function_variable(self):
""" The dependent variable of the function to be transformed. """
return self.args[1]
@property
def transform_variable(self):
""" The independent transform variable. """
return self.args[2]
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the transform
is evaluated.
"""
return self.function.free_symbols.union({self.transform_variable}) \
- {self.function_variable}
def _compute_transform(self, f, x, s, **hints):
raise NotImplementedError
def _as_integral(self, f, x, s):
raise NotImplementedError
def _collapse_extra(self, extra):
cond = And(*extra)
if cond == False:
raise IntegralTransformError(self.__class__.name, None, '')
return cond
def doit(self, **hints):
"""
Try to evaluate the transform in closed form.
This general function handles linearity, but apart from that leaves
pretty much everything to _compute_transform.
Standard hints are the following:
- ``simplify``: whether or not to simplify the result
- ``noconds``: if True, don't return convergence conditions
- ``needeval``: if True, raise IntegralTransformError instead of
returning IntegralTransform objects
The default values of these hints depend on the concrete transform,
usually the default is
``(simplify, noconds, needeval) = (True, False, False)``.
"""
from sympy import Add, expand_mul, Mul
from sympy.core.function import AppliedUndef
needeval = hints.pop('needeval', False)
try_directly = not any(func.has(self.function_variable)
for func in self.function.atoms(AppliedUndef))
if try_directly:
try:
return self._compute_transform(self.function,
self.function_variable, self.transform_variable, **hints)
except IntegralTransformError:
pass
fn = self.function
if not fn.is_Add:
fn = expand_mul(fn)
if fn.is_Add:
hints['needeval'] = needeval
res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints)
for x in fn.args]
extra = []
ress = []
for x in res:
if not isinstance(x, tuple):
x = [x]
ress.append(x[0])
if len(x) == 2:
# only a condition
extra.append(x[1])
elif len(x) > 2:
# some region parameters and a condition (Mellin, Laplace)
extra += [x[1:]]
res = Add(*ress)
if not extra:
return res
try:
extra = self._collapse_extra(extra)
if iterable(extra):
return tuple([res]) + tuple(extra)
else:
return (res, extra)
except IntegralTransformError:
pass
if needeval:
raise IntegralTransformError(
self.__class__._name, self.function, 'needeval')
# TODO handle derivatives etc
# pull out constant coefficients
coeff, rest = fn.as_coeff_mul(self.function_variable)
return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:])))
@property
def as_integral(self):
return self._as_integral(self.function, self.function_variable,
self.transform_variable)
def _eval_rewrite_as_Integral(self, *args, **kwargs):
return self.as_integral
from sympy.solvers.inequalities import _solve_inequality
def _simplify(expr, doit):
from sympy import powdenest, piecewise_fold
if doit:
return simplify(powdenest(piecewise_fold(expr), polar=True))
return expr
def _noconds_(default):
"""
This is a decorator generator for dropping convergence conditions.
Suppose you define a function ``transform(*args)`` which returns a tuple of
the form ``(result, cond1, cond2, ...)``.
Decorating it ``@_noconds_(default)`` will add a new keyword argument
``noconds`` to it. If ``noconds=True``, the return value will be altered to
be only ``result``, whereas if ``noconds=False`` the return value will not
be altered.
The default value of the ``noconds`` keyword will be ``default`` (i.e. the
argument of this function).
"""
def make_wrapper(func):
from sympy.core.decorators import wraps
@wraps(func)
def wrapper(*args, noconds=default, **kwargs):
res = func(*args, **kwargs)
if noconds:
return res[0]
return res
return wrapper
return make_wrapper
_noconds = _noconds_(False)
##########################################################################
# Mellin Transform
##########################################################################
def _default_integrator(f, x):
return integrate(f, (x, 0, oo))
@_noconds
def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True):
""" Backend function to compute Mellin transforms. """
from sympy import re, Max, Min, count_ops
# We use a fresh dummy, because assumptions on s might drop conditions on
# convergence of the integral.
s = _dummy('s', 'mellin-transform', f)
F = integrator(x**(s - 1) * f, x)
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true
if not F.is_Piecewise: # XXX can this work if integration gives continuous result now?
raise IntegralTransformError('Mellin', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Mellin', f, 'integral in unexpected form')
def process_conds(cond):
"""
Turn ``cond`` into a strip (a, b), and auxiliary conditions.
"""
a = -oo
b = oo
aux = S.true
conds = conjuncts(to_cnf(cond))
t = Dummy('t', real=True)
for c in conds:
a_ = oo
b_ = -oo
aux_ = []
for d in disjuncts(c):
d_ = d.replace(
re, lambda x: x.as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
b_ = Max(soln.gts, b_)
else:
a_ = Min(soln.lts, a_)
if a_ != oo and a_ != b:
a = Max(a_, a)
elif b_ != -oo and b_ != a:
b = Min(b_, b)
else:
aux = And(aux, Or(*aux_))
return a, b, aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds = [x for x in conds if x[2] != False]
conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2])))
if not conds:
raise IntegralTransformError('Mellin', f, 'no convergence found')
a, b, aux = conds[0]
return _simplify(F.subs(s, s_), simplify), (a, b), aux
class MellinTransform(IntegralTransform):
"""
Class representing unevaluated Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Mellin transforms, see the :func:`mellin_transform`
docstring.
"""
_name = 'Mellin'
def _compute_transform(self, f, x, s, **hints):
return _mellin_transform(f, x, s, **hints)
def _as_integral(self, f, x, s):
return Integral(f*x**(s - 1), (x, 0, oo))
def _collapse_extra(self, extra):
from sympy import Max, Min
a = []
b = []
cond = []
for (sa, sb), c in extra:
a += [sa]
b += [sb]
cond += [c]
res = (Max(*a), Min(*b)), And(*cond)
if (res[0][0] >= res[0][1]) == True or res[1] == False:
raise IntegralTransformError(
'Mellin', None, 'no combined convergence.')
return res
def mellin_transform(f, x, s, **hints):
r"""
Compute the Mellin transform `F(s)` of `f(x)`,
.. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x.
For all "sensible" functions, this converges absolutely in a strip
`a < \operatorname{Re}(s) < b`.
The Mellin transform is related via change of variables to the Fourier
transform, and also to the (bilateral) Laplace transform.
This function returns ``(F, (a, b), cond)``
where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip
(as above), and ``cond`` are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`MellinTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``,
then only `F` will be returned (i.e. not ``cond``, and also not the strip
``(a, b)``).
>>> from sympy.integrals.transforms import mellin_transform
>>> from sympy import exp
>>> from sympy.abc import x, s
>>> mellin_transform(exp(-x), x, s)
(gamma(s), (0, oo), True)
See Also
========
inverse_mellin_transform, laplace_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
return MellinTransform(f, x, s).doit(**hints)
def _rewrite_sin(m_n, s, a, b):
"""
Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible
with the strip (a, b).
Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``.
>>> from sympy.integrals.transforms import _rewrite_sin
>>> from sympy import pi, S
>>> from sympy.abc import s
>>> _rewrite_sin((pi, 0), s, 0, 1)
(gamma(s), gamma(1 - s), pi)
>>> _rewrite_sin((pi, 0), s, 1, 0)
(gamma(s - 1), gamma(2 - s), -pi)
>>> _rewrite_sin((pi, 0), s, -1, 0)
(gamma(s + 1), gamma(-s), -pi)
>>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2)
(gamma(s - 1/2), gamma(3/2 - s), -pi)
>>> _rewrite_sin((pi, pi), s, 0, 1)
(gamma(s), gamma(1 - s), -pi)
>>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2)
(gamma(2*s), gamma(1 - 2*s), pi)
>>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1)
(gamma(2*s - 1), gamma(2 - 2*s), -pi)
"""
# (This is a separate function because it is moderately complicated,
# and I want to doctest it.)
# We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x).
# But there is one comlication: the gamma functions determine the
# inegration contour in the definition of the G-function. Usually
# it would not matter if this is slightly shifted, unless this way
# we create an undefined function!
# So we try to write this in such a way that the gammas are
# eminently on the right side of the strip.
from sympy import expand_mul, pi, ceiling, gamma
m, n = m_n
m = expand_mul(m/pi)
n = expand_mul(n/pi)
r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand
return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi
class MellinTransformStripError(ValueError):
"""
Exception raised by _rewrite_gamma. Mainly for internal use.
"""
pass
def _rewrite_gamma(f, s, a, b):
"""
Try to rewrite the product f(s) as a product of gamma functions,
so that the inverse Mellin transform of f can be expressed as a meijer
G function.
Return (an, ap), (bm, bq), arg, exp, fac such that
G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s).
Raises IntegralTransformError or MellinTransformStripError on failure.
It is asserted that f has no poles in the fundamental strip designated by
(a, b). One of a and b is allowed to be None. The fundamental strip is
important, because it determines the inversion contour.
This function can handle exponentials, linear factors, trigonometric
functions.
This is a helper function for inverse_mellin_transform that will not
attempt any transformations on f.
>>> from sympy.integrals.transforms import _rewrite_gamma
>>> from sympy.abc import s
>>> from sympy import oo
>>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo)
(([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1)
>>> _rewrite_gamma((s-1)**2, s, -oo, oo)
(([], [1, 1]), ([2, 2], []), 1, 1, 1)
Importance of the fundamental strip:
>>> _rewrite_gamma(1/s, s, 0, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, None, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, 0, None)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, -oo, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, None, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, -oo, None)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(2**(-s+3), s, -oo, oo)
(([], []), ([], []), 1/2, 1, 8)
"""
from itertools import repeat
from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand,
roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar)
# Our strategy will be as follows:
# 1) Guess a constant c such that the inversion integral should be
# performed wrt s'=c*s (instead of plain s). Write s for s'.
# 2) Process all factors, rewrite them independently as gamma functions in
# argument s, or exponentials of s.
# 3) Try to transform all gamma functions s.t. they have argument
# a+s or a-s.
# 4) Check that the resulting G function parameters are valid.
# 5) Combine all the exponentials.
a_, b_ = S([a, b])
def left(c, is_numer):
"""
Decide whether pole at c lies to the left of the fundamental strip.
"""
# heuristically, this is the best chance for us to solve the inequalities
c = expand(re(c))
if a_ is None and b_ is oo:
return True
if a_ is None:
return c < b_
if b_ is None:
return c <= a_
if (c >= b_) == True:
return False
if (c <= a_) == True:
return True
if is_numer:
return None
if a_.free_symbols or b_.free_symbols or c.free_symbols:
return None # XXX
#raise IntegralTransformError('Inverse Mellin', f,
# 'Could not determine position of singularity %s'
# ' relative to fundamental strip' % c)
raise MellinTransformStripError('Pole inside critical strip?')
# 1)
s_multipliers = []
for g in f.atoms(gamma):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff]
for g in f.atoms(sin, cos, tan, cot):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff/pi]
s_multipliers = [abs(x) if x.is_extended_real else x for x in s_multipliers]
common_coefficient = S.One
for x in s_multipliers:
if not x.is_Rational:
common_coefficient = x
break
s_multipliers = [x/common_coefficient for x in s_multipliers]
if (any(not x.is_Rational for x in s_multipliers) or
not common_coefficient.is_extended_real):
raise IntegralTransformError("Gamma", None, "Nonrational multiplier")
s_multiplier = common_coefficient/reduce(ilcm, [S(x.q)
for x in s_multipliers], S.One)
if s_multiplier == common_coefficient:
if len(s_multipliers) == 0:
s_multiplier = common_coefficient
else:
s_multiplier = common_coefficient \
*reduce(igcd, [S(x.p) for x in s_multipliers])
f = f.subs(s, s/s_multiplier)
fac = S.One/s_multiplier
exponent = S.One/s_multiplier
if a_ is not None:
a_ *= s_multiplier
if b_ is not None:
b_ *= s_multiplier
# 2)
numer, denom = f.as_numer_denom()
numer = Mul.make_args(numer)
denom = Mul.make_args(denom)
args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False)))
facs = []
dfacs = []
# *_gammas will contain pairs (a, c) representing Gamma(a*s + c)
numer_gammas = []
denom_gammas = []
# exponentials will contain bases for exponentials of s
exponentials = []
def exception(fact):
return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact)
while args:
fact, is_numer = args.pop()
if is_numer:
ugammas, lgammas = numer_gammas, denom_gammas
ufacs = facs
else:
ugammas, lgammas = denom_gammas, numer_gammas
ufacs = dfacs
def linear_arg(arg):
""" Test if arg is of form a*s+b, raise exception if not. """
if not arg.is_polynomial(s):
raise exception(fact)
p = Poly(arg, s)
if p.degree() != 1:
raise exception(fact)
return p.all_coeffs()
# constants
if not fact.has(s):
ufacs += [fact]
# exponentials
elif fact.is_Pow or isinstance(fact, exp_):
if fact.is_Pow:
base = fact.base
exp = fact.exp
else:
base = exp_polar(1)
exp = fact.args[0]
if exp.is_Integer:
cond = is_numer
if exp < 0:
cond = not cond
args += [(base, cond)]*abs(exp)
continue
elif not base.has(s):
a, b = linear_arg(exp)
if not is_numer:
base = 1/base
exponentials += [base**a]
facs += [base**b]
else:
raise exception(fact)
# linear factors
elif fact.is_polynomial(s):
p = Poly(fact, s)
if p.degree() != 1:
# We completely factor the poly. For this we need the roots.
# Now roots() only works in some cases (low degree), and CRootOf
# only works without parameters. So try both...
coeff = p.LT()[1]
rs = roots(p, s)
if len(rs) != p.degree():
rs = CRootOf.all_roots(p)
ufacs += [coeff]
args += [(s - c, is_numer) for c in rs]
continue
a, c = p.all_coeffs()
ufacs += [a]
c /= -a
# Now need to convert s - c
if left(c, is_numer):
ugammas += [(S.One, -c + 1)]
lgammas += [(S.One, -c)]
else:
ufacs += [-1]
ugammas += [(S.NegativeOne, c + 1)]
lgammas += [(S.NegativeOne, c)]
elif isinstance(fact, gamma):
a, b = linear_arg(fact.args[0])
if is_numer:
if (a > 0 and (left(-b/a, is_numer) == False)) or \
(a < 0 and (left(-b/a, is_numer) == True)):
raise NotImplementedError(
'Gammas partially over the strip.')
ugammas += [(a, b)]
elif isinstance(fact, sin):
# We try to re-write all trigs as gammas. This is not in
# general the best strategy, since sometimes this is impossible,
# but rewriting as exponentials would work. However trig functions
# in inverse mellin transforms usually all come from simplifying
# gamma terms, so this should work.
a = fact.args[0]
if is_numer:
# No problem with the poles.
gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi
else:
gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_)
args += [(gamma1, not is_numer), (gamma2, not is_numer)]
ufacs += [fac_]
elif isinstance(fact, tan):
a = fact.args[0]
args += [(sin(a, evaluate=False), is_numer),
(sin(pi/2 - a, evaluate=False), not is_numer)]
elif isinstance(fact, cos):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer)]
elif isinstance(fact, cot):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer),
(sin(a, evaluate=False), not is_numer)]
else:
raise exception(fact)
fac *= Mul(*facs)/Mul(*dfacs)
# 3)
an, ap, bm, bq = [], [], [], []
for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True),
(denom_gammas, bq, ap, False)]:
while gammas:
a, c = gammas.pop()
if a != -1 and a != +1:
# We use the gamma function multiplication theorem.
p = abs(S(a))
newa = a/p
newc = c/p
if not a.is_Integer:
raise TypeError("a is not an integer")
for k in range(p):
gammas += [(newa, newc + k/p)]
if is_numer:
fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half)
exponentials += [p**a]
else:
fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half)
exponentials += [p**(-a)]
continue
if a == +1:
plus.append(1 - c)
else:
minus.append(c)
# 4)
# TODO
# 5)
arg = Mul(*exponentials)
# for testability, sort the arguments
an.sort(key=default_sort_key)
ap.sort(key=default_sort_key)
bm.sort(key=default_sort_key)
bq.sort(key=default_sort_key)
return (an, ap), (bm, bq), arg, exponent, fac
@_noconds_(True)
def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False):
""" A helper for the real inverse_mellin_transform function, this one here
assumes x to be real and positive. """
from sympy import (expand, expand_mul, hyperexpand, meijerg,
arg, pi, re, factor, Heaviside, gamma, Add)
x = _dummy('t', 'inverse-mellin-transform', F, positive=True)
# Actually, we won't try integration at all. Instead we use the definition
# of the Meijer G function as a fairly general inverse mellin transform.
F = F.rewrite(gamma)
for g in [factor(F), expand_mul(F), expand(F)]:
if g.is_Add:
# do all terms separately
ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg,
noconds=False)
for G in g.args]
conds = [p[1] for p in ress]
ress = [p[0] for p in ress]
res = Add(*ress)
if not as_meijerg:
res = factor(res, gens=res.atoms(Heaviside))
return res.subs(x, x_), And(*conds)
try:
a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1])
except IntegralTransformError:
continue
try:
G = meijerg(a, b, C/x**e)
except ValueError:
continue
if as_meijerg:
h = G
else:
try:
h = hyperexpand(G)
except NotImplementedError:
raise IntegralTransformError(
'Inverse Mellin', F, 'Could not calculate integral')
if h.is_Piecewise and len(h.args) == 3:
# XXX we break modularity here!
h = Heaviside(x - abs(C))*h.args[0].args[0] \
+ Heaviside(abs(C) - x)*h.args[1].args[0]
# We must ensure that the integral along the line we want converges,
# and return that value.
# See [L], 5.2
cond = [abs(arg(G.argument)) < G.delta*pi]
# Note: we allow ">=" here, this corresponds to convergence if we let
# limits go to oo symmetrically. ">" corresponds to absolute convergence.
cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1),
abs(arg(G.argument)) == G.delta*pi)]
cond = Or(*cond)
if cond == False:
raise IntegralTransformError(
'Inverse Mellin', F, 'does not converge')
return (h*fac).subs(x, x_), cond
raise IntegralTransformError('Inverse Mellin', F, '')
_allowed = None
class InverseMellinTransform(IntegralTransform):
"""
Class representing unevaluated inverse Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Mellin transforms, see the
:func:`inverse_mellin_transform` docstring.
"""
_name = 'Inverse Mellin'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, a, b, **opts):
if a is None:
a = InverseMellinTransform._none_sentinel
if b is None:
b = InverseMellinTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, a, b, **opts)
@property
def fundamental_strip(self):
a, b = self.args[3], self.args[4]
if a is InverseMellinTransform._none_sentinel:
a = None
if b is InverseMellinTransform._none_sentinel:
b = None
return a, b
def _compute_transform(self, F, s, x, **hints):
from sympy import postorder_traversal
global _allowed
if _allowed is None:
from sympy import (
exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh,
coth, factorial, rf)
_allowed = {
exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth,
factorial, rf}
for f in postorder_traversal(F):
if f.is_Function and f.has(s) and f.func not in _allowed:
raise IntegralTransformError('Inverse Mellin', F,
'Component %s not recognised.' % f)
strip = self.fundamental_strip
return _inverse_mellin_transform(F, s, x, strip, **hints)
def _as_integral(self, F, s, x):
from sympy import I
c = self.__class__._c
return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit)
def inverse_mellin_transform(F, s, x, strip, **hints):
r"""
Compute the inverse Mellin transform of `F(s)` over the fundamental
strip given by ``strip=(a, b)``.
This can be defined as
.. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s,
for any `c` in the fundamental strip. Under certain regularity
conditions on `F` and/or `f`,
this recovers `f` from its Mellin transform `F`
(and vice versa), for positive real `x`.
One of `a` or `b` may be passed as ``None``; a suitable `c` will be
inferred.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseMellinTransform` object.
Note that this function will assume x to be positive and real, regardless
of the sympy assumptions!
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
>>> from sympy.integrals.transforms import inverse_mellin_transform
>>> from sympy import oo, gamma
>>> from sympy.abc import x, s
>>> inverse_mellin_transform(gamma(s), s, x, (0, oo))
exp(-x)
The fundamental strip matters:
>>> f = 1/(s**2 - 1)
>>> inverse_mellin_transform(f, s, x, (-oo, -1))
x*(1 - 1/x**2)*Heaviside(x - 1)/2
>>> inverse_mellin_transform(f, s, x, (-1, 1))
-x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x)
>>> inverse_mellin_transform(f, s, x, (1, oo))
(1/2 - x**2/2)*Heaviside(1 - x)/x
See Also
========
mellin_transform
hankel_transform, inverse_hankel_transform
"""
return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints)
##########################################################################
# Laplace Transform
##########################################################################
def _simplifyconds(expr, s, a):
r"""
Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`.
>>> from sympy.integrals.transforms import _simplifyconds as simp
>>> from sympy.abc import x
>>> from sympy import sympify as S
>>> simp(abs(x**2) < 1, x, 1)
False
>>> simp(abs(x**2) < 1, x, 2)
False
>>> simp(abs(x**2) < 1, x, 0)
Abs(x**2) < 1
>>> simp(abs(1/x**2) < 1, x, 1)
True
>>> simp(S(1) < abs(x), x, 1)
True
>>> simp(S(1) < abs(1/x), x, 1)
False
>>> from sympy import Ne
>>> simp(Ne(1, x**3), x, 1)
True
>>> simp(Ne(1, x**3), x, 2)
True
>>> simp(Ne(1, x**3), x, 0)
Ne(1, x**3)
"""
from sympy.core.relational import ( StrictGreaterThan, StrictLessThan,
Unequality )
from sympy import Abs
def power(ex):
if ex == s:
return 1
if ex.is_Pow and ex.base == s:
return ex.exp
return None
def bigger(ex1, ex2):
""" Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|.
Else return None. """
if ex1.has(s) and ex2.has(s):
return None
if isinstance(ex1, Abs):
ex1 = ex1.args[0]
if isinstance(ex2, Abs):
ex2 = ex2.args[0]
if ex1.has(s):
return bigger(1/ex2, 1/ex1)
n = power(ex2)
if n is None:
return None
try:
if n > 0 and (abs(ex1) <= abs(a)**n) == True:
return False
if n < 0 and (abs(ex1) >= abs(a)**n) == True:
return True
except TypeError:
pass
def replie(x, y):
""" simplify x < y """
if not (x.is_positive or isinstance(x, Abs)) \
or not (y.is_positive or isinstance(y, Abs)):
return (x < y)
r = bigger(x, y)
if r is not None:
return not r
return (x < y)
def replue(x, y):
b = bigger(x, y)
if b == True or b == False:
return True
return Unequality(x, y)
def repl(ex, *args):
if ex == True or ex == False:
return bool(ex)
return ex.replace(*args)
from sympy.simplify.radsimp import collect_abs
expr = collect_abs(expr)
expr = repl(expr, StrictLessThan, replie)
expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x))
expr = repl(expr, Unequality, replue)
return S(expr)
@_noconds
def _laplace_transform(f, t, s_, simplify=True):
""" The backend function for Laplace transforms. """
from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_,
arg, cos, Wild, symbols, polar_lift)
s = Dummy('s')
F = integrate(exp(-s*t) * f, (t, 0, oo))
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), -oo, S.true
if not F.is_Piecewise:
raise IntegralTransformError(
'Laplace', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Laplace', f, 'integral in unexpected form')
def process_conds(conds):
""" Turn ``conds`` into a strip and auxiliary conditions. """
a = -oo
aux = S.true
conds = conjuncts(to_cnf(conds))
p, q, w1, w2, w3, w4, w5 = symbols(
'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s])
patterns = (
p*abs(arg((s + w3)*q)) < w2,
p*abs(arg((s + w3)*q)) <= w2,
abs(arg_((s + w3)**p*q, w1)) < w2,
abs(arg_((s + w3)**p*q, w1)) <= w2,
abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2,
abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2)
for c in conds:
a_ = oo
aux_ = []
for d in disjuncts(c):
if d.is_Relational and s in d.rhs.free_symbols:
d = d.reversed
if d.is_Relational and isinstance(d, (Ge, Gt)):
d = d.reversedsign
for pat in patterns:
m = d.match(pat)
if m:
break
if m:
if m[q].is_positive and m[w2]/m[p] == pi/2:
d = -re(s + m[w3]) < 0
m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0)
if not m:
m = d.match(
cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0)
if not m:
m = d.match(
p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2
)*abs(s**w3)**w4 < 0)
if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]):
d = re(s) > m[p]
d_ = d.replace(
re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
raise IntegralTransformError('Laplace', f,
'convergence not in half-plane?')
else:
a_ = Min(soln.lts, a_)
if a_ != oo:
a = Max(a_, a)
else:
aux = And(aux, Or(*aux_))
return a, aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds2 = [x for x in conds if x[1] != False and x[0] != -oo]
if not conds2:
conds2 = [x for x in conds if x[1] != False]
conds = conds2
def cnt(expr):
if expr == True or expr == False:
return 0
return expr.count_ops()
conds.sort(key=lambda x: (-x[0], cnt(x[1])))
if not conds:
raise IntegralTransformError('Laplace', f, 'no convergence found')
a, aux = conds[0]
def sbs(expr):
return expr.subs(s, s_)
if simplify:
F = _simplifyconds(F, s, a)
aux = _simplifyconds(aux, s, a)
return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux))
class LaplaceTransform(IntegralTransform):
"""
Class representing unevaluated Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Laplace transforms, see the :func:`laplace_transform`
docstring.
"""
_name = 'Laplace'
def _compute_transform(self, f, t, s, **hints):
return _laplace_transform(f, t, s, **hints)
def _as_integral(self, f, t, s):
from sympy import exp
return Integral(f*exp(-s*t), (t, 0, oo))
def _collapse_extra(self, extra):
from sympy import Max
conds = []
planes = []
for plane, cond in extra:
conds.append(cond)
planes.append(plane)
cond = And(*conds)
plane = Max(*planes)
if cond == False:
raise IntegralTransformError(
'Laplace', None, 'No combined convergence.')
return plane, cond
def laplace_transform(f, t, s, **hints):
r"""
Compute the Laplace Transform `F(s)` of `f(t)`,
.. math :: F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t.
For all "sensible" functions, this converges absolutely in a
half plane `a < \operatorname{Re}(s)`.
This function returns ``(F, a, cond)``
where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane
of convergence, and ``cond`` are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`LaplaceTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``,
only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``).
>>> from sympy.integrals import laplace_transform
>>> from sympy.abc import t, s, a
>>> laplace_transform(t**a, t, s)
(s**(-a)*gamma(a + 1)/s, 0, re(a) > -1)
See Also
========
inverse_laplace_transform, mellin_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'):
return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints))
return LaplaceTransform(f, t, s).doit(**hints)
@_noconds_(True)
def _inverse_laplace_transform(F, s, t_, plane, simplify=True):
""" The backend function for inverse Laplace transforms. """
from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise
from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp
# There are two strategies we can try:
# 1) Use inverse mellin transforms - related by a simple change of variables.
# 2) Use the inversion integral.
t = Dummy('t', real=True)
def pw_simp(*args):
""" Simplify a piecewise expression from hyperexpand. """
# XXX we break modularity here!
if len(args) != 3:
return Piecewise(*args)
arg = args[2].args[0].argument
coeff, exponent = _get_coeff_exp(arg, t)
e1 = args[0].args[0]
e2 = args[1].args[0]
return Heaviside(1/abs(coeff) - t**exponent)*e1 \
+ Heaviside(t**exponent - 1/abs(coeff))*e2
try:
f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo),
needeval=True, noconds=False)
except IntegralTransformError:
f = None
if f is None:
f = meijerint_inversion(F, s, t)
if f is None:
raise IntegralTransformError('Inverse Laplace', f, '')
if f.is_Piecewise:
f, cond = f.args[0]
if f.has(Integral):
raise IntegralTransformError('Inverse Laplace', f,
'inversion integral of unrecognised form.')
else:
cond = S.true
f = f.replace(Piecewise, pw_simp)
if f.is_Piecewise:
# many of the functions called below can't work with piecewise
# (b/c it has a bool in args)
return f.subs(t, t_), cond
u = Dummy('u')
def simp_heaviside(arg):
a = arg.subs(exp(-t), u)
if a.has(t):
return Heaviside(arg)
rel = _solve_inequality(a > 0, u)
if rel.lts == u:
k = log(rel.gts)
return Heaviside(t + k)
else:
k = log(rel.lts)
return Heaviside(-(t + k))
f = f.replace(Heaviside, simp_heaviside)
def simp_exp(arg):
return expand_complex(exp(arg))
f = f.replace(exp, simp_exp)
# TODO it would be nice to fix cosh and sinh ... simplify messes these
# exponentials up
return _simplify(f.subs(t, t_), simplify), cond
class InverseLaplaceTransform(IntegralTransform):
"""
Class representing unevaluated inverse Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Laplace transforms, see the
:func:`inverse_laplace_transform` docstring.
"""
_name = 'Inverse Laplace'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, plane, **opts):
if plane is None:
plane = InverseLaplaceTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, plane, **opts)
@property
def fundamental_plane(self):
plane = self.args[3]
if plane is InverseLaplaceTransform._none_sentinel:
plane = None
return plane
def _compute_transform(self, F, s, t, **hints):
return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints)
def _as_integral(self, F, s, t):
from sympy import I, exp
c = self.__class__._c
return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit)
def inverse_laplace_transform(F, s, t, plane=None, **hints):
r"""
Compute the inverse Laplace transform of `F(s)`, defined as
.. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s,
for `c` so large that `F(s)` has no singularites in the
half-plane `\operatorname{Re}(s) > c-\epsilon`.
The plane can be specified by
argument ``plane``, but will be inferred if passed as None.
Under certain regularity conditions, this recovers `f(t)` from its
Laplace Transform `F(s)`, for non-negative `t`, and vice
versa.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseLaplaceTransform` object.
Note that this function will always assume `t` to be real,
regardless of the sympy assumption on `t`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
>>> from sympy.integrals.transforms import inverse_laplace_transform
>>> from sympy import exp, Symbol
>>> from sympy.abc import s, t
>>> a = Symbol('a', positive=True)
>>> inverse_laplace_transform(exp(-a*s)/s, s, t)
Heaviside(-a + t)
See Also
========
laplace_transform
hankel_transform, inverse_hankel_transform
"""
if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'):
return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints))
return InverseLaplaceTransform(F, s, t, plane).doit(**hints)
##########################################################################
# Fourier Transform
##########################################################################
@_noconds_(True)
def _fourier_transform(f, x, k, a, b, name, simplify=True):
r"""
Compute a general Fourier-type transform
.. math::
F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx.
For suitable choice of *a* and *b*, this reduces to the standard Fourier
and inverse Fourier transforms.
"""
from sympy import exp, I
F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
integral_f = integrate(f, (x, -oo, oo))
if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral):
raise IntegralTransformError(name, f, 'function not integrable on real axis')
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class FourierTypeTransform(IntegralTransform):
""" Base class for Fourier transforms."""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _fourier_transform(f, x, k,
self.a(), self.b(),
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
from sympy import exp, I
a = self.a()
b = self.b()
return Integral(a*f*exp(b*I*x*k), (x, -oo, oo))
class FourierTransform(FourierTypeTransform):
"""
Class representing unevaluated Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Fourier transforms, see the :func:`fourier_transform`
docstring.
"""
_name = 'Fourier'
def a(self):
return 1
def b(self):
return -2*S.Pi
def fourier_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency Fourier transform of `f`, defined
as
.. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`FourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import fourier_transform, exp
>>> from sympy.abc import x, k
>>> fourier_transform(exp(-x**2), x, k)
sqrt(pi)*exp(-pi**2*k**2)
>>> fourier_transform(exp(-x**2), x, k, noconds=False)
(sqrt(pi)*exp(-pi**2*k**2), True)
See Also
========
inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return FourierTransform(f, x, k).doit(**hints)
class InverseFourierTransform(FourierTypeTransform):
"""
Class representing unevaluated inverse Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Fourier transforms, see the
:func:`inverse_fourier_transform` docstring.
"""
_name = 'Inverse Fourier'
def a(self):
return 1
def b(self):
return 2*S.Pi
def inverse_fourier_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse Fourier transform of `F`,
defined as
.. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseFourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_fourier_transform, exp, sqrt, pi
>>> from sympy.abc import x, k
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x)
exp(-x**2)
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False)
(exp(-x**2), True)
See Also
========
fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseFourierTransform(F, k, x).doit(**hints)
##########################################################################
# Fourier Sine and Cosine Transform
##########################################################################
from sympy import sin, cos, sqrt, pi
@_noconds_(True)
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
"""
Compute a general sine or cosine-type transform
F(k) = a int_0^oo b*sin(x*k) f(x) dx.
F(k) = a int_0^oo b*cos(x*k) f(x) dx.
For suitable choice of a and b, this reduces to the standard sine/cosine
and inverse sine/cosine transforms.
"""
F = integrate(a*f*K(b*x*k), (x, 0, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class SineCosineTypeTransform(IntegralTransform):
"""
Base class for sine and cosine transforms.
Specify cls._kern.
"""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _sine_cosine_transform(f, x, k,
self.a(), self.b(),
self.__class__._kern,
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
a = self.a()
b = self.b()
K = self.__class__._kern
return Integral(a*f*K(b*x*k), (x, 0, oo))
class SineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute sine transforms, see the :func:`sine_transform`
docstring.
"""
_name = 'Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def sine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency sine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`SineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import sine_transform, exp
>>> from sympy.abc import x, k, a
>>> sine_transform(x*exp(-a*x**2), x, k)
sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2))
>>> sine_transform(x**(-a), x, k)
2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2)
See Also
========
fourier_transform, inverse_fourier_transform
inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return SineTransform(f, x, k).doit(**hints)
class InverseSineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse sine transforms, see the
:func:`inverse_sine_transform` docstring.
"""
_name = 'Inverse Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def inverse_sine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse sine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseSineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_sine_transform, exp, sqrt, gamma
>>> from sympy.abc import x, k, a
>>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)*
... gamma(-a/2 + 1)/gamma((a+1)/2), k, x)
x**(-a)
>>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x)
x*exp(-a*x**2)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseSineTransform(F, k, x).doit(**hints)
class CosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute cosine transforms, see the :func:`cosine_transform`
docstring.
"""
_name = 'Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def cosine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency cosine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`CosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import cosine_transform, exp, sqrt, cos
>>> from sympy.abc import x, k, a
>>> cosine_transform(exp(-a*x), x, k)
sqrt(2)*a/(sqrt(pi)*(a**2 + k**2))
>>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k)
a*exp(-a**2/(2*k))/(2*k**(3/2))
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return CosineTransform(f, x, k).doit(**hints)
class InverseCosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse cosine transforms, see the
:func:`inverse_cosine_transform` docstring.
"""
_name = 'Inverse Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def inverse_cosine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse cosine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseCosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_cosine_transform, sqrt, pi
>>> from sympy.abc import x, k, a
>>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x)
exp(-a*x)
>>> inverse_cosine_transform(1/sqrt(k), k, x)
1/sqrt(x)
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseCosineTransform(F, k, x).doit(**hints)
##########################################################################
# Hankel Transform
##########################################################################
@_noconds_(True)
def _hankel_transform(f, r, k, nu, name, simplify=True):
r"""
Compute a general Hankel transform
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
"""
from sympy import besselj
F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class HankelTypeTransform(IntegralTransform):
"""
Base class for Hankel transforms.
"""
def doit(self, **hints):
return self._compute_transform(self.function,
self.function_variable,
self.transform_variable,
self.args[3],
**hints)
def _compute_transform(self, f, r, k, nu, **hints):
return _hankel_transform(f, r, k, nu, self._name, **hints)
def _as_integral(self, f, r, k, nu):
from sympy import besselj
return Integral(f*besselj(nu, k*r)*r, (r, 0, oo))
@property
def as_integral(self):
return self._as_integral(self.function,
self.function_variable,
self.transform_variable,
self.args[3])
class HankelTransform(HankelTypeTransform):
"""
Class representing unevaluated Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Hankel transforms, see the :func:`hankel_transform`
docstring.
"""
_name = 'Hankel'
def hankel_transform(f, r, k, nu, **hints):
r"""
Compute the Hankel transform of `f`, defined as
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`HankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
inverse_hankel_transform
mellin_transform, laplace_transform
"""
return HankelTransform(f, r, k, nu).doit(**hints)
class InverseHankelTransform(HankelTypeTransform):
"""
Class representing unevaluated inverse Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Hankel transforms, see the
:func:`inverse_hankel_transform` docstring.
"""
_name = 'Inverse Hankel'
def inverse_hankel_transform(F, k, r, nu, **hints):
r"""
Compute the inverse Hankel transform of `F` defined as
.. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseHankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform
mellin_transform, laplace_transform
"""
return InverseHankelTransform(F, k, r, nu).doit(**hints)
|
00148a1d3fb47552cbf4ed49401101361da764c4c831a6f176189c75e1b1ffdf | """
Module to implement integration of uni/bivariate polynomials over
2D Polytopes and uni/bi/trivariate polynomials over 3D Polytopes.
Uses evaluation techniques as described in Chin et al. (2015) [1].
References
===========
[1] : Chin, Eric B., Jean B. Lasserre, and N. Sukumar. "Numerical integration
of homogeneous functions on convex and nonconvex polygons and polyhedra."
Computational Mechanics 56.6 (2015): 967-981
PDF link : http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf
"""
from functools import cmp_to_key
from sympy.abc import x, y, z
from sympy.core import S, diff, Expr, Symbol
from sympy.core.sympify import _sympify
from sympy.geometry import Segment2D, Polygon, Point, Point2D
from sympy.polys.polytools import LC, gcd_list, degree_list
from sympy.simplify.simplify import nsimplify
def polytope_integrate(poly, expr=None, *, clockwise=False, max_degree=None):
"""Integrates polynomials over 2/3-Polytopes.
This function accepts the polytope in `poly` and the function in `expr`
(uni/bi/trivariate polynomials are implemented) and returns
the exact integral of `expr` over `poly`.
Parameters
==========
poly : The input Polygon.
expr : The input polynomial.
clockwise : Binary value to sort input points of 2-Polytope clockwise.(Optional)
max_degree : The maximum degree of any monomial of the input polynomial.(Optional)
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.geometry.point import Point
>>> from sympy.integrals.intpoly import polytope_integrate
>>> polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> polys = [1, x, y, x*y, x**2*y, x*y**2]
>>> expr = x*y
>>> polytope_integrate(polygon, expr)
1/4
>>> polytope_integrate(polygon, polys, max_degree=3)
{1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6}
"""
if clockwise:
if isinstance(poly, Polygon):
poly = Polygon(*point_sort(poly.vertices), evaluate=False)
else:
raise TypeError("clockwise=True works for only 2-Polytope"
"V-representation input")
if isinstance(poly, Polygon):
# For Vertex Representation(2D case)
hp_params = hyperplane_parameters(poly)
facets = poly.sides
elif len(poly[0]) == 2:
# For Hyperplane Representation(2D case)
plen = len(poly)
if len(poly[0][0]) == 2:
intersections = [intersection(poly[(i - 1) % plen], poly[i],
"plane2D")
for i in range(0, plen)]
hp_params = poly
lints = len(intersections)
facets = [Segment2D(intersections[i],
intersections[(i + 1) % lints])
for i in range(0, lints)]
else:
raise NotImplementedError("Integration for H-representation 3D"
"case not implemented yet.")
else:
# For Vertex Representation(3D case)
vertices = poly[0]
facets = poly[1:]
hp_params = hyperplane_parameters(facets, vertices)
if max_degree is None:
if expr is None:
raise TypeError('Input expression be must'
'be a valid SymPy expression')
return main_integrate3d(expr, facets, vertices, hp_params)
if max_degree is not None:
result = {}
if not isinstance(expr, list) and expr is not None:
raise TypeError('Input polynomials must be list of expressions')
if len(hp_params[0][0]) == 3:
result_dict = main_integrate3d(0, facets, vertices, hp_params,
max_degree)
else:
result_dict = main_integrate(0, facets, hp_params, max_degree)
if expr is None:
return result_dict
for poly in expr:
poly = _sympify(poly)
if poly not in result:
if poly.is_zero:
result[S.Zero] = S.Zero
continue
integral_value = S.Zero
monoms = decompose(poly, separate=True)
for monom in monoms:
monom = nsimplify(monom)
coeff, m = strip(monom)
integral_value += result_dict[m] * coeff
result[poly] = integral_value
return result
if expr is None:
raise TypeError('Input expression be must'
'be a valid SymPy expression')
return main_integrate(expr, facets, hp_params)
def strip(monom):
if monom.is_zero:
return 0, 0
elif monom.is_number:
return monom, 1
else:
coeff = LC(monom)
return coeff, S(monom) / coeff
def main_integrate3d(expr, facets, vertices, hp_params, max_degree=None):
"""Function to translate the problem of integrating uni/bi/tri-variate
polynomials over a 3-Polytope to integrating over its faces.
This is done using Generalized Stokes' Theorem and Euler's Theorem.
Parameters
===========
expr : The input polynomial
facets : Faces of the 3-Polytope(expressed as indices of `vertices`)
vertices : Vertices that constitute the Polytope
hp_params : Hyperplane Parameters of the facets
Optional Parameters
-------------------
max_degree : Max degree of constituent monomial in given list of polynomial
Examples
========
>>> from sympy.integrals.intpoly import main_integrate3d, \
hyperplane_parameters
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> vertices = cube[0]
>>> faces = cube[1:]
>>> hp_params = hyperplane_parameters(faces, vertices)
>>> main_integrate3d(1, faces, vertices, hp_params)
-125
"""
result = {}
dims = (x, y, z)
dim_length = len(dims)
if max_degree:
grad_terms = gradient_terms(max_degree, 3)
flat_list = [term for z_terms in grad_terms
for x_term in z_terms
for term in x_term]
for term in flat_list:
result[term[0]] = 0
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = vertices[facets[facet_count][0]]
for i, monom in enumerate(flat_list):
# Every monomial is a tuple :
# (term, x_degree, y_degree, z_degree, value over boundary)
expr, x_d, y_d, z_d, z_index, y_index, x_index, _ = monom
degree = x_d + y_d + z_d
if b.is_zero:
value_over_face = S.Zero
else:
value_over_face = \
integration_reduction_dynamic(facets, facet_count, a,
b, expr, degree, dims,
x_index, y_index,
z_index, x0, grad_terms,
i, vertices, hp)
monom[7] = value_over_face
result[expr] += value_over_face * \
(b / norm(a)) / (dim_length + x_d + y_d + z_d)
return result
else:
integral_value = S.Zero
polynomials = decompose(expr)
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for i, facet in enumerate(facets):
hp = hp_params[i]
if hp[1].is_zero:
continue
pi = polygon_integrate(facet, hp, i, facets, vertices, expr, deg)
poly_contribute += pi *\
(hp[1] / norm(tuple(hp[0])))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def main_integrate(expr, facets, hp_params, max_degree=None):
"""Function to translate the problem of integrating univariate/bivariate
polynomials over a 2-Polytope to integrating over its boundary facets.
This is done using Generalized Stokes's Theorem and Euler's Theorem.
Parameters
===========
expr : The input polynomial
facets : Facets(Line Segments) of the 2-Polytope
hp_params : Hyperplane Parameters of the facets
Optional Parameters:
--------------------
max_degree : The maximum degree of any monomial of the input polynomial.
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import main_integrate,\
hyperplane_parameters
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.geometry.point import Point
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> hp_params = hyperplane_parameters(triangle)
>>> main_integrate(x**2 + y**2, facets, hp_params)
325/6
"""
dims = (x, y)
dim_length = len(dims)
result = {}
integral_value = S.Zero
if max_degree:
grad_terms = [[0, 0, 0, 0]] + gradient_terms(max_degree)
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = facets[facet_count].points[0]
for i, monom in enumerate(grad_terms):
# Every monomial is a tuple :
# (term, x_degree, y_degree, value over boundary)
m, x_d, y_d, _ = monom
value = result.get(m, None)
degree = S.Zero
if b.is_zero:
value_over_boundary = S.Zero
else:
degree = x_d + y_d
value_over_boundary = \
integration_reduction_dynamic(facets, facet_count, a,
b, m, degree, dims, x_d,
y_d, max_degree, x0,
grad_terms, i)
monom[3] = value_over_boundary
if value is not None:
result[m] += value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
else:
result[m] = value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
return result
else:
polynomials = decompose(expr)
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for hp in hp_params:
value_over_boundary = integration_reduction(facets,
facet_count,
hp[0], hp[1],
polynomials[deg],
dims, deg)
poly_contribute += value_over_boundary * (hp[1] / norm(hp[0]))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree):
"""Helper function to integrate the input uni/bi/trivariate polynomial
over a certain face of the 3-Polytope.
Parameters
===========
facet : Particular face of the 3-Polytope over which `expr` is integrated
index : The index of `facet` in `facets`
facets : Faces of the 3-Polytope(expressed as indices of `vertices`)
vertices : Vertices that constitute the facet
expr : The input polynomial
degree : Degree of `expr`
Examples
========
>>> from sympy.integrals.intpoly import polygon_integrate
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facet = cube[1]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0)
-25
"""
expr = S(expr)
if expr.is_zero:
return S.Zero
result = S.Zero
x0 = vertices[facet[0]]
for i in range(len(facet)):
side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]])
result += distance_to_side(x0, side, hp_param[0]) *\
lineseg_integrate(facet, i, side, expr, degree)
if not expr.is_number:
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += polygon_integrate(facet, hp_param, index, facets, vertices,
expr, degree - 1)
result /= (degree + 2)
return result
def distance_to_side(point, line_seg, A):
"""Helper function to compute the signed distance between given 3D point
and a line segment.
Parameters
===========
point : 3D Point
line_seg : Line Segment
Examples
========
>>> from sympy.integrals.intpoly import distance_to_side
>>> point = (0, 0, 0)
>>> distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0))
-sqrt(2)/2
"""
x1, x2 = line_seg
rev_normal = [-1 * S(i)/norm(A) for i in A]
vector = [x2[i] - x1[i] for i in range(0, 3)]
vector = [vector[i]/norm(vector) for i in range(0, 3)]
n_side = cross_product((0, 0, 0), rev_normal, vector)
vectorx0 = [line_seg[0][i] - point[i] for i in range(0, 3)]
dot_product = sum([vectorx0[i] * n_side[i] for i in range(0, 3)])
return dot_product
def lineseg_integrate(polygon, index, line_seg, expr, degree):
"""Helper function to compute the line integral of `expr` over `line_seg`
Parameters
===========
polygon : Face of a 3-Polytope
index : index of line_seg in polygon
line_seg : Line Segment
Examples
========
>>> from sympy.integrals.intpoly import lineseg_integrate
>>> polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)]
>>> line_seg = [(0, 5, 0), (5, 5, 0)]
>>> lineseg_integrate(polygon, 0, line_seg, 1, 0)
5
"""
expr = _sympify(expr)
if expr.is_zero:
return S.Zero
result = S.Zero
x0 = line_seg[0]
distance = norm(tuple([line_seg[1][i] - line_seg[0][i] for i in
range(3)]))
if isinstance(expr, Expr):
expr_dict = {x: line_seg[1][0],
y: line_seg[1][1],
z: line_seg[1][2]}
result += distance * expr.subs(expr_dict)
else:
result += distance * expr
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += lineseg_integrate(polygon, index, line_seg, expr, degree - 1)
result /= (degree + 1)
return result
def integration_reduction(facets, index, a, b, expr, dims, degree):
"""Helper method for main_integrate. Returns the value of the input
expression evaluated over the polytope facet referenced by a given index.
Parameters
===========
facets : List of facets of the polytope.
index : Index referencing the facet to integrate the expression over.
a : Hyperplane parameter denoting direction.
b : Hyperplane parameter denoting distance.
expr : The expression to integrate over the facet.
dims : List of symbols denoting axes.
degree : Degree of the homogeneous polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import integration_reduction,\
hyperplane_parameters
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> integration_reduction(facets, 0, a, b, 1, (x, y), 0)
5
"""
expr = _sympify(expr)
if expr.is_zero:
return expr
value = S.Zero
x0 = facets[index].points[0]
m = len(facets)
gens = (x, y)
inner_product = diff(expr, gens[0]) * x0[0] + diff(expr, gens[1]) * x0[1]
if inner_product != 0:
value += integration_reduction(facets, index, a, b,
inner_product, dims, degree - 1)
value += left_integral2D(m, index, facets, x0, expr, gens)
return value/(len(dims) + degree - 1)
def left_integral2D(m, index, facets, x0, expr, gens):
"""Computes the left integral of Eq 10 in Chin et al.
For the 2D case, the integral is just an evaluation of the polynomial
at the intersection of two facets which is multiplied by the distance
between the first point of facet and that intersection.
Parameters
===========
m : No. of hyperplanes.
index : Index of facet to find intersections with.
facets : List of facets(Line Segments in 2D case).
x0 : First point on facet referenced by index.
expr : Input polynomial
gens : Generators which generate the polynomial
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import left_integral2D
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> left_integral2D(3, 0, facets, facets[0].points[0], 1, (x, y))
5
"""
value = S.Zero
for j in range(0, m):
intersect = ()
if j == (index - 1) % m or j == (index + 1) % m:
intersect = intersection(facets[index], facets[j], "segment2D")
if intersect:
distance_origin = norm(tuple(map(lambda x, y: x - y,
intersect, x0)))
if is_vertex(intersect):
if isinstance(expr, Expr):
if len(gens) == 3:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1],
gens[2]: intersect[2]}
else:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1]}
value += distance_origin * expr.subs(expr_dict)
else:
value += distance_origin * expr
return value
def integration_reduction_dynamic(facets, index, a, b, expr, degree, dims,
x_index, y_index, max_index, x0,
monomial_values, monom_index, vertices=None,
hp_param=None):
"""The same integration_reduction function which uses a dynamic
programming approach to compute terms by using the values of the integral
of previously computed terms.
Parameters
===========
facets : Facets of the Polytope
index : Index of facet to find intersections with.(Used in left_integral())
a, b : Hyperplane parameters
expr : Input monomial
degree : Total degree of `expr`
dims : Tuple denoting axes variables
x_index : Exponent of 'x' in expr
y_index : Exponent of 'y' in expr
max_index : Maximum exponent of any monomial in monomial_values
x0 : First point on facets[index]
monomial_values : List of monomial values constituting the polynomial
monom_index : Index of monomial whose integration is being found.
Optional Parameters
-------------------
vertices : Coordinates of vertices constituting the 3-Polytope
hp_param : Hyperplane Parameter of the face of the facets[index]
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import (integration_reduction_dynamic, \
hyperplane_parameters)
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> x0 = facets[0].points[0]
>>> monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\
[y, 0, 1, 15], [x, 1, 0, None]]
>>> integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1, 0, 1,\
x0, monomial_values, 3)
25/2
"""
value = S.Zero
m = len(facets)
if expr == S.Zero:
return expr
if len(dims) == 2:
if not expr.is_number:
_, x_degree, y_degree, _ = monomial_values[monom_index]
x_index = monom_index - max_index + \
x_index - 2 if x_degree > 0 else 0
y_index = monom_index - 1 if y_degree > 0 else 0
x_value, y_value =\
monomial_values[x_index][3], monomial_values[y_index][3]
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1]
value += left_integral2D(m, index, facets, x0, expr, dims)
else:
# For 3D use case the max_index contains the z_degree of the term
z_index = max_index
if not expr.is_number:
x_degree, y_degree, z_degree = y_index,\
z_index - x_index - y_index, x_index
x_value = monomial_values[z_index - 1][y_index - 1][x_index][7]\
if x_degree > 0 else 0
y_value = monomial_values[z_index - 1][y_index][x_index][7]\
if y_degree > 0 else 0
z_value = monomial_values[z_index - 1][y_index][x_index - 1][7]\
if z_degree > 0 else 0
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] \
+ z_degree * z_value * x0[2]
value += left_integral3D(facets, index, expr,
vertices, hp_param, degree)
return value / (len(dims) + degree - 1)
def left_integral3D(facets, index, expr, vertices, hp_param, degree):
"""Computes the left integral of Eq 10 in Chin et al.
For the 3D case, this is the sum of the integral values over constituting
line segments of the face (which is accessed by facets[index]) multiplied
by the distance between the first point of facet and that line segment.
Parameters
===========
facets : List of faces of the 3-Polytope.
index : Index of face over which integral is to be calculated.
expr : Input polynomial
vertices : List of vertices that constitute the 3-Polytope
hp_param : The hyperplane parameters of the face
degree : Degree of the expr
>>> from sympy.integrals.intpoly import left_integral3D
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> left_integral3D(facets, 3, 1, vertices, ([0, -1, 0], -5), 0)
-50
"""
value = S.Zero
facet = facets[index]
x0 = vertices[facet[0]]
for i in range(len(facet)):
side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]])
value += distance_to_side(x0, side, hp_param[0]) * \
lineseg_integrate(facet, i, side, expr, degree)
return value
def gradient_terms(binomial_power=0, no_of_gens=2):
"""Returns a list of all the possible monomials between
0 and y**binomial_power for 2D case and z**binomial_power
for 3D case.
Parameters
===========
binomial_power : Power upto which terms are generated.
no_of_gens : Denotes whether terms are being generated for 2D or 3D case.
Examples
========
>>> from sympy.integrals.intpoly import gradient_terms
>>> gradient_terms(2)
[[1, 0, 0, 0], [y, 0, 1, 0], [y**2, 0, 2, 0], [x, 1, 0, 0],
[x*y, 1, 1, 0], [x**2, 2, 0, 0]]
>>> gradient_terms(2, 3)
[[[[1, 0, 0, 0, 0, 0, 0, 0]]], [[[y, 0, 1, 0, 1, 0, 0, 0],
[z, 0, 0, 1, 1, 0, 1, 0]], [[x, 1, 0, 0, 1, 1, 0, 0]]],
[[[y**2, 0, 2, 0, 2, 0, 0, 0], [y*z, 0, 1, 1, 2, 0, 1, 0],
[z**2, 0, 0, 2, 2, 0, 2, 0]], [[x*y, 1, 1, 0, 2, 1, 0, 0],
[x*z, 1, 0, 1, 2, 1, 1, 0]], [[x**2, 2, 0, 0, 2, 2, 0, 0]]]]
"""
if no_of_gens == 2:
count = 0
terms = [None] * int((binomial_power ** 2 + 3 * binomial_power + 2) / 2)
for x_count in range(0, binomial_power + 1):
for y_count in range(0, binomial_power - x_count + 1):
terms[count] = [x**x_count*y**y_count,
x_count, y_count, 0]
count += 1
else:
terms = [[[[x ** x_count * y ** y_count *
z ** (z_count - y_count - x_count),
x_count, y_count, z_count - y_count - x_count,
z_count, x_count, z_count - y_count - x_count, 0]
for y_count in range(z_count - x_count, -1, -1)]
for x_count in range(0, z_count + 1)]
for z_count in range(0, binomial_power + 1)]
return terms
def hyperplane_parameters(poly, vertices=None):
"""A helper function to return the hyperplane parameters
of which the facets of the polytope are a part of.
Parameters
==========
poly : The input 2/3-Polytope
vertices : Vertex indices of 3-Polytope
Examples
========
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.integrals.intpoly import hyperplane_parameters
>>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
[((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> hyperplane_parameters(cube[1:], cube[0])
[([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5),
([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)]
"""
if isinstance(poly, Polygon):
vertices = list(poly.vertices) + [poly.vertices[0]] # Close the polygon
params = [None] * (len(vertices) - 1)
for i in range(len(vertices) - 1):
v1 = vertices[i]
v2 = vertices[i + 1]
a1 = v1[1] - v2[1]
a2 = v2[0] - v1[0]
b = v2[0] * v1[1] - v2[1] * v1[0]
factor = gcd_list([a1, a2, b])
b = S(b) / factor
a = (S(a1) / factor, S(a2) / factor)
params[i] = (a, b)
else:
params = [None] * len(poly)
for i, polygon in enumerate(poly):
v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
normal = cross_product(v1, v2, v3)
b = sum([normal[j] * v1[j] for j in range(0, 3)])
fac = gcd_list(normal)
if fac.is_zero:
fac = 1
normal = [j / fac for j in normal]
b = b / fac
params[i] = (normal, b)
return params
def cross_product(v1, v2, v3):
"""Returns the cross-product of vectors (v2 - v1) and (v3 - v1)
That is : (v2 - v1) X (v3 - v1)
"""
v2 = [v2[j] - v1[j] for j in range(0, 3)]
v3 = [v3[j] - v1[j] for j in range(0, 3)]
return [v3[2] * v2[1] - v3[1] * v2[2],
v3[0] * v2[2] - v3[2] * v2[0],
v3[1] * v2[0] - v3[0] * v2[1]]
def best_origin(a, b, lineseg, expr):
"""Helper method for polytope_integrate. Currently not used in the main
algorithm.
Returns a point on the lineseg whose vector inner product with the
divergence of `expr` yields an expression with the least maximum
total power.
Parameters
==========
a : Hyperplane parameter denoting direction.
b : Hyperplane parameter denoting distance.
lineseg : Line segment on which to find the origin.
expr : The expression which determines the best point.
Algorithm(currently works only for 2D use case)
===============================================
1 > Firstly, check for edge cases. Here that would refer to vertical
or horizontal lines.
2 > If input expression is a polynomial containing more than one generator
then find out the total power of each of the generators.
x**2 + 3 + x*y + x**4*y**5 ---> {x: 7, y: 6}
If expression is a constant value then pick the first boundary point
of the line segment.
3 > First check if a point exists on the line segment where the value of
the highest power generator becomes 0. If not check if the value of
the next highest becomes 0. If none becomes 0 within line segment
constraints then pick the first boundary point of the line segment.
Actually, any point lying on the segment can be picked as best origin
in the last case.
Examples
========
>>> from sympy.integrals.intpoly import best_origin
>>> from sympy.abc import x, y
>>> from sympy.geometry.line import Segment2D
>>> from sympy.geometry.point import Point
>>> l = Segment2D(Point(0, 3), Point(1, 1))
>>> expr = x**3*y**7
>>> best_origin((2, 1), 3, l, expr)
(0, 3.0)
"""
a1, b1 = lineseg.points[0]
def x_axis_cut(ls):
"""Returns the point where the input line segment
intersects the x-axis.
Parameters
==========
ls : Line segment
"""
p, q = ls.points
if p.y.is_zero:
return tuple(p)
elif q.y.is_zero:
return tuple(q)
elif p.y/q.y < S.Zero:
return p.y * (p.x - q.x)/(q.y - p.y) + p.x, S.Zero
else:
return ()
def y_axis_cut(ls):
"""Returns the point where the input line segment
intersects the y-axis.
Parameters
==========
ls : Line segment
"""
p, q = ls.points
if p.x.is_zero:
return tuple(p)
elif q.x.is_zero:
return tuple(q)
elif p.x/q.x < S.Zero:
return S.Zero, p.x * (p.y - q.y)/(q.x - p.x) + p.y
else:
return ()
gens = (x, y)
power_gens = {}
for i in gens:
power_gens[i] = S.Zero
if len(gens) > 1:
# Special case for vertical and horizontal lines
if len(gens) == 2:
if a[0] == 0:
if y_axis_cut(lineseg):
return S.Zero, b/a[1]
else:
return a1, b1
elif a[1] == 0:
if x_axis_cut(lineseg):
return b/a[0], S.Zero
else:
return a1, b1
if isinstance(expr, Expr): # Find the sum total of power of each
if expr.is_Add: # generator and store in a dictionary.
for monomial in expr.args:
if monomial.is_Pow:
if monomial.args[0] in gens:
power_gens[monomial.args[0]] += monomial.args[1]
else:
for univariate in monomial.args:
term_type = len(univariate.args)
if term_type == 0 and univariate in gens:
power_gens[univariate] += 1
elif term_type == 2 and univariate.args[0] in gens:
power_gens[univariate.args[0]] +=\
univariate.args[1]
elif expr.is_Mul:
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term in gens:
power_gens[term] += 1
elif term_type == 2 and term.args[0] in gens:
power_gens[term.args[0]] += term.args[1]
elif expr.is_Pow:
power_gens[expr.args[0]] = expr.args[1]
elif expr.is_Symbol:
power_gens[expr] += 1
else: # If `expr` is a constant take first vertex of the line segment.
return a1, b1
# TODO : This part is quite hacky. Should be made more robust with
# TODO : respect to symbol names and scalable w.r.t higher dimensions.
power_gens = sorted(power_gens.items(), key=lambda k: str(k[0]))
if power_gens[0][1] >= power_gens[1][1]:
if y_axis_cut(lineseg):
x0 = (S.Zero, b / a[1])
elif x_axis_cut(lineseg):
x0 = (b / a[0], S.Zero)
else:
x0 = (a1, b1)
else:
if x_axis_cut(lineseg):
x0 = (b/a[0], S.Zero)
elif y_axis_cut(lineseg):
x0 = (S.Zero, b/a[1])
else:
x0 = (a1, b1)
else:
x0 = (b/a[0])
return x0
def decompose(expr, separate=False):
"""Decomposes an input polynomial into homogeneous ones of
smaller or equal degree.
Returns a dictionary with keys as the degree of the smaller
constituting polynomials. Values are the constituting polynomials.
Parameters
==========
expr : Polynomial(SymPy expression)
Optional Parameters:
--------------------
separate : If True then simply return a list of the constituent monomials
If not then break up the polynomial into constituent homogeneous
polynomials.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import decompose
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5)
{1: x + y, 2: x**2 + x*y, 5: x**3*y**2 + y**5}
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5, True)
{x, x**2, y, y**5, x*y, x**3*y**2}
"""
poly_dict = {}
if isinstance(expr, Expr) and not expr.is_number:
if expr.is_Symbol:
poly_dict[1] = expr
elif expr.is_Add:
symbols = expr.atoms(Symbol)
degrees = [(sum(degree_list(monom, *symbols)), monom)
for monom in expr.args]
if separate:
return {monom[1] for monom in degrees}
else:
for monom in degrees:
degree, term = monom
if poly_dict.get(degree):
poly_dict[degree] += term
else:
poly_dict[degree] = term
elif expr.is_Pow:
_, degree = expr.args
poly_dict[degree] = expr
else: # Now expr can only be of `Mul` type
degree = 0
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term.is_Symbol:
degree += 1
elif term_type == 2:
degree += term.args[1]
poly_dict[degree] = expr
else:
poly_dict[0] = expr
if separate:
return set(poly_dict.values())
return poly_dict
def point_sort(poly, normal=None, clockwise=True):
"""Returns the same polygon with points sorted in clockwise or
anti-clockwise order.
Note that it's necessary for input points to be sorted in some order
(clockwise or anti-clockwise) for the integration algorithm to work.
As a convention algorithm has been implemented keeping clockwise
orientation in mind.
Parameters
==========
poly: 2D or 3D Polygon
Optional Parameters:
---------------------
normal : The normal of the plane which the 3-Polytope is a part of.
clockwise : Returns points sorted in clockwise order if True and
anti-clockwise if False.
Examples
========
>>> from sympy.integrals.intpoly import point_sort
>>> from sympy.geometry.point import Point
>>> point_sort([Point(0, 0), Point(1, 0), Point(1, 1)])
[Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)]
"""
pts = poly.vertices if isinstance(poly, Polygon) else poly
n = len(pts)
if n < 2:
return list(pts)
order = S.One if clockwise else S.NegativeOne
dim = len(pts[0])
if dim == 2:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n)
else:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n,
sum(map(lambda vertex: vertex.z, pts)) / n)
def compare(a, b):
if a.x - center.x >= S.Zero and b.x - center.x < S.Zero:
return -order
elif a.x - center.x < 0 and b.x - center.x >= 0:
return order
elif a.x - center.x == 0 and b.x - center.x == 0:
if a.y - center.y >= 0 or b.y - center.y >= 0:
return -order if a.y > b.y else order
return -order if b.y > a.y else order
det = (a.x - center.x) * (b.y - center.y) -\
(b.x - center.x) * (a.y - center.y)
if det < 0:
return -order
elif det > 0:
return order
first = (a.x - center.x) * (a.x - center.x) +\
(a.y - center.y) * (a.y - center.y)
second = (b.x - center.x) * (b.x - center.x) +\
(b.y - center.y) * (b.y - center.y)
return -order if first > second else order
def compare3d(a, b):
det = cross_product(center, a, b)
dot_product = sum([det[i] * normal[i] for i in range(0, 3)])
if dot_product < 0:
return -order
elif dot_product > 0:
return order
return sorted(pts, key=cmp_to_key(compare if dim==2 else compare3d))
def norm(point):
"""Returns the Euclidean norm of a point from origin.
Parameters
==========
point: This denotes a point in the dimension_al spac_e.
Examples
========
>>> from sympy.integrals.intpoly import norm
>>> from sympy.geometry.point import Point
>>> norm(Point(2, 7))
sqrt(53)
"""
half = S.Half
if isinstance(point, (list, tuple)):
return sum([coord ** 2 for coord in point]) ** half
elif isinstance(point, Point):
if isinstance(point, Point2D):
return (point.x ** 2 + point.y ** 2) ** half
else:
return (point.x ** 2 + point.y ** 2 + point.z) ** half
elif isinstance(point, dict):
return sum(i**2 for i in point.values()) ** half
def intersection(geom_1, geom_2, intersection_type):
"""Returns intersection between geometric objects.
Note that this function is meant for use in integration_reduction and
at that point in the calling function the lines denoted by the segments
surely intersect within segment boundaries. Coincident lines are taken
to be non-intersecting. Also, the hyperplane intersection for 2D case is
also implemented.
Parameters
==========
geom_1, geom_2: The input line segments
Examples
========
>>> from sympy.integrals.intpoly import intersection
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.line import Segment2D
>>> l1 = Segment2D(Point(1, 1), Point(3, 5))
>>> l2 = Segment2D(Point(2, 0), Point(2, 5))
>>> intersection(l1, l2, "segment2D")
(2, 3)
>>> p1 = ((-1, 0), 0)
>>> p2 = ((0, 1), 1)
>>> intersection(p1, p2, "plane2D")
(0, 1)
"""
if intersection_type[:-2] == "segment":
if intersection_type == "segment2D":
x1, y1 = geom_1.points[0]
x2, y2 = geom_1.points[1]
x3, y3 = geom_2.points[0]
x4, y4 = geom_2.points[1]
elif intersection_type == "segment3D":
x1, y1, z1 = geom_1.points[0]
x2, y2, z2 = geom_1.points[1]
x3, y3, z3 = geom_2.points[0]
x4, y4, z4 = geom_2.points[1]
denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if denom:
t1 = x1 * y2 - y1 * x2
t2 = x3 * y4 - x4 * y3
return (S(t1 * (x3 - x4) - t2 * (x1 - x2)) / denom,
S(t1 * (y3 - y4) - t2 * (y1 - y2)) / denom)
if intersection_type[:-2] == "plane":
if intersection_type == "plane2D": # Intersection of hyperplanes
a1x, a1y = geom_1[0]
a2x, a2y = geom_2[0]
b1, b2 = geom_1[1], geom_2[1]
denom = a1x * a2y - a2x * a1y
if denom:
return (S(b1 * a2y - b2 * a1y) / denom,
S(b2 * a1x - b1 * a2x) / denom)
def is_vertex(ent):
"""If the input entity is a vertex return True
Parameter
=========
ent : Denotes a geometric entity representing a point
Examples
========
>>> from sympy.geometry.point import Point
>>> from sympy.integrals.intpoly import is_vertex
>>> is_vertex((2, 3))
True
>>> is_vertex((2, 3, 6))
True
>>> is_vertex(Point(2, 3))
True
"""
if isinstance(ent, tuple):
if len(ent) in [2, 3]:
return True
elif isinstance(ent, Point):
return True
return False
def plot_polytope(poly):
"""Plots the 2D polytope using the functions written in plotting
module which in turn uses matplotlib backend.
Parameter
=========
poly: Denotes a 2-Polytope
"""
from sympy.plotting.plot import Plot, List2DSeries
xl = list(map(lambda vertex: vertex.x, poly.vertices))
yl = list(map(lambda vertex: vertex.y, poly.vertices))
xl.append(poly.vertices[0].x) # Closing the polygon
yl.append(poly.vertices[0].y)
l2ds = List2DSeries(xl, yl)
p = Plot(l2ds, axes='label_axes=True')
p.show()
def plot_polynomial(expr):
"""Plots the polynomial using the functions written in
plotting module which in turn uses matplotlib backend.
Parameter
=========
expr: Denotes a polynomial(SymPy expression)
"""
from sympy.plotting.plot import plot3d, plot
gens = expr.free_symbols
if len(gens) == 2:
plot3d(expr)
else:
plot(expr)
|
b5d66fb8eeb80b49441f4451c5b776af33c5cc3b2de93c630151b1732754e2ed | from sympy.concrete.expr_with_limits import AddWithLimits
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import diff
from sympy.core.logic import fuzzy_bool
from sympy.core.mul import Mul
from sympy.core.numbers import oo, pi
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild)
from sympy.core.sympify import sympify
from sympy.functions import Piecewise, sqrt, piecewise_fold, tan, cot, atan
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.complexes import Abs, sign
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.integrals.manualintegrate import manualintegrate
from sympy.integrals.trigonometry import trigintegrate
from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite
from sympy.matrices import MatrixBase
from sympy.polys import Poly, PolynomialError
from sympy.series import limit
from sympy.series.order import Order
from sympy.series.formal import FormalPowerSeries
from sympy.simplify.fu import sincos_to_sum
from sympy.utilities.misc import filldedent
from sympy.utilities.exceptions import SymPyDeprecationWarning
class Integral(AddWithLimits):
"""Represents unevaluated integral."""
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
"""Create an unevaluated integral.
Arguments are an integrand followed by one or more limits.
If no limits are given and there is only one free symbol in the
expression, that symbol will be used, otherwise an error will be
raised.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x)
Integral(x, x)
>>> Integral(y)
Integral(y, y)
When limits are provided, they are interpreted as follows (using
``x`` as though it were the variable of integration):
(x,) or x - indefinite integral
(x, a) - "evaluate at" integral is an abstract antiderivative
(x, a, b) - definite integral
The ``as_dummy`` method can be used to see which symbols cannot be
targeted by subs: those with a prepended underscore cannot be
changed with ``subs``. (Also, the integration variables themselves --
the first element of a limit -- can never be changed by subs.)
>>> i = Integral(x, x)
>>> at = Integral(x, (x, x))
>>> i.as_dummy()
Integral(x, x)
>>> at.as_dummy()
Integral(_0, (_0, x))
"""
#This will help other classes define their own definitions
#of behaviour with Integral.
if hasattr(function, '_eval_Integral'):
return function._eval_Integral(*symbols, **assumptions)
if isinstance(function, Poly):
SymPyDeprecationWarning(
feature="Using integrate/Integral with Poly",
issue=18613,
deprecated_since_version="1.6",
useinstead="the as_expr or integrate methods of Poly").warn()
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
return obj
def __getnewargs__(self):
return (self.function,) + tuple([tuple(xab) for xab in self.limits])
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the
integral is evaluated. This is useful if one is trying to
determine whether an integral depends on a certain
symbol or not.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x, (x, y, 1)).free_symbols
{y}
See Also
========
sympy.concrete.expr_with_limits.ExprWithLimits.function
sympy.concrete.expr_with_limits.ExprWithLimits.limits
sympy.concrete.expr_with_limits.ExprWithLimits.variables
"""
return AddWithLimits.free_symbols.fget(self)
def _eval_is_zero(self):
# This is a very naive and quick test, not intended to do the integral to
# answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi))
# is zero but this routine should return None for that case. But, like
# Mul, there are trivial situations for which the integral will be
# zero so we check for those.
if self.function.is_zero:
return True
got_none = False
for l in self.limits:
if len(l) == 3:
z = (l[1] == l[2]) or (l[1] - l[2]).is_zero
if z:
return True
elif z is None:
got_none = True
free = self.function.free_symbols
for xab in self.limits:
if len(xab) == 1:
free.add(xab[0])
continue
if len(xab) == 2 and xab[0] not in free:
if xab[1].is_zero:
return True
elif xab[1].is_zero is None:
got_none = True
# take integration symbol out of free since it will be replaced
# with the free symbols in the limits
free.discard(xab[0])
# add in the new symbols
for i in xab[1:]:
free.update(i.free_symbols)
if self.function.is_zero is False and got_none is False:
return False
def transform(self, x, u):
r"""
Performs a change of variables from `x` to `u` using the relationship
given by `x` and `u` which will define the transformations `f` and `F`
(which are inverses of each other) as follows:
1) If `x` is a Symbol (which is a variable of integration) then `u`
will be interpreted as some function, f(u), with inverse F(u).
This, in effect, just makes the substitution of x with f(x).
2) If `u` is a Symbol then `x` will be interpreted as some function,
F(x), with inverse f(u). This is commonly referred to as
u-substitution.
Once f and F have been identified, the transformation is made as
follows:
.. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x)
\frac{\mathrm{d}}{\mathrm{d}x}
where `F(x)` is the inverse of `f(x)` and the limits and integrand have
been corrected so as to retain the same value after integration.
Notes
=====
The mappings, F(x) or f(u), must lead to a unique integral. Linear
or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will
always work; quadratic expressions like `x**2 - 1` are acceptable
as long as the resulting integrand does not depend on the sign of
the solutions (see examples).
The integral will be returned unchanged if `x` is not a variable of
integration.
`x` must be (or contain) only one of of the integration variables. If
`u` has more than one free symbol then it should be sent as a tuple
(`u`, `uvar`) where `uvar` identifies which variable is replacing
the integration variable.
XXX can it contain another integration variable?
Examples
========
>>> from sympy.abc import a, x, u
>>> from sympy import Integral, cos, sqrt
>>> i = Integral(x*cos(x**2 - 1), (x, 0, 1))
transform can change the variable of integration
>>> i.transform(x, u)
Integral(u*cos(u**2 - 1), (u, 0, 1))
transform can perform u-substitution as long as a unique
integrand is obtained:
>>> i.transform(x**2 - 1, u)
Integral(cos(u)/2, (u, -1, 0))
This attempt fails because x = +/-sqrt(u + 1) and the
sign does not cancel out of the integrand:
>>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
Traceback (most recent call last):
...
ValueError:
The mapping between F(x) and f(u) did not give a unique integrand.
transform can do a substitution. Here, the previous
result is transformed back into the original expression
using "u-substitution":
>>> ui = _
>>> _.transform(sqrt(u + 1), x) == i
True
We can accomplish the same with a regular substitution:
>>> ui.transform(u, x**2 - 1) == i
True
If the `x` does not contain a symbol of integration then
the integral will be returned unchanged. Integral `i` does
not have an integration variable `a` so no change is made:
>>> i.transform(a, x) == i
True
When `u` has more than one free symbol the symbol that is
replacing `x` must be identified by passing `u` as a tuple:
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, u))
Integral(a + u, (u, -a, 1 - a))
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, a))
Integral(a + u, (a, -u, 1 - u))
See Also
========
sympy.concrete.expr_with_limits.ExprWithLimits.variables : Lists the integration variables
as_dummy : Replace integration variables with dummy ones
"""
from sympy.solvers.solvers import solve, posify
d = Dummy('d')
xfree = x.free_symbols.intersection(self.variables)
if len(xfree) > 1:
raise ValueError(
'F(x) can only contain one of: %s' % self.variables)
xvar = xfree.pop() if xfree else d
if xvar not in self.variables:
return self
u = sympify(u)
if isinstance(u, Expr):
ufree = u.free_symbols
if len(ufree) == 0:
raise ValueError(filldedent('''
f(u) cannot be a constant'''))
if len(ufree) > 1:
raise ValueError(filldedent('''
When f(u) has more than one free symbol, the one replacing x
must be identified: pass f(u) as (f(u), u)'''))
uvar = ufree.pop()
else:
u, uvar = u
if uvar not in u.free_symbols:
raise ValueError(filldedent('''
Expecting a tuple (expr, symbol) where symbol identified
a free symbol in expr, but symbol is not in expr's free
symbols.'''))
if not isinstance(uvar, Symbol):
# This probably never evaluates to True
raise ValueError(filldedent('''
Expecting a tuple (expr, symbol) but didn't get
a symbol; got %s''' % uvar))
if x.is_Symbol and u.is_Symbol:
return self.xreplace({x: u})
if not x.is_Symbol and not u.is_Symbol:
raise ValueError('either x or u must be a symbol')
if uvar == xvar:
return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar})
if uvar in self.limits:
raise ValueError(filldedent('''
u must contain the same variable as in x
or a variable that is not already an integration variable'''))
if not x.is_Symbol:
F = [x.subs(xvar, d)]
soln = solve(u - x, xvar, check=False)
if not soln:
raise ValueError('no solution for solve(F(x) - f(u), x)')
f = [fi.subs(uvar, d) for fi in soln]
else:
f = [u.subs(uvar, d)]
pdiff, reps = posify(u - x)
puvar = uvar.subs([(v, k) for k, v in reps.items()])
soln = [s.subs(reps) for s in solve(pdiff, puvar)]
if not soln:
raise ValueError('no solution for solve(F(x) - f(u), u)')
F = [fi.subs(xvar, d) for fi in soln]
newfuncs = {(self.function.subs(xvar, fi)*fi.diff(d)
).subs(d, uvar) for fi in f}
if len(newfuncs) > 1:
raise ValueError(filldedent('''
The mapping between F(x) and f(u) did not give
a unique integrand.'''))
newfunc = newfuncs.pop()
def _calc_limit_1(F, a, b):
"""
replace d with a, using subs if possible, otherwise limit
where sign of b is considered
"""
wok = F.subs(d, a)
if wok is S.NaN or wok.is_finite is False and a.is_finite:
return limit(sign(b)*F, d, a)
return wok
def _calc_limit(a, b):
"""
replace d with a, using subs if possible, otherwise limit
where sign of b is considered
"""
avals = list({_calc_limit_1(Fi, a, b) for Fi in F})
if len(avals) > 1:
raise ValueError(filldedent('''
The mapping between F(x) and f(u) did not
give a unique limit.'''))
return avals[0]
newlimits = []
for xab in self.limits:
sym = xab[0]
if sym == xvar:
if len(xab) == 3:
a, b = xab[1:]
a, b = _calc_limit(a, b), _calc_limit(b, a)
if fuzzy_bool(a - b > 0):
a, b = b, a
newfunc = -newfunc
newlimits.append((uvar, a, b))
elif len(xab) == 2:
a = _calc_limit(xab[1], 1)
newlimits.append((uvar, a))
else:
newlimits.append(uvar)
else:
newlimits.append(xab)
return self.func(newfunc, *newlimits)
def doit(self, **hints):
"""
Perform the integration using any hints given.
Examples
========
>>> from sympy import Piecewise, S
>>> from sympy.abc import x, t
>>> p = x**2 + Piecewise((0, x/t < 0), (1, True))
>>> p.integrate((t, S(4)/5, 1), (x, -1, 1))
1/3
See Also
========
sympy.integrals.trigonometry.trigintegrate
sympy.integrals.heurisch.heurisch
sympy.integrals.rationaltools.ratint
as_sum : Approximate the integral using a sum
"""
from sympy.concrete.summations import Sum
if not hints.get('integrals', True):
return self
deep = hints.get('deep', True)
meijerg = hints.get('meijerg', None)
conds = hints.get('conds', 'piecewise')
risch = hints.get('risch', None)
heurisch = hints.get('heurisch', None)
manual = hints.get('manual', None)
if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1:
raise ValueError("At most one of manual, meijerg, risch, heurisch can be True")
elif manual:
meijerg = risch = heurisch = False
elif meijerg:
manual = risch = heurisch = False
elif risch:
manual = meijerg = heurisch = False
elif heurisch:
manual = meijerg = risch = False
eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch,
conds=conds)
if conds not in ['separate', 'piecewise', 'none']:
raise ValueError('conds must be one of "separate", "piecewise", '
'"none", got: %s' % conds)
if risch and any(len(xab) > 1 for xab in self.limits):
raise ValueError('risch=True is only allowed for indefinite integrals.')
# check for the trivial zero
if self.is_zero:
return S.Zero
# hacks to handle integrals of
# nested summations
if isinstance(self.function, Sum):
if any(v in self.function.limits[0] for v in self.variables):
raise ValueError('Limit of the sum cannot be an integration variable.')
if any(l.is_infinite for l in self.function.limits[0][1:]):
return self
_i = self
_sum = self.function
return _sum.func(_i.func(_sum.function, *_i.limits).doit(), *_sum.limits).doit()
# now compute and check the function
function = self.function
if deep:
function = function.doit(**hints)
if function.is_zero:
return S.Zero
# hacks to handle special cases
if isinstance(function, MatrixBase):
return function.applyfunc(
lambda f: self.func(f, self.limits).doit(**hints))
if isinstance(function, FormalPowerSeries):
if len(self.limits) > 1:
raise NotImplementedError
xab = self.limits[0]
if len(xab) > 1:
return function.integrate(xab, **eval_kwargs)
else:
return function.integrate(xab[0], **eval_kwargs)
# There is no trivial answer and special handling
# is done so continue
# first make sure any definite limits have integration
# variables with matching assumptions
reps = {}
for xab in self.limits:
if len(xab) != 3:
continue
x, a, b = xab
l = (a, b)
if all(i.is_nonnegative for i in l) and not x.is_nonnegative:
d = Dummy(positive=True)
elif all(i.is_nonpositive for i in l) and not x.is_nonpositive:
d = Dummy(negative=True)
elif all(i.is_real for i in l) and not x.is_real:
d = Dummy(real=True)
else:
d = None
if d:
reps[x] = d
if reps:
undo = {v: k for k, v in reps.items()}
did = self.xreplace(reps).doit(**hints)
if type(did) is tuple: # when separate=True
did = tuple([i.xreplace(undo) for i in did])
else:
did = did.xreplace(undo)
return did
# continue with existing assumptions
undone_limits = []
# ulj = free symbols of any undone limits' upper and lower limits
ulj = set()
for xab in self.limits:
# compute uli, the free symbols in the
# Upper and Lower limits of limit I
if len(xab) == 1:
uli = set(xab[:1])
elif len(xab) == 2:
uli = xab[1].free_symbols
elif len(xab) == 3:
uli = xab[1].free_symbols.union(xab[2].free_symbols)
# this integral can be done as long as there is no blocking
# limit that has been undone. An undone limit is blocking if
# it contains an integration variable that is in this limit's
# upper or lower free symbols or vice versa
if xab[0] in ulj or any(v[0] in uli for v in undone_limits):
undone_limits.append(xab)
ulj.update(uli)
function = self.func(*([function] + [xab]))
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
continue
if function.has(Abs, sign) and (
(len(xab) < 3 and all(x.is_extended_real for x in xab)) or
(len(xab) == 3 and all(x.is_extended_real and not x.is_infinite for
x in xab[1:]))):
# some improper integrals are better off with Abs
xr = Dummy("xr", real=True)
function = (function.xreplace({xab[0]: xr})
.rewrite(Piecewise).xreplace({xr: xab[0]}))
elif function.has(Min, Max):
function = function.rewrite(Piecewise)
if (function.has(Piecewise) and
not isinstance(function, Piecewise)):
function = piecewise_fold(function)
if isinstance(function, Piecewise):
if len(xab) == 1:
antideriv = function._eval_integral(xab[0],
**eval_kwargs)
else:
antideriv = self._eval_integral(
function, xab[0], **eval_kwargs)
else:
# There are a number of tradeoffs in using the
# Meijer G method. It can sometimes be a lot faster
# than other methods, and sometimes slower. And
# there are certain types of integrals for which it
# is more likely to work than others. These
# heuristics are incorporated in deciding what
# integration methods to try, in what order. See the
# integrate() docstring for details.
def try_meijerg(function, xab):
ret = None
if len(xab) == 3 and meijerg is not False:
x, a, b = xab
try:
res = meijerint_definite(function, x, a, b)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError '
'from meijerint_definite')
res = None
if res is not None:
f, cond = res
if conds == 'piecewise':
ret = Piecewise(
(f, cond),
(self.func(
function, (x, a, b)), True))
elif conds == 'separate':
if len(self.limits) != 1:
raise ValueError(filldedent('''
conds=separate not supported in
multiple integrals'''))
ret = f, cond
else:
ret = f
return ret
meijerg1 = meijerg
if (meijerg is not False and
len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real
and not function.is_Poly and
(xab[1].has(oo, -oo) or xab[2].has(oo, -oo))):
ret = try_meijerg(function, xab)
if ret is not None:
function = ret
continue
meijerg1 = False
# If the special meijerg code did not succeed in
# finding a definite integral, then the code using
# meijerint_indefinite will not either (it might
# find an antiderivative, but the answer is likely
# to be nonsensical). Thus if we are requested to
# only use Meijer G-function methods, we give up at
# this stage. Otherwise we just disable G-function
# methods.
if meijerg1 is False and meijerg is True:
antideriv = None
else:
antideriv = self._eval_integral(
function, xab[0], **eval_kwargs)
if antideriv is None and meijerg is True:
ret = try_meijerg(function, xab)
if ret is not None:
function = ret
continue
if not isinstance(antideriv, Integral) and antideriv is not None:
for atan_term in antideriv.atoms(atan):
atan_arg = atan_term.args[0]
# Checking `atan_arg` to be linear combination of `tan` or `cot`
for tan_part in atan_arg.atoms(tan):
x1 = Dummy('x1')
tan_exp1 = atan_arg.subs(tan_part, x1)
# The coefficient of `tan` should be constant
coeff = tan_exp1.diff(x1)
if x1 not in coeff.free_symbols:
a = tan_part.args[0]
antideriv = antideriv.subs(atan_term, Add(atan_term,
sign(coeff)*pi*floor((a-pi/2)/pi)))
for cot_part in atan_arg.atoms(cot):
x1 = Dummy('x1')
cot_exp1 = atan_arg.subs(cot_part, x1)
# The coefficient of `cot` should be constant
coeff = cot_exp1.diff(x1)
if x1 not in coeff.free_symbols:
a = cot_part.args[0]
antideriv = antideriv.subs(atan_term, Add(atan_term,
sign(coeff)*pi*floor((a)/pi)))
if antideriv is None:
undone_limits.append(xab)
function = self.func(*([function] + [xab])).factor()
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
continue
else:
if len(xab) == 1:
function = antideriv
else:
if len(xab) == 3:
x, a, b = xab
elif len(xab) == 2:
x, b = xab
a = None
else:
raise NotImplementedError
if deep:
if isinstance(a, Basic):
a = a.doit(**hints)
if isinstance(b, Basic):
b = b.doit(**hints)
if antideriv.is_Poly:
gens = list(antideriv.gens)
gens.remove(x)
antideriv = antideriv.as_expr()
function = antideriv._eval_interval(x, a, b)
function = Poly(function, *gens)
else:
def is_indef_int(g, x):
return (isinstance(g, Integral) and
any(i == (x,) for i in g.limits))
def eval_factored(f, x, a, b):
# _eval_interval for integrals with
# (constant) factors
# a single indefinite integral is assumed
args = []
for g in Mul.make_args(f):
if is_indef_int(g, x):
args.append(g._eval_interval(x, a, b))
else:
args.append(g)
return Mul(*args)
integrals, others, piecewises = [], [], []
for f in Add.make_args(antideriv):
if any(is_indef_int(g, x)
for g in Mul.make_args(f)):
integrals.append(f)
elif any(isinstance(g, Piecewise)
for g in Mul.make_args(f)):
piecewises.append(piecewise_fold(f))
else:
others.append(f)
uneval = Add(*[eval_factored(f, x, a, b)
for f in integrals])
try:
evalued = Add(*others)._eval_interval(x, a, b)
evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b)
function = uneval + evalued + evalued_pw
except NotImplementedError:
# This can happen if _eval_interval depends in a
# complicated way on limits that cannot be computed
undone_limits.append(xab)
function = self.func(*([function] + [xab]))
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
return function
def _eval_derivative(self, sym):
"""Evaluate the derivative of the current Integral object by
differentiating under the integral sign [1], using the Fundamental
Theorem of Calculus [2] when possible.
Whenever an Integral is encountered that is equivalent to zero or
has an integrand that is independent of the variable of integration
those integrals are performed. All others are returned as Integral
instances which can be resolved with doit() (provided they are integrable).
References:
[1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
[2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> i = Integral(x + y, y, (y, 1, x))
>>> i.diff(x)
Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x))
>>> i.doit().diff(x) == i.diff(x).doit()
True
>>> i.diff(y)
0
The previous must be true since there is no y in the evaluated integral:
>>> i.free_symbols
{x}
>>> i.doit()
2*x**3/3 - x/2 - 1/6
"""
# differentiate under the integral sign; we do not
# check for regularity conditions (TODO), see issue 4215
# get limits and the function
f, limits = self.function, list(self.limits)
# the order matters if variables of integration appear in the limits
# so work our way in from the outside to the inside.
limit = limits.pop(-1)
if len(limit) == 3:
x, a, b = limit
elif len(limit) == 2:
x, b = limit
a = None
else:
a = b = None
x = limit[0]
if limits: # f is the argument to an integral
f = self.func(f, *tuple(limits))
# assemble the pieces
def _do(f, ab):
dab_dsym = diff(ab, sym)
if not dab_dsym:
return S.Zero
if isinstance(f, Integral):
limits = [(x, x) if (len(l) == 1 and l[0] == x) else l
for l in f.limits]
f = self.func(f.function, *limits)
return f.subs(x, ab)*dab_dsym
rv = S.Zero
if b is not None:
rv += _do(f, b)
if a is not None:
rv -= _do(f, a)
if len(limit) == 1 and sym == x:
# the dummy variable *is* also the real-world variable
arg = f
rv += arg
else:
# the dummy variable might match sym but it's
# only a dummy and the actual variable is determined
# by the limits, so mask off the variable of integration
# while differentiating
u = Dummy('u')
arg = f.subs(x, u).diff(sym).subs(u, x)
if arg:
rv += self.func(arg, Tuple(x, a, b))
return rv
def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None,
heurisch=None, conds='piecewise'):
"""
Calculate the anti-derivative to the function f(x).
The following algorithms are applied (roughly in this order):
1. Simple heuristics (based on pattern matching and integral table):
- most frequently used functions (e.g. polynomials, products of
trig functions)
2. Integration of rational functions:
- A complete algorithm for integrating rational functions is
implemented (the Lazard-Rioboo-Trager algorithm). The algorithm
also uses the partial fraction decomposition algorithm
implemented in apart() as a preprocessor to make this process
faster. Note that the integral of a rational function is always
elementary, but in general, it may include a RootSum.
3. Full Risch algorithm:
- The Risch algorithm is a complete decision
procedure for integrating elementary functions, which means that
given any elementary function, it will either compute an
elementary antiderivative, or else prove that none exists.
Currently, part of transcendental case is implemented, meaning
elementary integrals containing exponentials, logarithms, and
(soon!) trigonometric functions can be computed. The algebraic
case, e.g., functions containing roots, is much more difficult
and is not implemented yet.
- If the routine fails (because the integrand is not elementary, or
because a case is not implemented yet), it continues on to the
next algorithms below. If the routine proves that the integrals
is nonelementary, it still moves on to the algorithms below,
because we might be able to find a closed-form solution in terms
of special functions. If risch=True, however, it will stop here.
4. The Meijer G-Function algorithm:
- This algorithm works by first rewriting the integrand in terms of
very general Meijer G-Function (meijerg in SymPy), integrating
it, and then rewriting the result back, if possible. This
algorithm is particularly powerful for definite integrals (which
is actually part of a different method of Integral), since it can
compute closed-form solutions of definite integrals even when no
closed-form indefinite integral exists. But it also is capable
of computing many indefinite integrals as well.
- Another advantage of this method is that it can use some results
about the Meijer G-Function to give a result in terms of a
Piecewise expression, which allows to express conditionally
convergent integrals.
- Setting meijerg=True will cause integrate() to use only this
method.
5. The "manual integration" algorithm:
- This algorithm tries to mimic how a person would find an
antiderivative by hand, for example by looking for a
substitution or applying integration by parts. This algorithm
does not handle as many integrands but can return results in a
more familiar form.
- Sometimes this algorithm can evaluate parts of an integral; in
this case integrate() will try to evaluate the rest of the
integrand using the other methods here.
- Setting manual=True will cause integrate() to use only this
method.
6. The Heuristic Risch algorithm:
- This is a heuristic version of the Risch algorithm, meaning that
it is not deterministic. This is tried as a last resort because
it can be very slow. It is still used because not enough of the
full Risch algorithm is implemented, so that there are still some
integrals that can only be computed using this method. The goal
is to implement enough of the Risch and Meijer G-function methods
so that this can be deleted.
Setting heurisch=True will cause integrate() to use only this
method. Set heurisch=False to not use it.
"""
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.integrals.singularityfunctions import singularityintegrate
from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper
from sympy.integrals.rationaltools import ratint
from sympy.integrals.risch import risch_integrate
if risch:
try:
return risch_integrate(f, x, conds=conds)
except NotImplementedError:
return None
if manual:
try:
result = manualintegrate(f, x)
if result is not None and result.func != Integral:
return result
except (ValueError, PolynomialError):
pass
eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual,
heurisch=heurisch, conds=conds)
# if it is a poly(x) then let the polynomial integrate itself (fast)
#
# It is important to make this check first, otherwise the other code
# will return a sympy expression instead of a Polynomial.
#
# see Polynomial for details.
if isinstance(f, Poly) and not (manual or meijerg or risch):
SymPyDeprecationWarning(
feature="Using integrate/Integral with Poly",
issue=18613,
deprecated_since_version="1.6",
useinstead="the as_expr or integrate methods of Poly").warn()
return f.integrate(x)
# Piecewise antiderivatives need to call special integrate.
if isinstance(f, Piecewise):
return f.piecewise_integrate(x, **eval_kwargs)
# let's cut it short if `f` does not depend on `x`; if
# x is only a dummy, that will be handled below
if not f.has(x):
return f*x
# try to convert to poly(x) and then integrate if successful (fast)
poly = f.as_poly(x)
if poly is not None and not (manual or meijerg or risch):
return poly.integrate().as_expr()
if risch is not False:
try:
result, i = risch_integrate(f, x, separate_integral=True,
conds=conds)
except NotImplementedError:
pass
else:
if i:
# There was a nonelementary integral. Try integrating it.
# if no part of the NonElementaryIntegral is integrated by
# the Risch algorithm, then use the original function to
# integrate, instead of re-written one
if result == 0:
from sympy.integrals.risch import NonElementaryIntegral
return NonElementaryIntegral(f, x).doit(risch=False)
else:
return result + i.doit(risch=False)
else:
return result
# since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
# we are going to handle Add terms separately,
# if `f` is not Add -- we only have one term
# Note that in general, this is a bad idea, because Integral(g1) +
# Integral(g2) might not be computable, even if Integral(g1 + g2) is.
# For example, Integral(x**x + x**x*log(x)). But many heuristics only
# work term-wise. So we compute this step last, after trying
# risch_integrate. We also try risch_integrate again in this loop,
# because maybe the integral is a sum of an elementary part and a
# nonelementary part (like erf(x) + exp(x)). risch_integrate() is
# quite fast, so this is acceptable.
parts = []
args = Add.make_args(f)
for g in args:
coeff, g = g.as_independent(x)
# g(x) = const
if g is S.One and not meijerg:
parts.append(coeff*x)
continue
# g(x) = expr + O(x**n)
order_term = g.getO()
if order_term is not None:
h = self._eval_integral(g.removeO(), x, **eval_kwargs)
if h is not None:
h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs)
if h_order_expr is not None:
h_order_term = order_term.func(
h_order_expr, *order_term.variables)
parts.append(coeff*(h + h_order_term))
continue
# NOTE: if there is O(x**n) and we fail to integrate then
# there is no point in trying other methods because they
# will fail, too.
return None
# c
# g(x) = (a*x+b)
if g.is_Pow and not g.exp.has(x) and not meijerg:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
M = g.base.match(a*x + b)
if M is not None:
if g.exp == -1:
h = log(g.base)
elif conds != 'piecewise':
h = g.base**(g.exp + 1) / (g.exp + 1)
else:
h1 = log(g.base)
h2 = g.base**(g.exp + 1) / (g.exp + 1)
h = Piecewise((h2, Ne(g.exp, -1)), (h1, True))
parts.append(coeff * h / M[a])
continue
# poly(x)
# g(x) = -------
# poly(x)
if g.is_rational_function(x) and not (manual or meijerg or risch):
parts.append(coeff * ratint(g, x))
continue
if not (manual or meijerg or risch):
# g(x) = Mul(trig)
h = trigintegrate(g, x, conds=conds)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a DiracDelta term
h = deltaintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a Singularity Function term
h = singularityintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# Try risch again.
if risch is not False:
try:
h, i = risch_integrate(g, x,
separate_integral=True, conds=conds)
except NotImplementedError:
h = None
else:
if i:
h = h + i.doit(risch=False)
parts.append(coeff*h)
continue
# fall back to heurisch
if heurisch is not False:
try:
if conds == 'piecewise':
h = heurisch_wrapper(g, x, hints=[])
else:
h = heurisch_(g, x, hints=[])
except PolynomialError:
# XXX: this exception means there is a bug in the
# implementation of heuristic Risch integration
# algorithm.
h = None
else:
h = None
if meijerg is not False and h is None:
# rewrite using G functions
try:
h = meijerint_indefinite(g, x)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError from meijerint_definite')
if h is not None:
parts.append(coeff * h)
continue
if h is None and manual is not False:
try:
result = manualintegrate(g, x)
if result is not None and not isinstance(result, Integral):
if result.has(Integral) and not manual:
# Try to have other algorithms do the integrals
# manualintegrate can't handle,
# unless we were asked to use manual only.
# Keep the rest of eval_kwargs in case another
# method was set to False already
new_eval_kwargs = eval_kwargs
new_eval_kwargs["manual"] = False
result = result.func(*[
arg.doit(**new_eval_kwargs) if
arg.has(Integral) else arg
for arg in result.args
]).expand(multinomial=False,
log=False,
power_exp=False,
power_base=False)
if not result.has(Integral):
parts.append(coeff * result)
continue
except (ValueError, PolynomialError):
# can't handle some SymPy expressions
pass
# if we failed maybe it was because we had
# a product that could have been expanded,
# so let's try an expansion of the whole
# thing before giving up; we don't try this
# at the outset because there are things
# that cannot be solved unless they are
# NOT expanded e.g., x**x*(1+log(x)). There
# should probably be a checker somewhere in this
# routine to look for such cases and try to do
# collection on the expressions if they are already
# in an expanded form
if not h and len(args) == 1:
f = sincos_to_sum(f).expand(mul=True, deep=False)
if f.is_Add:
# Note: risch will be identical on the expanded
# expression, but maybe it will be able to pick out parts,
# like x*(exp(x) + erf(x)).
return self._eval_integral(f, x, **eval_kwargs)
if h is not None:
parts.append(coeff * h)
else:
return None
return Add(*parts)
def _eval_lseries(self, x, logx, cdir=0):
expr = self.as_dummy()
symb = x
for l in expr.limits:
if x in l[1:]:
symb = l[0]
break
for term in expr.function.lseries(symb, logx):
yield integrate(term, *expr.limits)
def _eval_nseries(self, x, n, logx, cdir=0):
expr = self.as_dummy()
symb = x
for l in expr.limits:
if x in l[1:]:
symb = l[0]
break
terms, order = expr.function.nseries(
x=symb, n=n, logx=logx).as_coeff_add(Order)
order = [o.subs(symb, x) for o in order]
return integrate(terms, *expr.limits) + Add(*order)*x
def _eval_as_leading_term(self, x, cdir=0):
series_gen = self.args[0].lseries(x)
for leading_term in series_gen:
if leading_term != 0:
break
return integrate(leading_term, *self.args[1:])
def _eval_simplify(self, **kwargs):
from sympy.core.exprtools import factor_terms
from sympy.simplify.simplify import simplify
expr = factor_terms(self)
if isinstance(expr, Integral):
return expr.func(*[simplify(i, **kwargs) for i in expr.args])
return expr.simplify(**kwargs)
def as_sum(self, n=None, method="midpoint", evaluate=True):
"""
Approximates a definite integral by a sum.
Arguments
---------
n
The number of subintervals to use, optional.
method
One of: 'left', 'right', 'midpoint', 'trapezoid'.
evaluate
If False, returns an unevaluated Sum expression. The default
is True, evaluate the sum.
These methods of approximate integration are described in [1].
[1] https://en.wikipedia.org/wiki/Riemann_sum#Methods
Examples
========
>>> from sympy import sin, sqrt
>>> from sympy.abc import x, n
>>> from sympy.integrals import Integral
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
For demonstration purposes, this interval will only be split into 2
regions, bounded by [3, 5] and [5, 7].
The left-hand rule uses function evaluations at the left of each
interval:
>>> e.as_sum(2, 'left')
2*sin(5) + 2*sin(3)
The midpoint rule uses evaluations at the center of each interval:
>>> e.as_sum(2, 'midpoint')
2*sin(4) + 2*sin(6)
The right-hand rule uses function evaluations at the right of each
interval:
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
The trapezoid rule uses function evaluations on both sides of the
intervals. This is equivalent to taking the average of the left and
right hand rule results:
>>> e.as_sum(2, 'trapezoid')
2*sin(5) + sin(3) + sin(7)
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _
True
Here, the discontinuity at x = 0 can be avoided by using the
midpoint or right-hand method:
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5).n(4)
1.730
>>> e.as_sum(10).n(4)
1.809
>>> e.doit().n(4) # the actual value is 2
2.000
The left- or trapezoid method will encounter the discontinuity and
return infinity:
>>> e.as_sum(5, 'left')
zoo
The number of intervals can be symbolic. If omitted, a dummy symbol
will be used for it.
>>> e = Integral(x**2, (x, 0, 2))
>>> e.as_sum(n, 'right').expand()
8/3 + 4/n + 4/(3*n**2)
This shows that the midpoint rule is more accurate, as its error
term decays as the square of n:
>>> e.as_sum(method='midpoint').expand()
8/3 - 2/(3*_n**2)
A symbolic sum is returned with evaluate=False:
>>> e.as_sum(n, 'midpoint', evaluate=False)
2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n
See Also
========
Integral.doit : Perform the integration using any hints
"""
from sympy.concrete.summations import Sum
limits = self.limits
if len(limits) > 1:
raise NotImplementedError(
"Multidimensional midpoint rule not implemented yet")
else:
limit = limits[0]
if (len(limit) != 3 or limit[1].is_finite is False or
limit[2].is_finite is False):
raise ValueError("Expecting a definite integral over "
"a finite interval.")
if n is None:
n = Dummy('n', integer=True, positive=True)
else:
n = sympify(n)
if (n.is_positive is False or n.is_integer is False or
n.is_finite is False):
raise ValueError("n must be a positive integer, got %s" % n)
x, a, b = limit
dx = (b - a)/n
k = Dummy('k', integer=True, positive=True)
f = self.function
if method == "left":
result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n))
elif method == "right":
result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n))
elif method == "midpoint":
result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n))
elif method == "trapezoid":
result = dx*((f.subs(x, a) + f.subs(x, b))/2 +
Sum(f.subs(x, a + k*dx), (k, 1, n - 1)))
else:
raise ValueError("Unknown method %s" % method)
return result.doit() if evaluate else result
def _sage_(self):
import sage.all as sage
f, limits = self.function._sage_(), list(self.limits)
for limit_ in limits:
if len(limit_) == 1:
x = limit_[0]
f = sage.integral(f,
x._sage_(),
hold=True)
elif len(limit_) == 2:
x, b = limit_
f = sage.integral(f,
x._sage_(),
b._sage_(),
hold=True)
else:
x, a, b = limit_
f = sage.integral(f,
(x._sage_(),
a._sage_(),
b._sage_()),
hold=True)
return f
def principal_value(self, **kwargs):
"""
Compute the Cauchy Principal Value of the definite integral of a real function in the given interval
on the real axis.
In mathematics, the Cauchy principal value, is a method for assigning values to certain improper
integrals which would otherwise be undefined.
Examples
========
>>> from sympy import oo
>>> from sympy.integrals.integrals import Integral
>>> from sympy.abc import x
>>> Integral(x+1, (x, -oo, oo)).principal_value()
oo
>>> f = 1 / (x**3)
>>> Integral(f, (x, -oo, oo)).principal_value()
0
>>> Integral(f, (x, -10, 10)).principal_value()
0
>>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value()
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value
.. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html
"""
from sympy.calculus import singularities
if len(self.limits) != 1 or len(list(self.limits[0])) != 3:
raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate "
"cauchy's principal value")
x, a, b = self.limits[0]
if not (a.is_comparable and b.is_comparable and a <= b):
raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate "
"cauchy's principal value. Also, a and b need to be comparable.")
if a == b:
return 0
r = Dummy('r')
f = self.function
singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b]
for i in singularities_list:
if (i == b) or (i == a):
raise ValueError(
'The principal value is not defined in the given interval due to singularity at %d.' % (i))
F = integrate(f, x, **kwargs)
if F.has(Integral):
return self
if a is -oo and b is oo:
I = limit(F - F.subs(x, -x), x, oo)
else:
I = limit(F, x, b, '-') - limit(F, x, a, '+')
for s in singularities_list:
I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+')
return I
def integrate(*args, meijerg=None, conds='piecewise', risch=None, heurisch=None, manual=None, **kwargs):
"""integrate(f, var, ...)
Compute definite or indefinite integral of one or more variables
using Risch-Norman algorithm and table lookup. This procedure is
able to handle elementary algebraic and transcendental functions
and also a huge class of special functions, including Airy,
Bessel, Whittaker and Lambert.
var can be:
- a symbol -- indefinite integration
- a tuple (symbol, a) -- indefinite integration with result
given with `a` replacing `symbol`
- a tuple (symbol, a, b) -- definite integration
Several variables can be specified, in which case the result is
multiple integration. (If var is omitted and the integrand is
univariate, the indefinite integral in that variable will be performed.)
Indefinite integrals are returned without terms that are independent
of the integration variables. (see examples)
Definite improper integrals often entail delicate convergence
conditions. Pass conds='piecewise', 'separate' or 'none' to have
these returned, respectively, as a Piecewise function, as a separate
result (i.e. result will be a tuple), or not at all (default is
'piecewise').
**Strategy**
SymPy uses various approaches to definite integration. One method is to
find an antiderivative for the integrand, and then use the fundamental
theorem of calculus. Various functions are implemented to integrate
polynomial, rational and trigonometric functions, and integrands
containing DiracDelta terms.
SymPy also implements the part of the Risch algorithm, which is a decision
procedure for integrating elementary functions, i.e., the algorithm can
either find an elementary antiderivative, or prove that one does not
exist. There is also a (very successful, albeit somewhat slow) general
implementation of the heuristic Risch algorithm. This algorithm will
eventually be phased out as more of the full Risch algorithm is
implemented. See the docstring of Integral._eval_integral() for more
details on computing the antiderivative using algebraic methods.
The option risch=True can be used to use only the (full) Risch algorithm.
This is useful if you want to know if an elementary function has an
elementary antiderivative. If the indefinite Integral returned by this
function is an instance of NonElementaryIntegral, that means that the
Risch algorithm has proven that integral to be non-elementary. Note that
by default, additional methods (such as the Meijer G method outlined
below) are tried on these integrals, as they may be expressible in terms
of special functions, so if you only care about elementary answers, use
risch=True. Also note that an unevaluated Integral returned by this
function is not necessarily a NonElementaryIntegral, even with risch=True,
as it may just be an indication that the particular part of the Risch
algorithm needed to integrate that function is not yet implemented.
Another family of strategies comes from re-writing the integrand in
terms of so-called Meijer G-functions. Indefinite integrals of a
single G-function can always be computed, and the definite integral
of a product of two G-functions can be computed from zero to
infinity. Various strategies are implemented to rewrite integrands
as G-functions, and use this information to compute integrals (see
the ``meijerint`` module).
The option manual=True can be used to use only an algorithm that tries
to mimic integration by hand. This algorithm does not handle as many
integrands as the other algorithms implemented but may return results in
a more familiar form. The ``manualintegrate`` module has functions that
return the steps used (see the module docstring for more information).
In general, the algebraic methods work best for computing
antiderivatives of (possibly complicated) combinations of elementary
functions. The G-function methods work best for computing definite
integrals from zero to infinity of moderately complicated
combinations of special functions, or indefinite integrals of very
simple combinations of special functions.
The strategy employed by the integration code is as follows:
- If computing a definite integral, and both limits are real,
and at least one limit is +- oo, try the G-function method of
definite integration first.
- Try to find an antiderivative, using all available methods, ordered
by performance (that is try fastest method first, slowest last; in
particular polynomial integration is tried first, Meijer
G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the
limits.
The option meijerg=True, False, None can be used to, respectively:
always use G-function methods and no others, never use G-function
methods, or use all available methods (in order as described above).
It defaults to None.
Examples
========
>>> from sympy import integrate, log, exp, oo
>>> from sympy.abc import a, x, y
>>> integrate(x*y, x)
x**2*y/2
>>> integrate(log(x), x)
x*log(x) - x
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
>>> integrate(x)
x**2/2
Terms that are independent of x are dropped by indefinite integration:
>>> from sympy import sqrt
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3
>>> integrate(sqrt(1 + x), x)
2*(x + 1)**(3/2)/3
>>> integrate(x*y)
Traceback (most recent call last):
...
ValueError: specify integration variables to integrate x*y
Note that ``integrate(x)`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), re(a) > -1),
(Integral(x**a*exp(-x), (x, 0, oo)), True))
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), -re(a) < 1)
See Also
========
Integral, Integral.doit
"""
doit_flags = {
'deep': False,
'meijerg': meijerg,
'conds': conds,
'risch': risch,
'heurisch': heurisch,
'manual': manual
}
integral = Integral(*args, **kwargs)
if isinstance(integral, Integral):
return integral.doit(**doit_flags)
else:
new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a
for a in integral.args]
return integral.func(*new_args)
def line_integrate(field, curve, vars):
"""line_integrate(field, Curve, variables)
Compute the line integral.
Examples
========
>>> from sympy import Curve, line_integrate, E, ln
>>> from sympy.abc import x, y, t
>>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
>>> line_integrate(x + y, C, [x, y])
3*sqrt(2)
See Also
========
sympy.integrals.integrals.integrate, Integral
"""
from sympy.geometry import Curve
F = sympify(field)
if not F:
raise ValueError(
"Expecting function specifying field as first argument.")
if not isinstance(curve, Curve):
raise ValueError("Expecting Curve entity as second argument.")
if not is_sequence(vars):
raise ValueError("Expecting ordered iterable for variables.")
if len(curve.functions) != len(vars):
raise ValueError("Field variable size does not match curve dimension.")
if curve.parameter in vars:
raise ValueError("Curve parameter clashes with field parameters.")
# Calculate derivatives for line parameter functions
# F(r) -> F(r(t)) and finally F(r(t)*r'(t))
Ft = F
dldt = 0
for i, var in enumerate(vars):
_f = curve.functions[i]
_dn = diff(_f, curve.parameter)
# ...arc length
dldt = dldt + (_dn * _dn)
Ft = Ft.subs(var, _f)
Ft = Ft * sqrt(dldt)
integral = Integral(Ft, curve.limits).doit(deep=False)
return integral
|
74828787fb44b50f5830815a6b4760bcff6f1f9b074836c579506dd63d2e72ce | """
The Risch Algorithm for transcendental function integration.
The core algorithms for the Risch algorithm are here. The subproblem
algorithms are in the rde.py and prde.py files for the Risch
Differential Equation solver and the parametric problems solvers,
respectively. All important information concerning the differential extension
for an integrand is stored in a DifferentialExtension object, which in the code
is usually called DE. Throughout the code and Inside the DifferentialExtension
object, the conventions/attribute names are that the base domain is QQ and each
differential extension is x, t0, t1, ..., tn-1 = DE.t. DE.x is the variable of
integration (Dx == 1), DE.D is a list of the derivatives of
x, t1, t2, ..., tn-1 = t, DE.T is the list [x, t1, t2, ..., tn-1], DE.t is the
outer-most variable of the differential extension at the given level (the level
can be adjusted using DE.increment_level() and DE.decrement_level()),
k is the field C(x, t0, ..., tn-2), where C is the constant field. The
numerator of a fraction is denoted by a and the denominator by
d. If the fraction is named f, fa == numer(f) and fd == denom(f).
Fractions are returned as tuples (fa, fd). DE.d and DE.t are used to
represent the topmost derivation and extension variable, respectively.
The docstring of a function signifies whether an argument is in k[t], in
which case it will just return a Poly in t, or in k(t), in which case it
will return the fraction (fa, fd). Other variable names probably come
from the names used in Bronstein's book.
"""
from sympy import real_roots, default_sort_key
from sympy.abc import z
from sympy.core.function import Lambda
from sympy.core.numbers import ilcm, oo, I
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.compatibility import reduce, ordered
from sympy.integrals.heurisch import _symbols
from sympy.functions import (acos, acot, asin, atan, cos, cot, exp, log,
Piecewise, sin, tan)
from sympy.functions import sinh, cosh, tanh, coth
from sympy.integrals import Integral, integrate
from sympy.polys import gcd, cancel, PolynomialError, Poly, reduced, RootSum, DomainError
from sympy.utilities.iterables import numbered_symbols
from types import GeneratorType
def integer_powers(exprs):
"""
Rewrites a list of expressions as integer multiples of each other.
For example, if you have [x, x/2, x**2 + 1, 2*x/3], then you can rewrite
this as [(x/6) * 6, (x/6) * 3, (x**2 + 1) * 1, (x/6) * 4]. This is useful
in the Risch integration algorithm, where we must write exp(x) + exp(x/2)
as (exp(x/2))**2 + exp(x/2), but not as exp(x) + sqrt(exp(x)) (this is
because only the transcendental case is implemented and we therefore cannot
integrate algebraic extensions). The integer multiples returned by this
function for each term are the smallest possible (their content equals 1).
Returns a list of tuples where the first element is the base term and the
second element is a list of `(item, factor)` terms, where `factor` is the
integer multiplicative factor that must multiply the base term to obtain
the original item.
The easiest way to understand this is to look at an example:
>>> from sympy.abc import x
>>> from sympy.integrals.risch import integer_powers
>>> integer_powers([x, x/2, x**2 + 1, 2*x/3])
[(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (x**2 + 1, [(x**2 + 1, 1)])]
We can see how this relates to the example at the beginning of the
docstring. It chose x/6 as the first base term. Then, x can be written as
(x/2) * 2, so we get (0, 2), and so on. Now only element (x**2 + 1)
remains, and there are no other terms that can be written as a rational
multiple of that, so we get that it can be written as (x**2 + 1) * 1.
"""
# Here is the strategy:
# First, go through each term and determine if it can be rewritten as a
# rational multiple of any of the terms gathered so far.
# cancel(a/b).is_Rational is sufficient for this. If it is a multiple, we
# add its multiple to the dictionary.
terms = {}
for term in exprs:
for j in terms:
a = cancel(term/j)
if a.is_Rational:
terms[j].append((term, a))
break
else:
terms[term] = [(term, S.One)]
# After we have done this, we have all the like terms together, so we just
# need to find a common denominator so that we can get the base term and
# integer multiples such that each term can be written as an integer
# multiple of the base term, and the content of the integers is 1.
newterms = {}
for term in terms:
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for _, i in
terms[term]])
newterm = term/common_denom
newmults = [(i, j*common_denom) for i, j in terms[term]]
newterms[newterm] = newmults
return sorted(iter(newterms.items()), key=lambda item: item[0].sort_key())
class DifferentialExtension:
"""
A container for all the information relating to a differential extension.
The attributes of this object are (see also the docstring of __init__):
- f: The original (Expr) integrand.
- x: The variable of integration.
- T: List of variables in the extension.
- D: List of derivations in the extension; corresponds to the elements of T.
- fa: Poly of the numerator of the integrand.
- fd: Poly of the denominator of the integrand.
- Tfuncs: Lambda() representations of each element of T (except for x).
For back-substitution after integration.
- backsubs: A (possibly empty) list of further substitutions to be made on
the final integral to make it look more like the integrand.
- exts:
- extargs:
- cases: List of string representations of the cases of T.
- t: The top level extension variable, as defined by the current level
(see level below).
- d: The top level extension derivation, as defined by the current
derivation (see level below).
- case: The string representation of the case of self.d.
(Note that self.T and self.D will always contain the complete extension,
regardless of the level. Therefore, you should ALWAYS use DE.t and DE.d
instead of DE.T[-1] and DE.D[-1]. If you want to have a list of the
derivations or variables only up to the current level, use
DE.D[:len(DE.D) + DE.level + 1] and DE.T[:len(DE.T) + DE.level + 1]. Note
that, in particular, the derivation() function does this.)
The following are also attributes, but will probably not be useful other
than in internal use:
- newf: Expr form of fa/fd.
- level: The number (between -1 and -len(self.T)) such that
self.T[self.level] == self.t and self.D[self.level] == self.d.
Use the methods self.increment_level() and self.decrement_level() to change
the current level.
"""
# __slots__ is defined mainly so we can iterate over all the attributes
# of the class easily (the memory use doesn't matter too much, since we
# only create one DifferentialExtension per integration). Also, it's nice
# to have a safeguard when debugging.
__slots__ = ('f', 'x', 'T', 'D', 'fa', 'fd', 'Tfuncs', 'backsubs',
'exts', 'extargs', 'cases', 'case', 't', 'd', 'newf', 'level',
'ts', 'dummy')
def __init__(self, f=None, x=None, handle_first='log', dummy=False, extension=None, rewrite_complex=None):
"""
Tries to build a transcendental extension tower from f with respect to x.
If it is successful, creates a DifferentialExtension object with, among
others, the attributes fa, fd, D, T, Tfuncs, and backsubs such that
fa and fd are Polys in T[-1] with rational coefficients in T[:-1],
fa/fd == f, and D[i] is a Poly in T[i] with rational coefficients in
T[:i] representing the derivative of T[i] for each i from 1 to len(T).
Tfuncs is a list of Lambda objects for back replacing the functions
after integrating. Lambda() is only used (instead of lambda) to make
them easier to test and debug. Note that Tfuncs corresponds to the
elements of T, except for T[0] == x, but they should be back-substituted
in reverse order. backsubs is a (possibly empty) back-substitution list
that should be applied on the completed integral to make it look more
like the original integrand.
If it is unsuccessful, it raises NotImplementedError.
You can also create an object by manually setting the attributes as a
dictionary to the extension keyword argument. You must include at least
D. Warning, any attribute that is not given will be set to None. The
attributes T, t, d, cases, case, x, and level are set automatically and
do not need to be given. The functions in the Risch Algorithm will NOT
check to see if an attribute is None before using it. This also does not
check to see if the extension is valid (non-algebraic) or even if it is
self-consistent. Therefore, this should only be used for
testing/debugging purposes.
"""
# XXX: If you need to debug this function, set the break point here
if extension:
if 'D' not in extension:
raise ValueError("At least the key D must be included with "
"the extension flag to DifferentialExtension.")
for attr in extension:
setattr(self, attr, extension[attr])
self._auto_attrs()
return
elif f is None or x is None:
raise ValueError("Either both f and x or a manual extension must "
"be given.")
if handle_first not in ['log', 'exp']:
raise ValueError("handle_first must be 'log' or 'exp', not %s." %
str(handle_first))
# f will be the original function, self.f might change if we reset
# (e.g., we pull out a constant from an exponential)
self.f = f
self.x = x
# setting the default value 'dummy'
self.dummy = dummy
self.reset()
exp_new_extension, log_new_extension = True, True
# case of 'automatic' choosing
if rewrite_complex is None:
rewrite_complex = I in self.f.atoms()
if rewrite_complex:
rewritables = {
(sin, cos, cot, tan, sinh, cosh, coth, tanh): exp,
(asin, acos, acot, atan): log,
}
# rewrite the trigonometric components
for candidates, rule in rewritables.items():
self.newf = self.newf.rewrite(candidates, rule)
self.newf = cancel(self.newf)
else:
if any(i.has(x) for i in self.f.atoms(sin, cos, tan, atan, asin, acos)):
raise NotImplementedError("Trigonometric extensions are not "
"supported (yet!)")
exps = set()
pows = set()
numpows = set()
sympows = set()
logs = set()
symlogs = set()
while True:
if self.newf.is_rational_function(*self.T):
break
if not exp_new_extension and not log_new_extension:
# We couldn't find a new extension on the last pass, so I guess
# we can't do it.
raise NotImplementedError("Couldn't find an elementary "
"transcendental extension for %s. Try using a " % str(f) +
"manual extension with the extension flag.")
exps, pows, numpows, sympows, log_new_extension = \
self._rewrite_exps_pows(exps, pows, numpows, sympows, log_new_extension)
logs, symlogs = self._rewrite_logs(logs, symlogs)
if handle_first == 'exp' or not log_new_extension:
exp_new_extension = self._exp_part(exps)
if exp_new_extension is None:
# reset and restart
self.f = self.newf
self.reset()
exp_new_extension = True
continue
if handle_first == 'log' or not exp_new_extension:
log_new_extension = self._log_part(logs)
self.fa, self.fd = frac_in(self.newf, self.t)
self._auto_attrs()
return
def __getattr__(self, attr):
# Avoid AttributeErrors when debugging
if attr not in self.__slots__:
raise AttributeError("%s has no attribute %s" % (repr(self), repr(attr)))
return None
def _rewrite_exps_pows(self, exps, pows, numpows,
sympows, log_new_extension):
"""
Rewrite exps/pows for better processing.
"""
# Pre-preparsing.
#################
# Get all exp arguments, so we can avoid ahead of time doing
# something like t1 = exp(x), t2 = exp(x/2) == sqrt(t1).
# Things like sqrt(exp(x)) do not automatically simplify to
# exp(x/2), so they will be viewed as algebraic. The easiest way
# to handle this is to convert all instances of (a**b)**Rational
# to a**(Rational*b) before doing anything else. Note that the
# _exp_part code can generate terms of this form, so we do need to
# do this at each pass (or else modify it to not do that).
from sympy.integrals.prde import is_deriv_k
ratpows = [i for i in self.newf.atoms(Pow).union(self.newf.atoms(exp))
if (i.base.is_Pow or isinstance(i.base, exp) and i.exp.is_Rational)]
ratpows_repl = [
(i, i.base.base**(i.exp*i.base.exp)) for i in ratpows]
self.backsubs += [(j, i) for i, j in ratpows_repl]
self.newf = self.newf.xreplace(dict(ratpows_repl))
# To make the process deterministic, the args are sorted
# so that functions with smaller op-counts are processed first.
# Ties are broken with the default_sort_key.
# XXX Although the method is deterministic no additional work
# has been done to guarantee that the simplest solution is
# returned and that it would be affected be using different
# variables. Though it is possible that this is the case
# one should know that it has not been done intentionally, so
# further improvements may be possible.
# TODO: This probably doesn't need to be completely recomputed at
# each pass.
exps = update_sets(exps, self.newf.atoms(exp),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
pows = update_sets(pows, self.newf.atoms(Pow),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
numpows = update_sets(numpows, set(pows),
lambda i: not i.base.has(*self.T))
sympows = update_sets(sympows, set(pows) - set(numpows),
lambda i: i.base.is_rational_function(*self.T) and
not i.exp.is_Integer)
# The easiest way to deal with non-base E powers is to convert them
# into base E, integrate, and then convert back.
for i in ordered(pows):
old = i
new = exp(i.exp*log(i.base))
# If exp is ever changed to automatically reduce exp(x*log(2))
# to 2**x, then this will break. The solution is to not change
# exp to do that :)
if i in sympows:
if i.exp.is_Rational:
raise NotImplementedError("Algebraic extensions are "
"not supported (%s)." % str(i))
# We can add a**b only if log(a) in the extension, because
# a**b == exp(b*log(a)).
basea, based = frac_in(i.base, self.t)
A = is_deriv_k(basea, based, self)
if A is None:
# Nonelementary monomial (so far)
# TODO: Would there ever be any benefit from just
# adding log(base) as a new monomial?
# ANSWER: Yes, otherwise we can't integrate x**x (or
# rather prove that it has no elementary integral)
# without first manually rewriting it as exp(x*log(x))
self.newf = self.newf.xreplace({old: new})
self.backsubs += [(new, old)]
log_new_extension = self._log_part([log(i.base)])
exps = update_sets(exps, self.newf.atoms(exp), lambda i:
i.exp.is_rational_function(*self.T) and i.exp.has(*self.T))
continue
ans, u, const = A
newterm = exp(i.exp*(log(const) + u))
# Under the current implementation, exp kills terms
# only if they are of the form a*log(x), where a is a
# Number. This case should have already been killed by the
# above tests. Again, if this changes to kill more than
# that, this will break, which maybe is a sign that you
# shouldn't be changing that. Actually, if anything, this
# auto-simplification should be removed. See
# http://groups.google.com/group/sympy/browse_thread/thread/a61d48235f16867f
self.newf = self.newf.xreplace({i: newterm})
elif i not in numpows:
continue
else:
# i in numpows
newterm = new
# TODO: Just put it in self.Tfuncs
self.backsubs.append((new, old))
self.newf = self.newf.xreplace({old: newterm})
exps.append(newterm)
return exps, pows, numpows, sympows, log_new_extension
def _rewrite_logs(self, logs, symlogs):
"""
Rewrite logs for better processing.
"""
atoms = self.newf.atoms(log)
logs = update_sets(logs, atoms,
lambda i: i.args[0].is_rational_function(*self.T) and
i.args[0].has(*self.T))
symlogs = update_sets(symlogs, atoms,
lambda i: i.has(*self.T) and i.args[0].is_Pow and
i.args[0].base.is_rational_function(*self.T) and
not i.args[0].exp.is_Integer)
# We can handle things like log(x**y) by converting it to y*log(x)
# This will fix not only symbolic exponents of the argument, but any
# non-Integer exponent, like log(sqrt(x)). The exponent can also
# depend on x, like log(x**x).
for i in ordered(symlogs):
# Unlike in the exponential case above, we do not ever
# potentially add new monomials (above we had to add log(a)).
# Therefore, there is no need to run any is_deriv functions
# here. Just convert log(a**b) to b*log(a) and let
# log_new_extension() handle it from there.
lbase = log(i.args[0].base)
logs.append(lbase)
new = i.args[0].exp*lbase
self.newf = self.newf.xreplace({i: new})
self.backsubs.append((new, i))
# remove any duplicates
logs = sorted(set(logs), key=default_sort_key)
return logs, symlogs
def _auto_attrs(self):
"""
Set attributes that are generated automatically.
"""
if not self.T:
# i.e., when using the extension flag and T isn't given
self.T = [i.gen for i in self.D]
if not self.x:
self.x = self.T[0]
self.cases = [get_case(d, t) for d, t in zip(self.D, self.T)]
self.level = -1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
def _exp_part(self, exps):
"""
Try to build an exponential extension.
Returns True if there was a new extension, False if there was no new
extension but it was able to rewrite the given exponentials in terms
of the existing extension, and None if the entire extension building
process should be restarted. If the process fails because there is no
way around an algebraic extension (e.g., exp(log(x)/2)), it will raise
NotImplementedError.
"""
from sympy.integrals.prde import is_log_deriv_k_t_radical
new_extension = False
restart = False
expargs = [i.exp for i in exps]
ip = integer_powers(expargs)
for arg, others in ip:
# Minimize potential problems with algebraic substitution
others.sort(key=lambda i: i[1])
arga, argd = frac_in(arg, self.t)
A = is_log_deriv_k_t_radical(arga, argd, self)
if A is not None:
ans, u, n, const = A
# if n is 1 or -1, it's algebraic, but we can handle it
if n == -1:
# This probably will never happen, because
# Rational.as_numer_denom() returns the negative term in
# the numerator. But in case that changes, reduce it to
# n == 1.
n = 1
u **= -1
const *= -1
ans = [(i, -j) for i, j in ans]
if n == 1:
# Example: exp(x + x**2) over QQ(x, exp(x), exp(x**2))
self.newf = self.newf.xreplace({exp(arg): exp(const)*Mul(*[
u**power for u, power in ans])})
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p) * Mul(*[u**power for u, power in ans])
for exparg, p in others})
# TODO: Add something to backsubs to put exp(const*p)
# back together.
continue
else:
# Bad news: we have an algebraic radical. But maybe we
# could still avoid it by choosing a different extension.
# For example, integer_powers() won't handle exp(x/2 + 1)
# over QQ(x, exp(x)), but if we pull out the exp(1), it
# will. Or maybe we have exp(x + x**2/2), over
# QQ(x, exp(x), exp(x**2)), which is exp(x)*sqrt(exp(x**2)),
# but if we use QQ(x, exp(x), exp(x**2/2)), then they will
# all work.
#
# So here is what we do: If there is a non-zero const, pull
# it out and retry. Also, if len(ans) > 1, then rewrite
# exp(arg) as the product of exponentials from ans, and
# retry that. If const == 0 and len(ans) == 1, then we
# assume that it would have been handled by either
# integer_powers() or n == 1 above if it could be handled,
# so we give up at that point. For example, you can never
# handle exp(log(x)/2) because it equals sqrt(x).
if const or len(ans) > 1:
rad = Mul(*[term**(power/n) for term, power in ans])
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p)*rad for exparg, p in others})
self.newf = self.newf.xreplace(dict(list(zip(reversed(self.T),
reversed([f(self.x) for f in self.Tfuncs])))))
restart = True
break
else:
# TODO: give algebraic dependence in error string
raise NotImplementedError("Cannot integrate over "
"algebraic extensions.")
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darga, dargd = darga.cancel(dargd, include=True)
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('exp')
self.D.append(darg.as_poly(self.t, expand=False)*Poly(self.t,
self.t, expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, exp(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace(
{exp(exparg): self.t**p for exparg, p in others})
new_extension = True
if restart:
return None
return new_extension
def _log_part(self, logs):
"""
Try to build a logarithmic extension.
Returns True if there was a new extension and False if there was no new
extension but it was able to rewrite the given logarithms in terms
of the existing extension. Unlike with exponential extensions, there
is no way that a logarithm is not transcendental over and cannot be
rewritten in terms of an already existing extension in a non-algebraic
way, so this function does not ever return None or raise
NotImplementedError.
"""
from sympy.integrals.prde import is_deriv_k
new_extension = False
logargs = [i.args[0] for i in logs]
for arg in ordered(logargs):
# The log case is easier, because whenever a logarithm is algebraic
# over the base field, it is of the form a1*t1 + ... an*tn + c,
# which is a polynomial, so we can just replace it with that.
# In other words, we don't have to worry about radicals.
arga, argd = frac_in(arg, self.t)
A = is_deriv_k(arga, argd, self)
if A is not None:
ans, u, const = A
newterm = log(const) + u
self.newf = self.newf.xreplace({log(arg): newterm})
continue
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('log')
self.D.append(cancel(darg.as_expr()/arg).as_poly(self.t,
expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, log(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace({log(arg): self.t})
new_extension = True
return new_extension
@property
def _important_attrs(self):
"""
Returns some of the more important attributes of self.
Used for testing and debugging purposes.
The attributes are (fa, fd, D, T, Tfuncs, backsubs,
exts, extargs).
"""
return (self.fa, self.fd, self.D, self.T, self.Tfuncs,
self.backsubs, self.exts, self.extargs)
# NOTE: this printing doesn't follow the Python's standard
# eval(repr(DE)) == DE, where DE is the DifferentialExtension object
# , also this printing is supposed to contain all the important
# attributes of a DifferentialExtension object
def __repr__(self):
# no need to have GeneratorType object printed in it
r = [(attr, getattr(self, attr)) for attr in self.__slots__
if not isinstance(getattr(self, attr), GeneratorType)]
return self.__class__.__name__ + '(dict(%r))' % (r)
# fancy printing of DifferentialExtension object
def __str__(self):
return (self.__class__.__name__ + '({fa=%s, fd=%s, D=%s})' %
(self.fa, self.fd, self.D))
# should only be used for debugging purposes, internally
# f1 = f2 = log(x) at different places in code execution
# may return D1 != D2 as True, since 'level' or other attribute
# may differ
def __eq__(self, other):
for attr in self.__class__.__slots__:
d1, d2 = getattr(self, attr), getattr(other, attr)
if not (isinstance(d1, GeneratorType) or d1 == d2):
return False
return True
def reset(self):
"""
Reset self to an initial state. Used by __init__.
"""
self.t = self.x
self.T = [self.x]
self.D = [Poly(1, self.x)]
self.level = -1
self.exts = [None]
self.extargs = [None]
if self.dummy:
self.ts = numbered_symbols('t', cls=Dummy)
else:
# For testing
self.ts = numbered_symbols('t')
# For various things that we change to make things work that we need to
# change back when we are done.
self.backsubs = []
self.Tfuncs = []
self.newf = self.f
def indices(self, extension):
"""
Args:
extension (str): represents a valid extension type.
Returns:
list: A list of indices of 'exts' where extension of
type 'extension' is present.
Examples
========
>>> from sympy.integrals.risch import DifferentialExtension
>>> from sympy import log, exp
>>> from sympy.abc import x
>>> DE = DifferentialExtension(log(x) + exp(x), x, handle_first='exp')
>>> DE.indices('log')
[2]
>>> DE.indices('exp')
[1]
"""
return [i for i, ext in enumerate(self.exts) if ext == extension]
def increment_level(self):
"""
Increment the level of self.
This makes the working differential extension larger. self.level is
given relative to the end of the list (-1, -2, etc.), so we don't need
do worry about it when building the extension.
"""
if self.level >= -1:
raise ValueError("The level of the differential extension cannot "
"be incremented any further.")
self.level += 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def decrement_level(self):
"""
Decrease the level of self.
This makes the working differential extension smaller. self.level is
given relative to the end of the list (-1, -2, etc.), so we don't need
do worry about it when building the extension.
"""
if self.level <= -len(self.T):
raise ValueError("The level of the differential extension cannot "
"be decremented any further.")
self.level -= 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def update_sets(seq, atoms, func):
s = set(seq)
s = atoms.intersection(s)
new = atoms - s
s.update(list(filter(func, new)))
return list(s)
class DecrementLevel:
"""
A context manager for decrementing the level of a DifferentialExtension.
"""
__slots__ = ('DE',)
def __init__(self, DE):
self.DE = DE
return
def __enter__(self):
self.DE.decrement_level()
def __exit__(self, exc_type, exc_value, traceback):
self.DE.increment_level()
class NonElementaryIntegralException(Exception):
"""
Exception used by subroutines within the Risch algorithm to indicate to one
another that the function being integrated does not have an elementary
integral in the given differential field.
"""
# TODO: Rewrite algorithms below to use this (?)
# TODO: Pass through information about why the integral was nonelementary,
# and store that in the resulting NonElementaryIntegral somehow.
pass
def gcdex_diophantine(a, b, c):
"""
Extended Euclidean Algorithm, Diophantine version.
Given a, b in K[x] and c in (a, b), the ideal generated by a and b,
return (s, t) such that s*a + t*b == c and either s == 0 or s.degree()
< b.degree().
"""
# Extended Euclidean Algorithm (Diophantine Version) pg. 13
# TODO: This should go in densetools.py.
# XXX: Bettter name?
s, g = a.half_gcdex(b)
s *= c.exquo(g) # Inexact division means c is not in (a, b)
if s and s.degree() >= b.degree():
_, s = s.div(b)
t = (c - s*a).exquo(b)
return (s, t)
def frac_in(f, t, *, cancel=False, **kwargs):
"""
Returns the tuple (fa, fd), where fa and fd are Polys in t.
This is a common idiom in the Risch Algorithm functions, so we abstract
it out here. f should be a basic expression, a Poly, or a tuple (fa, fd),
where fa and fd are either basic expressions or Polys, and f == fa/fd.
**kwargs are applied to Poly.
"""
if type(f) is tuple:
fa, fd = f
f = fa.as_expr()/fd.as_expr()
fa, fd = f.as_expr().as_numer_denom()
fa, fd = fa.as_poly(t, **kwargs), fd.as_poly(t, **kwargs)
if cancel:
fa, fd = fa.cancel(fd, include=True)
if fa is None or fd is None:
raise ValueError("Could not turn %s into a fraction in %s." % (f, t))
return (fa, fd)
def as_poly_1t(p, t, z):
"""
(Hackish) way to convert an element p of K[t, 1/t] to K[t, z].
In other words, z == 1/t will be a dummy variable that Poly can handle
better.
See issue 5131.
Examples
========
>>> from sympy import random_poly
>>> from sympy.integrals.risch import as_poly_1t
>>> from sympy.abc import x, z
>>> p1 = random_poly(x, 10, -10, 10)
>>> p2 = random_poly(x, 10, -10, 10)
>>> p = p1 + p2.subs(x, 1/x)
>>> as_poly_1t(p, x, z).as_expr().subs(z, 1/x) == p
True
"""
# TODO: Use this on the final result. That way, we can avoid answers like
# (...)*exp(-x).
pa, pd = frac_in(p, t, cancel=True)
if not pd.is_monomial:
# XXX: Is there a better Poly exception that we could raise here?
# Either way, if you see this (from the Risch Algorithm) it indicates
# a bug.
raise PolynomialError("%s is not an element of K[%s, 1/%s]." % (p, t, t))
d = pd.degree(t)
one_t_part = pa.slice(0, d + 1)
r = pd.degree() - pa.degree()
t_part = pa - one_t_part
try:
t_part = t_part.to_field().exquo(pd)
except DomainError as e:
# issue 4950
raise NotImplementedError(e)
# Compute the negative degree parts.
one_t_part = Poly.from_list(reversed(one_t_part.rep.rep), *one_t_part.gens,
domain=one_t_part.domain)
if 0 < r < oo:
one_t_part *= Poly(t**r, t)
one_t_part = one_t_part.replace(t, z) # z will be 1/t
if pd.nth(d):
one_t_part *= Poly(1/pd.nth(d), z, expand=False)
ans = t_part.as_poly(t, z, expand=False) + one_t_part.as_poly(t, z,
expand=False)
return ans
def derivation(p, DE, coefficientD=False, basic=False):
"""
Computes Dp.
Given the derivation D with D = d/dx and p is a polynomial in t over
K(x), return Dp.
If coefficientD is True, it computes the derivation kD
(kappaD), which is defined as kD(sum(ai*Xi**i, (i, 0, n))) ==
sum(Dai*Xi**i, (i, 1, n)) (Definition 3.2.2, page 80). X in this case is
T[-1], so coefficientD computes the derivative just with respect to T[:-1],
with T[-1] treated as a constant.
If basic=True, the returns a Basic expression. Elements of D can still be
instances of Poly.
"""
if basic:
r = 0
else:
r = Poly(0, DE.t)
t = DE.t
if coefficientD:
if DE.level <= -len(DE.T):
# 'base' case, the answer is 0.
return r
DE.decrement_level()
D = DE.D[:len(DE.D) + DE.level + 1]
T = DE.T[:len(DE.T) + DE.level + 1]
for d, v in zip(D, T):
pv = p.as_poly(v)
if pv is None or basic:
pv = p.as_expr()
if basic:
r += d.as_expr()*pv.diff(v)
else:
r += (d.as_expr()*pv.diff(v).as_expr()).as_poly(t)
if basic:
r = cancel(r)
if coefficientD:
DE.increment_level()
return r
def get_case(d, t):
"""
Returns the type of the derivation d.
Returns one of {'exp', 'tan', 'base', 'primitive', 'other_linear',
'other_nonlinear'}.
"""
if not d.expr.has(t):
if d.is_one:
return 'base'
return 'primitive'
if d.rem(Poly(t, t)).is_zero:
return 'exp'
if d.rem(Poly(1 + t**2, t)).is_zero:
return 'tan'
if d.degree(t) > 1:
return 'other_nonlinear'
return 'other_linear'
def splitfactor(p, DE, coefficientD=False, z=None):
"""
Splitting factorization.
Given a derivation D on k[t] and p in k[t], return (p_n, p_s) in
k[t] x k[t] such that p = p_n*p_s, p_s is special, and each square
factor of p_n is normal.
Page. 100
"""
kinv = [1/x for x in DE.T[:DE.level]]
if z:
kinv.append(z)
One = Poly(1, DE.t, domain=p.get_domain())
Dp = derivation(p, DE, coefficientD=coefficientD)
# XXX: Is this right?
if p.is_zero:
return (p, One)
if not p.expr.has(DE.t):
s = p.as_poly(*kinv).gcd(Dp.as_poly(*kinv)).as_poly(DE.t)
n = p.exquo(s)
return (n, s)
if not Dp.is_zero:
h = p.gcd(Dp).to_field()
g = p.gcd(p.diff(DE.t)).to_field()
s = h.exquo(g)
if s.degree(DE.t) == 0:
return (p, One)
q_split = splitfactor(p.exquo(s), DE, coefficientD=coefficientD)
return (q_split[0], q_split[1]*s)
else:
return (p, One)
def splitfactor_sqf(p, DE, coefficientD=False, z=None, basic=False):
"""
Splitting Square-free Factorization
Given a derivation D on k[t] and p in k[t], returns (N1, ..., Nm)
and (S1, ..., Sm) in k[t]^m such that p =
(N1*N2**2*...*Nm**m)*(S1*S2**2*...*Sm**m) is a splitting
factorization of p and the Ni and Si are square-free and coprime.
"""
# TODO: This algorithm appears to be faster in every case
# TODO: Verify this and splitfactor() for multiple extensions
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if z:
kkinv = [z]
S = []
N = []
p_sqf = p.sqf_list_include()
if p.is_zero:
return (((p, 1),), ())
for pi, i in p_sqf:
Si = pi.as_poly(*kkinv).gcd(derivation(pi, DE,
coefficientD=coefficientD,basic=basic).as_poly(*kkinv)).as_poly(DE.t)
pi = Poly(pi, DE.t)
Si = Poly(Si, DE.t)
Ni = pi.exquo(Si)
if not Si.is_one:
S.append((Si, i))
if not Ni.is_one:
N.append((Ni, i))
return (tuple(N), tuple(S))
def canonical_representation(a, d, DE):
"""
Canonical Representation.
Given a derivation D on k[t] and f = a/d in k(t), return (f_p, f_s,
f_n) in k[t] x k(t) x k(t) such that f = f_p + f_s + f_n is the
canonical representation of f (f_p is a polynomial, f_s is reduced
(has a special denominator), and f_n is simple (has a normal
denominator).
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
q, r = a.div(d)
dn, ds = splitfactor(d, DE)
b, c = gcdex_diophantine(dn.as_poly(DE.t), ds.as_poly(DE.t), r.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
return (q, (b, ds), (c, dn))
def hermite_reduce(a, d, DE):
"""
Hermite Reduction - Mack's Linear Version.
Given a derivation D on k(t) and f = a/d in k(t), returns g, h, r in
k(t) such that f = Dg + h + r, h is simple, and r is reduced.
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
fp, fs, fn = canonical_representation(a, d, DE)
a, d = fn
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
ga = Poly(0, DE.t)
gd = Poly(1, DE.t)
dd = derivation(d, DE)
dm = gcd(d, dd).as_poly(DE.t)
ds, r = d.div(dm)
while dm.degree(DE.t)>0:
ddm = derivation(dm, DE)
dm2 = gcd(dm, ddm)
dms, r = dm.div(dm2)
ds_ddm = ds.mul(ddm)
ds_ddm_dm, r = ds_ddm.div(dm)
b, c = gcdex_diophantine(-ds_ddm_dm.as_poly(DE.t), dms.as_poly(DE.t), a.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
db = derivation(b, DE).as_poly(DE.t)
ds_dms, r = ds.div(dms)
a = c.as_poly(DE.t) - db.mul(ds_dms).as_poly(DE.t)
ga = ga*dm + b*gd
gd = gd*dm
ga, gd = ga.cancel(gd, include=True)
dm = dm2
d = ds
q, r = a.div(d)
ga, gd = ga.cancel(gd, include=True)
r, d = r.cancel(d, include=True)
rra = q*fs[1] + fp*fs[1] + fs[0]
rrd = fs[1]
rra, rrd = rra.cancel(rrd, include=True)
return ((ga, gd), (r, d), (rra, rrd))
def polynomial_reduce(p, DE):
"""
Polynomial Reduction.
Given a derivation D on k(t) and p in k[t] where t is a nonlinear
monomial over k, return q, r in k[t] such that p = Dq + r, and
deg(r) < deg_t(Dt).
"""
q = Poly(0, DE.t)
while p.degree(DE.t) >= DE.d.degree(DE.t):
m = p.degree(DE.t) - DE.d.degree(DE.t) + 1
q0 = Poly(DE.t**m, DE.t).mul(Poly(p.as_poly(DE.t).LC()/
(m*DE.d.LC()), DE.t))
q += q0
p = p - derivation(q0, DE)
return (q, p)
def laurent_series(a, d, F, n, DE):
"""
Contribution of F to the full partial fraction decomposition of A/D
Given a field K of characteristic 0 and A,D,F in K[x] with D monic,
nonzero, coprime with A, and F the factor of multiplicity n in the square-
free factorization of D, return the principal parts of the Laurent series of
A/D at all the zeros of F.
"""
if F.degree()==0:
return 0
Z = _symbols('z', n)
Z.insert(0, z)
delta_a = Poly(0, DE.t)
delta_d = Poly(1, DE.t)
E = d.quo(F**n)
ha, hd = (a, E*Poly(z**n, DE.t))
dF = derivation(F,DE)
B, G = gcdex_diophantine(E, F, Poly(1,DE.t))
C, G = gcdex_diophantine(dF, F, Poly(1,DE.t))
# initialization
F_store = F
V, DE_D_list, H_list= [], [], []
for j in range(0, n):
# jth derivative of z would be substituted with dfnth/(j+1) where dfnth =(d^n)f/(dx)^n
F_store = derivation(F_store, DE)
v = (F_store.as_expr())/(j + 1)
V.append(v)
DE_D_list.append(Poly(Z[j + 1],Z[j]))
DE_new = DifferentialExtension(extension = {'D': DE_D_list}) #a differential indeterminate
for j in range(0, n):
zEha = Poly(z**(n + j), DE.t)*E**(j + 1)*ha
zEhd = hd
Pa, Pd = cancel((zEha, zEhd))[1], cancel((zEha, zEhd))[2]
Q = Pa.quo(Pd)
for i in range(0, j + 1):
Q = Q.subs(Z[i], V[i])
Dha = (hd*derivation(ha, DE, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE, basic=True).as_poly(DE.t)
+ hd*derivation(ha, DE_new, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE_new, basic=True).as_poly(DE.t))
Dhd = Poly(j + 1, DE.t)*hd**2
ha, hd = Dha, Dhd
Ff, Fr = F.div(gcd(F, Q))
F_stara, F_stard = frac_in(Ff, DE.t)
if F_stara.degree(DE.t) - F_stard.degree(DE.t) > 0:
QBC = Poly(Q, DE.t)*B**(1 + j)*C**(n + j)
H = QBC
H_list.append(H)
H = (QBC*F_stard).rem(F_stara)
alphas = real_roots(F_stara)
for alpha in list(alphas):
delta_a = delta_a*Poly((DE.t - alpha)**(n - j), DE.t) + Poly(H.eval(alpha), DE.t)
delta_d = delta_d*Poly((DE.t - alpha)**(n - j), DE.t)
return (delta_a, delta_d, H_list)
def recognize_derivative(a, d, DE, z=None):
"""
Compute the squarefree factorization of the denominator of f
and for each Di the polynomial H in K[x] (see Theorem 2.7.1), using the
LaurentSeries algorithm. Write Di = GiEi where Gj = gcd(Hn, Di) and
gcd(Ei,Hn) = 1. Since the residues of f at the roots of Gj are all 0, and
the residue of f at a root alpha of Ei is Hi(a) != 0, f is the derivative of a
rational function if and only if Ei = 1 for each i, which is equivalent to
Di | H[-1] for each i.
"""
flag =True
a, d = a.cancel(d, include=True)
q, r = a.div(d)
Np, Sp = splitfactor_sqf(d, DE, coefficientD=True, z=z)
j = 1
for (s, i) in Sp:
delta_a, delta_d, H = laurent_series(r, d, s, j, DE)
g = gcd(d, H[-1]).as_poly()
if g is not d:
flag = False
break
j = j + 1
return flag
def recognize_log_derivative(a, d, DE, z=None):
"""
There exists a v in K(x)* such that f = dv/v
where f a rational function if and only if f can be written as f = A/D
where D is squarefree,deg(A) < deg(D), gcd(A, D) = 1,
and all the roots of the Rothstein-Trager resultant are integers. In that case,
any of the Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm
produces u in K(x) such that du/dx = uf.
"""
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
p, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
r, R = d.resultant(q, includePRS=True)
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
# TODO also consider the complex roots
# incase we have complex roots it should turn the flag false
a = real_roots(s.as_poly(z))
if any(not j.is_Integer for j in a):
return False
return True
def residue_reduce(a, d, DE, z=None, invert=True):
"""
Lazard-Rioboo-Rothstein-Trager resultant reduction.
Given a derivation D on k(t) and f in k(t) simple, return g
elementary over k(t) and a Boolean b in {True, False} such that f -
Dg in k[t] if b == True or f + h and f + h - Dg do not have an
elementary integral over k(t) for any h in k<t> (reduced) if b ==
False.
Returns (G, b), where G is a tuple of tuples of the form (s_i, S_i),
such that g = Add(*[RootSum(s_i, lambda z: z*log(S_i(z, t))) for
S_i, s_i in G]). f - Dg is the remaining integral, which is elementary
only if b == True, and hence the integral of f is elementary only if
b == True.
f - Dg is not calculated in this function because that would require
explicitly calculating the RootSum. Use residue_reduce_derivation().
"""
# TODO: Use log_to_atan() from rationaltools.py
# If r = residue_reduce(...), then the logarithmic part is given by:
# sum([RootSum(a[0].as_poly(z), lambda i: i*log(a[1].as_expr()).subs(z,
# i)).subs(t, log(x)) for a in r[0]])
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
a, d = a.to_field().mul_ground(1/d.LC()), d.to_field().mul_ground(1/d.LC())
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if a.is_zero:
return ([], True)
p, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
if Dd.degree(DE.t) <= d.degree(DE.t):
r, R = d.resultant(q, includePRS=True)
else:
r, R = q.resultant(d, includePRS=True)
R_map, H = {}, []
for i in R:
R_map[i.degree()] = i
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
if i == d.degree(DE.t):
s = Poly(s, z).monic()
H.append((s, d))
else:
h = R_map.get(i)
if h is None:
continue
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True)
h_lc_sqf = h_lc.sqf_list_include(all=True)
for a, j in h_lc_sqf:
h = Poly(h, DE.t, field=True).exquo(Poly(gcd(a, s**j, *kkinv),
DE.t))
s = Poly(s, z).monic()
if invert:
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True, expand=False)
inv, coeffs = h_lc.as_poly(z, field=True).invert(s), [S.One]
for coeff in h.coeffs()[1:]:
L = reduced(inv*coeff.as_poly(inv.gens), [s])[1]
coeffs.append(L.as_expr())
h = Poly(dict(list(zip(h.monoms(), coeffs))), DE.t)
H.append((s, h))
b = all([not cancel(i.as_expr()).has(DE.t, z) for i, _ in Np])
return (H, b)
def residue_reduce_to_basic(H, DE, z):
"""
Converts the tuple returned by residue_reduce() into a Basic expression.
"""
# TODO: check what Lambda does with RootOf
i = Dummy('i')
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
return sum(RootSum(a[0].as_poly(z), Lambda(i, i*log(a[1].as_expr()).subs(
{z: i}).subs(s))) for a in H)
def residue_reduce_derivation(H, DE, z):
"""
Computes the derivation of an expression returned by residue_reduce().
In general, this is a rational function in t, so this returns an
as_expr() result.
"""
# TODO: verify that this is correct for multiple extensions
i = Dummy('i')
return S(sum(RootSum(a[0].as_poly(z), Lambda(i, i*derivation(a[1],
DE).as_expr().subs(z, i)/a[1].as_expr().subs(z, i))) for a in H))
def integrate_primitive_polynomial(p, DE):
"""
Integration of primitive polynomials.
Given a primitive monomial t over k, and p in k[t], return q in k[t],
r in k, and a bool b in {True, False} such that r = p - Dq is in k if b is
True, or r = p - Dq does not have an elementary integral over k(t) if b is
False.
"""
from sympy.integrals.prde import limited_integrate
Zero = Poly(0, DE.t)
q = Poly(0, DE.t)
if not p.expr.has(DE.t):
return (Zero, p, True)
while True:
if not p.expr.has(DE.t):
return (q, p, True)
Dta, Dtb = frac_in(DE.d, DE.T[DE.level - 1])
with DecrementLevel(DE): # We had better be integrating the lowest extension (x)
# with ratint().
a = p.LC()
aa, ad = frac_in(a, DE.t)
try:
rv = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
if rv is None:
raise NonElementaryIntegralException
(ba, bd), c = rv
except NonElementaryIntegralException:
return (q, p, False)
m = p.degree(DE.t)
q0 = c[0].as_poly(DE.t)*Poly(DE.t**(m + 1)/(m + 1), DE.t) + \
(ba.as_expr()/bd.as_expr()).as_poly(DE.t)*Poly(DE.t**m, DE.t)
p = p - derivation(q0, DE)
q = q + q0
def integrate_primitive(a, d, DE, z=None):
"""
Integration of primitive functions.
Given a primitive monomial t over k and f in k(t), return g elementary over
k(t), i in k(t), and b in {True, False} such that i = f - Dg is in k if b
is True or i = f - Dg does not have an elementary integral over k(t) if b
is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
p = p.as_poly(DE.t)
q, i, b = integrate_primitive_polynomial(p, DE)
ret = ((g1[0].as_expr()/g1[1].as_expr() + q.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
if not b:
# TODO: This does not do the right thing when b is False
i = NonElementaryIntegral(cancel(i.as_expr()).subs(s), DE.x)
else:
i = cancel(i.as_expr())
return (ret, i, b)
def integrate_hyperexponential_polynomial(p, DE, z):
"""
Integration of hyperexponential polynomials.
Given a hyperexponential monomial t over k and p in k[t, 1/t], return q in
k[t, 1/t] and a bool b in {True, False} such that p - Dq in k if b is True,
or p - Dq does not have an elementary integral over k(t) if b is False.
"""
from sympy.integrals.rde import rischDE
t1 = DE.t
dtt = DE.d.exquo(Poly(DE.t, DE.t))
qa = Poly(0, DE.t)
qd = Poly(1, DE.t)
b = True
if p.is_zero:
return(qa, qd, b)
with DecrementLevel(DE):
for i in range(-p.degree(z), p.degree(t1) + 1):
if not i:
continue
elif i < 0:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
# But it shouldn't happen because p is already a Poly in t and z
a = p.as_poly(z, expand=False).nth(-i)
else:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
a = p.as_poly(t1, expand=False).nth(i)
aa, ad = frac_in(a, DE.t, field=True)
aa, ad = aa.cancel(ad, include=True)
iDt = Poly(i, t1)*dtt
iDta, iDtd = frac_in(iDt, DE.t, field=True)
try:
va, vd = rischDE(iDta, iDtd, Poly(aa, DE.t), Poly(ad, DE.t), DE)
va, vd = frac_in((va, vd), t1, cancel=True)
except NonElementaryIntegralException:
b = False
else:
qa = qa*vd + va*Poly(t1**i)*qd
qd *= vd
return (qa, qd, b)
def integrate_hyperexponential(a, d, DE, z=None, conds='piecewise'):
"""
Integration of hyperexponential functions.
Given a hyperexponential monomial t over k and f in k(t), return g
elementary over k(t), i in k(t), and a bool b in {True, False} such that
i = f - Dg is in k if b is True or i = f - Dg does not have an elementary
integral over k(t) if b is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i.subs(s)), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# p should be a polynomial in t and 1/t, because Sirr == k[t, 1/t]
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
pp = as_poly_1t(p, DE.t, z)
qa, qd, b = integrate_hyperexponential_polynomial(pp, DE, z)
i = pp.nth(0, 0)
ret = ((g1[0].as_expr()/g1[1].as_expr()).subs(s) \
+ residue_reduce_to_basic(g2, DE, z))
qas = qa.as_expr().subs(s)
qds = qd.as_expr().subs(s)
if conds == 'piecewise' and DE.x not in qds.free_symbols:
# We have to be careful if the exponent is S.Zero!
# XXX: Does qd = 0 always necessarily correspond to the exponential
# equaling 1?
ret += Piecewise(
(qas/qds, Ne(qds, 0)),
(integrate((p - i).subs(DE.t, 1).subs(s), DE.x), True)
)
else:
ret += qas/qds
if not b:
i = p - (qd*derivation(qa, DE) - qa*derivation(qd, DE)).as_expr()/\
(qd**2).as_expr()
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return (ret, i, b)
def integrate_hypertangent_polynomial(p, DE):
"""
Integration of hypertangent polynomials.
Given a differential field k such that sqrt(-1) is not in k, a
hypertangent monomial t over k, and p in k[t], return q in k[t] and
c in k such that p - Dq - c*D(t**2 + 1)/(t**1 + 1) is in k and p -
Dq does not have an elementary integral over k(t) if Dc != 0.
"""
# XXX: Make sure that sqrt(-1) is not in k.
q, r = polynomial_reduce(p, DE)
a = DE.d.exquo(Poly(DE.t**2 + 1, DE.t))
c = Poly(r.nth(1)/(2*a.as_expr()), DE.t)
return (q, c)
def integrate_nonlinear_no_specials(a, d, DE, z=None):
"""
Integration of nonlinear monomials with no specials.
Given a nonlinear monomial t over k such that Sirr ({p in k[t] | p is
special, monic, and irreducible}) is empty, and f in k(t), returns g
elementary over k(t) and a Boolean b in {True, False} such that f - Dg is
in k if b == True, or f - Dg does not have an elementary integral over k(t)
if b == False.
This function is applicable to all nonlinear extensions, but in the case
where it returns b == False, it will only have proven that the integral of
f - Dg is nonelementary if Sirr is empty.
This function returns a Basic expression.
"""
# TODO: Integral from k?
# TODO: split out nonelementary integral
# XXX: a and d must be canceled, or this might not return correct results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), b)
# Because f has no specials, this should be a polynomial in t, or else
# there is a bug.
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z).as_expr() + r[0].as_expr()/r[1].as_expr()).as_poly(DE.t)
q1, q2 = polynomial_reduce(p, DE)
if q2.expr.has(DE.t):
b = False
else:
b = True
ret = (cancel(g1[0].as_expr()/g1[1].as_expr() + q1.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
return (ret, b)
class NonElementaryIntegral(Integral):
"""
Represents a nonelementary Integral.
If the result of integrate() is an instance of this class, it is
guaranteed to be nonelementary. Note that integrate() by default will try
to find any closed-form solution, even in terms of special functions which
may themselves not be elementary. To make integrate() only give
elementary solutions, or, in the cases where it can prove the integral to
be nonelementary, instances of this class, use integrate(risch=True).
In this case, integrate() may raise NotImplementedError if it cannot make
such a determination.
integrate() uses the deterministic Risch algorithm to integrate elementary
functions or prove that they have no elementary integral. In some cases,
this algorithm can split an integral into an elementary and nonelementary
part, so that the result of integrate will be the sum of an elementary
expression and a NonElementaryIntegral.
Examples
========
>>> from sympy import integrate, exp, log, Integral
>>> from sympy.abc import x
>>> a = integrate(exp(-x**2), x, risch=True)
>>> print(a)
Integral(exp(-x**2), x)
>>> type(a)
<class 'sympy.integrals.risch.NonElementaryIntegral'>
>>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x))
>>> b = integrate(expr, x, risch=True)
>>> print(b)
-log(-x + log(x))/2 + log(x + log(x))/2 + Integral(1/log(x), x)
>>> type(b.atoms(Integral).pop())
<class 'sympy.integrals.risch.NonElementaryIntegral'>
"""
# TODO: This is useful in and of itself, because isinstance(result,
# NonElementaryIntegral) will tell if the integral has been proven to be
# elementary. But should we do more? Perhaps a no-op .doit() if
# elementary=True? Or maybe some information on why the integral is
# nonelementary.
pass
def risch_integrate(f, x, extension=None, handle_first='log',
separate_integral=False, rewrite_complex=None,
conds='piecewise'):
r"""
The Risch Integration Algorithm.
Only transcendental functions are supported. Currently, only exponentials
and logarithms are supported, but support for trigonometric functions is
forthcoming.
If this function returns an unevaluated Integral in the result, it means
that it has proven that integral to be nonelementary. Any errors will
result in raising NotImplementedError. The unevaluated Integral will be
an instance of NonElementaryIntegral, a subclass of Integral.
handle_first may be either 'exp' or 'log'. This changes the order in
which the extension is built, and may result in a different (but
equivalent) solution (for an example of this, see issue 5109). It is also
possible that the integral may be computed with one but not the other,
because not all cases have been implemented yet. It defaults to 'log' so
that the outer extension is exponential when possible, because more of the
exponential case has been implemented.
If separate_integral is True, the result is returned as a tuple (ans, i),
where the integral is ans + i, ans is elementary, and i is either a
NonElementaryIntegral or 0. This useful if you want to try further
integrating the NonElementaryIntegral part using other algorithms to
possibly get a solution in terms of special functions. It is False by
default.
Examples
========
>>> from sympy.integrals.risch import risch_integrate
>>> from sympy import exp, log, pprint
>>> from sympy.abc import x
First, we try integrating exp(-x**2). Except for a constant factor of
2/sqrt(pi), this is the famous error function.
>>> pprint(risch_integrate(exp(-x**2), x))
/
|
| 2
| -x
| e dx
|
/
The unevaluated Integral in the result means that risch_integrate() has
proven that exp(-x**2) does not have an elementary anti-derivative.
In many cases, risch_integrate() can split out the elementary
anti-derivative part from the nonelementary anti-derivative part.
For example,
>>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 -
... x**2*log(x)), x))
/
|
log(-x + log(x)) log(x + log(x)) | 1
- ---------------- + --------------- + | ------ dx
2 2 | log(x)
|
/
This means that it has proven that the integral of 1/log(x) is
nonelementary. This function is also known as the logarithmic integral,
and is often denoted as Li(x).
risch_integrate() currently only accepts purely transcendental functions
with exponentials and logarithms, though note that this can include
nested exponentials and logarithms, as well as exponentials with bases
other than E.
>>> pprint(risch_integrate(exp(x)*exp(exp(x)), x))
/ x\
\e /
e
>>> pprint(risch_integrate(exp(exp(x)), x))
/
|
| / x\
| \e /
| e dx
|
/
>>> pprint(risch_integrate(x*x**x*log(x) + x**x + x*x**x, x))
x
x*x
>>> pprint(risch_integrate(x**x, x))
/
|
| x
| x dx
|
/
>>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x))
1
-----------
log(log(x))
"""
f = S(f)
DE = extension or DifferentialExtension(f, x, handle_first=handle_first,
dummy=True, rewrite_complex=rewrite_complex)
fa, fd = DE.fa, DE.fd
result = S.Zero
for case in reversed(DE.cases):
if not fa.expr.has(DE.t) and not fd.expr.has(DE.t) and not case == 'base':
DE.decrement_level()
fa, fd = frac_in((fa, fd), DE.t)
continue
fa, fd = fa.cancel(fd, include=True)
if case == 'exp':
ans, i, b = integrate_hyperexponential(fa, fd, DE, conds=conds)
elif case == 'primitive':
ans, i, b = integrate_primitive(fa, fd, DE)
elif case == 'base':
# XXX: We can't call ratint() directly here because it doesn't
# handle polynomials correctly.
ans = integrate(fa.as_expr()/fd.as_expr(), DE.x, risch=False)
b = False
i = S.Zero
else:
raise NotImplementedError("Only exponential and logarithmic "
"extensions are currently supported.")
result += ans
if b:
DE.decrement_level()
fa, fd = frac_in(i, DE.t)
else:
result = result.subs(DE.backsubs)
if not i.is_zero:
i = NonElementaryIntegral(i.function.subs(DE.backsubs),i.limits)
if not separate_integral:
result += i
return result
else:
if isinstance(i, NonElementaryIntegral):
return (result, i)
else:
return (result, 0)
|
1dc1b66ee0a5a7b23e3af8e482219c738ad2a17256fa8e5a0e6c60391fa9958c | """Base class for all the objects in SymPy"""
from collections import defaultdict
from itertools import chain, zip_longest
from .assumptions import BasicMeta, ManagedProperties
from .cache import cacheit
from .sympify import _sympify, sympify, SympifyError
from .compatibility import iterable, ordered, Mapping
from .singleton import S
from ._print_helpers import Printable
from inspect import getmro
def as_Basic(expr):
"""Return expr as a Basic instance using strict sympify
or raise a TypeError; this is just a wrapper to _sympify,
raising a TypeError instead of a SympifyError."""
from sympy.utilities.misc import func_name
try:
return _sympify(expr)
except SympifyError:
raise TypeError(
'Argument must be a Basic object, not `%s`' % func_name(
expr))
class Basic(Printable, metaclass=ManagedProperties):
"""
Base class for all SymPy objects.
Notes and conventions
=====================
1) Always use ``.args``, when accessing parameters of some instance:
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
2) Never use internal methods or variables (the ones prefixed with ``_``):
>>> cot(x)._args # do not use this, use cot(x).args instead
(x,)
3) By "SymPy object" we mean something that can be returned by
``sympify``. But not all objects one encounters using SymPy are
subclasses of Basic. For example, mutable objects are not:
>>> from sympy import Basic, Matrix, sympify
>>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
>>> isinstance(A, Basic)
False
>>> B = sympify(A)
>>> isinstance(B, Basic)
True
"""
__slots__ = ('_mhash', # hash value
'_args', # arguments
'_assumptions'
)
# To be overridden with True in the appropriate subclasses
is_number = False
is_Atom = False
is_Symbol = False
is_symbol = False
is_Indexed = False
is_Dummy = False
is_Wild = False
is_Function = False
is_Add = False
is_Mul = False
is_Pow = False
is_Number = False
is_Float = False
is_Rational = False
is_Integer = False
is_NumberSymbol = False
is_Order = False
is_Derivative = False
is_Piecewise = False
is_Poly = False
is_AlgebraicNumber = False
is_Relational = False
is_Equality = False
is_Boolean = False
is_Not = False
is_Matrix = False
is_Vector = False
is_Point = False
is_MatAdd = False
is_MatMul = False
def __new__(cls, *args):
obj = object.__new__(cls)
obj._assumptions = cls.default_assumptions
obj._mhash = None # will be set by __hash__ method.
obj._args = args # all items in args must be Basic objects
return obj
def copy(self):
return self.func(*self.args)
def __reduce_ex__(self, proto):
""" Pickling support."""
return type(self), self.__getnewargs__(), self.__getstate__()
def __getnewargs__(self):
return self.args
def __getstate__(self):
return {}
def __setstate__(self, state):
for k, v in state.items():
setattr(self, k, v)
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
@property
def assumptions0(self):
"""
Return object `type` assumptions.
For example:
Symbol('x', real=True)
Symbol('x', integer=True)
are different objects. In other words, besides Python type (Symbol in
this case), the initial assumptions are also forming their typeinfo.
Examples
========
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'commutative': True}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'commutative': True, 'complex': True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True, 'extended_real':
True, 'finite': True, 'hermitian': True, 'imaginary': False,
'infinite': False, 'negative': False, 'nonnegative': True,
'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
True, 'zero': False}
"""
return {}
def compare(self, other):
"""
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
Not in the mathematical sense. If the object is of a different type
from the "other" then their classes are ordered according to
the sorted_classes list.
Examples
========
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
"""
# all redefinitions of __cmp__ method should start with the
# following lines:
if self is other:
return 0
n1 = self.__class__
n2 = other.__class__
c = (n1 > n2) - (n1 < n2)
if c:
return c
#
st = self._hashable_content()
ot = other._hashable_content()
c = (len(st) > len(ot)) - (len(st) < len(ot))
if c:
return c
for l, r in zip(st, ot):
l = Basic(*l) if isinstance(l, frozenset) else l
r = Basic(*r) if isinstance(r, frozenset) else r
if isinstance(l, Basic):
c = l.compare(r)
else:
c = (l > r) - (l < r)
if c:
return c
return 0
@staticmethod
def _compare_pretty(a, b):
from sympy.series.order import Order
if isinstance(a, Order) and not isinstance(b, Order):
return 1
if not isinstance(a, Order) and isinstance(b, Order):
return -1
if a.is_Rational and b.is_Rational:
l = a.p * b.q
r = b.p * a.q
return (l > r) - (l < r)
else:
from sympy.core.symbol import Wild
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
r_a = a.match(p1 * p2**p3)
if r_a and p3 in r_a:
a3 = r_a[p3]
r_b = b.match(p1 * p2**p3)
if r_b and p3 in r_b:
b3 = r_b[p3]
c = Basic.compare(a3, b3)
if c != 0:
return c
return Basic.compare(a, b)
@classmethod
def fromiter(cls, args, **assumptions):
"""
Create a new object from an iterable.
This is a convenience function that allows one to create objects from
any iterable, without having to convert to a list or tuple first.
Examples
========
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
"""
return cls(*tuple(args), **assumptions)
@classmethod
def class_key(cls):
"""Nice order of classes. """
return 5, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
"""
Return a sort key.
Examples
========
>>> from sympy.core import S, I
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
"""
# XXX: remove this when issue 5169 is fixed
def inner_key(arg):
if isinstance(arg, Basic):
return arg.sort_key(order)
else:
return arg
args = self._sorted_args
args = len(args), tuple([inner_key(arg) for arg in args])
return self.class_key(), args, S.One.sort_key(), S.One
def __eq__(self, other):
"""Return a boolean indicating whether a == b on the basis of
their symbolic trees.
This is the same as a.compare(b) == 0 but faster.
Notes
=====
If a class that overrides __eq__() needs to retain the
implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting __hash__ =
<ParentClass>.__hash__. Otherwise the inheritance of __hash__()
will be blocked, just as if __hash__ had been explicitly set to
None.
References
==========
from http://docs.python.org/dev/reference/datamodel.html#object.__hash__
"""
if self is other:
return True
tself = type(self)
tother = type(other)
if tself is not tother:
try:
other = _sympify(other)
tother = type(other)
except SympifyError:
return NotImplemented
# As long as we have the ordering of classes (sympy.core),
# comparing types will be slow in Python 2, because it uses
# __cmp__. Until we can remove it
# (https://github.com/sympy/sympy/issues/4269), we only compare
# types in Python 2 directly if they actually have __ne__.
if type(tself).__ne__ is not type.__ne__:
if tself != tother:
return False
elif tself is not tother:
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
"""``a != b`` -> Compare two symbolic trees and see whether they are different
this is the same as:
``a.compare(b) != 0``
but faster
"""
return not self == other
def dummy_eq(self, other, symbol=None):
"""
Compare two expressions and handle dummy symbols.
Examples
========
>>> from sympy import Dummy
>>> from sympy.abc import x, y
>>> u = Dummy('u')
>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False
>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False
"""
s = self.as_dummy()
o = _sympify(other)
o = o.as_dummy()
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
if len(dummy_symbols) == 1:
dummy = dummy_symbols.pop()
else:
return s == o
if symbol is None:
symbols = o.free_symbols
if len(symbols) == 1:
symbol = symbols.pop()
else:
return s == o
tmp = dummy.__class__()
return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp})
def atoms(self, *types):
"""Returns the atoms that form the current object.
By default, only objects that are truly atomic and can't
be divided into smaller pieces are returned: symbols, numbers,
and number symbols like I and pi. It is possible to request
atoms of any type, however, as demonstrated below.
Examples
========
>>> from sympy import I, pi, sin
>>> from sympy.abc import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
If one or more types are given, the results will contain only
those types of atoms.
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
{1, 2, I, pi}
Note that I (imaginary unit) and zoo (complex infinity) are special
types of number symbols and are not part of the NumberSymbol class.
The type can be given implicitly, too:
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
Be careful to check your assumptions when using the implicit option
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all
integers in an expression:
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
Finally, arguments to atoms() can select more than atomic atoms: any
sympy type (loaded in core/__init__.py) can be listed as an argument
and those types of "atoms" as found in scanning the arguments of the
expression recursively:
>>> from sympy import Function, Mul
>>> from sympy.core.function import AppliedUndef
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
nodes = preorder_traversal(self)
if types:
result = {node for node in nodes if isinstance(node, types)}
else:
result = {node for node in nodes if not node.args}
return result
@property
def free_symbols(self):
"""Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes
this is not true. e.g. Integrals use Symbols for the dummy variables
which are bound variables, so Integral has a method to return all
symbols except those. Derivative keeps track of symbols with respect
to which it will perform a derivative; those are
bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a
free_symbols method."""
return set().union(*[a.free_symbols for a in self.args])
@property
def expr_free_symbols(self):
return set()
def as_dummy(self):
"""Return the expression with any objects having structurally
bound symbols replaced with unique, canonical symbols within
the object in which they appear and having only the default
assumption for commutativity being True. When applied to a
symbol a new symbol having only the same commutativity will be
returned.
Examples
========
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
>>> r.as_dummy()
_r
Notes
=====
Any object that has structurally bound variables should have
a property, `bound_symbols` that returns those symbols
appearing in the object.
"""
from sympy.core.symbol import Dummy, Symbol
def can(x):
# mask free that shadow bound
free = x.free_symbols
bound = set(x.bound_symbols)
d = {i: Dummy() for i in bound & free}
x = x.subs(d)
# replace bound with canonical names
x = x.xreplace(x.canonical_variables)
# return after undoing masking
return x.xreplace({v: k for k, v in d.items()})
if not self.has(Symbol):
return self
return self.replace(
lambda x: hasattr(x, 'bound_symbols'),
lambda x: can(x),
simultaneous=False)
@property
def canonical_variables(self):
"""Return a dictionary mapping any variable defined in
``self.bound_symbols`` to Symbols that do not clash
with any free symbols in the expression.
Examples
========
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
"""
from sympy.utilities.iterables import numbered_symbols
if not hasattr(self, 'bound_symbols'):
return {}
dums = numbered_symbols('_')
reps = {}
# watch out for free symbol that are not in bound symbols;
# those that are in bound symbols are about to get changed
bound = self.bound_symbols
names = {i.name for i in self.free_symbols - set(bound)}
for b in bound:
d = next(dums)
if b.is_Symbol:
while d.name in names:
d = next(dums)
reps[b] = d
return reps
def rcall(self, *args):
"""Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for
operators. For instance in SymPy the the following will not work:
``(x+Lambda(y, 2*y))(z) == x+2*z``,
however you can use
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
"""
return Basic._recursive_call(self, args)
@staticmethod
def _recursive_call(expr_to_call, on_args):
"""Helper for rcall method."""
from sympy import Symbol
def the_call_method_is_overridden(expr):
for cls in getmro(type(expr)):
if '__call__' in cls.__dict__:
return cls != Basic
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
return expr_to_call # transformed into an UndefFunction
else:
return expr_to_call(*on_args)
elif expr_to_call.args:
args = [Basic._recursive_call(
sub, on_args) for sub in expr_to_call.args]
return type(expr_to_call)(*args)
else:
return expr_to_call
def is_hypergeometric(self, k):
from sympy.simplify import hypersimp
from sympy.functions import Piecewise
if self.has(Piecewise):
return None
return hypersimp(self, k) is not None
@property
def is_comparable(self):
"""Return True if self can be computed to a real number
(or already is a real number) with precision, else False.
Examples
========
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
A False result does not mean that `self` cannot be rewritten
into a form that would be comparable. For example, the
difference computed below is zero but without simplification
it does not evaluate to a zero with precision:
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2)._prec
1
"""
is_extended_real = self.is_extended_real
if is_extended_real is False:
return False
if not self.is_number:
return False
# don't re-eval numbers that are already evaluated since
# this will create spurious precision
n, i = [p.evalf(2) if not p.is_Number else p
for p in self.as_real_imag()]
if not (i.is_Number and n.is_Number):
return False
if i:
# if _prec = 1 we can't decide and if not,
# the answer is False because numbers with
# imaginary parts can't be compared
# so return False
return False
else:
return n._prec != 1
@property
def func(self):
"""
The top-level function in an expression.
The following should hold for all objects::
>> x == x.func(*x.args)
Examples
========
>>> from sympy.abc import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
"""
return self.__class__
@property
def args(self):
"""Returns a tuple of arguments of 'self'.
Examples
========
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
Notes
=====
Never use self._args, always use self.args.
Only use _args in __new__ when creating a new function.
Don't override .args() from Basic (so that it's easy to
change the interface in the future if needed).
"""
return self._args
@property
def _sorted_args(self):
"""
The same as ``args``. Derived classes which don't fix an
order on their arguments should override this method to
produce the sorted representation.
"""
return self.args
def as_content_primitive(self, radical=False, clear=True):
"""A stub to allow Basic args (like Tuple) to be skipped when computing
the content and primitive components of an expression.
See Also
========
sympy.core.expr.Expr.as_content_primitive
"""
return S.One, self
def subs(self, *args, **kwargs):
"""
Substitutes old for new in an expression after sympifying args.
`args` is either:
- two arguments, e.g. foo.subs(old, new)
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the
replacements are processed in the order given with successive
patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs.
In this case the old/new pairs will be sorted by op count and in
case of a tie, by number of args and the default_sort_key. The
resulting sorted list is then processed as an iterable container
(see previous).
If the keyword ``simultaneous`` is True, the subexpressions will not be
evaluated until all the substitutions have been made.
Examples
========
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
To replace only the x**2 but not the x**4, use xreplace:
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
To delay evaluation until all substitutions have been made,
set the keyword ``simultaneous`` to True:
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
This has the added feature of not allowing subsequent substitutions
to affect those already made:
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
In order to obtain a canonical result, unordered iterables are
sorted by count_op length, number of arguments and by the
default_sort_key to break any ties. All other iterables are left
unsorted.
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e
>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
The resulting expression represents a literal replacement of the
old arguments with the new arguments. This may not reflect the
limiting behavior of the expression:
>>> (x**3 - 3*x).subs({x: oo})
nan
>>> limit(x**3 - 3*x, x, oo)
oo
If the substitution will be followed by numerical
evaluation, it is better to pass the substitution to
evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830
as the former will ensure that the desired level of precision is
obtained.
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
xreplace: exact node replacement in expr tree; also capable of
using matching rules
sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
"""
from sympy.core.compatibility import _nodes, default_sort_key
from sympy.core.containers import Dict
from sympy.core.symbol import Dummy, Symbol
from sympy.utilities.misc import filldedent
unordered = False
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, set):
unordered = True
elif isinstance(sequence, (Dict, Mapping)):
unordered = True
sequence = sequence.items()
elif not iterable(sequence):
raise ValueError(filldedent("""
When a single argument is passed to subs
it should be a dictionary of old: new pairs or an iterable
of (old, new) tuples."""))
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
sequence = list(sequence)
for i, s in enumerate(sequence):
if isinstance(s[0], str):
# when old is a string we prefer Symbol
s = Symbol(s[0]), s[1]
try:
s = [sympify(_, strict=not isinstance(_, (str, type)))
for _ in s]
except SympifyError:
# if it can't be sympified, skip it
sequence[i] = None
continue
# skip if there is no change
sequence[i] = None if _aresame(*s) else tuple(s)
sequence = list(filter(None, sequence))
if unordered:
sequence = dict(sequence)
# order so more complex items are first and items
# of identical complexity are ordered so
# f(x) < f(y) < x < y
# \___ 2 __/ \_1_/ <- number of nodes
#
# For more complex ordering use an unordered sequence.
k = list(ordered(sequence, default=False, keys=(
lambda x: -_nodes(x),
lambda x: default_sort_key(x),
)))
sequence = [(k, sequence[k]) for k in k]
if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs?
reps = {}
rv = self
kwargs['hack2'] = True
m = Dummy('subs_m')
for old, new in sequence:
com = new.is_commutative
if com is None:
com = True
d = Dummy('subs_d', commutative=com)
# using d*m so Subs will be used on dummy variables
# in things like Derivative(f(x, y), x) in which x
# is both free and bound
rv = rv._subs(old, d*m, **kwargs)
if not isinstance(rv, Basic):
break
reps[d] = new
reps[m] = S.One # get rid of m
return rv.xreplace(reps)
else:
rv = self
for old, new in sequence:
rv = rv._subs(old, new, **kwargs)
if not isinstance(rv, Basic):
break
return rv
@cacheit
def _subs(self, old, new, **hints):
"""Substitutes an expression old -> new.
If self is not equal to old then _eval_subs is called.
If _eval_subs doesn't want to make any special replacement
then a None is received which indicates that the fallback
should be applied wherein a search for replacements is made
amongst the arguments of self.
>>> from sympy import Add
>>> from sympy.abc import x, y, z
Examples
========
Add's _eval_subs knows how to target x + y in the following
so it makes the change:
>>> (x + y + z).subs(x + y, 1)
z + 1
Add's _eval_subs doesn't need to know how to find x + y in
the following:
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
True
The returned None will cause the fallback routine to traverse the args and
pass the z*(x + y) arg to Mul where the change will take place and the
substitution will succeed:
>>> (z*(x + y) + 3).subs(x + y, 1)
z + 3
** Developers Notes **
An _eval_subs routine for a class should be written if:
1) any arguments are not instances of Basic (e.g. bool, tuple);
2) some arguments should not be targeted (as in integration
variables);
3) if there is something other than a literal replacement
that should be attempted (as in Piecewise where the condition
may be updated without doing a replacement).
If it is overridden, here are some special cases that might arise:
1) If it turns out that no special change was made and all
the original sub-arguments should be checked for
replacements then None should be returned.
2) If it is necessary to do substitutions on a portion of
the expression then _subs should be called. _subs will
handle the case of any sub-expression being equal to old
(which usually would not be the case) while its fallback
will handle the recursion into the sub-arguments. For
example, after Add's _eval_subs removes some matching terms
it must process the remaining terms so it calls _subs
on each of the un-matched terms and then adds them
onto the terms previously obtained.
3) If the initial expression should remain unchanged then
the original expression should be returned. (Whenever an
expression is returned, modified or not, no further
substitution of old -> new is attempted.) Sum's _eval_subs
routine uses this strategy when a substitution is attempted
on any of its summation variables.
"""
def fallback(self, old, new):
"""
Try to replace old with new in any of self's arguments.
"""
hit = False
args = list(self.args)
for i, arg in enumerate(args):
if not hasattr(arg, '_eval_subs'):
continue
arg = arg._subs(old, new, **hints)
if not _aresame(arg, args[i]):
hit = True
args[i] = arg
if hit:
rv = self.func(*args)
hack2 = hints.get('hack2', False)
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
coeff = S.One
nonnumber = []
for i in args:
if i.is_Number:
coeff *= i
else:
nonnumber.append(i)
nonnumber = self.func(*nonnumber)
if coeff is S.One:
return nonnumber
else:
return self.func(coeff, nonnumber, evaluate=False)
return rv
return self
if _aresame(self, old):
return new
rv = self._eval_subs(old, new)
if rv is None:
rv = fallback(self, old, new)
return rv
def _eval_subs(self, old, new):
"""Override this stub if you want to do anything more than
attempt a replacement of old with new in the arguments of self.
See also
========
_subs
"""
return None
def xreplace(self, rule):
"""
Replace occurrences of objects within the expression.
Parameters
==========
rule : dict-like
Expresses a replacement rule
Returns
=======
xreplace : the result of the replacement
Examples
========
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
Replacements occur only if an entire node in the expression tree is
matched:
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
xreplace doesn't differentiate between free and bound symbols. In the
following, subs(x, y) would not change x since it is a bound symbol,
but xreplace does:
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
Trying to replace x with an expression raises an error:
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
subs: substitution of subexpressions as defined by the objects
themselves.
"""
value, _ = self._xreplace(rule)
return value
def _xreplace(self, rule):
"""
Helper for xreplace. Tracks whether a replacement actually occurred.
"""
if self in rule:
return rule[self], True
elif rule:
args = []
changed = False
for a in self.args:
_xreplace = getattr(a, '_xreplace', None)
if _xreplace is not None:
a_xr = _xreplace(rule)
args.append(a_xr[0])
changed |= a_xr[1]
else:
args.append(a)
args = tuple(args)
if changed:
return self.func(*args), True
return self, False
@cacheit
def has(self, *patterns):
"""
Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
Note ``has`` is a structural algorithm with no knowledge of
mathematics. Consider the following half-open interval:
>>> from sympy.sets import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
>>> i.args
(0, 5, True, False)
>>> i.has(4) # there is no "4" in the arguments
False
>>> i.has(0) # there *is* a "0" in the arguments
True
Instead, use ``contains`` to determine whether a number is in the
interval or not:
>>> i.contains(4)
True
>>> i.contains(0)
False
Note that ``expr.has(*patterns)`` is exactly equivalent to
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
returned when the list of patterns is empty.
>>> x.has()
False
"""
return any(self._has(pattern) for pattern in patterns)
def _has(self, pattern):
"""Helper for .has()"""
from sympy.core.function import UndefinedFunction, Function
if isinstance(pattern, UndefinedFunction):
return any(f.func == pattern or f == pattern
for f in self.atoms(Function, UndefinedFunction))
if isinstance(pattern, BasicMeta):
subtrees = preorder_traversal(self)
return any(isinstance(arg, pattern) for arg in subtrees)
pattern = _sympify(pattern)
_has_matcher = getattr(pattern, '_has_matcher', None)
if _has_matcher is not None:
match = _has_matcher()
return any(match(arg) for arg in preorder_traversal(self))
else:
return any(arg == pattern for arg in preorder_traversal(self))
def _has_matcher(self):
"""Helper for .has()"""
return lambda other: self == other
def replace(self, query, value, map=False, simultaneous=True, exact=None):
"""
Replace matching subexpressions of ``self`` with ``value``.
If ``map = True`` then also return the mapping {old: new} where ``old``
was a sub-expression found with query and ``new`` is the replacement
value for it. If the expression itself doesn't match the query, then
the returned value will be ``self.xreplace(map)`` otherwise it should
be ``self.subs(ordered(map.items()))``.
Traverses an expression tree and performs replacement of matching
subexpressions from the bottom to the top of the tree. The default
approach is to do the replacement in a simultaneous fashion so
changes made are targeted only once. If this is not desired or causes
problems, ``simultaneous`` can be set to False.
In addition, if an expression containing more than one Wild symbol
is being used to match subexpressions and the ``exact`` flag is None
it will be set to True so the match will only succeed if all non-zero
values are received for each Wild that appears in the match pattern.
Setting this to False accepts a match of 0; while setting it True
accepts all matches that have a 0 in them. See example below for
cautions.
The list of possible combinations of queries and replacement values
is listed below:
Examples
========
Initial setup
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
1.1. type -> type
obj.replace(type, newtype)
When object of type ``type`` is found, replace it with the
result of passing its argument(s) to ``newtype``.
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
(cos(x), {sin(x): cos(x)})
>>> (x*y).replace(Mul, Add)
x + y
1.2. type -> func
obj.replace(type, func)
When object of type ``type`` is found, apply ``func`` to its
argument(s). ``func`` must be written to handle the number
of arguments of ``type``.
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching ``pattern`` with the expression
written in terms of the Wild symbols in ``pattern``.
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
Matching is exact by default when more than one Wild symbol
is used: matching fails unless the match gives non-zero
values for all Wild symbols:
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
>>> (2*x).replace(a*x + b, b - a)
2*x
When set to False, the results may be non-intuitive:
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of
pattern variables is used rather than an expression:
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
3.1. func -> func
obj.replace(filter, func)
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
is True.
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
The expression itself is also targeted by the query but is done in
such a fashion that changes are not made twice.
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
When matching a single symbol, `exact` will default to True, but
this may or may not be the behavior that is desired:
Here, we want `exact=False`:
>>> from sympy import Function
>>> f = Function('f')
>>> e = f(1) + f(0)
>>> q = f(a), lambda a: f(a + 1)
>>> e.replace(*q, exact=False)
f(1) + f(2)
>>> e.replace(*q, exact=True)
f(0) + f(2)
But here, the nature of matching makes selecting
the right setting tricky:
>>> e = x**(1 + y)
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(-x - y + 1)
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(1 - y)
It is probably better to use a different form of the query
that describes the target expression more precisely:
>>> (1 + x**(1 + y)).replace(
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
... lambda x: x.base**(1 - (x.exp - 1)))
...
x**(1 - y) + 1
See Also
========
subs: substitution of subexpressions as defined by the objects
themselves.
xreplace: exact node replacement in expr tree; also capable of
using matching rules
"""
from sympy.core.symbol import Wild
try:
query = _sympify(query)
except SympifyError:
pass
try:
value = _sympify(value)
except SympifyError:
pass
if isinstance(query, type):
_query = lambda expr: isinstance(expr, query)
if isinstance(value, type):
_value = lambda expr, result: value(*expr.args)
elif callable(value):
_value = lambda expr, result: value(*expr.args)
else:
raise TypeError(
"given a type, replace() expects another "
"type or a callable")
elif isinstance(query, Basic):
_query = lambda expr: expr.match(query)
if exact is None:
exact = (len(query.atoms(Wild)) > 1)
if isinstance(value, Basic):
if exact:
_value = lambda expr, result: (value.subs(result)
if all(result.values()) else expr)
else:
_value = lambda expr, result: value.subs(result)
elif callable(value):
# match dictionary keys get the trailing underscore stripped
# from them and are then passed as keywords to the callable;
# if ``exact`` is True, only accept match if there are no null
# values amongst those matched.
if exact:
_value = lambda expr, result: (value(**
{str(k)[:-1]: v for k, v in result.items()})
if all(val for val in result.values()) else expr)
else:
_value = lambda expr, result: value(**
{str(k)[:-1]: v for k, v in result.items()})
else:
raise TypeError(
"given an expression, replace() expects "
"another expression or a callable")
elif callable(query):
_query = query
if callable(value):
_value = lambda expr, result: value(expr)
else:
raise TypeError(
"given a callable, replace() expects "
"another callable")
else:
raise TypeError(
"first argument to replace() must be a "
"type, an expression or a callable")
def walk(rv, F):
"""Apply ``F`` to args and then to result.
"""
args = getattr(rv, 'args', None)
if args is not None:
if args:
newargs = tuple([walk(a, F) for a in args])
if args != newargs:
rv = rv.func(*newargs)
if simultaneous:
# if rv is something that was already
# matched (that was changed) then skip
# applying F again
for i, e in enumerate(args):
if rv == e and e != newargs[i]:
return rv
rv = F(rv)
return rv
mapping = {} # changes that took place
def rec_replace(expr):
result = _query(expr)
if result or result == {}:
v = _value(expr, result)
if v is not None and v != expr:
if map:
mapping[expr] = v
expr = v
return expr
rv = walk(self, rec_replace)
return (rv, mapping) if map else rv
def find(self, query, group=False):
"""Find all subexpressions matching a query. """
query = _make_find_query(query)
results = list(filter(query, preorder_traversal(self)))
if not group:
return set(results)
else:
groups = {}
for result in results:
if result in groups:
groups[result] += 1
else:
groups[result] = 1
return groups
def count(self, query):
"""Count the number of matching subexpressions. """
query = _make_find_query(query)
return sum(bool(query(sub)) for sub in preorder_traversal(self))
def matches(self, expr, repl_dict={}, old=False):
"""
Helper method for match() that looks for a match between Wild symbols
in self and expressions in expr.
Examples
========
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
"""
repl_dict = repl_dict.copy()
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict.copy()
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
def match(self, pattern, old=False):
"""
Pattern matching.
Wild symbols match all.
Return ``None`` when expression (self) does not match
with pattern. Otherwise return a dictionary such that::
pattern.xreplace(self.match(pattern)) == self
Examples
========
>>> from sympy import Wild, Sum
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
Structurally bound symbols are ignored during matching:
>>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
{p_: 2}
But they can be identified if desired:
>>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
{p_: 2, q_: x}
The ``old`` flag will give the old-style pattern matching where
expressions and patterns are essentially solved to give the
match. Both of the following give None unless ``old=True``:
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
"""
from sympy.core.symbol import Wild
from sympy.core.function import WildFunction
from sympy.utilities.misc import filldedent
pattern = sympify(pattern)
# match non-bound symbols
canonical = lambda x: x if x.is_Symbol else x.as_dummy()
m = canonical(pattern).matches(canonical(self), old=old)
if m is None:
return m
wild = pattern.atoms(Wild, WildFunction)
# sanity check
if set(m) - wild:
raise ValueError(filldedent('''
Some `matches` routine did not use a copy of repl_dict
and injected unexpected symbols. Report this as an
error at https://github.com/sympy/sympy/issues'''))
# now see if bound symbols were requested
bwild = wild - set(m)
if not bwild:
return m
# replace free-Wild symbols in pattern with match result
# so they will match but not be in the next match
wpat = pattern.xreplace(m)
# identify remaining bound wild
w = wpat.matches(self, old=old)
# add them to m
if w:
m.update(w)
# done
return m
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from sympy import count_ops
return count_ops(self, visual)
def doit(self, **hints):
"""Evaluate objects that are not evaluated by default like limits,
integrals, sums and products. All objects of this kind will be
evaluated recursively, unless some species were excluded via 'hints'
or unless the 'deep' hint was set to 'False'.
>>> from sympy import Integral
>>> from sympy.abc import x
>>> 2*Integral(x, x)
2*Integral(x, x)
>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
"""
if hints.get('deep', True):
terms = [term.doit(**hints) if isinstance(term, Basic) else term
for term in self.args]
return self.func(*terms)
else:
return self
def simplify(self, **kwargs):
"""See the simplify function in sympy.simplify"""
from sympy.simplify import simplify
return simplify(self, **kwargs)
def _eval_rewrite(self, pattern, rule, **hints):
if self.is_Atom:
if hasattr(self, rule):
return getattr(self, rule)()
return self
if hints.get('deep', True):
args = [a._eval_rewrite(pattern, rule, **hints)
if isinstance(a, Basic) else a
for a in self.args]
else:
args = self.args
if pattern is None or isinstance(self, pattern):
if hasattr(self, rule):
rewritten = getattr(self, rule)(*args, **hints)
if rewritten is not None:
return rewritten
return self.func(*args) if hints.get('evaluate', True) else self
def _eval_derivative_n_times(self, s, n):
# This is the default evaluator for derivatives (as called by `diff`
# and `Derivative`), it will attempt a loop to derive the expression
# `n` times by calling the corresponding `_eval_derivative` method,
# while leaving the derivative unevaluated if `n` is symbolic. This
# method should be overridden if the object has a closed form for its
# symbolic n-th derivative.
from sympy import Integer
if isinstance(n, (int, Integer)):
obj = self
for i in range(n):
obj2 = obj._eval_derivative(s)
if obj == obj2 or obj2 is None:
break
obj = obj2
return obj2
else:
return None
def rewrite(self, *args, **hints):
""" Rewrite functions in terms of other functions.
Rewrites expression containing applications of functions
of one kind in terms of functions of different kind. For
example you can rewrite trigonometric functions as complex
exponentials or combinatorial functions as gamma function.
As a pattern this function accepts a list of functions to
to rewrite (instances of DefinedFunction class). As rule
you can use string or a destination function instance (in
this case rewrite() will use the str() function).
There is also the possibility to pass hints on how to rewrite
the given expressions. For now there is only one such hint
defined called 'deep'. When 'deep' is set to False it will
forbid functions to rewrite their contents.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x
Unspecified pattern:
>>> sin(x).rewrite(exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a single function:
>>> sin(x).rewrite(sin, exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a list of functions:
>>> sin(x).rewrite([sin, ], exp)
-I*(exp(I*x) - exp(-I*x))/2
"""
if not args:
return self
else:
pattern = args[:-1]
if isinstance(args[-1], str):
rule = '_eval_rewrite_as_' + args[-1]
else:
# rewrite arg is usually a class but can also be a
# singleton (e.g. GoldenRatio) so we check
# __name__ or __class__.__name__
clsname = getattr(args[-1], "__name__", None)
if clsname is None:
clsname = args[-1].__class__.__name__
rule = '_eval_rewrite_as_' + clsname
if not pattern:
return self._eval_rewrite(None, rule, **hints)
else:
if iterable(pattern[0]):
pattern = pattern[0]
pattern = [p for p in pattern if self.has(p)]
if pattern:
return self._eval_rewrite(tuple(pattern), rule, **hints)
else:
return self
_constructor_postprocessor_mapping = {} # type: ignore
@classmethod
def _exec_constructor_postprocessors(cls, obj):
# WARNING: This API is experimental.
# This is an experimental API that introduces constructor
# postprosessors for SymPy Core elements. If an argument of a SymPy
# expression has a `_constructor_postprocessor_mapping` attribute, it will
# be interpreted as a dictionary containing lists of postprocessing
# functions for matching expression node names.
clsname = obj.__class__.__name__
postprocessors = defaultdict(list)
for i in obj.args:
try:
postprocessor_mappings = (
Basic._constructor_postprocessor_mapping[cls].items()
for cls in type(i).mro()
if cls in Basic._constructor_postprocessor_mapping
)
for k, v in chain.from_iterable(postprocessor_mappings):
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
except TypeError:
pass
for f in postprocessors.get(clsname, []):
obj = f(obj)
return obj
class Atom(Basic):
"""
A parent class for atomic things. An atom is an expression with no subexpressions.
Examples
========
Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_Atom = True
__slots__ = ()
def matches(self, expr, repl_dict={}, old=False):
if self == expr:
return repl_dict.copy()
def xreplace(self, rule, hack2=False):
return rule.get(self, self)
def doit(self, **hints):
return self
@classmethod
def class_key(cls):
return 2, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def _eval_simplify(self, **kwargs):
return self
@property
def _sorted_args(self):
# this is here as a safeguard against accidentally using _sorted_args
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
# since there are no args. So the calling routine should be checking
# to see that this property is not called for Atoms.
raise AttributeError('Atoms have no args. It might be necessary'
' to make a check for Atoms in the calling code.')
def _aresame(a, b):
"""Return True if a and b are structurally the same, else False.
Examples
========
In SymPy (as in Python) two numbers compare the same if they
have the same underlying base-2 representation even though
they may not be the same type:
>>> from sympy import S
>>> 2.0 == S(2)
True
>>> 0.5 == S.Half
True
This routine was written to provide a query for such cases that
would give false when the types do not match:
>>> from sympy.core.basic import _aresame
>>> _aresame(S(2.0), S(2))
False
"""
from .numbers import Number
from .function import AppliedUndef, UndefinedFunction as UndefFunc
if isinstance(a, Number) and isinstance(b, Number):
return a == b and a.__class__ == b.__class__
for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)):
if i != j or type(i) != type(j):
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
if i.class_key() != j.class_key():
return False
else:
return False
return True
def _atomic(e, recursive=False):
"""Return atom-like quantities as far as substitution is
concerned: Derivatives, Functions and Symbols. Don't
return any 'atoms' that are inside such quantities unless
they also appear outside, too, unless `recursive` is True.
Examples
========
>>> from sympy import Derivative, Function, cos
>>> from sympy.abc import x, y
>>> from sympy.core.basic import _atomic
>>> f = Function('f')
>>> _atomic(x + y)
{x, y}
>>> _atomic(x + f(y))
{x, f(y)}
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
{y, cos(x), Derivative(f(x), x)}
"""
from sympy import Derivative, Function, Symbol
pot = preorder_traversal(e)
seen = set()
if isinstance(e, Basic):
free = getattr(e, "free_symbols", None)
if free is None:
return {e}
else:
return set()
atoms = set()
for p in pot:
if p in seen:
pot.skip()
continue
seen.add(p)
if isinstance(p, Symbol) and p in free:
atoms.add(p)
elif isinstance(p, (Derivative, Function)):
if not recursive:
pot.skip()
atoms.add(p)
return atoms
class preorder_traversal:
"""
Do a pre-order traversal of a tree.
This iterator recursively yields nodes that it has visited in a pre-order
fashion. That is, it yields the current node then descends through the
tree breadth-first to yield all of a node's children's pre-order
traversal.
For an expression, the order of the traversal depends on the order of
.args, which in many cases can be arbitrary.
Parameters
==========
node : sympy expression
The expression to traverse.
keys : (default None) sort key(s)
The key(s) used to sort args of Basic objects. When None, args of Basic
objects are processed in arbitrary order. If key is defined, it will
be passed along to ordered() as the only key(s) to use to sort the
arguments; if ``key`` is simply True then the default keys of ordered
will be used.
Yields
======
subtree : sympy expression
All of the subtrees in the tree.
Examples
========
>>> from sympy import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
The nodes are returned in the order that they are encountered unless key
is given; simply passing key=True will guarantee that the traversal is
unique.
>>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP
[z*(x + y), z, x + y, y, x]
>>> list(preorder_traversal((x + y)*z, keys=True))
[z*(x + y), z, x + y, x, y]
"""
def __init__(self, node, keys=None):
self._skip_flag = False
self._pt = self._preorder_traversal(node, keys)
def _preorder_traversal(self, node, keys):
yield node
if self._skip_flag:
self._skip_flag = False
return
if isinstance(node, Basic):
if not keys and hasattr(node, '_argset'):
# LatticeOp keeps args as a set. We should use this if we
# don't care about the order, to prevent unnecessary sorting.
args = node._argset
else:
args = node.args
if keys:
if keys != True:
args = ordered(args, keys, default=False)
else:
args = ordered(args)
for arg in args:
yield from self._preorder_traversal(arg, keys)
elif iterable(node):
for item in node:
yield from self._preorder_traversal(item, keys)
def skip(self):
"""
Skip yielding current node's (last yielded node's) subtrees.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
>>> pt = preorder_traversal((x+y*z)*z)
>>> for i in pt:
... print(i)
... if i == x+y*z:
... pt.skip()
z*(x + y*z)
z
x + y*z
"""
self._skip_flag = True
def __next__(self):
return next(self._pt)
def __iter__(self):
return self
def _make_find_query(query):
"""Convert the argument of Basic.find() into a callable"""
try:
query = _sympify(query)
except SympifyError:
pass
if isinstance(query, type):
return lambda expr: isinstance(expr, query)
elif isinstance(query, Basic):
return lambda expr: expr.match(query) is not None
return query
|
9d87b18ba8db2fe99a75ec330737c2793027bc5f0f868277c486a54c7c0779b6 | from math import log as _log
from .sympify import _sympify
from .cache import cacheit
from .singleton import S
from .expr import Expr
from .evalf import PrecisionExhausted
from .function import (_coeff_isneg, expand_complex, expand_multinomial,
expand_mul)
from .logic import fuzzy_bool, fuzzy_not, fuzzy_and
from .compatibility import as_int, HAS_GMPY, gmpy
from .parameters import global_parameters
from sympy.utilities.iterables import sift
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.multipledispatch import Dispatcher
from mpmath.libmp import sqrtrem as mpmath_sqrtrem
from math import sqrt as _sqrt
def isqrt(n):
"""Return the largest integer less than or equal to sqrt(n)."""
if n < 0:
raise ValueError("n must be nonnegative")
n = int(n)
# Fast path: with IEEE 754 binary64 floats and a correctly-rounded
# math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
# 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
# IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
# answer and fall back to the slow method if necessary.
if n < 4503599761588224:
s = int(_sqrt(n))
if 0 <= n - s*s <= 2*s:
return s
return integer_nthroot(n, 2)[0]
def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
Examples
========
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
To simply determine if a number is a perfect square, the is_square
function should be used:
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
See Also
========
sympy.ntheory.primetest.is_square
integer_log
"""
y, n = as_int(y), as_int(n)
if y < 0:
raise ValueError("y must be nonnegative")
if n < 1:
raise ValueError("n must be positive")
if HAS_GMPY and n < 2**63:
# Currently it works only for n < 2**63, else it produces TypeError
# sympy issue: https://github.com/sympy/sympy/issues/18374
# gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257
if HAS_GMPY >= 2:
x, t = gmpy.iroot(y, n)
else:
x, t = gmpy.root(y, n)
return as_int(x), bool(t)
return _integer_nthroot_python(y, n)
def _integer_nthroot_python(y, n):
if y in (0, 1):
return y, True
if n == 1:
return y, True
if n == 2:
x, rem = mpmath_sqrtrem(y)
return int(x), not rem
if n > y:
return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
exp = _log(y, 2)/n
if exp > 53:
shift = int(exp - 53)
guess = int(2.0**(exp - shift) + 1) << shift
else:
guess = int(2.0**exp)
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n - 1)
xprev, x = x, ((n - 1)*x + y//t)//n
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return int(x), t == y # int converts long to int if possible
def integer_log(y, x):
r"""
Returns ``(e, bool)`` where e is the largest nonnegative integer
such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
Examples
========
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
>>> integer_log(4, -2)
(2, True)
>>> integer_log(-125,-5)
(3, True)
See Also
========
integer_nthroot
sympy.ntheory.primetest.is_square
sympy.ntheory.factor_.multiplicity
sympy.ntheory.factor_.perfect_power
"""
if x == 1:
raise ValueError('x cannot take value as 1')
if y == 0:
raise ValueError('y cannot take value as 0')
if x in (-2, 2):
x = int(x)
y = as_int(y)
e = y.bit_length() - 1
return e, x**e == y
if x < 0:
n, b = integer_log(y if y > 0 else -y, -x)
return n, b and bool(n % 2 if y < 0 else not n % 2)
x = as_int(x)
y = as_int(y)
r = e = 0
while y >= x:
d = x
m = 1
while y >= d:
y, rem = divmod(y, d)
r = r or rem
e += m
if y > d:
d *= d
m *= 2
return e, r == 0 and y == 1
class Pow(Expr):
"""
Defines the expression x**y as "x raised to a power y"
Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
+--------------+---------+-----------------------------------------------+
| expr | value | reason |
+==============+=========+===============================================+
| z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
+--------------+---------+-----------------------------------------------+
| z**1 | z | |
+--------------+---------+-----------------------------------------------+
| (-oo)**(-1) | 0 | |
+--------------+---------+-----------------------------------------------+
| (-1)**-1 | -1 | |
+--------------+---------+-----------------------------------------------+
| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
| | | undefined, but is convenient in some contexts |
| | | where the base is assumed to be positive. |
+--------------+---------+-----------------------------------------------+
| 1**-1 | 1 | |
+--------------+---------+-----------------------------------------------+
| oo**-1 | 0 | |
+--------------+---------+-----------------------------------------------+
| 0**oo | 0 | Because for all complex numbers z near |
| | | 0, z**oo -> 0. |
+--------------+---------+-----------------------------------------------+
| 0**-oo | zoo | This is not strictly true, as 0**oo may be |
| | | oscillating between positive and negative |
| | | values or rotating in the complex plane. |
| | | It is convenient, however, when the base |
| | | is positive. |
+--------------+---------+-----------------------------------------------+
| 1**oo | nan | Because there are various cases where |
| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
| | | but lim( x(t)**y(t), t) != 1. See [3]. |
+--------------+---------+-----------------------------------------------+
| b**zoo | nan | Because b**z has no limit as z -> zoo |
+--------------+---------+-----------------------------------------------+
| (-1)**oo | nan | Because of oscillations in the limit. |
| (-1)**(-oo) | | |
+--------------+---------+-----------------------------------------------+
| oo**oo | oo | |
+--------------+---------+-----------------------------------------------+
| oo**-oo | 0 | |
+--------------+---------+-----------------------------------------------+
| (-oo)**oo | nan | |
| (-oo)**-oo | | |
+--------------+---------+-----------------------------------------------+
| oo**I | nan | oo**e could probably be best thought of as |
| (-oo)**I | | the limit of x**e for real x as x tends to |
| | | oo. If e is I, then the limit does not exist |
| | | and nan is used to indicate that. |
+--------------+---------+-----------------------------------------------+
| oo**(1+I) | zoo | If the real part of e is positive, then the |
| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
| | | is zoo. |
+--------------+---------+-----------------------------------------------+
| oo**(-1+I) | 0 | If the real part of e is negative, then the |
| -oo**(-1+I) | | limit is 0. |
+--------------+---------+-----------------------------------------------+
Because symbolic computations are more flexible that floating point
calculations and we prefer to never return an incorrect answer,
we choose not to conform to all IEEE 754 conventions. This helps
us avoid extra test-case code in the calculation of limits.
See Also
========
sympy.core.numbers.Infinity
sympy.core.numbers.NegativeInfinity
sympy.core.numbers.NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentiation
.. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero
.. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
"""
is_Pow = True
__slots__ = ('is_commutative',)
@cacheit
def __new__(cls, b, e, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
from sympy.functions.elementary.exponential import exp_polar
b = _sympify(b)
e = _sympify(e)
# XXX: This can be removed when non-Expr args are disallowed rather
# than deprecated.
from sympy.core.relational import Relational
if isinstance(b, Relational) or isinstance(e, Relational):
raise TypeError('Relational can not be used in Pow')
# XXX: This should raise TypeError once deprecation period is over:
if not (isinstance(b, Expr) and isinstance(e, Expr)):
SymPyDeprecationWarning(
feature="Pow with non-Expr args",
useinstead="Expr args",
issue=19445,
deprecated_since_version="1.7"
).warn()
if evaluate:
if e is S.ComplexInfinity:
return S.NaN
if e is S.Zero:
return S.One
elif e is S.One:
return b
elif e == -1 and not b:
return S.ComplexInfinity
# Only perform autosimplification if exponent or base is a Symbol or number
elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\
e.is_integer and _coeff_isneg(b):
if e.is_even:
b = -b
elif e.is_odd:
return -Pow(-b, e)
if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
return S.NaN
elif b is S.One:
if abs(e).is_infinite:
return S.NaN
return S.One
else:
# recognize base as E
if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
from sympy import numer, denom, log, sign, im, factor_terms
c, ex = factor_terms(e, sign=False).as_coeff_Mul()
den = denom(ex)
if isinstance(den, log) and den.args[0] == b:
return S.Exp1**(c*numer(ex))
elif den.is_Add:
s = sign(im(b))
if s.is_Number and s and den == \
log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
return S.Exp1**(c*numer(ex))
obj = b._eval_power(e)
if obj is not None:
return obj
obj = Expr.__new__(cls, b, e)
obj = cls._exec_constructor_postprocessors(obj)
if not isinstance(obj, Pow):
return obj
obj.is_commutative = (b.is_commutative and e.is_commutative)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@classmethod
def class_key(cls):
return 3, 2, cls.__name__
def _eval_refine(self, assumptions):
from sympy.assumptions.ask import ask, Q
b, e = self.as_base_exp()
if ask(Q.integer(e), assumptions) and _coeff_isneg(b):
if ask(Q.even(e), assumptions):
return Pow(-b, e)
elif ask(Q.odd(e), assumptions):
return -Pow(-b, e)
def _eval_power(self, other):
from sympy import arg, exp, floor, im, log, re, sign
b, e = self.as_base_exp()
if b is S.NaN:
return (b**e)**other # let __new__ handle it
s = None
if other.is_integer:
s = 1
elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
s = 1
elif e.is_extended_real is not None:
# helper functions ===========================
def _half(e):
"""Return True if the exponent has a literal 2 as the
denominator, else None."""
if getattr(e, 'q', None) == 2:
return True
n, d = e.as_numer_denom()
if n.is_integer and d == 2:
return True
def _n2(e):
"""Return ``e`` evaluated to a Number with 2 significant
digits, else None."""
try:
rv = e.evalf(2, strict=True)
if rv.is_Number:
return rv
except PrecisionExhausted:
pass
# ===================================================
if e.is_extended_real:
# we need _half(other) with constant floor or
# floor(S.Half - e*arg(b)/2/pi) == 0
# handle -1 as special case
if e == -1:
# floor arg. is 1/2 + arg(b)/2/pi
if _half(other):
if b.is_negative is True:
return S.NegativeOne**other*Pow(-b, e*other)
elif b.is_negative is False:
return Pow(b, -other)
elif e.is_even:
if b.is_extended_real:
b = abs(b)
if b.is_imaginary:
b = abs(im(b))*S.ImaginaryUnit
if (abs(e) < 1) == True or e == 1:
s = 1 # floor = 0
elif b.is_extended_nonnegative:
s = 1 # floor = 0
elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
s = 1 # floor = 0
elif fuzzy_not(im(b).is_zero) and abs(e) == 2:
s = 1 # floor = 0
elif _half(other):
s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
S.Half - e*arg(b)/(2*S.Pi)))
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
else:
# e.is_extended_real is False requires:
# _half(other) with constant floor or
# floor(S.Half - im(e*log(b))/2/pi) == 0
try:
s = exp(2*S.ImaginaryUnit*S.Pi*other*
floor(S.Half - im(e*log(b))/2/S.Pi))
# be careful to test that s is -1 or 1 b/c sign(I) == I:
# so check that s is real
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
except PrecisionExhausted:
s = None
if s is not None:
return s*Pow(b, e*other)
def _eval_Mod(self, q):
r"""A dispatched function to compute `b^e \bmod q`, dispatched
by ``Mod``.
Notes
=====
Algorithms:
1. For unevaluated integer power, use built-in ``pow`` function
with 3 arguments, if powers are not too large wrt base.
2. For very large powers, use totient reduction if e >= lg(m).
Bound on m, is for safe factorization memory wise ie m^(1/4).
For pollard-rho to be faster than built-in pow lg(e) > m^(1/4)
check is added.
3. For any unevaluated power found in `b` or `e`, the step 2
will be recursed down to the base and the exponent
such that the `b \bmod q` becomes the new base and
``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then
the computation for the reduced expression can be done.
"""
from sympy.ntheory import totient
from .mod import Mod
base, exp = self.base, self.exp
if exp.is_integer and exp.is_positive:
if q.is_integer and base % q == 0:
return S.Zero
if base.is_Integer and exp.is_Integer and q.is_Integer:
b, e, m = int(base), int(exp), int(q)
mb = m.bit_length()
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
phi = totient(m)
return Integer(pow(b, phi + e%phi, m))
return Integer(pow(b, e, m))
if isinstance(base, Pow) and base.is_integer and base.is_number:
base = Mod(base, q)
return Mod(Pow(base, exp, evaluate=False), q)
if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
bit_length = int(q).bit_length()
# XXX Mod-Pow actually attempts to do a hanging evaluation
# if this dispatched function returns None.
# May need some fixes in the dispatcher itself.
if bit_length <= 80:
phi = totient(q)
exp = phi + Mod(exp, phi)
return Mod(Pow(base, exp, evaluate=False), q)
def _eval_is_even(self):
if self.exp.is_integer and self.exp.is_positive:
return self.base.is_even
def _eval_is_negative(self):
ext_neg = Pow._eval_is_extended_negative(self)
if ext_neg is True:
return self.is_finite
return ext_neg
def _eval_is_positive(self):
ext_pos = Pow._eval_is_extended_positive(self)
if ext_pos is True:
return self.is_finite
return ext_pos
def _eval_is_extended_positive(self):
from sympy import log
if self.base == self.exp:
if self.base.is_extended_nonnegative:
return True
elif self.base.is_positive:
if self.exp.is_real:
return True
elif self.base.is_extended_negative:
if self.exp.is_even:
return True
if self.exp.is_odd:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return self.exp.is_zero
elif self.base.is_extended_nonpositive:
if self.exp.is_odd:
return False
elif self.base.is_imaginary:
if self.exp.is_integer:
m = self.exp % 4
if m.is_zero:
return True
if m.is_integer and m.is_zero is False:
return False
if self.exp.is_imaginary:
return log(self.base).is_imaginary
def _eval_is_extended_negative(self):
if self.exp is S(1)/2:
if self.base.is_complex or self.base.is_extended_real:
return False
if self.base.is_extended_negative:
if self.exp.is_odd and self.base.is_finite:
return True
if self.exp.is_even:
return False
elif self.base.is_extended_positive:
if self.exp.is_extended_real:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return False
elif self.base.is_extended_nonnegative:
if self.exp.is_extended_nonnegative:
return False
elif self.base.is_extended_nonpositive:
if self.exp.is_even:
return False
elif self.base.is_extended_real:
if self.exp.is_even:
return False
def _eval_is_zero(self):
if self.base.is_zero:
if self.exp.is_extended_positive:
return True
elif self.exp.is_extended_nonpositive:
return False
elif self.base.is_zero is False:
if self.base.is_finite and self.exp.is_finite:
return False
elif self.exp.is_negative:
return self.base.is_infinite
elif self.exp.is_nonnegative:
return False
elif self.exp.is_infinite and self.exp.is_extended_real:
if (1 - abs(self.base)).is_extended_positive:
return self.exp.is_extended_positive
elif (1 - abs(self.base)).is_extended_negative:
return self.exp.is_extended_negative
else: # when self.base.is_zero is None
if self.base.is_finite and self.exp.is_negative:
return False
def _eval_is_integer(self):
b, e = self.args
if b.is_rational:
if b.is_integer is False and e.is_positive:
return False # rat**nonneg
if b.is_integer and e.is_integer:
if b is S.NegativeOne:
return True
if e.is_nonnegative or e.is_positive:
return True
if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
return False
if b.is_Number and e.is_Number:
check = self.func(*self.args)
return check.is_Integer
if e.is_negative and b.is_positive and (b - 1).is_positive:
return False
if e.is_negative and b.is_negative and (b + 1).is_negative:
return False
def _eval_is_extended_real(self):
from sympy import arg, exp, log, Mul
real_b = self.base.is_extended_real
if real_b is None:
if self.base.func == exp and self.base.args[0].is_imaginary:
return self.exp.is_imaginary
return
real_e = self.exp.is_extended_real
if real_e is None:
return
if real_b and real_e:
if self.base.is_extended_positive:
return True
elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
return True
elif self.exp.is_integer and self.base.is_extended_nonzero:
return True
elif self.exp.is_integer and self.exp.is_nonnegative:
return True
elif self.base.is_extended_negative:
if self.exp.is_Rational:
return False
if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
return Pow(self.base, -self.exp).is_extended_real
im_b = self.base.is_imaginary
im_e = self.exp.is_imaginary
if im_b:
if self.exp.is_integer:
if self.exp.is_even:
return True
elif self.exp.is_odd:
return False
elif im_e and log(self.base).is_imaginary:
return True
elif self.exp.is_Add:
c, a = self.exp.as_coeff_Add()
if c and c.is_Integer:
return Mul(
self.base**c, self.base**a, evaluate=False).is_extended_real
elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
if (self.exp/2).is_integer is False:
return False
if real_b and im_e:
if self.base is S.NegativeOne:
return True
c = self.exp.coeff(S.ImaginaryUnit)
if c:
if self.base.is_rational and c.is_rational:
if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
return False
ok = (c*log(self.base)/S.Pi).is_integer
if ok is not None:
return ok
if real_b is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
if i.is_complex: # finite
return i.is_integer
def _eval_is_complex(self):
if all(a.is_complex for a in self.args) and self._eval_is_finite():
return True
def _eval_is_imaginary(self):
from sympy import arg, log
if self.base.is_imaginary:
if self.exp.is_integer:
odd = self.exp.is_odd
if odd is not None:
return odd
return
if self.exp.is_imaginary:
imlog = log(self.base).is_imaginary
if imlog is not None:
return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
if self.base.is_extended_real and self.exp.is_extended_real:
if self.base.is_positive:
return False
else:
rat = self.exp.is_rational
if not rat:
return rat
if self.exp.is_integer:
return False
else:
half = (2*self.exp).is_integer
if half:
return self.base.is_negative
return half
if self.base.is_extended_real is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
isodd = (2*i).is_odd
if isodd is not None:
return isodd
if self.exp.is_negative:
return (1/self).is_imaginary
def _eval_is_odd(self):
if self.exp.is_integer:
if self.exp.is_positive:
return self.base.is_odd
elif self.exp.is_nonnegative and self.base.is_odd:
return True
elif self.base is S.NegativeOne:
return True
def _eval_is_finite(self):
if self.exp.is_negative:
if self.base.is_zero:
return False
if self.base.is_infinite or self.base.is_nonzero:
return True
c1 = self.base.is_finite
if c1 is None:
return
c2 = self.exp.is_finite
if c2 is None:
return
if c1 and c2:
if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
return True
def _eval_is_prime(self):
'''
An integer raised to the n(>=2)-th power cannot be a prime.
'''
if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
return False
def _eval_is_composite(self):
"""
A power is composite if both base and exponent are greater than 1
"""
if (self.base.is_integer and self.exp.is_integer and
((self.base - 1).is_positive and (self.exp - 1).is_positive or
(self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
return True
def _eval_is_polar(self):
return self.base.is_polar
def _eval_subs(self, old, new):
from sympy import exp, log, Symbol
def _check(ct1, ct2, old):
"""Return (bool, pow, remainder_pow) where, if bool is True, then the
exponent of Pow `old` will combine with `pow` so the substitution
is valid, otherwise bool will be False.
For noncommutative objects, `pow` will be an integer, and a factor
`Pow(old.base, remainder_pow)` needs to be included. If there is
no such factor, None is returned. For commutative objects,
remainder_pow is always None.
cti are the coefficient and terms of an exponent of self or old
In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
will give y**2 since (b**x)**2 == b**(2*x); if that equality does
not hold then the substitution should not occur so `bool` will be
False.
"""
coeff1, terms1 = ct1
coeff2, terms2 = ct2
if terms1 == terms2:
if old.is_commutative:
# Allow fractional powers for commutative objects
pow = coeff1/coeff2
try:
as_int(pow, strict=False)
combines = True
except ValueError:
combines = isinstance(Pow._eval_power(
Pow(*old.as_base_exp(), evaluate=False),
pow), (Pow, exp, Symbol))
return combines, pow, None
else:
# With noncommutative symbols, substitute only integer powers
if not isinstance(terms1, tuple):
terms1 = (terms1,)
if not all(term.is_integer for term in terms1):
return False, None, None
try:
# Round pow toward zero
pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
if pow < 0 and remainder != 0:
pow += 1
remainder -= as_int(coeff2)
if remainder == 0:
remainder_pow = None
else:
remainder_pow = Mul(remainder, *terms1)
return True, pow, remainder_pow
except ValueError:
# Can't substitute
pass
return False, None, None
if old == self.base:
return new**self.exp._subs(old, new)
# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
if isinstance(old, self.func) and self.exp == old.exp:
l = log(self.base, old.base)
if l.is_Number:
return Pow(new, l)
if isinstance(old, self.func) and self.base == old.base:
if self.exp.is_Add is False:
ct1 = self.exp.as_independent(Symbol, as_Add=False)
ct2 = old.exp.as_independent(Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
result = self.func(new, pow)
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
oarg = old.exp
new_l = []
o_al = []
ct2 = oarg.as_coeff_mul()
for a in self.exp.args:
newa = a._subs(old, new)
ct1 = newa.as_coeff_mul()
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
new_l.append(new**pow)
if remainder_pow is not None:
o_al.append(remainder_pow)
continue
elif not old.is_commutative and not newa.is_integer:
# If any term in the exponent is non-integer,
# we do not do any substitutions in the noncommutative case
return
o_al.append(newa)
if new_l:
expo = Add(*o_al)
new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
return Mul(*new_l)
if isinstance(old, exp) and self.exp.is_extended_real and self.base.is_positive:
ct1 = old.args[0].as_independent(Symbol, as_Add=False)
ct2 = (self.exp*log(self.base)).as_independent(
Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
def as_base_exp(self):
"""Return base and exp of self.
If base is 1/Integer, then return Integer, -exp. If this extra
processing is not needed, the base and exp properties will
give the raw arguments
Examples
========
>>> from sympy import Pow, S
>>> p = Pow(S.Half, 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
"""
b, e = self.args
if b.is_Rational and b.p == 1 and b.q != 1:
return Integer(b.q), -e
return b, e
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import adjoint
i, p = self.exp.is_integer, self.base.is_positive
if i:
return adjoint(self.base)**self.exp
if p:
return self.base**adjoint(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return adjoint(expanded)
def _eval_conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
i, p = self.exp.is_integer, self.base.is_positive
if i:
return c(self.base)**self.exp
if p:
return self.base**c(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return c(expanded)
if self.is_extended_real:
return self
def _eval_transpose(self):
from sympy.functions.elementary.complexes import transpose
i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
if p:
return self.base**self.exp
if i:
return transpose(self.base)**self.exp
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return transpose(expanded)
def _eval_expand_power_exp(self, **hints):
"""a**(n + m) -> a**n*a**m"""
b = self.base
e = self.exp
if e.is_Add and e.is_commutative:
expr = []
for x in e.args:
expr.append(self.func(self.base, x))
return Mul(*expr)
return self.func(b, e)
def _eval_expand_power_base(self, **hints):
"""(a*b)**n -> a**n * b**n"""
force = hints.get('force', False)
b = self.base
e = self.exp
if not b.is_Mul:
return self
cargs, nc = b.args_cnc(split_1=False)
# expand each term - this is top-level-only
# expansion but we have to watch out for things
# that don't have an _eval_expand method
if nc:
nc = [i._eval_expand_power_base(**hints)
if hasattr(i, '_eval_expand_power_base') else i
for i in nc]
if e.is_Integer:
if e.is_positive:
rv = Mul(*nc*e)
else:
rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
if cargs:
rv *= Mul(*cargs)**e
return rv
if not cargs:
return self.func(Mul(*nc), e, evaluate=False)
nc = [Mul(*nc)]
# sift the commutative bases
other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
binary=True)
def pred(x):
if x is S.ImaginaryUnit:
return S.ImaginaryUnit
polar = x.is_polar
if polar:
return True
if polar is None:
return fuzzy_bool(x.is_extended_nonnegative)
sifted = sift(maybe_real, pred)
nonneg = sifted[True]
other += sifted[None]
neg = sifted[False]
imag = sifted[S.ImaginaryUnit]
if imag:
I = S.ImaginaryUnit
i = len(imag) % 4
if i == 0:
pass
elif i == 1:
other.append(I)
elif i == 2:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
else:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
other.append(I)
del imag
# bring out the bases that can be separated from the base
if force or e.is_integer:
# treat all commutatives the same and put nc in other
cargs = nonneg + neg + other
other = nc
else:
# this is just like what is happening automatically, except
# that now we are doing it for an arbitrary exponent for which
# no automatic expansion is done
assert not e.is_Integer
# handle negatives by making them all positive and putting
# the residual -1 in other
if len(neg) > 1:
o = S.One
if not other and neg[0].is_Number:
o *= neg.pop(0)
if len(neg) % 2:
o = -o
for n in neg:
nonneg.append(-n)
if o is not S.One:
other.append(o)
elif neg and other:
if neg[0].is_Number and neg[0] is not S.NegativeOne:
other.append(S.NegativeOne)
nonneg.append(-neg[0])
else:
other.extend(neg)
else:
other.extend(neg)
del neg
cargs = nonneg
other += nc
rv = S.One
if cargs:
if e.is_Rational:
npow, cargs = sift(cargs, lambda x: x.is_Pow and
x.exp.is_Rational and x.base.is_number,
binary=True)
rv = Mul(*[self.func(b.func(*b.args), e) for b in npow])
rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
if other:
rv *= self.func(Mul(*other), e, evaluate=False)
return rv
def _eval_expand_multinomial(self, **hints):
"""(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
base, exp = self.args
result = self
if exp.is_Rational and exp.p > 0 and base.is_Add:
if not exp.is_Integer:
n = Integer(exp.p // exp.q)
if not n:
return result
else:
radical, result = self.func(base, exp - n), []
expanded_base_n = self.func(base, n)
if expanded_base_n.is_Pow:
expanded_base_n = \
expanded_base_n._eval_expand_multinomial()
for term in Add.make_args(expanded_base_n):
result.append(term*radical)
return Add(*result)
n = int(exp)
if base.is_commutative:
order_terms, other_terms = [], []
for b in base.args:
if b.is_Order:
order_terms.append(b)
else:
other_terms.append(b)
if order_terms:
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
f = Add(*other_terms)
o = Add(*order_terms)
if n == 2:
return expand_multinomial(f**n, deep=False) + n*f*o
else:
g = expand_multinomial(f**(n - 1), deep=False)
return expand_mul(f*g, deep=False) + n*g*o
if base.is_number:
# Efficiently expand expressions of the form (a + b*I)**n
# where 'a' and 'b' are real numbers and 'n' is integer.
a, b = base.as_real_imag()
if a.is_Rational and b.is_Rational:
if not a.is_Integer:
if not b.is_Integer:
k = self.func(a.q * b.q, n)
a, b = a.p*b.q, a.q*b.p
else:
k = self.func(a.q, n)
a, b = a.p, a.q*b
elif not b.is_Integer:
k = self.func(b.q, n)
a, b = a*b.q, b.p
else:
k = 1
a, b, c, d = int(a), int(b), 1, 0
while n:
if n & 1:
c, d = a*c - b*d, b*c + a*d
n -= 1
a, b = a*a - b*b, 2*a*b
n //= 2
I = S.ImaginaryUnit
if k == 1:
return c + I*d
else:
return Integer(c)/k + I*d/k
p = other_terms
# (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
# in this particular example:
# p = [x,y]; n = 3
# so now it's easy to get the correct result -- we get the
# coefficients first:
from sympy import multinomial_coefficients
from sympy.polys.polyutils import basic_from_dict
expansion_dict = multinomial_coefficients(len(p), n)
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
# and now construct the expression.
return basic_from_dict(expansion_dict, *p)
else:
if n == 2:
return Add(*[f*g for f in base.args for g in base.args])
else:
multi = (base**(n - 1))._eval_expand_multinomial()
if multi.is_Add:
return Add(*[f*g for f in base.args
for g in multi.args])
else:
# XXX can this ever happen if base was an Add?
return Add(*[f*multi for f in base.args])
elif (exp.is_Rational and exp.p < 0 and base.is_Add and
abs(exp.p) > exp.q):
return 1 / self.func(base, -exp)._eval_expand_multinomial()
elif exp.is_Add and base.is_Number:
# a + b a b
# n --> n n , where n, a, b are Numbers
coeff, tail = S.One, S.Zero
for term in exp.args:
if term.is_Number:
coeff *= self.func(base, term)
else:
tail += term
return coeff * self.func(base, tail)
else:
return result
def as_real_imag(self, deep=True, **hints):
from sympy import atan2, cos, im, re, sin
from sympy.polys.polytools import poly
if self.exp.is_Integer:
exp = self.exp
re_e, im_e = self.base.as_real_imag(deep=deep)
if not im_e:
return self, S.Zero
a, b = symbols('a b', cls=Dummy)
if exp >= 0:
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
if expr != self:
return expr.as_real_imag()
expr = poly(
(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re_e**2 + im_e**2
re_e, im_e = re_e/mag, -im_e/mag
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
if expr != self:
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms with odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
elif self.exp.is_Rational:
re_e, im_e = self.base.as_real_imag(deep=deep)
if im_e.is_zero and self.exp is S.Half:
if re_e.is_extended_nonnegative:
return self, S.Zero
if re_e.is_extended_nonpositive:
return S.Zero, (-self.base)**self.exp
# XXX: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
t = atan2(im_e, re_e)
rp, tp = self.func(r, self.exp), t*self.exp
return (rp*cos(tp), rp*sin(tp))
else:
if deep:
hints['complex'] = False
expanded = self.expand(deep, **hints)
if hints.get('ignore') == expanded:
return None
else:
return (re(expanded), im(expanded))
else:
return (re(self), im(self))
def _eval_derivative(self, s):
from sympy import log
dbase = self.base.diff(s)
dexp = self.exp.diff(s)
return self * (dexp * log(self.base) + dbase * self.exp/self.base)
def _eval_evalf(self, prec):
base, exp = self.as_base_exp()
base = base._evalf(prec)
if not exp.is_Integer:
exp = exp._evalf(prec)
if exp.is_negative and base.is_number and base.is_extended_real is False:
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
exp = -exp
return self.func(base, exp).expand()
return self.func(base, exp)
def _eval_is_polynomial(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return bool(self.base._eval_is_polynomial(syms) and
self.exp.is_Integer and (self.exp >= 0))
else:
return True
def _eval_is_rational(self):
# The evaluation of self.func below can be very expensive in the case
# of integer**integer if the exponent is large. We should try to exit
# before that if possible:
if (self.exp.is_integer and self.base.is_rational
and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
return True
p = self.func(*self.as_base_exp()) # in case it's unevaluated
if not p.is_Pow:
return p.is_rational
b, e = p.as_base_exp()
if e.is_Rational and b.is_Rational:
# we didn't check that e is not an Integer
# because Rational**Integer autosimplifies
return False
if e.is_integer:
if b.is_rational:
if fuzzy_not(b.is_zero) or e.is_nonnegative:
return True
if b == e: # always rational, even for 0**0
return True
elif b.is_irrational:
return e.is_zero
def _eval_is_algebraic(self):
def _is_one(expr):
try:
return (expr - 1).is_zero
except ValueError:
# when the operation is not allowed
return False
if self.base.is_zero or _is_one(self.base):
return True
elif self.exp.is_rational:
if self.base.is_algebraic is False:
return self.exp.is_zero
if self.base.is_zero is False:
if self.exp.is_nonzero:
return self.base.is_algebraic
elif self.base.is_algebraic:
return True
if self.exp.is_positive:
return self.base.is_algebraic
elif self.base.is_algebraic and self.exp.is_algebraic:
if ((fuzzy_not(self.base.is_zero)
and fuzzy_not(_is_one(self.base)))
or self.base.is_integer is False
or self.base.is_irrational):
return self.exp.is_rational
def _eval_is_rational_function(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_rational_function(syms) and \
self.exp.is_Integer
else:
return True
def _eval_is_meromorphic(self, x, a):
# f**g is meromorphic if g is an integer and f is meromorphic.
# E**(log(f)*g) is meromorphic if log(f)*g is meromorphic
# and finite.
base_merom = self.base._eval_is_meromorphic(x, a)
exp_integer = self.exp.is_Integer
if exp_integer:
return base_merom
exp_merom = self.exp._eval_is_meromorphic(x, a)
if base_merom is False:
# f**g = E**(log(f)*g) may be meromorphic if the
# singularities of log(f) and g cancel each other,
# for example, if g = 1/log(f). Hence,
return False if exp_merom else None
elif base_merom is None:
return None
b = self.base.subs(x, a)
# b is extended complex as base is meromorphic.
# log(base) is finite and meromorphic when b != 0, zoo.
b_zero = b.is_zero
if b_zero:
log_defined = False
else:
log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero)))
if log_defined is False: # zero or pole of base
return exp_integer # False or None
elif log_defined is None:
return None
if not exp_merom:
return exp_merom # False or None
return self.exp.subs(x, a).is_finite
def _eval_is_algebraic_expr(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_algebraic_expr(syms) and \
self.exp.is_Rational
else:
return True
def _eval_rewrite_as_exp(self, base, expo, **kwargs):
from sympy import exp, log, I, arg
if base.is_zero or base.has(exp) or expo.has(exp):
return base**expo
if base.has(Symbol):
# delay evaluation if expo is non symbolic
# (as exp(x*log(5)) automatically reduces to x**5)
return exp(log(base)*expo, evaluate=expo.has(Symbol))
else:
return exp((log(abs(base)) + I*arg(base))*expo)
def as_numer_denom(self):
if not self.is_commutative:
return self, S.One
base, exp = self.as_base_exp()
n, d = base.as_numer_denom()
# this should be the same as ExpBase.as_numer_denom wrt
# exponent handling
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
int_exp = exp.is_integer
# the denominator cannot be separated from the numerator if
# its sign is unknown unless the exponent is an integer, e.g.
# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
# denominator is negative the numerator and denominator can
# be negated and the denominator (now positive) separated.
if not (d.is_extended_real or int_exp):
n = base
d = S.One
dnonpos = d.is_nonpositive
if dnonpos:
n, d = -n, -d
elif dnonpos is None and not int_exp:
n = base
d = S.One
if neg_exp:
n, d = d, n
exp = -exp
if exp.is_infinite:
if n is S.One and d is not S.One:
return n, self.func(d, exp)
if n is not S.One and d is S.One:
return self.func(n, exp), d
return self.func(n, exp), self.func(d, exp)
def matches(self, expr, repl_dict={}, old=False):
expr = _sympify(expr)
repl_dict = repl_dict.copy()
# special case, pattern = 1 and expr.exp can match to 0
if expr is S.One:
d = self.exp.matches(S.Zero, repl_dict)
if d is not None:
return d
# make sure the expression to be matched is an Expr
if not isinstance(expr, Expr):
return None
b, e = expr.as_base_exp()
# special case number
sb, se = self.as_base_exp()
if sb.is_Symbol and se.is_Integer and expr:
if e.is_rational:
return sb.matches(b**(e/se), repl_dict)
return sb.matches(expr**(1/se), repl_dict)
d = repl_dict.copy()
d = self.base.matches(b, d)
if d is None:
return None
d = self.exp.xreplace(d).matches(e, d)
if d is None:
return Expr.matches(self, expr, repl_dict)
return d
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE! This function is an important part of the gruntz algorithm
# for computing limits. It has to return a generalized power
# series with coefficients in C(log, log(x)). In more detail:
# It has to return an expression
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i are
# expressions involving only numbers, the log function, and log(x).
# The series expansion of b**e is computed as follows:
# 1) We express b as f*(1 + g) where f is the leading term of b.
# g has order O(x**d) where d is strictly positive.
# 2) Then b**e = (f**e)*((1 + g)**e).
# (1 + g)**e is computed using binomial series.
from sympy import im, I, ceiling, polygamma, limit, logcombine, EulerGamma, exp, nan, zoo, log, factorial, ff, PoleError, O, powdenest, Wild
from itertools import product
self = powdenest(self, force=True).trigsimp()
b, e = self.as_base_exp()
if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN):
raise PoleError()
if e.has(x):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
if logx is not None and b.has(log):
c, ex = symbols('c, ex', cls=Wild, exclude=[x])
b = b.replace(log(c*x**ex), log(c) + ex*logx)
self = b**e
b = b.removeO()
try:
if b.has(polygamma, EulerGamma) and logx is not None:
raise ValueError()
_, m = b.leadterm(x)
except (ValueError, NotImplementedError):
b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO()
if b.has(nan, zoo):
raise NotImplementedError()
_, m = b.leadterm(x)
if e.has(log):
e = logcombine(e).cancel()
if not (m.is_zero or e.is_number and e.is_real):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
f = b.as_leading_term(x)
g = (b/f - S.One).cancel()
maxpow = n - m*e
if maxpow < S.Zero:
return O(x**(m*e), x)
if g.is_zero:
return f**e
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < maxpow:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
try:
_, d = g.leadterm(x)
except (ValueError, NotImplementedError):
if limit(g/x**maxpow, x, 0) == 0:
# g has higher order zero
return f**e + e*f**e*g # first term of binomial series
else:
raise NotImplementedError()
if not d.is_positive:
g = (b - f).simplify()/f
_, d = g.leadterm(x)
if not d.is_positive:
raise NotImplementedError()
gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO()
gterms = {}
for term in Add.make_args(gpoly):
co1, e1 = coeff_exp(term, x)
gterms[e1] = gterms.get(e1, S.Zero) + co1
k = S.One
terms = {S.Zero: S.One}
tk = gterms
while k*d < maxpow:
coeff = ff(e, k)/factorial(k)
for ex in tk:
terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex]
tk = mul(tk, gterms)
k += S.One
if (not e.is_integer and m.is_zero and f.is_real
and f.is_negative and im((b - f).dir(x, cdir)) < 0):
inco, inex = coeff_exp(f**e*exp(-2*e*S.Pi*I), x)
else:
inco, inex = coeff_exp(f**e, x)
res = S.Zero
for e1 in terms:
ex = e1 + inex
res += terms[e1]*inco*x**(ex)
for i in (1, 2, 3):
if (res - self).subs(x, i) is not S.Zero:
res += O(x**n, x)
break
return res
def _eval_as_leading_term(self, x, cdir=0):
from sympy import exp, I, im, log
e = self.exp
b = self.base
if e.has(x):
return exp(e * log(b)).as_leading_term(x, cdir=cdir)
f = b.as_leading_term(x, cdir=cdir)
if (not e.is_integer and f.is_constant() and f.is_real
and f.is_negative and im((b - f).dir(x, cdir)) < 0):
return self.func(f, e)*exp(-2*e*S.Pi*I)
return self.func(f, e)
@cacheit
def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
from sympy import binomial
return binomial(self.exp, n) * self.func(x, n)
def _sage_(self):
return self.args[0]._sage_()**self.args[1]._sage_()
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(2)))
>>> from sympy import expand_power_base, powsimp, Mul
>>> from sympy.abc import x, y
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**((1 + y)/2)).as_content_primitive()
(2, 4**(y/2))
>>> (3**((1 + y)/2)).as_content_primitive()
(1, 3**((y + 1)/2))
>>> (3**((5 + y)/2)).as_content_primitive()
(9, 3**((y + 1)/2))
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq); s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x + 1))**y)
>>> s = expand_power_base(_[1]); s.is_Mul, s
(True, 2**y*(x + 1)**y)
See docstring of Expr.as_content_primitive for more examples.
"""
b, e = self.as_base_exp()
b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
ce, pe = e.as_content_primitive(radical=radical, clear=clear)
if b.is_Rational:
#e
#= ce*pe
#= ce*(h + t)
#= ce*h + ce*t
#=> self
#= b**(ce*h)*b**(ce*t)
#= b**(cehp/cehq)*b**(ce*t)
#= b**(iceh + r/cehq)*b**(ce*t)
#= b**(iceh)*b**(r/cehq)*b**(ce*t)
#= b**(iceh)*b**(ce*t + r/cehq)
h, t = pe.as_coeff_Add()
if h.is_Rational:
ceh = ce*h
c = self.func(b, ceh)
r = S.Zero
if not c.is_Rational:
iceh, r = divmod(ceh.p, ceh.q)
c = self.func(b, iceh)
return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
e = _keep_coeff(ce, pe)
# b**e = (h*t)**e = h**e*t**e = c*m*t**e
if e.is_Rational and b.is_Mul:
h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
c, m = self.func(h, e).as_coeff_Mul() # so c is positive
m, me = m.as_base_exp()
if m is S.One or me == e: # probably always true
# return the following, not return c, m*Pow(t, e)
# which would change Pow into Mul; we let sympy
# decide what to do by using the unevaluated Mul, e.g
# should it stay as sqrt(2 + 2*sqrt(5)) or become
# sqrt(2)*sqrt(1 + sqrt(5))
return c, self.func(_keep_coeff(m, t), e)
return S.One, self.func(b, e)
def is_constant(self, *wrt, **flags):
expr = self
if flags.get('simplify', True):
expr = expr.simplify()
b, e = expr.as_base_exp()
bz = b.equals(0)
if bz: # recalculate with assumptions in case it's unevaluated
new = b**e
if new != expr:
return new.is_constant()
econ = e.is_constant(*wrt)
bcon = b.is_constant(*wrt)
if bcon:
if econ:
return True
bz = b.equals(0)
if bz is False:
return False
elif bcon is None:
return None
return e.equals(0)
def _eval_difference_delta(self, n, step):
b, e = self.args
if e.has(n) and not b.has(n):
new_e = e.subs(n, n + step)
return (b**(new_e - e) - 1) * self
power = Dispatcher('power')
power.add((object, object), Pow)
from .add import Add
from .numbers import Integer
from .mul import Mul, _keep_coeff
from .symbol import Symbol, Dummy, symbols
|
6cc0b9bd0cdcc685bebf2b038dbddf73381c56dde6ac4441c388274f0b747fed | """Tools for manipulating of large commutative expressions. """
from sympy.core.add import Add
from sympy.core.compatibility import iterable, is_sequence, SYMPY_INTS
from sympy.core.mul import Mul, _keep_coeff
from sympy.core.power import Pow
from sympy.core.basic import Basic, preorder_traversal
from sympy.core.expr import Expr
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational, Integer, Number, I
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.coreerrors import NonCommutativeExpression
from sympy.core.containers import Tuple, Dict
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import (common_prefix, common_suffix,
variations, ordered)
from collections import defaultdict
_eps = Dummy(positive=True)
def _isnumber(i):
return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
def _monotonic_sign(self):
"""Return the value closest to 0 that ``self`` may have if all symbols
are signed and the result is uniformly the same sign for all values of symbols.
If a symbol is only signed but not known to be an
integer or the result is 0 then a symbol representative of the sign of self
will be returned. Otherwise, None is returned if a) the sign could be positive
or negative or b) self is not in one of the following forms:
- L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
additive constant; if A is zero then the function can be a monomial whose
sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
nonnegative.
- A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
that does not have a sign change from positive to negative for any set
of values for the variables.
- M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
- A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
- P(x): a univariate polynomial
Examples
========
>>> from sympy.core.exprtools import _monotonic_sign as F
>>> from sympy import Dummy
>>> nn = Dummy(integer=True, nonnegative=True)
>>> p = Dummy(integer=True, positive=True)
>>> p2 = Dummy(integer=True, positive=True)
>>> F(nn + 1)
1
>>> F(p - 1)
_nneg
>>> F(nn*p + 1)
1
>>> F(p2*p + 1)
2
>>> F(nn - 1) # could be negative, zero or positive
"""
if not self.is_extended_real:
return
if (-self).is_Symbol:
rv = _monotonic_sign(-self)
return rv if rv is None else -rv
if not self.is_Add and self.as_numer_denom()[1].is_number:
s = self
if s.is_prime:
if s.is_odd:
return S(3)
else:
return S(2)
elif s.is_composite:
if s.is_odd:
return S(9)
else:
return S(4)
elif s.is_positive:
if s.is_even:
if s.is_prime is False:
return S(4)
else:
return S(2)
elif s.is_integer:
return S.One
else:
return _eps
elif s.is_extended_negative:
if s.is_even:
return S(-2)
elif s.is_integer:
return S.NegativeOne
else:
return -_eps
if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
return S.Zero
return None
# univariate polynomial
free = self.free_symbols
if len(free) == 1:
if self.is_polynomial():
from sympy.polys.polytools import real_roots
from sympy.polys.polyroots import roots
from sympy.polys.polyerrors import PolynomialError
x = free.pop()
x0 = _monotonic_sign(x)
if x0 == _eps or x0 == -_eps:
x0 = S.Zero
if x0 is not None:
d = self.diff(x)
if d.is_number:
currentroots = []
else:
try:
currentroots = real_roots(d)
except (PolynomialError, NotImplementedError):
currentroots = [r for r in roots(d, x) if r.is_extended_real]
y = self.subs(x, x0)
if x.is_nonnegative and all(r <= x0 for r in currentroots):
if y.is_nonnegative and d.is_positive:
if y:
return y if y.is_positive else Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_negative:
if y:
return y if y.is_negative else Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
elif x.is_nonpositive and all(r >= x0 for r in currentroots):
if y.is_nonnegative and d.is_negative:
if y:
return Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_positive:
if y:
return Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
else:
n, d = self.as_numer_denom()
den = None
if n.is_number:
den = _monotonic_sign(d)
elif not d.is_number:
if _monotonic_sign(n) is not None:
den = _monotonic_sign(d)
if den is not None and (den.is_positive or den.is_negative):
v = n*den
if v.is_positive:
return Dummy('pos', positive=True)
elif v.is_nonnegative:
return Dummy('nneg', nonnegative=True)
elif v.is_negative:
return Dummy('neg', negative=True)
elif v.is_nonpositive:
return Dummy('npos', nonpositive=True)
return None
# multivariate
c, a = self.as_coeff_Add()
v = None
if not a.is_polynomial():
# F/A or A/F where A is a number and F is a signed, rational monomial
n, d = a.as_numer_denom()
if not (n.is_number or d.is_number):
return
if (
a.is_Mul or a.is_Pow) and \
a.is_rational and \
all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
(a.is_positive or a.is_negative):
v = S.One
for ai in Mul.make_args(a):
if ai.is_number:
v *= ai
continue
reps = {}
for x in ai.free_symbols:
reps[x] = _monotonic_sign(x)
if reps[x] is None:
return
v *= ai.subs(reps)
elif c:
# signed linear expression
if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
free = list(a.free_symbols)
p = {}
for i in free:
v = _monotonic_sign(i)
if v is None:
return
p[i] = v or (_eps if i.is_nonnegative else -_eps)
v = a.xreplace(p)
if v is not None:
rv = v + c
if v.is_nonnegative and rv.is_positive:
return rv.subs(_eps, 0)
if v.is_nonpositive and rv.is_negative:
return rv.subs(_eps, 0)
def decompose_power(expr):
"""
Decompose power into symbolic base and integer exponent.
This is strictly only valid if the exponent from which
the integer is extracted is itself an integer or the
base is positive. These conditions are assumed and not
checked here.
Examples
========
>>> from sympy.core.exprtools import decompose_power
>>> from sympy.abc import x, y
>>> decompose_power(x)
(x, 1)
>>> decompose_power(x**2)
(x, 2)
>>> decompose_power(x**(2*y))
(x**y, 2)
>>> decompose_power(x**(2*y/3))
(x**(y/3), 2)
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if exp.is_Rational:
if not exp.is_Integer:
base = Pow(base, Rational(1, exp.q))
exp = exp.p
else:
base, exp = expr, 1
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, exp = Pow(base, tail), -1
elif exp is not S.One:
tail = _keep_coeff(Rational(1, exp.q), tail)
base, exp = Pow(base, tail), exp.p
else:
base, exp = expr, 1
return base, exp
def decompose_power_rat(expr):
"""
Decompose power into symbolic base and rational exponent.
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if not exp.is_Rational:
base, exp = expr, 1
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, exp = Pow(base, tail), -1
elif exp is not S.One:
tail = _keep_coeff(Rational(1, exp.q), tail)
base, exp = Pow(base, tail), exp.p
else:
base, exp = expr, 1
return base, exp
class Factors:
"""Efficient representation of ``f_1*f_2*...*f_n``."""
__slots__ = ('factors', 'gens')
def __init__(self, factors=None): # Factors
"""Initialize Factors from dict or expr.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x
>>> from sympy import I
>>> e = 2*x**3
>>> Factors(e)
Factors({2: 1, x: 3})
>>> Factors(e.as_powers_dict())
Factors({2: 1, x: 3})
>>> f = _
>>> f.factors # underlying dictionary
{2: 1, x: 3}
>>> f.gens # base of each factor
frozenset({2, x})
>>> Factors(0)
Factors({0: 1})
>>> Factors(I)
Factors({I: 1})
Notes
=====
Although a dictionary can be passed, only minimal checking is
performed: powers of -1 and I are made canonical.
"""
if isinstance(factors, (SYMPY_INTS, float)):
factors = S(factors)
if isinstance(factors, Factors):
factors = factors.factors.copy()
elif factors is None or factors is S.One:
factors = {}
elif factors is S.Zero or factors == 0:
factors = {S.Zero: S.One}
elif isinstance(factors, Number):
n = factors
factors = {}
if n < 0:
factors[S.NegativeOne] = S.One
n = -n
if n is not S.One:
if n.is_Float or n.is_Integer or n is S.Infinity:
factors[n] = S.One
elif n.is_Rational:
# since we're processing Numbers, the denominator is
# stored with a negative exponent; all other factors
# are left .
if n.p != 1:
factors[Integer(n.p)] = S.One
factors[Integer(n.q)] = S.NegativeOne
else:
raise ValueError('Expected Float|Rational|Integer, not %s' % n)
elif isinstance(factors, Basic) and not factors.args:
factors = {factors: S.One}
elif isinstance(factors, Expr):
c, nc = factors.args_cnc()
i = c.count(I)
for _ in range(i):
c.remove(I)
factors = dict(Mul._from_args(c).as_powers_dict())
# Handle all rational Coefficients
for f in list(factors.keys()):
if isinstance(f, Rational) and not isinstance(f, Integer):
p, q = Integer(f.p), Integer(f.q)
factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
factors.pop(f)
if i:
factors[I] = S.One*i
if nc:
factors[Mul(*nc, evaluate=False)] = S.One
else:
factors = factors.copy() # /!\ should be dict-like
# tidy up -/+1 and I exponents if Rational
handle = []
for k in factors:
if k is I or k in (-1, 1):
handle.append(k)
if handle:
i1 = S.One
for k in handle:
if not _isnumber(factors[k]):
continue
i1 *= k**factors.pop(k)
if i1 is not S.One:
for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
if a is S.NegativeOne:
factors[a] = S.One
elif a is I:
factors[I] = S.One
elif a.is_Pow:
if S.NegativeOne not in factors:
factors[S.NegativeOne] = S.Zero
factors[S.NegativeOne] += a.exp
elif a == 1:
factors[a] = S.One
elif a == -1:
factors[-a] = S.One
factors[S.NegativeOne] = S.One
else:
raise ValueError('unexpected factor in i1: %s' % a)
self.factors = factors
keys = getattr(factors, 'keys', None)
if keys is None:
raise TypeError('expecting Expr or dictionary')
self.gens = frozenset(keys())
def __hash__(self): # Factors
keys = tuple(ordered(self.factors.keys()))
values = [self.factors[k] for k in keys]
return hash((keys, values))
def __repr__(self): # Factors
return "Factors({%s})" % ', '.join(
['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
@property
def is_zero(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(0).is_zero
True
"""
f = self.factors
return len(f) == 1 and S.Zero in f
@property
def is_one(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(1).is_one
True
"""
return not self.factors
def as_expr(self): # Factors
"""Return the underlying expression.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> Factors((x*y**2).as_powers_dict()).as_expr()
x*y**2
"""
args = []
for factor, exp in self.factors.items():
if exp != 1:
if isinstance(exp, Integer):
b, e = factor.as_base_exp()
e = _keep_coeff(exp, e)
args.append(b**e)
else:
args.append(factor**exp)
else:
args.append(factor)
return Mul(*args)
def mul(self, other): # Factors
"""Return Factors of ``self * other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.mul(b)
Factors({x: 2, y: 3, z: -1})
>>> a*b
Factors({x: 2, y: 3, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = factors[factor] + exp
if not exp:
del factors[factor]
continue
factors[factor] = exp
return Factors(factors)
def normal(self, other):
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
The only differences between this and method ``div`` is that this
is 1) optimized for the case when there are few factors in common and
2) this does not raise an error if ``other`` is zero.
See Also
========
div
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return (Factors(), Factors(S.Zero))
if self.is_zero:
return (Factors(S.Zero), Factors())
self_factors = dict(self.factors)
other_factors = dict(other.factors)
for factor, self_exp in self.factors.items():
try:
other_exp = other.factors[factor]
except KeyError:
continue
exp = self_exp - other_exp
if not exp:
del self_factors[factor]
del other_factors[factor]
elif _isnumber(exp):
if exp > 0:
self_factors[factor] = exp
del other_factors[factor]
else:
del self_factors[factor]
other_factors[factor] = -exp
else:
r = self_exp.extract_additively(other_exp)
if r is not None:
if r:
self_factors[factor] = r
del other_factors[factor]
else: # should be handled already
del self_factors[factor]
del other_factors[factor]
else:
sc, sa = self_exp.as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
self_factors[factor] -= oc
other_exp = oa
elif diff < 0:
self_factors[factor] -= sc
other_factors[factor] -= sc
other_exp = oa - diff
else:
self_factors[factor] = sa
other_exp = oa
if other_exp:
other_factors[factor] = other_exp
else:
del other_factors[factor]
return Factors(self_factors), Factors(other_factors)
def div(self, other): # Factors
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
This is optimized for the case when there are many factors in common.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> a = Factors((x*y**2).as_powers_dict())
>>> a.div(a)
(Factors({}), Factors({}))
>>> a.div(x*z)
(Factors({y: 2}), Factors({z: 1}))
The ``/`` operator only gives ``quo``:
>>> a/x
Factors({y: 2})
Factors treats its factors as though they are all in the numerator, so
if you violate this assumption the results will be correct but will
not strictly correspond to the numerator and denominator of the ratio:
>>> a.div(x/z)
(Factors({y: 2}), Factors({z: -1}))
Factors is also naive about bases: it does not attempt any denesting
of Rational-base terms, for example the following does not become
2**(2*x)/2.
>>> Factors(2**(2*x + 2)).div(S(8))
(Factors({2: 2*x + 2}), Factors({8: 1}))
factor_terms can clean up such Rational-bases powers:
>>> from sympy.core.exprtools import factor_terms
>>> n, d = Factors(2**(2*x + 2)).div(S(8))
>>> n.as_expr()/d.as_expr()
2**(2*x + 2)/8
>>> factor_terms(_)
2**(2*x)/2
"""
quo, rem = dict(self.factors), {}
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
raise ZeroDivisionError
if self.is_zero:
return (Factors(S.Zero), Factors())
for factor, exp in other.factors.items():
if factor in quo:
d = quo[factor] - exp
if _isnumber(d):
if d <= 0:
del quo[factor]
if d >= 0:
if d:
quo[factor] = d
continue
exp = -d
else:
r = quo[factor].extract_additively(exp)
if r is not None:
if r:
quo[factor] = r
else: # should be handled already
del quo[factor]
else:
other_exp = exp
sc, sa = quo[factor].as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
quo[factor] -= oc
other_exp = oa
elif diff < 0:
quo[factor] -= sc
other_exp = oa - diff
else:
quo[factor] = sa
other_exp = oa
if other_exp:
rem[factor] = other_exp
else:
assert factor not in rem
continue
rem[factor] = exp
return Factors(quo), Factors(rem)
def quo(self, other): # Factors
"""Return numerator Factor of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.quo(b) # same as a/b
Factors({y: 1})
"""
return self.div(other)[0]
def rem(self, other): # Factors
"""Return denominator Factors of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.rem(b)
Factors({z: -1})
>>> a.rem(a)
Factors({})
"""
return self.div(other)[1]
def pow(self, other): # Factors
"""Return self raised to a non-negative integer power.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> a = Factors((x*y**2).as_powers_dict())
>>> a**2
Factors({x: 2, y: 4})
"""
if isinstance(other, Factors):
other = other.as_expr()
if other.is_Integer:
other = int(other)
if isinstance(other, SYMPY_INTS) and other >= 0:
factors = {}
if other:
for factor, exp in self.factors.items():
factors[factor] = exp*other
return Factors(factors)
else:
raise ValueError("expected non-negative integer, got %s" % other)
def gcd(self, other): # Factors
"""Return Factors of ``gcd(self, other)``. The keys are
the intersection of factors with the minimum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.gcd(b)
Factors({x: 1, y: 1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return Factors(self.factors)
factors = {}
for factor, exp in self.factors.items():
factor, exp = sympify(factor), sympify(exp)
if factor in other.factors:
lt = (exp - other.factors[factor]).is_negative
if lt == True:
factors[factor] = exp
elif lt == False:
factors[factor] = other.factors[factor]
return Factors(factors)
def lcm(self, other): # Factors
"""Return Factors of ``lcm(self, other)`` which are
the union of factors with the maximum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.lcm(b)
Factors({x: 1, y: 2, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = max(exp, factors[factor])
factors[factor] = exp
return Factors(factors)
def __mul__(self, other): # Factors
return self.mul(other)
def __divmod__(self, other): # Factors
return self.div(other)
def __truediv__(self, other): # Factors
return self.quo(other)
def __mod__(self, other): # Factors
return self.rem(other)
def __pow__(self, other): # Factors
return self.pow(other)
def __eq__(self, other): # Factors
if not isinstance(other, Factors):
other = Factors(other)
return self.factors == other.factors
def __ne__(self, other): # Factors
return not self == other
class Term:
"""Efficient representation of ``coeff*(numer/denom)``. """
__slots__ = ('coeff', 'numer', 'denom')
def __init__(self, term, numer=None, denom=None): # Term
if numer is None and denom is None:
if not term.is_commutative:
raise NonCommutativeExpression(
'commutative expression expected')
coeff, factors = term.as_coeff_mul()
numer, denom = defaultdict(int), defaultdict(int)
for factor in factors:
base, exp = decompose_power(factor)
if base.is_Add:
cont, base = base.primitive()
coeff *= cont**exp
if exp > 0:
numer[base] += exp
else:
denom[base] += -exp
numer = Factors(numer)
denom = Factors(denom)
else:
coeff = term
if numer is None:
numer = Factors()
if denom is None:
denom = Factors()
self.coeff = coeff
self.numer = numer
self.denom = denom
def __hash__(self): # Term
return hash((self.coeff, self.numer, self.denom))
def __repr__(self): # Term
return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
def as_expr(self): # Term
return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
def mul(self, other): # Term
coeff = self.coeff*other.coeff
numer = self.numer.mul(other.numer)
denom = self.denom.mul(other.denom)
numer, denom = numer.normal(denom)
return Term(coeff, numer, denom)
def inv(self): # Term
return Term(1/self.coeff, self.denom, self.numer)
def quo(self, other): # Term
return self.mul(other.inv())
def pow(self, other): # Term
if other < 0:
return self.inv().pow(-other)
else:
return Term(self.coeff ** other,
self.numer.pow(other),
self.denom.pow(other))
def gcd(self, other): # Term
return Term(self.coeff.gcd(other.coeff),
self.numer.gcd(other.numer),
self.denom.gcd(other.denom))
def lcm(self, other): # Term
return Term(self.coeff.lcm(other.coeff),
self.numer.lcm(other.numer),
self.denom.lcm(other.denom))
def __mul__(self, other): # Term
if isinstance(other, Term):
return self.mul(other)
else:
return NotImplemented
def __truediv__(self, other): # Term
if isinstance(other, Term):
return self.quo(other)
else:
return NotImplemented
def __pow__(self, other): # Term
if isinstance(other, SYMPY_INTS):
return self.pow(other)
else:
return NotImplemented
def __eq__(self, other): # Term
return (self.coeff == other.coeff and
self.numer == other.numer and
self.denom == other.denom)
def __ne__(self, other): # Term
return not self == other
def _gcd_terms(terms, isprimitive=False, fraction=True):
"""Helper function for :func:`gcd_terms`.
If ``isprimitive`` is True then the call to primitive
for an Add will be skipped. This is useful when the
content has already been extrated.
If ``fraction`` is True then the expression will appear over a common
denominator, the lcm of all term denominators.
"""
if isinstance(terms, Basic) and not isinstance(terms, Tuple):
terms = Add.make_args(terms)
terms = list(map(Term, [t for t in terms if t]))
# there is some simplification that may happen if we leave this
# here rather than duplicate it before the mapping of Term onto
# the terms
if len(terms) == 0:
return S.Zero, S.Zero, S.One
if len(terms) == 1:
cont = terms[0].coeff
numer = terms[0].numer.as_expr()
denom = terms[0].denom.as_expr()
else:
cont = terms[0]
for term in terms[1:]:
cont = cont.gcd(term)
for i, term in enumerate(terms):
terms[i] = term.quo(cont)
if fraction:
denom = terms[0].denom
for term in terms[1:]:
denom = denom.lcm(term.denom)
numers = []
for term in terms:
numer = term.numer.mul(denom.quo(term.denom))
numers.append(term.coeff*numer.as_expr())
else:
numers = [t.as_expr() for t in terms]
denom = Term(S.One).numer
cont = cont.as_expr()
numer = Add(*numers)
denom = denom.as_expr()
if not isprimitive and numer.is_Add:
_cont, numer = numer.primitive()
cont *= _cont
return cont, numer, denom
def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
"""Compute the GCD of ``terms`` and put them together.
``terms`` can be an expression or a non-Basic sequence of expressions
which will be handled as though they are terms from a sum.
If ``isprimitive`` is True the _gcd_terms will not run the primitive
method on the terms.
``clear`` controls the removal of integers from the denominator of an Add
expression. When True (default), all numerical denominator will be cleared;
when False the denominators will be cleared only if all terms had numerical
denominators other than 1.
``fraction``, when True (default), will put the expression over a common
denominator.
Examples
========
>>> from sympy.core import gcd_terms
>>> from sympy.abc import x, y
>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
y*(x + 1)*(x + y + 1)
>>> gcd_terms(x/2 + 1)
(x + 2)/2
>>> gcd_terms(x/2 + 1, clear=False)
x/2 + 1
>>> gcd_terms(x/2 + y/2, clear=False)
(x + y)/2
>>> gcd_terms(x/2 + 1/x)
(x**2 + 2)/(2*x)
>>> gcd_terms(x/2 + 1/x, fraction=False)
(x + 2/x)/2
>>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
x/2 + 1/x
>>> gcd_terms(x/2/y + 1/x/y)
(x**2 + 2)/(2*x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False)
(x**2/2 + 1)/(x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
(x/2 + 1/x)/y
The ``clear`` flag was ignored in this case because the returned
expression was a rational expression, not a simple sum.
See Also
========
factor_terms, sympy.polys.polytools.terms_gcd
"""
def mask(terms):
"""replace nc portions of each term with a unique Dummy symbols
and return the replacements to restore them"""
args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
reps = []
for i, (c, nc) in enumerate(args):
if nc:
nc = Mul(*nc)
d = Dummy()
reps.append((d, nc))
c.append(d)
args[i] = Mul(*c)
else:
args[i] = c
return args, dict(reps)
isadd = isinstance(terms, Add)
addlike = isadd or not isinstance(terms, Basic) and \
is_sequence(terms, include=set) and \
not isinstance(terms, Dict)
if addlike:
if isadd: # i.e. an Add
terms = list(terms.args)
else:
terms = sympify(terms)
terms, reps = mask(terms)
cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
numer = numer.xreplace(reps)
coeff, factors = cont.as_coeff_Mul()
if not clear:
c, _coeff = coeff.as_coeff_Mul()
if not c.is_Integer and not clear and numer.is_Add:
n, d = c.as_numer_denom()
_numer = numer/d
if any(a.as_coeff_Mul()[0].is_Integer
for a in _numer.args):
numer = _numer
coeff = n*_coeff
return _keep_coeff(coeff, factors*numer/denom, clear=clear)
if not isinstance(terms, Basic):
return terms
if terms.is_Atom:
return terms
if terms.is_Mul:
c, args = terms.as_coeff_mul()
return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
for i in args]), clear=clear)
def handle(a):
# don't treat internal args like terms of an Add
if not isinstance(a, Expr):
if isinstance(a, Basic):
return a.func(*[handle(i) for i in a.args])
return type(a)([handle(i) for i in a])
return gcd_terms(a, isprimitive, clear, fraction)
if isinstance(terms, Dict):
return Dict(*[(k, handle(v)) for k, v in terms.args])
return terms.func(*[handle(i) for i in terms.args])
def _factor_sum_int(expr, **kwargs):
"""Return Sum or Integral object with factors that are not
in the wrt variables removed. In cases where there are additive
terms in the function of the object that are independent, the
object will be separated into two objects.
Examples
========
>>> from sympy import Sum, factor_terms
>>> from sympy.abc import x, y
>>> factor_terms(Sum(x + y, (x, 1, 3)))
y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
>>> factor_terms(Sum(x*y, (x, 1, 3)))
y*Sum(x, (x, 1, 3))
Notes
=====
If a function in the summand or integrand is replaced
with a symbol, then this simplification should not be
done or else an incorrect result will be obtained when
the symbol is replaced with an expression that depends
on the variables of summation/integration:
>>> eq = Sum(y, (x, 1, 3))
>>> factor_terms(eq).subs(y, x).doit()
3*x
>>> eq.subs(y, x).doit()
6
"""
result = expr.function
if result == 0:
return S.Zero
limits = expr.limits
# get the wrt variables
wrt = {i.args[0] for i in limits}
# factor out any common terms that are independent of wrt
f = factor_terms(result, **kwargs)
i, d = f.as_independent(*wrt)
if isinstance(f, Add):
return i * expr.func(1, *limits) + expr.func(d, *limits)
else:
return i * expr.func(d, *limits)
def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
"""Remove common factors from terms in all arguments without
changing the underlying structure of the expr. No expansion or
simplification (and no processing of non-commutatives) is performed.
If radical=True then a radical common to all terms will be factored
out of any Add sub-expressions of the expr.
If clear=False (default) then coefficients will not be separated
from a single Add if they can be distributed to leave one or more
terms with integer coefficients.
If fraction=True (default is False) then a common denominator will be
constructed for the expression.
If sign=True (default) then even if the only factor in common is a -1,
it will be factored out of the expression.
Examples
========
>>> from sympy import factor_terms, Symbol
>>> from sympy.abc import x, y
>>> factor_terms(x + x*(2 + 4*y)**3)
x*(8*(2*y + 1)**3 + 1)
>>> A = Symbol('A', commutative=False)
>>> factor_terms(x*A + x*A + x*y*A)
x*(y*A + 2*A)
When ``clear`` is False, a rational will only be factored out of an
Add expression if all terms of the Add have coefficients that are
fractions:
>>> factor_terms(x/2 + 1, clear=False)
x/2 + 1
>>> factor_terms(x/2 + 1, clear=True)
(x + 2)/2
If a -1 is all that can be factored out, to *not* factor it out, the
flag ``sign`` must be False:
>>> factor_terms(-x - y)
-(x + y)
>>> factor_terms(-x - y, sign=False)
-x - y
>>> factor_terms(-2*x - 2*y, sign=False)
-2*(x + y)
See Also
========
gcd_terms, sympy.polys.polytools.terms_gcd
"""
def do(expr):
from sympy.concrete.summations import Sum
from sympy.integrals.integrals import Integral
is_iterable = iterable(expr)
if not isinstance(expr, Basic) or expr.is_Atom:
if is_iterable:
return type(expr)([do(i) for i in expr])
return expr
if expr.is_Pow or expr.is_Function or \
is_iterable or not hasattr(expr, 'args_cnc'):
args = expr.args
newargs = tuple([do(i) for i in args])
if newargs == args:
return expr
return expr.func(*newargs)
if isinstance(expr, (Sum, Integral)):
return _factor_sum_int(expr,
radical=radical, clear=clear,
fraction=fraction, sign=sign)
cont, p = expr.as_content_primitive(radical=radical, clear=clear)
if p.is_Add:
list_args = [do(a) for a in Add.make_args(p)]
# get a common negative (if there) which gcd_terms does not remove
if all(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is not None
for a in list_args):
cont = -cont
list_args = [-a for a in list_args]
# watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
special = {}
for i, a in enumerate(list_args):
b, e = a.as_base_exp()
if e.is_Mul and e != Mul(*e.args):
list_args[i] = Dummy()
special[list_args[i]] = a
# rebuild p not worrying about the order which gcd_terms will fix
p = Add._from_args(list_args)
p = gcd_terms(p,
isprimitive=True,
clear=clear,
fraction=fraction).xreplace(special)
elif p.args:
p = p.func(
*[do(a) for a in p.args])
rv = _keep_coeff(cont, p, clear=clear, sign=sign)
return rv
expr = sympify(expr)
return do(expr)
def _mask_nc(eq, name=None):
"""
Return ``eq`` with non-commutative objects replaced with Dummy
symbols. A dictionary that can be used to restore the original
values is returned: if it is None, the expression is noncommutative
and cannot be made commutative. The third value returned is a list
of any non-commutative symbols that appear in the returned equation.
``name``, if given, is the name that will be used with numbered Dummy
variables that will replace the non-commutative objects and is mainly
used for doctesting purposes.
Notes
=====
All non-commutative objects other than Symbols are replaced with
a non-commutative Symbol. Identical objects will be identified
by identical symbols.
If there is only 1 non-commutative object in an expression it will
be replaced with a commutative symbol. Otherwise, the non-commutative
entities are retained and the calling routine should handle
replacements in this case since some care must be taken to keep
track of the ordering of symbols when they occur within Muls.
Examples
========
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
>>> from sympy import symbols
>>> from sympy.core.exprtools import _mask_nc
>>> from sympy.abc import x, y
>>> A, B, C = symbols('A,B,C', commutative=False)
One nc-symbol:
>>> _mask_nc(A**2 - x**2, 'd')
(_d0**2 - x**2, {_d0: A}, [])
Multiple nc-symbols:
>>> _mask_nc(A**2 - B**2, 'd')
(A**2 - B**2, {}, [A, B])
An nc-object with nc-symbols but no others outside of it:
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
Multiple nc-objects:
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
>>> _mask_nc(eq, 'd')
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
Multiple nc-objects and nc-symbols:
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
>>> _mask_nc(eq, 'd')
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
"""
name = name or 'mask'
# Make Dummy() append sequential numbers to the name
def numbered_names():
i = 0
while True:
yield name + str(i)
i += 1
names = numbered_names()
def Dummy(*args, **kwargs):
from sympy import Dummy
return Dummy(next(names), *args, **kwargs)
expr = eq
if expr.is_commutative:
return eq, {}, []
# identify nc-objects; symbols and other
rep = []
nc_obj = set()
nc_syms = set()
pot = preorder_traversal(expr, keys=default_sort_key)
for i, a in enumerate(pot):
if any(a == r[0] for r in rep):
pot.skip()
elif not a.is_commutative:
if a.is_symbol:
nc_syms.add(a)
pot.skip()
elif not (a.is_Add or a.is_Mul or a.is_Pow):
nc_obj.add(a)
pot.skip()
# If there is only one nc symbol or object, it can be factored regularly
# but polys is going to complain, so replace it with a Dummy.
if len(nc_obj) == 1 and not nc_syms:
rep.append((nc_obj.pop(), Dummy()))
elif len(nc_syms) == 1 and not nc_obj:
rep.append((nc_syms.pop(), Dummy()))
# Any remaining nc-objects will be replaced with an nc-Dummy and
# identified as an nc-Symbol to watch out for
nc_obj = sorted(nc_obj, key=default_sort_key)
for n in nc_obj:
nc = Dummy(commutative=False)
rep.append((n, nc))
nc_syms.add(nc)
expr = expr.subs(rep)
nc_syms = list(nc_syms)
nc_syms.sort(key=default_sort_key)
return expr, {v: k for k, v in rep}, nc_syms
def factor_nc(expr):
"""Return the factored form of ``expr`` while handling non-commutative
expressions.
Examples
========
>>> from sympy.core.exprtools import factor_nc
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> B = Symbol('B', commutative=False)
>>> factor_nc((x**2 + 2*A*x + A**2).expand())
(x + A)**2
>>> factor_nc(((x + A)*(x + B)).expand())
(x + A)*(x + B)
"""
from sympy.simplify.simplify import powsimp
from sympy.polys import gcd, factor
def _pemexpand(expr):
"Expand with the minimal set of hints necessary to check the result."
return expr.expand(deep=True, mul=True, power_exp=True,
power_base=False, basic=False, multinomial=True, log=False)
expr = sympify(expr)
if not isinstance(expr, Expr) or not expr.args:
return expr
if not expr.is_Add:
return expr.func(*[factor_nc(a) for a in expr.args])
expr, rep, nc_symbols = _mask_nc(expr)
if rep:
return factor(expr).subs(rep)
else:
args = [a.args_cnc() for a in Add.make_args(expr)]
c = g = l = r = S.One
hit = False
# find any commutative gcd term
for i, a in enumerate(args):
if i == 0:
c = Mul._from_args(a[0])
elif a[0]:
c = gcd(c, Mul._from_args(a[0]))
else:
c = S.One
if c is not S.One:
hit = True
c, g = c.as_coeff_Mul()
if g is not S.One:
for i, (cc, _) in enumerate(args):
cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
args[i][0] = cc
for i, (cc, _) in enumerate(args):
cc[0] = cc[0]/c
args[i][0] = cc
# find any noncommutative common prefix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_prefix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][0].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][0].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
l = b**e
il = b**-e
for _ in args:
_[1][0] = il*_[1][0]
break
if not ok:
break
else:
hit = True
lenn = len(n)
l = Mul(*n)
for _ in args:
_[1] = _[1][lenn:]
# find any noncommutative common suffix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_suffix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][-1].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][-1].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
r = b**e
il = b**-e
for _ in args:
_[1][-1] = _[1][-1]*il
break
if not ok:
break
else:
hit = True
lenn = len(n)
r = Mul(*n)
for _ in args:
_[1] = _[1][:len(_[1]) - lenn]
if hit:
mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
else:
mid = expr
# sort the symbols so the Dummys would appear in the same
# order as the original symbols, otherwise you may introduce
# a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
# and the former factors into two terms, (A - B)*(A + B) while the
# latter factors into 3 terms, (-1)*(x - y)*(x + y)
rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
unrep1 = [(v, k) for k, v in rep1]
unrep1.reverse()
new_mid, r2, _ = _mask_nc(mid.subs(rep1))
new_mid = powsimp(factor(new_mid))
new_mid = new_mid.subs(r2).subs(unrep1)
if new_mid.is_Pow:
return _keep_coeff(c, g*l*new_mid*r)
if new_mid.is_Mul:
# XXX TODO there should be a way to inspect what order the terms
# must be in and just select the plausible ordering without
# checking permutations
cfac = []
ncfac = []
for f in new_mid.args:
if f.is_commutative:
cfac.append(f)
else:
b, e = f.as_base_exp()
if e.is_Integer:
ncfac.extend([b]*e)
else:
ncfac.append(f)
pre_mid = g*Mul(*cfac)*l
target = _pemexpand(expr/c)
for s in variations(ncfac, len(ncfac)):
ok = pre_mid*Mul(*s)*r
if _pemexpand(ok) == target:
return _keep_coeff(c, ok)
# mid was an Add that didn't factor successfully
return _keep_coeff(c, g*l*mid*r)
|
c237e3ec733e3d3f5bf0336c2f72328f1bad15a0b2f5c630e339416aa6ca7f57 | """Singleton mechanism"""
# from typing import Any, Dict, Type
from .core import Registry
from .assumptions import ManagedProperties
from .sympify import sympify
class SingletonRegistry(Registry):
"""
The registry for the singleton classes (accessible as ``S``).
This class serves as two separate things.
The first thing it is is the ``SingletonRegistry``. Several classes in
SymPy appear so often that they are singletonized, that is, using some
metaprogramming they are made so that they can only be instantiated once
(see the :class:`sympy.core.singleton.Singleton` class for details). For
instance, every time you create ``Integer(0)``, this will return the same
instance, :class:`sympy.core.numbers.Zero`. All singleton instances are
attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as
``S.Zero``.
Singletonization offers two advantages: it saves memory, and it allows
fast comparison. It saves memory because no matter how many times the
singletonized objects appear in expressions in memory, they all point to
the same single instance in memory. The fast comparison comes from the
fact that you can use ``is`` to compare exact instances in Python
(usually, you need to use ``==`` to compare things). ``is`` compares
objects by memory address, and is very fast. For instance
>>> from sympy import S, Integer
>>> a = Integer(0)
>>> a is S.Zero
True
For the most part, the fact that certain objects are singletonized is an
implementation detail that users shouldn't need to worry about. In SymPy
library code, ``is`` comparison is often used for performance purposes
The primary advantage of ``S`` for end users is the convenient access to
certain instances that are otherwise difficult to type, like ``S.Half``
(instead of ``Rational(1, 2)``).
When using ``is`` comparison, make sure the argument is sympified. For
instance,
>>> x = 0
>>> x is S.Zero
False
This problem is not an issue when using ``==``, which is recommended for
most use-cases:
>>> 0 == S.Zero
True
The second thing ``S`` is is a shortcut for
:func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is
the function that converts Python objects such as ``int(1)`` into SymPy
objects such as ``Integer(1)``. It also converts the string form of an
expression into a SymPy expression, like ``sympify("x**2")`` ->
``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)``
(basically, ``S.__call__`` has been defined to call ``sympify``).
This is for convenience, since ``S`` is a single letter. It's mostly
useful for defining rational numbers. Consider an expression like ``x +
1/2``. If you enter this directly in Python, it will evaluate the ``1/2``
and give ``0.5`` (or just ``0`` in Python 2, because of integer division),
because both arguments are ints (see also
:ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want
the quotient of two integers to give an exact rational number. The way
Python's evaluation works, at least one side of an operator needs to be a
SymPy object for the SymPy evaluation to take over. You could write this
as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter
version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the
division will return a ``Rational`` type, since it will call
``Integer.__truediv__``, which knows how to return a ``Rational``.
"""
__slots__ = ()
# Also allow things like S(5)
__call__ = staticmethod(sympify)
def __init__(self):
self._classes_to_install = {}
# Dict of classes that have been registered, but that have not have been
# installed as an attribute of this SingletonRegistry.
# Installation automatically happens at the first attempt to access the
# attribute.
# The purpose of this is to allow registration during class
# initialization during import, but not trigger object creation until
# actual use (which should not happen until after all imports are
# finished).
def register(self, cls):
# Make sure a duplicate class overwrites the old one
if hasattr(self, cls.__name__):
delattr(self, cls.__name__)
self._classes_to_install[cls.__name__] = cls
def __getattr__(self, name):
"""Python calls __getattr__ if no attribute of that name was installed
yet.
This __getattr__ checks whether a class with the requested name was
already registered but not installed; if no, raises an AttributeError.
Otherwise, retrieves the class, calculates its singleton value, installs
it as an attribute of the given name, and unregisters the class."""
if name not in self._classes_to_install:
raise AttributeError(
"Attribute '%s' was not installed on SymPy registry %s" % (
name, self))
class_to_install = self._classes_to_install[name]
value_to_install = class_to_install()
self.__setattr__(name, value_to_install)
del self._classes_to_install[name]
return value_to_install
def __repr__(self):
return "S"
S = SingletonRegistry()
class Singleton(ManagedProperties):
"""
Metaclass for singleton classes.
A singleton class has only one instance which is returned every time the
class is instantiated. Additionally, this instance can be accessed through
the global registry object ``S`` as ``S.<class_name>``.
Examples
========
>>> from sympy import S, Basic
>>> from sympy.core.singleton import Singleton
>>> class MySingleton(Basic, metaclass=Singleton):
... pass
>>> Basic() is Basic()
False
>>> MySingleton() is MySingleton()
True
>>> S.MySingleton is MySingleton()
True
Notes
=====
Instance creation is delayed until the first time the value is accessed.
(SymPy versions before 1.0 would create the instance during class
creation time, which would be prone to import cycles.)
This metaclass is a subclass of ManagedProperties because that is the
metaclass of many classes that need to be Singletons (Python does not allow
subclasses to have a different metaclass than the superclass, except the
subclass may use a subclassed metaclass).
"""
_instances = {} ## type: Dict[Type[Any], Any]
"Maps singleton classes to their instances."
def __new__(cls, *args, **kwargs):
result = super().__new__(cls, *args, **kwargs)
S.register(result)
return result
def __call__(self, *args, **kwargs):
# Called when application code says SomeClass(), where SomeClass is a
# class of which Singleton is the metaclas.
# __call__ is invoked first, before __new__() and __init__().
if self not in Singleton._instances:
Singleton._instances[self] = \
super().__call__(*args, **kwargs)
# Invokes the standard constructor of SomeClass.
return Singleton._instances[self]
# Inject pickling support.
def __getnewargs__(self):
return ()
self.__getnewargs__ = __getnewargs__
|
2738b41162623e4649af4a0351037568901cb7dbe1ed66ea8871ec4ee6d00164 | """
There are three types of functions implemented in SymPy:
1) defined functions (in the sense that they can be evaluated) like
exp or sin; they have a name and a body:
f = exp
2) undefined function which have a name but no body. Undefined
functions can be defined using a Function class as follows:
f = Function('f')
(the result will be a Function instance)
3) anonymous function (or lambda function) which have a body (defined
with dummy variables) but have no name:
f = Lambda(x, exp(x)*x)
f = Lambda((x, y), exp(x)*y)
The fourth type of functions are composites, like (sin + cos)(x); these work in
SymPy core, but are not yet part of SymPy.
Examples
========
>>> import sympy
>>> f = sympy.Function("f")
>>> from sympy.abc import x
>>> f(x)
f(x)
>>> print(sympy.srepr(f(x).func))
Function('f')
>>> f(x).args
(x,)
"""
from typing import Any, Dict as tDict, Optional, Set as tSet
from .add import Add
from .assumptions import ManagedProperties
from .basic import Basic, _atomic
from .cache import cacheit
from .compatibility import iterable, is_sequence, as_int, ordered, Iterable
from .decorators import _sympifyit
from .expr import Expr, AtomicExpr
from .numbers import Rational, Float
from .operations import LatticeOp
from .rules import Transform
from .singleton import S
from .sympify import sympify
from sympy.core.containers import Tuple, Dict
from sympy.core.parameters import global_parameters
from sympy.core.logic import fuzzy_and, fuzzy_or, fuzzy_not
from sympy.utilities import default_sort_key
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import has_dups, sift
from sympy.utilities.misc import filldedent
import mpmath
import mpmath.libmp as mlib
import inspect
from collections import Counter
def _coeff_isneg(a):
"""Return True if the leading Number is negative.
Examples
========
>>> from sympy.core.function import _coeff_isneg
>>> from sympy import S, Symbol, oo, pi
>>> _coeff_isneg(-3*pi)
True
>>> _coeff_isneg(S(3))
False
>>> _coeff_isneg(-oo)
True
>>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1
False
For matrix expressions:
>>> from sympy import MatrixSymbol, sqrt
>>> A = MatrixSymbol("A", 3, 3)
>>> _coeff_isneg(-sqrt(2)*A)
True
>>> _coeff_isneg(sqrt(2)*A)
False
"""
if a.is_MatMul:
a = a.args[0]
if a.is_Mul:
a = a.args[0]
return a.is_Number and a.is_extended_negative
class PoleError(Exception):
pass
class ArgumentIndexError(ValueError):
def __str__(self):
return ("Invalid operation with argument number %s for Function %s" %
(self.args[1], self.args[0]))
class BadSignatureError(TypeError):
'''Raised when a Lambda is created with an invalid signature'''
pass
class BadArgumentsError(TypeError):
'''Raised when a Lambda is called with an incorrect number of arguments'''
pass
# Python 2/3 version that does not raise a Deprecation warning
def arity(cls):
"""Return the arity of the function if it is known, else None.
When default values are specified for some arguments, they are
optional and the arity is reported as a tuple of possible values.
Examples
========
>>> from sympy.core.function import arity
>>> from sympy import log
>>> arity(lambda x: x)
1
>>> arity(log)
(1, 2)
>>> arity(lambda *x: sum(x)) is None
True
"""
eval_ = getattr(cls, 'eval', cls)
parameters = inspect.signature(eval_).parameters.items()
if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]:
return
p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD]
# how many have no default and how many have a default value
no, yes = map(len, sift(p_or_k,
lambda p:p.default == p.empty, binary=True))
return no if not yes else tuple(range(no, no + yes + 1))
class FunctionClass(ManagedProperties):
"""
Base class for function classes. FunctionClass is a subclass of type.
Use Function('<function name>' [ , signature ]) to create
undefined function classes.
"""
_new = type.__new__
def __init__(cls, *args, **kwargs):
# honor kwarg value or class-defined value before using
# the number of arguments in the eval function (if present)
nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls)))
if nargs is None and 'nargs' not in cls.__dict__:
for supcls in cls.__mro__:
if hasattr(supcls, '_nargs'):
nargs = supcls._nargs
break
else:
continue
# Canonicalize nargs here; change to set in nargs.
if is_sequence(nargs):
if not nargs:
raise ValueError(filldedent('''
Incorrectly specified nargs as %s:
if there are no arguments, it should be
`nargs = 0`;
if there are any number of arguments,
it should be
`nargs = None`''' % str(nargs)))
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
cls._nargs = nargs
super().__init__(*args, **kwargs)
@property
def __signature__(self):
"""
Allow Python 3's inspect.signature to give a useful signature for
Function subclasses.
"""
# Python 3 only, but backports (like the one in IPython) still might
# call this.
try:
from inspect import signature
except ImportError:
return None
# TODO: Look at nargs
return signature(self.eval)
@property
def free_symbols(self):
return set()
@property
def xreplace(self):
# Function needs args so we define a property that returns
# a function that takes args...and then use that function
# to return the right value
return lambda rule, **_: rule.get(self, self)
@property
def nargs(self):
"""Return a set of the allowed number of arguments for the function.
Examples
========
>>> from sympy.core.function import Function
>>> f = Function('f')
If the function can take any number of arguments, the set of whole
numbers is returned:
>>> Function('f').nargs
Naturals0
If the function was initialized to accept one or more arguments, a
corresponding set will be returned:
>>> Function('f', nargs=1).nargs
FiniteSet(1)
>>> Function('f', nargs=(2, 1)).nargs
FiniteSet(1, 2)
The undefined function, after application, also has the nargs
attribute; the actual number of arguments is always available by
checking the ``args`` attribute:
>>> f = Function('f')
>>> f(1).nargs
Naturals0
>>> len(f(1).args)
1
"""
from sympy.sets.sets import FiniteSet
# XXX it would be nice to handle this in __init__ but there are import
# problems with trying to import FiniteSet there
return FiniteSet(*self._nargs) if self._nargs else S.Naturals0
def __repr__(cls):
return cls.__name__
class Application(Basic, metaclass=FunctionClass):
"""
Base class for applied functions.
Instances of Application represent the result of applying an application of
any type to any object.
"""
is_Function = True
@cacheit
def __new__(cls, *args, **options):
from sympy.sets.fancysets import Naturals0
from sympy.sets.sets import FiniteSet
args = list(map(sympify, args))
evaluate = options.pop('evaluate', global_parameters.evaluate)
# WildFunction (and anything else like it) may have nargs defined
# and we throw that value away here
options.pop('nargs', None)
if options:
raise ValueError("Unknown options: %s" % options)
if evaluate:
evaluated = cls.eval(*args)
if evaluated is not None:
return evaluated
obj = super().__new__(cls, *args, **options)
# make nargs uniform here
sentinel = object()
objnargs = getattr(obj, "nargs", sentinel)
if objnargs is not sentinel:
# things passing through here:
# - functions subclassed from Function (e.g. myfunc(1).nargs)
# - functions like cos(1).nargs
# - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs
# Canonicalize nargs here
if is_sequence(objnargs):
nargs = tuple(ordered(set(objnargs)))
elif objnargs is not None:
nargs = (as_int(objnargs),)
else:
nargs = None
else:
# things passing through here:
# - WildFunction('f').nargs
# - AppliedUndef with no nargs like Function('f')(1).nargs
nargs = obj._nargs # note the underscore here
# convert to FiniteSet
obj.nargs = FiniteSet(*nargs) if nargs else Naturals0()
return obj
@classmethod
def eval(cls, *args):
"""
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be
instantiated and it should return either some simplified instance
(possible of some other class), or if the class cls should be
unmodified, return None.
Examples of eval() for the function "sign"
---------------------------------------------
.. code-block:: python
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
if arg.is_zero: return S.Zero
if arg.is_positive: return S.One
if arg.is_negative: return S.NegativeOne
if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One:
return cls(coeff) * cls(terms)
"""
return
@property
def func(self):
return self.__class__
def _eval_subs(self, old, new):
if (old.is_Function and new.is_Function and
callable(old) and callable(new) and
old == self.func and len(self.args) in new.nargs):
return new(*[i._subs(old, new) for i in self.args])
class Function(Application, Expr):
"""
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.
Examples
========
First example shows how to use Function as a constructor for undefined
function classes:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> g = Function('g')(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
Assumptions can be passed to Function, and if function is initialized with a
Symbol, the function inherits the name and assumptions associated with the Symbol:
>>> f_real = Function('f', real=True)
>>> f_real(x).is_real
True
>>> f_real_inherit = Function(Symbol('f', real=True))
>>> f_real_inherit(x).is_real
True
Note that assumptions on a function are unrelated to the assumptions on
the variable it is called on. If you want to add a relationship, subclass
Function and define the appropriate ``_eval_is_assumption`` methods.
In the following example Function is used as a base class for
``my_func`` that represents a mathematical function *my_func*. Suppose
that it is well known, that *my_func(0)* is *1* and *my_func* at infinity
goes to *0*, so we want those two simplifications to occur automatically.
Suppose also that *my_func(x)* is real exactly when *x* is real. Here is
an implementation that honours those requirements:
>>> from sympy import Function, S, oo, I, sin
>>> class my_func(Function):
...
... @classmethod
... def eval(cls, x):
... if x.is_Number:
... if x.is_zero:
... return S.One
... elif x is S.Infinity:
... return S.Zero
...
... def _eval_is_real(self):
... return self.args[0].is_real
...
>>> x = S('x')
>>> my_func(0) + sin(0)
1
>>> my_func(oo)
0
>>> my_func(3.54).n() # Not yet implemented for my_func.
my_func(3.54)
>>> my_func(I).is_real
False
In order for ``my_func`` to become useful, several other methods would
need to be implemented. See source code of some of the already
implemented functions for more complete examples.
Also, if the function can take more than one argument, then ``nargs``
must be defined, e.g. if ``my_func`` can take one or two arguments
then,
>>> class my_func(Function):
... nargs = (1, 2)
...
>>>
"""
@property
def _diff_wrt(self):
return False
@cacheit
def __new__(cls, *args, **options):
# Handle calls like Function('f')
if cls is Function:
return UndefinedFunction(*args, **options)
n = len(args)
if n not in cls.nargs:
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
temp = ('%(name)s takes %(qual)s %(args)s '
'argument%(plural)s (%(given)s given)')
raise TypeError(temp % {
'name': cls,
'qual': 'exactly' if len(cls.nargs) == 1 else 'at least',
'args': min(cls.nargs),
'plural': 's'*(min(cls.nargs) != 1),
'given': n})
evaluate = options.get('evaluate', global_parameters.evaluate)
result = super().__new__(cls, *args, **options)
if evaluate and isinstance(result, cls) and result.args:
pr2 = min(cls._should_evalf(a) for a in result.args)
if pr2 > 0:
pr = max(cls._should_evalf(a) for a in result.args)
result = result.evalf(mlib.libmpf.prec_to_dps(pr))
return result
@classmethod
def _should_evalf(cls, arg):
"""
Decide if the function should automatically evalf().
By default (in this implementation), this happens if (and only if) the
ARG is a floating point number.
This function is used by __new__.
Returns the precision to evalf to, or -1 if it shouldn't evalf.
"""
from sympy.core.evalf import pure_complex
if arg.is_Float:
return arg._prec
if not arg.is_Add:
return -1
m = pure_complex(arg)
if m is None or not (m[0].is_Float or m[1].is_Float):
return -1
l = [i._prec for i in m if i.is_Float]
l.append(-1)
return max(l)
@classmethod
def class_key(cls):
from sympy.sets.fancysets import Naturals0
funcs = {
'exp': 10,
'log': 11,
'sin': 20,
'cos': 21,
'tan': 22,
'cot': 23,
'sinh': 30,
'cosh': 31,
'tanh': 32,
'coth': 33,
'conjugate': 40,
're': 41,
'im': 42,
'arg': 43,
}
name = cls.__name__
try:
i = funcs[name]
except KeyError:
i = 0 if isinstance(cls.nargs, Naturals0) else 10000
return 4, i, name
def _eval_evalf(self, prec):
def _get_mpmath_func(fname):
"""Lookup mpmath function based on name"""
if isinstance(self, AppliedUndef):
# Shouldn't lookup in mpmath but might have ._imp_
return None
if not hasattr(mpmath, fname):
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
fname = MPMATH_TRANSLATIONS.get(fname, None)
if fname is None:
return None
return getattr(mpmath, fname)
func = _get_mpmath_func(self.func.__name__)
# Fall-back evaluation
if func is None:
imp = getattr(self, '_imp_', None)
if imp is None:
return None
try:
return Float(imp(*[i.evalf(prec) for i in self.args]), prec)
except (TypeError, ValueError):
return None
# Convert all args to mpf or mpc
# Convert the arguments to *higher* precision than requested for the
# final result.
# XXX + 5 is a guess, it is similar to what is used in evalf.py. Should
# we be more intelligent about it?
try:
args = [arg._to_mpmath(prec + 5) for arg in self.args]
def bad(m):
from mpmath import mpf, mpc
# the precision of an mpf value is the last element
# if that is 1 (and m[1] is not 1 which would indicate a
# power of 2), then the eval failed; so check that none of
# the arguments failed to compute to a finite precision.
# Note: An mpc value has two parts, the re and imag tuple;
# check each of those parts, too. Anything else is allowed to
# pass
if isinstance(m, mpf):
m = m._mpf_
return m[1] !=1 and m[-1] == 1
elif isinstance(m, mpc):
m, n = m._mpc_
return m[1] !=1 and m[-1] == 1 and \
n[1] !=1 and n[-1] == 1
else:
return False
if any(bad(a) for a in args):
raise ValueError # one or more args failed to compute with significance
except ValueError:
return
with mpmath.workprec(prec):
v = func(*args)
return Expr._from_mpmath(v, prec)
def _eval_derivative(self, s):
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
i = 0
l = []
for a in self.args:
i += 1
da = a.diff(s)
if da.is_zero:
continue
try:
df = self.fdiff(i)
except ArgumentIndexError:
df = Function.fdiff(self, i)
l.append(df * da)
return Add(*l)
def _eval_is_commutative(self):
return fuzzy_and(a.is_commutative for a in self.args)
def _eval_is_meromorphic(self, x, a):
if not self.args:
return True
if any(arg.has(x) for arg in self.args[1:]):
return False
arg = self.args[0]
if not arg._eval_is_meromorphic(x, a):
return None
return fuzzy_not(type(self).is_singular(arg.subs(x, a)))
_singularities = None # indeterminate
@classmethod
def is_singular(cls, a):
"""
Tests whether the argument is an essential singularity
or a branch point, or the functions is non-holomorphic.
"""
ss = cls._singularities
if ss in (True, None, False):
return ss
return fuzzy_or(a.is_infinite if s is S.ComplexInfinity
else (a - s).is_zero for s in ss)
def as_base_exp(self):
"""
Returns the method as the 2-tuple (base, exponent).
"""
return self, S.One
def _eval_aseries(self, n, args0, x, logx):
"""
Compute an asymptotic expansion around args0, in terms of self.args.
This function is only used internally by _eval_nseries and should not
be called directly; derived classes can overwrite this to implement
asymptotic expansions.
"""
from sympy.utilities.misc import filldedent
raise PoleError(filldedent('''
Asymptotic expansion of %s around %s is
not implemented.''' % (type(self), args0)))
def _eval_nseries(self, x, n, logx, cdir=0):
"""
This function does compute series for multivariate functions,
but the expansion is always in terms of *one* variable.
Examples
========
>>> from sympy import atan2
>>> from sympy.abc import x, y
>>> atan2(x, y).series(x, n=2)
atan2(0, y) + x/y + O(x**2)
>>> atan2(x, y).series(y, n=2)
-y/x + atan2(x, 0) + O(y**2)
This function also computes asymptotic expansions, if necessary
and possible:
>>> from sympy import loggamma
>>> loggamma(1/x)._eval_nseries(x,0,None)
-1/x - log(x)/x + log(x)/2 + O(1)
"""
from sympy import Order
from sympy.core.symbol import uniquely_named_symbol
from sympy.sets.sets import FiniteSet
args = self.args
args0 = [t.limit(x, 0) for t in args]
if any(t.is_finite is False for t in args0):
from sympy import oo, zoo, nan
# XXX could use t.as_leading_term(x) here but it's a little
# slower
a = [t.compute_leading_term(x, logx=logx) for t in args]
a0 = [t.limit(x, 0) for t in a]
if any([t.has(oo, -oo, zoo, nan) for t in a0]):
return self._eval_aseries(n, args0, x, logx)
# Careful: the argument goes to oo, but only logarithmically so. We
# are supposed to do a power series expansion "around the
# logarithmic term". e.g.
# f(1+x+log(x))
# -> f(1+logx) + x*f'(1+logx) + O(x**2)
# where 'logx' is given in the argument
a = [t._eval_nseries(x, n, logx) for t in args]
z = [r - r0 for (r, r0) in zip(a, a0)]
p = [Dummy() for _ in z]
q = []
v = None
for ai, zi, pi in zip(a0, z, p):
if zi.has(x):
if v is not None:
raise NotImplementedError
q.append(ai + pi)
v = pi
else:
q.append(ai)
e1 = self.func(*q)
if v is None:
return e1
s = e1._eval_nseries(v, n, logx)
o = s.getO()
s = s.removeO()
s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x)
return s
if (self.func.nargs is S.Naturals0
or (self.func.nargs == FiniteSet(1) and args0[0])
or any(c > 1 for c in self.func.nargs)):
e = self
e1 = e.expand()
if e == e1:
#for example when e = sin(x+1) or e = sin(cos(x))
#let's try the general algorithm
if len(e.args) == 1:
# issue 14411
e = e.func(e.args[0].cancel())
term = e.subs(x, S.Zero)
if term.is_finite is False or term is S.NaN:
raise PoleError("Cannot expand %s around 0" % (self))
series = term
fact = S.One
_x = uniquely_named_symbol('xi', self)
e = e.subs(x, _x)
for i in range(n - 1):
i += 1
fact *= Rational(i)
e = e.diff(_x)
subs = e.subs(_x, S.Zero)
if subs is S.NaN:
# try to evaluate a limit if we have to
subs = e.limit(_x, S.Zero)
if subs.is_finite is False:
raise PoleError("Cannot expand %s around 0" % (self))
term = subs*(x**i)/fact
term = term.expand()
series += term
return series + Order(x**n, x)
return e1.nseries(x, n=n, logx=logx)
arg = self.args[0]
l = []
g = None
# try to predict a number of terms needed
nterms = n + 2
cf = Order(arg.as_leading_term(x), x).getn()
if cf != 0:
nterms = (n/cf).ceiling()
for i in range(nterms):
g = self.taylor_term(i, arg, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
return Add(*l) + Order(x**n, x)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if not (1 <= argindex <= len(self.args)):
raise ArgumentIndexError(self, argindex)
ix = argindex - 1
A = self.args[ix]
if A._diff_wrt:
if len(self.args) == 1 or not A.is_Symbol:
return _derivative_dispatch(self, A)
for i, v in enumerate(self.args):
if i != ix and A in v.free_symbols:
# it can't be in any other argument's free symbols
# issue 8510
break
else:
return _derivative_dispatch(self, A)
# See issue 4624 and issue 4719, 5600 and 8510
D = Dummy('xi_%i' % argindex, dummy_index=hash(A))
args = self.args[:ix] + (D,) + self.args[ix + 1:]
return Subs(Derivative(self.func(*args), D), D, A)
def _eval_as_leading_term(self, x, cdir=0):
"""Stub that should be overridden by new Functions to return
the first non-zero term in a series if ever an x-dependent
argument whose leading term vanishes as x -> 0 might be encountered.
See, for example, cos._eval_as_leading_term.
"""
from sympy import Order
args = [a.as_leading_term(x) for a in self.args]
o = Order(1, x)
if any(x in a.free_symbols and o.contains(a) for a in args):
# Whereas x and any finite number are contained in O(1, x),
# expressions like 1/x are not. If any arg simplified to a
# vanishing expression as x -> 0 (like x or x**2, but not
# 3, 1/x, etc...) then the _eval_as_leading_term is needed
# to supply the first non-zero term of the series,
#
# e.g. expression leading term
# ---------- ------------
# cos(1/x) cos(1/x)
# cos(cos(x)) cos(1)
# cos(x) 1 <- _eval_as_leading_term needed
# sin(x) x <- _eval_as_leading_term needed
#
raise NotImplementedError(
'%s has no _eval_as_leading_term routine' % self.func)
else:
return self.func(*args)
def _sage_(self):
import sage.all as sage
fname = self.func.__name__
func = getattr(sage, fname, None)
args = [arg._sage_() for arg in self.args]
# In the case the function is not known in sage:
if func is None:
import sympy
if getattr(sympy, fname, None) is None:
# abstract function
return sage.function(fname)(*args)
else:
# the function defined in sympy is not known in sage
# this exception is caught in sage
raise AttributeError
return func(*args)
class AppliedUndef(Function):
"""
Base class for expressions resulting from the application of an undefined
function.
"""
is_number = False
def __new__(cls, *args, **options):
args = list(map(sympify, args))
u = [a.name for a in args if isinstance(a, UndefinedFunction)]
if u:
raise TypeError('Invalid argument: expecting an expression, not UndefinedFunction%s: %s' % (
's'*(len(u) > 1), ', '.join(u)))
obj = super().__new__(cls, *args, **options)
return obj
def _eval_as_leading_term(self, x, cdir=0):
return self
def _sage_(self):
import sage.all as sage
fname = str(self.func)
args = [arg._sage_() for arg in self.args]
func = sage.function(fname)(*args)
return func
@property
def _diff_wrt(self):
"""
Allow derivatives wrt to undefined functions.
Examples
========
>>> from sympy import Function, Symbol
>>> f = Function('f')
>>> x = Symbol('x')
>>> f(x)._diff_wrt
True
>>> f(x).diff(x)
Derivative(f(x), x)
"""
return True
class UndefSageHelper:
"""
Helper to facilitate Sage conversion.
"""
def __get__(self, ins, typ):
import sage.all as sage
if ins is None:
return lambda: sage.function(typ.__name__)
else:
args = [arg._sage_() for arg in ins.args]
return lambda : sage.function(ins.__class__.__name__)(*args)
_undef_sage_helper = UndefSageHelper()
class UndefinedFunction(FunctionClass):
"""
The (meta)class of undefined functions.
"""
def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs):
from .symbol import _filter_assumptions
# Allow Function('f', real=True)
# and/or Function(Symbol('f', real=True))
assumptions, kwargs = _filter_assumptions(kwargs)
if isinstance(name, Symbol):
assumptions = name._merge(assumptions)
name = name.name
elif not isinstance(name, str):
raise TypeError('expecting string or Symbol for name')
else:
commutative = assumptions.get('commutative', None)
assumptions = Symbol(name, **assumptions).assumptions0
if commutative is None:
assumptions.pop('commutative')
__dict__ = __dict__ or {}
# put the `is_*` for into __dict__
__dict__.update({'is_%s' % k: v for k, v in assumptions.items()})
# You can add other attributes, although they do have to be hashable
# (but seriously, if you want to add anything other than assumptions,
# just subclass Function)
__dict__.update(kwargs)
# add back the sanitized assumptions without the is_ prefix
kwargs.update(assumptions)
# Save these for __eq__
__dict__.update({'_kwargs': kwargs})
# do this for pickling
__dict__['__module__'] = None
obj = super().__new__(mcl, name, bases, __dict__)
obj.name = name
obj._sage_ = _undef_sage_helper
return obj
def __instancecheck__(cls, instance):
return cls in type(instance).__mro__
_kwargs = {} # type: tDict[str, Optional[bool]]
def __hash__(self):
return hash((self.class_key(), frozenset(self._kwargs.items())))
def __eq__(self, other):
return (isinstance(other, self.__class__) and
self.class_key() == other.class_key() and
self._kwargs == other._kwargs)
def __ne__(self, other):
return not self == other
@property
def _diff_wrt(self):
return False
# XXX: The type: ignore on WildFunction is because mypy complains:
#
# sympy/core/function.py:939: error: Cannot determine type of 'sort_key' in
# base class 'Expr'
#
# Somehow this is because of the @cacheit decorator but it is not clear how to
# fix it.
class WildFunction(Function, AtomicExpr): # type: ignore
"""
A WildFunction function matches any function (with its arguments).
Examples
========
>>> from sympy import WildFunction, Function, cos
>>> from sympy.abc import x, y
>>> F = WildFunction('F')
>>> f = Function('f')
>>> F.nargs
Naturals0
>>> x.match(F)
>>> F.match(F)
{F_: F_}
>>> f(x).match(F)
{F_: f(x)}
>>> cos(x).match(F)
{F_: cos(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a given number of arguments, set ``nargs`` to the
desired value at instantiation:
>>> F = WildFunction('F', nargs=2)
>>> F.nargs
FiniteSet(2)
>>> f(x).match(F)
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a range of arguments, set ``nargs`` to a tuple
containing the desired number of arguments, e.g. if ``nargs = (1, 2)``
then functions with 1 or 2 arguments will be matched.
>>> F = WildFunction('F', nargs=(1, 2))
>>> F.nargs
FiniteSet(1, 2)
>>> f(x).match(F)
{F_: f(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
>>> f(x, y, 1).match(F)
"""
# XXX: What is this class attribute used for?
include = set() # type: tSet[Any]
def __init__(cls, name, **assumptions):
from sympy.sets.sets import Set, FiniteSet
cls.name = name
nargs = assumptions.pop('nargs', S.Naturals0)
if not isinstance(nargs, Set):
# Canonicalize nargs here. See also FunctionClass.
if is_sequence(nargs):
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
nargs = FiniteSet(*nargs)
cls.nargs = nargs
def matches(self, expr, repl_dict={}, old=False):
if not isinstance(expr, (AppliedUndef, Function)):
return None
if len(expr.args) not in self.nargs:
return None
repl_dict = repl_dict.copy()
repl_dict[self] = expr
return repl_dict
class Derivative(Expr):
"""
Carries out differentiation of the given expression with respect to symbols.
Examples
========
>>> from sympy import Derivative, Function, symbols, Subs
>>> from sympy.abc import x, y
>>> f, g = symbols('f g', cls=Function)
>>> Derivative(x**2, x, evaluate=True)
2*x
Denesting of derivatives retains the ordering of variables:
>>> Derivative(Derivative(f(x, y), y), x)
Derivative(f(x, y), y, x)
Contiguously identical symbols are merged into a tuple giving
the symbol and the count:
>>> Derivative(f(x), x, x, y, x)
Derivative(f(x), (x, 2), y, x)
If the derivative cannot be performed, and evaluate is True, the
order of the variables of differentiation will be made canonical:
>>> Derivative(f(x, y), y, x, evaluate=True)
Derivative(f(x, y), x, y)
Derivatives with respect to undefined functions can be calculated:
>>> Derivative(f(x)**2, f(x), evaluate=True)
2*f(x)
Such derivatives will show up when the chain rule is used to
evalulate a derivative:
>>> f(g(x)).diff(x)
Derivative(f(g(x)), g(x))*Derivative(g(x), x)
Substitution is used to represent derivatives of functions with
arguments that are not symbols or functions:
>>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3)
True
Notes
=====
Simplification of high-order derivatives:
Because there can be a significant amount of simplification that can be
done when multiple differentiations are performed, results will be
automatically simplified in a fairly conservative fashion unless the
keyword ``simplify`` is set to False.
>>> from sympy import sqrt, diff, Function, symbols
>>> from sympy.abc import x, y, z
>>> f, g = symbols('f,g', cls=Function)
>>> e = sqrt((x + 1)**2 + x)
>>> diff(e, (x, 5), simplify=False).count_ops()
136
>>> diff(e, (x, 5)).count_ops()
30
Ordering of variables:
If evaluate is set to True and the expression cannot be evaluated, the
list of differentiation symbols will be sorted, that is, the expression is
assumed to have continuous derivatives up to the order asked.
Derivative wrt non-Symbols:
For the most part, one may not differentiate wrt non-symbols.
For example, we do not allow differentiation wrt `x*y` because
there are multiple ways of structurally defining where x*y appears
in an expression: a very strict definition would make
(x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like
cos(x)) are not allowed, either:
>>> (x*y*z).diff(x*y)
Traceback (most recent call last):
...
ValueError: Can't calculate derivative wrt x*y.
To make it easier to work with variational calculus, however,
derivatives wrt AppliedUndef and Derivatives are allowed.
For example, in the Euler-Lagrange method one may write
F(t, u, v) where u = f(t) and v = f'(t). These variables can be
written explicitly as functions of time::
>>> from sympy.abc import t
>>> F = Function('F')
>>> U = f(t)
>>> V = U.diff(t)
The derivative wrt f(t) can be obtained directly:
>>> direct = F(t, U, V).diff(U)
When differentiation wrt a non-Symbol is attempted, the non-Symbol
is temporarily converted to a Symbol while the differentiation
is performed and the same answer is obtained:
>>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U)
>>> assert direct == indirect
The implication of this non-symbol replacement is that all
functions are treated as independent of other functions and the
symbols are independent of the functions that contain them::
>>> x.diff(f(x))
0
>>> g(x).diff(f(x))
0
It also means that derivatives are assumed to depend only
on the variables of differentiation, not on anything contained
within the expression being differentiated::
>>> F = f(x)
>>> Fx = F.diff(x)
>>> Fx.diff(F) # derivative depends on x, not F
0
>>> Fxx = Fx.diff(x)
>>> Fxx.diff(Fx) # derivative depends on x, not Fx
0
The last example can be made explicit by showing the replacement
of Fx in Fxx with y:
>>> Fxx.subs(Fx, y)
Derivative(y, x)
Since that in itself will evaluate to zero, differentiating
wrt Fx will also be zero:
>>> _.doit()
0
Replacing undefined functions with concrete expressions
One must be careful to replace undefined functions with expressions
that contain variables consistent with the function definition and
the variables of differentiation or else insconsistent result will
be obtained. Consider the following example:
>>> eq = f(x)*g(y)
>>> eq.subs(f(x), x*y).diff(x, y).doit()
y*Derivative(g(y), y) + g(y)
>>> eq.diff(x, y).subs(f(x), x*y).doit()
y*Derivative(g(y), y)
The results differ because `f(x)` was replaced with an expression
that involved both variables of differentiation. In the abstract
case, differentiation of `f(x)` by `y` is 0; in the concrete case,
the presence of `y` made that derivative nonvanishing and produced
the extra `g(y)` term.
Defining differentiation for an object
An object must define ._eval_derivative(symbol) method that returns
the differentiation result. This function only needs to consider the
non-trivial case where expr contains symbol and it should call the diff()
method internally (not _eval_derivative); Derivative should be the only
one to call _eval_derivative.
Any class can allow derivatives to be taken with respect to
itself (while indicating its scalar nature). See the
docstring of Expr._diff_wrt.
See Also
========
_sort_variable_count
"""
is_Derivative = True
@property
def _diff_wrt(self):
"""An expression may be differentiated wrt a Derivative if
it is in elementary form.
Examples
========
>>> from sympy import Function, Derivative, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> Derivative(f(x), x)._diff_wrt
True
>>> Derivative(cos(x), x)._diff_wrt
False
>>> Derivative(x + 1, x)._diff_wrt
False
A Derivative might be an unevaluated form of what will not be
a valid variable of differentiation if evaluated. For example,
>>> Derivative(f(f(x)), x).doit()
Derivative(f(x), x)*Derivative(f(f(x)), f(x))
Such an expression will present the same ambiguities as arise
when dealing with any other product, like ``2*x``, so ``_diff_wrt``
is False:
>>> Derivative(f(f(x)), x)._diff_wrt
False
"""
return self.expr._diff_wrt and isinstance(self.doit(), Derivative)
def __new__(cls, expr, *variables, **kwargs):
from sympy.matrices.common import MatrixCommon
from sympy import Integer, MatrixExpr
from sympy.tensor.array import Array, NDimArray
from sympy.utilities.misc import filldedent
expr = sympify(expr)
symbols_or_none = getattr(expr, "free_symbols", None)
has_symbol_set = isinstance(symbols_or_none, set)
if not has_symbol_set:
raise ValueError(filldedent('''
Since there are no variables in the expression %s,
it cannot be differentiated.''' % expr))
# determine value for variables if it wasn't given
if not variables:
variables = expr.free_symbols
if len(variables) != 1:
if expr.is_number:
return S.Zero
if len(variables) == 0:
raise ValueError(filldedent('''
Since there are no variables in the expression,
the variable(s) of differentiation must be supplied
to differentiate %s''' % expr))
else:
raise ValueError(filldedent('''
Since there is more than one variable in the
expression, the variable(s) of differentiation
must be supplied to differentiate %s''' % expr))
# Standardize the variables by sympifying them:
variables = list(sympify(variables))
# Split the list of variables into a list of the variables we are diff
# wrt, where each element of the list has the form (s, count) where
# s is the entity to diff wrt and count is the order of the
# derivative.
variable_count = []
array_likes = (tuple, list, Tuple)
for i, v in enumerate(variables):
if isinstance(v, Integer):
if i == 0:
raise ValueError("First variable cannot be a number: %i" % v)
count = v
prev, prevcount = variable_count[-1]
if prevcount != 1:
raise TypeError("tuple {} followed by number {}".format((prev, prevcount), v))
if count == 0:
variable_count.pop()
else:
variable_count[-1] = Tuple(prev, count)
else:
if isinstance(v, array_likes):
if len(v) == 0:
# Ignore empty tuples: Derivative(expr, ... , (), ... )
continue
if isinstance(v[0], array_likes):
# Derive by array: Derivative(expr, ... , [[x, y, z]], ... )
if len(v) == 1:
v = Array(v[0])
count = 1
else:
v, count = v
v = Array(v)
else:
v, count = v
if count == 0:
continue
elif isinstance(v, UndefinedFunction):
raise TypeError(
"cannot differentiate wrt "
"UndefinedFunction: %s" % v)
else:
count = 1
variable_count.append(Tuple(v, count))
# light evaluation of contiguous, identical
# items: (x, 1), (x, 1) -> (x, 2)
merged = []
for t in variable_count:
v, c = t
if c.is_negative:
raise ValueError(
'order of differentiation must be nonnegative')
if merged and merged[-1][0] == v:
c += merged[-1][1]
if not c:
merged.pop()
else:
merged[-1] = Tuple(v, c)
else:
merged.append(t)
variable_count = merged
# sanity check of variables of differentation; we waited
# until the counts were computed since some variables may
# have been removed because the count was 0
for v, c in variable_count:
# v must have _diff_wrt True
if not v._diff_wrt:
__ = '' # filler to make error message neater
raise ValueError(filldedent('''
Can't calculate derivative wrt %s.%s''' % (v,
__)))
# We make a special case for 0th derivative, because there is no
# good way to unambiguously print this.
if len(variable_count) == 0:
return expr
evaluate = kwargs.get('evaluate', False)
if evaluate:
if isinstance(expr, Derivative):
expr = expr.canonical
variable_count = [
(v.canonical if isinstance(v, Derivative) else v, c)
for v, c in variable_count]
# Look for a quick exit if there are symbols that don't appear in
# expression at all. Note, this cannot check non-symbols like
# Derivatives as those can be created by intermediate
# derivatives.
zero = False
free = expr.free_symbols
for v, c in variable_count:
vfree = v.free_symbols
if c.is_positive and vfree:
if isinstance(v, AppliedUndef):
# these match exactly since
# x.diff(f(x)) == g(x).diff(f(x)) == 0
# and are not created by differentiation
D = Dummy()
if not expr.xreplace({v: D}).has(D):
zero = True
break
elif isinstance(v, MatrixExpr):
zero = False
break
elif isinstance(v, Symbol) and v not in free:
zero = True
break
else:
if not free & vfree:
# e.g. v is IndexedBase or Matrix
zero = True
break
if zero:
return cls._get_zero_with_shape_like(expr)
# make the order of symbols canonical
#TODO: check if assumption of discontinuous derivatives exist
variable_count = cls._sort_variable_count(variable_count)
# denest
if isinstance(expr, Derivative):
variable_count = list(expr.variable_count) + variable_count
expr = expr.expr
return _derivative_dispatch(expr, *variable_count, **kwargs)
# we return here if evaluate is False or if there is no
# _eval_derivative method
if not evaluate or not hasattr(expr, '_eval_derivative'):
# return an unevaluated Derivative
if evaluate and variable_count == [(expr, 1)] and expr.is_scalar:
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
return S.One
return Expr.__new__(cls, expr, *variable_count)
# evaluate the derivative by calling _eval_derivative method
# of expr for each variable
# -------------------------------------------------------------
nderivs = 0 # how many derivatives were performed
unhandled = []
for i, (v, count) in enumerate(variable_count):
old_expr = expr
old_v = None
is_symbol = v.is_symbol or isinstance(v,
(Iterable, Tuple, MatrixCommon, NDimArray))
if not is_symbol:
old_v = v
v = Dummy('xi')
expr = expr.xreplace({old_v: v})
# Derivatives and UndefinedFunctions are independent
# of all others
clashing = not (isinstance(old_v, Derivative) or \
isinstance(old_v, AppliedUndef))
if not v in expr.free_symbols and not clashing:
return expr.diff(v) # expr's version of 0
if not old_v.is_scalar and not hasattr(
old_v, '_eval_derivative'):
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
expr *= old_v.diff(old_v)
obj = cls._dispatch_eval_derivative_n_times(expr, v, count)
if obj is not None and obj.is_zero:
return obj
nderivs += count
if old_v is not None:
if obj is not None:
# remove the dummy that was used
obj = obj.subs(v, old_v)
# restore expr
expr = old_expr
if obj is None:
# we've already checked for quick-exit conditions
# that give 0 so the remaining variables
# are contained in the expression but the expression
# did not compute a derivative so we stop taking
# derivatives
unhandled = variable_count[i:]
break
expr = obj
# what we have so far can be made canonical
expr = expr.replace(
lambda x: isinstance(x, Derivative),
lambda x: x.canonical)
if unhandled:
if isinstance(expr, Derivative):
unhandled = list(expr.variable_count) + unhandled
expr = expr.expr
expr = Expr.__new__(cls, expr, *unhandled)
if (nderivs > 1) == True and kwargs.get('simplify', True):
from sympy.core.exprtools import factor_terms
from sympy.simplify.simplify import signsimp
expr = factor_terms(signsimp(expr))
return expr
@property
def canonical(cls):
return cls.func(cls.expr,
*Derivative._sort_variable_count(cls.variable_count))
@classmethod
def _sort_variable_count(cls, vc):
"""
Sort (variable, count) pairs into canonical order while
retaining order of variables that do not commute during
differentiation:
* symbols and functions commute with each other
* derivatives commute with each other
* a derivative doesn't commute with anything it contains
* any other object is not allowed to commute if it has
free symbols in common with another object
Examples
========
>>> from sympy import Derivative, Function, symbols
>>> vsort = Derivative._sort_variable_count
>>> x, y, z = symbols('x y z')
>>> f, g, h = symbols('f g h', cls=Function)
Contiguous items are collapsed into one pair:
>>> vsort([(x, 1), (x, 1)])
[(x, 2)]
>>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)])
[(y, 2), (f(x), 2)]
Ordering is canonical.
>>> def vsort0(*v):
... # docstring helper to
... # change vi -> (vi, 0), sort, and return vi vals
... return [i[0] for i in vsort([(i, 0) for i in v])]
>>> vsort0(y, x)
[x, y]
>>> vsort0(g(y), g(x), f(y))
[f(y), g(x), g(y)]
Symbols are sorted as far to the left as possible but never
move to the left of a derivative having the same symbol in
its variables; the same applies to AppliedUndef which are
always sorted after Symbols:
>>> dfx = f(x).diff(x)
>>> assert vsort0(dfx, y) == [y, dfx]
>>> assert vsort0(dfx, x) == [dfx, x]
"""
from sympy.utilities.iterables import uniq, topological_sort
if not vc:
return []
vc = list(vc)
if len(vc) == 1:
return [Tuple(*vc[0])]
V = list(range(len(vc)))
E = []
v = lambda i: vc[i][0]
D = Dummy()
def _block(d, v, wrt=False):
# return True if v should not come before d else False
if d == v:
return wrt
if d.is_Symbol:
return False
if isinstance(d, Derivative):
# a derivative blocks if any of it's variables contain
# v; the wrt flag will return True for an exact match
# and will cause an AppliedUndef to block if v is in
# the arguments
if any(_block(k, v, wrt=True)
for k in d._wrt_variables):
return True
return False
if not wrt and isinstance(d, AppliedUndef):
return False
if v.is_Symbol:
return v in d.free_symbols
if isinstance(v, AppliedUndef):
return _block(d.xreplace({v: D}), D)
return d.free_symbols & v.free_symbols
for i in range(len(vc)):
for j in range(i):
if _block(v(j), v(i)):
E.append((j,i))
# this is the default ordering to use in case of ties
O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc))))
ix = topological_sort((V, E), key=lambda i: O[v(i)])
# merge counts of contiguously identical items
merged = []
for v, c in [vc[i] for i in ix]:
if merged and merged[-1][0] == v:
merged[-1][1] += c
else:
merged.append([v, c])
return [Tuple(*i) for i in merged]
def _eval_is_commutative(self):
return self.expr.is_commutative
def _eval_derivative(self, v):
# If v (the variable of differentiation) is not in
# self.variables, we might be able to take the derivative.
if v not in self._wrt_variables:
dedv = self.expr.diff(v)
if isinstance(dedv, Derivative):
return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count))
# dedv (d(self.expr)/dv) could have simplified things such that the
# derivative wrt things in self.variables can now be done. Thus,
# we set evaluate=True to see if there are any other derivatives
# that can be done. The most common case is when dedv is a simple
# number so that the derivative wrt anything else will vanish.
return self.func(dedv, *self.variables, evaluate=True)
# In this case v was in self.variables so the derivative wrt v has
# already been attempted and was not computed, either because it
# couldn't be or evaluate=False originally.
variable_count = list(self.variable_count)
variable_count.append((v, 1))
return self.func(self.expr, *variable_count, evaluate=False)
def doit(self, **hints):
expr = self.expr
if hints.get('deep', True):
expr = expr.doit(**hints)
hints['evaluate'] = True
rv = self.func(expr, *self.variable_count, **hints)
if rv!= self and rv.has(Derivative):
rv = rv.doit(**hints)
return rv
@_sympifyit('z0', NotImplementedError)
def doit_numerically(self, z0):
"""
Evaluate the derivative at z numerically.
When we can represent derivatives at a point, this should be folded
into the normal evalf. For now, we need a special method.
"""
if len(self.free_symbols) != 1 or len(self.variables) != 1:
raise NotImplementedError('partials and higher order derivatives')
z = list(self.free_symbols)[0]
def eval(x):
f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec))
f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec))
return f0._to_mpmath(mpmath.mp.prec)
return Expr._from_mpmath(mpmath.diff(eval,
z0._to_mpmath(mpmath.mp.prec)),
mpmath.mp.prec)
@property
def expr(self):
return self._args[0]
@property
def _wrt_variables(self):
# return the variables of differentiation without
# respect to the type of count (int or symbolic)
return [i[0] for i in self.variable_count]
@property
def variables(self):
# TODO: deprecate? YES, make this 'enumerated_variables' and
# name _wrt_variables as variables
# TODO: support for `d^n`?
rv = []
for v, count in self.variable_count:
if not count.is_Integer:
raise TypeError(filldedent('''
Cannot give expansion for symbolic count. If you just
want a list of all variables of differentiation, use
_wrt_variables.'''))
rv.extend([v]*count)
return tuple(rv)
@property
def variable_count(self):
return self._args[1:]
@property
def derivative_count(self):
return sum([count for var, count in self.variable_count], 0)
@property
def free_symbols(self):
ret = self.expr.free_symbols
# Add symbolic counts to free_symbols
for var, count in self.variable_count:
ret.update(count.free_symbols)
return ret
def _eval_subs(self, old, new):
# The substitution (old, new) cannot be done inside
# Derivative(expr, vars) for a variety of reasons
# as handled below.
if old in self._wrt_variables:
# first handle the counts
expr = self.func(self.expr, *[(v, c.subs(old, new))
for v, c in self.variable_count])
if expr != self:
return expr._eval_subs(old, new)
# quick exit case
if not getattr(new, '_diff_wrt', False):
# case (0): new is not a valid variable of
# differentiation
if isinstance(old, Symbol):
# don't introduce a new symbol if the old will do
return Subs(self, old, new)
else:
xi = Dummy('xi')
return Subs(self.xreplace({old: xi}), xi, new)
# If both are Derivatives with the same expr, check if old is
# equivalent to self or if old is a subderivative of self.
if old.is_Derivative and old.expr == self.expr:
if self.canonical == old.canonical:
return new
# collections.Counter doesn't have __le__
def _subset(a, b):
return all((a[i] <= b[i]) == True for i in a)
old_vars = Counter(dict(reversed(old.variable_count)))
self_vars = Counter(dict(reversed(self.variable_count)))
if _subset(old_vars, self_vars):
return _derivative_dispatch(new, *(self_vars - old_vars).items()).canonical
args = list(self.args)
newargs = list(x._subs(old, new) for x in args)
if args[0] == old:
# complete replacement of self.expr
# we already checked that the new is valid so we know
# it won't be a problem should it appear in variables
return _derivative_dispatch(*newargs)
if newargs[0] != args[0]:
# case (1) can't change expr by introducing something that is in
# the _wrt_variables if it was already in the expr
# e.g.
# for Derivative(f(x, g(y)), y), x cannot be replaced with
# anything that has y in it; for f(g(x), g(y)).diff(g(y))
# g(x) cannot be replaced with anything that has g(y)
syms = {vi: Dummy() for vi in self._wrt_variables
if not vi.is_Symbol}
wrt = {syms.get(vi, vi) for vi in self._wrt_variables}
forbidden = args[0].xreplace(syms).free_symbols & wrt
nfree = new.xreplace(syms).free_symbols
ofree = old.xreplace(syms).free_symbols
if (nfree - ofree) & forbidden:
return Subs(self, old, new)
viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:]))
if any(i != j for i, j in viter): # a wrt-variable change
# case (2) can't change vars by introducing a variable
# that is contained in expr, e.g.
# for Derivative(f(z, g(h(x), y)), y), y cannot be changed to
# x, h(x), or g(h(x), y)
for a in _atomic(self.expr, recursive=True):
for i in range(1, len(newargs)):
vi, _ = newargs[i]
if a == vi and vi != args[i][0]:
return Subs(self, old, new)
# more arg-wise checks
vc = newargs[1:]
oldv = self._wrt_variables
newe = self.expr
subs = []
for i, (vi, ci) in enumerate(vc):
if not vi._diff_wrt:
# case (3) invalid differentiation expression so
# create a replacement dummy
xi = Dummy('xi_%i' % i)
# replace the old valid variable with the dummy
# in the expression
newe = newe.xreplace({oldv[i]: xi})
# and replace the bad variable with the dummy
vc[i] = (xi, ci)
# and record the dummy with the new (invalid)
# differentiation expression
subs.append((xi, vi))
if subs:
# handle any residual substitution in the expression
newe = newe._subs(old, new)
# return the Subs-wrapped derivative
return Subs(Derivative(newe, *vc), *zip(*subs))
# everything was ok
return _derivative_dispatch(*newargs)
def _eval_lseries(self, x, logx, cdir=0):
dx = self.variables
for term in self.expr.lseries(x, logx=logx, cdir=cdir):
yield self.func(term, *dx)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.expr.nseries(x, n=n, logx=logx)
o = arg.getO()
dx = self.variables
rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())]
if o:
rv.append(o/x)
return Add(*rv)
def _eval_as_leading_term(self, x, cdir=0):
series_gen = self.expr.lseries(x)
d = S.Zero
for leading_term in series_gen:
d = diff(leading_term, *self.variables)
if d != 0:
break
return d
def _sage_(self):
import sage.all as sage
args = [arg._sage_() for arg in self.args]
return sage.derivative(*args)
def as_finite_difference(self, points=1, x0=None, wrt=None):
""" Expresses a Derivative instance as a finite difference.
Parameters
==========
points : sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. Default: 1 (step-size 1)
x0 : number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt : Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> f(x).diff(x).as_finite_difference()
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and
``order + 1`` respectively. We can change the step size by
passing a symbol as a parameter:
>>> f(x).diff(x).as_finite_difference(h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a
sequence:
>>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/...
To approximate ``Derivative`` around ``x0`` using a non-equidistant
spacing step, the algorithm supports assignment of undefined
functions to ``points``:
>>> dx = Function('dx')
>>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h)
-f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x)
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> d2fdxdy.as_finite_difference(wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
We can apply ``as_finite_difference`` to ``Derivative`` instances in
compound expressions using ``replace``:
>>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative,
... lambda arg: arg.as_finite_difference())
42**(-f(x - 1/2) + f(x + 1/2)) + 1
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.differentiate_finite
sympy.calculus.finite_diff.finite_diff_weights
"""
from ..calculus.finite_diff import _as_finite_diff
return _as_finite_diff(self, points, x0, wrt)
@classmethod
def _get_zero_with_shape_like(cls, expr):
return S.Zero
@classmethod
def _dispatch_eval_derivative_n_times(cls, expr, v, count):
# Evaluate the derivative `n` times. If
# `_eval_derivative_n_times` is not overridden by the current
# object, the default in `Basic` will call a loop over
# `_eval_derivative`:
return expr._eval_derivative_n_times(v, count)
def _derivative_dispatch(expr, *variables, **kwargs):
from sympy.matrices.common import MatrixCommon
from sympy import MatrixExpr
from sympy import NDimArray
array_types = (MatrixCommon, MatrixExpr, NDimArray, list, tuple, Tuple)
if isinstance(expr, array_types) or any(isinstance(i[0], array_types) if isinstance(i, (tuple, list, Tuple)) else isinstance(i, array_types) for i in variables):
from sympy.tensor.array.array_derivatives import ArrayDerivative
return ArrayDerivative(expr, *variables, **kwargs)
return Derivative(expr, *variables, **kwargs)
class Lambda(Expr):
"""
Lambda(x, expr) represents a lambda function similar to Python's
'lambda x: expr'. A function of several variables is written as
Lambda((x, y, ...), expr).
Examples
========
A simple example:
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> f = Lambda(x, x**2)
>>> f(4)
16
For multivariate functions, use:
>>> from sympy.abc import y, z, t
>>> f2 = Lambda((x, y, z, t), x + y**z + t**z)
>>> f2(1, 2, 3, 4)
73
It is also possible to unpack tuple arguments:
>>> f = Lambda( ((x, y), z) , x + y + z)
>>> f((1, 2), 3)
6
A handy shortcut for lots of arguments:
>>> p = x, y, z
>>> f = Lambda(p, x + y*z)
>>> f(*p)
x + y*z
"""
is_Function = True
def __new__(cls, signature, expr):
if iterable(signature) and not isinstance(signature, (tuple, Tuple)):
SymPyDeprecationWarning(
feature="non tuple iterable of argument symbols to Lambda",
useinstead="tuple of argument symbols",
issue=17474,
deprecated_since_version="1.5").warn()
signature = tuple(signature)
sig = signature if iterable(signature) else (signature,)
sig = sympify(sig)
cls._check_signature(sig)
if len(sig) == 1 and sig[0] == expr:
return S.IdentityFunction
return Expr.__new__(cls, sig, sympify(expr))
@classmethod
def _check_signature(cls, sig):
syms = set()
def rcheck(args):
for a in args:
if a.is_symbol:
if a in syms:
raise BadSignatureError("Duplicate symbol %s" % a)
syms.add(a)
elif isinstance(a, Tuple):
rcheck(a)
else:
raise BadSignatureError("Lambda signature should be only tuples"
" and symbols, not %s" % a)
if not isinstance(sig, Tuple):
raise BadSignatureError("Lambda signature should be a tuple not %s" % sig)
# Recurse through the signature:
rcheck(sig)
@property
def signature(self):
"""The expected form of the arguments to be unpacked into variables"""
return self._args[0]
@property
def expr(self):
"""The return value of the function"""
return self._args[1]
@property
def variables(self):
"""The variables used in the internal representation of the function"""
def _variables(args):
if isinstance(args, Tuple):
for arg in args:
yield from _variables(arg)
else:
yield args
return tuple(_variables(self.signature))
@property
def nargs(self):
from sympy.sets.sets import FiniteSet
return FiniteSet(len(self.signature))
bound_symbols = variables
@property
def free_symbols(self):
return self.expr.free_symbols - set(self.variables)
def __call__(self, *args):
n = len(args)
if n not in self.nargs: # Lambda only ever has 1 value in nargs
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
## XXX does this apply to Lambda? If not, remove this comment.
temp = ('%(name)s takes exactly %(args)s '
'argument%(plural)s (%(given)s given)')
raise BadArgumentsError(temp % {
'name': self,
'args': list(self.nargs)[0],
'plural': 's'*(list(self.nargs)[0] != 1),
'given': n})
d = self._match_signature(self.signature, args)
return self.expr.xreplace(d)
def _match_signature(self, sig, args):
symargmap = {}
def rmatch(pars, args):
for par, arg in zip(pars, args):
if par.is_symbol:
symargmap[par] = arg
elif isinstance(par, Tuple):
if not isinstance(arg, (tuple, Tuple)) or len(args) != len(pars):
raise BadArgumentsError("Can't match %s and %s" % (args, pars))
rmatch(par, arg)
rmatch(sig, args)
return symargmap
@property
def is_identity(self):
"""Return ``True`` if this ``Lambda`` is an identity function. """
return self.signature == self.expr
class Subs(Expr):
"""
Represents unevaluated substitutions of an expression.
``Subs(expr, x, x0)`` receives 3 arguments: an expression, a variable or
list of distinct variables and a point or list of evaluation points
corresponding to those variables.
``Subs`` objects are generally useful to represent unevaluated derivatives
calculated at a point.
The variables may be expressions, but they are subjected to the limitations
of subs(), so it is usually a good practice to use only symbols for
variables, since in that case there can be no ambiguity.
There's no automatic expansion - use the method .doit() to effect all
possible substitutions of the object and also of objects inside the
expression.
When evaluating derivatives at a point that is not a symbol, a Subs object
is returned. One is also able to calculate derivatives of Subs objects - in
this case the expression is always expanded (for the unevaluated form, use
Derivative()).
Examples
========
>>> from sympy import Subs, Function, sin, cos
>>> from sympy.abc import x, y, z
>>> f = Function('f')
Subs are created when a particular substitution cannot be made. The
x in the derivative cannot be replaced with 0 because 0 is not a
valid variables of differentiation:
>>> f(x).diff(x).subs(x, 0)
Subs(Derivative(f(x), x), x, 0)
Once f is known, the derivative and evaluation at 0 can be done:
>>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0)
True
Subs can also be created directly with one or more variables:
>>> Subs(f(x)*sin(y) + z, (x, y), (0, 1))
Subs(z + f(x)*sin(y), (x, y), (0, 1))
>>> _.doit()
z + f(0)*sin(1)
Notes
=====
In order to allow expressions to combine before doit is done, a
representation of the Subs expression is used internally to make
expressions that are superficially different compare the same:
>>> a, b = Subs(x, x, 0), Subs(y, y, 0)
>>> a + b
2*Subs(x, x, 0)
This can lead to unexpected consequences when using methods
like `has` that are cached:
>>> s = Subs(x, x, 0)
>>> s.has(x), s.has(y)
(True, False)
>>> ss = s.subs(x, y)
>>> ss.has(x), ss.has(y)
(True, False)
>>> s, ss
(Subs(x, x, 0), Subs(y, y, 0))
"""
def __new__(cls, expr, variables, point, **assumptions):
from sympy import Symbol
if not is_sequence(variables, Tuple):
variables = [variables]
variables = Tuple(*variables)
if has_dups(variables):
repeated = [str(v) for v, i in Counter(variables).items() if i > 1]
__ = ', '.join(repeated)
raise ValueError(filldedent('''
The following expressions appear more than once: %s
''' % __))
point = Tuple(*(point if is_sequence(point, Tuple) else [point]))
if len(point) != len(variables):
raise ValueError('Number of point values must be the same as '
'the number of variables.')
if not point:
return sympify(expr)
# denest
if isinstance(expr, Subs):
variables = expr.variables + variables
point = expr.point + point
expr = expr.expr
else:
expr = sympify(expr)
# use symbols with names equal to the point value (with prepended _)
# to give a variable-independent expression
pre = "_"
pts = sorted(set(point), key=default_sort_key)
from sympy.printing import StrPrinter
class CustomStrPrinter(StrPrinter):
def _print_Dummy(self, expr):
return str(expr) + str(expr.dummy_index)
def mystr(expr, **settings):
p = CustomStrPrinter(settings)
return p.doprint(expr)
while 1:
s_pts = {p: Symbol(pre + mystr(p)) for p in pts}
reps = [(v, s_pts[p])
for v, p in zip(variables, point)]
# if any underscore-prepended symbol is already a free symbol
# and is a variable with a different point value, then there
# is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0))
# because the new symbol that would be created is _1 but _1
# is already mapped to 0 so __0 and __1 are used for the new
# symbols
if any(r in expr.free_symbols and
r in variables and
Symbol(pre + mystr(point[variables.index(r)])) != r
for _, r in reps):
pre += "_"
continue
break
obj = Expr.__new__(cls, expr, Tuple(*variables), point)
obj._expr = expr.xreplace(dict(reps))
return obj
def _eval_is_commutative(self):
return self.expr.is_commutative
def doit(self, **hints):
e, v, p = self.args
# remove self mappings
for i, (vi, pi) in enumerate(zip(v, p)):
if vi == pi:
v = v[:i] + v[i + 1:]
p = p[:i] + p[i + 1:]
if not v:
return self.expr
if isinstance(e, Derivative):
# apply functions first, e.g. f -> cos
undone = []
for i, vi in enumerate(v):
if isinstance(vi, FunctionClass):
e = e.subs(vi, p[i])
else:
undone.append((vi, p[i]))
if not isinstance(e, Derivative):
e = e.doit()
if isinstance(e, Derivative):
# do Subs that aren't related to differentiation
undone2 = []
D = Dummy()
for vi, pi in undone:
if D not in e.xreplace({vi: D}).free_symbols:
e = e.subs(vi, pi)
else:
undone2.append((vi, pi))
undone = undone2
# differentiate wrt variables that are present
wrt = []
D = Dummy()
expr = e.expr
free = expr.free_symbols
for vi, ci in e.variable_count:
if isinstance(vi, Symbol) and vi in free:
expr = expr.diff((vi, ci))
elif D in expr.subs(vi, D).free_symbols:
expr = expr.diff((vi, ci))
else:
wrt.append((vi, ci))
# inject remaining subs
rv = expr.subs(undone)
# do remaining differentiation *in order given*
for vc in wrt:
rv = rv.diff(vc)
else:
# inject remaining subs
rv = e.subs(undone)
else:
rv = e.doit(**hints).subs(list(zip(v, p)))
if hints.get('deep', True) and rv != self:
rv = rv.doit(**hints)
return rv
def evalf(self, prec=None, **options):
return self.doit().evalf(prec, **options)
n = evalf
@property
def variables(self):
"""The variables to be evaluated"""
return self._args[1]
bound_symbols = variables
@property
def expr(self):
"""The expression on which the substitution operates"""
return self._args[0]
@property
def point(self):
"""The values for which the variables are to be substituted"""
return self._args[2]
@property
def free_symbols(self):
return (self.expr.free_symbols - set(self.variables) |
set(self.point.free_symbols))
@property
def expr_free_symbols(self):
return (self.expr.expr_free_symbols - set(self.variables) |
set(self.point.expr_free_symbols))
def __eq__(self, other):
if not isinstance(other, Subs):
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
return not(self == other)
def __hash__(self):
return super().__hash__()
def _hashable_content(self):
return (self._expr.xreplace(self.canonical_variables),
) + tuple(ordered([(v, p) for v, p in
zip(self.variables, self.point) if not self.expr.has(v)]))
def _eval_subs(self, old, new):
# Subs doit will do the variables in order; the semantics
# of subs for Subs is have the following invariant for
# Subs object foo:
# foo.doit().subs(reps) == foo.subs(reps).doit()
pt = list(self.point)
if old in self.variables:
if _atomic(new) == {new} and not any(
i.has(new) for i in self.args):
# the substitution is neutral
return self.xreplace({old: new})
# any occurrence of old before this point will get
# handled by replacements from here on
i = self.variables.index(old)
for j in range(i, len(self.variables)):
pt[j] = pt[j]._subs(old, new)
return self.func(self.expr, self.variables, pt)
v = [i._subs(old, new) for i in self.variables]
if v != list(self.variables):
return self.func(self.expr, self.variables + (old,), pt + [new])
expr = self.expr._subs(old, new)
pt = [i._subs(old, new) for i in self.point]
return self.func(expr, v, pt)
def _eval_derivative(self, s):
# Apply the chain rule of the derivative on the substitution variables:
val = Add.fromiter(p.diff(s) * Subs(self.expr.diff(v), self.variables, self.point).doit() for v, p in zip(self.variables, self.point))
# Check if there are free symbols in `self.expr`:
# First get the `expr_free_symbols`, which returns the free symbols
# that are directly contained in an expression node (i.e. stop
# searching if the node isn't an expression). At this point turn the
# expressions into `free_symbols` and check if there are common free
# symbols in `self.expr` and the deriving factor.
fs1 = {j for i in self.expr_free_symbols for j in i.free_symbols}
if len(fs1 & s.free_symbols) > 0:
val += Subs(self.expr.diff(s), self.variables, self.point).doit()
return val
def _eval_nseries(self, x, n, logx, cdir=0):
if x in self.point:
# x is the variable being substituted into
apos = self.point.index(x)
other = self.variables[apos]
else:
other = x
arg = self.expr.nseries(other, n=n, logx=logx)
o = arg.getO()
terms = Add.make_args(arg.removeO())
rv = Add(*[self.func(a, *self.args[1:]) for a in terms])
if o:
rv += o.subs(other, x)
return rv
def _eval_as_leading_term(self, x, cdir=0):
if x in self.point:
ipos = self.point.index(x)
xvar = self.variables[ipos]
return self.expr.as_leading_term(xvar)
if x in self.variables:
# if `x` is a dummy variable, it means it won't exist after the
# substitution has been performed:
return self
# The variable is independent of the substitution:
return self.expr.as_leading_term(x)
def diff(f, *symbols, **kwargs):
"""
Differentiate f with respect to symbols.
This is just a wrapper to unify .diff() and the Derivative class; its
interface is similar to that of integrate(). You can use the same
shortcuts for multiple variables as with Derivative. For example,
diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative
of f(x).
You can pass evaluate=False to get an unevaluated Derivative class. Note
that if there are 0 symbols (such as diff(f(x), x, 0), then the result will
be the function (the zeroth derivative), even if evaluate=False.
Examples
========
>>> from sympy import sin, cos, Function, diff
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> diff(sin(x), x)
cos(x)
>>> diff(f(x), x, x, x)
Derivative(f(x), (x, 3))
>>> diff(f(x), x, 3)
Derivative(f(x), (x, 3))
>>> diff(sin(x)*cos(y), x, 2, y, 2)
sin(x)*cos(y)
>>> type(diff(sin(x), x))
cos
>>> type(diff(sin(x), x, evaluate=False))
<class 'sympy.core.function.Derivative'>
>>> type(diff(sin(x), x, 0))
sin
>>> type(diff(sin(x), x, 0, evaluate=False))
sin
>>> diff(sin(x))
cos(x)
>>> diff(sin(x*y))
Traceback (most recent call last):
...
ValueError: specify differentiation variables to differentiate sin(x*y)
Note that ``diff(sin(x))`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
References
==========
http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html
See Also
========
Derivative
idiff: computes the derivative implicitly
"""
if hasattr(f, 'diff'):
return f.diff(*symbols, **kwargs)
kwargs.setdefault('evaluate', True)
return _derivative_dispatch(f, *symbols, **kwargs)
def expand(e, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
r"""
Expand an expression using methods given as hints.
Hints evaluated unless explicitly set to False are: ``basic``, ``log``,
``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following
hints are supported but not applied unless set to True: ``complex``,
``func``, and ``trig``. In addition, the following meta-hints are
supported by some or all of the other hints: ``frac``, ``numer``,
``denom``, ``modulus``, and ``force``. ``deep`` is supported by all
hints. Additionally, subclasses of Expr may define their own hints or
meta-hints.
The ``basic`` hint is used for any special rewriting of an object that
should be done automatically (along with the other hints like ``mul``)
when expand is called. This is a catch-all hint to handle any sort of
expansion that may not be described by the existing hint names. To use
this hint an object should override the ``_eval_expand_basic`` method.
Objects may also define their own expand methods, which are not run by
default. See the API section below.
If ``deep`` is set to ``True`` (the default), things like arguments of
functions are recursively expanded. Use ``deep=False`` to only expand on
the top level.
If the ``force`` hint is used, assumptions about variables will be ignored
in making the expansion.
Hints
=====
These hints are run by default
mul
---
Distributes multiplication over addition:
>>> from sympy import cos, exp, sin
>>> from sympy.abc import x, y, z
>>> (y*(x + z)).expand(mul=True)
x*y + y*z
multinomial
-----------
Expand (x + y + ...)**n where n is a positive integer.
>>> ((x + y + z)**2).expand(multinomial=True)
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
power_exp
---------
Expand addition in exponents into multiplied bases.
>>> exp(x + y).expand(power_exp=True)
exp(x)*exp(y)
>>> (2**(x + y)).expand(power_exp=True)
2**x*2**y
power_base
----------
Split powers of multiplied bases.
This only happens by default if assumptions allow, or if the
``force`` meta-hint is used:
>>> ((x*y)**z).expand(power_base=True)
(x*y)**z
>>> ((x*y)**z).expand(power_base=True, force=True)
x**z*y**z
>>> ((2*y)**z).expand(power_base=True)
2**z*y**z
Note that in some cases where this expansion always holds, SymPy performs
it automatically:
>>> (x*y)**2
x**2*y**2
log
---
Pull out power of an argument as a coefficient and split logs products
into sums of logs.
Note that these only work if the arguments of the log function have the
proper assumptions--the arguments must be positive and the exponents must
be real--or else the ``force`` hint must be True:
>>> from sympy import log, symbols
>>> log(x**2*y).expand(log=True)
log(x**2*y)
>>> log(x**2*y).expand(log=True, force=True)
2*log(x) + log(y)
>>> x, y = symbols('x,y', positive=True)
>>> log(x**2*y).expand(log=True)
2*log(x) + log(y)
basic
-----
This hint is intended primarily as a way for custom subclasses to enable
expansion by default.
These hints are not run by default:
complex
-------
Split an expression into real and imaginary parts.
>>> x, y = symbols('x,y')
>>> (x + y).expand(complex=True)
re(x) + re(y) + I*im(x) + I*im(y)
>>> cos(x).expand(complex=True)
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x))
Note that this is just a wrapper around ``as_real_imag()``. Most objects
that wish to redefine ``_eval_expand_complex()`` should consider
redefining ``as_real_imag()`` instead.
func
----
Expand other functions.
>>> from sympy import gamma
>>> gamma(x + 1).expand(func=True)
x*gamma(x)
trig
----
Do trigonometric expansions.
>>> cos(x + y).expand(trig=True)
-sin(x)*sin(y) + cos(x)*cos(y)
>>> sin(2*x).expand(trig=True)
2*sin(x)*cos(x)
Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)``
and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x)
= 1`. The current implementation uses the form obtained from Chebyshev
polynomials, but this may change. See `this MathWorld article
<http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more
information.
Notes
=====
- You can shut off unwanted methods::
>>> (exp(x + y)*(x + y)).expand()
x*exp(x)*exp(y) + y*exp(x)*exp(y)
>>> (exp(x + y)*(x + y)).expand(power_exp=False)
x*exp(x + y) + y*exp(x + y)
>>> (exp(x + y)*(x + y)).expand(mul=False)
(x + y)*exp(x)*exp(y)
- Use deep=False to only expand on the top level::
>>> exp(x + exp(x + y)).expand()
exp(x)*exp(exp(x)*exp(y))
>>> exp(x + exp(x + y)).expand(deep=False)
exp(x)*exp(exp(x + y))
- Hints are applied in an arbitrary, but consistent order (in the current
implementation, they are applied in alphabetical order, except
multinomial comes before mul, but this may change). Because of this,
some hints may prevent expansion by other hints if they are applied
first. For example, ``mul`` may distribute multiplications and prevent
``log`` and ``power_base`` from expanding them. Also, if ``mul`` is
applied before ``multinomial`, the expression might not be fully
distributed. The solution is to use the various ``expand_hint`` helper
functions or to use ``hint=False`` to this function to finely control
which hints are applied. Here are some examples::
>>> from sympy import expand, expand_mul, expand_power_base
>>> x, y, z = symbols('x,y,z', positive=True)
>>> expand(log(x*(y + z)))
log(x) + log(y + z)
Here, we see that ``log`` was applied before ``mul``. To get the mul
expanded form, either of the following will work::
>>> expand_mul(log(x*(y + z)))
log(x*y + x*z)
>>> expand(log(x*(y + z)), log=False)
log(x*y + x*z)
A similar thing can happen with the ``power_base`` hint::
>>> expand((x*(y + z))**x)
(x*y + x*z)**x
To get the ``power_base`` expanded form, either of the following will
work::
>>> expand((x*(y + z))**x, mul=False)
x**x*(y + z)**x
>>> expand_power_base((x*(y + z))**x)
x**x*(y + z)**x
>>> expand((x + y)*y/x)
y + y**2/x
The parts of a rational expression can be targeted::
>>> expand((x + y)*y/x/(x + 1), frac=True)
(x*y + y**2)/(x**2 + x)
>>> expand((x + y)*y/x/(x + 1), numer=True)
(x*y + y**2)/(x*(x + 1))
>>> expand((x + y)*y/x/(x + 1), denom=True)
y*(x + y)/(x**2 + x)
- The ``modulus`` meta-hint can be used to reduce the coefficients of an
expression post-expansion::
>>> expand((3*x + 1)**2)
9*x**2 + 6*x + 1
>>> expand((3*x + 1)**2, modulus=5)
4*x**2 + x + 1
- Either ``expand()`` the function or ``.expand()`` the method can be
used. Both are equivalent::
>>> expand((x + 1)**2)
x**2 + 2*x + 1
>>> ((x + 1)**2).expand()
x**2 + 2*x + 1
API
===
Objects can define their own expand hints by defining
``_eval_expand_hint()``. The function should take the form::
def _eval_expand_hint(self, **hints):
# Only apply the method to the top-level expression
...
See also the example below. Objects should define ``_eval_expand_hint()``
methods only if ``hint`` applies to that specific object. The generic
``_eval_expand_hint()`` method defined in Expr will handle the no-op case.
Each hint should be responsible for expanding that hint only.
Furthermore, the expansion should be applied to the top-level expression
only. ``expand()`` takes care of the recursion that happens when
``deep=True``.
You should only call ``_eval_expand_hint()`` methods directly if you are
100% sure that the object has the method, as otherwise you are liable to
get unexpected ``AttributeError``s. Note, again, that you do not need to
recursively apply the hint to args of your object: this is handled
automatically by ``expand()``. ``_eval_expand_hint()`` should
generally not be used at all outside of an ``_eval_expand_hint()`` method.
If you want to apply a specific expansion from within another method, use
the public ``expand()`` function, method, or ``expand_hint()`` functions.
In order for expand to work, objects must be rebuildable by their args,
i.e., ``obj.func(*obj.args) == obj`` must hold.
Expand methods are passed ``**hints`` so that expand hints may use
'metahints'--hints that control how different expand methods are applied.
For example, the ``force=True`` hint described above that causes
``expand(log=True)`` to ignore assumptions is such a metahint. The
``deep`` meta-hint is handled exclusively by ``expand()`` and is not
passed to ``_eval_expand_hint()`` methods.
Note that expansion hints should generally be methods that perform some
kind of 'expansion'. For hints that simply rewrite an expression, use the
.rewrite() API.
Examples
========
>>> from sympy import Expr, sympify
>>> class MyClass(Expr):
... def __new__(cls, *args):
... args = sympify(args)
... return Expr.__new__(cls, *args)
...
... def _eval_expand_double(self, *, force=False, **hints):
... '''
... Doubles the args of MyClass.
...
... If there more than four args, doubling is not performed,
... unless force=True is also used (False by default).
... '''
... if not force and len(self.args) > 4:
... return self
... return self.func(*(self.args + self.args))
...
>>> a = MyClass(1, 2, MyClass(3, 4))
>>> a
MyClass(1, 2, MyClass(3, 4))
>>> a.expand(double=True)
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
>>> a.expand(double=True, deep=False)
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
>>> b = MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True)
MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True, force=True)
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
See Also
========
expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig,
expand_power_base, expand_power_exp, expand_func, sympy.simplify.hyperexpand.hyperexpand
"""
# don't modify this; modify the Expr.expand method
hints['power_base'] = power_base
hints['power_exp'] = power_exp
hints['mul'] = mul
hints['log'] = log
hints['multinomial'] = multinomial
hints['basic'] = basic
return sympify(e).expand(deep=deep, modulus=modulus, **hints)
# This is a special application of two hints
def _mexpand(expr, recursive=False):
# expand multinomials and then expand products; this may not always
# be sufficient to give a fully expanded expression (see
# test_issue_8247_8354 in test_arit)
if expr is None:
return
was = None
while was != expr:
was, expr = expr, expand_mul(expand_multinomial(expr))
if not recursive:
break
return expr
# These are simple wrappers around single hints.
def expand_mul(expr, deep=True):
"""
Wrapper around expand that only uses the mul hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_mul, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2)
"""
return sympify(expr).expand(deep=deep, mul=True, power_exp=False,
power_base=False, basic=False, multinomial=False, log=False)
def expand_multinomial(expr, deep=True):
"""
Wrapper around expand that only uses the multinomial hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_multinomial, exp
>>> x, y = symbols('x y', positive=True)
>>> expand_multinomial((x + exp(x + 1))**2)
x**2 + 2*x*exp(x + 1) + exp(2*x + 2)
"""
return sympify(expr).expand(deep=deep, mul=False, power_exp=False,
power_base=False, basic=False, multinomial=True, log=False)
def expand_log(expr, deep=True, force=False, factor=False):
"""
Wrapper around expand that only uses the log hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_log, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
(x + y)*(log(x) + 2*log(y))*exp(x + y)
"""
from sympy import Mul, log
if factor is False:
def _handle(x):
x1 = expand_mul(expand_log(x, deep=deep, force=force, factor=True))
if x1.count(log) <= x.count(log):
return x1
return x
expr = expr.replace(
lambda x: x.is_Mul and all(any(isinstance(i, log) and i.args[0].is_Rational
for i in Mul.make_args(j)) for j in x.as_numer_denom()),
lambda x: _handle(x))
return sympify(expr).expand(deep=deep, log=True, mul=False,
power_exp=False, power_base=False, multinomial=False,
basic=False, force=force, factor=factor)
def expand_func(expr, deep=True):
"""
Wrapper around expand that only uses the func hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_func, gamma
>>> from sympy.abc import x
>>> expand_func(gamma(x + 2))
x*(x + 1)*gamma(x)
"""
return sympify(expr).expand(deep=deep, func=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_trig(expr, deep=True):
"""
Wrapper around expand that only uses the trig hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_trig, sin
>>> from sympy.abc import x, y
>>> expand_trig(sin(x+y)*(x+y))
(x + y)*(sin(x)*cos(y) + sin(y)*cos(x))
"""
return sympify(expr).expand(deep=deep, trig=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_complex(expr, deep=True):
"""
Wrapper around expand that only uses the complex hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_complex, exp, sqrt, I
>>> from sympy.abc import z
>>> expand_complex(exp(z))
I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z))
>>> expand_complex(sqrt(I))
sqrt(2)/2 + sqrt(2)*I/2
See Also
========
sympy.core.expr.Expr.as_real_imag
"""
return sympify(expr).expand(deep=deep, complex=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_power_base(expr, deep=True, force=False):
"""
Wrapper around expand that only uses the power_base hint.
See the expand docstring for more information.
A wrapper to expand(power_base=True) which separates a power with a base
that is a Mul into a product of powers, without performing any other
expansions, provided that assumptions about the power's base and exponent
allow.
deep=False (default is True) will only apply to the top-level expression.
force=True (default is False) will cause the expansion to ignore
assumptions about the base and exponent. When False, the expansion will
only happen if the base is non-negative or the exponent is an integer.
>>> from sympy.abc import x, y, z
>>> from sympy import expand_power_base, sin, cos, exp
>>> (x*y)**2
x**2*y**2
>>> (2*x)**y
(2*x)**y
>>> expand_power_base(_)
2**y*x**y
>>> expand_power_base((x*y)**z)
(x*y)**z
>>> expand_power_base((x*y)**z, force=True)
x**z*y**z
>>> expand_power_base(sin((x*y)**z), deep=False)
sin((x*y)**z)
>>> expand_power_base(sin((x*y)**z), force=True)
sin(x**z*y**z)
>>> expand_power_base((2*sin(x))**y + (2*cos(x))**y)
2**y*sin(x)**y + 2**y*cos(x)**y
>>> expand_power_base((2*exp(y))**x)
2**x*exp(y)**x
>>> expand_power_base((2*cos(x))**y)
2**y*cos(x)**y
Notice that sums are left untouched. If this is not the desired behavior,
apply full ``expand()`` to the expression:
>>> expand_power_base(((x+y)*z)**2)
z**2*(x + y)**2
>>> (((x+y)*z)**2).expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
>>> expand_power_base((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)).expand()
2*2**z*y*y**z
"""
return sympify(expr).expand(deep=deep, log=False, mul=False,
power_exp=False, power_base=True, multinomial=False,
basic=False, force=force)
def expand_power_exp(expr, deep=True):
"""
Wrapper around expand that only uses the power_exp hint.
See the expand docstring for more information.
Examples
========
>>> from sympy import expand_power_exp
>>> from sympy.abc import x, y
>>> expand_power_exp(x**(y + 2))
x**2*x**y
"""
return sympify(expr).expand(deep=deep, complex=False, basic=False,
log=False, mul=False, power_exp=True, power_base=False, multinomial=False)
def count_ops(expr, visual=False):
"""
Return a representation (integer or expression) of the operations in expr.
If ``visual`` is ``False`` (default) then the sum of the coefficients of the
visual expression will be returned.
If ``visual`` is ``True`` then the number of each type of operation is shown
with the core class types (or their virtual equivalent) multiplied by the
number of times they occur.
If expr is an iterable, the sum of the op counts of the
items will be returned.
Examples
========
>>> from sympy.abc import a, b, x, y
>>> from sympy import sin, count_ops
Although there isn't a SUB object, minus signs are interpreted as
either negations or subtractions:
>>> (x - y).count_ops(visual=True)
SUB
>>> (-x).count_ops(visual=True)
NEG
Here, there are two Adds and a Pow:
>>> (1 + a + b**2).count_ops(visual=True)
2*ADD + POW
In the following, an Add, Mul, Pow and two functions:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
ADD + MUL + POW + 2*SIN
for a total of 5:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
5
Note that "what you type" is not always what you get. The expression
1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
than two DIVs:
>>> (1/x/y).count_ops(visual=True)
DIV + MUL
The visual option can be used to demonstrate the difference in
operations for expressions in different forms. Here, the Horner
representation is compared with the expanded form of a polynomial:
>>> eq=x*(1 + x*(2 + x*(3 + x)))
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
-MUL + 3*POW
The count_ops function also handles iterables:
>>> count_ops([x, sin(x), None, True, x + 2], visual=False)
2
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
ADD + SIN
>>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
2*ADD + SIN
"""
from sympy import Integral, Sum, Symbol
from sympy.core.relational import Relational
from sympy.simplify.radsimp import fraction
from sympy.logic.boolalg import BooleanFunction
from sympy.utilities.misc import func_name
expr = sympify(expr)
if isinstance(expr, Expr) and not expr.is_Relational:
ops = []
args = [expr]
NEG = Symbol('NEG')
DIV = Symbol('DIV')
SUB = Symbol('SUB')
ADD = Symbol('ADD')
while args:
a = args.pop()
if a.is_Rational:
#-1/3 = NEG + DIV
if a is not S.One:
if a.p < 0:
ops.append(NEG)
if a.q != 1:
ops.append(DIV)
continue
elif a.is_Mul or a.is_MatMul:
if _coeff_isneg(a):
ops.append(NEG)
if a.args[0] is S.NegativeOne:
a = a.as_two_terms()[1]
else:
a = -a
n, d = fraction(a)
if n.is_Integer:
ops.append(DIV)
if n < 0:
ops.append(NEG)
args.append(d)
continue # won't be -Mul but could be Add
elif d is not S.One:
if not d.is_Integer:
args.append(d)
ops.append(DIV)
args.append(n)
continue # could be -Mul
elif a.is_Add or a.is_MatAdd:
aargs = list(a.args)
negs = 0
for i, ai in enumerate(aargs):
if _coeff_isneg(ai):
negs += 1
args.append(-ai)
if i > 0:
ops.append(SUB)
else:
args.append(ai)
if i > 0:
ops.append(ADD)
if negs == len(aargs): # -x - y = NEG + SUB
ops.append(NEG)
elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD
ops.append(SUB - ADD)
continue
if a.is_Pow and a.exp is S.NegativeOne:
ops.append(DIV)
args.append(a.base) # won't be -Mul but could be Add
continue
if a.is_Mul or isinstance(a, LatticeOp):
o = Symbol(a.func.__name__.upper())
# count the args
ops.append(o*(len(a.args) - 1))
elif a.args and (
a.is_Pow or
a.is_Function or
isinstance(a, Derivative) or
isinstance(a, Integral) or
isinstance(a, Sum)):
# if it's not in the list above we don't
# consider a.func something to count, e.g.
# Tuple, MatrixSymbol, etc...
o = Symbol(a.func.__name__.upper())
ops.append(o)
if not a.is_Symbol:
args.extend(a.args)
elif isinstance(expr, Dict):
ops = [count_ops(k, visual=visual) +
count_ops(v, visual=visual) for k, v in expr.items()]
elif iterable(expr):
ops = [count_ops(i, visual=visual) for i in expr]
elif isinstance(expr, (Relational, BooleanFunction)):
ops = []
for arg in expr.args:
ops.append(count_ops(arg, visual=True))
o = Symbol(func_name(expr, short=True).upper())
ops.append(o)
elif not isinstance(expr, Basic):
ops = []
else: # it's Basic not isinstance(expr, Expr):
if not isinstance(expr, Basic):
raise TypeError("Invalid type of expr")
else:
ops = []
args = [expr]
while args:
a = args.pop()
if a.args:
o = Symbol(a.func.__name__.upper())
if a.is_Boolean:
ops.append(o*(len(a.args)-1))
else:
ops.append(o)
args.extend(a.args)
if not ops:
if visual:
return S.Zero
return 0
ops = Add(*ops)
if visual:
return ops
if ops.is_Number:
return int(ops)
return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))
def nfloat(expr, n=15, exponent=False, dkeys=False):
"""Make all Rationals in expr Floats except those in exponents
(unless the exponents flag is set to True). When processing
dictionaries, don't modify the keys unless ``dkeys=True``.
Examples
========
>>> from sympy.core.function import nfloat
>>> from sympy.abc import x, y
>>> from sympy import cos, pi, sqrt
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
x**4 + 0.5*x + sqrt(y) + 1.5
>>> nfloat(x**4 + sqrt(y), exponent=True)
x**4.0 + y**0.5
Container types are not modified:
>>> type(nfloat((1, 2))) is tuple
True
"""
from sympy.core.power import Pow
from sympy.polys.rootoftools import RootOf
from sympy import MatrixBase
kw = dict(n=n, exponent=exponent, dkeys=dkeys)
if isinstance(expr, MatrixBase):
return expr.applyfunc(lambda e: nfloat(e, **kw))
# handling of iterable containers
if iterable(expr, exclude=str):
if isinstance(expr, (dict, Dict)):
if dkeys:
args = [tuple(map(lambda i: nfloat(i, **kw), a))
for a in expr.items()]
else:
args = [(k, nfloat(v, **kw)) for k, v in expr.items()]
if isinstance(expr, dict):
return type(expr)(args)
else:
return expr.func(*args)
elif isinstance(expr, Basic):
return expr.func(*[nfloat(a, **kw) for a in expr.args])
return type(expr)([nfloat(a, **kw) for a in expr])
rv = sympify(expr)
if rv.is_Number:
return Float(rv, n)
elif rv.is_number:
# evalf doesn't always set the precision
rv = rv.n(n)
if rv.is_Number:
rv = Float(rv.n(n), n)
else:
pass # pure_complex(rv) is likely True
return rv
elif rv.is_Atom:
return rv
elif rv.is_Relational:
args_nfloat = (nfloat(arg, **kw) for arg in rv.args)
return rv.func(*args_nfloat)
# watch out for RootOf instances that don't like to have
# their exponents replaced with Dummies and also sometimes have
# problems with evaluating at low precision (issue 6393)
rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)})
if not exponent:
reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)]
rv = rv.xreplace(dict(reps))
rv = rv.n(n)
if not exponent:
rv = rv.xreplace({d.exp: p.exp for p, d in reps})
else:
# Pow._eval_evalf special cases Integer exponents so if
# exponent is suppose to be handled we have to do so here
rv = rv.xreplace(Transform(
lambda x: Pow(x.base, Float(x.exp, n)),
lambda x: x.is_Pow and x.exp.is_Integer))
return rv.xreplace(Transform(
lambda x: x.func(*nfloat(x.args, n, exponent)),
lambda x: isinstance(x, Function)))
from sympy.core.symbol import Dummy, Symbol
|
7e4ca0eaa7b200b2ab20f2cc3574b79276fd4b48179dcbc45412035be4c12132 | from collections import defaultdict
from functools import cmp_to_key
from .basic import Basic
from .compatibility import reduce, is_sequence
from .parameters import global_parameters
from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
from .singleton import S
from .operations import AssocOp, AssocOpDispatcher
from .cache import cacheit
from .numbers import ilcm, igcd
from .expr import Expr
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _addsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Add(*args):
"""Return a well-formed unevaluated Add: Numbers are collected and
put in slot 0 and args are sorted. Use this when args have changed
but you still want to return an unevaluated Add.
Examples
========
>>> from sympy.core.add import _unevaluated_Add as uAdd
>>> from sympy import S, Add
>>> from sympy.abc import x, y
>>> a = uAdd(*[S(1.0), x, S(2)])
>>> a.args[0]
3.00000000000000
>>> a.args[1]
x
Beyond the Number being in slot 0, there is no other assurance of
order for the arguments since they are hash sorted. So, for testing
purposes, output produced by this in some other function can only
be tested against the output of this function or as one of several
options:
>>> opts = (Add(x, y, evaluated=False), Add(y, x, evaluated=False))
>>> a = uAdd(x, y)
>>> assert a in opts and a == uAdd(x, y)
>>> uAdd(x + 1, x + 2)
x + x + 3
"""
args = list(args)
newargs = []
co = S.Zero
while args:
a = args.pop()
if a.is_Add:
# this will keep nesting from building up
# so that x + (x + 1) -> x + x + 1 (3 args)
args.extend(a.args)
elif a.is_Number:
co += a
else:
newargs.append(a)
_addsort(newargs)
if co:
newargs.insert(0, co)
return Add._from_args(newargs)
class Add(Expr, AssocOp):
__slots__ = ()
is_Add = True
_args_type = Expr
@classmethod
def flatten(cls, seq):
"""
Takes the sequence "seq" of nested Adds and returns a flatten list.
Returns: (commutative_part, noncommutative_part, order_symbols)
Applies associativity, all terms are commutable with respect to
addition.
NB: the removal of 0 is already handled by AssocOp.__new__
See also
========
sympy.core.mul.Mul.flatten
"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
from sympy.tensor.tensor import TensExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
if a.is_Rational:
if b.is_Mul:
rv = [a, b], [], None
if rv:
if all(s.is_commutative for s in rv[0]):
return rv
return [], rv[0], None
terms = {} # term -> coeff
# e.g. x**2 -> 5 for ... + 5*x**2 + ...
coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0
# e.g. 3 + ...
order_factors = []
extra = []
for o in seq:
# O(x)
if o.is_Order:
if o.expr.is_zero:
continue
for o1 in order_factors:
if o1.contains(o):
o = None
break
if o is None:
continue
order_factors = [o] + [
o1 for o1 in order_factors if not o.contains(o1)]
continue
# 3 or NaN
elif o.is_Number:
if (o is S.NaN or coeff is S.ComplexInfinity and
o.is_finite is False) and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
if coeff.is_Number or isinstance(coeff, AccumBounds):
coeff += o
if coeff is S.NaN and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__add__(coeff)
continue
elif isinstance(o, MatrixExpr):
# can't add 0 to Matrix so make sure coeff is not 0
extra.append(o)
continue
elif isinstance(o, TensExpr):
coeff = o.__add__(coeff) if coeff else o
continue
elif o is S.ComplexInfinity:
if coeff.is_finite is False and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue
# Add([...])
elif o.is_Add:
# NB: here we assume Add is always commutative
seq.extend(o.args) # TODO zerocopy?
continue
# Mul([...])
elif o.is_Mul:
c, s = o.as_coeff_Mul()
# check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
elif o.is_Pow:
b, e = o.as_base_exp()
if b.is_Number and (e.is_Integer or
(e.is_Rational and e.is_negative)):
seq.append(b**e)
continue
c, s = S.One, o
else:
# everything else
c = S.One
s = o
# now we have:
# o = c*s, where
#
# c is a Number
# s is an expression with number factor extracted
# let's collect terms with the same s, so e.g.
# 2*x**2 + 3*x**2 -> 5*x**2
if s in terms:
terms[s] += c
if terms[s] is S.NaN and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
else:
terms[s] = c
# now let's construct new args:
# [2*x**2, x**3, 7*x**4, pi, ...]
newseq = []
noncommutative = False
for s, c in terms.items():
# 0*s
if c.is_zero:
continue
# 1*s
elif c is S.One:
newseq.append(s)
# c*s
else:
if s.is_Mul:
# Mul, already keeps its arguments in perfect order.
# so we can simply put c in slot0 and go the fast way.
cs = s._new_rawargs(*((c,) + s.args))
newseq.append(cs)
elif s.is_Add:
# we just re-create the unevaluated Mul
newseq.append(Mul(c, s, evaluate=False))
else:
# alternatively we have to call all Mul's machinery (slow)
newseq.append(Mul(c, s))
noncommutative = noncommutative or not s.is_commutative
# oo, -oo
if coeff is S.Infinity:
newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)]
elif coeff is S.NegativeInfinity:
newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)]
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + finite_im
# finite_real + infinite_im
# infinite_real + infinite_im
# addition of a finite real or imaginary number won't be able to
# change the zoo nature; adding an infinite qualtity would result
# in a NaN condition if it had sign opposite of the infinite
# portion of zoo, e.g., infinite_real - infinite_real.
newseq = [c for c in newseq if not (c.is_finite and
c.is_extended_real is not None)]
# process O(x)
if order_factors:
newseq2 = []
for t in newseq:
for o in order_factors:
# x + O(x) -> O(x)
if o.contains(t):
t = None
break
# x + O(x**2) -> x + O(x**2)
if t is not None:
newseq2.append(t)
newseq = newseq2 + order_factors
# 1 + O(1) -> O(1)
for o in order_factors:
if o.contains(coeff):
coeff = S.Zero
break
# order args canonically
_addsort(newseq)
# current code expects coeff to be first
if coeff is not S.Zero:
newseq.insert(0, coeff)
if extra:
newseq += extra
noncommutative = True
# we are done
if noncommutative:
return [], newseq, None
else:
return newseq, [], None
@classmethod
def class_key(cls):
"""Nice order of classes"""
return 3, 1, cls.__name__
def as_coefficients_dict(a):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""
d = defaultdict(list)
for ai in a.args:
c, m = ai.as_coeff_Mul()
d[m].append(c)
for k, v in d.items():
if len(v) == 1:
d[k] = v[0]
else:
d[k] = Add(*v)
di = defaultdict(int)
di.update(d)
return di
@cacheit
def as_coeff_add(self, *deps):
"""
Returns a tuple (coeff, args) where self is treated as an Add and coeff
is the Number term and args is a tuple of all other terms.
Examples
========
>>> from sympy.abc import x
>>> (7 + 3*x).as_coeff_add()
(7, (3*x,))
>>> (7*x).as_coeff_add()
(0, (7*x,))
"""
if deps:
from sympy.utilities.iterables import sift
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
return self._new_rawargs(*l2), tuple(l1)
coeff, notrat = self.args[0].as_coeff_add()
if coeff is not S.Zero:
return coeff, notrat + self.args[1:]
return S.Zero, self.args
def as_coeff_Add(self, rational=False, deps=None):
"""
Efficiently extract the coefficient of a summation.
"""
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number and not rational or coeff.is_Rational:
return coeff, self._new_rawargs(*args)
return S.Zero, self
# Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we
# let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See
# issue 5524.
def _eval_power(self, e):
if e.is_Rational and self.is_number:
from sympy.core.evalf import pure_complex
from sympy.core.mul import _unevaluated_Mul
from sympy.core.exprtools import factor_terms
from sympy.core.function import expand_multinomial
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.miscellaneous import sqrt
ri = pure_complex(self)
if ri:
r, i = ri
if e.q == 2:
D = sqrt(r**2 + i**2)
if D.is_Rational:
# (r, i, D) is a Pythagorean triple
root = sqrt(factor_terms((D - r)/2))**e.p
return root*expand_multinomial((
# principle value
(D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
elif e == -1:
return _unevaluated_Mul(
r - i*S.ImaginaryUnit,
1/(r**2 + i**2))
elif e.is_Number and abs(e) != 1:
# handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
c, m = zip(*[i.as_coeff_Mul() for i in self.args])
if any(i.is_Float for i in c): # XXX should this always be done?
big = -1
for i in c:
if abs(i) >= big:
big = abs(i)
if big > 0 and big != 1:
from sympy.functions.elementary.complexes import sign
bigs = (big, -big)
c = [sign(i) if i in bigs else i/big for i in c]
addpow = Add(*[c*m for c, m in zip(c, m)])**e
return big**e*addpow
@cacheit
def _eval_derivative(self, s):
return self.func(*[a.diff(s) for a in self.args])
def _eval_nseries(self, x, n, logx, cdir=0):
terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args]
return self.func(*terms)
def _matches_simple(self, expr, repl_dict):
# handle (w+3).matches('x+5') -> {w: x+2}
coeff, terms = self.as_coeff_add()
if len(terms) == 1:
return terms[0].matches(expr - coeff, repl_dict)
return
def matches(self, expr, repl_dict={}, old=False):
return self._matches_commutative(expr, repl_dict, old)
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs - rhs, but treats oo like a symbol so oo - oo
returns 0, instead of a nan.
"""
from sympy.simplify.simplify import signsimp
from sympy.core.symbol import Dummy
inf = (S.Infinity, S.NegativeInfinity)
if lhs.has(*inf) or rhs.has(*inf):
oo = Dummy('oo')
reps = {
S.Infinity: oo,
S.NegativeInfinity: -oo}
ireps = {v: k for k, v in reps.items()}
eq = signsimp(lhs.xreplace(reps) - rhs.xreplace(reps))
if eq.has(oo):
eq = eq.replace(
lambda x: x.is_Pow and x.base is oo,
lambda x: x.base)
return eq.xreplace(ireps)
else:
return signsimp(lhs - rhs)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_add() which gives the head and a tuple containing
the arguments of the tail when treated as an Add.
- if you want the coefficient when self is treated as a Mul
then use self.as_coeff_mul()[0]
>>> from sympy.abc import x, y
>>> (3*x - 2*y + 5).as_two_terms()
(5, 3*x - 2*y)
"""
return self.args[0], self._new_rawargs(*self.args[1:])
def as_numer_denom(self):
"""
Decomposes an expression to its numerator part and its
denominator part.
Examples
========
>>> from sympy.abc import x, y, z
>>> (x*y/z).as_numer_denom()
(x*y, z)
>>> (x*(y + 1)/y**7).as_numer_denom()
(x*(y + 1), y**7)
See Also
========
sympy.core.expr.Expr.as_numer_denom
"""
# clear rational denominator
content, expr = self.primitive()
ncon, dcon = content.as_numer_denom()
# collect numerators and denominators of the terms
nd = defaultdict(list)
for f in expr.args:
ni, di = f.as_numer_denom()
nd[di].append(ni)
# check for quick exit
if len(nd) == 1:
d, n = nd.popitem()
return self.func(
*[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)
# sum up the terms having a common denominator
for d, n in nd.items():
if len(n) == 1:
nd[d] = n[0]
else:
nd[d] = self.func(*n)
# assemble single numerator and denominator
denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
for i in range(len(numers))]), Mul(*denoms)
return _keep_coeff(ncon, n), _keep_coeff(dcon, d)
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_meromorphic(self, x, a):
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
quick_exit=True)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
# assumption methods
_eval_is_real = lambda self: _fuzzy_group(
(a.is_real for a in self.args), quick_exit=True)
_eval_is_extended_real = lambda self: _fuzzy_group(
(a.is_extended_real for a in self.args), quick_exit=True)
_eval_is_complex = lambda self: _fuzzy_group(
(a.is_complex for a in self.args), quick_exit=True)
_eval_is_antihermitian = lambda self: _fuzzy_group(
(a.is_antihermitian for a in self.args), quick_exit=True)
_eval_is_finite = lambda self: _fuzzy_group(
(a.is_finite for a in self.args), quick_exit=True)
_eval_is_hermitian = lambda self: _fuzzy_group(
(a.is_hermitian for a in self.args), quick_exit=True)
_eval_is_integer = lambda self: _fuzzy_group(
(a.is_integer for a in self.args), quick_exit=True)
_eval_is_rational = lambda self: _fuzzy_group(
(a.is_rational for a in self.args), quick_exit=True)
_eval_is_algebraic = lambda self: _fuzzy_group(
(a.is_algebraic for a in self.args), quick_exit=True)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_infinite(self):
sawinf = False
for a in self.args:
ainf = a.is_infinite
if ainf is None:
return None
elif ainf is True:
# infinite+infinite might not be infinite
if sawinf is True:
return None
sawinf = True
return sawinf
def _eval_is_imaginary(self):
nz = []
im_I = []
for a in self.args:
if a.is_extended_real:
if a.is_zero:
pass
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im_I.append(a*S.ImaginaryUnit)
elif (S.ImaginaryUnit*a).is_extended_real:
im_I.append(a*S.ImaginaryUnit)
else:
return
b = self.func(*nz)
if b.is_zero:
return fuzzy_not(self.func(*im_I).is_zero)
elif b.is_zero is False:
return False
def _eval_is_zero(self):
if self.is_commutative is False:
# issue 10528: there is no way to know if a nc symbol
# is zero or not
return
nz = []
z = 0
im_or_z = False
im = False
for a in self.args:
if a.is_extended_real:
if a.is_zero:
z += 1
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im = True
elif (S.ImaginaryUnit*a).is_extended_real:
im_or_z = True
else:
return
if z == len(self.args):
return True
if len(nz) == 0 or len(nz) == len(self.args):
return None
b = self.func(*nz)
if b.is_zero:
if not im_or_z and not im:
return True
if im and not im_or_z:
return False
if b.is_zero is False:
return False
def _eval_is_odd(self):
l = [f for f in self.args if not (f.is_even is True)]
if not l:
return False
if l[0].is_odd:
return self._new_rawargs(*l[1:]).is_even
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all(x.is_rational is True for x in others):
return True
return None
if a is None:
return
return False
def _eval_is_extended_positive(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
return super()._eval_is_extended_positive()
c, a = self.as_coeff_Add()
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_extended_positive and a.is_extended_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_extended_positive:
return True
pos = nonneg = nonpos = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
ispos = a.is_extended_positive
infinite = a.is_infinite
if infinite:
saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative)))
if True in saw_INF and False in saw_INF:
return
if ispos:
pos = True
continue
elif a.is_extended_nonnegative:
nonneg = True
continue
elif a.is_extended_nonpositive:
nonpos = True
continue
if infinite is None:
return
unknown_sign = True
if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonpos and not nonneg and pos:
return True
elif not nonpos and pos:
return True
elif not pos and not nonneg:
return False
def _eval_is_extended_nonnegative(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
c, a = self.as_coeff_Add()
if not c.is_zero and a.is_extended_nonnegative:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_extended_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_extended_nonnegative:
return True
def _eval_is_extended_nonpositive(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
c, a = self.as_coeff_Add()
if not c.is_zero and a.is_extended_nonpositive:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_extended_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_extended_nonpositive:
return True
def _eval_is_extended_negative(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
return super()._eval_is_extended_negative()
c, a = self.as_coeff_Add()
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_extended_negative and a.is_extended_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_extended_negative:
return True
neg = nonpos = nonneg = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
isneg = a.is_extended_negative
infinite = a.is_infinite
if infinite:
saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive)))
if True in saw_INF and False in saw_INF:
return
if isneg:
neg = True
continue
elif a.is_extended_nonpositive:
nonpos = True
continue
elif a.is_extended_nonnegative:
nonneg = True
continue
if infinite is None:
return
unknown_sign = True
if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonneg and not nonpos and neg:
return True
elif not nonneg and neg:
return True
elif not neg and not nonpos:
return False
def _eval_subs(self, old, new):
if not old.is_Add:
if old is S.Infinity and -old in self.args:
# foo - oo is foo + (-oo) internally
return self.xreplace({-old: -new})
return None
coeff_self, terms_self = self.as_coeff_Add()
coeff_old, terms_old = old.as_coeff_Add()
if coeff_self.is_Rational and coeff_old.is_Rational:
if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y
return self.func(new, coeff_self, -coeff_old)
if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y
return self.func(-new, coeff_self, coeff_old)
if coeff_self.is_Rational and coeff_old.is_Rational \
or coeff_self == coeff_old:
args_old, args_self = self.func.make_args(
terms_old), self.func.make_args(terms_self)
if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x
self_set = set(args_self)
old_set = set(args_old)
if old_set < self_set:
ret_set = self_set - old_set
return self.func(new, coeff_self, -coeff_old,
*[s._subs(old, new) for s in ret_set])
args_old = self.func.make_args(
-terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d
old_set = set(args_old)
if old_set < self_set:
ret_set = self_set - old_set
return self.func(-new, coeff_self, coeff_old,
*[s._subs(old, new) for s in ret_set])
def removeO(self):
args = [a for a in self.args if not a.is_Order]
return self._new_rawargs(*args)
def getO(self):
args = [a for a in self.args if a.is_Order]
if args:
return self._new_rawargs(*args)
@cacheit
def extract_leading_order(self, symbols, point=None):
"""
Returns the leading term and its order.
Examples
========
>>> from sympy.abc import x
>>> (x + 1 + 1/x**5).extract_leading_order(x)
((x**(-5), O(x**(-5))),)
>>> (1 + x).extract_leading_order(x)
((1, O(1)),)
>>> (x + x**2).extract_leading_order(x)
((x, O(x)),)
"""
from sympy import Order
lst = []
symbols = list(symbols if is_sequence(symbols) else [symbols])
if not point:
point = [0]*len(symbols)
seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
for ef, of in seq:
for e, o in lst:
if o.contains(of) and o != of:
of = None
break
if of is None:
continue
new_lst = [(ef, of)]
for e, o in lst:
if of.contains(o) and o != of:
continue
new_lst.append((e, o))
lst = new_lst
return tuple(lst)
def as_real_imag(self, deep=True, **hints):
"""
returns a tuple representing a complex number
Examples
========
>>> from sympy import I
>>> (7 + 9*I).as_real_imag()
(7, 9)
>>> ((1 + I)/(1 - I)).as_real_imag()
(0, 1)
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
(-5, 5)
"""
sargs = self.args
re_part, im_part = [], []
for term in sargs:
re, im = term.as_real_imag(deep=deep)
re_part.append(re)
im_part.append(im)
return (self.func(*re_part), self.func(*im_part))
def _eval_as_leading_term(self, x, cdir=0):
from sympy import expand_mul, Order
old = self
expr = expand_mul(self)
if not expr.is_Add:
return expr.as_leading_term(x, cdir=cdir)
infinite = [t for t in expr.args if t.is_infinite]
leading_terms = [t.as_leading_term(x, cdir=cdir) for t in expr.args]
min, new_expr = Order(0), 0
try:
for term in leading_terms:
order = Order(term, x)
if not min or order not in min:
min = order
new_expr = term
elif min in order:
new_expr += term
except TypeError:
return expr
new_expr=new_expr.together()
if new_expr.is_Add:
new_expr = new_expr.simplify()
if not new_expr:
# simple leading term analysis gave us cancelled terms but we have to send
# back a term, so compute the leading term (via series)
n0 = min.getn()
res = Order(1)
incr = S.One
while res.is_Order:
res = old._eval_nseries(x, n=n0+incr, logx=None, cdir=cdir).cancel().powsimp().trigsimp()
incr *= 2
return res.as_leading_term(x, cdir=cdir)
elif new_expr is S.NaN:
return old.func._from_args(infinite)
else:
return new_expr
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args])
def _sage_(self):
s = 0
for x in self.args:
s += x._sage_()
return s
def primitive(self):
"""
Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.
``R`` is collected only from the leading coefficient of each term.
Examples
========
>>> from sympy.abc import x, y
>>> (2*x + 4*y).primitive()
(2, x + 2*y)
>>> (2*x/3 + 4*y/9).primitive()
(2/9, 3*x + 2*y)
>>> (2*x/3 + 4.2*y).primitive()
(1/3, 2*x + 12.6*y)
No subprocessing of term factors is performed:
>>> ((2 + 2*x)*x + 2).primitive()
(1, x*(2*x + 2) + 2)
Recursive processing can be done with the ``as_content_primitive()``
method:
>>> ((2 + 2*x)*x + 2).as_content_primitive()
(2, x*(x + 1) + 1)
See also: primitive() function in polytools.py
"""
terms = []
inf = False
for a in self.args:
c, m = a.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = a
inf = inf or m is S.ComplexInfinity
terms.append((c.p, c.q, m))
if not inf:
ngcd = reduce(igcd, [t[0] for t in terms], 0)
dlcm = reduce(ilcm, [t[1] for t in terms], 1)
else:
ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)
if ngcd == dlcm == 1:
return S.One, self
if not inf:
for i, (p, q, term) in enumerate(terms):
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
for i, (p, q, term) in enumerate(terms):
if q:
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
terms[i] = _keep_coeff(Rational(p, q), term)
# we don't need a complete re-flattening since no new terms will join
# so we just use the same sort as is used in Add.flatten. When the
# coefficient changes, the ordering of terms may change, e.g.
# (3*x, 6*y) -> (2*y, x)
#
# We do need to make sure that term[0] stays in position 0, however.
#
if terms[0].is_Number or terms[0] is S.ComplexInfinity:
c = terms.pop(0)
else:
c = None
_addsort(terms)
if c:
terms.insert(0, c)
return Rational(ngcd, dlcm), self._new_rawargs(*terms)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self. If radical is True (default is False) then
common radicals will be removed and included as a factor of the
primitive expression.
Examples
========
>>> from sympy import sqrt
>>> (3 + 3*sqrt(2)).as_content_primitive()
(3, 1 + sqrt(2))
Radical content can also be factored out of the primitive:
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
See docstring of Expr.as_content_primitive for more examples.
"""
con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
radical=radical, clear=clear)) for a in self.args]).primitive()
if not clear and not con.is_Integer and prim.is_Add:
con, d = con.as_numer_denom()
_p = prim/d
if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
prim = _p
else:
con /= d
if radical and prim.is_Add:
# look for common radicals that can be removed
args = prim.args
rads = []
common_q = None
for m in args:
term_rads = defaultdict(list)
for ai in Mul.make_args(m):
if ai.is_Pow:
b, e = ai.as_base_exp()
if e.is_Rational and b.is_Integer:
term_rads[e.q].append(abs(int(b))**e.p)
if not term_rads:
break
if common_q is None:
common_q = set(term_rads.keys())
else:
common_q = common_q & set(term_rads.keys())
if not common_q:
break
rads.append(term_rads)
else:
# process rads
# keep only those in common_q
for r in rads:
for q in list(r.keys()):
if q not in common_q:
r.pop(q)
for q in r:
r[q] = prod(r[q])
# find the gcd of bases for each q
G = []
for q in common_q:
g = reduce(igcd, [r[q] for r in rads], 0)
if g != 1:
G.append(g**Rational(1, q))
if G:
G = Mul(*G)
args = [ai/G for ai in args]
prim = G*prim.func(*args)
return con, prim
@property
def _sorted_args(self):
from sympy.core.compatibility import default_sort_key
return tuple(sorted(self.args, key=default_sort_key))
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
return self.func(*[dd(a, n, step) for a in self.args])
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float
re_part, rest = self.as_coeff_Add()
im_part, imag_unit = rest.as_coeff_Mul()
if not imag_unit == I:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I")
return (Float(re_part)._mpf_, Float(im_part)._mpf_)
def __neg__(self):
if not global_parameters.distribute:
return super().__neg__()
return Add(*[-i for i in self.args])
add = AssocOpDispatcher('add')
from .mul import Mul, _keep_coeff, prod
from sympy.core.numbers import Rational
|
cf571736bd98f9839ac2b3f3fa5a93315821c2d3c26f5a982332c383cb91bf99 | from typing import Tuple as tTuple
from .sympify import sympify, _sympify, SympifyError
from .basic import Basic, Atom
from .singleton import S
from .evalf import EvalfMixin, pure_complex
from .decorators import call_highest_priority, sympify_method_args, sympify_return
from .cache import cacheit
from .compatibility import reduce, as_int, default_sort_key, Iterable
from sympy.utilities.misc import func_name
from mpmath.libmp import mpf_log, prec_to_dps
from collections import defaultdict
@sympify_method_args
class Expr(Basic, EvalfMixin):
"""
Base class for algebraic expressions.
Everything that requires arithmetic operations to be defined
should subclass this class, instead of Basic (which should be
used only for argument storage and expression manipulation, i.e.
pattern matching, substitutions, etc).
If you want to override the comparisons of expressions:
Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch.
_eval_is_ge return true if x >= y, false if x < y, and None if the two types
are not comparable or the comparison is indeterminate
See Also
========
sympy.core.basic.Basic
"""
__slots__ = () # type: tTuple[str, ...]
is_scalar = True # self derivative is 1
@property
def _diff_wrt(self):
"""Return True if one can differentiate with respect to this
object, else False.
Subclasses such as Symbol, Function and Derivative return True
to enable derivatives wrt them. The implementation in Derivative
separates the Symbol and non-Symbol (_diff_wrt=True) variables and
temporarily converts the non-Symbols into Symbols when performing
the differentiation. By default, any object deriving from Expr
will behave like a scalar with self.diff(self) == 1. If this is
not desired then the object must also set `is_scalar = False` or
else define an _eval_derivative routine.
Note, see the docstring of Derivative for how this should work
mathematically. In particular, note that expr.subs(yourclass, Symbol)
should be well-defined on a structural level, or this will lead to
inconsistent results.
Examples
========
>>> from sympy import Expr
>>> e = Expr()
>>> e._diff_wrt
False
>>> class MyScalar(Expr):
... _diff_wrt = True
...
>>> MyScalar().diff(MyScalar())
1
>>> class MySymbol(Expr):
... _diff_wrt = True
... is_scalar = False
...
>>> MySymbol().diff(MySymbol())
Derivative(MySymbol(), MySymbol())
"""
return False
@cacheit
def sort_key(self, order=None):
coeff, expr = self.as_coeff_Mul()
if expr.is_Pow:
expr, exp = expr.args
else:
expr, exp = expr, S.One
if expr.is_Dummy:
args = (expr.sort_key(),)
elif expr.is_Atom:
args = (str(expr),)
else:
if expr.is_Add:
args = expr.as_ordered_terms(order=order)
elif expr.is_Mul:
args = expr.as_ordered_factors(order=order)
else:
args = expr.args
args = tuple(
[ default_sort_key(arg, order=order) for arg in args ])
args = (len(args), tuple(args))
exp = exp.sort_key(order=order)
return expr.class_key(), args, exp, coeff
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
def __eq__(self, other):
try:
other = _sympify(other)
if not isinstance(other, Expr):
return False
except (SympifyError, SyntaxError):
return False
# check for pure number expr
if not (self.is_Number and other.is_Number) and (
type(self) != type(other)):
return False
a, b = self._hashable_content(), other._hashable_content()
if a != b:
return False
# check number *in* an expression
for a, b in zip(a, b):
if not isinstance(a, Expr):
continue
if a.is_Number and type(a) != type(b):
return False
return True
# ***************
# * Arithmetics *
# ***************
# Expr and its sublcasses use _op_priority to determine which object
# passed to a binary special method (__mul__, etc.) will handle the
# operation. In general, the 'call_highest_priority' decorator will choose
# the object with the highest _op_priority to handle the call.
# Custom subclasses that want to define their own binary special methods
# should set an _op_priority value that is higher than the default.
#
# **NOTE**:
# This is a temporary fix, and will eventually be replaced with
# something better and more powerful. See issue 5510.
_op_priority = 10.0
@property
def _add_handler(self):
return Add
@property
def _mul_handler(self):
return Mul
def __pos__(self):
return self
def __neg__(self):
# Mul has its own __neg__ routine, so we just
# create a 2-args Mul with the -1 in the canonical
# slot 0.
c = self.is_commutative
return Mul._from_args((S.NegativeOne, self), c)
def __abs__(self):
from sympy import Abs
return Abs(self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return Add(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return Add(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return Add(self, -other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return Add(other, -self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return Mul(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return Mul(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rpow__')
def _pow(self, other):
return Pow(self, other)
def __pow__(self, other, mod=None):
if mod is None:
return self._pow(other)
try:
_self, other, mod = as_int(self), as_int(other), as_int(mod)
if other >= 0:
return pow(_self, other, mod)
else:
from sympy.core.numbers import mod_inverse
return mod_inverse(pow(_self, -other, mod), mod)
except ValueError:
power = self._pow(other)
try:
return power%mod
except TypeError:
return NotImplemented
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return Pow(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
denom = Pow(other, S.NegativeOne)
if self is S.One:
return denom
else:
return Mul(self, denom)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
denom = Pow(self, S.NegativeOne)
if other is S.One:
return denom
else:
return Mul(other, denom)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rmod__')
def __mod__(self, other):
return Mod(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__mod__')
def __rmod__(self, other):
return Mod(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rfloordiv__')
def __floordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__floordiv__')
def __rfloordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rdivmod__')
def __divmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other), Mod(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__divmod__')
def __rdivmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self), Mod(other, self)
def __int__(self):
# Although we only need to round to the units position, we'll
# get one more digit so the extra testing below can be avoided
# unless the rounded value rounded to an integer, e.g. if an
# expression were equal to 1.9 and we rounded to the unit position
# we would get a 2 and would not know if this rounded up or not
# without doing a test (as done below). But if we keep an extra
# digit we know that 1.9 is not the same as 1 and there is no
# need for further testing: our int value is correct. If the value
# were 1.99, however, this would round to 2.0 and our int value is
# off by one. So...if our round value is the same as the int value
# (regardless of how much extra work we do to calculate extra decimal
# places) we need to test whether we are off by one.
from sympy import Dummy
if not self.is_number:
raise TypeError("can't convert symbols to int")
r = self.round(2)
if not r.is_Number:
raise TypeError("can't convert complex to int")
if r in (S.NaN, S.Infinity, S.NegativeInfinity):
raise TypeError("can't convert %s to int" % r)
i = int(r)
if not i:
return 0
# off-by-one check
if i == r and not (self - i).equals(0):
isign = 1 if i > 0 else -1
x = Dummy()
# in the following (self - i).evalf(2) will not always work while
# (self - r).evalf(2) and the use of subs does; if the test that
# was added when this comment was added passes, it might be safe
# to simply use sign to compute this rather than doing this by hand:
diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1
if diff_sign != isign:
i -= isign
return i
def __float__(self):
# Don't bother testing if it's a number; if it's not this is going
# to fail, and if it is we still need to check that it evalf'ed to
# a number.
result = self.evalf()
if result.is_Number:
return float(result)
if result.is_number and result.as_real_imag()[1]:
raise TypeError("can't convert complex to float")
raise TypeError("can't convert expression to float")
def __complex__(self):
result = self.evalf()
re, im = result.as_real_imag()
return complex(float(re), float(im))
@sympify_return([('other', 'Expr')], NotImplemented)
def __ge__(self, other):
from .relational import GreaterThan
return GreaterThan(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
def __le__(self, other):
from .relational import LessThan
return LessThan(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
def __gt__(self, other):
from .relational import StrictGreaterThan
return StrictGreaterThan(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
def __lt__(self, other):
from .relational import StrictLessThan
return StrictLessThan(self, other)
def __trunc__(self):
if not self.is_number:
raise TypeError("can't truncate symbols and expressions")
else:
return Integer(self)
@staticmethod
def _from_mpmath(x, prec):
from sympy import Float
if hasattr(x, "_mpf_"):
return Float._new(x._mpf_, prec)
elif hasattr(x, "_mpc_"):
re, im = x._mpc_
re = Float._new(re, prec)
im = Float._new(im, prec)*S.ImaginaryUnit
return re + im
else:
raise TypeError("expected mpmath number (mpf or mpc)")
@property
def is_number(self):
"""Returns True if ``self`` has no free symbols and no
undefined functions (AppliedUndef, to be precise). It will be
faster than ``if not self.free_symbols``, however, since
``is_number`` will fail as soon as it hits a free symbol
or undefined function.
Examples
========
>>> from sympy import Integral, cos, sin, pi
>>> from sympy.core.function import Function
>>> from sympy.abc import x
>>> f = Function('f')
>>> x.is_number
False
>>> f(1).is_number
False
>>> (2*x).is_number
False
>>> (2 + Integral(2, x)).is_number
False
>>> (2 + Integral(2, (x, 1, 2))).is_number
True
Not all numbers are Numbers in the SymPy sense:
>>> pi.is_number, pi.is_Number
(True, False)
If something is a number it should evaluate to a number with
real and imaginary parts that are Numbers; the result may not
be comparable, however, since the real and/or imaginary part
of the result may not have precision.
>>> cos(1).is_number and cos(1).is_comparable
True
>>> z = cos(1)**2 + sin(1)**2 - 1
>>> z.is_number
True
>>> z.is_comparable
False
See Also
========
sympy.core.basic.Basic.is_comparable
"""
return all(obj.is_number for obj in self.args)
def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1):
"""Return self evaluated, if possible, replacing free symbols with
random complex values, if necessary.
The random complex value for each free symbol is generated
by the random_complex_number routine giving real and imaginary
parts in the range given by the re_min, re_max, im_min, and im_max
values. The returned value is evaluated to a precision of n
(if given) else the maximum of 15 and the precision needed
to get more than 1 digit of precision. If the expression
could not be evaluated to a number, or could not be evaluated
to more than 1 digit of precision, then None is returned.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y
>>> x._random() # doctest: +SKIP
0.0392918155679172 + 0.916050214307199*I
>>> x._random(2) # doctest: +SKIP
-0.77 - 0.87*I
>>> (x + y/2)._random(2) # doctest: +SKIP
-0.57 + 0.16*I
>>> sqrt(2)._random(2)
1.4
See Also
========
sympy.testing.randtest.random_complex_number
"""
free = self.free_symbols
prec = 1
if free:
from sympy.testing.randtest import random_complex_number
a, c, b, d = re_min, re_max, im_min, im_max
reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True)
for zi in free])))
try:
nmag = abs(self.evalf(2, subs=reps))
except (ValueError, TypeError):
# if an out of range value resulted in evalf problems
# then return None -- XXX is there a way to know how to
# select a good random number for a given expression?
# e.g. when calculating n! negative values for n should not
# be used
return None
else:
reps = {}
nmag = abs(self.evalf(2))
if not hasattr(nmag, '_prec'):
# e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True
return None
if nmag._prec == 1:
# increase the precision up to the default maximum
# precision to see if we can get any significance
from mpmath.libmp.libintmath import giant_steps
from sympy.core.evalf import DEFAULT_MAXPREC as target
# evaluate
for prec in giant_steps(2, target):
nmag = abs(self.evalf(prec, subs=reps))
if nmag._prec != 1:
break
if nmag._prec != 1:
if n is None:
n = max(prec, 15)
return self.evalf(n, subs=reps)
# never got any significance
return None
def is_constant(self, *wrt, **flags):
"""Return True if self is constant, False if not, or None if
the constancy could not be determined conclusively.
If an expression has no free symbols then it is a constant. If
there are free symbols it is possible that the expression is a
constant, perhaps (but not necessarily) zero. To test such
expressions, a few strategies are tried:
1) numerical evaluation at two random points. If two such evaluations
give two different values and the values have a precision greater than
1 then self is not constant. If the evaluations agree or could not be
obtained with any precision, no decision is made. The numerical testing
is done only if ``wrt`` is different than the free symbols.
2) differentiation with respect to variables in 'wrt' (or all free
symbols if omitted) to see if the expression is constant or not. This
will not always lead to an expression that is zero even though an
expression is constant (see added test in test_expr.py). If
all derivatives are zero then self is constant with respect to the
given symbols.
3) finding out zeros of denominator expression with free_symbols.
It won't be constant if there are zeros. It gives more negative
answers for expression that are not constant.
If neither evaluation nor differentiation can prove the expression is
constant, None is returned unless two numerical values happened to be
the same and the flag ``failing_number`` is True -- in that case the
numerical value will be returned.
If flag simplify=False is passed, self will not be simplified;
the default is True since self should be simplified before testing.
Examples
========
>>> from sympy import cos, sin, Sum, S, pi
>>> from sympy.abc import a, n, x, y
>>> x.is_constant()
False
>>> S(2).is_constant()
True
>>> Sum(x, (x, 1, 10)).is_constant()
True
>>> Sum(x, (x, 1, n)).is_constant()
False
>>> Sum(x, (x, 1, n)).is_constant(y)
True
>>> Sum(x, (x, 1, n)).is_constant(n)
False
>>> Sum(x, (x, 1, n)).is_constant(x)
True
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
>>> eq.is_constant()
True
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
True
>>> (0**x).is_constant()
False
>>> x.is_constant()
False
>>> (x**x).is_constant()
False
>>> one = cos(x)**2 + sin(x)**2
>>> one.is_constant()
True
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1
True
"""
def check_denominator_zeros(expression):
from sympy.solvers.solvers import denoms
retNone = False
for den in denoms(expression):
z = den.is_zero
if z is True:
return True
if z is None:
retNone = True
if retNone:
return None
return False
simplify = flags.get('simplify', True)
if self.is_number:
return True
free = self.free_symbols
if not free:
return True # assume f(1) is some constant
# if we are only interested in some symbols and they are not in the
# free symbols then this expression is constant wrt those symbols
wrt = set(wrt)
if wrt and not wrt & free:
return True
wrt = wrt or free
# simplify unless this has already been done
expr = self
if simplify:
expr = expr.simplify()
# is_zero should be a quick assumptions check; it can be wrong for
# numbers (see test_is_not_constant test), giving False when it
# shouldn't, but hopefully it will never give True unless it is sure.
if expr.is_zero:
return True
# try numerical evaluation to see if we get two different values
failing_number = None
if wrt == free:
# try 0 (for a) and 1 (for b)
try:
a = expr.subs(list(zip(free, [0]*len(free))),
simultaneous=True)
if a is S.NaN:
# evaluation may succeed when substitution fails
a = expr._random(None, 0, 0, 0, 0)
except ZeroDivisionError:
a = None
if a is not None and a is not S.NaN:
try:
b = expr.subs(list(zip(free, [1]*len(free))),
simultaneous=True)
if b is S.NaN:
# evaluation may succeed when substitution fails
b = expr._random(None, 1, 0, 1, 0)
except ZeroDivisionError:
b = None
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random real
b = expr._random(None, -1, 0, 1, 0)
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random complex
b = expr._random()
if b is not None and b is not S.NaN:
if b.equals(a) is False:
return False
failing_number = a if a.is_number else b
# now we will test each wrt symbol (or all free symbols) to see if the
# expression depends on them or not using differentiation. This is
# not sufficient for all expressions, however, so we don't return
# False if we get a derivative other than 0 with free symbols.
for w in wrt:
deriv = expr.diff(w)
if simplify:
deriv = deriv.simplify()
if deriv != 0:
if not (pure_complex(deriv, or_real=True)):
if flags.get('failing_number', False):
return failing_number
elif deriv.free_symbols:
# dead line provided _random returns None in such cases
return None
return False
cd = check_denominator_zeros(self)
if cd is True:
return False
elif cd is None:
return None
return True
def equals(self, other, failing_expression=False):
"""Return True if self == other, False if it doesn't, or None. If
failing_expression is True then the expression which did not simplify
to a 0 will be returned instead of None.
If ``self`` is a Number (or complex number) that is not zero, then
the result is False.
If ``self`` is a number and has not evaluated to zero, evalf will be
used to test whether the expression evaluates to zero. If it does so
and the result has significance (i.e. the precision is either -1, for
a Rational result, or is greater than 1) then the evalf value will be
used to return True or False.
"""
from sympy.simplify.simplify import nsimplify, simplify
from sympy.solvers.solvers import solve
from sympy.polys.polyerrors import NotAlgebraic
from sympy.polys.numberfields import minimal_polynomial
other = sympify(other)
if self == other:
return True
# they aren't the same so see if we can make the difference 0;
# don't worry about doing simplification steps one at a time
# because if the expression ever goes to 0 then the subsequent
# simplification steps that are done will be very fast.
diff = factor_terms(simplify(self - other), radical=True)
if not diff:
return True
if not diff.has(Add, Mod):
# if there is no expanding to be done after simplifying
# then this can't be a zero
return False
constant = diff.is_constant(simplify=False, failing_number=True)
if constant is False:
return False
if not diff.is_number:
if constant is None:
# e.g. unless the right simplification is done, a symbolic
# zero is possible (see expression of issue 6829: without
# simplification constant will be None).
return
if constant is True:
# this gives a number whether there are free symbols or not
ndiff = diff._random()
# is_comparable will work whether the result is real
# or complex; it could be None, however.
if ndiff and ndiff.is_comparable:
return False
# sometimes we can use a simplified result to give a clue as to
# what the expression should be; if the expression is *not* zero
# then we should have been able to compute that and so now
# we can just consider the cases where the approximation appears
# to be zero -- we try to prove it via minimal_polynomial.
#
# removed
# ns = nsimplify(diff)
# if diff.is_number and (not ns or ns == diff):
#
# The thought was that if it nsimplifies to 0 that's a sure sign
# to try the following to prove it; or if it changed but wasn't
# zero that might be a sign that it's not going to be easy to
# prove. But tests seem to be working without that logic.
#
if diff.is_number:
# try to prove via self-consistency
surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer]
# it seems to work better to try big ones first
surds.sort(key=lambda x: -x.args[0])
for s in surds:
try:
# simplify is False here -- this expression has already
# been identified as being hard to identify as zero;
# we will handle the checking ourselves using nsimplify
# to see if we are in the right ballpark or not and if so
# *then* the simplification will be attempted.
sol = solve(diff, s, simplify=False)
if sol:
if s in sol:
# the self-consistent result is present
return True
if all(si.is_Integer for si in sol):
# perfect powers are removed at instantiation
# so surd s cannot be an integer
return False
if all(i.is_algebraic is False for i in sol):
# a surd is algebraic
return False
if any(si in surds for si in sol):
# it wasn't equal to s but it is in surds
# and different surds are not equal
return False
if any(nsimplify(s - si) == 0 and
simplify(s - si) == 0 for si in sol):
return True
if s.is_real:
if any(nsimplify(si, [s]) == s and simplify(si) == s
for si in sol):
return True
except NotImplementedError:
pass
# try to prove with minimal_polynomial but know when
# *not* to use this or else it can take a long time. e.g. issue 8354
if True: # change True to condition that assures non-hang
try:
mp = minimal_polynomial(diff)
if mp.is_Symbol:
return True
return False
except (NotAlgebraic, NotImplementedError):
pass
# diff has not simplified to zero; constant is either None, True
# or the number with significance (is_comparable) that was randomly
# calculated twice as the same value.
if constant not in (True, None) and constant != 0:
return False
if failing_expression:
return diff
return None
def _eval_is_positive(self):
finite = self.is_finite
if finite is False:
return False
extended_positive = self.is_extended_positive
if finite is True:
return extended_positive
if extended_positive is False:
return False
def _eval_is_negative(self):
finite = self.is_finite
if finite is False:
return False
extended_negative = self.is_extended_negative
if finite is True:
return extended_negative
if extended_negative is False:
return False
def _eval_is_extended_positive_negative(self, positive):
from sympy.polys.numberfields import minimal_polynomial
from sympy.polys.polyerrors import NotAlgebraic
if self.is_number:
if self.is_extended_real is False:
return False
# check to see that we can get a value
try:
n2 = self._eval_evalf(2)
# XXX: This shouldn't be caught here
# Catches ValueError: hypsum() failed to converge to the requested
# 34 bits of accuracy
except ValueError:
return None
if n2 is None:
return None
if getattr(n2, '_prec', 1) == 1: # no significance
return None
if n2 is S.NaN:
return None
r, i = self.evalf(2).as_real_imag()
if not i.is_Number or not r.is_Number:
return False
if r._prec != 1 and i._prec != 1:
return bool(not i and ((r > 0) if positive else (r < 0)))
elif r._prec == 1 and (not i or i._prec == 1) and \
self.is_algebraic and not self.has(Function):
try:
if minimal_polynomial(self).is_Symbol:
return False
except (NotAlgebraic, NotImplementedError):
pass
def _eval_is_extended_positive(self):
return self._eval_is_extended_positive_negative(positive=True)
def _eval_is_extended_negative(self):
return self._eval_is_extended_positive_negative(positive=False)
def _eval_interval(self, x, a, b):
"""
Returns evaluation over an interval. For most functions this is:
self.subs(x, b) - self.subs(x, a),
possibly using limit() if NaN is returned from subs, or if
singularities are found between a and b.
If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x),
respectively.
"""
from sympy.series import limit, Limit
from sympy.solvers.solveset import solveset
from sympy.sets.sets import Interval
from sympy.functions.elementary.exponential import log
from sympy.calculus.util import AccumBounds
if (a is None and b is None):
raise ValueError('Both interval ends cannot be None.')
def _eval_endpoint(left):
c = a if left else b
if c is None:
return 0
else:
C = self.subs(x, c)
if C.has(S.NaN, S.Infinity, S.NegativeInfinity,
S.ComplexInfinity, AccumBounds):
if (a < b) != False:
C = limit(self, x, c, "+" if left else "-")
else:
C = limit(self, x, c, "-" if left else "+")
if isinstance(C, Limit):
raise NotImplementedError("Could not compute limit")
return C
if a == b:
return 0
A = _eval_endpoint(left=True)
if A is S.NaN:
return A
B = _eval_endpoint(left=False)
if (a and b) is None:
return B - A
value = B - A
if a.is_comparable and b.is_comparable:
if a < b:
domain = Interval(a, b)
else:
domain = Interval(b, a)
# check the singularities of self within the interval
# if singularities is a ConditionSet (not iterable), catch the exception and pass
singularities = solveset(self.cancel().as_numer_denom()[1], x,
domain=domain)
for logterm in self.atoms(log):
singularities = singularities | solveset(logterm.args[0], x,
domain=domain)
try:
for s in singularities:
if value is S.NaN:
# no need to keep adding, it will stay NaN
break
if not s.is_comparable:
continue
if (a < s) == (s < b) == True:
value += -limit(self, x, s, "+") + limit(self, x, s, "-")
elif (b < s) == (s < a) == True:
value += limit(self, x, s, "+") - limit(self, x, s, "-")
except TypeError:
pass
return value
def _eval_power(self, other):
# subclass to compute self**other for cases when
# other is not NaN, 0, or 1
return None
def _eval_conjugate(self):
if self.is_extended_real:
return self
elif self.is_imaginary:
return -self
def conjugate(self):
"""Returns the complex conjugate of 'self'."""
from sympy.functions.elementary.complexes import conjugate as c
return c(self)
def dir(self, x, cdir):
from sympy import log
minexp = S.Zero
if self.is_zero:
return S.Zero
arg = self
while arg:
minexp += S.One
arg = arg.diff(x)
coeff = arg.subs(x, 0)
if coeff in (S.NaN, S.ComplexInfinity):
try:
coeff, _ = arg.leadterm(x)
if coeff.has(log(x)):
raise ValueError()
except ValueError:
coeff = arg.limit(x, 0)
if coeff != S.Zero:
break
return coeff*cdir**minexp
def _eval_transpose(self):
from sympy.functions.elementary.complexes import conjugate
if (self.is_complex or self.is_infinite):
return self
elif self.is_hermitian:
return conjugate(self)
elif self.is_antihermitian:
return -conjugate(self)
def transpose(self):
from sympy.functions.elementary.complexes import transpose
return transpose(self)
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import conjugate, transpose
if self.is_hermitian:
return self
elif self.is_antihermitian:
return -self
obj = self._eval_conjugate()
if obj is not None:
return transpose(obj)
obj = self._eval_transpose()
if obj is not None:
return conjugate(obj)
def adjoint(self):
from sympy.functions.elementary.complexes import adjoint
return adjoint(self)
@classmethod
def _parse_order(cls, order):
"""Parse and configure the ordering of terms. """
from sympy.polys.orderings import monomial_key
startswith = getattr(order, "startswith", None)
if startswith is None:
reverse = False
else:
reverse = startswith('rev-')
if reverse:
order = order[4:]
monom_key = monomial_key(order)
def neg(monom):
result = []
for m in monom:
if isinstance(m, tuple):
result.append(neg(m))
else:
result.append(-m)
return tuple(result)
def key(term):
_, ((re, im), monom, ncpart) = term
monom = neg(monom_key(monom))
ncpart = tuple([e.sort_key(order=order) for e in ncpart])
coeff = ((bool(im), im), (re, im))
return monom, ncpart, coeff
return key, reverse
def as_ordered_factors(self, order=None):
"""Return list of ordered factors (if Mul) else [self]."""
return [self]
def as_poly(self, *gens, **args):
"""Converts ``self`` to a polynomial or returns ``None``.
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y))
None
"""
from sympy.polys import Poly, PolynomialError
try:
poly = Poly(self, *gens, **args)
if not poly.is_Poly:
return None
else:
return poly
except PolynomialError:
return None
def as_ordered_terms(self, order=None, data=False):
"""
Transform an expression to an ordered list of terms.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms()
[sin(x)**2*cos(x), sin(x)**2, 1]
"""
from .numbers import Number, NumberSymbol
if order is None and self.is_Add:
# Spot the special case of Add(Number, Mul(Number, expr)) with the
# first number positive and thhe second number nagative
key = lambda x:not isinstance(x, (Number, NumberSymbol))
add_args = sorted(Add.make_args(self), key=key)
if (len(add_args) == 2
and isinstance(add_args[0], (Number, NumberSymbol))
and isinstance(add_args[1], Mul)):
mul_args = sorted(Mul.make_args(add_args[1]), key=key)
if (len(mul_args) == 2
and isinstance(mul_args[0], Number)
and add_args[0].is_positive
and mul_args[0].is_negative):
return add_args
key, reverse = self._parse_order(order)
terms, gens = self.as_terms()
if not any(term.is_Order for term, _ in terms):
ordered = sorted(terms, key=key, reverse=reverse)
else:
_terms, _order = [], []
for term, repr in terms:
if not term.is_Order:
_terms.append((term, repr))
else:
_order.append((term, repr))
ordered = sorted(_terms, key=key, reverse=True) \
+ sorted(_order, key=key, reverse=True)
if data:
return ordered, gens
else:
return [term for term, _ in ordered]
def as_terms(self):
"""Transform an expression to a list of terms. """
from .add import Add
from .mul import Mul
from .exprtools import decompose_power
gens, terms = set(), []
for term in Add.make_args(self):
coeff, _term = term.as_coeff_Mul()
coeff = complex(coeff)
cpart, ncpart = {}, []
if _term is not S.One:
for factor in Mul.make_args(_term):
if factor.is_number:
try:
coeff *= complex(factor)
except (TypeError, ValueError):
pass
else:
continue
if factor.is_commutative:
base, exp = decompose_power(factor)
cpart[base] = exp
gens.add(base)
else:
ncpart.append(factor)
coeff = coeff.real, coeff.imag
ncpart = tuple(ncpart)
terms.append((term, (coeff, cpart, ncpart)))
gens = sorted(gens, key=default_sort_key)
k, indices = len(gens), {}
for i, g in enumerate(gens):
indices[g] = i
result = []
for term, (coeff, cpart, ncpart) in terms:
monom = [0]*k
for base, exp in cpart.items():
monom[indices[base]] = exp
result.append((term, (coeff, tuple(monom), ncpart)))
return result, gens
def removeO(self):
"""Removes the additive O(..) symbol if there is one"""
return self
def getO(self):
"""Returns the additive O(..) symbol if there is one, else None."""
return None
def getn(self):
"""
Returns the order of the expression.
The order is determined either from the O(...) term. If there
is no O(...) term, it returns None.
Examples
========
>>> from sympy import O
>>> from sympy.abc import x
>>> (1 + x + O(x**2)).getn()
2
>>> (1 + x).getn()
"""
from sympy import Dummy, Symbol
o = self.getO()
if o is None:
return None
elif o.is_Order:
o = o.expr
if o is S.One:
return S.Zero
if o.is_Symbol:
return S.One
if o.is_Pow:
return o.args[1]
if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n
for oi in o.args:
if oi.is_Symbol:
return S.One
if oi.is_Pow:
syms = oi.atoms(Symbol)
if len(syms) == 1:
x = syms.pop()
oi = oi.subs(x, Dummy('x', positive=True))
if oi.base.is_Symbol and oi.exp.is_Rational:
return abs(oi.exp)
raise NotImplementedError('not sure of order of %s' % o)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from .function import count_ops
return count_ops(self, visual)
def args_cnc(self, cset=False, warn=True, split_1=True):
"""Return [commutative factors, non-commutative factors] of self.
self is treated as a Mul and the ordering of the factors is maintained.
If ``cset`` is True the commutative factors will be returned in a set.
If there were repeated factors (as may happen with an unevaluated Mul)
then an error will be raised unless it is explicitly suppressed by
setting ``warn`` to False.
Note: -1 is always separated from a Number unless split_1 is False.
>>> from sympy import symbols, oo
>>> A, B = symbols('A B', commutative=0)
>>> x, y = symbols('x y')
>>> (-2*x*y).args_cnc()
[[-1, 2, x, y], []]
>>> (-2.5*x).args_cnc()
[[-1, 2.5, x], []]
>>> (-2*x*A*B*y).args_cnc()
[[-1, 2, x, y], [A, B]]
>>> (-2*x*A*B*y).args_cnc(split_1=False)
[[-2, x, y], [A, B]]
>>> (-2*x*y).args_cnc(cset=True)
[{-1, 2, x, y}, []]
The arg is always treated as a Mul:
>>> (-2 + x + A).args_cnc()
[[], [x - 2 + A]]
>>> (-oo).args_cnc() # -oo is a singleton
[[-1, oo], []]
"""
if self.is_Mul:
args = list(self.args)
else:
args = [self]
for i, mi in enumerate(args):
if not mi.is_commutative:
c = args[:i]
nc = args[i:]
break
else:
c = args
nc = []
if c and split_1 and (
c[0].is_Number and
c[0].is_extended_negative and
c[0] is not S.NegativeOne):
c[:1] = [S.NegativeOne, -c[0]]
if cset:
clen = len(c)
c = set(c)
if clen and warn and len(c) != clen:
raise ValueError('repeated commutative arguments: %s' %
[ci for ci in c if list(self.args).count(ci) > 1])
return [c, nc]
def coeff(self, x, n=1, right=False):
"""
Returns the coefficient from the term(s) containing ``x**n``. If ``n``
is zero then all terms independent of ``x`` will be returned.
When ``x`` is noncommutative, the coefficient to the left (default) or
right of ``x`` can be returned. The keyword 'right' is ignored when
``x`` is commutative.
See Also
========
as_coefficient: separate the expression into a coefficient and factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
Examples
========
>>> from sympy import symbols
>>> from sympy.abc import x, y, z
You can select terms that have an explicit negative in front of them:
>>> (-x + 2*y).coeff(-1)
x
>>> (x - 2*y).coeff(-1)
2*y
You can select terms with no Rational coefficient:
>>> (x + 2*y).coeff(1)
x
>>> (3 + 2*x + 4*x**2).coeff(1)
0
You can select terms independent of x by making n=0; in this case
expr.as_independent(x)[0] is returned (and 0 will be returned instead
of None):
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
3
>>> eq = ((x + 1)**3).expand() + 1
>>> eq
x**3 + 3*x**2 + 3*x + 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 2]
>>> eq -= 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 0]
You can select terms that have a numerical term in front of them:
>>> (-x - 2*y).coeff(2)
-y
>>> from sympy import sqrt
>>> (x + sqrt(2)*x).coeff(sqrt(2))
x
The matching is exact:
>>> (3 + 2*x + 4*x**2).coeff(x)
2
>>> (3 + 2*x + 4*x**2).coeff(x**2)
4
>>> (3 + 2*x + 4*x**2).coeff(x**3)
0
>>> (z*(x + y)**2).coeff((x + y)**2)
z
>>> (z*(x + y)**2).coeff(x + y)
0
In addition, no factoring is done, so 1 + z*(1 + y) is not obtained
from the following:
>>> (x + z*(x + x*y)).coeff(x)
1
If such factoring is desired, factor_terms can be used first:
>>> from sympy import factor_terms
>>> factor_terms(x + z*(x + x*y)).coeff(x)
z*(y + 1) + 1
>>> n, m, o = symbols('n m o', commutative=False)
>>> n.coeff(n)
1
>>> (3*n).coeff(n)
3
>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m
1 + m
>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m
m
If there is more than one possible coefficient 0 is returned:
>>> (n*m + m*n).coeff(n)
0
If there is only one possible coefficient, it is returned:
>>> (n*m + x*m*n).coeff(m*n)
x
>>> (n*m + x*m*n).coeff(m*n, right=1)
1
"""
x = sympify(x)
if not isinstance(x, Basic):
return S.Zero
n = as_int(n)
if not x:
return S.Zero
if x == self:
if n == 1:
return S.One
return S.Zero
if x is S.One:
co = [a for a in Add.make_args(self)
if a.as_coeff_Mul()[0] is S.One]
if not co:
return S.Zero
return Add(*co)
if n == 0:
if x.is_Add and self.is_Add:
c = self.coeff(x, right=right)
if not c:
return S.Zero
if not right:
return self - Add(*[a*x for a in Add.make_args(c)])
return self - Add(*[x*a for a in Add.make_args(c)])
return self.as_independent(x, as_Add=True)[0]
# continue with the full method, looking for this power of x:
x = x**n
def incommon(l1, l2):
if not l1 or not l2:
return []
n = min(len(l1), len(l2))
for i in range(n):
if l1[i] != l2[i]:
return l1[:i]
return l1[:]
def find(l, sub, first=True):
""" Find where list sub appears in list l. When ``first`` is True
the first occurrence from the left is returned, else the last
occurrence is returned. Return None if sub is not in l.
>> l = range(5)*2
>> find(l, [2, 3])
2
>> find(l, [2, 3], first=0)
7
>> find(l, [2, 4])
None
"""
if not sub or not l or len(sub) > len(l):
return None
n = len(sub)
if not first:
l.reverse()
sub.reverse()
for i in range(0, len(l) - n + 1):
if all(l[i + j] == sub[j] for j in range(n)):
break
else:
i = None
if not first:
l.reverse()
sub.reverse()
if i is not None and not first:
i = len(l) - (i + n)
return i
co = []
args = Add.make_args(self)
self_c = self.is_commutative
x_c = x.is_commutative
if self_c and not x_c:
return S.Zero
one_c = self_c or x_c
xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c))
# find the parts that pass the commutative terms
for a in args:
margs, nc = a.args_cnc(cset=True, warn=bool(not self_c))
if nc is None:
nc = []
if len(xargs) > len(margs):
continue
resid = margs.difference(xargs)
if len(resid) + len(xargs) == len(margs):
if one_c:
co.append(Mul(*(list(resid) + nc)))
else:
co.append((resid, nc))
if one_c:
if co == []:
return S.Zero
elif co:
return Add(*co)
else: # both nc
# now check the non-comm parts
if not co:
return S.Zero
if all(n == co[0][1] for r, n in co):
ii = find(co[0][1], nx, right)
if ii is not None:
if not right:
return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii]))
else:
return Mul(*co[0][1][ii + len(nx):])
beg = reduce(incommon, (n[1] for n in co))
if beg:
ii = find(beg, nx, right)
if ii is not None:
if not right:
gcdc = co[0][0]
for i in range(1, len(co)):
gcdc = gcdc.intersection(co[i][0])
if not gcdc:
break
return Mul(*(list(gcdc) + beg[:ii]))
else:
m = ii + len(nx)
return Add(*[Mul(*(list(r) + n[m:])) for r, n in co])
end = list(reversed(
reduce(incommon, (list(reversed(n[1])) for n in co))))
if end:
ii = find(end, nx, right)
if ii is not None:
if not right:
return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co])
else:
return Mul(*end[ii + len(nx):])
# look for single match
hit = None
for i, (r, n) in enumerate(co):
ii = find(n, nx, right)
if ii is not None:
if not hit:
hit = ii, r, n
else:
break
else:
if hit:
ii, r, n = hit
if not right:
return Mul(*(list(r) + n[:ii]))
else:
return Mul(*n[ii + len(nx):])
return S.Zero
def as_expr(self, *gens):
"""
Convert a polynomial to a SymPy expression.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> f = (x**2 + x*y).as_poly(x, y)
>>> f.as_expr()
x**2 + x*y
>>> sin(x).as_expr()
sin(x)
"""
return self
def as_coefficient(self, expr):
"""
Extracts symbolic coefficient at the given expression. In
other words, this functions separates 'self' into the product
of 'expr' and 'expr'-free coefficient. If such separation
is not possible it will return None.
Examples
========
>>> from sympy import E, pi, sin, I, Poly
>>> from sympy.abc import x
>>> E.as_coefficient(E)
1
>>> (2*E).as_coefficient(E)
2
>>> (2*sin(E)*E).as_coefficient(E)
Two terms have E in them so a sum is returned. (If one were
desiring the coefficient of the term exactly matching E then
the constant from the returned expression could be selected.
Or, for greater precision, a method of Poly can be used to
indicate the desired term from which the coefficient is
desired.)
>>> (2*E + x*E).as_coefficient(E)
x + 2
>>> _.args[0] # just want the exact match
2
>>> p = Poly(2*E + x*E); p
Poly(x*E + 2*E, x, E, domain='ZZ')
>>> p.coeff_monomial(E)
2
>>> p.nth(0, 1)
2
Since the following cannot be written as a product containing
E as a factor, None is returned. (If the coefficient ``2*x`` is
desired then the ``coeff`` method should be used.)
>>> (2*E*x + x).as_coefficient(E)
>>> (2*E*x + x).coeff(E)
2*x
>>> (E*(x + 1) + x).as_coefficient(E)
>>> (2*pi*I).as_coefficient(pi*I)
2
>>> (2*I).as_coefficient(pi*I)
See Also
========
coeff: return sum of terms have a given factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
"""
r = self.extract_multiplicatively(expr)
if r and not r.has(expr):
return r
def as_independent(self, *deps, **hint):
"""
A mostly naive separation of a Mul or Add into arguments that are not
are dependent on deps. To obtain as complete a separation of variables
as possible, use a separation method first, e.g.:
* separatevars() to change Mul, Add and Pow (including exp) into Mul
* .expand(mul=True) to change Add or Mul into Add
* .expand(log=True) to change log expr into an Add
The only non-naive thing that is done here is to respect noncommutative
ordering of variables and to always return (0, 0) for `self` of zero
regardless of hints.
For nonzero `self`, the returned tuple (i, d) has the
following interpretation:
* i will has no variable that appears in deps
* d will either have terms that contain variables that are in deps, or
be equal to 0 (when self is an Add) or 1 (when self is a Mul)
* if self is an Add then self = i + d
* if self is a Mul then self = i*d
* otherwise (self, S.One) or (S.One, self) is returned.
To force the expression to be treated as an Add, use the hint as_Add=True
Examples
========
-- self is an Add
>>> from sympy import sin, cos, exp
>>> from sympy.abc import x, y, z
>>> (x + x*y).as_independent(x)
(0, x*y + x)
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> (2*x*sin(x) + y + x + z).as_independent(x)
(y + z, 2*x*sin(x) + x)
>>> (2*x*sin(x) + y + x + z).as_independent(x, y)
(z, 2*x*sin(x) + x + y)
-- self is a Mul
>>> (x*sin(x)*cos(y)).as_independent(x)
(cos(y), x*sin(x))
non-commutative terms cannot always be separated out when self is a Mul
>>> from sympy import symbols
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (n1 + n1*n2).as_independent(n2)
(n1, n1*n2)
>>> (n2*n1 + n1*n2).as_independent(n2)
(0, n1*n2 + n2*n1)
>>> (n1*n2*n3).as_independent(n1)
(1, n1*n2*n3)
>>> (n1*n2*n3).as_independent(n2)
(n1, n2*n3)
>>> ((x-n1)*(x-y)).as_independent(x)
(1, (x - y)*(x - n1))
-- self is anything else:
>>> (sin(x)).as_independent(x)
(1, sin(x))
>>> (sin(x)).as_independent(y)
(sin(x), 1)
>>> exp(x+y).as_independent(x)
(1, exp(x + y))
-- force self to be treated as an Add:
>>> (3*x).as_independent(x, as_Add=True)
(0, 3*x)
-- force self to be treated as a Mul:
>>> (3+x).as_independent(x, as_Add=False)
(1, x + 3)
>>> (-3+x).as_independent(x, as_Add=False)
(1, x - 3)
Note how the below differs from the above in making the
constant on the dep term positive.
>>> (y*(-3+x)).as_independent(x)
(y, x - 3)
-- use .as_independent() for true independence testing instead
of .has(). The former considers only symbols in the free
symbols while the latter considers all symbols
>>> from sympy import Integral
>>> I = Integral(x, (x, 1, 2))
>>> I.has(x)
True
>>> x in I.free_symbols
False
>>> I.as_independent(x) == (I, 1)
True
>>> (I + x).as_independent(x) == (I, x)
True
Note: when trying to get independent terms, a separation method
might need to be used first. In this case, it is important to keep
track of what you send to this routine so you know how to interpret
the returned values
>>> from sympy import separatevars, log
>>> separatevars(exp(x+y)).as_independent(x)
(exp(y), exp(x))
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> separatevars(x + x*y).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
(x, x*y)
>>> a, b=symbols('a b', positive=True)
>>> (log(a*b).expand(log=True)).as_independent(b)
(log(a), log(b))
See Also
========
.separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(),
sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul()
"""
from .symbol import Symbol
from .add import _unevaluated_Add
from .mul import _unevaluated_Mul
from sympy.utilities.iterables import sift
if self.is_zero:
return S.Zero, S.Zero
func = self.func
if hint.get('as_Add', isinstance(self, Add) ):
want = Add
else:
want = Mul
# sift out deps into symbolic and other and ignore
# all symbols but those that are in the free symbols
sym = set()
other = []
for d in deps:
if isinstance(d, Symbol): # Symbol.is_Symbol is True
sym.add(d)
else:
other.append(d)
def has(e):
"""return the standard has() if there are no literal symbols, else
check to see that symbol-deps are in the free symbols."""
has_other = e.has(*other)
if not sym:
return has_other
return has_other or e.has(*(e.free_symbols & sym))
if (want is not func or
func is not Add and func is not Mul):
if has(self):
return (want.identity, self)
else:
return (self, want.identity)
else:
if func is Add:
args = list(self.args)
else:
args, nc = self.args_cnc()
d = sift(args, lambda x: has(x))
depend = d[True]
indep = d[False]
if func is Add: # all terms were treated as commutative
return (Add(*indep), _unevaluated_Add(*depend))
else: # handle noncommutative by stopping at first dependent term
for i, n in enumerate(nc):
if has(n):
depend.extend(nc[i:])
break
indep.append(n)
return Mul(*indep), (
Mul(*depend, evaluate=False) if nc else
_unevaluated_Mul(*depend))
def as_real_imag(self, deep=True, **hints):
"""Performs complex expansion on 'self' and returns a tuple
containing collected both real and imaginary parts. This
method can't be confused with re() and im() functions,
which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im()
functions and get exactly the same results as with
a single call to this function.
>>> from sympy import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag()
(x, y)
>>> from sympy.abc import z, w
>>> (z + w*I).as_real_imag()
(re(z) - im(w), re(w) + im(z))
"""
from sympy import im, re
if hints.get('ignore') == self:
return None
else:
return (re(self), im(self))
def as_powers_dict(self):
"""Return self as a dictionary of factors with each factor being
treated as a power. The keys are the bases of the factors and the
values, the corresponding exponents. The resulting dictionary should
be used with caution if the expression is a Mul and contains non-
commutative factors since the order that they appeared will be lost in
the dictionary.
See Also
========
as_ordered_factors: An alternative for noncommutative applications,
returning an ordered list of factors.
args_cnc: Similar to as_ordered_factors, but guarantees separation
of commutative and noncommutative factors.
"""
d = defaultdict(int)
d.update(dict([self.as_base_exp()]))
return d
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""
c, m = self.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = self
d = defaultdict(int)
d.update({m: c})
return d
def as_base_exp(self):
# a -> b ** e
return self, S.One
def as_coeff_mul(self, *deps, **kwargs):
"""Return the tuple (c, args) where self is written as a Mul, ``m``.
c should be a Rational multiplied by any factors of the Mul that are
independent of deps.
args should be a tuple of all other factors of m; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is a Mul or not but
you want to treat self as a Mul or if you want to process the
individual arguments of the tail of self as a Mul.
- if you know self is a Mul and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail;
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_mul()
(3, ())
>>> (3*x*y).as_coeff_mul()
(3, (x, y))
>>> (3*x*y).as_coeff_mul(x)
(3*y, (x,))
>>> (3*y).as_coeff_mul(x)
(3*y, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.One, (self,)
def as_coeff_add(self, *deps):
"""Return the tuple (c, args) where self is written as an Add, ``a``.
c should be a Rational added to any terms of the Add that are
independent of deps.
args should be a tuple of all other terms of ``a``; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is an Add or not but
you want to treat self as an Add or if you want to process the
individual arguments of the tail of self as an Add.
- if you know self is an Add and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail.
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_add()
(3, ())
>>> (3 + x).as_coeff_add()
(3, (x,))
>>> (3 + x + y).as_coeff_add(x)
(y + 3, (x,))
>>> (3 + y).as_coeff_add(x)
(y + 3, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.Zero, (self,)
def primitive(self):
"""Return the positive Rational that can be extracted non-recursively
from every term of self (i.e., self is treated like an Add). This is
like the as_coeff_Mul() method but primitive always extracts a positive
Rational (never a negative or a Float).
Examples
========
>>> from sympy.abc import x
>>> (3*(x + 1)**2).primitive()
(3, (x + 1)**2)
>>> a = (6*x + 2); a.primitive()
(2, 3*x + 1)
>>> b = (x/2 + 3); b.primitive()
(1/2, x + 6)
>>> (a*b).primitive() == (1, a*b)
True
"""
if not self:
return S.One, S.Zero
c, r = self.as_coeff_Mul(rational=True)
if c.is_negative:
c, r = -c, -r
return c, r
def as_content_primitive(self, radical=False, clear=True):
"""This method should recursively remove a Rational from all arguments
and return that (content) and the new self (primitive). The content
should always be positive and ``Mul(*foo.as_content_primitive()) == foo``.
The primitive need not be in canonical form and should try to preserve
the underlying structure if possible (i.e. expand_mul should not be
applied to self).
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y, z
>>> eq = 2 + 2*x + 2*y*(3 + 3*y)
The as_content_primitive function is recursive and retains structure:
>>> eq.as_content_primitive()
(2, x + 3*y*(y + 1) + 1)
Integer powers will have Rationals extracted from the base:
>>> ((2 + 6*x)**2).as_content_primitive()
(4, (3*x + 1)**2)
>>> ((2 + 6*x)**(2*y)).as_content_primitive()
(1, (2*(3*x + 1))**(2*y))
Terms may end up joining once their as_content_primitives are added:
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(11, x*(y + 1))
>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(9, x*(y + 1))
>>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive()
(1, 6.0*x*(y + 1) + 3*z*(y + 1))
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive()
(121, x**2*(y + 1)**2)
>>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive()
(1, 4.84*x**2*(y + 1)**2)
Radical content can also be factored out of the primitive:
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
If clear=False (default is True) then content will not be removed
from an Add if it can be distributed to leave one or more
terms with integer coefficients.
>>> (x/2 + y).as_content_primitive()
(1/2, x + 2*y)
>>> (x/2 + y).as_content_primitive(clear=False)
(1, x/2 + y)
"""
return S.One, self
def as_numer_denom(self):
""" expression -> a/b -> a, b
This is just a stub that should be defined by
an object's class methods to get anything else.
See Also
========
normal: return a/b instead of a, b
"""
return self, S.One
def normal(self):
from .mul import _unevaluated_Mul
n, d = self.as_numer_denom()
if d is S.One:
return n
if d.is_Number:
return _unevaluated_Mul(n, 1/d)
else:
return n/d
def extract_multiplicatively(self, c):
"""Return None if it's not possible to make self in the form
c * something in a nice way, i.e. preserving the properties
of arguments of self.
Examples
========
>>> from sympy import symbols, Rational
>>> x, y = symbols('x,y', real=True)
>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
x*y**2
>>> ((x*y)**3).extract_multiplicatively(x**4 * y)
>>> (2*x).extract_multiplicatively(2)
x
>>> (2*x).extract_multiplicatively(3)
>>> (Rational(1, 2)*x).extract_multiplicatively(3)
x/6
"""
from .add import _unevaluated_Add
c = sympify(c)
if self is S.NaN:
return None
if c is S.One:
return self
elif c == self:
return S.One
if c.is_Add:
cc, pc = c.primitive()
if cc is not S.One:
c = Mul(cc, pc, evaluate=False)
if c.is_Mul:
a, b = c.as_two_terms()
x = self.extract_multiplicatively(a)
if x is not None:
return x.extract_multiplicatively(b)
else:
return x
quotient = self / c
if self.is_Number:
if self is S.Infinity:
if c.is_positive:
return S.Infinity
elif self is S.NegativeInfinity:
if c.is_negative:
return S.Infinity
elif c.is_positive:
return S.NegativeInfinity
elif self is S.ComplexInfinity:
if not c.is_zero:
return S.ComplexInfinity
elif self.is_Integer:
if not quotient.is_Integer:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Rational:
if not quotient.is_Rational:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Float:
if not quotient.is_Float:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit:
if quotient.is_Mul and len(quotient.args) == 2:
if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self:
return quotient
elif quotient.is_Integer and c.is_Number:
return quotient
elif self.is_Add:
cs, ps = self.primitive()
# assert cs >= 1
if c.is_Number and c is not S.NegativeOne:
# assert c != 1 (handled at top)
if cs is not S.One:
if c.is_negative:
xc = -(cs.extract_multiplicatively(-c))
else:
xc = cs.extract_multiplicatively(c)
if xc is not None:
return xc*ps # rely on 2-arg Mul to restore Add
return # |c| != 1 can only be extracted from cs
if c == ps:
return cs
# check args of ps
newargs = []
for arg in ps.args:
newarg = arg.extract_multiplicatively(c)
if newarg is None:
return # all or nothing
newargs.append(newarg)
if cs is not S.One:
args = [cs*t for t in newargs]
# args may be in different order
return _unevaluated_Add(*args)
else:
return Add._from_args(newargs)
elif self.is_Mul:
args = list(self.args)
for i, arg in enumerate(args):
newarg = arg.extract_multiplicatively(c)
if newarg is not None:
args[i] = newarg
return Mul(*args)
elif self.is_Pow:
if c.is_Pow and c.base == self.base:
new_exp = self.exp.extract_additively(c.exp)
if new_exp is not None:
return self.base ** (new_exp)
elif c == self.base:
new_exp = self.exp.extract_additively(1)
if new_exp is not None:
return self.base ** (new_exp)
def extract_additively(self, c):
"""Return self - c if it's possible to subtract c from self and
make all matching coefficients move towards zero, else return None.
Examples
========
>>> from sympy.abc import x, y
>>> e = 2*x + 3
>>> e.extract_additively(x + 1)
x + 2
>>> e.extract_additively(3*x)
>>> e.extract_additively(4)
>>> (y*(x + 1)).extract_additively(x + 1)
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
(x + 1)*(x + 2*y) + 3
Sometimes auto-expansion will return a less simplified result
than desired; gcd_terms might be used in such cases:
>>> from sympy import gcd_terms
>>> (4*x*(y + 1) + y).extract_additively(x)
4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y
>>> gcd_terms(_)
x*(4*y + 3) + y
See Also
========
extract_multiplicatively
coeff
as_coefficient
"""
c = sympify(c)
if self is S.NaN:
return None
if c.is_zero:
return self
elif c == self:
return S.Zero
elif self == S.Zero:
return None
if self.is_Number:
if not c.is_Number:
return None
co = self
diff = co - c
# XXX should we match types? i.e should 3 - .1 succeed?
if (co > 0 and diff > 0 and diff < co or
co < 0 and diff < 0 and diff > co):
return diff
return None
if c.is_Number:
co, t = self.as_coeff_Add()
xa = co.extract_additively(c)
if xa is None:
return None
return xa + t
# handle the args[0].is_Number case separately
# since we will have trouble looking for the coeff of
# a number.
if c.is_Add and c.args[0].is_Number:
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
h, t = c.as_coeff_Add()
sh, st = self.as_coeff_Add()
xa = sh.extract_additively(h)
if xa is None:
return None
xa2 = st.extract_additively(t)
if xa2 is None:
return None
return xa + xa2
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
coeffs = []
for a in Add.make_args(c):
ac, at = a.as_coeff_Mul()
co = self.coeff(at)
if not co:
return None
coc, cot = co.as_coeff_Add()
xa = coc.extract_additively(ac)
if xa is None:
return None
self -= co*at
coeffs.append((cot + xa)*at)
coeffs.append(self)
return Add(*coeffs)
@property
def expr_free_symbols(self):
"""
Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node.
Examples
========
>>> from sympy.abc import x, y
>>> (x + y).expr_free_symbols
{x, y}
If the expression is contained in a non-expression object, don't return
the free symbols. Compare:
>>> from sympy import Tuple
>>> t = Tuple(x + y)
>>> t.expr_free_symbols
set()
>>> t.free_symbols
{x, y}
"""
return {j for i in self.args for j in i.expr_free_symbols}
def could_extract_minus_sign(self):
"""Return True if self is not in a canonical form with respect
to its sign.
For most expressions, e, there will be a difference in e and -e.
When there is, True will be returned for one and False for the
other; False will be returned if there is no difference.
Examples
========
>>> from sympy.abc import x, y
>>> e = x - y
>>> {i.could_extract_minus_sign() for i in (e, -e)}
{False, True}
"""
negative_self = -self
if self == negative_self:
return False # e.g. zoo*x == -zoo*x
self_has_minus = (self.extract_multiplicatively(-1) is not None)
negative_self_has_minus = (
(negative_self).extract_multiplicatively(-1) is not None)
if self_has_minus != negative_self_has_minus:
return self_has_minus
else:
if self.is_Add:
# We choose the one with less arguments with minus signs
all_args = len(self.args)
negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()])
positive_args = all_args - negative_args
if positive_args > negative_args:
return False
elif positive_args < negative_args:
return True
elif self.is_Mul:
# We choose the one with an odd number of minus signs
num, den = self.as_numer_denom()
args = Mul.make_args(num) + Mul.make_args(den)
arg_signs = [arg.could_extract_minus_sign() for arg in args]
negative_args = list(filter(None, arg_signs))
return len(negative_args) % 2 == 1
# As a last resort, we choose the one with greater value of .sort_key()
return bool(self.sort_key() < negative_self.sort_key())
def extract_branch_factor(self, allow_half=False):
"""
Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way.
Return (z, n).
>>> from sympy import exp_polar, I, pi
>>> from sympy.abc import x, y
>>> exp_polar(I*pi).extract_branch_factor()
(exp_polar(I*pi), 0)
>>> exp_polar(2*I*pi).extract_branch_factor()
(1, 1)
>>> exp_polar(-pi*I).extract_branch_factor()
(exp_polar(I*pi), -1)
>>> exp_polar(3*pi*I + x).extract_branch_factor()
(exp_polar(x + I*pi), 1)
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
(y*exp_polar(2*pi*x), -1)
>>> exp_polar(-I*pi/2).extract_branch_factor()
(exp_polar(-I*pi/2), 0)
If allow_half is True, also extract exp_polar(I*pi):
>>> exp_polar(I*pi).extract_branch_factor(allow_half=True)
(1, 1/2)
>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True)
(1, 1)
>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True)
(1, 3/2)
>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True)
(1, -1/2)
"""
from sympy import exp_polar, pi, I, ceiling, Add
n = S.Zero
res = S.One
args = Mul.make_args(self)
exps = []
for arg in args:
if isinstance(arg, exp_polar):
exps += [arg.exp]
else:
res *= arg
piimult = S.Zero
extras = []
while exps:
exp = exps.pop()
if exp.is_Add:
exps += exp.args
continue
if exp.is_Mul:
coeff = exp.as_coefficient(pi*I)
if coeff is not None:
piimult += coeff
continue
extras += [exp]
if piimult.is_number:
coeff = piimult
tail = ()
else:
coeff, tail = piimult.as_coeff_add(*piimult.free_symbols)
# round down to nearest multiple of 2
branchfact = ceiling(coeff/2 - S.Half)*2
n += branchfact/2
c = coeff - branchfact
if allow_half:
nc = c.extract_additively(1)
if nc is not None:
n += S.Half
c = nc
newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras)
if newexp != 0:
res *= exp_polar(newexp)
return res, n
def _eval_is_polynomial(self, syms):
if self.free_symbols.intersection(syms) == set():
return True
return False
def is_polynomial(self, *syms):
r"""
Return True if self is a polynomial in syms and False otherwise.
This checks if self is an exact polynomial in syms. This function
returns False for expressions that are "polynomials" with symbolic
exponents. Thus, you should be able to apply polynomial algorithms to
expressions for which this returns True, and Poly(expr, \*syms) should
work if and only if expr.is_polynomial(\*syms) returns True. The
polynomial does not have to be in expanded form. If no symbols are
given, all free symbols in the expression will be used.
This is not part of the assumptions system. You cannot do
Symbol('z', polynomial=True).
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> ((x**2 + 1)**4).is_polynomial(x)
True
>>> ((x**2 + 1)**4).is_polynomial()
True
>>> (2**x + 1).is_polynomial(x)
False
>>> n = Symbol('n', nonnegative=True, integer=True)
>>> (x**n + 1).is_polynomial(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a polynomial to
become one.
>>> from sympy import sqrt, factor, cancel
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)
>>> a.is_polynomial(y)
False
>>> factor(a)
y + 1
>>> factor(a).is_polynomial(y)
True
>>> b = (y**2 + 2*y + 1)/(y + 1)
>>> b.is_polynomial(y)
False
>>> cancel(b)
y + 1
>>> cancel(b).is_polynomial(y)
True
See also .is_rational_function()
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set():
# constant polynomial
return True
else:
return self._eval_is_polynomial(syms)
def _eval_is_rational_function(self, syms):
if self.free_symbols.intersection(syms) == set():
return True
return False
def is_rational_function(self, *syms):
"""
Test whether function is a ratio of two polynomials in the given
symbols, syms. When syms is not given, all free symbols will be used.
The rational function does not have to be in expanded or in any kind of
canonical form.
This function returns False for expressions that are "rational
functions" with symbolic exponents. Thus, you should be able to call
.as_numer_denom() and apply polynomial algorithms to the result for
expressions for which this returns True.
This is not part of the assumptions system. You cannot do
Symbol('z', rational_function=True).
Examples
========
>>> from sympy import Symbol, sin
>>> from sympy.abc import x, y
>>> (x/y).is_rational_function()
True
>>> (x**2).is_rational_function()
True
>>> (x/sin(y)).is_rational_function(y)
False
>>> n = Symbol('n', integer=True)
>>> (x**n + 1).is_rational_function(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a rational function
to become one.
>>> from sympy import sqrt, factor
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)/y
>>> a.is_rational_function(y)
False
>>> factor(a)
(y + 1)/y
>>> factor(a).is_rational_function(y)
True
See also is_algebraic_expr().
"""
if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return False
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set():
# constant rational function
return True
else:
return self._eval_is_rational_function(syms)
def _eval_is_meromorphic(self, x, a):
# Default implementation, return True for constants.
return None if self.has(x) else True
def is_meromorphic(self, x, a):
"""
This tests whether an expression is meromorphic as
a function of the given symbol ``x`` at the point ``a``.
This method is intended as a quick test that will return
None if no decision can be made without simplification or
more detailed analysis.
Examples
========
>>> from sympy import zoo, log, sin, sqrt
>>> from sympy.abc import x
>>> f = 1/x**2 + 1 - 2*x**3
>>> f.is_meromorphic(x, 0)
True
>>> f.is_meromorphic(x, 1)
True
>>> f.is_meromorphic(x, zoo)
True
>>> g = x**log(3)
>>> g.is_meromorphic(x, 0)
False
>>> g.is_meromorphic(x, 1)
True
>>> g.is_meromorphic(x, zoo)
False
>>> h = sin(1/x)*x**2
>>> h.is_meromorphic(x, 0)
False
>>> h.is_meromorphic(x, 1)
True
>>> h.is_meromorphic(x, zoo)
True
Multivalued functions are considered meromorphic when their
branches are meromorphic. Thus most functions are meromorphic
everywhere except at essential singularities and branch points.
In particular, they will be meromorphic also on branch cuts
except at their endpoints.
>>> log(x).is_meromorphic(x, -1)
True
>>> log(x).is_meromorphic(x, 0)
False
>>> sqrt(x).is_meromorphic(x, -1)
True
>>> sqrt(x).is_meromorphic(x, 0)
False
"""
if not x.is_symbol:
raise TypeError("{} should be of symbol type".format(x))
a = sympify(a)
return self._eval_is_meromorphic(x, a)
def _eval_is_algebraic_expr(self, syms):
if self.free_symbols.intersection(syms) == set():
return True
return False
def is_algebraic_expr(self, *syms):
"""
This tests whether a given expression is algebraic or not, in the
given symbols, syms. When syms is not given, all free symbols
will be used. The rational function does not have to be in expanded
or in any kind of canonical form.
This function returns False for expressions that are "algebraic
expressions" with symbolic exponents. This is a simple extension to the
is_rational_function, including rational exponentiation.
Examples
========
>>> from sympy import Symbol, sqrt
>>> x = Symbol('x', real=True)
>>> sqrt(1 + x).is_rational_function()
False
>>> sqrt(1 + x).is_algebraic_expr()
True
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be an algebraic
expression to become one.
>>> from sympy import exp, factor
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
>>> a.is_algebraic_expr(x)
False
>>> factor(a).is_algebraic_expr()
True
See Also
========
is_rational_function()
References
==========
- https://en.wikipedia.org/wiki/Algebraic_expression
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set():
# constant algebraic expression
return True
else:
return self._eval_is_algebraic_expr(syms)
###################################################################################
##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ##################
###################################################################################
def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0):
"""
Series expansion of "self" around ``x = x0`` yielding either terms of
the series one by one (the lazy series given when n=None), else
all the terms at once when n != None.
Returns the series expansion of "self" around the point ``x = x0``
with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6).
If ``x=None`` and ``self`` is univariate, the univariate symbol will
be supplied, otherwise an error will be raised.
Parameters
==========
expr : Expression
The expression whose series is to be expanded.
x : Symbol
It is the variable of the expression to be calculated.
x0 : Value
The value around which ``x`` is calculated. Can be any value
from ``-oo`` to ``oo``.
n : Value
The number of terms upto which the series is to be expanded.
dir : String, optional
The series-expansion can be bi-directional. If ``dir="+"``,
then (x->x0+). If ``dir="-", then (x->x0-). For infinite
``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined
from the direction of the infinity (i.e., ``dir="-"`` for
``oo``).
logx : optional
It is used to replace any log(x) in the returned series with a
symbolic value rather than evaluating the actual value.
cdir : optional
It stands for complex direction, and indicates the direction
from which the expansion needs to be evaluated.
Examples
========
>>> from sympy import cos, exp, tan
>>> from sympy.abc import x, y
>>> cos(x).series()
1 - x**2/2 + x**4/24 + O(x**6)
>>> cos(x).series(n=4)
1 - x**2/2 + O(x**4)
>>> cos(x).series(x, x0=1, n=2)
cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1))
>>> e = cos(x + exp(y))
>>> e.series(y, n=2)
cos(x + 1) - y*sin(x + 1) + O(y**2)
>>> e.series(x, n=2)
cos(exp(y)) - x*sin(exp(y)) + O(x**2)
If ``n=None`` then a generator of the series terms will be returned.
>>> term=cos(x).series(n=None)
>>> [next(term) for i in range(2)]
[1, -x**2/2]
For ``dir=+`` (default) the series is calculated from the right and
for ``dir=-`` the series from the left. For smooth functions this
flag will not alter the results.
>>> abs(x).series(dir="+")
x
>>> abs(x).series(dir="-")
-x
>>> f = tan(x)
>>> f.series(x, 2, 6, "+")
tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) +
(x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 +
5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 +
2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2))
>>> f.series(x, 2, 3, "-")
tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2))
+ O((x - 2)**3, (x, 2))
Returns
=======
Expr : Expression
Series expansion of the expression about x0
Raises
======
TypeError
If "n" and "x0" are infinity objects
PoleError
If "x0" is an infinity object
"""
from sympy import collect, Dummy, Order, Rational, Symbol, ceiling
if x is None:
syms = self.free_symbols
if not syms:
return self
elif len(syms) > 1:
raise ValueError('x must be given for multivariate functions.')
x = syms.pop()
if isinstance(x, Symbol):
dep = x in self.free_symbols
else:
d = Dummy()
dep = d in self.xreplace({x: d}).free_symbols
if not dep:
if n is None:
return (s for s in [self])
else:
return self
if len(dir) != 1 or dir not in '+-':
raise ValueError("Dir must be '+' or '-'")
if x0 in [S.Infinity, S.NegativeInfinity]:
sgn = 1 if x0 is S.Infinity else -1
s = self.subs(x, sgn/x).series(x, n=n, dir='+', cdir=cdir)
if n is None:
return (si.subs(x, sgn/x) for si in s)
return s.subs(x, sgn/x)
# use rep to shift origin to x0 and change sign (if dir is negative)
# and undo the process with rep2
if x0 or dir == '-':
if dir == '-':
rep = -x + x0
rep2 = -x
rep2b = x0
else:
rep = x + x0
rep2 = x
rep2b = -x0
s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx, cdir=cdir)
if n is None: # lseries...
return (si.subs(x, rep2 + rep2b) for si in s)
return s.subs(x, rep2 + rep2b)
# from here on it's x0=0 and dir='+' handling
if x.is_positive is x.is_negative is None or x.is_Symbol is not True:
# replace x with an x that has a positive assumption
xpos = Dummy('x', positive=True, finite=True)
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir)
if n is None:
return (s.subs(xpos, x) for s in rv)
else:
return rv.subs(xpos, x)
if n is not None: # nseries handling
s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
o = s1.getO() or S.Zero
if o:
# make sure the requested order is returned
ngot = o.getn()
if ngot > n:
# leave o in its current form (e.g. with x*log(x)) so
# it eats terms properly, then replace it below
if n != 0:
s1 += o.subs(x, x**Rational(n, ngot))
else:
s1 += Order(1, x)
elif ngot < n:
# increase the requested number of terms to get the desired
# number keep increasing (up to 9) until the received order
# is different than the original order and then predict how
# many additional terms are needed
for more in range(1, 9):
s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir)
newn = s1.getn()
if newn != ngot:
ndo = n + ceiling((n - ngot)*more/(newn - ngot))
s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir)
while s1.getn() < n:
s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir)
ndo += 1
break
else:
raise ValueError('Could not calculate %s terms for %s'
% (str(n), self))
s1 += Order(x**n, x)
o = s1.getO()
s1 = s1.removeO()
else:
o = Order(x**n, x)
s1done = s1.doit()
if (s1done + o).removeO() == s1done:
o = S.Zero
try:
return collect(s1, x) + o
except NotImplementedError:
return s1 + o
else: # lseries handling
def yield_lseries(s):
"""Return terms of lseries one at a time."""
for si in s:
if not si.is_Add:
yield si
continue
# yield terms 1 at a time if possible
# by increasing order until all the
# terms have been returned
yielded = 0
o = Order(si, x)*x
ndid = 0
ndo = len(si.args)
while 1:
do = (si - yielded + o).removeO()
o *= x
if not do or do.is_Order:
continue
if do.is_Add:
ndid += len(do.args)
else:
ndid += 1
yield do
if ndid == ndo:
break
yielded += do
return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir))
def aseries(self, x=None, n=6, bound=0, hir=False):
"""Asymptotic Series expansion of self.
This is equivalent to ``self.series(x, oo, n)``.
Parameters
==========
self : Expression
The expression whose series is to be expanded.
x : Symbol
It is the variable of the expression to be calculated.
n : Value
The number of terms upto which the series is to be expanded.
hir : Boolean
Set this parameter to be True to produce hierarchical series.
It stops the recursion at an early level and may provide nicer
and more useful results.
bound : Value, Integer
Use the ``bound`` parameter to give limit on rewriting
coefficients in its normalised form.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x
>>> e = sin(1/x + exp(-x)) - sin(1/x)
>>> e.aseries(x)
(1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x)
>>> e.aseries(x, n=3, hir=True)
-exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo))
>>> e = exp(exp(x)/(1 - 1/x))
>>> e.aseries(x)
exp(exp(x)/(1 - 1/x))
>>> e.aseries(x, bound=3)
exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x))
Returns
=======
Expr
Asymptotic series expansion of the expression.
Notes
=====
This algorithm is directly induced from the limit computational algorithm provided by Gruntz.
It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first
to look for the most rapidly varying subexpression w of a given expression f and then expands f
in a series in w. Then same thing is recursively done on the leading coefficient
till we get constant coefficients.
If the most rapidly varying subexpression of a given expression f is f itself,
the algorithm tries to find a normalised representation of the mrv set and rewrites f
using this normalised representation.
If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))``
where ``w`` belongs to the most rapidly varying expression of ``self``.
References
==========
.. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz
.. [2] Gruntz thesis - p90
.. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion
See Also
========
Expr.aseries: See the docstring of this function for complete details of this wrapper.
"""
from sympy import Order, Dummy
from sympy.functions import exp, log
from sympy.series.gruntz import mrv, rewrite
if x.is_positive is x.is_negative is None:
xpos = Dummy('x', positive=True)
return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x)
om, exps = mrv(self, x)
# We move one level up by replacing `x` by `exp(x)`, and then
# computing the asymptotic series for f(exp(x)). Then asymptotic series
# can be obtained by moving one-step back, by replacing x by ln(x).
if x in om:
s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x))
if s.getO():
return s + Order(1/x**n, (x, S.Infinity))
return s
k = Dummy('k', positive=True)
# f is rewritten in terms of omega
func, logw = rewrite(exps, om, x, k)
if self in om:
if bound <= 0:
return self
s = (self.exp).aseries(x, n, bound=bound)
s = s.func(*[t.removeO() for t in s.args])
res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x))
func = exp(self.args[0] - res.args[0]) / k
logw = log(1/res)
s = func.series(k, 0, n)
# Hierarchical series
if hir:
return s.subs(k, exp(logw))
o = s.getO()
terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1]))
s = S.Zero
has_ord = False
# Then we recursively expand these coefficients one by one into
# their asymptotic series in terms of their most rapidly varying subexpressions.
for t in terms:
coeff, expo = t.as_coeff_exponent(k)
if coeff.has(x):
# Recursive step
snew = coeff.aseries(x, n, bound=bound-1)
if has_ord and snew.getO():
break
elif snew.getO():
has_ord = True
s += (snew * k**expo)
else:
s += t
if not o or has_ord:
return s.subs(k, exp(logw))
return (s + o).subs(k, exp(logw))
def taylor_term(self, n, x, *previous_terms):
"""General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can
redefine it to make it faster by using the "previous_terms".
"""
from sympy import Dummy, factorial
x = sympify(x)
_x = Dummy('x')
return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n)
def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0):
"""
Wrapper for series yielding an iterator of the terms of the series.
Note: an infinite series will yield an infinite iterator. The following,
for exaxmple, will never terminate. It will just keep printing terms
of the sin(x) series::
for term in sin(x).lseries(x):
print term
The advantage of lseries() over nseries() is that many times you are
just interested in the next term in the series (i.e. the first term for
example), but you don't know how many you should ask for in nseries()
using the "n" parameter.
See also nseries().
"""
return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir)
def _eval_lseries(self, x, logx=None, cdir=0):
# default implementation of lseries is using nseries(), and adaptively
# increasing the "n". As you can see, it is not very efficient, because
# we are calculating the series over and over again. Subclasses should
# override this method and implement much more efficient yielding of
# terms.
n = 0
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
if not series.is_Order:
newseries = series.cancel()
if not newseries.is_Order:
if series.is_Add:
yield series.removeO()
else:
yield series
return
else:
series = newseries
while series.is_Order:
n += 1
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
e = series.removeO()
yield e
if e.is_zero:
return
while 1:
while 1:
n += 1
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO()
if e != series:
break
if (series - self).cancel() is S.Zero:
return
yield series - e
e = series
def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0):
"""
Wrapper to _eval_nseries if assumptions allow, else to series.
If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is
called. This calculates "n" terms in the innermost expressions and
then builds up the final series just by "cross-multiplying" everything
out.
The optional ``logx`` parameter can be used to replace any log(x) in the
returned series with a symbolic value to avoid evaluating log(x) at 0. A
symbol to use in place of log(x) should be provided.
Advantage -- it's fast, because we don't have to determine how many
terms we need to calculate in advance.
Disadvantage -- you may end up with less terms than you may have
expected, but the O(x**n) term appended will always be correct and
so the result, though perhaps shorter, will also be correct.
If any of those assumptions is not met, this is treated like a
wrapper to series which will try harder to return the correct
number of terms.
See also lseries().
Examples
========
>>> from sympy import sin, log, Symbol
>>> from sympy.abc import x, y
>>> sin(x).nseries(x, 0, 6)
x - x**3/6 + x**5/120 + O(x**6)
>>> log(x+1).nseries(x, 0, 5)
x - x**2/2 + x**3/3 - x**4/4 + O(x**5)
Handling of the ``logx`` parameter --- in the following example the
expansion fails since ``sin`` does not have an asymptotic expansion
at -oo (the limit of log(x) as x approaches 0):
>>> e = sin(log(x))
>>> e.nseries(x, 0, 6)
Traceback (most recent call last):
...
PoleError: ...
...
>>> logx = Symbol('logx')
>>> e.nseries(x, 0, 6, logx=logx)
sin(logx)
In the following example, the expansion works but gives only an Order term
unless the ``logx`` parameter is used:
>>> e = x**y
>>> e.nseries(x, 0, 2)
O(log(x)**2)
>>> e.nseries(x, 0, 2, logx=logx)
exp(logx*y)
"""
if x and not x in self.free_symbols:
return self
if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None):
return self.series(x, x0, n, dir, cdir=cdir)
else:
return self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir):
"""
Return terms of series for self up to O(x**n) at x=0
from the positive direction.
This is a method that should be overridden in subclasses. Users should
never call this method directly (use .nseries() instead), so you don't
have to write docstrings for _eval_nseries().
"""
from sympy.utilities.misc import filldedent
raise NotImplementedError(filldedent("""
The _eval_nseries method should be added to
%s to give terms up to O(x**n) at x=0
from the positive direction so it is available when
nseries calls it.""" % self.func)
)
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return limit(self, x, xlim, dir)
def compute_leading_term(self, x, logx=None):
"""
as_leading_term is only allowed for results of .series()
This is a wrapper to compute a series first.
"""
from sympy import Dummy, log, Piecewise, piecewise_fold
from sympy.series.gruntz import calculate_series
if self.has(Piecewise):
expr = piecewise_fold(self)
else:
expr = self
if self.removeO() == 0:
return self
if logx is None:
d = Dummy('logx')
s = calculate_series(expr, x, d).subs(d, log(x))
else:
s = calculate_series(expr, x, logx)
return s.as_leading_term(x)
@cacheit
def as_leading_term(self, *symbols, cdir=0):
"""
Returns the leading (nonzero) term of the series expansion of self.
The _eval_as_leading_term routines are used to do this, and they must
always return a non-zero value.
Examples
========
>>> from sympy.abc import x
>>> (1 + x + x**2).as_leading_term(x)
1
>>> (1/x**2 + x + x**2).as_leading_term(x)
x**(-2)
"""
from sympy import powsimp
if len(symbols) > 1:
c = self
for x in symbols:
c = c.as_leading_term(x, cdir=cdir)
return c
elif not symbols:
return self
x = sympify(symbols[0])
if not x.is_symbol:
raise ValueError('expecting a Symbol but got %s' % x)
if x not in self.free_symbols:
return self
obj = self._eval_as_leading_term(x, cdir=cdir)
if obj is not None:
return powsimp(obj, deep=True, combine='exp')
raise NotImplementedError('as_leading_term(%s, %s)' % (self, x))
def _eval_as_leading_term(self, x, cdir=0):
return self
def as_coeff_exponent(self, x):
""" ``c*x**e -> c,e`` where x can be any symbolic expression.
"""
from sympy import collect
s = collect(self, x)
c, p = s.as_coeff_mul(x)
if len(p) == 1:
b, e = p[0].as_base_exp()
if b == x:
return c, e
return s, S.Zero
def leadterm(self, x, cdir=0):
"""
Returns the leading term a*x**b as a tuple (a, b).
Examples
========
>>> from sympy.abc import x
>>> (1+x+x**2).leadterm(x)
(1, 0)
>>> (1/x**2+x+x**2).leadterm(x)
(1, -2)
"""
from sympy import Dummy, log
l = self.as_leading_term(x, cdir=cdir)
d = Dummy('logx')
if l.has(log(x)):
l = l.subs(log(x), d)
c, e = l.as_coeff_exponent(x)
if x in c.free_symbols:
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
cannot compute leadterm(%s, %s). The coefficient
should have been free of %s but got %s""" % (self, x, x, c)))
c = c.subs(d, log(x))
return c, e
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return S.Zero, self
def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True,
full=False):
"""
Compute formal power power series of self.
See the docstring of the :func:`fps` function in sympy.series.formal for
more information.
"""
from sympy.series.formal import fps
return fps(self, x, x0, dir, hyper, order, rational, full)
def fourier_series(self, limits=None):
"""Compute fourier sine/cosine series of self.
See the docstring of the :func:`fourier_series` in sympy.series.fourier
for more information.
"""
from sympy.series.fourier import fourier_series
return fourier_series(self, limits)
###################################################################################
##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS ####################
###################################################################################
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return _derivative_dispatch(self, *symbols, **assumptions)
###########################################################################
###################### EXPRESSION EXPANSION METHODS #######################
###########################################################################
# Relevant subclasses should override _eval_expand_hint() methods. See
# the docstring of expand() for more info.
def _eval_expand_complex(self, **hints):
real, imag = self.as_real_imag(**hints)
return real + S.ImaginaryUnit*imag
@staticmethod
def _expand_hint(expr, hint, deep=True, **hints):
"""
Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``.
Returns ``(expr, hit)``, where expr is the (possibly) expanded
``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and
``False`` otherwise.
"""
hit = False
# XXX: Hack to support non-Basic args
# |
# V
if deep and getattr(expr, 'args', ()) and not expr.is_Atom:
sargs = []
for arg in expr.args:
arg, arghit = Expr._expand_hint(arg, hint, **hints)
hit |= arghit
sargs.append(arg)
if hit:
expr = expr.func(*sargs)
if hasattr(expr, hint):
newexpr = getattr(expr, hint)(**hints)
if newexpr != expr:
return (newexpr, True)
return (expr, hit)
@cacheit
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""
Expand an expression using hints.
See the docstring of the expand() function in sympy.core.function for
more information.
"""
from sympy.simplify.radsimp import fraction
hints.update(power_base=power_base, power_exp=power_exp, mul=mul,
log=log, multinomial=multinomial, basic=basic)
expr = self
if hints.pop('frac', False):
n, d = [a.expand(deep=deep, modulus=modulus, **hints)
for a in fraction(self)]
return n/d
elif hints.pop('denom', False):
n, d = fraction(self)
return n/d.expand(deep=deep, modulus=modulus, **hints)
elif hints.pop('numer', False):
n, d = fraction(self)
return n.expand(deep=deep, modulus=modulus, **hints)/d
# Although the hints are sorted here, an earlier hint may get applied
# at a given node in the expression tree before another because of how
# the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y +
# x*z) because while applying log at the top level, log and mul are
# applied at the deeper level in the tree so that when the log at the
# upper level gets applied, the mul has already been applied at the
# lower level.
# Additionally, because hints are only applied once, the expression
# may not be expanded all the way. For example, if mul is applied
# before multinomial, x*(x + 1)**2 won't be expanded all the way. For
# now, we just use a special case to make multinomial run before mul,
# so that at least polynomials will be expanded all the way. In the
# future, smarter heuristics should be applied.
# TODO: Smarter heuristics
def _expand_hint_key(hint):
"""Make multinomial come before mul"""
if hint == 'mul':
return 'mulz'
return hint
for hint in sorted(hints.keys(), key=_expand_hint_key):
use_hint = hints[hint]
if use_hint:
hint = '_eval_expand_' + hint
expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints)
while True:
was = expr
if hints.get('multinomial', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_multinomial', deep=deep, **hints)
if hints.get('mul', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_mul', deep=deep, **hints)
if hints.get('log', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_log', deep=deep, **hints)
if expr == was:
break
if modulus is not None:
modulus = sympify(modulus)
if not modulus.is_Integer or modulus <= 0:
raise ValueError(
"modulus must be a positive integer, got %s" % modulus)
terms = []
for term in Add.make_args(expr):
coeff, tail = term.as_coeff_Mul(rational=True)
coeff %= modulus
if coeff:
terms.append(coeff*tail)
expr = Add(*terms)
return expr
###########################################################################
################### GLOBAL ACTION VERB WRAPPER METHODS ####################
###########################################################################
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals import integrate
return integrate(self, *args, **kwargs)
def nsimplify(self, constants=[], tolerance=None, full=False):
"""See the nsimplify function in sympy.simplify"""
from sympy.simplify import nsimplify
return nsimplify(self, constants, tolerance, full)
def separate(self, deep=False, force=False):
"""See the separate function in sympy.simplify"""
from sympy.core.function import expand_power_base
return expand_power_base(self, deep=deep, force=force)
def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True):
"""See the collect function in sympy.simplify"""
from sympy.simplify import collect
return collect(self, syms, func, evaluate, exact, distribute_order_term)
def together(self, *args, **kwargs):
"""See the together function in sympy.polys"""
from sympy.polys import together
return together(self, *args, **kwargs)
def apart(self, x=None, **args):
"""See the apart function in sympy.polys"""
from sympy.polys import apart
return apart(self, x, **args)
def ratsimp(self):
"""See the ratsimp function in sympy.simplify"""
from sympy.simplify import ratsimp
return ratsimp(self)
def trigsimp(self, **args):
"""See the trigsimp function in sympy.simplify"""
from sympy.simplify import trigsimp
return trigsimp(self, **args)
def radsimp(self, **kwargs):
"""See the radsimp function in sympy.simplify"""
from sympy.simplify import radsimp
return radsimp(self, **kwargs)
def powsimp(self, *args, **kwargs):
"""See the powsimp function in sympy.simplify"""
from sympy.simplify import powsimp
return powsimp(self, *args, **kwargs)
def combsimp(self):
"""See the combsimp function in sympy.simplify"""
from sympy.simplify import combsimp
return combsimp(self)
def gammasimp(self):
"""See the gammasimp function in sympy.simplify"""
from sympy.simplify import gammasimp
return gammasimp(self)
def factor(self, *gens, **args):
"""See the factor() function in sympy.polys.polytools"""
from sympy.polys import factor
return factor(self, *gens, **args)
def refine(self, assumption=True):
"""See the refine function in sympy.assumptions"""
from sympy.assumptions import refine
return refine(self, assumption)
def cancel(self, *gens, **args):
"""See the cancel function in sympy.polys"""
from sympy.polys import cancel
return cancel(self, *gens, **args)
def invert(self, g, *gens, **args):
"""Return the multiplicative inverse of ``self`` mod ``g``
where ``self`` (and ``g``) may be symbolic expressions).
See Also
========
sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert
"""
from sympy.polys.polytools import invert
from sympy.core.numbers import mod_inverse
if self.is_number and getattr(g, 'is_number', True):
return mod_inverse(self, g)
return invert(self, g, *gens, **args)
def round(self, n=None):
"""Return x rounded to the given decimal place.
If a complex number would results, apply round to the real
and imaginary components of the number.
Examples
========
>>> from sympy import pi, E, I, S, Number
>>> pi.round()
3
>>> pi.round(2)
3.14
>>> (2*pi + E*I).round()
6 + 3*I
The round method has a chopping effect:
>>> (2*pi + I/10).round()
6
>>> (pi/10 + 2*I).round()
2*I
>>> (pi/10 + E*I).round(2)
0.31 + 2.72*I
Notes
=====
The Python ``round`` function uses the SymPy ``round`` method so it
will always return a SymPy number (not a Python float or int):
>>> isinstance(round(S(123), -2), Number)
True
"""
from sympy.core.numbers import Float
x = self
if not x.is_number:
raise TypeError("can't round symbolic expression")
if not x.is_Atom:
if not pure_complex(x.n(2), or_real=True):
raise TypeError(
'Expected a number but got %s:' % func_name(x))
elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity):
return x
if not x.is_extended_real:
r, i = x.as_real_imag()
return r.round(n) + S.ImaginaryUnit*i.round(n)
if not x:
return S.Zero if n is None else x
p = as_int(n or 0)
if x.is_Integer:
return Integer(round(int(x), p))
digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1
allow = digits_to_decimal + p
precs = [f._prec for f in x.atoms(Float)]
dps = prec_to_dps(max(precs)) if precs else None
if dps is None:
# assume everything is exact so use the Python
# float default or whatever was requested
dps = max(15, allow)
else:
allow = min(allow, dps)
# this will shift all digits to right of decimal
# and give us dps to work with as an int
shift = -digits_to_decimal + dps
extra = 1 # how far we look past known digits
# NOTE
# mpmath will calculate the binary representation to
# an arbitrary number of digits but we must base our
# answer on a finite number of those digits, e.g.
# .575 2589569785738035/2**52 in binary.
# mpmath shows us that the first 18 digits are
# >>> Float(.575).n(18)
# 0.574999999999999956
# The default precision is 15 digits and if we ask
# for 15 we get
# >>> Float(.575).n(15)
# 0.575000000000000
# mpmath handles rounding at the 15th digit. But we
# need to be careful since the user might be asking
# for rounding at the last digit and our semantics
# are to round toward the even final digit when there
# is a tie. So the extra digit will be used to make
# that decision. In this case, the value is the same
# to 15 digits:
# >>> Float(.575).n(16)
# 0.5750000000000000
# Now converting this to the 15 known digits gives
# 575000000000000.0
# which rounds to integer
# 5750000000000000
# And now we can round to the desired digt, e.g. at
# the second from the left and we get
# 5800000000000000
# and rescaling that gives
# 0.58
# as the final result.
# If the value is made slightly less than 0.575 we might
# still obtain the same value:
# >>> Float(.575-1e-16).n(16)*10**15
# 574999999999999.8
# What 15 digits best represents the known digits (which are
# to the left of the decimal? 5750000000000000, the same as
# before. The only way we will round down (in this case) is
# if we declared that we had more than 15 digits of precision.
# For example, if we use 16 digits of precision, the integer
# we deal with is
# >>> Float(.575-1e-16).n(17)*10**16
# 5749999999999998.4
# and this now rounds to 5749999999999998 and (if we round to
# the 2nd digit from the left) we get 5700000000000000.
#
xf = x.n(dps + extra)*Pow(10, shift)
xi = Integer(xf)
# use the last digit to select the value of xi
# nearest to x before rounding at the desired digit
sign = 1 if x > 0 else -1
dif2 = sign*(xf - xi).n(extra)
if dif2 < 0:
raise NotImplementedError(
'not expecting int(x) to round away from 0')
if dif2 > .5:
xi += sign # round away from 0
elif dif2 == .5:
xi += sign if xi%2 else -sign # round toward even
# shift p to the new position
ip = p - shift
# let Python handle the int rounding then rescale
xr = round(xi.p, ip)
# restore scale
rv = Rational(xr, Pow(10, shift))
# return Float or Integer
if rv.is_Integer:
if n is None: # the single-arg case
return rv
# use str or else it won't be a float
return Float(str(rv), dps) # keep same precision
else:
if not allow and rv > self:
allow += 1
return Float(rv, allow)
__round__ = round
def _eval_derivative_matrix_lines(self, x):
from sympy.matrices.expressions.matexpr import _LeftRightArgs
return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))]
class AtomicExpr(Atom, Expr):
"""
A parent class for object which are both atoms and Exprs.
For example: Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_number = False
is_Atom = True
__slots__ = ()
def _eval_derivative(self, s):
if self == s:
return S.One
return S.Zero
def _eval_derivative_n_times(self, s, n):
from sympy import Piecewise, Eq
from sympy import Tuple, MatrixExpr
from sympy.matrices.common import MatrixCommon
if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)):
return super()._eval_derivative_n_times(s, n)
if self == s:
return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
else:
return Piecewise((self, Eq(n, 0)), (0, True))
def _eval_is_polynomial(self, syms):
return True
def _eval_is_rational_function(self, syms):
return True
def _eval_is_meromorphic(self, x, a):
from sympy.calculus.util import AccumBounds
return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds)
def _eval_is_algebraic_expr(self, syms):
return True
def _eval_nseries(self, x, n, logx, cdir=0):
return self
@property
def expr_free_symbols(self):
return {self}
def _mag(x):
"""Return integer ``i`` such that .1 <= x/10**i < 1
Examples
========
>>> from sympy.core.expr import _mag
>>> from sympy import Float
>>> _mag(Float(.1))
0
>>> _mag(Float(.01))
-1
>>> _mag(Float(1234))
4
"""
from math import log10, ceil, log
from sympy import Float
xpos = abs(x.n())
if not xpos:
return S.Zero
try:
mag_first_dig = int(ceil(log10(xpos)))
except (ValueError, OverflowError):
mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10)))
# check that we aren't off by 1
if (xpos/10**mag_first_dig) >= 1:
assert 1 <= (xpos/10**mag_first_dig) < 10
mag_first_dig += 1
return mag_first_dig
class UnevaluatedExpr(Expr):
"""
Expression that is not evaluated unless released.
Examples
========
>>> from sympy import UnevaluatedExpr
>>> from sympy.abc import x
>>> x*(1/x)
1
>>> x*UnevaluatedExpr(1/x)
x*1/x
"""
def __new__(cls, arg, **kwargs):
arg = _sympify(arg)
obj = Expr.__new__(cls, arg, **kwargs)
return obj
def doit(self, **kwargs):
if kwargs.get("deep", True):
return self.args[0].doit(**kwargs)
else:
return self.args[0]
def unchanged(func, *args):
"""Return True if `func` applied to the `args` is unchanged.
Can be used instead of `assert foo == foo`.
Examples
========
>>> from sympy import Piecewise, cos, pi
>>> from sympy.core.expr import unchanged
>>> from sympy.abc import x
>>> unchanged(cos, 1) # instead of assert cos(1) == cos(1)
True
>>> unchanged(cos, pi)
False
Comparison of args uses the builtin capabilities of the object's
arguments to test for equality so args can be defined loosely. Here,
the ExprCondPair arguments of Piecewise compare as equal to the
tuples that can be used to create the Piecewise:
>>> unchanged(Piecewise, (x, x > 1), (0, True))
True
"""
f = func(*args)
return f.func == func and f.args == args
class ExprBuilder:
def __init__(self, op, args=[], validator=None, check=True):
if not hasattr(op, "__call__"):
raise TypeError("op {} needs to be callable".format(op))
self.op = op
self.args = args
self.validator = validator
if (validator is not None) and check:
self.validate()
@staticmethod
def _build_args(args):
return [i.build() if isinstance(i, ExprBuilder) else i for i in args]
def validate(self):
if self.validator is None:
return
args = self._build_args(self.args)
self.validator(*args)
def build(self, check=True):
args = self._build_args(self.args)
if self.validator and check:
self.validator(*args)
return self.op(*args)
def append_argument(self, arg, check=True):
self.args.append(arg)
if self.validator and check:
self.validate(*self.args)
def __getitem__(self, item):
if item == 0:
return self.op
else:
return self.args[item-1]
def __repr__(self):
return str(self.build())
def search_element(self, elem):
for i, arg in enumerate(self.args):
if isinstance(arg, ExprBuilder):
ret = arg.search_index(elem)
if ret is not None:
return (i,) + ret
elif id(arg) == id(elem):
return (i,)
return None
from .mul import Mul
from .add import Add
from .power import Pow
from .function import Function, _derivative_dispatch
from .mod import Mod
from .exprtools import factor_terms
from .numbers import Integer, Rational
|
4467cd4ea930114308cb0f33d3f40274536c02541ed88df67d14cd087ecdae8e | # from typing import Dict, Union, Type
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .basic import S, Atom
from .compatibility import ordered
from .basic import Basic
from .evalf import EvalfMixin
from .function import AppliedUndef
from .sympify import _sympify, SympifyError
from .parameters import global_parameters
from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
from sympy.logic.boolalg import Boolean, BooleanAtom
__all__ = (
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
'StrictGreaterThan', 'GreaterThan',
)
from .expr import Expr
from sympy.multipledispatch import dispatch
from .containers import Tuple
from .symbol import Symbol
def _nontrivBool(side):
return isinstance(side, Boolean) and \
not isinstance(side, Atom)
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
# and Expr.
# from .. import Expr
def _canonical(cond):
# return a condition in which all relationals are canonical
reps = {r: r.canonical for r in cond.atoms(Relational)}
return cond.xreplace(reps)
# XXX: AttributeError was being caught here but it wasn't triggered by any of
# the tests so I've removed it...
class Relational(Boolean, EvalfMixin):
"""Base class for all relation types.
Subclasses of Relational should generally be instantiated directly, but
Relational can be instantiated with a valid ``rop`` value to dispatch to
the appropriate subclass.
Parameters
==========
rop : str or None
Indicates what subclass to instantiate. Valid values can be found
in the keys of Relational.ValidRelationOperator.
Examples
========
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
"""
__slots__ = ()
ValidRelationOperator = {} ## type: Dict[Union[str, None], Type[Relational]]
is_Relational = True
# ValidRelationOperator - Defined below, because the necessary classes
# have not yet been defined
def __new__(cls, lhs, rhs, rop=None, **assumptions):
# If called by a subclass, do nothing special and pass on to Basic.
if cls is not Relational:
return Basic.__new__(cls, lhs, rhs, **assumptions)
# XXX: Why do this? There should be a separate function to make a
# particular subclass of Relational from a string.
#
# If called directly with an operator, look up the subclass
# corresponding to that operator and delegate to it
cls = cls.ValidRelationOperator.get(rop, None)
if cls is None:
raise ValueError("Invalid relational operator symbol: %r" % rop)
if not issubclass(cls, (Eq, Ne)):
# validate that Booleans are not being used in a relational
# other than Eq/Ne;
# Note: Symbol is a subclass of Boolean but is considered
# acceptable here.
if any(map(_nontrivBool, (lhs, rhs))):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
return cls(lhs, rhs, **assumptions)
@property
def lhs(self):
"""The left-hand side of the relation."""
return self._args[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self._args[1]
@property
def reversed(self):
"""Return the relationship with sides reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1 > x
"""
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
a, b = self.args
return Relational.__new__(ops.get(self.func, self.func), b, a)
@property
def reversedsign(self):
"""Return the relationship with signs reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
"""
a, b = self.args
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
else:
return self
@property
def negated(self):
"""Return the negated relationship.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.negated
Ne(x, 1)
>>> x < 1
x < 1
>>> _.negated
x >= 1
Notes
=====
This works more or less identical to ``~``/``Not``. The difference is
that ``negated`` returns the relationship even if ``evaluate=False``.
Hence, this is useful in code when checking for e.g. negated relations
to existing ones as it will not be affected by the `evaluate` flag.
"""
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
# If there ever will be new Relational subclasses, the following line
# will work until it is properly sorted out
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
# b, evaluate=evaluate)))(*self.args, evaluate=False)
return Relational.__new__(ops.get(self.func), *self.args)
def _eval_evalf(self, prec):
return self.func(*[s._evalf(prec) for s in self.args])
@property
def canonical(self):
"""Return a canonical form of the relational by putting a
number on the rhs, canonically removing a sign or else
ordering the args canonically. No other simplification is
attempted.
Examples
========
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
>>> (-y < -x).canonical
x < y
"""
args = self.args
r = self
if r.rhs.is_number:
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
r = r.reversed
elif r.lhs.is_number:
r = r.reversed
elif tuple(ordered(args)) != args:
r = r.reversed
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
return r
# Check if first value has negative sign
if LHS_CEMS and LHS_CEMS():
return r.reversedsign
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
# Right hand side has a minus, but not lhs.
# How does the expression with reversed signs behave?
# This is so that expressions of the type
# Eq(x, -y) and Eq(-x, y)
# have the same canonical representation
expr1, _ = ordered([r.lhs, -r.rhs])
if expr1 != r.lhs:
return r.reversed.reversedsign
return r
def equals(self, other, failing_expression=False):
"""Return True if the sides of the relationship are mathematically
identical and the type of relationship is the same.
If failing_expression is True, return the expression whose truth value
was unknown."""
if isinstance(other, Relational):
if self == other or self.reversed == other:
return True
a, b = self, other
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
if a.func != b.func:
return False
left, right = [i.equals(j,
failing_expression=failing_expression)
for i, j in zip(a.args, b.args)]
if left is True:
return right
if right is True:
return left
lr, rl = [i.equals(j, failing_expression=failing_expression)
for i, j in zip(a.args, b.reversed.args)]
if lr is True:
return rl
if rl is True:
return lr
e = (left, right, lr, rl)
if all(i is False for i in e):
return False
for i in e:
if i not in (True, False):
return i
else:
if b.func != a.func:
b = b.reversed
if a.func != b.func:
return False
left = a.lhs.equals(b.lhs,
failing_expression=failing_expression)
if left is False:
return False
right = a.rhs.equals(b.rhs,
failing_expression=failing_expression)
if right is False:
return False
if left is True:
return right
return left
def _eval_simplify(self, **kwargs):
from .add import Add
r = self
r = r.func(*[i.simplify(**kwargs) for i in r.args])
if r.is_Relational:
dif = r.lhs - r.rhs
# replace dif with a valid Number that will
# allow a definitive comparison with 0
v = None
if dif.is_comparable:
v = dif.n(2)
elif dif.equals(0): # XXX this is expensive
v = S.Zero
if v is not None:
r = r.func._eval_relation(v, S.Zero)
r = r.canonical
# If there is only one symbol in the expression,
# try to write it on a simplified form
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
if len(free) == 1:
try:
from sympy.solvers.solveset import linear_coeffs
x = free.pop()
dif = r.lhs - r.rhs
m, b = linear_coeffs(dif, x)
if m.is_zero is False:
if m.is_negative:
# Dividing with a negative number, so change order of arguments
# canonical will put the symbol back on the lhs later
r = r.func(-b / m, x)
else:
r = r.func(x, -b / m)
else:
r = r.func(b, S.zero)
except ValueError:
# maybe not a linear function, try polynomial
from sympy.polys import Poly, poly, PolynomialError, gcd
try:
p = poly(dif, x)
c = p.all_coeffs()
constant = c[-1]
c[-1] = 0
scale = gcd(c)
c = [ctmp / scale for ctmp in c]
r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
except PolynomialError:
pass
elif len(free) >= 2:
try:
from sympy.solvers.solveset import linear_coeffs
from sympy.polys import gcd
free = list(ordered(free))
dif = r.lhs - r.rhs
m = linear_coeffs(dif, *free)
constant = m[-1]
del m[-1]
scale = gcd(m)
m = [mtmp / scale for mtmp in m]
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
if scale.is_zero is False:
if constant != 0:
# lhs: expression, rhs: constant
newexpr = Add(*[i * j for i, j in nzm])
r = r.func(newexpr, -constant / scale)
else:
# keep first term on lhs
lhsterm = nzm[0][0] * nzm[0][1]
del nzm[0]
newexpr = Add(*[i * j for i, j in nzm])
r = r.func(lhsterm, -newexpr)
else:
r = r.func(constant, S.zero)
except ValueError:
pass
# Did we get a simplified result?
r = r.canonical
measure = kwargs['measure']
if measure(r) < kwargs['ratio'] * measure(self):
return r
else:
return self
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
def expand(self, **kwargs):
args = (arg.expand(**kwargs) for arg in self.args)
return self.func(*args)
def __bool__(self):
raise TypeError("cannot determine truth value of Relational")
def _eval_as_set(self):
# self is univariate and periodicity(self, x) in (0, None)
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.sets.conditionset import ConditionSet
syms = self.free_symbols
assert len(syms) == 1
x = syms.pop()
try:
xset = solve_univariate_inequality(self, x, relational=False)
except NotImplementedError:
# solve_univariate_inequality raises NotImplementedError for
# unsolvable equations/inequalities.
xset = ConditionSet(x, self, S.Reals)
return xset
@property
def binary_symbols(self):
# override where necessary
return set()
Rel = Relational
class Equality(Relational):
"""An equal relation between two objects.
Represents that two objects are equal. If they can be easily shown
to be definitively equal (or unequal), this will reduce to True (or
False). Otherwise, the relation is maintained as an unevaluated
Equality object. Use the ``simplify`` function on this object for
more nontrivial evaluation of the equality relation.
As usual, the keyword argument ``evaluate=False`` can be used to
prevent any evaluation.
Examples
========
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
See Also
========
sympy.logic.boolalg.Equivalent : for representing equality between two
boolean expressions
Notes
=====
Python treats 1 and True (and 0 and False) as being equal; SymPy
does not. And integer will always compare as unequal to a Boolean:
>>> Eq(True, 1), True == 1
(False, True)
This class is not the same as the == operator. The == operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
If either object defines an `_eval_Eq` method, it can be used in place of
the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)`
returns anything other than None, that return value will be substituted for
the Equality. If None is returned by `_eval_Eq`, an Equality object will
be created as usual.
Since this object is already an expression, it does not respond to
the method `as_expr` if one tries to create `x - y` from Eq(x, y).
This can be done with the `rewrite(Add)` method.
"""
rel_op = '=='
__slots__ = ()
is_Equality = True
def __new__(cls, lhs, rhs=None, **options):
if rhs is None:
SymPyDeprecationWarning(
feature="Eq(expr) with rhs default to 0",
useinstead="Eq(expr, 0)",
issue=16587,
deprecated_since_version="1.5"
).warn()
rhs = 0
evaluate = options.pop('evaluate', global_parameters.evaluate)
lhs = _sympify(lhs)
rhs = _sympify(rhs)
if evaluate:
val = is_eq(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
return Relational.__new__(cls, lhs, rhs)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs == rhs)
def _eval_rewrite_as_Add(self, *args, **kwargs):
"""
return Eq(L, R) as L - R. To control the evaluation of
the result set pass `evaluate=True` to give L - R;
if `evaluate=None` then terms in L and R will not cancel
but they will be listed in canonical order; otherwise
non-canonical args will be returned.
Examples
========
>>> from sympy import Eq, Add
>>> from sympy.abc import b, x
>>> eq = Eq(x + b, x - b)
>>> eq.rewrite(Add)
2*b
>>> eq.rewrite(Add, evaluate=None).args
(b, b, x, -x)
>>> eq.rewrite(Add, evaluate=False).args
(b, x, b, -x)
"""
from .add import _unevaluated_Add, Add
L, R = args
evaluate = kwargs.get('evaluate', True)
if evaluate:
# allow cancellation of args
return L - R
args = Add.make_args(L) + Add.make_args(-R)
if evaluate is None:
# no cancellation, but canonical
return _unevaluated_Add(*args)
# no cancellation, not canonical
return Add._from_args(args)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return {self.lhs}
elif self.rhs.is_Symbol:
return {self.rhs}
return set()
def _eval_simplify(self, **kwargs):
from .add import Add
from sympy.solvers.solveset import linear_coeffs
# standard simplify
e = super()._eval_simplify(**kwargs)
if not isinstance(e, Equality):
return e
free = self.free_symbols
if len(free) == 1:
try:
x = free.pop()
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
if m.is_zero is False:
enew = e.func(x, -b / m)
else:
enew = e.func(m * x, -b)
measure = kwargs['measure']
if measure(enew) <= kwargs['ratio'] * measure(e):
e = enew
except ValueError:
pass
return e.canonical
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals import integrate
return integrate(self, *args, **kwargs)
def as_poly(self, *gens, **kwargs):
'''Returns lhs-rhs as a Poly
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x**2, 1).as_poly(x)
Poly(x**2 - 1, x, domain='ZZ')
'''
return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
Eq = Equality
class Unequality(Relational):
"""An unequal relation between two objects.
Represents that two objects are not equal. If they can be shown to be
definitively equal, this will reduce to False; if definitively unequal,
this will reduce to True. Otherwise, the relation is maintained as an
Unequality object.
Examples
========
>>> from sympy import Ne
>>> from sympy.abc import x, y
>>> Ne(y, x+x**2)
Ne(y, x**2 + x)
See Also
========
Equality
Notes
=====
This class is not the same as the != operator. The != operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the
same algorithms, including any available `_eval_Eq` methods.
"""
rel_op = '!='
__slots__ = ()
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
val = is_neq(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs != rhs)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return {self.lhs}
elif self.rhs.is_Symbol:
return {self.rhs}
return set()
def _eval_simplify(self, **kwargs):
# simplify as an equality
eq = Equality(*self.args)._eval_simplify(**kwargs)
if isinstance(eq, Equality):
# send back Ne with the new args
return self.func(*eq.args)
return eq.negated # result of Ne is the negated Eq
Ne = Unequality
class _Inequality(Relational):
"""Internal base class for all *Than types.
Each subclass must implement _eval_relation to provide the method for
comparing two real numbers.
"""
__slots__ = ()
def __new__(cls, lhs, rhs, **options):
try:
lhs = _sympify(lhs)
rhs = _sympify(rhs)
except SympifyError:
return NotImplemented
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
for me in (lhs, rhs):
if me.is_extended_real is False:
raise TypeError("Invalid comparison of non-real %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
# First we invoke the appropriate inequality method of `lhs`
# (e.g., `lhs.__lt__`). That method will try to reduce to
# boolean or raise an exception. It may keep calling
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
# In some cases, `Expr` will just invoke us again (if neither it
# nor a subclass was able to reduce to boolean or raise an
# exception). In that case, it must call us with
# `evaluate=False` to prevent infinite recursion.
return cls._eval_relation(lhs, rhs, **options)
# make a "non-evaluated" Expr for the inequality
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs, **options):
val = cls._eval_fuzzy_relation(lhs, rhs)
if val is None:
return cls(lhs, rhs, evaluate=False)
else:
return _sympify(val)
class _Greater(_Inequality):
"""Not intended for general use
_Greater is only used so that GreaterThan and StrictGreaterThan may
subclass it for the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[0]
@property
def lts(self):
return self._args[1]
class _Less(_Inequality):
"""Not intended for general use.
_Less is only used so that LessThan and StrictLessThan may subclass it for
the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[1]
@property
def lts(self):
return self._args[0]
class GreaterThan(_Greater):
"""Class representations of inequalities.
Extended Summary
================
The ``*Than`` classes represent inequal relationships, where the left-hand
side is generally bigger or smaller than the right-hand side. For example,
the GreaterThan class represents an inequal relationship where the
left-hand side is at least as big as the right side, if not bigger. In
mathematical notation:
lhs >= rhs
In total, there are four ``*Than`` classes, to represent the four
inequalities:
+-----------------+--------+
|Class Name | Symbol |
+=================+========+
|GreaterThan | (>=) |
+-----------------+--------+
|LessThan | (<=) |
+-----------------+--------+
|StrictGreaterThan| (>) |
+-----------------+--------+
|StrictLessThan | (<) |
+-----------------+--------+
All classes take two arguments, lhs and rhs.
+----------------------------+-----------------+
|Signature Example | Math equivalent |
+============================+=================+
|GreaterThan(lhs, rhs) | lhs >= rhs |
+----------------------------+-----------------+
|LessThan(lhs, rhs) | lhs <= rhs |
+----------------------------+-----------------+
|StrictGreaterThan(lhs, rhs) | lhs > rhs |
+----------------------------+-----------------+
|StrictLessThan(lhs, rhs) | lhs < rhs |
+----------------------------+-----------------+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
objects also have the .lts and .gts properties, which represent the "less
than side" and "greater than side" of the operator. Use of .lts and .gts
in an algorithm rather than .lhs and .rhs as an assumption of inequality
direction will make more explicit the intent of a certain section of code,
and will make it similarly more robust to client code changes:
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
Examples
========
One generally does not instantiate these classes directly, but uses various
convenience methods:
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
Another option is to use the Python inequality operators (>=, >, <=, <)
directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts,
is that one can write a more "mathematical looking" statement rather than
littering the math with oddball function calls. However there are certain
(minor) caveats of which to be aware (search for 'gotcha', below).
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
However, it is also perfectly valid to instantiate a ``*Than`` class less
succinctly and less conveniently:
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
Notes
=====
There are a couple of "gotchas" to be aware of when using Python's
operators.
The first is that what your write is not always what you get:
>>> 1 < x
x > 1
Due to the order that Python parses a statement, it may
not immediately find two objects comparable. When "1 < x"
is evaluated, Python recognizes that the number 1 is a native
number and that x is *not*. Because a native Python number does
not know how to compare itself with a SymPy object
Python will try the reflective operation, "x > 1" and that is the
form that gets evaluated, hence returned.
If the order of the statement is important (for visual output to
the console, perhaps), one can work around this annoyance in a
couple ways:
(1) "sympify" the literal before comparison
>>> S(1) < x
1 < x
(2) use one of the wrappers or less succinct methods described
above
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
The second gotcha involves writing equality tests between relationals
when one or both sides of the test involve a literal relational:
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
The solution for this case is to wrap literal relationals in
parentheses:
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
The third gotcha involves chained inequalities not involving
'==' or '!='. Occasionally, one may be tempted to write:
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
Due to an implementation detail or decision of Python [1]_,
there is no way for SymPy to create a chained inequality with
that syntax so one must use And:
>>> e = And(x < y, y < z)
>>> type( e )
And
>>> e
(x < y) & (y < z)
Although this can also be done with the '&' operator, it cannot
be done with the 'and' operarator:
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
.. [1] This implementation detail is that Python provides no reliable
method to determine that a chained inequality is being built.
Chained comparison operators are evaluated pairwise, using "and"
logic (see
http://docs.python.org/2/reference/expressions.html#notin). This
is done in an efficient way, so that each object being compared
is only evaluated once and the comparison can short-circuit. For
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
> 3)``. The ``and`` operator coerces each side into a bool,
returning the object itself when it short-circuits. The bool of
the --Than operators will raise TypeError on purpose, because
SymPy cannot determine the mathematical ordering of symbolic
expressions. Thus, if we were to compute ``x > y > z``, with
``x``, ``y``, and ``z`` being Symbols, Python converts the
statement (roughly) into these steps:
(1) x > y > z
(2) (x > y) and (y > z)
(3) (GreaterThanObject) and (y > z)
(4) (GreaterThanObject.__bool__()) and (y > z)
(5) TypeError
Because of the "and" added at step 2, the statement gets turned into a
weak ternary statement, and the first object's __bool__ method will
raise TypeError. Thus, creating a chained inequality is not possible.
In Python, there is no way to override the ``and`` operator, or to
control how it short circuits, so it is impossible to make something
like ``x > y > z`` work. There was a PEP to change this,
:pep:`335`, but it was officially closed in March, 2012.
"""
__slots__ = ()
rel_op = '>='
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_ge(lhs, rhs)
Ge = GreaterThan
class LessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<='
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_le(lhs, rhs)
Le = LessThan
class StrictGreaterThan(_Greater):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '>'
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_gt(lhs, rhs)
Gt = StrictGreaterThan
class StrictLessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<'
@classmethod
def _eval_fuzzy_relation(cls, lhs, rhs):
return is_lt(lhs, rhs)
Lt = StrictLessThan
# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
None: Equality,
'==': Equality,
'eq': Equality,
'!=': Unequality,
'<>': Unequality,
'ne': Unequality,
'>=': GreaterThan,
'ge': GreaterThan,
'<=': LessThan,
'le': LessThan,
'>': StrictGreaterThan,
'gt': StrictGreaterThan,
'<': StrictLessThan,
'lt': StrictLessThan,
}
def _n2(a, b):
"""Return (a - b).evalf(2) if a and b are comparable, else None.
This should only be used when a and b are already sympified.
"""
# /!\ it is very important (see issue 8245) not to
# use a re-evaluated number in the calculation of dif
if a.is_comparable and b.is_comparable:
dif = (a - b).evalf(2)
if dif.is_comparable:
return dif
@dispatch(Expr, Expr)
def _eval_is_ge(lhs, rhs):
return None
@dispatch(Basic, Basic)
def _eval_is_eq(lhs, rhs):
return None
@dispatch(Tuple, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(Tuple, AppliedUndef)
def _eval_is_eq(lhs, rhs): # noqa:F811
return None
@dispatch(Tuple, Symbol)
def _eval_is_eq(lhs, rhs): # noqa:F811
return None
@dispatch(Tuple, Tuple)
def _eval_is_eq(lhs, rhs): # noqa:F811
if len(lhs) != len(rhs):
return False
return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))
def is_lt(lhs, rhs):
"""Fuzzy bool for lhs is strictly less than rhs.
See the docstring for is_ge for more
"""
return fuzzy_not(is_ge(lhs, rhs))
def is_gt(lhs, rhs):
"""Fuzzy bool for lhs is strictly greater than rhs.
See the docstring for is_ge for more
"""
return fuzzy_not(is_le(lhs, rhs))
def is_le(lhs, rhs):
"""Fuzzy bool for lhs is less than or equal to rhs.
is_gt calls is_lt
See the docstring for is_ge for more
"""
return is_ge(rhs, lhs)
def is_ge(lhs, rhs):
"""
Fuzzy bool for lhs is greater than or equal to rhs.
:param lhs: the left-hand side of the expression, must be sympified, and an instance of expression
Throws an exception if lhs is not an instance of expression
:param rhs: the right-hand side of the expression, must be sympified and an instance of expression
Throws an exception if lhs is not an instance of expression
:return: True if lhs is greater than or equal to rhs, false is lhs is less than rhs, and
None if the comparison between lhs and rhs is indeterminate
The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
each implemented in terms of ``is_ge`` in the following way:
is_ge(x, y) := is_ge(x, y)
is_le(x, y) := is_ge(y, x)
is_lt(x, y) := fuzzy_not(is_ge(x, y))
is_gt(x, y) = fuzzy_not(is_ge(y, x))
To maintain these equivalences in fuzzy logic it is important that in cases where
either x or y is non-real all comparisons will give None.
InEquality classes, such as Lt, Gt, etc. Use one of is_ge, is_le, etc.
To implement comparisons with ``Gt(a, b)`` or ``a > b`` etc for an ``Expr`` subclass
it is only necessary to define a dispatcher method for ``_eval_is_ge`` like
>>> from sympy.core.relational import is_ge, is_lt, is_gt
>>> from sympy.abc import x
>>> from sympy import S, Expr, sympify
>>> from sympy.multipledispatch import dispatch
>>> class MyExpr(Expr):
... def __new__(cls, arg):
... return Expr.__new__(cls, sympify(arg))
... @property
... def value(self):
... return self.args[0]
...
>>> @dispatch(MyExpr, MyExpr)
... def _eval_is_ge(a, b):
... return is_ge(a.value, b.value)
...
>>> a = MyExpr(1)
>>> b = MyExpr(2)
>>> a < b
True
>>> a <= b
True
>>> a > b
False
>>> is_lt(a, b)
True
Examples
========
>>> is_ge(S(2), S(0))
True
>>> is_ge(S(0), S(2))
False
>>> is_ge(S(0), x)
>>> is_gt(S(2), S(0))
True
>>> is_gt(S(0), S(2))
False
>>> is_lt(S(0), S(2))
True
>>> is_lt(S(2), S(0))
False
"""
if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
raise TypeError("Can only compare inequalities with Expr")
retval = _eval_is_ge(lhs, rhs)
if retval is not None:
return retval
else:
n2 = _n2(lhs, rhs)
if n2 is not None:
# use float comparison for infinity.
# otherwise get stuck in infinite recursion
if n2 in (S.Infinity, S.NegativeInfinity):
n2 = float(n2)
return _sympify(n2 >= 0)
if lhs.is_extended_real and rhs.is_extended_real:
if (lhs.is_infinite and lhs.is_extended_positive) or (rhs.is_infinite and rhs.is_extended_negative):
return True
diff = lhs - rhs
if diff is not S.NaN:
rv = diff.is_extended_nonnegative
if rv is not None:
return rv
def is_neq(lhs, rhs):
"""Fuzzy bool for lhs does not equal rhs.
See the docstring for is_eq for more
"""
return fuzzy_not(is_eq(lhs, rhs))
def is_eq(lhs, rhs):
"""
Fuzzy bool representing mathematical equality between lhs and rhs.
:param lhs: the left-hand side of the expression, must be sympified
:param rhs: the right-hand side of the expression, must be sympified
:return: True if lhs is equal to rhs, false is lhs is not equal to rhs, and
None if the comparison between lhs and rhs is indeterminate
Notes:
This function is intended to give a relatively fast determination and deliberately does not attempt slow
calculations that might help in obtaining a determination of True or False in more difficult cases.
InEquality classes, such as Lt, Gt, etc. Use one of is_ge, is_le, etc.
To implement comparisons with ``Gt(a, b)`` or ``a > b`` etc for an ``Expr`` subclass
it is only necessary to define a dispatcher method for ``_eval_is_ge`` like
>>> from sympy.core.relational import is_eq
>>> from sympy.core.relational import is_neq
>>> from sympy import S, Basic, Eq, sympify
>>> from sympy.abc import x
>>> from sympy.multipledispatch import dispatch
>>> class MyBasic(Basic):
... def __new__(cls, arg):
... return Basic.__new__(cls, sympify(arg))
... @property
... def value(self):
... return self.args[0]
...
>>> @dispatch(MyBasic, MyBasic)
... def _eval_is_eq(a, b):
... return is_eq(a.value, b.value)
...
>>> a = MyBasic(1)
>>> b = MyBasic(1)
>>> a == b
True
>>> Eq(a, b)
True
>>> a != b
False
>>> is_eq(a, b)
True
Examples
========
>>> is_eq(S(0), S(0))
True
>>> Eq(0, 0)
True
>>> is_neq(S(0), S(0))
False
>>> is_eq(S(0), S(2))
False
>>> Eq(0, 2)
False
>>> is_neq(S(0), S(2))
True
>>> is_eq(S(0), x)
>>> Eq(S(0), x)
Eq(0, x)
"""
from sympy.core.add import Add
from sympy.functions.elementary.complexes import arg
from sympy.simplify.simplify import clear_coefficients
from sympy.utilities.iterables import sift
# here, _eval_Eq is only called for backwards compatibility
# new code should use is_eq with multiple dispatch as
# outlined in the docstring
for side1, side2 in (lhs, rhs), (rhs, lhs):
eval_func = getattr(side1, '_eval_Eq', None)
if eval_func is not None:
retval = eval_func(side2)
if retval is not None:
return retval
retval = _eval_is_eq(lhs, rhs)
if retval is not None:
return retval
if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
retval = _eval_is_eq(rhs, lhs)
if retval is not None:
return retval
# retval is still None, so go through the equality logic
# If expressions have the same structure, they must be equal.
if lhs == rhs:
return True # e.g. True == True
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
return False # True != False
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
isinstance(lhs, Boolean) !=
isinstance(rhs, Boolean)):
return False # only Booleans can equal Booleans
if lhs.is_infinite or rhs.is_infinite:
if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
return False
if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
return False
if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
return fuzzy_xor([lhs.is_extended_positive, fuzzy_not(rhs.is_extended_positive)])
# Try to split real/imaginary parts and equate them
I = S.ImaginaryUnit
def split_real_imag(expr):
real_imag = lambda t: (
'real' if t.is_extended_real else
'imag' if (I * t).is_extended_real else None)
return sift(Add.make_args(expr), real_imag)
lhs_ri = split_real_imag(lhs)
if not lhs_ri[None]:
rhs_ri = split_real_imag(rhs)
if not rhs_ri[None]:
eq_real = Eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']))
eq_imag = Eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']))
return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
# Compare e.g. zoo with 1+I*oo by comparing args
arglhs = arg(lhs)
argrhs = arg(rhs)
# Guard against Eq(nan, nan) -> Falsesymp
if not (arglhs == S.NaN and argrhs == S.NaN):
return fuzzy_bool(Eq(arglhs, argrhs))
if all(isinstance(i, Expr) for i in (lhs, rhs)):
# see if the difference evaluates
dif = lhs - rhs
z = dif.is_zero
if z is not None:
if z is False and dif.is_commutative: # issue 10728
return False
if z:
return True
n2 = _n2(lhs, rhs)
if n2 is not None:
return _sympify(n2 == 0)
# see if the ratio evaluates
n, d = dif.as_numer_denom()
rv = None
if n.is_zero:
rv = d.is_nonzero
elif n.is_finite:
if d.is_infinite:
rv = True
elif n.is_zero is False:
rv = d.is_infinite
if rv is None:
# if the condition that makes the denominator
# infinite does not make the original expression
# True then False can be returned
l, r = clear_coefficients(d, S.Infinity)
args = [_.subs(l, r) for _ in (lhs, rhs)]
if args != [lhs, rhs]:
rv = fuzzy_bool(Eq(*args))
if rv is True:
rv = None
elif any(a.is_infinite for a in Add.make_args(n)):
# (inf or nan)/x != 0
rv = False
if rv is not None:
return rv
|
9cbd49a30d1dd443c1020bb760c02343ef3003bf81c2fa5523386d69eec873b7 | import numbers
import decimal
import fractions
import math
import re as regex
from .containers import Tuple
from .sympify import (SympifyError, converter, sympify, _convert_numpy_types, _sympify,
_is_numpy_instance)
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .evalf import pure_complex
from .decorators import _sympifyit
from .cache import cacheit, clear_cache
from .logic import fuzzy_not
from sympy.core.compatibility import (as_int, HAS_GMPY, SYMPY_INTS,
int_info, gmpy)
from sympy.core.cache import lru_cache
from sympy.multipledispatch import dispatch
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp import bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero, _normalize as mpf_normalize,
prec_to_dps)
from sympy.utilities.misc import debug, filldedent
from .parameters import global_parameters
from sympy.utilities.exceptions import SymPyDeprecationWarning
rnd = mlib.round_nearest
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
"""Return a bool indicating whether the error between z1 and z2
is <= tol.
Examples
========
If ``tol`` is None then True will be returned if
``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the
decimal precision of each value.
>>> from sympy.core.numbers import comp, pi
>>> pi4 = pi.n(4); pi4
3.142
>>> comp(_, 3.142)
True
>>> comp(pi4, 3.141)
False
>>> comp(pi4, 3.143)
False
A comparison of strings will be made
if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''.
>>> comp(pi4, 3.1415)
True
>>> comp(pi4, 3.1415, '')
False
When ``tol`` is provided and ``z2`` is non-zero and
``|z1| > 1`` the error is normalized by ``|z1|``:
>>> abs(pi4 - 3.14)/pi4
0.000509791731426756
>>> comp(pi4, 3.14, .001) # difference less than 0.1%
True
>>> comp(pi4, 3.14, .0005) # difference less than 0.1%
False
When ``|z1| <= 1`` the absolute error is used:
>>> 1/pi4
0.3183
>>> abs(1/pi4 - 0.3183)/(1/pi4)
3.07371499106316e-5
>>> abs(1/pi4 - 0.3183)
9.78393554684764e-6
>>> comp(1/pi4, 0.3183, 1e-5)
True
To see if the absolute error between ``z1`` and ``z2`` is less
than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)``
or ``comp(z1 - z2, tol=tol)``:
>>> abs(pi4 - 3.14)
0.00160156249999988
>>> comp(pi4 - 3.14, 0, .002)
True
>>> comp(pi4 - 3.14, 0, .001)
False
"""
if type(z2) is str:
if not pure_complex(z1, or_real=True):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
a, b = z1, z2
if tol == '':
return str(a) == str(b)
if tol is None:
a, b = sympify(a), sympify(b)
if not all(i.is_number for i in (a, b)):
raise ValueError('expecting 2 numbers')
fa = a.atoms(Float)
fb = b.atoms(Float)
if not fa and not fb:
# no floats -- compare exactly
return a == b
# get a to be pure_complex
for do in range(2):
ca = pure_complex(a, or_real=True)
if not ca:
if fa:
a = a.n(prec_to_dps(min([i._prec for i in fa])))
ca = pure_complex(a, or_real=True)
break
else:
fa, fb = fb, fa
a, b = b, a
cb = pure_complex(b)
if not cb and fb:
b = b.n(prec_to_dps(min([i._prec for i in fb])))
cb = pure_complex(b, or_real=True)
if ca and cb and (ca[1] or cb[1]):
return all(comp(i, j) for i, j in zip(ca, cb))
tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec)))
return int(abs(a - b)*tol) <= 5
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return fzero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should sympy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
The algorithm is based on the well known Euclid's algorithm. To
improve speed, igcd() has its own caching mechanism implemented.
Examples
========
>>> from sympy.core.numbers import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
if HAS_GMPY: # Using gmpy if present to speed up.
for b in args_temp:
a = gmpy.gcd(a, b) if b else a
return as_int(a)
for b in args_temp:
a = igcd2(a, b) if b else a
return a
def _igcd2_python(a, b):
"""Compute gcd of two Python integers a and b."""
if (a.bit_length() > BIGBITS and
b.bit_length() > BIGBITS):
return igcd_lehmer(a, b)
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a
try:
from math import gcd as igcd2
except ImportError:
igcd2 = _igcd2_python
# Use Lehmer's algorithm only for very large numbers.
BIGBITS = 5000
def igcd_lehmer(a, b):
"""Computes greatest common divisor of two integers.
Euclid's algorithm for the computation of the greatest
common divisor gcd(a, b) of two (positive) integers
a and b is based on the division identity
a = q*b + r,
where the quotient q and the remainder r are integers
and 0 <= r < b. Then each common divisor of a and b
divides r, and it follows that gcd(a, b) == gcd(b, r).
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, q = a // b and r = a % b are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm is based on the observation that the quotients
qn = r(n-1) // rn are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy.core.numbers import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
"""
Return the number c such that, (a * c) = 1 (mod m)
where c has the same sign as m. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import S
>>> from sympy.core.numbers import mod_inverse
Suppose we wish to find multiplicative inverse x of
3 modulo 11. This is the same as finding x such
that 3 * x = 1 (mod 11). One value of x that satisfies
this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11).
This is the value returned by mod_inverse:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
``a`` and ``m`` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, y, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if not (big is S.true or big is S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = ()
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, str):
_obj = obj.lower() # float('INF') == float('inf')
if _obj == 'nan':
return S.NaN
elif _obj == 'inf':
return S.Infinity
elif _obj == '+inf':
return S.Infinity
elif _obj == '-inf':
return S.NegativeInfinity
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from .containers import Tuple
from sympy.functions.elementary.complexes import sign
try:
other = Number(other)
if self.is_infinite or S.NaN in (self, other):
return (S.NaN, S.NaN)
except TypeError:
return NotImplemented
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
elif isinstance(other, Float):
rat = self/Rational(other)
else:
rat = self/other
if other.is_finite:
w = int(rat) if rat >= 0 else int(rat) - 1
r = self - other*w
else:
w = 0 if not self or (sign(self) == sign(other)) else -1
r = other if w else self
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
return NotImplemented
return divmod(other, self)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
def _eval_is_finite(self):
return True
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity or other is S.NegativeInfinity:
return S.Zero
return AtomicExpr.__truediv__(self, other)
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super().__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, rational=True, **kwargs):
# a -> c*t
if self.is_Rational or not rational:
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; spaces or underscores are also allowed. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
In SymPy, a Float is a number that can be computed with arbitrary
precision. Although floating point 'inf' and 'nan' are not such
numbers, Float can create these numbers:
>>> Float('-inf')
-oo
>>> _.is_Float
False
"""
__slots__ = ('_mpf_', '_prec')
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_extended_real = True
is_Float = True
def __new__(cls, num, dps=None, prec=None, precision=None):
if prec is not None:
SymPyDeprecationWarning(
feature="Using 'prec=XX' to denote decimal precision",
useinstead="'dps=XX' for decimal precision and 'precision=XX' "\
"for binary precision",
issue=12820,
deprecated_since_version="1.1").warn()
dps = prec
del prec # avoid using this deprecated kwarg
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, str):
# Float accepts spaces as digit separators
num = num.replace(' ', '').lower()
# in Py 3.6
# underscores are allowed. In anticipation of that, we ignore
# legally placed underscores
if '_' in num:
parts = num.split('_')
if not (all(parts) and
all(parts[i][-1].isdigit()
for i in range(0, len(parts), 2)) and
all(parts[i][0].isdigit()
for i in range(1, len(parts), 2))):
# copy Py 3.6 error
raise ValueError("could not convert string to float: '%s'" % num)
num = ''.join(parts)
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif num in ('inf', '+inf'):
return S.Infinity
elif num == '-inf':
return S.NegativeInfinity
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, float) and num == float('inf'):
return S.Infinity
elif isinstance(num, float) and num == float('-inf'):
return S.NegativeInfinity
elif isinstance(num, float) and num == float('nan'):
return S.NaN
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num)
elif num is S.Infinity:
return num
elif num is S.NegativeInfinity:
return num
elif num is S.NaN:
return num
elif _is_numpy_instance(num): # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, str) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = mlib.libmpf.dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, str):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = mlib.libmpf.dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = mlib.libmpf.dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, str):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
return S.NaN
elif num.is_infinite():
if num > 0:
return S.Infinity
return S.NegativeInfinity
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if type(num[1]) is str:
# it's a hexadecimal (coming from a pickled object)
# assume that it is in standard form
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
if not all((
num[0] in (0, 1),
num[1] >= 0,
all(type(i) in (int, int) for i in num)
)):
raise ValueError('malformed mpf: %s' % (num,))
# don't compute number or else it may
# over/underflow
return Float._new(
(num[0], num[1], num[2], bitcount(num[1])),
precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
return cls._new(_mpf_, precision, zero=False)
@classmethod
def _new(cls, _mpf_, _prec, zero=True):
# special cases
if zero and _mpf_ == fzero:
return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs__(self):
return (mlib.to_pickable(self._mpf_),)
def __getstate__(self):
return {'_prec': self._prec}
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == fzero
def _eval_is_negative(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num > 0
def _eval_is_extended_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_extended_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == fzero
def __bool__(self):
return self._mpf_ != fzero
def __neg__(self):
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and other != 0 and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__truediv__(self, other)
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_parameters.evaluate:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_parameters.evaluate:
return other.__mod__(self)
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_positive:
return S.Zero
if expt.is_negative:
return S.Infinity
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, fzero), (expt, fzero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == fzero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
def __eq__(self, other):
from sympy.logic.boolalg import Boolean
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not self:
return not other
if isinstance(other, Boolean):
return False
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
# comparison is exact
# so Float(.1, 3) != Float(.1, 33)
return self._mpf_ == other._mpf_
if other.is_Rational:
return other.__eq__(self)
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def _Frel(self, other, op):
from sympy.core.numbers import prec_to_dps
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Rational:
# test self*other.q <?> other.p without losing precision
'''
>>> f = Float(.1,2)
>>> i = 1234567890
>>> (f*i)._mpf_
(0, 471, 18, 9)
>>> mlib.mpf_mul(f._mpf_, mlib.from_int(i))
(0, 505555550955, -12, 39)
'''
smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q))
ompf = mlib.from_int(other.p)
return _sympify(bool(op(smpf, ompf)))
elif other.is_Float:
return _sympify(bool(
op(self._mpf_, other._mpf_)))
elif other.is_comparable and other not in (
S.Infinity, S.NegativeInfinity):
other = other.evalf(prec_to_dps(self._prec))
if other._prec > 1:
if other.is_Number:
return _sympify(bool(
op(self._mpf_, other._as_mpf_val(self._prec))))
def __gt__(self, other):
if isinstance(other, NumberSymbol):
return other.__lt__(self)
rv = self._Frel(other, mlib.mpf_gt)
if rv is None:
return Expr.__gt__(self, other)
return rv
def __ge__(self, other):
if isinstance(other, NumberSymbol):
return other.__le__(self)
rv = self._Frel(other, mlib.mpf_ge)
if rv is None:
return Expr.__ge__(self, other)
return rv
def __lt__(self, other):
if isinstance(other, NumberSymbol):
return other.__gt__(self)
rv = self._Frel(other, mlib.mpf_lt)
if rv is None:
return Expr.__lt__(self, other)
return rv
def __le__(self, other):
if isinstance(other, NumberSymbol):
return other.__ge__(self)
rv = self._Frel(other, mlib.mpf_le)
if rv is None:
return Expr.__le__(self, other)
return rv
def __hash__(self):
return super().__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def _sage_(self):
import sage.all as sage
return sage.RealNumber(str(self))
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
See Also
========
sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ('p', 'q')
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, str):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
else:
p = Rational(p)
q = Rational(q)
if isinstance(q, Rational):
p *= q.q
q = q.p
if isinstance(p, Rational):
q *= p.q
p = p.p
# p and q are now integers
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__truediv__(self, other)
return Number.__truediv__(self, other)
@_sympifyit('other', NotImplemented)
def __rtruediv__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rtruediv__(self, other)
return Number.__rtruediv__(self, other)
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_extended_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
if self.p != 1:
# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
return Integer(self.p)**expt*Integer(self.q)**(-expt)
# as the above caught negative self.p, now self is positive
return Integer(self.q)**Rational(
expt.p*(expt.q - 1), expt.q) / \
Integer(self.q)**Integer(expt.p)
if self.is_extended_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __eq__(self, other):
from sympy.core.power import integer_log
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, Number):
# S(0) == S.false is False
# S(0) == False is True
return False
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
# all Floats have a denominator that is a power of 2
# so if self doesn't, it can't be equal to other
if self.q & (self.q - 1):
return False
s, m, t = other._mpf_[:3]
if s:
m = -m
if not t:
# other is an odd integer
if not self.is_Integer or self.is_even:
return False
return m == self.p
if t > 0:
# other is an even integer
if not self.is_Integer:
return False
# does m*2**t == self.p
return self.p and not self.p % m and \
integer_log(self.p//m, 2) == (t, True)
# does non-integer s*m/2**-t = p/q?
if self.is_Integer:
return False
return m == self.p and integer_log(self.q, 2) == (-t, True)
return False
def __ne__(self, other):
return not self == other
def _Rrel(self, other, attr):
# if you want self < other, pass self, other, __gt__
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Number:
op = None
s, o = self, other
if other.is_NumberSymbol:
op = getattr(o, attr)
elif other.is_Float:
op = getattr(o, attr)
elif other.is_Rational:
s, o = Integer(s.p*o.q), Integer(s.q*o.p)
op = getattr(o, attr)
if op:
return op(s)
if o.is_number and o.is_extended_real:
return Integer(s.p), s.q*o
def __gt__(self, other):
rv = self._Rrel(other, '__lt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__gt__(*rv)
def __ge__(self, other):
rv = self._Rrel(other, '__le__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__ge__(*rv)
def __lt__(self, other):
rv = self._Rrel(other, '__gt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__lt__(*rv)
def __le__(self, other):
rv = self._Rrel(other, '__ge__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__le__(*rv)
def __hash__(self):
return super().__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
def numerator(self):
return self.p
def denominator(self):
return self.q
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other == S.Zero:
return other
return Rational(
Integer(igcd(self.p, other.p)),
Integer(ilcm(self.q, other.q)))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def _sage_(self):
import sage.all as sage
return sage.Integer(self.p)/sage.Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ('p',)
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, str):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
from .containers import Tuple
if isinstance(other, Integer) and global_parameters.evaluate:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
from .containers import Tuple
if isinstance(other, int) and global_parameters.evaluate:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, int):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy.ntheory.factor_ import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super()._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self)**ne
else:
return Rational(1, self.p)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
@_sympifyit('other', NotImplemented)
def __floordiv__(self, other):
if not isinstance(other, Expr):
return NotImplemented
if isinstance(other, Integer):
return Integer(self.p // other)
return Integer(divmod(self, other)[0])
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# Add sympify converters
converter[int] = Integer
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ('rep', 'root', 'alias', 'minpoly')
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
def __new__(cls, expr, coeffs=None, alias=None, **args):
"""Construct a new algebraic number. """
from sympy import Poly
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
from sympy.core.symbol import Symbol
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
sargs = (root, scoeffs)
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __hash__(self):
return super().__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy import Dummy, Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, **kwargs):
from sympy.polys import CRootOf, minpoly
measure, ratio = kwargs['measure'], kwargs['ratio']
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(IntegerConstant, metaclass=Singleton):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
is_comparable = True
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative:
return S.ComplexInfinity
if expt.is_extended_real is False:
return S.NaN
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __bool__(self):
return False
def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted
"""Efficiently extract the coefficient of a summation. """
return S.One, self
class One(IntegerConstant, metaclass=Singleton):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
p = 1
q = 1
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(IntegerConstant, metaclass=Singleton):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt is S.Infinity or expt is S.NegativeInfinity:
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(RationalConstant, metaclass=Singleton):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.Half
class Infinity(Number, metaclass=Singleton):
r"""Positive infinite quantity.
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_number = True
is_complex = False
is_extended_real = True
is_infinite = True
is_comparable = True
is_extended_positive = True
is_prime = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.NegativeInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.NegativeInfinity
return Number.__truediv__(self, other)
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
from sympy.functions import re
if expt.is_extended_positive:
return S.Infinity
if expt.is_extended_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_extended_real is False and expt.is_number:
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def _sage_(self):
import sage.all as sage
return sage.oo
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.Infinity or other == float('inf')
def __ne__(self, other):
return other is not S.Infinity and other != float('inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(Number, metaclass=Singleton):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_extended_real = True
is_complex = False
is_commutative = True
is_infinite = True
is_comparable = True
is_extended_negative = True
is_number = True
is_prime = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('-inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.Infinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.Infinity
return Number.__truediv__(self, other)
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_extended_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
return S.NegativeOne**expt*S.Infinity**expt
def _as_mpf_val(self, prec):
return mlib.fninf
def _sage_(self):
import sage.all as sage
return -(sage.oo)
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity or other == float('-inf')
def __ne__(self, other):
return other is not S.NegativeInfinity and other != float('-inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
def as_powers_dict(self):
return {S.NegativeOne: 1, S.Infinity: 1}
class NaN(Number, metaclass=Singleton):
"""
Not a Number.
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
contrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_extended_real = None
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
def __neg__(self):
return self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
return self
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def _sage_(self):
import sage.all as sage
return sage.NaN
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
@dispatch(NaN, Expr)
def _eval_is_eq(a, b): # noqa:F811
return False
class ComplexInfinity(AtomicExpr, metaclass=Singleton):
r"""Complex infinity.
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = False
is_extended_real = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt.is_zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
def _sage_(self):
import sage.all as sage
return sage.UnsignedInfinityRing.gen()
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = ()
is_NumberSymbol = True
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __hash__(self):
return super().__hash__()
class Exp1(NumberSymbol, metaclass=Singleton):
r"""The `e` constant.
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = ()
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
from sympy import exp
return exp(expt)
def _eval_rewrite_as_sin(self, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I) + I*cos(I + S.Pi/2)
def _sage_(self):
import sage.all as sage
return sage.e
E = S.Exp1
class Pi(NumberSymbol, metaclass=Singleton):
r"""The `\pi` constant.
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = ()
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71), Rational(22, 7))
def _sage_(self):
import sage.all as sage
return sage.pi
pi = S.Pi
class GoldenRatio(NumberSymbol, metaclass=Singleton):
r"""The golden ratio, `\phi`.
`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = ()
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
def _sage_(self):
import sage.all as sage
return sage.golden_ratio
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(NumberSymbol, metaclass=Singleton):
r"""The tribonacci constant.
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = ()
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 2
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt, cbrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(NumberSymbol, metaclass=Singleton):
r"""The Euler-Mascheroni constant.
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = ()
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5))
def _sage_(self):
import sage.all as sage
return sage.euler_gamma
class Catalan(NumberSymbol, metaclass=Singleton):
r"""Catalan's constant.
`K = 0.91596559\ldots` is given by the infinite series
.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = ()
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10), S.One)
def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None):
from sympy import Sum, Dummy
if (k_sym is not None) or (symbols is not None):
return self
k = Dummy('k', integer=True, nonnegative=True)
return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity))
def _sage_(self):
import sage.all as sage
return sage.catalan
class ImaginaryUnit(AtomicExpr, metaclass=Singleton):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = ()
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Number):
if isinstance(expt, Integer):
expt = expt.p % 4
if expt == 0:
return S.One
if expt == 1:
return S.ImaginaryUnit
if expt == 2:
return -S.One
return -S.ImaginaryUnit
return
def as_base_exp(self):
return S.NegativeOne, S.Half
def _sage_(self):
import sage.all as sage
return sage.I
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
@dispatch(Tuple, Number)
def _eval_is_eq(self, other): # noqa: F811
return False
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
converter[fractions.Fraction] = sympify_fractions
if HAS_GMPY:
def sympify_mpz(x):
return Integer(int(x))
# XXX: The sympify_mpq function here was never used because it is
# overridden by the other sympify_mpq function below. Maybe it should just
# be removed or maybe it should be used for something...
def sympify_mpq(x):
return Rational(int(x.numerator), int(x.denominator))
converter[type(gmpy.mpz(1))] = sympify_mpz
converter[type(gmpy.mpq(1, 2))] = sympify_mpq
def sympify_mpmath_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
converter[mpnumeric] = sympify_mpmath
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
def _register_classes():
numbers.Number.register(Number)
numbers.Real.register(Float)
numbers.Rational.register(Rational)
numbers.Rational.register(Integer)
_register_classes()
|
7426782204a71c5664b0a8816c6d835ecd6e72d3915b47d37b4da0a40db66eed | from operator import attrgetter
from typing import Tuple
from collections import defaultdict
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.sympify import _sympify, sympify
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import ordered
from sympy.core.logic import fuzzy_and
from sympy.core.parameters import global_parameters
from sympy.utilities.iterables import sift
from sympy.multipledispatch.dispatcher import (Dispatcher,
ambiguity_register_error_ignore_dup,
str_signature, RaiseNotImplementedError)
class AssocOp(Basic):
""" Associative operations, can separate noncommutative and
commutative parts.
(a op b) op c == a op (b op c) == a op b op c.
Base class for Add and Mul.
This is an abstract base class, concrete derived classes must define
the attribute `identity`.
Parameters
==========
*args :
Arguments which are operated
evaluate : bool, optional
Default is ``True``. If ``False``, do not evaluate the operation.
"""
# for performance reason, we don't let is_commutative go to assumptions,
# and keep it right here
__slots__ = ('is_commutative',) # type: Tuple[str, ...]
_args_type = None
@cacheit
def __new__(cls, *args, **options):
from sympy import Order
# Allow faster processing by passing ``_sympify=False``, if all arguments
# are already sympified.
if options.get('_sympify', True):
args = list(map(_sympify, args))
# Disallow non-Expr args in Add/Mul
typ = cls._args_type
if typ is not None:
from sympy.core.relational import Relational
if any(isinstance(arg, Relational) for arg in args):
raise TypeError("Relational can not be used in %s" % cls.__name__)
# This should raise TypeError once deprecation period is over:
if not all(isinstance(arg, typ) for arg in args):
SymPyDeprecationWarning(
feature="Add/Mul with non-Expr args",
useinstead="Expr args",
issue=19445,
deprecated_since_version="1.7"
).warn()
evaluate = options.get('evaluate')
if evaluate is None:
evaluate = global_parameters.evaluate
if not evaluate:
obj = cls._from_args(args)
obj = cls._exec_constructor_postprocessors(obj)
return obj
args = [a for a in args if a is not cls.identity]
if len(args) == 0:
return cls.identity
if len(args) == 1:
return args[0]
c_part, nc_part, order_symbols = cls.flatten(args)
is_commutative = not nc_part
obj = cls._from_args(c_part + nc_part, is_commutative)
obj = cls._exec_constructor_postprocessors(obj)
if order_symbols is not None:
return Order(obj, *order_symbols)
return obj
@classmethod
def _from_args(cls, args, is_commutative=None):
"""Create new instance with already-processed args.
If the args are not in canonical order, then a non-canonical
result will be returned, so use with caution. The order of
args may change if the sign of the args is changed."""
if len(args) == 0:
return cls.identity
elif len(args) == 1:
return args[0]
obj = super().__new__(cls, *args)
if is_commutative is None:
is_commutative = fuzzy_and(a.is_commutative for a in args)
obj.is_commutative = is_commutative
return obj
def _new_rawargs(self, *args, reeval=True, **kwargs):
"""Create new instance of own class with args exactly as provided by
caller but returning the self class identity if args is empty.
This is handy when we want to optimize things, e.g.
>>> from sympy import Mul, S
>>> from sympy.abc import x, y
>>> e = Mul(3, x, y)
>>> e.args
(3, x, y)
>>> Mul(*e.args[1:])
x*y
>>> e._new_rawargs(*e.args[1:]) # the same as above, but faster
x*y
Note: use this with caution. There is no checking of arguments at
all. This is best used when you are rebuilding an Add or Mul after
simply removing one or more args. If, for example, modifications,
result in extra 1s being inserted they will show up in the result:
>>> m = (x*y)._new_rawargs(S.One, x); m
1*x
>>> m == x
False
>>> m.is_Mul
True
Another issue to be aware of is that the commutativity of the result
is based on the commutativity of self. If you are rebuilding the
terms that came from a commutative object then there will be no
problem, but if self was non-commutative then what you are
rebuilding may now be commutative.
Although this routine tries to do as little as possible with the
input, getting the commutativity right is important, so this level
of safety is enforced: commutativity will always be recomputed if
self is non-commutative and kwarg `reeval=False` has not been
passed.
"""
if reeval and self.is_commutative is False:
is_commutative = None
else:
is_commutative = self.is_commutative
return self._from_args(args, is_commutative)
@classmethod
def flatten(cls, seq):
"""Return seq so that none of the elements are of type `cls`. This is
the vanilla routine that will be used if a class derived from AssocOp
does not define its own flatten routine."""
# apply associativity, no commutativity property is used
new_seq = []
while seq:
o = seq.pop()
if o.__class__ is cls: # classes must match exactly
seq.extend(o.args)
else:
new_seq.append(o)
new_seq.reverse()
# c_part, nc_part, order_symbols
return [], new_seq, None
def _matches_commutative(self, expr, repl_dict={}, old=False):
"""
Matches Add/Mul "pattern" to an expression "expr".
repl_dict ... a dictionary of (wild: expression) pairs, that get
returned with the results
This function is the main workhorse for Add/Mul.
For instance:
>>> from sympy import symbols, Wild, sin
>>> a = Wild("a")
>>> b = Wild("b")
>>> c = Wild("c")
>>> x, y, z = symbols("x y z")
>>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
{a_: x, b_: y, c_: z}
In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
the expression.
The repl_dict contains parts that were already matched. For example
here:
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
{a_: x, b_: y, c_: z}
the only function of the repl_dict is to return it in the
result, e.g. if you omit it:
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
{b_: y, c_: z}
the "a: x" is not returned in the result, but otherwise it is
equivalent.
"""
# make sure expr is Expr if pattern is Expr
from .expr import Add, Expr
from sympy import Mul
repl_dict = repl_dict.copy()
if isinstance(self, Expr) and not isinstance(expr, Expr):
return None
# handle simple patterns
if self == expr:
return repl_dict
d = self._matches_simple(expr, repl_dict)
if d is not None:
return d
# eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
from .function import WildFunction
from .symbol import Wild
wild_part, exact_part = sift(self.args, lambda p:
p.has(Wild, WildFunction) and not expr.has(p),
binary=True)
if not exact_part:
wild_part = list(ordered(wild_part))
if self.is_Add:
# in addition to normal ordered keys, impose
# sorting on Muls with leading Number to put
# them in order
wild_part = sorted(wild_part, key=lambda x:
x.args[0] if x.is_Mul and x.args[0].is_Number else
0)
else:
exact = self._new_rawargs(*exact_part)
free = expr.free_symbols
if free and (exact.free_symbols - free):
# there are symbols in the exact part that are not
# in the expr; but if there are no free symbols, let
# the matching continue
return None
newexpr = self._combine_inverse(expr, exact)
if not old and (expr.is_Add or expr.is_Mul):
if newexpr.count_ops() > expr.count_ops():
return None
newpattern = self._new_rawargs(*wild_part)
return newpattern.matches(newexpr, repl_dict)
# now to real work ;)
i = 0
saw = set()
while expr not in saw:
saw.add(expr)
args = tuple(ordered(self.make_args(expr)))
if self.is_Add and expr.is_Add:
# in addition to normal ordered keys, impose
# sorting on Muls with leading Number to put
# them in order
args = tuple(sorted(args, key=lambda x:
x.args[0] if x.is_Mul and x.args[0].is_Number else
0))
expr_list = (self.identity,) + args
for last_op in reversed(expr_list):
for w in reversed(wild_part):
d1 = w.matches(last_op, repl_dict)
if d1 is not None:
d2 = self.xreplace(d1).matches(expr, d1)
if d2 is not None:
return d2
if i == 0:
if self.is_Mul:
# make e**i look like Mul
if expr.is_Pow and expr.exp.is_Integer:
if expr.exp > 0:
expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
else:
expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
i += 1
continue
elif self.is_Add:
# make i*e look like Add
c, e = expr.as_coeff_Mul()
if abs(c) > 1:
if c > 0:
expr = Add(*[e, (c - 1)*e], evaluate=False)
else:
expr = Add(*[-e, (c + 1)*e], evaluate=False)
i += 1
continue
# try collection on non-Wild symbols
from sympy.simplify.radsimp import collect
was = expr
did = set()
for w in reversed(wild_part):
c, w = w.as_coeff_mul(Wild)
free = c.free_symbols - did
if free:
did.update(free)
expr = collect(expr, free)
if expr != was:
i += 0
continue
break # if we didn't continue, there is nothing more to do
return
def _has_matcher(self):
"""Helper for .has()"""
def _ncsplit(expr):
# this is not the same as args_cnc because here
# we don't assume expr is a Mul -- hence deal with args --
# and always return a set.
cpart, ncpart = sift(expr.args,
lambda arg: arg.is_commutative is True, binary=True)
return set(cpart), ncpart
c, nc = _ncsplit(self)
cls = self.__class__
def is_in(expr):
if expr == self:
return True
elif not isinstance(expr, Basic):
return False
elif isinstance(expr, cls):
_c, _nc = _ncsplit(expr)
if (c & _c) == c:
if not nc:
return True
elif len(nc) <= len(_nc):
for i in range(len(_nc) - len(nc) + 1):
if _nc[i:i + len(nc)] == nc:
return True
return False
return is_in
def _eval_evalf(self, prec):
"""
Evaluate the parts of self that are numbers; if the whole thing
was a number with no functions it would have been evaluated, but
it wasn't so we must judiciously extract the numbers and reconstruct
the object. This is *not* simply replacing numbers with evaluated
numbers. Numbers should be handled in the largest pure-number
expression as possible. So the code below separates ``self`` into
number and non-number parts and evaluates the number parts and
walks the args of the non-number part recursively (doing the same
thing).
"""
from .add import Add
from .mul import Mul
from .symbol import Symbol
from .function import AppliedUndef
if isinstance(self, (Mul, Add)):
x, tail = self.as_independent(Symbol, AppliedUndef)
# if x is an AssocOp Function then the _evalf below will
# call _eval_evalf (here) so we must break the recursion
if not (tail is self.identity or
isinstance(x, AssocOp) and x.is_Function or
x is self.identity and isinstance(tail, AssocOp)):
# here, we have a number so we just call to _evalf with prec;
# prec is not the same as n, it is the binary precision so
# that's why we don't call to evalf.
x = x._evalf(prec) if x is not self.identity else self.identity
args = []
tail_args = tuple(self.func.make_args(tail))
for a in tail_args:
# here we call to _eval_evalf since we don't know what we
# are dealing with and all other _eval_evalf routines should
# be doing the same thing (i.e. taking binary prec and
# finding the evalf-able args)
newa = a._eval_evalf(prec)
if newa is None:
args.append(a)
else:
args.append(newa)
return self.func(x, *args)
# this is the same as above, but there were no pure-number args to
# deal with
args = []
for a in self.args:
newa = a._eval_evalf(prec)
if newa is None:
args.append(a)
else:
args.append(newa)
return self.func(*args)
@classmethod
def make_args(cls, expr):
"""
Return a sequence of elements `args` such that cls(*args) == expr
>>> from sympy import Symbol, Mul, Add
>>> x, y = map(Symbol, 'xy')
>>> Mul.make_args(x*y)
(x, y)
>>> Add.make_args(x*y)
(x*y,)
>>> set(Add.make_args(x*y + y)) == set([y, x*y])
True
"""
if isinstance(expr, cls):
return expr.args
else:
return (sympify(expr),)
def doit(self, **hints):
if hints.get('deep', True):
terms = [term.doit(**hints) for term in self.args]
else:
terms = self.args
return self.func(*terms, evaluate=True)
class ShortCircuit(Exception):
pass
class LatticeOp(AssocOp):
"""
Join/meet operations of an algebraic lattice[1].
These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
Common examples are AND, OR, Union, Intersection, max or min. They have an
identity element (op(identity, a) = a) and an absorbing element
conventionally called zero (op(zero, a) = zero).
This is an abstract base class, concrete derived classes must declare
attributes zero and identity. All defining properties are then respected.
>>> from sympy import Integer
>>> from sympy.core.operations import LatticeOp
>>> class my_join(LatticeOp):
... zero = Integer(0)
... identity = Integer(1)
>>> my_join(2, 3) == my_join(3, 2)
True
>>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
True
>>> my_join(0, 1, 4, 2, 3, 4)
0
>>> my_join(1, 2)
2
References:
[1] - https://en.wikipedia.org/wiki/Lattice_%28order%29
"""
is_commutative = True
def __new__(cls, *args, **options):
args = (_sympify(arg) for arg in args)
try:
# /!\ args is a generator and _new_args_filter
# must be careful to handle as such; this
# is done so short-circuiting can be done
# without having to sympify all values
_args = frozenset(cls._new_args_filter(args))
except ShortCircuit:
return sympify(cls.zero)
if not _args:
return sympify(cls.identity)
elif len(_args) == 1:
return set(_args).pop()
else:
# XXX in almost every other case for __new__, *_args is
# passed along, but the expectation here is for _args
obj = super(AssocOp, cls).__new__(cls, _args)
obj._argset = _args
return obj
@classmethod
def _new_args_filter(cls, arg_sequence, call_cls=None):
"""Generator filtering args"""
ncls = call_cls or cls
for arg in arg_sequence:
if arg == ncls.zero:
raise ShortCircuit(arg)
elif arg == ncls.identity:
continue
elif arg.func == ncls:
yield from arg.args
else:
yield arg
@classmethod
def make_args(cls, expr):
"""
Return a set of args such that cls(*arg_set) == expr.
"""
if isinstance(expr, cls):
return expr._argset
else:
return frozenset([sympify(expr)])
# XXX: This should be cached on the object rather than using cacheit
# Maybe _argset can just be sorted in the constructor?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
@staticmethod
def _compare_pretty(a, b):
return (str(a) > str(b)) - (str(a) < str(b))
class AssocOpDispatcher:
"""
Handler dispatcher for associative operators
.. notes::
This approach is experimental, and can be replaced or deleted in the future.
See https://github.com/sympy/sympy/pull/19463.
Explanation
===========
If arguments of different types are passed, the classes which handle the operation for each type
are collected. Then, a class which performs the operation is selected by recursive binary dispatching.
Dispatching relation can be registered by ``register_handlerclass`` method.
Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to
different handler classes. All logic dealing with the order of arguments must be implemented
in the handler class.
Examples
========
>>> from sympy import Add, Expr, Symbol
>>> from sympy.core.add import add
>>> class NewExpr(Expr):
... @property
... def _add_handler(self):
... return NewAdd
>>> class NewAdd(NewExpr, Add):
... pass
>>> add.register_handlerclass((Add, NewAdd), NewAdd)
>>> a, b = Symbol('a'), NewExpr()
>>> add(a, b) == NewAdd(a, b)
True
"""
def __init__(self, name, doc=None):
self.name = name
self.doc = doc
self.handlerattr = "_%s_handler" % name
self._handlergetter = attrgetter(self.handlerattr)
self._dispatcher = Dispatcher(name)
def __repr__(self):
return "<dispatched %s>" % self.name
def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup):
"""
Register the handler class for two classes, in both straight and reversed order.
Paramteters
===========
classes : tuple of two types
Classes who are compared with each other.
typ:
Class which is registered to represent *cls1* and *cls2*.
Handler method of *self* must be implemented in this class.
"""
if not len(classes) == 2:
raise RuntimeError(
"Only binary dispatch is supported, but got %s types: <%s>." % (
len(classes), str_signature(classes)
))
if len(set(classes)) == 1:
raise RuntimeError(
"Duplicate types <%s> cannot be dispatched." % str_signature(classes)
)
self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity)
self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity)
@cacheit
def __call__(self, *args, **kwargs):
"""
Parameters
==========
*args :
Arguments which are operated
"""
if kwargs.get('_sympify', True):
args = tuple(map(_sympify, args))
handlers = frozenset(map(self._handlergetter, args))
# If _sympify=True was passed, no need to sympify again so pass _sympify=False.
# If _sympify=False was passed, all args are already sympified so pass _sympify=False.
kwargs.update(_sympify=False)
return self.dispatch(handlers)(*args, **kwargs)
@cacheit
def dispatch(self, handlers):
"""
Select the handler class, and return its handler method.
"""
# Quick exit for the case where all handlers are same
if len(handlers) == 1:
h, = handlers
if not isinstance(h, type):
raise RuntimeError("Handler {!r} is not a type.".format(h))
return h
# Recursively select with registered binary priority
for i, typ in enumerate(handlers):
if not isinstance(typ, type):
raise RuntimeError("Handler {!r} is not a type.".format(typ))
if i == 0:
handler = typ
else:
prev_handler = handler
handler = self._dispatcher.dispatch(prev_handler, typ)
if not isinstance(handler, type):
raise RuntimeError(
"Dispatcher for {!r} and {!r} must return a type, but got {!r}".format(
prev_handler, typ, handler
))
# return handler class
return handler
@property
def __doc__(self):
docs = [
"Multiply dispatched associative operator: %s" % self.name,
"Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details"
]
if self.doc:
docs.append(self.doc)
s = "Registered handler classes\n"
s += '=' * len(s)
docs.append(s)
amb_sigs = []
typ_sigs = defaultdict(list)
for sigs in self._dispatcher.ordering[::-1]:
key = self._dispatcher.funcs[sigs]
typ_sigs[key].append(sigs)
for typ, sigs in typ_sigs.items():
sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
if isinstance(typ, RaiseNotImplementedError):
amb_sigs.append(sigs_str)
continue
s = 'Inputs: %s\n' % sigs_str
s += '-' * len(s) + '\n'
s += typ.__name__
docs.append(s)
if amb_sigs:
s = "Ambiguous handler classes\n"
s += '=' * len(s)
docs.append(s)
s = '\n'.join(amb_sigs)
docs.append(s)
return '\n\n'.join(docs)
|
d22b9d8286f08453fa08dcaa07f895b4ff2c5e1d147e892ac29f86aa92525e39 | from sympy.core.assumptions import StdFactKB, _assume_defined
from sympy.core.compatibility import is_sequence, ordered
from .basic import Basic, Atom
from .sympify import sympify
from .singleton import S
from .expr import Expr, AtomicExpr
from .cache import cacheit
from .function import FunctionClass
from sympy.core.logic import fuzzy_bool
from sympy.logic.boolalg import Boolean
from sympy.utilities.iterables import cartes, sift
from sympy.core.containers import Tuple
import string
import re as _re
import random
class Str(Atom):
"""
Represents string in SymPy.
Explanation
===========
Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy
objects, e.g. denoting the name of the instance. However, since ``Symbol``
represents mathematical scalar, this class should be used instead.
"""
__slots__ = ('name',)
def __new__(cls, name, **kwargs):
if not isinstance(name, str):
raise TypeError("name should be a string, not %s" % repr(type(name)))
obj = Expr.__new__(cls, **kwargs)
obj.name = name
return obj
def __getnewargs__(self):
return (self.name,)
def _hashable_content(self):
return (self.name,)
def _filter_assumptions(kwargs):
"""Split the given dict into assumptions and non-assumptions.
Keys are taken as assumptions if they correspond to an
entry in ``_assume_defined``.
"""
assumptions, nonassumptions = map(dict, sift(kwargs.items(),
lambda i: i[0] in _assume_defined,
binary=True))
Symbol._sanitize(assumptions)
return assumptions, nonassumptions
def _symbol(s, matching_symbol=None, **assumptions):
"""Return s if s is a Symbol, else if s is a string, return either
the matching_symbol if the names are the same or else a new symbol
with the same assumptions as the matching symbol (or the
assumptions as provided).
Examples
========
>>> from sympy import Symbol
>>> from sympy.core.symbol import _symbol
>>> _symbol('y')
y
>>> _.is_real is None
True
>>> _symbol('y', real=True).is_real
True
>>> x = Symbol('x')
>>> _symbol(x, real=True)
x
>>> _.is_real is None # ignore attribute if s is a Symbol
True
Below, the variable sym has the name 'foo':
>>> sym = Symbol('foo', real=True)
Since 'x' is not the same as sym's name, a new symbol is created:
>>> _symbol('x', sym).name
'x'
It will acquire any assumptions give:
>>> _symbol('x', sym, real=False).is_real
False
Since 'foo' is the same as sym's name, sym is returned
>>> _symbol('foo', sym)
foo
Any assumptions given are ignored:
>>> _symbol('foo', sym, real=False).is_real
True
NB: the symbol here may not be the same as a symbol with the same
name defined elsewhere as a result of different assumptions.
See Also
========
sympy.core.symbol.Symbol
"""
if isinstance(s, str):
if matching_symbol and matching_symbol.name == s:
return matching_symbol
return Symbol(s, **assumptions)
elif isinstance(s, Symbol):
return s
else:
raise ValueError('symbol must be string for symbol name or Symbol')
def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions):
"""Return a symbol which, when printed, will have a name unique
from any other already in the expressions given. The name is made
unique by appending numbers (default) but this can be
customized with the keyword 'modify'.
Parameters
==========
xname : a string or a Symbol (when symbol xname <- str(xname))
compare : a single arg function that takes a symbol and returns
a string to be compared with xname (the default is the str
function which indicates how the name will look when it
is printed, e.g. this includes underscores that appear on
Dummy symbols)
modify : a single arg function that changes its string argument
in some way (the default is to append numbers)
Examples
========
>>> from sympy.core.symbol import uniquely_named_symbol
>>> from sympy.abc import x
>>> uniquely_named_symbol('x', x)
x0
"""
from sympy.core.function import AppliedUndef
def numbered_string_incr(s, start=0):
if not s:
return str(start)
i = len(s) - 1
while i != -1:
if not s[i].isdigit():
break
i -= 1
n = str(int(s[i + 1:] or start - 1) + 1)
return s[:i + 1] + n
default = None
if is_sequence(xname):
xname, default = xname
x = str(xname)
if not exprs:
return _symbol(x, default, **assumptions)
if not is_sequence(exprs):
exprs = [exprs]
names = set().union((
[i.name for e in exprs for i in e.atoms(Symbol)] +
[i.func.name for e in exprs for i in e.atoms(AppliedUndef)]))
if modify is None:
modify = numbered_string_incr
while any(x == compare(s) for s in names):
x = modify(x)
return _symbol(x, default, **assumptions)
_uniquely_named_symbol = uniquely_named_symbol
class Symbol(AtomicExpr, Boolean):
"""
Assumptions:
commutative = True
You can override the default assumptions in the constructor:
>>> from sympy import symbols
>>> A,B = symbols('A,B', commutative = False)
>>> bool(A*B != B*A)
True
>>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative
True
"""
is_comparable = False
__slots__ = ('name',)
is_Symbol = True
is_symbol = True
@property
def _diff_wrt(self):
"""Allow derivatives wrt Symbols.
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> x._diff_wrt
True
"""
return True
@staticmethod
def _sanitize(assumptions, obj=None):
"""Remove None, covert values to bool, check commutativity *in place*.
"""
# be strict about commutativity: cannot be None
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
if is_commutative is None:
whose = '%s ' % obj.__name__ if obj else ''
raise ValueError(
'%scommutativity must be True or False.' % whose)
# sanitize other assumptions so 1 -> True and 0 -> False
for key in list(assumptions.keys()):
v = assumptions[key]
if v is None:
assumptions.pop(key)
continue
assumptions[key] = bool(v)
def _merge(self, assumptions):
base = self.assumptions0
for k in set(assumptions) & set(base):
if assumptions[k] != base[k]:
from sympy.utilities.misc import filldedent
raise ValueError(filldedent('''
non-matching assumptions for %s: existing value
is %s and new value is %s''' % (
k, base[k], assumptions[k])))
base.update(assumptions)
return base
def __new__(cls, name, **assumptions):
"""Symbols are identified by name and assumptions::
>>> from sympy import Symbol
>>> Symbol("x") == Symbol("x")
True
>>> Symbol("x", real=True) == Symbol("x", real=False)
False
"""
cls._sanitize(assumptions, cls)
return Symbol.__xnew_cached_(cls, name, **assumptions)
def __new_stage2__(cls, name, **assumptions):
if not isinstance(name, str):
raise TypeError("name should be a string, not %s" % repr(type(name)))
obj = Expr.__new__(cls)
obj.name = name
# TODO: Issue #8873: Forcing the commutative assumption here means
# later code such as ``srepr()`` cannot tell whether the user
# specified ``commutative=True`` or omitted it. To workaround this,
# we keep a copy of the assumptions dict, then create the StdFactKB,
# and finally overwrite its ``._generator`` with the dict copy. This
# is a bit of a hack because we assume StdFactKB merely copies the
# given dict as ``._generator``, but future modification might, e.g.,
# compute a minimal equivalent assumption set.
tmp_asm_copy = assumptions.copy()
# be strict about commutativity
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
return obj
__xnew__ = staticmethod(
__new_stage2__) # never cached (e.g. dummy)
__xnew_cached_ = staticmethod(
cacheit(__new_stage2__)) # symbols are always cached
def __getnewargs__(self):
return (self.name,)
def __getstate__(self):
return {'_assumptions': self._assumptions}
def _hashable_content(self):
# Note: user-specified assumptions not hashed, just derived ones
return (self.name,) + tuple(sorted(self.assumptions0.items()))
def _eval_subs(self, old, new):
from sympy.core.power import Pow
if old.is_Pow:
return Pow(self, S.One, evaluate=False)._eval_subs(old, new)
@property
def assumptions0(self):
return {key: value for key, value
in self._assumptions.items() if value is not None}
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One
def as_dummy(self):
# only put commutativity in explicitly if it is False
return Dummy(self.name) if self.is_commutative is not False \
else Dummy(self.name, commutative=self.is_commutative)
def as_real_imag(self, deep=True, **hints):
from sympy import im, re
if hints.get('ignore') == self:
return None
else:
return (re(self), im(self))
def _sage_(self):
import sage.all as sage
return sage.var(self.name)
def is_constant(self, *wrt, **flags):
if not wrt:
return False
return not self in wrt
@property
def free_symbols(self):
return {self}
binary_symbols = free_symbols # in this case, not always
def as_set(self):
return S.UniversalSet
class Dummy(Symbol):
"""Dummy symbols are each unique, even if they have the same name:
>>> from sympy import Dummy
>>> Dummy("x") == Dummy("x")
False
If a name is not supplied then a string value of an internal count will be
used. This is useful when a temporary variable is needed and the name
of the variable used in the expression is not important.
>>> Dummy() #doctest: +SKIP
_Dummy_10
"""
# In the rare event that a Dummy object needs to be recreated, both the
# `name` and `dummy_index` should be passed. This is used by `srepr` for
# example:
# >>> d1 = Dummy()
# >>> d2 = eval(srepr(d1))
# >>> d2 == d1
# True
#
# If a new session is started between `srepr` and `eval`, there is a very
# small chance that `d2` will be equal to a previously-created Dummy.
_count = 0
_prng = random.Random()
_base_dummy_index = _prng.randint(10**6, 9*10**6)
__slots__ = ('dummy_index',)
is_Dummy = True
def __new__(cls, name=None, dummy_index=None, **assumptions):
if dummy_index is not None:
assert name is not None, "If you specify a dummy_index, you must also provide a name"
if name is None:
name = "Dummy_" + str(Dummy._count)
if dummy_index is None:
dummy_index = Dummy._base_dummy_index + Dummy._count
Dummy._count += 1
cls._sanitize(assumptions, cls)
obj = Symbol.__xnew__(cls, name, **assumptions)
obj.dummy_index = dummy_index
return obj
def __getstate__(self):
return {'_assumptions': self._assumptions, 'dummy_index': self.dummy_index}
@cacheit
def sort_key(self, order=None):
return self.class_key(), (
2, (self.name, self.dummy_index)), S.One.sort_key(), S.One
def _hashable_content(self):
return Symbol._hashable_content(self) + (self.dummy_index,)
class Wild(Symbol):
"""
A Wild symbol matches anything, or anything
without whatever is explicitly excluded.
Parameters
==========
name : str
Name of the Wild instance.
exclude : iterable, optional
Instances in ``exclude`` will not be matched.
properties : iterable of functions, optional
Functions, each taking an expressions as input
and returns a ``bool``. All functions in ``properties``
need to return ``True`` in order for the Wild instance
to match the expression.
Examples
========
>>> from sympy import Wild, WildFunction, cos, pi
>>> from sympy.abc import x, y, z
>>> a = Wild('a')
>>> x.match(a)
{a_: x}
>>> pi.match(a)
{a_: pi}
>>> (3*x**2).match(a*x)
{a_: 3*x}
>>> cos(x).match(a)
{a_: cos(x)}
>>> b = Wild('b', exclude=[x])
>>> (3*x**2).match(b*x)
>>> b.match(a)
{a_: b_}
>>> A = WildFunction('A')
>>> A.match(a)
{a_: A_}
Tips
====
When using Wild, be sure to use the exclude
keyword to make the pattern more precise.
Without the exclude pattern, you may get matches
that are technically correct, but not what you
wanted. For example, using the above without
exclude:
>>> from sympy import symbols
>>> a, b = symbols('a b', cls=Wild)
>>> (2 + 3*y).match(a*x + b*y)
{a_: 2/x, b_: 3}
This is technically correct, because
(2/x)*x + 3*y == 2 + 3*y, but you probably
wanted it to not match at all. The issue is that
you really didn't want a and b to include x and y,
and the exclude parameter lets you specify exactly
this. With the exclude parameter, the pattern will
not match.
>>> a = Wild('a', exclude=[x, y])
>>> b = Wild('b', exclude=[x, y])
>>> (2 + 3*y).match(a*x + b*y)
Exclude also helps remove ambiguity from matches.
>>> E = 2*x**3*y*z
>>> a, b = symbols('a b', cls=Wild)
>>> E.match(a*b)
{a_: 2*y*z, b_: x**3}
>>> a = Wild('a', exclude=[x, y])
>>> E.match(a*b)
{a_: z, b_: 2*x**3*y}
>>> a = Wild('a', exclude=[x, y, z])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
Wild also accepts a ``properties`` parameter:
>>> a = Wild('a', properties=[lambda k: k.is_Integer])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
"""
is_Wild = True
__slots__ = ('exclude', 'properties')
def __new__(cls, name, exclude=(), properties=(), **assumptions):
exclude = tuple([sympify(x) for x in exclude])
properties = tuple(properties)
cls._sanitize(assumptions, cls)
return Wild.__xnew__(cls, name, exclude, properties, **assumptions)
def __getnewargs__(self):
return (self.name, self.exclude, self.properties)
@staticmethod
@cacheit
def __xnew__(cls, name, exclude, properties, **assumptions):
obj = Symbol.__xnew__(cls, name, **assumptions)
obj.exclude = exclude
obj.properties = properties
return obj
def _hashable_content(self):
return super()._hashable_content() + (self.exclude, self.properties)
# TODO add check against another Wild
def matches(self, expr, repl_dict={}, old=False):
if any(expr.has(x) for x in self.exclude):
return None
if any(not f(expr) for f in self.properties):
return None
repl_dict = repl_dict.copy()
repl_dict[self] = expr
return repl_dict
_range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])')
def symbols(names, *, cls=Symbol, **args):
r"""
Transform strings into instances of :class:`Symbol` class.
:func:`symbols` function returns a sequence of symbols with names taken
from ``names`` argument, which can be a comma or whitespace delimited
string, or a sequence of strings::
>>> from sympy import symbols, Function
>>> x, y, z = symbols('x,y,z')
>>> a, b, c = symbols('a b c')
The type of output is dependent on the properties of input arguments::
>>> symbols('x')
x
>>> symbols('x,')
(x,)
>>> symbols('x,y')
(x, y)
>>> symbols(('a', 'b', 'c'))
(a, b, c)
>>> symbols(['a', 'b', 'c'])
[a, b, c]
>>> symbols({'a', 'b', 'c'})
{a, b, c}
If an iterable container is needed for a single symbol, set the ``seq``
argument to ``True`` or terminate the symbol name with a comma::
>>> symbols('x', seq=True)
(x,)
To reduce typing, range syntax is supported to create indexed symbols.
Ranges are indicated by a colon and the type of range is determined by
the character to the right of the colon. If the character is a digit
then all contiguous digits to the left are taken as the nonnegative
starting value (or 0 if there is no digit left of the colon) and all
contiguous digits to the right are taken as 1 greater than the ending
value::
>>> symbols('x:10')
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
>>> symbols('x5:10')
(x5, x6, x7, x8, x9)
>>> symbols('x5(:2)')
(x50, x51)
>>> symbols('x5:10,y:5')
(x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
>>> symbols(('x5:10', 'y:5'))
((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
If the character to the right of the colon is a letter, then the single
letter to the left (or 'a' if there is none) is taken as the start
and all characters in the lexicographic range *through* the letter to
the right are used as the range::
>>> symbols('x:z')
(x, y, z)
>>> symbols('x:c') # null range
()
>>> symbols('x(:c)')
(xa, xb, xc)
>>> symbols(':c')
(a, b, c)
>>> symbols('a:d, x:z')
(a, b, c, d, x, y, z)
>>> symbols(('a:d', 'x:z'))
((a, b, c, d), (x, y, z))
Multiple ranges are supported; contiguous numerical ranges should be
separated by parentheses to disambiguate the ending number of one
range from the starting number of the next::
>>> symbols('x:2(1:3)')
(x01, x02, x11, x12)
>>> symbols(':3:2') # parsing is from left to right
(00, 01, 10, 11, 20, 21)
Only one pair of parentheses surrounding ranges are removed, so to
include parentheses around ranges, double them. And to include spaces,
commas, or colons, escape them with a backslash::
>>> symbols('x((a:b))')
(x(a), x(b))
>>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))'
(x(0,0), x(0,1))
All newly created symbols have assumptions set according to ``args``::
>>> a = symbols('a', integer=True)
>>> a.is_integer
True
>>> x, y, z = symbols('x,y,z', real=True)
>>> x.is_real and y.is_real and z.is_real
True
Despite its name, :func:`symbols` can create symbol-like objects like
instances of Function or Wild classes. To achieve this, set ``cls``
keyword argument to the desired type::
>>> symbols('f,g,h', cls=Function)
(f, g, h)
>>> type(_[0])
<class 'sympy.core.function.UndefinedFunction'>
"""
result = []
if isinstance(names, str):
marker = 0
literals = [r'\,', r'\:', r'\ ']
for i in range(len(literals)):
lit = literals.pop(0)
if lit in names:
while chr(marker) in names:
marker += 1
lit_char = chr(marker)
marker += 1
names = names.replace(lit, lit_char)
literals.append((lit_char, lit[1:]))
def literal(s):
if literals:
for c, l in literals:
s = s.replace(c, l)
return s
names = names.strip()
as_seq = names.endswith(',')
if as_seq:
names = names[:-1].rstrip()
if not names:
raise ValueError('no symbols given')
# split on commas
names = [n.strip() for n in names.split(',')]
if not all(n for n in names):
raise ValueError('missing symbol between commas')
# split on spaces
for i in range(len(names) - 1, -1, -1):
names[i: i + 1] = names[i].split()
seq = args.pop('seq', as_seq)
for name in names:
if not name:
raise ValueError('missing symbol')
if ':' not in name:
symbol = cls(literal(name), **args)
result.append(symbol)
continue
split = _range.split(name)
# remove 1 layer of bounding parentheses around ranges
for i in range(len(split) - 1):
if i and ':' in split[i] and split[i] != ':' and \
split[i - 1].endswith('(') and \
split[i + 1].startswith(')'):
split[i - 1] = split[i - 1][:-1]
split[i + 1] = split[i + 1][1:]
for i, s in enumerate(split):
if ':' in s:
if s[-1].endswith(':'):
raise ValueError('missing end range')
a, b = s.split(':')
if b[-1] in string.digits:
a = 0 if not a else int(a)
b = int(b)
split[i] = [str(c) for c in range(a, b)]
else:
a = a or 'a'
split[i] = [string.ascii_letters[c] for c in range(
string.ascii_letters.index(a),
string.ascii_letters.index(b) + 1)] # inclusive
if not split[i]:
break
else:
split[i] = [s]
else:
seq = True
if len(split) == 1:
names = split[0]
else:
names = [''.join(s) for s in cartes(*split)]
if literals:
result.extend([cls(literal(s), **args) for s in names])
else:
result.extend([cls(s, **args) for s in names])
if not seq and len(result) <= 1:
if not result:
return ()
return result[0]
return tuple(result)
else:
for name in names:
result.append(symbols(name, **args))
return type(names)(result)
def var(names, **args):
"""
Create symbols and inject them into the global namespace.
This calls :func:`symbols` with the same arguments and puts the results
into the *global* namespace. It's recommended not to use :func:`var` in
library code, where :func:`symbols` has to be used::
Examples
========
>>> from sympy import var
>>> var('x')
x
>>> x # noqa: F821
x
>>> var('a,ab,abc')
(a, ab, abc)
>>> abc # noqa: F821
abc
>>> var('x,y', real=True)
(x, y)
>>> x.is_real and y.is_real # noqa: F821
True
See :func:`symbols` documentation for more details on what kinds of
arguments can be passed to :func:`var`.
"""
def traverse(symbols, frame):
"""Recursively inject symbols to the global namespace. """
for symbol in symbols:
if isinstance(symbol, Basic):
frame.f_globals[symbol.name] = symbol
elif isinstance(symbol, FunctionClass):
frame.f_globals[symbol.__name__] = symbol
else:
traverse(symbol, frame)
from inspect import currentframe
frame = currentframe().f_back
try:
syms = symbols(names, **args)
if syms is not None:
if isinstance(syms, Basic):
frame.f_globals[syms.name] = syms
elif isinstance(syms, FunctionClass):
frame.f_globals[syms.__name__] = syms
else:
traverse(syms, frame)
finally:
del frame # break cyclic dependencies as stated in inspect docs
return syms
def disambiguate(*iter):
"""
Return a Tuple containing the passed expressions with symbols
that appear the same when printed replaced with numerically
subscripted symbols, and all Dummy symbols replaced with Symbols.
Parameters
==========
iter: list of symbols or expressions.
Examples
========
>>> from sympy.core.symbol import disambiguate
>>> from sympy import Dummy, Symbol, Tuple
>>> from sympy.abc import y
>>> tup = Symbol('_x'), Dummy('x'), Dummy('x')
>>> disambiguate(*tup)
(x_2, x, x_1)
>>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y)
>>> disambiguate(*eqs)
(x_1/y, x/y)
>>> ix = Symbol('x', integer=True)
>>> vx = Symbol('x')
>>> disambiguate(vx + ix)
(x + x_1,)
To make your own mapping of symbols to use, pass only the free symbols
of the expressions and create a dictionary:
>>> free = eqs.free_symbols
>>> mapping = dict(zip(free, disambiguate(*free)))
>>> eqs.xreplace(mapping)
(x_1/y, x/y)
"""
new_iter = Tuple(*iter)
key = lambda x:tuple(sorted(x.assumptions0.items()))
syms = ordered(new_iter.free_symbols, keys=key)
mapping = {}
for s in syms:
mapping.setdefault(str(s).lstrip('_'), []).append(s)
reps = {}
for k in mapping:
# the first or only symbol doesn't get subscripted but make
# sure that it's a Symbol, not a Dummy
mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0)
if mapping[k][0] != mapk0:
reps[mapping[k][0]] = mapk0
# the others get subscripts (and are made into Symbols)
skip = 0
for i in range(1, len(mapping[k])):
while True:
name = "%s_%i" % (k, i + skip)
if name not in mapping:
break
skip += 1
ki = mapping[k][i]
reps[ki] = Symbol(name, **ki.assumptions0)
return new_iter.xreplace(reps)
|
a00d4843158e0d3be6bbbbb277e7da23a674951e86e903fe2b07646c202448c5 | """sympify -- convert objects SymPy internal format"""
# from typing import Any, Callable, Dict, Type
from inspect import getmro
from .compatibility import iterable
from .parameters import global_parameters
class SympifyError(ValueError):
def __init__(self, expr, base_exc=None):
self.expr = expr
self.base_exc = base_exc
def __str__(self):
if self.base_exc is None:
return "SympifyError: %r" % (self.expr,)
return ("Sympify of expression '%s' failed, because of exception being "
"raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
str(self.base_exc)))
# See sympify docstring.
converter = {} ## type: Dict[Type[Any], Callable[[Any], Basic]]
class CantSympify:
"""
Mix in this trait to a class to disallow sympification of its instances.
Examples
========
>>> from sympy.core.sympify import sympify, CantSympify
>>> class Something(dict):
... pass
...
>>> sympify(Something())
{}
>>> class Something(dict, CantSympify):
... pass
...
>>> sympify(Something())
Traceback (most recent call last):
...
SympifyError: SympifyError: {}
"""
pass
def _is_numpy_instance(a):
"""
Checks if an object is an instance of a type from the numpy module.
"""
# This check avoids unnecessarily importing NumPy. We check the whole
# __mro__ in case any base type is a numpy type.
return any(type_.__module__ == 'numpy'
for type_ in type(a).__mro__)
def _convert_numpy_types(a, **sympify_args):
"""
Converts a numpy datatype input to an appropriate SymPy type.
"""
import numpy as np
if not isinstance(a, np.floating):
if np.iscomplex(a):
return converter[complex](a.item())
else:
return sympify(a.item(), **sympify_args)
else:
try:
from sympy.core.numbers import Float
prec = np.finfo(a).nmant + 1
# E.g. double precision means prec=53 but nmant=52
# Leading bit of mantissa is always 1, so is not stored
a = str(list(np.reshape(np.asarray(a),
(1, np.size(a)))[0]))[1:-1]
return Float(a, precision=prec)
except NotImplementedError:
raise SympifyError('Translation for numpy float : %s '
'is not implemented' % a)
def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
evaluate=None):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
Explanation
===========
It will convert Python ints into instances of sympy.Integer,
floats into instances of sympy.Float, etc. It is also able to coerce symbolic
expressions which inherit from Basic. This can be useful in cooperation
with SAGE.
.. warning::
Note that this function uses ``eval``, and thus shouldn't be used on
unsanitized input.
If the argument is already a type that SymPy understands, it will do
nothing but return that value. This can be used at the beginning of a
function to ensure you are working with the correct type.
Examples
========
>>> from sympy import sympify
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
>>> sympify(2.0).is_real
True
>>> sympify("2.0").is_real
True
>>> sympify("2e-45").is_real
True
If the expression could not be converted, a SympifyError is raised.
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse 'x***2'"
Locals
------
The sympification happens with access to everything that is loaded
by ``from sympy import *``; anything used in a string that is not
defined by that import will be converted to a symbol. In the following,
the ``bitcount`` function is treated as a symbol and the ``O`` is
interpreted as the Order object (used with series) and it raises
an error when used improperly:
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("O + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
In order to have ``bitcount`` be recognized it can be imported into a
namespace dictionary and passed as locals:
>>> from sympy.core.compatibility import exec_
>>> ns = {}
>>> exec_('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
In order to have the ``O`` interpreted as a Symbol, identify it as such
in the namespace dictionary. This can be done in a variety of ways; all
three of the following are possibilities:
>>> from sympy import Symbol
>>> ns["O"] = Symbol("O") # method 1
>>> exec_('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("O + 1", locals=ns)
O + 1
If you want *all* single-letter and Greek-letter variables to be symbols
then you can use the clashing-symbols dictionaries that have been defined
there as private variables: _clash1 (single-letter variables), _clash2
(the multi-letter Greek names) or _clash (both single and multi-letter
names that are defined in abc).
>>> from sympy.abc import _clash1
>>> _clash1
{'C': C, 'E': E, 'I': I, 'N': N, 'O': O, 'Q': Q, 'S': S}
>>> sympify('I & Q', _clash1)
I & Q
Strict
------
If the option ``strict`` is set to ``True``, only the types for which an
explicit conversion has been defined are converted. In the other
cases, a SympifyError is raised.
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
...
SympifyError: SympifyError: None
Evaluation
----------
If the option ``evaluate`` is set to ``False``, then arithmetic and
operators will be converted into their SymPy equivalents and the
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
be denested first. This is done via an AST transformation that replaces
operators with their SymPy equivalents, so if an operand redefines any
of those operations, the redefined operators will not be used. If
argument a is not a string, the mathematical expression is evaluated
before being passed to sympify, so adding evaluate=False will still
return the evaluated result of expression.
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
>>> sympify('4/2+7', evaluate=True)
9
>>> sympify('4/2+7', evaluate=False)
4/2 + 7
>>> sympify(4/2+7, evaluate=False)
9.00000000000000
Extending
---------
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
just define a ``_sympy_`` method to your class. You can do that even to
classes that you do not own by subclassing or adding the method at runtime.
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
... def _sympy_(self): return Matrix(self)
>>> sympify(MyList1())
Matrix([
[1],
[2]])
If you do not have control over the class definition you could also use the
``converter`` global dictionary. The key is the class and the value is a
function that takes a single argument and returns the desired SymPy
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
>>> class MyList2(object): # XXX Do not do this if you control the class!
... def __iter__(self): # Use _sympy_!
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
Notes
=====
The keywords ``rational`` and ``convert_xor`` are only used
when the input is a string.
convert_xor
-----------
>>> sympify('x^y',convert_xor=True)
x**y
>>> sympify('x^y',convert_xor=False)
x ^ y
rational
--------
>>> sympify('0.1',rational=False)
0.1
>>> sympify('0.1',rational=True)
1/10
Sometimes autosimplification during sympification results in expressions
that are very different in structure than what was entered. Until such
autosimplification is no longer done, the ``kernS`` function might be of
some use. In the example below you can see how an expression reduces to
-1 by autosimplification, but does not do so when ``kernS`` is used.
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
Parameters
==========
a :
- any object defined in SymPy
- standard numeric python types: int, long, float, Decimal
- strings (like "0.09", "2e-19" or 'sin(x)')
- booleans, including ``None`` (will leave ``None`` unchanged)
- dict, lists, sets or tuples containing any of the above
convert_xor : boolean, optional
If true, treats XOR as exponentiation.
If False, treats XOR as XOR itself.
Used only when input is a string.
locals : any object defined in SymPy, optional
In order to have strings be recognized it can be imported
into a namespace dictionary and passed as locals.
strict : boolean, optional
If the option strict is set to True, only the types for which
an explicit conversion has been defined are converted. In the
other cases, a SympifyError is raised.
rational : boolean, optional
If true, converts floats into Rational.
If false, it lets floats remain as it is.
Used only when input is a string.
evaluate : boolean, optional
If False, then arithmetic and operators will be converted into
their SymPy equivalents. If True the expression will be evaluated
and the result will be returned.
"""
# XXX: If a is a Basic subclass rather than instance (e.g. sin rather than
# sin(x)) then a.__sympy__ will be the property. Only on the instance will
# a.__sympy__ give the *value* of the property (True). Since sympify(sin)
# was used for a long time we allow it to pass. However if strict=True as
# is the case in internal calls to _sympify then we only allow
# is_sympy=True.
#
# https://github.com/sympy/sympy/issues/20124
is_sympy = getattr(a, '__sympy__', None)
if is_sympy is True or (is_sympy is not None and not strict):
return a
if isinstance(a, CantSympify):
raise SympifyError(a)
cls = getattr(a, "__class__", None)
if cls is None:
cls = type(a) # Probably an old-style class
conv = converter.get(cls, None)
if conv is not None:
return conv(a)
for superclass in getmro(cls):
try:
return converter[superclass](a)
except KeyError:
continue
if cls is type(None):
if strict:
raise SympifyError(a)
else:
return a
if evaluate is None:
evaluate = global_parameters.evaluate
# Support for basic numpy datatypes
if _is_numpy_instance(a):
import numpy as np
if np.isscalar(a):
return _convert_numpy_types(a, locals=locals,
convert_xor=convert_xor, strict=strict, rational=rational,
evaluate=evaluate)
_sympy_ = getattr(a, "_sympy_", None)
if _sympy_ is not None:
try:
return a._sympy_()
# XXX: Catches AttributeError: 'SympyConverter' object has no
# attribute 'tuple'
# This is probably a bug somewhere but for now we catch it here.
except AttributeError:
pass
if not strict:
# Put numpy array conversion _before_ float/int, see
# <https://github.com/sympy/sympy/issues/13924>.
flat = getattr(a, "flat", None)
if flat is not None:
shape = getattr(a, "shape", None)
if shape is not None:
from ..tensor.array import Array
return Array(a.flat, a.shape) # works with e.g. NumPy arrays
if not isinstance(a, str):
if _is_numpy_instance(a):
import numpy as np
assert not isinstance(a, np.number)
if isinstance(a, np.ndarray):
# Scalar arrays (those with zero dimensions) have sympify
# called on the scalar element.
if a.ndim == 0:
try:
return sympify(a.item(),
locals=locals,
convert_xor=convert_xor,
strict=strict,
rational=rational,
evaluate=evaluate)
except SympifyError:
pass
else:
# float and int can coerce size-one numpy arrays to their lone
# element. See issue https://github.com/numpy/numpy/issues/10404.
for coerce in (float, int):
try:
return sympify(coerce(a))
except (TypeError, ValueError, AttributeError, SympifyError):
continue
if strict:
raise SympifyError(a)
if iterable(a):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
if isinstance(a, dict):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a.items()])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
if not isinstance(a, str):
try:
a = str(a)
except Exception as exc:
raise SympifyError(a, exc)
from sympy.utilities.exceptions import SymPyDeprecationWarning
SymPyDeprecationWarning(
feature="String fallback in sympify",
useinstead= \
'sympify(str(obj)) or ' + \
'sympy.core.sympify.converter or obj._sympy_',
issue=18066,
deprecated_since_version='1.6'
).warn()
from sympy.parsing.sympy_parser import (parse_expr, TokenError,
standard_transformations)
from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
from sympy.parsing.sympy_parser import rationalize as t_rationalize
transformations = standard_transformations
if rational:
transformations += (t_rationalize,)
if convert_xor:
transformations += (t_convert_xor,)
try:
a = a.replace('\n', '')
expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
except (TokenError, SyntaxError) as exc:
raise SympifyError('could not parse %r' % a, exc)
return expr
def _sympify(a):
"""
Short version of sympify for internal usage for __add__ and __eq__ methods
where it is ok to allow some things (like Python integers and floats) in
the expression. This excludes things (like strings) that are unwise to
allow into such an expression.
>>> from sympy import Integer
>>> Integer(1) == 1
True
>>> Integer(1) == '1'
False
>>> from sympy.abc import x
>>> x + 1
x + 1
>>> x + '1'
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
see: sympify
"""
return sympify(a, strict=True)
def kernS(s):
"""Use a hack to try keep autosimplification from distributing a
a number into an Add; this modification doesn't
prevent the 2-arg Mul from becoming an Add, however.
Examples
========
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x, y
The 2-arg Mul distributes a number (or minus sign) across the terms
of an expression, but kernS will prevent that:
>>> 2*(x + y), -(x + 1)
(2*x + 2*y, -x - 1)
>>> kernS('2*(x + y)')
2*(x + y)
>>> kernS('-(x + 1)')
-(x + 1)
If use of the hack fails, the un-hacked string will be passed to sympify...
and you get what you get.
XXX This hack should not be necessary once issue 4596 has been resolved.
"""
import string
from random import choice
from sympy.core.symbol import Symbol
hit = False
quoted = '"' in s or "'" in s
if '(' in s and not quoted:
if s.count('(') != s.count(")"):
raise SympifyError('unmatched left parenthesis')
# strip all space from s
s = ''.join(s.split())
olds = s
# now use space to represent a symbol that
# will
# step 1. turn potential 2-arg Muls into 3-arg versions
# 1a. *( -> * *(
s = s.replace('*(', '* *(')
# 1b. close up exponentials
s = s.replace('** *', '**')
# 2. handle the implied multiplication of a negated
# parenthesized expression in two steps
# 2a: -(...) --> -( *(...)
target = '-( *('
s = s.replace('-(', target)
# 2b: double the matching closing parenthesis
# -( *(...) --> -( *(...))
i = nest = 0
assert target.endswith('(') # assumption below
while True:
j = s.find(target, i)
if j == -1:
break
j += len(target) - 1
for j in range(j, len(s)):
if s[j] == "(":
nest += 1
elif s[j] == ")":
nest -= 1
if nest == 0:
break
s = s[:j] + ")" + s[j:]
i = j + 2 # the first char after 2nd )
if ' ' in s:
# get a unique kern
kern = '_'
while kern in s:
kern += choice(string.ascii_letters + string.digits)
s = s.replace(' ', kern)
hit = kern in s
else:
hit = False
for i in range(2):
try:
expr = sympify(s)
break
except TypeError: # the kern might cause unknown errors...
if hit:
s = olds # maybe it didn't like the kern; use un-kerned s
hit = False
continue
expr = sympify(s) # let original error raise
if not hit:
return expr
rep = {Symbol(kern): 1}
def _clear(expr):
if isinstance(expr, (list, tuple, set)):
return type(expr)([_clear(e) for e in expr])
if hasattr(expr, 'subs'):
return expr.subs(rep, hack2=True)
return expr
expr = _clear(expr)
# hope that kern is not there anymore
return expr
# Avoid circular import
# from .basic import Basic
|
5f8f50eff33b65779ea0124bc7281d1018f7dcee912dcecbd530411f453a248a | from collections import defaultdict
from functools import cmp_to_key
import operator
from .sympify import sympify
from .basic import Basic
from .singleton import S
from .operations import AssocOp, AssocOpDispatcher
from .cache import cacheit
from .logic import fuzzy_not, _fuzzy_group, fuzzy_and
from .compatibility import reduce
from .expr import Expr
from .parameters import global_parameters
# internal marker to indicate:
# "there are still non-commutative objects -- don't forget to process them"
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _mulsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Mul(*args):
"""Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> from sympy.core.mul import _unevaluated_Mul as uMul
>>> from sympy import S, sqrt, Mul
>>> from sympy.abc import x
>>> a = uMul(*[S(3.0), x, S(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = uMul(sqrt(2), sqrt(3))
>>> m == uMul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == uMul(u)
True
>>> m == Mul(*m.args)
False
"""
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
_mulsort(newargs)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs)
class Mul(Expr, AssocOp):
__slots__ = ()
is_Mul = True
_args_type = Expr
def __neg__(self):
c, args = self.as_coeff_mul()
c = -c
if c is not S.One:
if args[0].is_Number:
args = list(args)
if c is S.NegativeOne:
args[0] = -args[0]
else:
args[0] *= c
else:
args = (c,) + args
return self._from_args(args, self.is_commutative)
@classmethod
def flatten(cls, seq):
"""Return commutative, noncommutative and order arguments by
combining related terms.
Notes
=====
* In an expression like ``a*b*c``, python process this through sympy
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
- Sometimes terms are not combined as one would like:
{c.f. https://github.com/sympy/sympy/issues/4596}
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
Powers with compound bases may not find a single base to
combine with unless all arguments are processed at once.
Post-processing may be necessary in such cases.
{c.f. https://github.com/sympy/sympy/issues/5728}
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a,a,a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
- If more than two terms are being multiplied then all the
previous terms will be re-processed for each new argument.
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
expression, then ``a*b*c`` (or building up the product
with ``*=``) will process all the arguments of ``a`` and
``b`` twice: once when ``a*b`` is computed and again when
``c`` is multiplied.
Using ``Mul(a, b, c)`` will process all arguments once.
* The results of Mul are cached according to arguments, so flatten
will only be called once for ``Mul(a, b, c)``. If you can
structure a calculation so the arguments are most likely to be
repeats then this can save time in computing the answer. For
example, say you had a Mul, M, that you wished to divide by ``d[i]``
and multiply by ``n[i]`` and you suspect there are many repeats
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
product, ``M*n[i]`` will be returned without flattening -- the
cached value will be returned. If you divide by the ``d[i]``
first (and those are more unique than the ``n[i]``) then that will
create a new Mul, ``M/d[i]`` the args of which will be traversed
again when it is multiplied by ``n[i]``.
{c.f. https://github.com/sympy/sympy/issues/5706}
This consideration is moot if the cache is turned off.
NB
--
The validity of the above notes depends on the implementation
details of Mul and flatten which may change at any time. Therefore,
you should only consider them when your code is highly performance
sensitive.
Removal of 1 from the sequence is already handled by AssocOp.__new__.
"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
seq = [a, b]
assert not a is S.One
if not a.is_zero and a.is_Rational:
r, b = b.as_coeff_Mul()
if b.is_Add:
if r is not S.One: # 2-arg hack
# leave the Mul as a Mul?
ar = a*r
if ar is S.One:
arb = b
else:
arb = cls(a*r, b, evaluate=False)
rv = [arb], [], None
elif global_parameters.distribute and b.is_commutative:
r, b = b.as_coeff_Add()
bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)]
_addsort(bargs)
ar = a*r
if ar:
bargs.insert(0, ar)
bargs = [Add._from_args(bargs)]
rv = bargs, [], None
if rv:
return rv
# apply associativity, separate commutative part of seq
c_part = [] # out: commutative factors
nc_part = [] # out: non-commutative factors
nc_seq = []
coeff = S.One # standalone term
# e.g. 3 * ...
c_powers = [] # (base,exp) n
# e.g. (x,n) for x
num_exp = [] # (num-base, exp) y
# e.g. (3, y) for ... * 3 * ...
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
pnum_rat = {} # (num-base, Rat-exp) 1/2
# e.g. (3, 1/2) for ... * 3 * ...
order_symbols = None
# --- PART 1 ---
#
# "collect powers and coeff":
#
# o coeff
# o c_powers
# o num_exp
# o neg1e
# o pnum_rat
#
# NOTE: this is optimized for all-objects-are-commutative case
for o in seq:
# O(x)
if o.is_Order:
o, order_symbols = o.as_expr_variables(order_symbols)
# Mul([...])
if o.is_Mul:
if o.is_commutative:
seq.extend(o.args) # XXX zerocopy?
else:
# NCMul can have commutative parts as well
for q in o.args:
if q.is_commutative:
seq.append(q)
else:
nc_seq.append(q)
# append non-commutative marker, so we don't forget to
# process scheduled non-commutative objects
seq.append(NC_Marker)
continue
# 3
elif o.is_Number:
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
# we know for sure the result will be nan
return [S.NaN], [], None
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
coeff *= o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__mul__(coeff)
continue
elif o is S.ComplexInfinity:
if not coeff:
# 0 * zoo = NaN
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue
elif o is S.ImaginaryUnit:
neg1e += S.Half
continue
elif o.is_commutative:
# e
# o = b
b, e = o.as_base_exp()
# y
# 3
if o.is_Pow:
if b.is_Number:
# get all the factors with numeric base so they can be
# combined below, but don't combine negatives unless
# the exponent is an integer
if e.is_Rational:
if e.is_Integer:
coeff *= Pow(b, e) # it is an unevaluated power
continue
elif e.is_negative: # also a sign of an unevaluated power
seq.append(Pow(b, e))
continue
elif b.is_negative:
neg1e += e
b = -b
if b is not S.One:
pnum_rat.setdefault(b, []).append(e)
continue
elif b.is_positive or e.is_integer:
num_exp.append((b, e))
continue
c_powers.append((b, e))
# NON-COMMUTATIVE
# TODO: Make non-commutative exponents not combine automatically
else:
if o is not NC_Marker:
nc_seq.append(o)
# process nc_seq (if any)
while nc_seq:
o = nc_seq.pop(0)
if not nc_part:
nc_part.append(o)
continue
# b c b+c
# try to combine last terms: a * a -> a
o1 = nc_part.pop()
b1, e1 = o1.as_base_exp()
b2, e2 = o.as_base_exp()
new_exp = e1 + e2
# Only allow powers to combine if the new exponent is
# not an Add. This allow things like a**2*b**3 == a**5
# if a.is_commutative == False, but prohibits
# a**x*a**y and x**a*x**b from combining (x,y commute).
if b1 == b2 and (not new_exp.is_Add):
o12 = b1 ** new_exp
# now o12 could be a commutative object
if o12.is_commutative:
seq.append(o12)
continue
else:
nc_seq.insert(0, o12)
else:
nc_part.append(o1)
nc_part.append(o)
# We do want a combined exponent if it would not be an Add, such as
# y 2y 3y
# x * x -> x
# We determine if two exponents have the same term by using
# as_coeff_Mul.
#
# Unfortunately, this isn't smart enough to consider combining into
# exponents that might already be adds, so things like:
# z - y y
# x * x will be left alone. This is because checking every possible
# combination can slow things down.
# gather exponents of common bases...
def _gather(c_powers):
common_b = {} # b:e
for b, e in c_powers:
co = e.as_coeff_Mul()
common_b.setdefault(b, {}).setdefault(
co[1], []).append(co[0])
for b, d in common_b.items():
for di, li in d.items():
d[di] = Add(*li)
new_c_powers = []
for b, e in common_b.items():
new_c_powers.extend([(b, c*t) for t, c in e.items()])
return new_c_powers
# in c_powers
c_powers = _gather(c_powers)
# and in num_exp
num_exp = _gather(num_exp)
# --- PART 2 ---
#
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
# o combine collected powers (2**x * 3**x -> 6**x)
# with numeric base
# ................................
# now we have:
# - coeff:
# - c_powers: (b, e)
# - num_exp: (2, e)
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
# 0 1
# x -> 1 x -> x
# this should only need to run twice; if it fails because
# it needs to be run more times, perhaps this should be
# changed to a "while True" loop -- the only reason it
# isn't such now is to allow a less-than-perfect result to
# be obtained rather than raising an error or entering an
# infinite loop
for i in range(2):
new_c_powers = []
changed = False
for b, e in c_powers:
if e.is_zero:
# canceling out infinities yields NaN
if (b.is_Add or b.is_Mul) and any(infty in b.args
for infty in (S.ComplexInfinity, S.Infinity,
S.NegativeInfinity)):
return [S.NaN], [], None
continue
if e is S.One:
if b.is_Number:
coeff *= b
continue
p = b
if e is not S.One:
p = Pow(b, e)
# check to make sure that the base doesn't change
# after exponentiation; to allow for unevaluated
# Pow, we only do so if b is not already a Pow
if p.is_Pow and not b.is_Pow:
bi = b
b, e = p.as_base_exp()
if b != bi:
changed = True
c_part.append(p)
new_c_powers.append((b, e))
# there might have been a change, but unless the base
# matches some other base, there is nothing to do
if changed and len({
b for b, e in new_c_powers}) != len(new_c_powers):
# start over again
c_part = []
c_powers = _gather(new_c_powers)
else:
break
# x x x
# 2 * 3 -> 6
inv_exp_dict = {} # exp:Mul(num-bases) x x
# e.g. x:6 for ... * 2 * 3 * ...
for b, e in num_exp:
inv_exp_dict.setdefault(e, []).append(b)
for e, b in inv_exp_dict.items():
inv_exp_dict[e] = cls(*b)
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
# b, e -> e' = sum(e), b
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
comb_e = {}
for b, e in pnum_rat.items():
comb_e.setdefault(Add(*e), []).append(b)
del pnum_rat
# process them, reducing exponents to values less than 1
# and updating coeff if necessary else adding them to
# num_rat for further processing
num_rat = []
for e, b in comb_e.items():
b = cls(*b)
if e.q == 1:
coeff *= Pow(b, e)
continue
if e.p > e.q:
e_i, ep = divmod(e.p, e.q)
coeff *= Pow(b, e_i)
e = Rational(ep, e.q)
num_rat.append((b, e))
del comb_e
# extract gcd of bases in num_rat
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
pnew = defaultdict(list)
i = 0 # steps through num_rat which may grow
while i < len(num_rat):
bi, ei = num_rat[i]
grow = []
for j in range(i + 1, len(num_rat)):
bj, ej = num_rat[j]
g = bi.gcd(bj)
if g is not S.One:
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
# this might have a gcd with something else
e = ei + ej
if e.q == 1:
coeff *= Pow(g, e)
else:
if e.p > e.q:
e_i, ep = divmod(e.p, e.q) # change e in place
coeff *= Pow(g, e_i)
e = Rational(ep, e.q)
grow.append((g, e))
# update the jth item
num_rat[j] = (bj/g, ej)
# update bi that we are checking with
bi = bi/g
if bi is S.One:
break
if bi is not S.One:
obj = Pow(bi, ei)
if obj.is_Number:
coeff *= obj
else:
# changes like sqrt(12) -> 2*sqrt(3)
for obj in Mul.make_args(obj):
if obj.is_Number:
coeff *= obj
else:
assert obj.is_Pow
bi, ei = obj.args
pnew[ei].append(bi)
num_rat.extend(grow)
i += 1
# combine bases of the new powers
for e, b in pnew.items():
pnew[e] = cls(*b)
# handle -1 and I
if neg1e:
# treat I as (-1)**(1/2) and compute -1's total exponent
p, q = neg1e.as_numer_denom()
# if the integer part is odd, extract -1
n, p = divmod(p, q)
if n % 2:
coeff = -coeff
# if it's a multiple of 1/2 extract I
if q == 2:
c_part.append(S.ImaginaryUnit)
elif p:
# see if there is any positive base this power of
# -1 can join
neg1e = Rational(p, q)
for e, b in pnew.items():
if e == neg1e and b.is_positive:
pnew[e] = -b
break
else:
# keep it separate; we've already evaluated it as
# much as possible so evaluate=False
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
# add all the pnew powers
c_part.extend([Pow(b, e) for e, b in pnew.items()])
# oo, -oo
if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
def _handle_for_oo(c_part, coeff_sign):
new_c_part = []
for t in c_part:
if t.is_extended_positive:
continue
if t.is_extended_negative:
coeff_sign *= -1
continue
new_c_part.append(t)
return new_c_part, coeff_sign
c_part, coeff_sign = _handle_for_oo(c_part, 1)
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
coeff *= coeff_sign
# zoo
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + bounded_im
# bounded_real + infinite_im
# infinite_real + infinite_im
# and non-zero real or imaginary will not change that status.
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
# 0
elif coeff.is_zero:
# we know for sure the result will be 0 except the multiplicand
# is infinity or a matrix
if any(isinstance(c, MatrixExpr) for c in nc_part):
return [coeff], nc_part, order_symbols
if any(c.is_finite == False for c in c_part):
return [S.NaN], [], order_symbols
return [coeff], [], order_symbols
# check for straggling Numbers that were produced
_new = []
for i in c_part:
if i.is_Number:
coeff *= i
else:
_new.append(i)
c_part = _new
# order commutative part canonically
_mulsort(c_part)
# current code expects coeff to be always in slot-0
if coeff is not S.One:
c_part.insert(0, coeff)
# we are done
if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
# 2*(1+a) -> 2 + 2 * a
coeff = c_part[0]
c_part = [Add(*[coeff*f for f in c_part[1].args])]
return c_part, nc_part, order_symbols
def _eval_power(self, e):
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
cargs, nc = self.args_cnc(split_1=False)
if e.is_Integer:
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
Pow(Mul._from_args(nc), e, evaluate=False)
if e.is_Rational and e.q == 2:
from sympy.core.power import integer_nthroot
from sympy.functions.elementary.complexes import sign
if self.is_imaginary:
a = self.as_real_imag()[1]
if a.is_Rational:
n, d = abs(a/2).as_numer_denom()
n, t = integer_nthroot(n, 2)
if t:
d, t = integer_nthroot(d, 2)
if t:
r = sympify(n)/d
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
p = Pow(self, e, evaluate=False)
if e.is_Rational or e.is_Float:
return p._eval_expand_power_base()
return p
@classmethod
def class_key(cls):
return 3, 0, cls.__name__
def _eval_evalf(self, prec):
c, m = self.as_coeff_Mul()
if c is S.NegativeOne:
if m.is_Mul:
rv = -AssocOp._eval_evalf(m, prec)
else:
mnew = m._eval_evalf(prec)
if mnew is not None:
m = mnew
rv = -m
else:
rv = AssocOp._eval_evalf(self, prec)
if rv.is_number:
return rv.expand()
return rv
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float
im_part, imag_unit = self.as_coeff_Mul()
if not imag_unit == I:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
return (Float(0)._mpf_, Float(im_part)._mpf_)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_mul() which gives the head and a tuple containing
the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add
then use self.as_coeff_add()[0]
>>> from sympy.abc import x, y
>>> (3*x*y).as_two_terms()
(3, x*y)
"""
args = self.args
if len(args) == 1:
return S.One, self
elif len(args) == 2:
return args
else:
return args[0], self._new_rawargs(*args[1:])
@cacheit
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. The dictionary
is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
>>> _[a]
0
"""
d = defaultdict(int)
args = self.args
if len(args) == 1 or not args[0].is_Number:
d[self] = S.One
else:
d[self._new_rawargs(*args[1:])] = args[0]
return d
@cacheit
def as_coeff_mul(self, *deps, rational=True, **kwargs):
if deps:
from sympy.utilities.iterables import sift
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
return self._new_rawargs(*l2), tuple(l1)
args = self.args
if args[0].is_Number:
if not rational or args[0].is_Rational:
return args[0], args[1:]
elif args[0].is_extended_negative:
return S.NegativeOne, (-args[0],) + args[1:]
return S.One, args
def as_coeff_Mul(self, rational=False):
"""
Efficiently extract the coefficient of a product.
"""
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number:
if not rational or coeff.is_Rational:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, self._new_rawargs(*args)
elif coeff.is_extended_negative:
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
return S.One, self
def as_real_imag(self, deep=True, **hints):
from sympy import Abs, expand_mul, im, re
other = []
coeffr = []
coeffi = []
addterms = S.One
for a in self.args:
r, i = a.as_real_imag()
if i.is_zero:
coeffr.append(r)
elif r.is_zero:
coeffi.append(i*S.ImaginaryUnit)
elif a.is_commutative:
# search for complex conjugate pairs:
for i, x in enumerate(other):
if x == a.conjugate():
coeffr.append(Abs(x)**2)
del other[i]
break
else:
if a.is_Add:
addterms *= a
else:
other.append(a)
else:
other.append(a)
m = self.func(*other)
if hints.get('ignore') == m:
return
if len(coeffi) % 2:
imco = im(coeffi.pop(0))
# all other pairs make a real factor; they will be
# put into reco below
else:
imco = S.Zero
reco = self.func(*(coeffr + coeffi))
r, i = (reco*re(m), reco*im(m))
if addterms == 1:
if m == 1:
if imco.is_zero:
return (reco, S.Zero)
else:
return (S.Zero, reco*imco)
if imco is S.Zero:
return (r, i)
return (-imco*i, imco*r)
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
if imco is S.Zero:
return (r*addre - i*addim, i*addre + r*addim)
else:
r, i = -imco*i, imco*r
return (r*addre - i*addim, r*addim + i*addre)
@staticmethod
def _expandsums(sums):
"""
Helper function for _eval_expand_mul.
sums must be a list of instances of Basic.
"""
L = len(sums)
if L == 1:
return sums[0].args
terms = []
left = Mul._expandsums(sums[:L//2])
right = Mul._expandsums(sums[L//2:])
terms = [Mul(a, b) for a in left for b in right]
added = Add(*terms)
return Add.make_args(added) # it may have collapsed down to one term
def _eval_expand_mul(self, **hints):
from sympy import fraction
# Handle things like 1/(x*(x + 1)), which are automatically converted
# to 1/x*1/(x + 1)
expr = self
n, d = fraction(expr)
if d.is_Mul:
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
for i in (n, d)]
expr = n/d
if not expr.is_Mul:
return expr
plain, sums, rewrite = [], [], False
for factor in expr.args:
if factor.is_Add:
sums.append(factor)
rewrite = True
else:
if factor.is_commutative:
plain.append(factor)
else:
sums.append(Basic(factor)) # Wrapper
if not rewrite:
return expr
else:
plain = self.func(*plain)
if sums:
deep = hints.get("deep", False)
terms = self.func._expandsums(sums)
args = []
for term in terms:
t = self.func(plain, term)
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
t = t._eval_expand_mul()
args.append(t)
return Add(*args)
else:
return plain
@cacheit
def _eval_derivative(self, s):
args = list(self.args)
terms = []
for i in range(len(args)):
d = args[i].diff(s)
if d:
# Note: reduce is used in step of Mul as Mul is unable to
# handle subtypes and operation priority:
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
return Add.fromiter(terms)
@cacheit
def _eval_derivative_n_times(self, s, n):
from sympy import Integer, factorial, prod, Sum, Max
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
from .function import AppliedUndef
from .symbol import Symbol, symbols, Dummy
if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol):
# other types of s may not be well behaved, e.g.
# (cos(x)*sin(y)).diff([[x, y, z]])
return super()._eval_derivative_n_times(s, n)
args = self.args
m = len(args)
if isinstance(n, (int, Integer)):
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
terms = []
for kvals, c in multinomial_coefficients_iterator(m, n):
p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)])
terms.append(c * p)
return Add(*terms)
kvals = symbols("k1:%i" % m, cls=Dummy)
klast = n - sum(kvals)
nfact = factorial(n)
e, l = (# better to use the multinomial?
nfact/prod(map(factorial, kvals))/factorial(klast)*\
prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\
args[-1].diff((s, Max(0, klast))),
[(k, 0, n) for k in kvals])
return Sum(e, *l)
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
arg0 = self.args[0]
rest = Mul(*self.args[1:])
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
rest)
def _matches_simple(self, expr, repl_dict):
# handle (w*3).matches('x*5') -> {w: x*5/3}
coeff, terms = self.as_coeff_Mul()
terms = Mul.make_args(terms)
if len(terms) == 1:
newexpr = self.__class__._combine_inverse(expr, coeff)
return terms[0].matches(newexpr, repl_dict)
return
def matches(self, expr, repl_dict={}, old=False):
expr = sympify(expr)
repl_dict = repl_dict.copy()
if self.is_commutative and expr.is_commutative:
return self._matches_commutative(expr, repl_dict, old)
elif self.is_commutative is not expr.is_commutative:
return None
# Proceed only if both both expressions are non-commutative
c1, nc1 = self.args_cnc()
c2, nc2 = expr.args_cnc()
c1, c2 = [c or [1] for c in [c1, c2]]
# TODO: Should these be self.func?
comm_mul_self = Mul(*c1)
comm_mul_expr = Mul(*c2)
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
# If the commutative arguments didn't match and aren't equal, then
# then the expression as a whole doesn't match
if repl_dict is None and c1 != c2:
return None
# Now match the non-commutative arguments, expanding powers to
# multiplications
nc1 = Mul._matches_expand_pows(nc1)
nc2 = Mul._matches_expand_pows(nc2)
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
return repl_dict or None
@staticmethod
def _matches_expand_pows(arg_list):
new_args = []
for arg in arg_list:
if arg.is_Pow and arg.exp > 0:
new_args.extend([arg.base] * arg.exp)
else:
new_args.append(arg)
return new_args
@staticmethod
def _matches_noncomm(nodes, targets, repl_dict={}):
"""Non-commutative multiplication matcher.
`nodes` is a list of symbols within the matcher multiplication
expression, while `targets` is a list of arguments in the
multiplication expression being matched against.
"""
repl_dict = repl_dict.copy()
# List of possible future states to be considered
agenda = []
# The current matching state, storing index in nodes and targets
state = (0, 0)
node_ind, target_ind = state
# Mapping between wildcard indices and the index ranges they match
wildcard_dict = {}
repl_dict = repl_dict.copy()
while target_ind < len(targets) and node_ind < len(nodes):
node = nodes[node_ind]
if node.is_Wild:
Mul._matches_add_wildcard(wildcard_dict, state)
states_matches = Mul._matches_new_states(wildcard_dict, state,
nodes, targets)
if states_matches:
new_states, new_matches = states_matches
agenda.extend(new_states)
if new_matches:
for match in new_matches:
repl_dict[match] = new_matches[match]
if not agenda:
return None
else:
state = agenda.pop()
node_ind, target_ind = state
return repl_dict
@staticmethod
def _matches_add_wildcard(dictionary, state):
node_ind, target_ind = state
if node_ind in dictionary:
begin, end = dictionary[node_ind]
dictionary[node_ind] = (begin, target_ind)
else:
dictionary[node_ind] = (target_ind, target_ind)
@staticmethod
def _matches_new_states(dictionary, state, nodes, targets):
node_ind, target_ind = state
node = nodes[node_ind]
target = targets[target_ind]
# Don't advance at all if we've exhausted the targets but not the nodes
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
return None
if node.is_Wild:
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
nodes, targets)
if match_attempt:
# If the same node has been matched before, don't return
# anything if the current match is diverging from the previous
# match
other_node_inds = Mul._matches_get_other_nodes(dictionary,
nodes, node_ind)
for ind in other_node_inds:
other_begin, other_end = dictionary[ind]
curr_begin, curr_end = dictionary[node_ind]
other_targets = targets[other_begin:other_end + 1]
current_targets = targets[curr_begin:curr_end + 1]
for curr, other in zip(current_targets, other_targets):
if curr != other:
return None
# A wildcard node can match more than one target, so only the
# target index is advanced
new_state = [(node_ind, target_ind + 1)]
# Only move on to the next node if there is one
if node_ind < len(nodes) - 1:
new_state.append((node_ind + 1, target_ind + 1))
return new_state, match_attempt
else:
# If we're not at a wildcard, then make sure we haven't exhausted
# nodes but not targets, since in this case one node can only match
# one target
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
return None
match_attempt = node.matches(target)
if match_attempt:
return [(node_ind + 1, target_ind + 1)], match_attempt
elif node == target:
return [(node_ind + 1, target_ind + 1)], None
else:
return None
@staticmethod
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
"""Determine matches of a wildcard with sub-expression in `target`."""
wildcard = nodes[wildcard_ind]
begin, end = dictionary[wildcard_ind]
terms = targets[begin:end + 1]
# TODO: Should this be self.func?
mul = Mul(*terms) if len(terms) > 1 else terms[0]
return wildcard.matches(mul)
@staticmethod
def _matches_get_other_nodes(dictionary, nodes, node_ind):
"""Find other wildcards that may have already been matched."""
other_node_inds = []
for ind in dictionary:
if nodes[ind] == nodes[node_ind]:
other_node_inds.append(ind)
return other_node_inds
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs/rhs, but treats arguments like symbols, so things
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
a symbol instead of sqrt(-1).
"""
from .symbol import Dummy
if lhs == rhs:
return S.One
def check(l, r):
if l.is_Float and r.is_comparable:
# if both objects are added to 0 they will share the same "normalization"
# and are more likely to compare the same. Since Add(foo, 0) will not allow
# the 0 to pass, we use __add__ directly.
return l.__add__(0) == r.evalf().__add__(0)
return False
if check(lhs, rhs) or check(rhs, lhs):
return S.One
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
# gruntz and limit wants a literal I to not combine
# with a power of -1
d = Dummy('I')
_i = {S.ImaginaryUnit: d}
i_ = {d: S.ImaginaryUnit}
a = lhs.xreplace(_i).as_powers_dict()
b = rhs.xreplace(_i).as_powers_dict()
blen = len(b)
for bi in tuple(b.keys()):
if bi in a:
a[bi] -= b.pop(bi)
if not a[bi]:
a.pop(bi)
if len(b) != blen:
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
return lhs/rhs
def as_powers_dict(self):
d = defaultdict(int)
for term in self.args:
for b, e in term.as_powers_dict().items():
d[b] += e
return d
def as_numer_denom(self):
# don't use _from_args to rebuild the numerators and denominators
# as the order is not guaranteed to be the same once they have
# been separated from each other
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
return self.func(*numers), self.func(*denoms)
def as_base_exp(self):
e1 = None
bases = []
nc = 0
for m in self.args:
b, e = m.as_base_exp()
if not b.is_commutative:
nc += 1
if e1 is None:
e1 = e
elif e != e1 or nc > 1:
return self, S.One
bases.append(b)
return self.func(*bases), e1
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_meromorphic(self, x, a):
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
quick_exit=True)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_complex(self):
comp = _fuzzy_group(a.is_complex for a in self.args)
if comp is False:
if any(a.is_infinite for a in self.args):
if any(a.is_zero is not False for a in self.args):
return None
return False
return comp
def _eval_is_finite(self):
if all(a.is_finite for a in self.args):
return True
if any(a.is_infinite for a in self.args):
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_infinite(self):
if any(a.is_infinite for a in self.args):
if any(a.is_zero for a in self.args):
return S.NaN.is_infinite
if any(a.is_zero is None for a in self.args):
return None
return True
def _eval_is_rational(self):
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_algebraic(self):
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_zero(self):
zero = infinite = False
for a in self.args:
z = a.is_zero
if z:
if infinite:
return # 0*oo is nan and nan.is_zero is None
zero = True
else:
if not a.is_finite:
if zero:
return # 0*oo is nan and nan.is_zero is None
infinite = True
if zero is False and z is None: # trap None
zero = None
return zero
def _eval_is_integer(self):
from sympy import fraction
from sympy.core.numbers import Float
is_rational = self._eval_is_rational()
if is_rational is False:
return False
# use exact=True to avoid recomputing num or den
n, d = fraction(self, exact=True)
if is_rational:
if d is S.One:
return True
if d.is_even:
if d.is_prime: # literal or symbolic 2
return n.is_even
if n.is_odd:
return False # true even if d = 0
if n == d:
return fuzzy_and([not bool(self.atoms(Float)),
fuzzy_not(d.is_zero)])
def _eval_is_polar(self):
has_polar = any(arg.is_polar for arg in self.args)
return has_polar and \
all(arg.is_polar or arg.is_positive for arg in self.args)
def _eval_is_extended_real(self):
return self._eval_real_imag(True)
def _eval_real_imag(self, real):
zero = False
t_not_re_im = None
for t in self.args:
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
return False
elif t.is_imaginary: # I
real = not real
elif t.is_extended_real: # 2
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_extended_real is False:
# symbolic or literal like `2 + I` or symbolic imaginary
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
else:
return
if t_not_re_im:
if t_not_re_im.is_extended_real is False:
if real: # like 3
return zero # 3*(smthng like 2 + I or i) is not real
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
if not real: # like I
return zero # I*(smthng like 2 or 2 + I) is not real
elif zero is False:
return real # can't be trumped by 0
elif real:
return real # doesn't matter what zero is
def _eval_is_imaginary(self):
z = self.is_zero
if z:
return False
if self.is_finite is False:
return False
elif z is False and self.is_finite is True:
return self._eval_real_imag(False)
def _eval_is_hermitian(self):
return self._eval_herm_antiherm(True)
def _eval_herm_antiherm(self, real):
one_nc = zero = one_neither = False
for t in self.args:
if not t.is_commutative:
if one_nc:
return
one_nc = True
if t.is_antihermitian:
real = not real
elif t.is_hermitian:
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_hermitian is False:
if one_neither:
return
one_neither = True
else:
return
if one_neither:
if real:
return zero
elif zero is False or real:
return real
def _eval_is_antihermitian(self):
z = self.is_zero
if z:
return False
elif z is False:
return self._eval_herm_antiherm(False)
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
return True
return
if a is None:
return
if all(x.is_real for x in self.args):
return False
def _eval_is_extended_positive(self):
"""Return True if self is positive, False if not, and None if it
cannot be determined.
This algorithm is non-recursive and works by keeping track of the
sign which changes when a negative or nonpositive is encountered.
Whether a nonpositive or nonnegative is seen is also tracked since
the presence of these makes it impossible to return True, but
possible to return False if the end result is nonpositive. e.g.
pos * neg * nonpositive -> pos or zero -> None is returned
pos * neg * nonnegative -> neg or zero -> False is returned
"""
return self._eval_pos_neg(1)
def _eval_pos_neg(self, sign):
saw_NON = saw_NOT = False
for t in self.args:
if t.is_extended_positive:
continue
elif t.is_extended_negative:
sign = -sign
elif t.is_zero:
if all(a.is_finite for a in self.args):
return False
return
elif t.is_extended_nonpositive:
sign = -sign
saw_NON = True
elif t.is_extended_nonnegative:
saw_NON = True
# FIXME: is_positive/is_negative is False doesn't take account of
# Symbol('x', infinite=True, extended_real=True) which has
# e.g. is_positive is False but has uncertain sign.
elif t.is_positive is False:
sign = -sign
if saw_NOT:
return
saw_NOT = True
elif t.is_negative is False:
if saw_NOT:
return
saw_NOT = True
else:
return
if sign == 1 and saw_NON is False and saw_NOT is False:
return True
if sign < 0:
return False
def _eval_is_extended_negative(self):
return self._eval_pos_neg(-1)
def _eval_is_odd(self):
is_integer = self.is_integer
if is_integer:
r, acc = True, 1
for t in self.args:
if not t.is_integer:
return None
elif t.is_even:
r = False
elif t.is_integer:
if r is False:
pass
elif acc != 1 and (acc + t).is_odd:
r = False
elif t.is_odd is None:
r = None
acc = t
return r
# !integer -> !odd
elif is_integer is False:
return False
def _eval_is_even(self):
is_integer = self.is_integer
if is_integer:
return fuzzy_not(self.is_odd)
elif is_integer is False:
return False
def _eval_is_composite(self):
"""
Here we count the number of arguments that have a minimum value
greater than two.
If there are more than one of such a symbol then the result is composite.
Else, the result cannot be determined.
"""
number_of_args = 0 # count of symbols with minimum value greater than one
for arg in self.args:
if not (arg.is_integer and arg.is_positive):
return None
if (arg-1).is_positive:
number_of_args += 1
if number_of_args > 1:
return True
def _eval_subs(self, old, new):
from sympy.functions.elementary.complexes import sign
from sympy.ntheory.factor_ import multiplicity
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import fraction
if not old.is_Mul:
return None
# try keep replacement literal so -2*x doesn't replace 4*x
if old.args[0].is_Number and old.args[0] < 0:
if self.args[0].is_Number:
if self.args[0] < 0:
return self._subs(-old, -new)
return None
def base_exp(a):
# if I and -1 are in a Mul, they get both end up with
# a -1 base (see issue 6421); all we want here are the
# true Pow or exp separated into base and exponent
from sympy import exp
if a.is_Pow or isinstance(a, exp):
return a.as_base_exp()
return a, S.One
def breakup(eq):
"""break up powers of eq when treated as a Mul:
b**(Rational*e) -> b**e, Rational
commutatives come back as a dictionary {b**e: Rational}
noncommutatives come back as a list [(b**e, Rational)]
"""
(c, nc) = (defaultdict(int), list())
for a in Mul.make_args(eq):
a = powdenest(a)
(b, e) = base_exp(a)
if e is not S.One:
(co, _) = e.as_coeff_mul()
b = Pow(b, e/co)
e = co
if a.is_commutative:
c[b] += e
else:
nc.append([b, e])
return (c, nc)
def rejoin(b, co):
"""
Put rational back with exponent; in general this is not ok, but
since we took it from the exponent for analysis, it's ok to put
it back.
"""
(b, e) = base_exp(b)
return Pow(b, e*co)
def ndiv(a, b):
"""if b divides a in an extractive way (like 1/4 divides 1/2
but not vice versa, and 2/5 does not divide 1/3) then return
the integer number of times it divides, else return 0.
"""
if not b.q % a.q or not a.q % b.q:
return int(a/b)
return 0
# give Muls in the denominator a chance to be changed (see issue 5651)
# rv will be the default return value
rv = None
n, d = fraction(self)
self2 = self
if d is not S.One:
self2 = n._subs(old, new)/d._subs(old, new)
if not self2.is_Mul:
return self2._subs(old, new)
if self2 != self:
rv = self2
# Now continue with regular substitution.
# handle the leading coefficient and use it to decide if anything
# should even be started; we always know where to find the Rational
# so it's a quick test
co_self = self2.args[0]
co_old = old.args[0]
co_xmul = None
if co_old.is_Rational and co_self.is_Rational:
# if coeffs are the same there will be no updating to do
# below after breakup() step; so skip (and keep co_xmul=None)
if co_old != co_self:
co_xmul = co_self.extract_multiplicatively(co_old)
elif co_old.is_Rational:
return rv
# break self and old into factors
(c, nc) = breakup(self2)
(old_c, old_nc) = breakup(old)
# update the coefficients if we had an extraction
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
# then co_self in c is replaced by (3/5)**2 and co_residual
# is 2*(1/7)**2
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
mult = S(multiplicity(abs(co_old), co_self))
c.pop(co_self)
if co_old in c:
c[co_old] += mult
else:
c[co_old] = mult
co_residual = co_self/co_old**mult
else:
co_residual = 1
# do quick tests to see if we can't succeed
ok = True
if len(old_nc) > len(nc):
# more non-commutative terms
ok = False
elif len(old_c) > len(c):
# more commutative terms
ok = False
elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
# unmatched non-commutative bases
ok = False
elif set(old_c).difference(set(c)):
# unmatched commutative terms
ok = False
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
# differences in sign
ok = False
if not ok:
return rv
if not old_c:
cdid = None
else:
rat = []
for (b, old_e) in old_c.items():
c_e = c[b]
rat.append(ndiv(c_e, old_e))
if not rat[-1]:
return rv
cdid = min(rat)
if not old_nc:
ncdid = None
for i in range(len(nc)):
nc[i] = rejoin(*nc[i])
else:
ncdid = 0 # number of nc replacements we did
take = len(old_nc) # how much to look at each time
limit = cdid or S.Infinity # max number that we can take
failed = [] # failed terms will need subs if other terms pass
i = 0
while limit and i + take <= len(nc):
hit = False
# the bases must be equivalent in succession, and
# the powers must be extractively compatible on the
# first and last factor but equal in between.
rat = []
for j in range(take):
if nc[i + j][0] != old_nc[j][0]:
break
elif j == 0:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif j == take - 1:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif nc[i + j][1] != old_nc[j][1]:
break
else:
rat.append(1)
j += 1
else:
ndo = min(rat)
if ndo:
if take == 1:
if cdid:
ndo = min(cdid, ndo)
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
nc[i][1] - ndo*old_nc[0][1])
else:
ndo = 1
# the left residual
l = rejoin(nc[i][0], nc[i][1] - ndo*
old_nc[0][1])
# eliminate all middle terms
mid = new
# the right residual (which may be the same as the middle if take == 2)
ir = i + take - 1
r = (nc[ir][0], nc[ir][1] - ndo*
old_nc[-1][1])
if r[1]:
if i + take < len(nc):
nc[i:i + take] = [l*mid, r]
else:
r = rejoin(*r)
nc[i:i + take] = [l*mid*r]
else:
# there was nothing left on the right
nc[i:i + take] = [l*mid]
limit -= ndo
ncdid += ndo
hit = True
if not hit:
# do the subs on this failing factor
failed.append(i)
i += 1
else:
if not ncdid:
return rv
# although we didn't fail, certain nc terms may have
# failed so we rebuild them after attempting a partial
# subs on them
failed.extend(range(i, len(nc)))
for i in failed:
nc[i] = rejoin(*nc[i]).subs(old, new)
# rebuild the expression
if cdid is None:
do = ncdid
elif ncdid is None:
do = cdid
else:
do = min(ncdid, cdid)
margs = []
for b in c:
if b in old_c:
# calculate the new exponent
e = c[b] - old_c[b]*do
margs.append(rejoin(b, e))
else:
margs.append(rejoin(b.subs(old, new), c[b]))
if cdid and not ncdid:
# in case we are replacing commutative with non-commutative,
# we want the new term to come at the front just like the
# rest of this routine
margs = [Pow(new, cdid)] + margs
return co_residual*self2.func(*margs)*self2.func(*nc)
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy import degree, Mul, Order, ceiling, powsimp, PolynomialError
from itertools import product
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
ords = []
try:
for t in self.args:
coeff, exp = t.leadterm(x)
if not coeff.has(x):
ords.append((t, exp))
else:
raise ValueError
n0 = sum(t[1] for t in ords)
facs = []
for t, m in ords:
n1 = ceiling(n - n0 + m)
s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
ns = s.getn()
if ns is not None:
if ns < n1: # less than expected
n -= n1 - ns # reduce n
facs.append(s.removeO())
except (ValueError, NotImplementedError, TypeError, AttributeError):
facs = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args]
res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
if res.has(Order):
res += Order(x**n, x)
return res
res = 0
ords2 = [Add.make_args(factor) for factor in facs]
for fac in product(*ords2):
ords3 = [coeff_exp(term, x) for term in fac]
coeffs, powers = zip(*ords3)
power = sum(powers)
if power < n:
res += Mul(*coeffs)*(x**power)
if self.is_polynomial(x):
try:
if degree(self, x) != degree(res, x):
res += Order(x**n, x)
except PolynomialError:
pass
else:
return res
for i in (1, 2, 3):
if (res - self).subs(x, i) is not S.Zero:
res += Order(x**n, x)
break
return res
def _eval_as_leading_term(self, x, cdir=0):
return self.func(*[t.as_leading_term(x, cdir=cdir) for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args[::-1]])
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args[::-1]])
def _sage_(self):
s = 1
for x in self.args:
s *= x._sage_()
return s
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
See docstring of Expr.as_content_primitive for more examples.
"""
coef = S.One
args = []
for i, a in enumerate(self.args):
c, p = a.as_content_primitive(radical=radical, clear=clear)
coef *= c
if p is not S.One:
args.append(p)
# don't use self._from_args here to reconstruct args
# since there may be identical args now that should be combined
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
return coef, self.func(*args)
def as_ordered_factors(self, order=None):
"""Transform an expression into an ordered list of factors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x, y
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
"""
cpart, ncpart = self.args_cnc()
cpart.sort(key=lambda expr: expr.sort_key(order=order))
return cpart + ncpart
@property
def _sorted_args(self):
return tuple(self.as_ordered_factors())
mul = AssocOpDispatcher('mul')
def prod(a, start=1):
"""Return product of elements of a. Start with int 1 so if only
ints are included then an int result is returned.
Examples
========
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
You can start the product at something other than 1:
>>> prod([1, 2], 3)
6
"""
return reduce(operator.mul, a, start)
def _keep_coeff(coeff, factors, clear=True, sign=False):
"""Return ``coeff*factors`` unevaluated if necessary.
If ``clear`` is False, do not keep the coefficient as a factor
if it can be distributed on a single factor such that one or
more terms will still have integer coefficients.
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
Examples
========
>>> from sympy.core.mul import _keep_coeff
>>> from sympy.abc import x, y
>>> from sympy import S
>>> _keep_coeff(S.Half, x + 2)
(x + 2)/2
>>> _keep_coeff(S.Half, x + 2, clear=False)
x/2 + 1
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
y*(x + 2)/2
>>> _keep_coeff(S(-1), x + y)
-x - y
>>> _keep_coeff(S(-1), x + y, sign=True)
-(x + y)
"""
if not coeff.is_Number:
if factors.is_Number:
factors, coeff = coeff, factors
else:
return coeff*factors
if coeff is S.One:
return factors
elif coeff is S.NegativeOne and not sign:
return -factors
elif factors.is_Add:
if not clear and coeff.is_Rational and coeff.q != 1:
q = S(coeff.q)
for i in factors.args:
c, t = i.as_coeff_Mul()
r = c/q
if r == int(r):
return coeff*factors
return Mul(coeff, factors, evaluate=False)
elif factors.is_Mul:
margs = list(factors.args)
if margs[0].is_Number:
margs[0] *= coeff
if margs[0] == 1:
margs.pop(0)
else:
margs.insert(0, coeff)
return Mul._from_args(margs)
else:
return coeff*factors
def expand_2arg(e):
from sympy.simplify.simplify import bottom_up
def do(e):
if e.is_Mul:
c, r = e.as_coeff_Mul()
if c.is_Number and r.is_Add:
return _unevaluated_Add(*[c*ri for ri in r.args])
return e
return bottom_up(e, do)
from .numbers import Rational
from .power import Pow
from .add import Add, _addsort, _unevaluated_Add
|
d52d59adf8ce9276238e9f32902e70e2ef486bda0df0d17e4465ab68ceb480a2 | """Tools for setting up printing in interactive sessions. """
import sys
from distutils.version import LooseVersion as V
from io import BytesIO
from sympy import latex as default_latex
from sympy import preview
from sympy.utilities.misc import debug
from sympy.printing.defaults import Printable
def _init_python_printing(stringify_func, **settings):
"""Setup printing in Python interactive session. """
import sys
from sympy.core.compatibility import builtins
def _displayhook(arg):
"""Python's pretty-printer display hook.
This function was adapted from:
http://www.python.org/dev/peps/pep-0217/
"""
if arg is not None:
builtins._ = None
print(stringify_func(arg, **settings))
builtins._ = arg
sys.displayhook = _displayhook
def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor,
backcolor, fontsize, latex_mode, print_builtin,
latex_printer, scale, **settings):
"""Setup printing in IPython interactive session. """
try:
from IPython.lib.latextools import latex_to_png
except ImportError:
pass
# Guess best font color if none was given based on the ip.colors string.
# From the IPython documentation:
# It has four case-insensitive values: 'nocolor', 'neutral', 'linux',
# 'lightbg'. The default is neutral, which should be legible on either
# dark or light terminal backgrounds. linux is optimised for dark
# backgrounds and lightbg for light ones.
if forecolor is None:
color = ip.colors.lower()
if color == 'lightbg':
forecolor = 'Black'
elif color == 'linux':
forecolor = 'White'
else:
# No idea, go with gray.
forecolor = 'Gray'
debug("init_printing: Automatic foreground color:", forecolor)
preamble = "\\documentclass[varwidth,%s]{standalone}\n" \
"\\usepackage{amsmath,amsfonts}%s\\begin{document}"
if euler:
addpackages = '\\usepackage{euler}'
else:
addpackages = ''
if use_latex == "svg":
addpackages = addpackages + "\n\\special{color %s}" % forecolor
preamble = preamble % (fontsize, addpackages)
imagesize = 'tight'
offset = "0cm,0cm"
resolution = round(150*scale)
dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % (
imagesize, resolution, backcolor, forecolor, offset)
dvioptions = dvi.split()
svg_scale = 150/72*scale
dvioptions_svg = ["--no-fonts", "--scale={}".format(svg_scale)]
debug("init_printing: DVIOPTIONS:", dvioptions)
debug("init_printing: DVIOPTIONS_SVG:", dvioptions_svg)
debug("init_printing: PREAMBLE:", preamble)
latex = latex_printer or default_latex
def _print_plain(arg, p, cycle):
"""caller for pretty, for use in IPython 0.11"""
if _can_print(arg):
p.text(stringify_func(arg))
else:
p.text(IPython.lib.pretty.pretty(arg))
def _preview_wrapper(o):
exprbuffer = BytesIO()
try:
preview(o, output='png', viewer='BytesIO',
outputbuffer=exprbuffer, preamble=preamble,
dvioptions=dvioptions)
except Exception as e:
# IPython swallows exceptions
debug("png printing:", "_preview_wrapper exception raised:",
repr(e))
raise
return exprbuffer.getvalue()
def _svg_wrapper(o):
exprbuffer = BytesIO()
try:
preview(o, output='svg', viewer='BytesIO',
outputbuffer=exprbuffer, preamble=preamble,
dvioptions=dvioptions_svg)
except Exception as e:
# IPython swallows exceptions
debug("svg printing:", "_preview_wrapper exception raised:",
repr(e))
raise
return exprbuffer.getvalue().decode('utf-8')
def _matplotlib_wrapper(o):
# mathtext does not understand certain latex flags, so we try to
# replace them with suitable subs
o = o.replace(r'\operatorname', '')
o = o.replace(r'\overline', r'\bar')
# mathtext can't render some LaTeX commands. For example, it can't
# render any LaTeX environments such as array or matrix. So here we
# ensure that if mathtext fails to render, we return None.
try:
try:
return latex_to_png(o, color=forecolor, scale=scale)
except TypeError: # Old IPython version without color and scale
return latex_to_png(o)
except ValueError as e:
debug('matplotlib exception caught:', repr(e))
return None
# Hook methods for builtin sympy printers
printing_hooks = ('_latex', '_sympystr', '_pretty', '_sympyrepr')
def _can_print(o):
"""Return True if type o can be printed with one of the sympy printers.
If o is a container type, this is True if and only if every element of
o can be printed in this way.
"""
try:
# If you're adding another type, make sure you add it to printable_types
# later in this file as well
builtin_types = (list, tuple, set, frozenset)
if isinstance(o, builtin_types):
# If the object is a custom subclass with a custom str or
# repr, use that instead.
if (type(o).__str__ not in (i.__str__ for i in builtin_types) or
type(o).__repr__ not in (i.__repr__ for i in builtin_types)):
return False
return all(_can_print(i) for i in o)
elif isinstance(o, dict):
return all(_can_print(i) and _can_print(o[i]) for i in o)
elif isinstance(o, bool):
return False
elif isinstance(o, Printable):
# types known to sympy
return True
elif any(hasattr(o, hook) for hook in printing_hooks):
# types which add support themselves
return True
elif isinstance(o, (float, int)) and print_builtin:
return True
return False
except RuntimeError:
return False
# This is in case maximum recursion depth is reached.
# Since RecursionError is for versions of Python 3.5+
# so this is to guard against RecursionError for older versions.
def _print_latex_png(o):
"""
A function that returns a png rendered by an external latex
distribution, falling back to matplotlib rendering
"""
if _can_print(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
s = '$\\displaystyle %s$' % s
try:
return _preview_wrapper(s)
except RuntimeError as e:
debug('preview failed with:', repr(e),
' Falling back to matplotlib backend')
if latex_mode != 'inline':
s = latex(o, mode='inline', **settings)
return _matplotlib_wrapper(s)
def _print_latex_svg(o):
"""
A function that returns a svg rendered by an external latex
distribution, no fallback available.
"""
if _can_print(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
s = '$\\displaystyle %s$' % s
try:
return _svg_wrapper(s)
except RuntimeError as e:
debug('preview failed with:', repr(e),
' No fallback available.')
def _print_latex_matplotlib(o):
"""
A function that returns a png rendered by mathtext
"""
if _can_print(o):
s = latex(o, mode='inline', **settings)
return _matplotlib_wrapper(s)
def _print_latex_text(o):
"""
A function to generate the latex representation of sympy expressions.
"""
if _can_print(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
return '$\\displaystyle %s$' % s
return s
def _result_display(self, arg):
"""IPython's pretty-printer display hook, for use in IPython 0.10
This function was adapted from:
ipython/IPython/hooks.py:155
"""
if self.rc.pprint:
out = stringify_func(arg)
if '\n' in out:
print()
print(out)
else:
print(repr(arg))
import IPython
if V(IPython.__version__) >= '0.11':
# Printable is our own type, so we handle it with methods instead of
# the approach required by builtin types. This allows downstream
# packages to override the methods in their own subclasses of Printable,
# which avoids the effects of gh-16002.
printable_types = [float, tuple, list, set, frozenset, dict, int]
plaintext_formatter = ip.display_formatter.formatters['text/plain']
# Exception to the rule above: IPython has better dispatching rules
# for plaintext printing (xref ipython/ipython#8938), and we can't
# use `_repr_pretty_` without hitting a recursion error in _print_plain.
for cls in printable_types + [Printable]:
plaintext_formatter.for_type(cls, _print_plain)
svg_formatter = ip.display_formatter.formatters['image/svg+xml']
if use_latex in ('svg', ):
debug("init_printing: using svg formatter")
for cls in printable_types:
svg_formatter.for_type(cls, _print_latex_svg)
Printable._repr_svg_ = _print_latex_svg
else:
debug("init_printing: not using any svg formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#png_formatter.for_type(cls, None)
if cls in svg_formatter.type_printers:
svg_formatter.type_printers.pop(cls)
Printable._repr_svg_ = Printable._repr_disabled
png_formatter = ip.display_formatter.formatters['image/png']
if use_latex in (True, 'png'):
debug("init_printing: using png formatter")
for cls in printable_types:
png_formatter.for_type(cls, _print_latex_png)
Printable._repr_png_ = _print_latex_png
elif use_latex == 'matplotlib':
debug("init_printing: using matplotlib formatter")
for cls in printable_types:
png_formatter.for_type(cls, _print_latex_matplotlib)
Printable._repr_png_ = _print_latex_matplotlib
else:
debug("init_printing: not using any png formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#png_formatter.for_type(cls, None)
if cls in png_formatter.type_printers:
png_formatter.type_printers.pop(cls)
Printable._repr_png_ = Printable._repr_disabled
latex_formatter = ip.display_formatter.formatters['text/latex']
if use_latex in (True, 'mathjax'):
debug("init_printing: using mathjax formatter")
for cls in printable_types:
latex_formatter.for_type(cls, _print_latex_text)
Printable._repr_latex_ = _print_latex_text
else:
debug("init_printing: not using text/latex formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#latex_formatter.for_type(cls, None)
if cls in latex_formatter.type_printers:
latex_formatter.type_printers.pop(cls)
Printable._repr_latex_ = Printable._repr_disabled
else:
ip.set_hook('result_display', _result_display)
def _is_ipython(shell):
"""Is a shell instance an IPython shell?"""
# shortcut, so we don't import IPython if we don't have to
if 'IPython' not in sys.modules:
return False
try:
from IPython.core.interactiveshell import InteractiveShell
except ImportError:
# IPython < 0.11
try:
from IPython.iplib import InteractiveShell
except ImportError:
# Reaching this points means IPython has changed in a backward-incompatible way
# that we don't know about. Warn?
return False
return isinstance(shell, InteractiveShell)
# Used by the doctester to override the default for no_global
NO_GLOBAL = False
def init_printing(pretty_print=True, order=None, use_unicode=None,
use_latex=None, wrap_line=None, num_columns=None,
no_global=False, ip=None, euler=False, forecolor=None,
backcolor='Transparent', fontsize='10pt',
latex_mode='plain', print_builtin=True,
str_printer=None, pretty_printer=None,
latex_printer=None, scale=1.0, **settings):
r"""
Initializes pretty-printer depending on the environment.
Parameters
==========
pretty_print : boolean, default=True
If True, use pretty_print to stringify or the provided pretty
printer; if False, use sstrrepr to stringify or the provided string
printer.
order : string or None, default='lex'
There are a few different settings for this parameter:
lex (default), which is lexographic order;
grlex, which is graded lexographic order;
grevlex, which is reversed graded lexographic order;
old, which is used for compatibility reasons and for long expressions;
None, which sets it to lex.
use_unicode : boolean or None, default=None
If True, use unicode characters;
if False, do not use unicode characters;
if None, make a guess based on the environment.
use_latex : string, boolean, or None, default=None
If True, use default LaTeX rendering in GUI interfaces (png and
mathjax);
if False, do not use LaTeX rendering;
if None, make a guess based on the environment;
if 'png', enable latex rendering with an external latex compiler,
falling back to matplotlib if external compilation fails;
if 'matplotlib', enable LaTeX rendering with matplotlib;
if 'mathjax', enable LaTeX text generation, for example MathJax
rendering in IPython notebook or text rendering in LaTeX documents;
if 'svg', enable LaTeX rendering with an external latex compiler,
no fallback
wrap_line : boolean
If True, lines will wrap at the end; if False, they will not wrap
but continue as one line. This is only relevant if ``pretty_print`` is
True.
num_columns : int or None, default=None
If int, number of columns before wrapping is set to num_columns; if
None, number of columns before wrapping is set to terminal width.
This is only relevant if ``pretty_print`` is True.
no_global : boolean, default=False
If True, the settings become system wide;
if False, use just for this console/session.
ip : An interactive console
This can either be an instance of IPython,
or a class that derives from code.InteractiveConsole.
euler : boolean, optional, default=False
Loads the euler package in the LaTeX preamble for handwritten style
fonts (http://www.ctan.org/pkg/euler).
forecolor : string or None, optional, default=None
DVI setting for foreground color. None means that either 'Black',
'White', or 'Gray' will be selected based on a guess of the IPython
terminal color setting. See notes.
backcolor : string, optional, default='Transparent'
DVI setting for background color. See notes.
fontsize : string, optional, default='10pt'
A font size to pass to the LaTeX documentclass function in the
preamble. Note that the options are limited by the documentclass.
Consider using scale instead.
latex_mode : string, optional, default='plain'
The mode used in the LaTeX printer. Can be one of:
{'inline'|'plain'|'equation'|'equation*'}.
print_builtin : boolean, optional, default=True
If ``True`` then floats and integers will be printed. If ``False`` the
printer will only print SymPy types.
str_printer : function, optional, default=None
A custom string printer function. This should mimic
sympy.printing.sstrrepr().
pretty_printer : function, optional, default=None
A custom pretty printer. This should mimic sympy.printing.pretty().
latex_printer : function, optional, default=None
A custom LaTeX printer. This should mimic sympy.printing.latex().
scale : float, optional, default=1.0
Scale the LaTeX output when using the ``png`` or ``svg`` backends.
Useful for high dpi screens.
settings :
Any additional settings for the ``latex`` and ``pretty`` commands can
be used to fine-tune the output.
Examples
========
>>> from sympy.interactive import init_printing
>>> from sympy import Symbol, sqrt
>>> from sympy.abc import x, y
>>> sqrt(5)
sqrt(5)
>>> init_printing(pretty_print=True) # doctest: +SKIP
>>> sqrt(5) # doctest: +SKIP
___
\/ 5
>>> theta = Symbol('theta') # doctest: +SKIP
>>> init_printing(use_unicode=True) # doctest: +SKIP
>>> theta # doctest: +SKIP
\u03b8
>>> init_printing(use_unicode=False) # doctest: +SKIP
>>> theta # doctest: +SKIP
theta
>>> init_printing(order='lex') # doctest: +SKIP
>>> str(y + x + y**2 + x**2) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(order='grlex') # doctest: +SKIP
>>> str(y + x + y**2 + x**2) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(order='grevlex') # doctest: +SKIP
>>> str(y * x**2 + x * y**2) # doctest: +SKIP
x**2*y + x*y**2
>>> init_printing(order='old') # doctest: +SKIP
>>> str(x**2 + y**2 + x + y) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(num_columns=10) # doctest: +SKIP
>>> x**2 + x + y**2 + y # doctest: +SKIP
x + y +
x**2 + y**2
Notes
=====
The foreground and background colors can be selected when using 'png' or
'svg' LaTeX rendering. Note that before the ``init_printing`` command is
executed, the LaTeX rendering is handled by the IPython console and not SymPy.
The colors can be selected among the 68 standard colors known to ``dvips``,
for a list see [1]_. In addition, the background color can be
set to 'Transparent' (which is the default value).
When using the 'Auto' foreground color, the guess is based on the
``colors`` variable in the IPython console, see [2]_. Hence, if
that variable is set correctly in your IPython console, there is a high
chance that the output will be readable, although manual settings may be
needed.
References
==========
.. [1] https://en.wikibooks.org/wiki/LaTeX/Colors#The_68_standard_colors_known_to_dvips
.. [2] https://ipython.readthedocs.io/en/stable/config/details.html#terminal-colors
See Also
========
sympy.printing.latex
sympy.printing.pretty
"""
import sys
from sympy.printing.printer import Printer
if pretty_print:
if pretty_printer is not None:
stringify_func = pretty_printer
else:
from sympy.printing import pretty as stringify_func
else:
if str_printer is not None:
stringify_func = str_printer
else:
from sympy.printing import sstrrepr as stringify_func
# Even if ip is not passed, double check that not in IPython shell
in_ipython = False
if ip is None:
try:
ip = get_ipython()
except NameError:
pass
else:
in_ipython = (ip is not None)
if ip and not in_ipython:
in_ipython = _is_ipython(ip)
if in_ipython and pretty_print:
try:
import IPython
# IPython 1.0 deprecates the frontend module, so we import directly
# from the terminal module to prevent a deprecation message from being
# shown.
if V(IPython.__version__) >= '1.0':
from IPython.terminal.interactiveshell import TerminalInteractiveShell
else:
from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
from code import InteractiveConsole
except ImportError:
pass
else:
# This will be True if we are in the qtconsole or notebook
if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \
and 'ipython-console' not in ''.join(sys.argv):
if use_unicode is None:
debug("init_printing: Setting use_unicode to True")
use_unicode = True
if use_latex is None:
debug("init_printing: Setting use_latex to True")
use_latex = True
if not NO_GLOBAL and not no_global:
Printer.set_global_settings(order=order, use_unicode=use_unicode,
wrap_line=wrap_line, num_columns=num_columns)
else:
_stringify_func = stringify_func
if pretty_print:
stringify_func = lambda expr, **settings: \
_stringify_func(expr, order=order,
use_unicode=use_unicode,
wrap_line=wrap_line,
num_columns=num_columns,
**settings)
else:
stringify_func = \
lambda expr, **settings: _stringify_func(
expr, order=order, **settings)
if in_ipython:
mode_in_settings = settings.pop("mode", None)
if mode_in_settings:
debug("init_printing: Mode is not able to be set due to internals"
"of IPython printing")
_init_ipython_printing(ip, stringify_func, use_latex, euler,
forecolor, backcolor, fontsize, latex_mode,
print_builtin, latex_printer, scale,
**settings)
else:
_init_python_printing(stringify_func, **settings)
|
8ce01028486aa4d7ef84a95f03f1ebbf7424fe7895cd59a799e91552fd22f60b | from __future__ import print_function
from sympy.matrices.dense import MutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.domains import EX
class MutablePolyDenseMatrix(MutableDenseMatrix):
"""
A mutable matrix of objects from poly module or to operate with them.
Examples
========
>>> from sympy.polys.polymatrix import PolyMatrix
>>> from sympy import Symbol, Poly, ZZ
>>> x = Symbol('x')
>>> pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]])
>>> v1 = PolyMatrix([[1, 0], [-1, 0]])
>>> pm1*v1
Matrix([
[ Poly(x**2 + x, x, domain='ZZ'), Poly(0, x, domain='ZZ')],
[Poly(x**3 - x + 1, x, domain='ZZ'), Poly(0, x, domain='ZZ')]])
>>> pm1.ring
ZZ[x]
>>> v1*pm1
Matrix([
[ Poly(x**2, x, domain='ZZ'), Poly(-x, x, domain='ZZ')],
[Poly(-x**2, x, domain='ZZ'), Poly(x, x, domain='ZZ')]])
>>> pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(1, x, domain='QQ'), \
Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]])
>>> v2 = PolyMatrix([1, 0, 0, 0, 0, 0], ring=ZZ)
>>> v2.ring
ZZ
>>> pm2*v2
Matrix([[Poly(x**2, x, domain='QQ')]])
"""
_class_priority = 10
# we don't want to sympify the elements of PolyMatrix
_sympify = staticmethod(lambda x: x)
def __init__(self, *args, ring=EX, **kwargs):
# kwargs are consumed by __new__, so need to be allowed here.
# if any non-Poly element is given as input then
# 'ring' defaults 'EX'
if all(isinstance(p, Poly) for p in self._mat) and self._mat:
domain = tuple([p.domain[p.gens] for p in self._mat])
ring = domain[0]
for i in range(1, len(domain)):
ring = ring.unify(domain[i])
self.ring = ring
def _eval_matrix_mul(self, other):
self_cols = self.cols
other_rows, other_cols = other.rows, other.cols
other_len = other_rows*other_cols
new_mat_rows = self.rows
new_mat_cols = other.cols
new_mat = [0]*new_mat_rows*new_mat_cols
if self.cols != 0 and other.rows != 0:
mat = self._mat
other_mat = other._mat
for i in range(len(new_mat)):
row, col = i // new_mat_cols, i % new_mat_cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other_cols)
vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
# 'Add' shouldn't be used here
new_mat[i] = sum(vec)
return self.__class__(new_mat_rows, new_mat_cols, new_mat, copy=False)
def _eval_scalar_mul(self, other):
mat = [Poly(a.as_expr()*other, *a.gens) if isinstance(a, Poly) else a*other for a in self._mat]
return self.__class__(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [Poly(other*a.as_expr(), *a.gens) if isinstance(a, Poly) else other*a for a in self._mat]
return self.__class__(self.rows, self.cols, mat, copy=False)
MutablePolyMatrix = PolyMatrix = MutablePolyDenseMatrix
|
f72c00626e67041f4132842ee4ed40d1385112a7e7f5055181561dd1da627f79 | """OO layer for several polynomial representations. """
from __future__ import print_function, division
from sympy import oo
from sympy.core.sympify import CantSympify
from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible
from sympy.polys.polyutils import PicklableWithSlots
class GenericPoly(PicklableWithSlots):
"""Base class for low-level polynomial representations. """
def ground_to_ring(f):
"""Make the ground domain a ring. """
return f.set_domain(f.dom.get_ring())
def ground_to_field(f):
"""Make the ground domain a field. """
return f.set_domain(f.dom.get_field())
def ground_to_exact(f):
"""Make the ground domain exact. """
return f.set_domain(f.dom.get_exact())
@classmethod
def _perify_factors(per, result, include):
if include:
coeff, factors = result
else:
coeff = result
factors = [ (per(g), k) for g, k in factors ]
if include:
return coeff, factors
else:
return factors
from sympy.polys.densebasic import (
dmp_validate,
dup_normal, dmp_normal,
dup_convert, dmp_convert,
dmp_from_sympy,
dup_strip,
dup_degree, dmp_degree_in,
dmp_degree_list,
dmp_negative_p,
dup_LC, dmp_ground_LC,
dup_TC, dmp_ground_TC,
dmp_ground_nth,
dmp_one, dmp_ground,
dmp_zero_p, dmp_one_p, dmp_ground_p,
dup_from_dict, dmp_from_dict,
dmp_to_dict,
dmp_deflate,
dmp_inject, dmp_eject,
dmp_terms_gcd,
dmp_list_terms, dmp_exclude,
dmp_slice_in, dmp_permute,
dmp_to_tuple,)
from sympy.polys.densearith import (
dmp_add_ground,
dmp_sub_ground,
dmp_mul_ground,
dmp_quo_ground,
dmp_exquo_ground,
dmp_abs,
dup_neg, dmp_neg,
dup_add, dmp_add,
dup_sub, dmp_sub,
dup_mul, dmp_mul,
dmp_sqr,
dup_pow, dmp_pow,
dmp_pdiv,
dmp_prem,
dmp_pquo,
dmp_pexquo,
dmp_div,
dup_rem, dmp_rem,
dmp_quo,
dmp_exquo,
dmp_add_mul, dmp_sub_mul,
dmp_max_norm,
dmp_l1_norm)
from sympy.polys.densetools import (
dmp_clear_denoms,
dmp_integrate_in,
dmp_diff_in,
dmp_eval_in,
dup_revert,
dmp_ground_trunc,
dmp_ground_content,
dmp_ground_primitive,
dmp_ground_monic,
dmp_compose,
dup_decompose,
dup_shift,
dup_transform,
dmp_lift)
from sympy.polys.euclidtools import (
dup_half_gcdex, dup_gcdex, dup_invert,
dmp_subresultants,
dmp_resultant,
dmp_discriminant,
dmp_inner_gcd,
dmp_gcd,
dmp_lcm,
dmp_cancel)
from sympy.polys.sqfreetools import (
dup_gff_list,
dmp_norm,
dmp_sqf_p,
dmp_sqf_norm,
dmp_sqf_part,
dmp_sqf_list, dmp_sqf_list_include)
from sympy.polys.factortools import (
dup_cyclotomic_p, dmp_irreducible_p,
dmp_factor_list, dmp_factor_list_include)
from sympy.polys.rootisolation import (
dup_isolate_real_roots_sqf,
dup_isolate_real_roots,
dup_isolate_all_roots_sqf,
dup_isolate_all_roots,
dup_refine_real_root,
dup_count_real_roots,
dup_count_complex_roots,
dup_sturm)
from sympy.polys.polyerrors import (
UnificationFailed,
PolynomialError)
def init_normal_DMP(rep, lev, dom):
return DMP(dmp_normal(rep, lev, dom), dom, lev)
class DMP(PicklableWithSlots, CantSympify):
"""Dense Multivariate Polynomials over `K`. """
__slots__ = ('rep', 'lev', 'dom', 'ring')
def __init__(self, rep, dom, lev=None, ring=None):
if lev is not None:
if type(rep) is dict:
rep = dmp_from_dict(rep, lev, dom)
elif type(rep) is not list:
rep = dmp_ground(dom.convert(rep), lev)
else:
rep, lev = dmp_validate(rep)
self.rep = rep
self.lev = lev
self.dom = dom
self.ring = ring
def __repr__(f):
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring))
def unify(f, g):
"""Unify representations of two multivariate polynomials. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return f.lev, f.dom, f.per, f.rep, g.rep
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = dmp_convert(f.rep, lev, f.dom, dom)
G = dmp_convert(g.rep, lev, g.dom, dom)
def per(rep, dom=dom, lev=lev, kill=False):
if kill:
if not lev:
return rep
else:
lev -= 1
return DMP(rep, dom, lev, ring)
return lev, dom, per, F, G
def per(f, rep, dom=None, kill=False, ring=None):
"""Create a DMP out of the given representation. """
lev = f.lev
if kill:
if not lev:
return rep
else:
lev -= 1
if dom is None:
dom = f.dom
if ring is None:
ring = f.ring
return DMP(rep, dom, lev, ring)
@classmethod
def zero(cls, lev, dom, ring=None):
return DMP(0, dom, lev, ring)
@classmethod
def one(cls, lev, dom, ring=None):
return DMP(1, dom, lev, ring)
@classmethod
def from_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of native coefficients. """
return cls(dmp_convert(rep, lev, None, dom), dom, lev)
@classmethod
def from_sympy_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of SymPy coefficients. """
return cls(dmp_from_sympy(rep, lev, dom), dom, lev)
def to_dict(f, zero=False):
"""Convert ``f`` to a dict representation with native coefficients. """
return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
def to_sympy_dict(f, zero=False):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f.rep
def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
def sympify_nested_list(rep):
out = []
for val in rep:
if isinstance(val, list):
out.append(sympify_nested_list(val))
else:
out.append(f.dom.to_sympy(val))
return out
return sympify_nested_list(f.rep)
def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
return dmp_to_tuple(f.rep, f.lev)
@classmethod
def from_dict(cls, rep, lev, dom):
"""Construct and instance of ``cls`` from a ``dict`` representation. """
return cls(dmp_from_dict(rep, lev, dom), dom, lev)
@classmethod
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None):
return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring)
def to_ring(f):
"""Make the ground domain a ring. """
return f.convert(f.dom.get_ring())
def to_field(f):
"""Make the ground domain a field. """
return f.convert(f.dom.get_field())
def to_exact(f):
"""Make the ground domain exact. """
return f.convert(f.dom.get_exact())
def convert(f, dom):
"""Convert the ground domain of ``f``. """
if f.dom == dom:
return f
else:
return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev)
def slice(f, m, n, j=0):
"""Take a continuous subsequence of terms of ``f``. """
return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom))
def coeffs(f, order=None):
"""Returns all non-zero coefficients from ``f`` in lex order. """
return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
def monoms(f, order=None):
"""Returns all non-zero monomials from ``f`` in lex order. """
return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
def terms(f, order=None):
"""Returns all non-zero terms from ``f`` in lex order. """
return dmp_list_terms(f.rep, f.lev, f.dom, order=order)
def all_coeffs(f):
"""Returns all coefficients from ``f``. """
if not f.lev:
if not f:
return [f.dom.zero]
else:
return [ c for c in f.rep ]
else:
raise PolynomialError('multivariate polynomials not supported')
def all_monoms(f):
"""Returns all monomials from ``f``. """
if not f.lev:
n = dup_degree(f.rep)
if n < 0:
return [(0,)]
else:
return [ (n - i,) for i, c in enumerate(f.rep) ]
else:
raise PolynomialError('multivariate polynomials not supported')
def all_terms(f):
"""Returns all terms from a ``f``. """
if not f.lev:
n = dup_degree(f.rep)
if n < 0:
return [((0,), f.dom.zero)]
else:
return [ ((n - i,), c) for i, c in enumerate(f.rep) ]
else:
raise PolynomialError('multivariate polynomials not supported')
def lift(f):
"""Convert algebraic coefficients to rationals. """
return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom)
def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
J, F = dmp_deflate(f.rep, f.lev, f.dom)
return J, f.per(F)
def inject(f, front=False):
"""Inject ground domain generators into ``f``. """
F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front)
return f.__class__(F, f.dom.dom, lev)
def eject(f, dom, front=False):
"""Eject selected generators into the ground domain. """
F = dmp_eject(f.rep, f.lev, dom, front=front)
return f.__class__(F, dom, f.lev - len(dom.symbols))
def exclude(f):
r"""
Remove useless generators from ``f``.
Returns the removed generators and the new excluded ``f``.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude()
([2], DMP([[1], [1, 2]], ZZ, None))
"""
J, F, u = dmp_exclude(f.rep, f.lev, f.dom)
return J, f.__class__(F, f.dom, u)
def permute(f, P):
r"""
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2])
DMP([[[2], []], [[1, 0], []]], ZZ, None)
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0])
DMP([[[1], []], [[2, 0], []]], ZZ, None)
"""
return f.per(dmp_permute(f.rep, P, f.lev, f.dom))
def terms_gcd(f):
"""Remove GCD of terms from the polynomial ``f``. """
J, F = dmp_terms_gcd(f.rep, f.lev, f.dom)
return J, f.per(F)
def add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def mul_ground(f, c):
"""Multiply ``f`` by a an element of the ground domain. """
return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def quo_ground(f, c):
"""Quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def exquo_ground(f, c):
"""Exact quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def abs(f):
"""Make all coefficients in ``f`` positive. """
return f.per(dmp_abs(f.rep, f.lev, f.dom))
def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f.rep, f.lev, f.dom))
def add(f, g):
"""Add two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_add(F, G, lev, dom))
def sub(f, g):
"""Subtract two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_sub(F, G, lev, dom))
def mul(f, g):
"""Multiply two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_mul(F, G, lev, dom))
def sqr(f):
"""Square a multivariate polynomial ``f``. """
return f.per(dmp_sqr(f.rep, f.lev, f.dom))
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
return f.per(dmp_pow(f.rep, n, f.lev, f.dom))
else:
raise TypeError("``int`` expected, got %s" % type(n))
def pdiv(f, g):
"""Polynomial pseudo-division of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_pdiv(F, G, lev, dom)
return per(q), per(r)
def prem(f, g):
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_prem(F, G, lev, dom))
def pquo(f, g):
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pquo(F, G, lev, dom))
def pexquo(f, g):
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pexquo(F, G, lev, dom))
def div(f, g):
"""Polynomial division with remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_div(F, G, lev, dom)
return per(q), per(r)
def rem(f, g):
"""Computes polynomial remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_rem(F, G, lev, dom))
def quo(f, g):
"""Computes polynomial quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_quo(F, G, lev, dom))
def exquo(f, g):
"""Computes polynomial exact quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
res = per(dmp_exquo(F, G, lev, dom))
if f.ring and res not in f.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(f, g, f.ring)
return res
def degree(f, j=0):
"""Returns the leading degree of ``f`` in ``x_j``. """
if isinstance(j, int):
return dmp_degree_in(f.rep, j, f.lev)
else:
raise TypeError("``int`` expected, got %s" % type(j))
def degree_list(f):
"""Returns a list of degrees of ``f``. """
return dmp_degree_list(f.rep, f.lev)
def total_degree(f):
"""Returns the total degree of ``f``. """
return max(sum(m) for m in f.monoms())
def homogenize(f, s):
"""Return homogeneous polynomial of ``f``"""
td = f.total_degree()
result = {}
new_symbol = (s == len(f.terms()[0][0]))
for term in f.terms():
d = sum(term[0])
if d < td:
i = td - d
else:
i = 0
if new_symbol:
result[term[0] + (i,)] = term[1]
else:
l = list(term[0])
l[s] += i
result[tuple(l)] = term[1]
return DMP(result, f.dom, f.lev + int(new_symbol), f.ring)
def homogeneous_order(f):
"""Returns the homogeneous order of ``f``. """
if f.is_zero:
return -oo
monoms = f.monoms()
tdeg = sum(monoms[0])
for monom in monoms:
_tdeg = sum(monom)
if _tdeg != tdeg:
return None
return tdeg
def LC(f):
"""Returns the leading coefficient of ``f``. """
return dmp_ground_LC(f.rep, f.lev, f.dom)
def TC(f):
"""Returns the trailing coefficient of ``f``. """
return dmp_ground_TC(f.rep, f.lev, f.dom)
def nth(f, *N):
"""Returns the ``n``-th coefficient of ``f``. """
if all(isinstance(n, int) for n in N):
return dmp_ground_nth(f.rep, N, f.lev, f.dom)
else:
raise TypeError("a sequence of integers expected")
def max_norm(f):
"""Returns maximum norm of ``f``. """
return dmp_max_norm(f.rep, f.lev, f.dom)
def l1_norm(f):
"""Returns l1 norm of ``f``. """
return dmp_l1_norm(f.rep, f.lev, f.dom)
def clear_denoms(f):
"""Clear denominators, but keep the ground domain. """
coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom)
return coeff, f.per(F)
def integrate(f, m=1, j=0):
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom))
def diff(f, m=1, j=0):
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom))
def eval(f, a, j=0):
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_eval_in(f.rep,
f.dom.convert(a), j, f.lev, f.dom), kill=True)
def half_gcdex(f, g):
"""Half extended Euclidean algorithm, if univariate. """
lev, dom, per, F, G = f.unify(g)
if not lev:
s, h = dup_half_gcdex(F, G, dom)
return per(s), per(h)
else:
raise ValueError('univariate polynomial expected')
def gcdex(f, g):
"""Extended Euclidean algorithm, if univariate. """
lev, dom, per, F, G = f.unify(g)
if not lev:
s, t, h = dup_gcdex(F, G, dom)
return per(s), per(t), per(h)
else:
raise ValueError('univariate polynomial expected')
def invert(f, g):
"""Invert ``f`` modulo ``g``, if possible. """
lev, dom, per, F, G = f.unify(g)
if not lev:
return per(dup_invert(F, G, dom))
else:
raise ValueError('univariate polynomial expected')
def revert(f, n):
"""Compute ``f**(-1)`` mod ``x**n``. """
if not f.lev:
return f.per(dup_revert(f.rep, n, f.dom))
else:
raise ValueError('univariate polynomial expected')
def subresultants(f, g):
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
R = dmp_subresultants(F, G, lev, dom)
return list(map(per, R))
def resultant(f, g, includePRS=False):
"""Computes resultant of ``f`` and ``g`` via PRS. """
lev, dom, per, F, G = f.unify(g)
if includePRS:
res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS)
return per(res, kill=True), list(map(per, R))
return per(dmp_resultant(F, G, lev, dom), kill=True)
def discriminant(f):
"""Computes discriminant of ``f``. """
return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True)
def cofactors(f, g):
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
lev, dom, per, F, G = f.unify(g)
h, cff, cfg = dmp_inner_gcd(F, G, lev, dom)
return per(h), per(cff), per(cfg)
def gcd(f, g):
"""Returns polynomial GCD of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_gcd(F, G, lev, dom))
def lcm(f, g):
"""Returns polynomial LCM of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_lcm(F, G, lev, dom))
def cancel(f, g, include=True):
"""Cancel common factors in a rational function ``f/g``. """
lev, dom, per, F, G = f.unify(g)
if include:
F, G = dmp_cancel(F, G, lev, dom, include=True)
else:
cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False)
F, G = per(F), per(G)
if include:
return F, G
else:
return cF, cG, F, G
def trunc(f, p):
"""Reduce ``f`` modulo a constant ``p``. """
return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom))
def monic(f):
"""Divides all coefficients by ``LC(f)``. """
return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))
def content(f):
"""Returns GCD of polynomial coefficients. """
return dmp_ground_content(f.rep, f.lev, f.dom)
def primitive(f):
"""Returns content and a primitive form of ``f``. """
cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom)
return cont, f.per(F)
def compose(f, g):
"""Computes functional composition of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_compose(F, G, lev, dom))
def decompose(f):
"""Computes functional decomposition of ``f``. """
if not f.lev:
return list(map(f.per, dup_decompose(f.rep, f.dom)))
else:
raise ValueError('univariate polynomial expected')
def shift(f, a):
"""Efficiently compute Taylor shift ``f(x + a)``. """
if not f.lev:
return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom))
else:
raise ValueError('univariate polynomial expected')
def transform(f, p, q):
"""Evaluate functional transformation ``q**n * f(p/q)``."""
if f.lev:
raise ValueError('univariate polynomial expected')
lev, dom, per, P, Q = p.unify(q)
lev, dom, per, F, P = f.unify(per(P, dom, lev))
lev, dom, per, F, Q = per(F, dom, lev).unify(per(Q, dom, lev))
if not lev:
return per(dup_transform(F, P, Q, dom))
else:
raise ValueError('univariate polynomial expected')
def sturm(f):
"""Computes the Sturm sequence of ``f``. """
if not f.lev:
return list(map(f.per, dup_sturm(f.rep, f.dom)))
else:
raise ValueError('univariate polynomial expected')
def gff_list(f):
"""Computes greatest factorial factorization of ``f``. """
if not f.lev:
return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ]
else:
raise ValueError('univariate polynomial expected')
def norm(f):
"""Computes ``Norm(f)``."""
r = dmp_norm(f.rep, f.lev, f.dom)
return f.per(r, dom=f.dom.dom)
def sqf_norm(f):
"""Computes square-free norm of ``f``. """
s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom)
return s, f.per(g), f.per(r, dom=f.dom.dom)
def sqf_part(f):
"""Computes square-free part of ``f``. """
return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))
def sqf_list(f, all=False):
"""Returns a list of square-free factors of ``f``. """
coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all)
return coeff, [ (f.per(g), k) for g, k in factors ]
def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of ``f``. """
factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all)
return [ (f.per(g), k) for g, k in factors ]
def factor_list(f):
"""Returns a list of irreducible factors of ``f``. """
coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom)
return coeff, [ (f.per(g), k) for g, k in factors ]
def factor_list_include(f):
"""Returns a list of irreducible factors of ``f``. """
factors = dmp_factor_list_include(f.rep, f.lev, f.dom)
return [ (f.per(g), k) for g, k in factors ]
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""Compute isolating intervals for roots of ``f``. """
if not f.lev:
if not all:
if not sqf:
return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
if not sqf:
return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
raise PolynomialError(
"can't isolate roots of a multivariate polynomial")
def refine_root(f, s, t, eps=None, steps=None, fast=False):
"""
Refine an isolating interval to the given precision.
``eps`` should be a rational number.
"""
if not f.lev:
return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast)
else:
raise PolynomialError(
"can't refine a root of a multivariate polynomial")
def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup)
def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero polynomial. """
return dmp_zero_p(f.rep, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit polynomial. """
return dmp_one_p(f.rep, f.lev, f.dom)
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return dmp_ground_p(f.rep, None, f.lev)
@property
def is_sqf(f):
"""Returns ``True`` if ``f`` is a square-free polynomial. """
return dmp_sqf_p(f.rep, f.lev, f.dom)
@property
def is_monic(f):
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom))
@property
def is_primitive(f):
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom))
@property
def is_linear(f):
"""Returns ``True`` if ``f`` is linear in all its variables. """
return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
@property
def is_quadratic(f):
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
@property
def is_monomial(f):
"""Returns ``True`` if ``f`` is zero or has only one term. """
return len(f.to_dict()) <= 1
@property
def is_homogeneous(f):
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
return f.homogeneous_order() is not None
@property
def is_irreducible(f):
"""Returns ``True`` if ``f`` has no factors over its domain. """
return dmp_irreducible_p(f.rep, f.lev, f.dom)
@property
def is_cyclotomic(f):
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
if not f.lev:
return dup_cyclotomic_p(f.rep, f.dom)
else:
return False
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
def __add__(f, g):
if not isinstance(g, DMP):
try:
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
g = f.ring.convert(g)
except (CoercionFailed, NotImplementedError):
return NotImplemented
return f.add(g)
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if not isinstance(g, DMP):
try:
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
g = f.ring.convert(g)
except (CoercionFailed, NotImplementedError):
return NotImplemented
return f.sub(g)
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, DMP):
return f.mul(g)
else:
try:
return f.mul_ground(g)
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.mul(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __truediv__(f, g):
if isinstance(g, DMP):
return f.exquo(g)
else:
try:
return f.mul_ground(g)
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.exquo(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rtruediv__(f, g):
if isinstance(g, DMP):
return g.exquo(f)
elif f.ring is not None:
try:
return f.ring.convert(g).exquo(f)
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __floordiv__(f, g):
if isinstance(g, DMP):
return f.quo(g)
else:
try:
return f.quo_ground(g)
except TypeError:
return NotImplemented
def __eq__(f, g):
try:
_, _, _, F, G = f.unify(g)
if f.lev == g.lev:
return F == G
except UnificationFailed:
pass
return False
def __ne__(f, g):
return not f == g
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(g)
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.lev == g.lev \
and f.dom == g.dom \
and f.rep == g.rep
def __lt__(f, g):
_, _, _, F, G = f.unify(g)
return F < G
def __le__(f, g):
_, _, _, F, G = f.unify(g)
return F <= G
def __gt__(f, g):
_, _, _, F, G = f.unify(g)
return F > G
def __ge__(f, g):
_, _, _, F, G = f.unify(g)
return F >= G
def __bool__(f):
return not dmp_zero_p(f.rep, f.lev)
def init_normal_DMF(num, den, lev, dom):
return DMF(dmp_normal(num, lev, dom),
dmp_normal(den, lev, dom), dom, lev)
class DMF(PicklableWithSlots, CantSympify):
"""Dense Multivariate Fractions over `K`. """
__slots__ = ('num', 'den', 'lev', 'dom', 'ring')
def __init__(self, rep, dom, lev=None, ring=None):
num, den, lev = self._parse(rep, dom, lev)
num, den = dmp_cancel(num, den, lev, dom)
self.num = num
self.den = den
self.lev = lev
self.dom = dom
self.ring = ring
@classmethod
def new(cls, rep, dom, lev=None, ring=None):
num, den, lev = cls._parse(rep, dom, lev)
obj = object.__new__(cls)
obj.num = num
obj.den = den
obj.lev = lev
obj.dom = dom
obj.ring = ring
return obj
@classmethod
def _parse(cls, rep, dom, lev=None):
if type(rep) is tuple:
num, den = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
if type(den) is dict:
den = dmp_from_dict(den, lev, dom)
else:
num, num_lev = dmp_validate(num)
den, den_lev = dmp_validate(den)
if num_lev == den_lev:
lev = num_lev
else:
raise ValueError('inconsistent number of levels')
if dmp_zero_p(den, lev):
raise ZeroDivisionError('fraction denominator')
if dmp_zero_p(num, lev):
den = dmp_one(lev, dom)
else:
if dmp_negative_p(den, lev, dom):
num = dmp_neg(num, lev, dom)
den = dmp_neg(den, lev, dom)
else:
num = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
elif type(num) is not list:
num = dmp_ground(dom.convert(num), lev)
else:
num, lev = dmp_validate(num)
den = dmp_one(lev, dom)
return num, den, lev
def __repr__(f):
return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den,
f.dom, f.ring)
def __hash__(f):
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev),
dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring))
def poly_unify(f, g):
"""Unify a multivariate fraction and a polynomial. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return (f.lev, f.dom, f.per, (f.num, f.den), g.rep)
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = dmp_convert(g.rep, lev, g.dom, dom)
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev, ring=ring)
return lev, dom, per, F, G
def frac_unify(f, g):
"""Unify representations of two multivariate fractions. """
if not isinstance(g, DMF) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return (f.lev, f.dom, f.per, (f.num, f.den),
(g.num, g.den))
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = (dmp_convert(g.num, lev, g.dom, dom),
dmp_convert(g.den, lev, g.dom, dom))
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev, ring=ring)
return lev, dom, per, F, G
def per(f, num, den, cancel=True, kill=False, ring=None):
"""Create a DMF out of the given representation. """
lev, dom = f.lev, f.dom
if kill:
if not lev:
return num/den
else:
lev -= 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
if ring is None:
ring = f.ring
return f.__class__.new((num, den), dom, lev, ring=ring)
def half_per(f, rep, kill=False):
"""Create a DMP out of the given representation. """
lev = f.lev
if kill:
if not lev:
return rep
else:
lev -= 1
return DMP(rep, f.dom, lev)
@classmethod
def zero(cls, lev, dom, ring=None):
return cls.new(0, dom, lev, ring=ring)
@classmethod
def one(cls, lev, dom, ring=None):
return cls.new(1, dom, lev, ring=ring)
def numer(f):
"""Returns the numerator of ``f``. """
return f.half_per(f.num)
def denom(f):
"""Returns the denominator of ``f``. """
return f.half_per(f.den)
def cancel(f):
"""Remove common factors from ``f.num`` and ``f.den``. """
return f.per(f.num, f.den)
def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False)
def add(f, g):
"""Add two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_add(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def sub(f, g):
"""Subtract two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def mul(f, g):
"""Multiply two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_mul(F_num, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_num, lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
return f.per(dmp_pow(f.num, n, f.lev, f.dom),
dmp_pow(f.den, n, f.lev, f.dom), cancel=False)
else:
raise TypeError("``int`` expected, got %s" % type(n))
def quo(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = F_num, dmp_mul(F_den, G, lev, dom)
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_den, lev, dom)
den = dmp_mul(F_den, G_num, lev, dom)
res = per(num, den)
if f.ring is not None and res not in f.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(f, g, f.ring)
return res
exquo = quo
def invert(f, check=True):
"""Computes inverse of a fraction ``f``. """
if check and f.ring is not None and not f.ring.is_unit(f):
raise NotReversible(f, f.ring)
res = f.per(f.den, f.num, cancel=False)
return res
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero fraction. """
return dmp_zero_p(f.num, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit fraction. """
return dmp_one_p(f.num, f.lev, f.dom) and \
dmp_one_p(f.den, f.lev, f.dom)
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, (DMP, DMF)):
return f.add(g)
try:
return f.add(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.add(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, (DMP, DMF)):
return f.sub(g)
try:
return f.sub(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.sub(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, (DMP, DMF)):
return f.mul(g)
try:
return f.mul(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.mul(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __truediv__(f, g):
if isinstance(g, (DMP, DMF)):
return f.quo(g)
try:
return f.quo(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.quo(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rtruediv__(self, g):
r = self.invert(check=False)*g
if self.ring and r not in self.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(g, self, self.ring)
return r
def __eq__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F == G
except UnificationFailed:
pass
return False
def __ne__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G)
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F != G
except UnificationFailed:
pass
return True
def __lt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F < G
def __le__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F <= G
def __gt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F > G
def __ge__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F >= G
def __bool__(f):
return not dmp_zero_p(f.num, f.lev)
def init_normal_ANP(rep, mod, dom):
return ANP(dup_normal(rep, dom),
dup_normal(mod, dom), dom)
class ANP(PicklableWithSlots, CantSympify):
"""Dense Algebraic Number Polynomials over a field. """
__slots__ = ('rep', 'mod', 'dom')
def __init__(self, rep, mod, dom):
if type(rep) is dict:
self.rep = dup_from_dict(rep, dom)
else:
if type(rep) is not list:
rep = [dom.convert(rep)]
self.rep = dup_strip(rep)
if isinstance(mod, DMP):
self.mod = mod.rep
else:
if type(mod) is dict:
self.mod = dup_from_dict(mod, dom)
else:
self.mod = dup_strip(mod)
self.dom = dom
def __repr__(f):
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom))
def unify(f, g):
"""Unify representations of two algebraic numbers. """
if not isinstance(g, ANP) or f.mod != g.mod:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom:
return f.dom, f.per, f.rep, g.rep, f.mod
else:
dom = f.dom.unify(g.dom)
F = dup_convert(f.rep, f.dom, dom)
G = dup_convert(g.rep, g.dom, dom)
if dom != f.dom and dom != g.dom:
mod = dup_convert(f.mod, f.dom, dom)
else:
if dom == f.dom:
mod = f.mod
else:
mod = g.mod
per = lambda rep: ANP(rep, mod, dom)
return dom, per, F, G, mod
def per(f, rep, mod=None, dom=None):
return ANP(rep, mod or f.mod, dom or f.dom)
@classmethod
def zero(cls, mod, dom):
return ANP(0, mod, dom)
@classmethod
def one(cls, mod, dom):
return ANP(1, mod, dom)
def to_dict(f):
"""Convert ``f`` to a dict representation with native coefficients. """
return dmp_to_dict(f.rep, 0, f.dom)
def to_sympy_dict(f):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = dmp_to_dict(f.rep, 0, f.dom)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f.rep
def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
return [ f.dom.to_sympy(c) for c in f.rep ]
def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
return dmp_to_tuple(f.rep, 0)
@classmethod
def from_list(cls, rep, mod, dom):
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom)
def neg(f):
return f.per(dup_neg(f.rep, f.dom))
def add(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_add(F, G, dom))
def sub(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_sub(F, G, dom))
def mul(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_rem(dup_mul(F, G, dom), mod, dom))
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
if n < 0:
F, n = dup_invert(f.rep, f.mod, f.dom), -n
else:
F = f.rep
return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom))
else:
raise TypeError("``int`` expected, got %s" % type(n))
def div(f, g):
dom, per, F, G, mod = f.unify(g)
return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom))
def rem(f, g):
dom, _, _, G, mod = f.unify(g)
s, h = dup_half_gcdex(G, mod, dom)
if h == [dom.one]:
return f.zero(mod, dom)
else:
raise NotInvertible("zero divisor")
def quo(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom))
exquo = quo
def LC(f):
"""Returns the leading coefficient of ``f``. """
return dup_LC(f.rep, f.dom)
def TC(f):
"""Returns the trailing coefficient of ``f``. """
return dup_TC(f.rep, f.dom)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero algebraic number. """
return not f
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit algebraic number. """
return f.rep == [f.dom.one]
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return not f.rep or len(f.rep) == 1
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, ANP):
return f.add(g)
else:
try:
return f.add(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, ANP):
return f.sub(g)
else:
try:
return f.sub(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, ANP):
return f.mul(g)
else:
try:
return f.mul(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __truediv__(f, g):
if isinstance(g, ANP):
return f.quo(g)
else:
try:
return f.quo(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __eq__(f, g):
try:
_, _, F, G, _ = f.unify(g)
return F == G
except UnificationFailed:
return False
def __ne__(f, g):
try:
_, _, F, G, _ = f.unify(g)
return F != G
except UnificationFailed:
return True
def __lt__(f, g):
_, _, F, G, _ = f.unify(g)
return F < G
def __le__(f, g):
_, _, F, G, _ = f.unify(g)
return F <= G
def __gt__(f, g):
_, _, F, G, _ = f.unify(g)
return F > G
def __ge__(f, g):
_, _, F, G, _ = f.unify(g)
return F >= G
def __bool__(f):
return bool(f.rep)
|
e11f6b1688b2f60aca246d21d30e8c33967fbfc848eb4cd559d64109947fc51b | """User-friendly public interface to polynomial functions. """
from __future__ import print_function, division
from functools import wraps, reduce
from operator import mul
from sympy.core import (
S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple
)
from sympy.core.basic import preorder_traversal
from sympy.core.compatibility import iterable, ordered
from sympy.core.decorators import _sympifyit
from sympy.core.evalf import pure_complex
from sympy.core.function import Derivative
from sympy.core.mul import _keep_coeff
from sympy.core.relational import Relational
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify, _sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.polys import polyoptions as options
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.fglmtools import matrix_fglm
from sympy.polys.groebnertools import groebner as _groebner
from sympy.polys.monomials import Monomial
from sympy.polys.orderings import monomial_key
from sympy.polys.polyclasses import DMP, DMF, ANP
from sympy.polys.polyerrors import (
OperationNotSupported, DomainError,
CoercionFailed, UnificationFailed,
GeneratorsNeeded, PolynomialError,
MultivariatePolynomialError,
ExactQuotientFailed,
PolificationFailed,
ComputationFailed,
GeneratorsError,
)
from sympy.polys.polyutils import (
basic_from_dict,
_sort_gens,
_unify_gens,
_dict_reorder,
_dict_from_expr,
_parallel_dict_from_expr,
)
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import dup_isolate_real_roots_list
from sympy.utilities import group, sift, public, filldedent
from sympy.utilities.exceptions import SymPyDeprecationWarning
# Required to avoid errors
import sympy.polys
import mpmath
from mpmath.libmp.libhyper import NoConvergence
def _polifyit(func):
@wraps(func)
def wrapper(f, g):
g = _sympify(g)
if isinstance(g, Poly):
return func(f, g)
elif isinstance(g, Expr):
try:
g = f.from_expr(g, *f.gens)
except PolynomialError:
if g.is_Matrix:
return NotImplemented
expr_method = getattr(f.as_expr(), func.__name__)
result = expr_method(g)
if result is not NotImplemented:
SymPyDeprecationWarning(
feature="Mixing Poly with non-polynomial expressions in binary operations",
issue=18613,
deprecated_since_version="1.6",
useinstead="the as_expr or as_poly method to convert types").warn()
return result
else:
return func(f, g)
else:
return NotImplemented
return wrapper
@public
class Poly(Basic):
"""
Generic class for representing and operating on polynomial expressions.
Poly is a subclass of Basic rather than Expr but instances can be
converted to Expr with the ``as_expr`` method.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
Create a univariate polynomial:
>>> Poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
Create a univariate polynomial with specific domain:
>>> from sympy import sqrt
>>> Poly(x**2 + 2*x + sqrt(3), domain='R')
Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')
Create a multivariate polynomial:
>>> Poly(y*x**2 + x*y + 1)
Poly(x**2*y + x*y + 1, x, y, domain='ZZ')
Create a univariate polynomial, where y is a constant:
>>> Poly(y*x**2 + x*y + 1,x)
Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')
You can evaluate the above polynomial as a function of y:
>>> Poly(y*x**2 + x*y + 1,x).eval(2)
6*y + 1
See Also
========
sympy.core.expr.Expr
"""
__slots__ = ('rep', 'gens')
is_commutative = True
is_Poly = True
_op_priority = 10.001
def __new__(cls, rep, *gens, **args):
"""Create a new polynomial instance out of something useful. """
opt = options.build_options(gens, args)
if 'order' in opt:
raise NotImplementedError("'order' keyword is not implemented yet")
if isinstance(rep, (DMP, DMF, ANP, DomainElement)):
return cls._from_domain_element(rep, opt)
elif iterable(rep, exclude=str):
if isinstance(rep, dict):
return cls._from_dict(rep, opt)
else:
return cls._from_list(list(rep), opt)
else:
rep = sympify(rep)
if rep.is_Poly:
return cls._from_poly(rep, opt)
else:
return cls._from_expr(rep, opt)
# Poly does not pass its args to Basic.__new__ to be stored in _args so we
# have to emulate them here with an args property that derives from rep
# and gens which are instance attributes. This also means we need to
# define _hashable_content. The _hashable_content is rep and gens but args
# uses expr instead of rep (expr is the Basic version of rep). Passing
# expr in args means that Basic methods like subs should work. Using rep
# otherwise means that Poly can remain more efficient than Basic by
# avoiding creating a Basic instance just to be hashable.
@classmethod
def new(cls, rep, *gens):
"""Construct :class:`Poly` instance from raw representation. """
if not isinstance(rep, DMP):
raise PolynomialError(
"invalid polynomial representation: %s" % rep)
elif rep.lev != len(gens) - 1:
raise PolynomialError("invalid arguments: %s, %s" % (rep, gens))
obj = Basic.__new__(cls)
obj.rep = rep
obj.gens = gens
return obj
@property
def expr(self):
return basic_from_dict(self.rep.to_sympy_dict(), *self.gens)
@property
def args(self):
return (self.expr,) + self.gens
def _hashable_content(self):
return (self.rep,) + self.gens
@classmethod
def from_dict(cls, rep, *gens, **args):
"""Construct a polynomial from a ``dict``. """
opt = options.build_options(gens, args)
return cls._from_dict(rep, opt)
@classmethod
def from_list(cls, rep, *gens, **args):
"""Construct a polynomial from a ``list``. """
opt = options.build_options(gens, args)
return cls._from_list(rep, opt)
@classmethod
def from_poly(cls, rep, *gens, **args):
"""Construct a polynomial from a polynomial. """
opt = options.build_options(gens, args)
return cls._from_poly(rep, opt)
@classmethod
def from_expr(cls, rep, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return cls._from_expr(rep, opt)
@classmethod
def _from_dict(cls, rep, opt):
"""Construct a polynomial from a ``dict``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'dict' without generators")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
for monom, coeff in rep.items():
rep[monom] = domain.convert(coeff)
return cls.new(DMP.from_dict(rep, level, domain), *gens)
@classmethod
def _from_list(cls, rep, opt):
"""Construct a polynomial from a ``list``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'list' without generators")
elif len(gens) != 1:
raise MultivariatePolynomialError(
"'list' representation not supported")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
rep = list(map(domain.convert, rep))
return cls.new(DMP.from_list(rep, level, domain), *gens)
@classmethod
def _from_poly(cls, rep, opt):
"""Construct a polynomial from a polynomial. """
if cls != rep.__class__:
rep = cls.new(rep.rep, *rep.gens)
gens = opt.gens
field = opt.field
domain = opt.domain
if gens and rep.gens != gens:
if set(rep.gens) != set(gens):
return cls._from_expr(rep.as_expr(), opt)
else:
rep = rep.reorder(*gens)
if 'domain' in opt and domain:
rep = rep.set_domain(domain)
elif field is True:
rep = rep.to_field()
return rep
@classmethod
def _from_expr(cls, rep, opt):
"""Construct a polynomial from an expression. """
rep, opt = _dict_from_expr(rep, opt)
return cls._from_dict(rep, opt)
@classmethod
def _from_domain_element(cls, rep, opt):
gens = opt.gens
domain = opt.domain
level = len(gens) - 1
rep = [domain.convert(rep)]
return cls.new(DMP.from_list(rep, level, domain), *gens)
def __hash__(self):
return super(Poly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial expression.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 1).free_symbols
{x}
>>> Poly(x**2 + y).free_symbols
{x, y}
>>> Poly(x**2 + y, x).free_symbols
{x, y}
>>> Poly(x**2 + y, x, z).free_symbols
{x, y}
"""
symbols = set()
gens = self.gens
for i in range(len(gens)):
for monom in self.monoms():
if monom[i]:
symbols |= gens[i].free_symbols
break
return symbols | self.free_symbols_in_domain
@property
def free_symbols_in_domain(self):
"""
Free symbols of the domain of ``self``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1).free_symbols_in_domain
set()
>>> Poly(x**2 + y).free_symbols_in_domain
set()
>>> Poly(x**2 + y, x).free_symbols_in_domain
{y}
"""
domain, symbols = self.rep.dom, set()
if domain.is_Composite:
for gen in domain.symbols:
symbols |= gen.free_symbols
elif domain.is_EX:
for coeff in self.coeffs():
symbols |= coeff.free_symbols
return symbols
@property
def gen(self):
"""
Return the principal generator.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).gen
x
"""
return self.gens[0]
@property
def domain(self):
"""Get the ground domain of ``self``. """
return self.get_domain()
@property
def zero(self):
"""Return zero polynomial with ``self``'s properties. """
return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens)
@property
def one(self):
"""Return one polynomial with ``self``'s properties. """
return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens)
@property
def unit(self):
"""Return unit polynomial with ``self``'s properties. """
return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens)
def unify(f, g):
"""
Make ``f`` and ``g`` belong to the same domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f, g = Poly(x/2 + 1), Poly(2*x + 1)
>>> f
Poly(1/2*x + 1, x, domain='QQ')
>>> g
Poly(2*x + 1, x, domain='ZZ')
>>> F, G = f.unify(g)
>>> F
Poly(1/2*x + 1, x, domain='QQ')
>>> G
Poly(2*x + 1, x, domain='QQ')
"""
_, per, F, G = f._unify(g)
return per(F), per(G)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if isinstance(f.rep, DMP) and isinstance(g.rep, DMP):
gens = _unify_gens(f.gens, g.gens)
dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1
if f.gens != gens:
f_monoms, f_coeffs = _dict_reorder(
f.rep.to_dict(), f.gens, gens)
if f.rep.dom != dom:
f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs]
F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev)
else:
F = f.rep.convert(dom)
if g.gens != gens:
g_monoms, g_coeffs = _dict_reorder(
g.rep.to_dict(), g.gens, gens)
if g.rep.dom != dom:
g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs]
G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev)
else:
G = g.rep.convert(dom)
else:
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
def per(f, rep, gens=None, remove=None):
"""
Create a Poly out of the given representation.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x, y
>>> from sympy.polys.polyclasses import DMP
>>> a = Poly(x**2 + 1)
>>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
Poly(y + 1, y, domain='ZZ')
"""
if gens is None:
gens = f.gens
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return f.rep.dom.to_sympy(rep)
return f.__class__.new(rep, *gens)
def set_domain(f, domain):
"""Set the ground domain of ``f``. """
opt = options.build_options(f.gens, {'domain': domain})
return f.per(f.rep.convert(opt.domain))
def get_domain(f):
"""Get the ground domain of ``f``. """
return f.rep.dom
def set_modulus(f, modulus):
"""
Set the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
Poly(x**2 + 1, x, modulus=2)
"""
modulus = options.Modulus.preprocess(modulus)
return f.set_domain(FF(modulus))
def get_modulus(f):
"""
Get the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, modulus=2).get_modulus()
2
"""
domain = f.get_domain()
if domain.is_FiniteField:
return Integer(domain.characteristic())
else:
raise PolynomialError("not a polynomial over a Galois field")
def _eval_subs(f, old, new):
"""Internal implementation of :func:`subs`. """
if old in f.gens:
if new.is_number:
return f.eval(old, new)
else:
try:
return f.replace(old, new)
except PolynomialError:
pass
return f.as_expr().subs(old, new)
def exclude(f):
"""
Remove unnecessary generators from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import a, b, c, d, x
>>> Poly(a + x, a, b, c, d, x).exclude()
Poly(a + x, a, x, domain='ZZ')
"""
J, new = f.rep.exclude()
gens = []
for j in range(len(f.gens)):
if j not in J:
gens.append(f.gens[j])
return f.per(new, gens=gens)
def replace(f, x, y=None, *_ignore):
# XXX this does not match Basic's signature
"""
Replace ``x`` with ``y`` in generators list.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1, x).replace(x, y)
Poly(y**2 + 1, y, domain='ZZ')
"""
if y is None:
if f.is_univariate:
x, y = f.gen, x
else:
raise PolynomialError(
"syntax supported only in univariate case")
if x == y or x not in f.gens:
return f
if x in f.gens and y not in f.gens:
dom = f.get_domain()
if not dom.is_Composite or y not in dom.symbols:
gens = list(f.gens)
gens[gens.index(x)] = y
return f.per(f.rep, gens=gens)
raise PolynomialError("can't replace %s with %s in %s" % (x, y, f))
def match(f, *args, **kwargs):
"""Match expression from Poly. See Basic.match()"""
return f.as_expr().match(*args, **kwargs)
def reorder(f, *gens, **args):
"""
Efficiently apply new order of generators.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
Poly(y**2*x + x**2, y, x, domain='ZZ')
"""
opt = options.Options((), args)
if not gens:
gens = _sort_gens(f.gens, opt=opt)
elif set(f.gens) != set(gens):
raise PolynomialError(
"generators list can differ only up to order of elements")
rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens))))
return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens)
def ltrim(f, gen):
"""
Remove dummy generators from ``f`` that are to the left of
specified ``gen`` in the generators as ordered. When ``gen``
is an integer, it refers to the generator located at that
position within the tuple of generators of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
Poly(y**2 + y*z**2, y, z, domain='ZZ')
>>> Poly(z, x, y, z).ltrim(-1)
Poly(z, z, domain='ZZ')
"""
rep = f.as_dict(native=True)
j = f._gen_to_level(gen)
terms = {}
for monom, coeff in rep.items():
if any(monom[:j]):
# some generator is used in the portion to be trimmed
raise PolynomialError("can't left trim %s" % f)
terms[monom[j:]] = coeff
gens = f.gens[j:]
return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens)
def has_only_gens(f, *gens):
"""
Return ``True`` if ``Poly(f, *gens)`` retains ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
True
>>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
False
"""
indices = set()
for gen in gens:
try:
index = f.gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
indices.add(index)
for monom in f.monoms():
for i, elt in enumerate(monom):
if i not in indices and elt:
return False
return True
def to_ring(f):
"""
Make the ground domain a ring.
Examples
========
>>> from sympy import Poly, QQ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, domain=QQ).to_ring()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'to_ring'):
result = f.rep.to_ring()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_ring')
return f.per(result)
def to_field(f):
"""
Make the ground domain a field.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x, domain=ZZ).to_field()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_field'):
result = f.rep.to_field()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_field')
return f.per(result)
def to_exact(f):
"""
Make the ground domain exact.
Examples
========
>>> from sympy import Poly, RR
>>> from sympy.abc import x
>>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_exact'):
result = f.rep.to_exact()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_exact')
return f.per(result)
def retract(f, field=None):
"""
Recalculate the ground domain of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x, domain='QQ[y]')
>>> f
Poly(x**2 + 1, x, domain='QQ[y]')
>>> f.retract()
Poly(x**2 + 1, x, domain='ZZ')
>>> f.retract(field=True)
Poly(x**2 + 1, x, domain='QQ')
"""
dom, rep = construct_domain(f.as_dict(zero=True),
field=field, composite=f.domain.is_Composite or None)
return f.from_dict(rep, f.gens, domain=dom)
def slice(f, x, m, n=None):
"""Take a continuous subsequence of terms of ``f``. """
if n is None:
j, m, n = 0, x, m
else:
j = f._gen_to_level(x)
m, n = int(m), int(n)
if hasattr(f.rep, 'slice'):
result = f.rep.slice(m, n, j)
else: # pragma: no cover
raise OperationNotSupported(f, 'slice')
return f.per(result)
def coeffs(f, order=None):
"""
Returns all non-zero coefficients from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x + 3, x).coeffs()
[1, 2, 3]
See Also
========
all_coeffs
coeff_monomial
nth
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)]
def monoms(f, order=None):
"""
Returns all non-zero monomials from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
[(2, 0), (1, 2), (1, 1), (0, 1)]
See Also
========
all_monoms
"""
return f.rep.monoms(order=order)
def terms(f, order=None):
"""
Returns all non-zero terms from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
[((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
See Also
========
all_terms
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)]
def all_coeffs(f):
"""
Returns all coefficients from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_coeffs()
[1, 0, 2, -1]
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()]
def all_monoms(f):
"""
Returns all monomials from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_monoms()
[(3,), (2,), (1,), (0,)]
See Also
========
all_terms
"""
return f.rep.all_monoms()
def all_terms(f):
"""
Returns all terms from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_terms()
[((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()]
def termwise(f, func, *gens, **args):
"""
Apply a function to all terms of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> def func(k, coeff):
... k = k[0]
... return coeff//10**(2-k)
>>> Poly(x**2 + 20*x + 400).termwise(func)
Poly(x**2 + 2*x + 4, x, domain='ZZ')
"""
terms = {}
for monom, coeff in f.terms():
result = func(monom, coeff)
if isinstance(result, tuple):
monom, coeff = result
else:
coeff = result
if coeff:
if monom not in terms:
terms[monom] = coeff
else:
raise PolynomialError(
"%s monomial was generated twice" % monom)
return f.from_dict(terms, *(gens or f.gens), **args)
def length(f):
"""
Returns the number of non-zero terms in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x - 1).length()
3
"""
return len(f.as_dict())
def as_dict(f, native=False, zero=False):
"""
Switch to a ``dict`` representation.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
{(0, 1): -1, (1, 2): 2, (2, 0): 1}
"""
if native:
return f.rep.to_dict(zero=zero)
else:
return f.rep.to_sympy_dict(zero=zero)
def as_list(f, native=False):
"""Switch to a ``list`` representation. """
if native:
return f.rep.to_list()
else:
return f.rep.to_sympy_list()
def as_expr(f, *gens):
"""
Convert a Poly instance to an Expr instance.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2 + 2*x*y**2 - y, x, y)
>>> f.as_expr()
x**2 + 2*x*y**2 - y
>>> f.as_expr({x: 5})
10*y**2 - y + 25
>>> f.as_expr(5, 6)
379
"""
if not gens:
return f.expr
if len(gens) == 1 and isinstance(gens[0], dict):
mapping = gens[0]
gens = list(f.gens)
for gen, value in mapping.items():
try:
index = gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
gens[index] = value
return basic_from_dict(f.rep.to_sympy_dict(), *gens)
def as_poly(self, *gens, **args):
"""Converts ``self`` to a polynomial or returns ``None``.
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y))
None
"""
try:
poly = Poly(self, *gens, **args)
if not poly.is_Poly:
return None
else:
return poly
except PolynomialError:
return None
def lift(f):
"""
Convert algebraic coefficients to rationals.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**2 + I*x + 1, x, extension=I).lift()
Poly(x**4 + 3*x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'lift'):
result = f.rep.lift()
else: # pragma: no cover
raise OperationNotSupported(f, 'lift')
return f.per(result)
def deflate(f):
"""
Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'deflate'):
J, result = f.rep.deflate()
else: # pragma: no cover
raise OperationNotSupported(f, 'deflate')
return J, f.per(result)
def inject(f, front=False):
"""
Inject ground domain generators into ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)
>>> f.inject()
Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
>>> f.inject(front=True)
Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
"""
dom = f.rep.dom
if dom.is_Numerical:
return f
elif not dom.is_Poly:
raise DomainError("can't inject generators over %s" % dom)
if hasattr(f.rep, 'inject'):
result = f.rep.inject(front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'inject')
if front:
gens = dom.symbols + f.gens
else:
gens = f.gens + dom.symbols
return f.new(result, *gens)
def eject(f, *gens):
"""
Eject selected generators into the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
>>> f.eject(x)
Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
>>> f.eject(y)
Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
"""
dom = f.rep.dom
if not dom.is_Numerical:
raise DomainError("can't eject generators over %s" % dom)
k = len(gens)
if f.gens[:k] == gens:
_gens, front = f.gens[k:], True
elif f.gens[-k:] == gens:
_gens, front = f.gens[:-k], False
else:
raise NotImplementedError(
"can only eject front or back generators")
dom = dom.inject(*gens)
if hasattr(f.rep, 'eject'):
result = f.rep.eject(dom, front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'eject')
return f.new(result, *_gens)
def terms_gcd(f):
"""
Remove GCD of terms from the polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'terms_gcd'):
J, result = f.rep.terms_gcd()
else: # pragma: no cover
raise OperationNotSupported(f, 'terms_gcd')
return J, f.per(result)
def add_ground(f, coeff):
"""
Add an element of the ground domain to ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).add_ground(2)
Poly(x + 3, x, domain='ZZ')
"""
if hasattr(f.rep, 'add_ground'):
result = f.rep.add_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'add_ground')
return f.per(result)
def sub_ground(f, coeff):
"""
Subtract an element of the ground domain from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).sub_ground(2)
Poly(x - 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'sub_ground'):
result = f.rep.sub_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub_ground')
return f.per(result)
def mul_ground(f, coeff):
"""
Multiply ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).mul_ground(2)
Poly(2*x + 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'mul_ground'):
result = f.rep.mul_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul_ground')
return f.per(result)
def quo_ground(f, coeff):
"""
Quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).quo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).quo_ground(2)
Poly(x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'quo_ground'):
result = f.rep.quo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo_ground')
return f.per(result)
def exquo_ground(f, coeff):
"""
Exact quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).exquo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).exquo_ground(2)
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 3 in ZZ
"""
if hasattr(f.rep, 'exquo_ground'):
result = f.rep.exquo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo_ground')
return f.per(result)
def abs(f):
"""
Make all coefficients in ``f`` positive.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).abs()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'abs'):
result = f.rep.abs()
else: # pragma: no cover
raise OperationNotSupported(f, 'abs')
return f.per(result)
def neg(f):
"""
Negate all coefficients in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).neg()
Poly(-x**2 + 1, x, domain='ZZ')
>>> -Poly(x**2 - 1, x)
Poly(-x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'neg'):
result = f.rep.neg()
else: # pragma: no cover
raise OperationNotSupported(f, 'neg')
return f.per(result)
def add(f, g):
"""
Add two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
Poly(x**2 + x - 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x) + Poly(x - 2, x)
Poly(x**2 + x - 1, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.add_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'add'):
result = F.add(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'add')
return per(result)
def sub(f, g):
"""
Subtract two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
Poly(x**2 - x + 3, x, domain='ZZ')
>>> Poly(x**2 + 1, x) - Poly(x - 2, x)
Poly(x**2 - x + 3, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.sub_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'sub'):
result = F.sub(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub')
return per(result)
def mul(f, g):
"""
Multiply two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x)*Poly(x - 2, x)
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.mul_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'mul'):
result = F.mul(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul')
return per(result)
def sqr(f):
"""
Square a polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).sqr()
Poly(x**2 - 4*x + 4, x, domain='ZZ')
>>> Poly(x - 2, x)**2
Poly(x**2 - 4*x + 4, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqr'):
result = f.rep.sqr()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqr')
return f.per(result)
def pow(f, n):
"""
Raise ``f`` to a non-negative power ``n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).pow(3)
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
>>> Poly(x - 2, x)**3
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
"""
n = int(n)
if hasattr(f.rep, 'pow'):
result = f.rep.pow(n)
else: # pragma: no cover
raise OperationNotSupported(f, 'pow')
return f.per(result)
def pdiv(f, g):
"""
Polynomial pseudo-division of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
(Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pdiv'):
q, r = F.pdiv(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pdiv')
return per(q), per(r)
def prem(f, g):
"""
Polynomial pseudo-remainder of ``f`` by ``g``.
Caveat: The function prem(f, g, x) can be safely used to compute
in Z[x] _only_ subresultant polynomial remainder sequences (prs's).
To safely compute Euclidean and Sturmian prs's in Z[x]
employ anyone of the corresponding functions found in
the module sympy.polys.subresultants_qq_zz. The functions
in the module with suffix _pg compute prs's in Z[x] employing
rem(f, g, x), whereas the functions with suffix _amv
compute prs's in Z[x] employing rem_z(f, g, x).
The function rem_z(f, g, x) differs from prem(f, g, x) in that
to compute the remainder polynomials in Z[x] it premultiplies
the divident times the absolute value of the leading coefficient
of the divisor raised to the power degree(f, x) - degree(g, x) + 1.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
Poly(20, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'prem'):
result = F.prem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'prem')
return per(result)
def pquo(f, g):
"""
Polynomial pseudo-quotient of ``f`` by ``g``.
See the Caveat note in the function prem(f, g).
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
Poly(2*x + 4, x, domain='ZZ')
>>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pquo'):
result = F.pquo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pquo')
return per(result)
def pexquo(f, g):
"""
Polynomial exact pseudo-quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pexquo'):
try:
result = F.pexquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'pexquo')
return per(result)
def div(f, g, auto=True):
"""
Polynomial division with remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
(Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
(Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'div'):
q, r = F.div(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'div')
if retract:
try:
Q, R = q.to_ring(), r.to_ring()
except CoercionFailed:
pass
else:
q, r = Q, R
return per(q), per(r)
def rem(f, g, auto=True):
"""
Computes the polynomial remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
Poly(5, x, domain='ZZ')
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
Poly(x**2 + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'rem'):
r = F.rem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'rem')
if retract:
try:
r = r.to_ring()
except CoercionFailed:
pass
return per(r)
def quo(f, g, auto=True):
"""
Computes polynomial quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
Poly(1/2*x + 1, x, domain='QQ')
>>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'quo'):
q = F.quo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def exquo(f, g, auto=True):
"""
Computes polynomial exact quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'exquo'):
try:
q = F.exquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def _gen_to_level(f, gen):
"""Returns level associated with the given generator. """
if isinstance(gen, int):
length = len(f.gens)
if -length <= gen < length:
if gen < 0:
return length + gen
else:
return gen
else:
raise PolynomialError("-%s <= gen < %s expected, got %s" %
(length, length, gen))
else:
try:
return f.gens.index(sympify(gen))
except ValueError:
raise PolynomialError(
"a valid generator expected, got %s" % gen)
def degree(f, gen=0):
"""
Returns degree of ``f`` in ``x_j``.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree()
2
>>> Poly(x**2 + y*x + y, x, y).degree(y)
1
>>> Poly(0, x).degree()
-oo
"""
j = f._gen_to_level(gen)
if hasattr(f.rep, 'degree'):
return f.rep.degree(j)
else: # pragma: no cover
raise OperationNotSupported(f, 'degree')
def degree_list(f):
"""
Returns a list of degrees of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree_list()
(2, 1)
"""
if hasattr(f.rep, 'degree_list'):
return f.rep.degree_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'degree_list')
def total_degree(f):
"""
Returns the total degree of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).total_degree()
2
>>> Poly(x + y**5, x, y).total_degree()
5
"""
if hasattr(f.rep, 'total_degree'):
return f.rep.total_degree()
else: # pragma: no cover
raise OperationNotSupported(f, 'total_degree')
def homogenize(f, s):
"""
Returns the homogeneous polynomial of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you only
want to check if a polynomial is homogeneous, then use
:func:`Poly.is_homogeneous`. If you want not only to check if a
polynomial is homogeneous but also compute its homogeneous order,
then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
>>> f.homogenize(z)
Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')
"""
if not isinstance(s, Symbol):
raise TypeError("``Symbol`` expected, got %s" % type(s))
if s in f.gens:
i = f.gens.index(s)
gens = f.gens
else:
i = len(f.gens)
gens = f.gens + (s,)
if hasattr(f.rep, 'homogenize'):
return f.per(f.rep.homogenize(i), gens=gens)
raise OperationNotSupported(f, 'homogeneous_order')
def homogeneous_order(f):
"""
Returns the homogeneous order of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. This degree is
the homogeneous order of ``f``. If you only want to check if a
polynomial is homogeneous, then use :func:`Poly.is_homogeneous`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
>>> f.homogeneous_order()
5
"""
if hasattr(f.rep, 'homogeneous_order'):
return f.rep.homogeneous_order()
else: # pragma: no cover
raise OperationNotSupported(f, 'homogeneous_order')
def LC(f, order=None):
"""
Returns the leading coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
4
"""
if order is not None:
return f.coeffs(order)[0]
if hasattr(f.rep, 'LC'):
result = f.rep.LC()
else: # pragma: no cover
raise OperationNotSupported(f, 'LC')
return f.rep.dom.to_sympy(result)
def TC(f):
"""
Returns the trailing coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
0
"""
if hasattr(f.rep, 'TC'):
result = f.rep.TC()
else: # pragma: no cover
raise OperationNotSupported(f, 'TC')
return f.rep.dom.to_sympy(result)
def EC(f, order=None):
"""
Returns the last non-zero coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
3
"""
if hasattr(f.rep, 'coeffs'):
return f.coeffs(order)[-1]
else: # pragma: no cover
raise OperationNotSupported(f, 'EC')
def coeff_monomial(f, monom):
"""
Returns the coefficient of ``monom`` in ``f`` if there, else None.
Examples
========
>>> from sympy import Poly, exp
>>> from sympy.abc import x, y
>>> p = Poly(24*x*y*exp(8) + 23*x, x, y)
>>> p.coeff_monomial(x)
23
>>> p.coeff_monomial(y)
0
>>> p.coeff_monomial(x*y)
24*exp(8)
Note that ``Expr.coeff()`` behaves differently, collecting terms
if possible; the Poly must be converted to an Expr to use that
method, however:
>>> p.as_expr().coeff(x)
24*y*exp(8) + 23
>>> p.as_expr().coeff(y)
24*x*exp(8)
>>> p.as_expr().coeff(x*y)
24*exp(8)
See Also
========
nth: more efficient query using exponents of the monomial's generators
"""
return f.nth(*Monomial(monom, f.gens).exponents)
def nth(f, *N):
"""
Returns the ``n``-th coefficient of ``f`` where ``N`` are the
exponents of the generators in the term of interest.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x, y
>>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
2
>>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
2
>>> Poly(4*sqrt(x)*y)
Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
>>> _.nth(1, 1)
4
See Also
========
coeff_monomial
"""
if hasattr(f.rep, 'nth'):
if len(N) != len(f.gens):
raise ValueError('exponent of each generator must be specified')
result = f.rep.nth(*list(map(int, N)))
else: # pragma: no cover
raise OperationNotSupported(f, 'nth')
return f.rep.dom.to_sympy(result)
def coeff(f, x, n=1, right=False):
# the semantics of coeff_monomial and Expr.coeff are different;
# if someone is working with a Poly, they should be aware of the
# differences and chose the method best suited for the query.
# Alternatively, a pure-polys method could be written here but
# at this time the ``right`` keyword would be ignored because Poly
# doesn't work with non-commutatives.
raise NotImplementedError(
'Either convert to Expr with `as_expr` method '
'to use Expr\'s coeff method or else use the '
'`coeff_monomial` method of Polys.')
def LM(f, order=None):
"""
Returns the leading monomial of ``f``.
The Leading monomial signifies the monomial having
the highest power of the principal generator in the
expression f.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
x**2*y**0
"""
return Monomial(f.monoms(order)[0], f.gens)
def EM(f, order=None):
"""
Returns the last non-zero monomial of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
x**0*y**1
"""
return Monomial(f.monoms(order)[-1], f.gens)
def LT(f, order=None):
"""
Returns the leading term of ``f``.
The Leading term signifies the term having
the highest power of the principal generator in the
expression f along with its coefficient.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
(x**2*y**0, 4)
"""
monom, coeff = f.terms(order)[0]
return Monomial(monom, f.gens), coeff
def ET(f, order=None):
"""
Returns the last non-zero term of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
(x**0*y**1, 3)
"""
monom, coeff = f.terms(order)[-1]
return Monomial(monom, f.gens), coeff
def max_norm(f):
"""
Returns maximum norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).max_norm()
3
"""
if hasattr(f.rep, 'max_norm'):
result = f.rep.max_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'max_norm')
return f.rep.dom.to_sympy(result)
def l1_norm(f):
"""
Returns l1 norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).l1_norm()
6
"""
if hasattr(f.rep, 'l1_norm'):
result = f.rep.l1_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'l1_norm')
return f.rep.dom.to_sympy(result)
def clear_denoms(self, convert=False):
"""
Clear denominators, but keep the ground domain.
Examples
========
>>> from sympy import Poly, S, QQ
>>> from sympy.abc import x
>>> f = Poly(x/2 + S(1)/3, x, domain=QQ)
>>> f.clear_denoms()
(6, Poly(3*x + 2, x, domain='QQ'))
>>> f.clear_denoms(convert=True)
(6, Poly(3*x + 2, x, domain='ZZ'))
"""
f = self
if not f.rep.dom.is_Field:
return S.One, f
dom = f.get_domain()
if dom.has_assoc_Ring:
dom = f.rep.dom.get_ring()
if hasattr(f.rep, 'clear_denoms'):
coeff, result = f.rep.clear_denoms()
else: # pragma: no cover
raise OperationNotSupported(f, 'clear_denoms')
coeff, f = dom.to_sympy(coeff), f.per(result)
if not convert or not dom.has_assoc_Ring:
return coeff, f
else:
return coeff, f.to_ring()
def rat_clear_denoms(self, g):
"""
Clear denominators in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2/y + 1, x)
>>> g = Poly(x**3 + y, x)
>>> p, q = f.rat_clear_denoms(g)
>>> p
Poly(x**2 + y, x, domain='ZZ[y]')
>>> q
Poly(y*x**3 + y**2, x, domain='ZZ[y]')
"""
f = self
dom, per, f, g = f._unify(g)
f = per(f)
g = per(g)
if not (dom.is_Field and dom.has_assoc_Ring):
return f, g
a, f = f.clear_denoms(convert=True)
b, g = g.clear_denoms(convert=True)
f = f.mul_ground(b)
g = g.mul_ground(a)
return f, g
def integrate(self, *specs, **args):
"""
Computes indefinite integral of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).integrate()
Poly(1/3*x**3 + x**2 + x, x, domain='QQ')
>>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
"""
f = self
if args.get('auto', True) and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'integrate'):
if not specs:
return f.per(f.rep.integrate(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.integrate(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'integrate')
def diff(f, *specs, **kwargs):
"""
Computes partial derivative of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).diff()
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
Poly(2*x*y, x, y, domain='ZZ')
"""
if not kwargs.get('evaluate', True):
return Derivative(f, *specs, **kwargs)
if hasattr(f.rep, 'diff'):
if not specs:
return f.per(f.rep.diff(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.diff(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'diff')
_eval_derivative = diff
def eval(self, x, a=None, auto=True):
"""
Evaluate ``f`` at ``a`` in the given variable.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 2*x + 3, x).eval(2)
11
>>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
Poly(5*y + 8, y, domain='ZZ')
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f.eval({x: 2})
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f.eval({x: 2, y: 5})
Poly(2*z + 31, z, domain='ZZ')
>>> f.eval({x: 2, y: 5, z: 7})
45
>>> f.eval((2, 5))
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
"""
f = self
if a is None:
if isinstance(x, dict):
mapping = x
for gen, value in mapping.items():
f = f.eval(gen, value)
return f
elif isinstance(x, (tuple, list)):
values = x
if len(values) > len(f.gens):
raise ValueError("too many values provided")
for gen, value in zip(f.gens, values):
f = f.eval(gen, value)
return f
else:
j, a = 0, x
else:
j = f._gen_to_level(x)
if not hasattr(f.rep, 'eval'): # pragma: no cover
raise OperationNotSupported(f, 'eval')
try:
result = f.rep.eval(a, j)
except CoercionFailed:
if not auto:
raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom))
else:
a_domain, [a] = construct_domain([a])
new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens)
f = f.set_domain(new_domain)
a = new_domain.convert(a, a_domain)
result = f.rep.eval(a, j)
return f.per(result, remove=j)
def __call__(f, *values):
"""
Evaluate ``f`` at the give values.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f(2)
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5, 7)
45
"""
return f.eval(values)
def half_gcdex(f, g, auto=True):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).half_gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'half_gcdex'):
s, h = F.half_gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'half_gcdex')
return per(s), per(h)
def gcdex(f, g, auto=True):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'),
Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'gcdex'):
s, t, h = F.gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcdex')
return per(s), per(t), per(h)
def invert(f, g, auto=True):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
Poly(-4/3, x, domain='QQ')
>>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
Traceback (most recent call last):
...
NotInvertible: zero divisor
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'invert'):
result = F.invert(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'invert')
return per(result)
def revert(f, n):
"""
Compute ``f**(-1)`` mod ``x**n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(1, x).revert(2)
Poly(1, x, domain='ZZ')
>>> Poly(1 + x, x).revert(1)
Poly(1, x, domain='ZZ')
>>> Poly(x**2 - 1, x).revert(1)
Traceback (most recent call last):
...
NotReversible: only unity is reversible in a ring
>>> Poly(1/x, x).revert(1)
Traceback (most recent call last):
...
PolynomialError: 1/x contains an element of the generators set
"""
if hasattr(f.rep, 'revert'):
result = f.rep.revert(int(n))
else: # pragma: no cover
raise OperationNotSupported(f, 'revert')
return f.per(result)
def subresultants(f, g):
"""
Computes the subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
[Poly(x**2 + 1, x, domain='ZZ'),
Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')]
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'subresultants'):
result = F.subresultants(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'subresultants')
return list(map(per, result))
def resultant(f, g, includePRS=False):
"""
Computes the resultant of ``f`` and ``g`` via PRS.
If includePRS=True, it includes the subresultant PRS in the result.
Because the PRS is used to calculate the resultant, this is more
efficient than calling :func:`subresultants` separately.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x)
>>> f.resultant(Poly(x**2 - 1, x))
4
>>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
(4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')])
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'resultant'):
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'resultant')
if includePRS:
return (per(result, remove=0), list(map(per, R)))
return per(result, remove=0)
def discriminant(f):
"""
Computes the discriminant of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x + 3, x).discriminant()
-8
"""
if hasattr(f.rep, 'discriminant'):
result = f.rep.discriminant()
else: # pragma: no cover
raise OperationNotSupported(f, 'discriminant')
return f.per(result, remove=0)
def dispersionset(f, g=None):
r"""Compute the *dispersion set* of two polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
.. math::
\operatorname{J}(f, g)
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersion
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersionset
return dispersionset(f, g)
def dispersion(f, g=None):
r"""Compute the *dispersion* of polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
.. math::
\operatorname{dis}(f, g)
& := \max\{ J(f,g) \cup \{0\} \} \\
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersionset
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersion
return dispersion(f, g)
def cofactors(f, g):
"""
Returns the GCD of ``f`` and ``g`` and their cofactors.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
(Poly(x - 1, x, domain='ZZ'),
Poly(x + 1, x, domain='ZZ'),
Poly(x - 2, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'cofactors'):
h, cff, cfg = F.cofactors(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'cofactors')
return per(h), per(cff), per(cfg)
def gcd(f, g):
"""
Returns the polynomial GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
Poly(x - 1, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'gcd'):
result = F.gcd(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcd')
return per(result)
def lcm(f, g):
"""
Returns polynomial LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'lcm'):
result = F.lcm(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'lcm')
return per(result)
def trunc(f, p):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
Poly(-x**3 - x + 1, x, domain='ZZ')
"""
p = f.rep.dom.convert(p)
if hasattr(f.rep, 'trunc'):
result = f.rep.trunc(p)
else: # pragma: no cover
raise OperationNotSupported(f, 'trunc')
return f.per(result)
def monic(self, auto=True):
"""
Divides all coefficients by ``LC(f)``.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
Poly(x**2 + 2*x + 3, x, domain='QQ')
>>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'monic'):
result = f.rep.monic()
else: # pragma: no cover
raise OperationNotSupported(f, 'monic')
return f.per(result)
def content(f):
"""
Returns the GCD of polynomial coefficients.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(6*x**2 + 8*x + 12, x).content()
2
"""
if hasattr(f.rep, 'content'):
result = f.rep.content()
else: # pragma: no cover
raise OperationNotSupported(f, 'content')
return f.rep.dom.to_sympy(result)
def primitive(f):
"""
Returns the content and a primitive form of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 8*x + 12, x).primitive()
(2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
"""
if hasattr(f.rep, 'primitive'):
cont, result = f.rep.primitive()
else: # pragma: no cover
raise OperationNotSupported(f, 'primitive')
return f.rep.dom.to_sympy(cont), f.per(result)
def compose(f, g):
"""
Computes the functional composition of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x, x).compose(Poly(x - 1, x))
Poly(x**2 - x, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'compose'):
result = F.compose(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'compose')
return per(result)
def decompose(f):
"""
Computes a functional decomposition of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose()
[Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]
"""
if hasattr(f.rep, 'decompose'):
result = f.rep.decompose()
else: # pragma: no cover
raise OperationNotSupported(f, 'decompose')
return list(map(f.per, result))
def shift(f, a):
"""
Efficiently compute Taylor shift ``f(x + a)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).shift(2)
Poly(x**2 + 2*x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'shift'):
result = f.rep.shift(a)
else: # pragma: no cover
raise OperationNotSupported(f, 'shift')
return f.per(result)
def transform(f, p, q):
"""
Efficiently evaluate the functional transformation ``q**n * f(p/q)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
Poly(4, x, domain='ZZ')
"""
P, Q = p.unify(q)
F, P = f.unify(P)
F, Q = F.unify(Q)
if hasattr(F.rep, 'transform'):
result = F.rep.transform(P.rep, Q.rep)
else: # pragma: no cover
raise OperationNotSupported(F, 'transform')
return F.per(result)
def sturm(self, auto=True):
"""
Computes the Sturm sequence of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
[Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
Poly(2/9*x + 25/9, x, domain='QQ'),
Poly(-2079/4, x, domain='QQ')]
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'sturm'):
result = f.rep.sturm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sturm')
return list(map(f.per, result))
def gff_list(f):
"""
Computes greatest factorial factorization of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**5 + 2*x**4 - x**3 - 2*x**2
>>> Poly(f).gff_list()
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'gff_list'):
result = f.rep.gff_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'gff_list')
return [(f.per(g), k) for g, k in result]
def norm(f):
"""
Computes the product, ``Norm(f)``, of the conjugates of
a polynomial ``f`` defined over a number field ``K``.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> a, b = sqrt(2), sqrt(3)
A polynomial over a quadratic extension.
Two conjugates x - a and x + a.
>>> f = Poly(x - a, x, extension=a)
>>> f.norm()
Poly(x**2 - 2, x, domain='QQ')
A polynomial over a quartic extension.
Four conjugates x - a, x - a, x + a and x + a.
>>> f = Poly(x - a, x, extension=(a, b))
>>> f.norm()
Poly(x**4 - 4*x**2 + 4, x, domain='QQ')
"""
if hasattr(f.rep, 'norm'):
r = f.rep.norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'norm')
return f.per(r)
def sqf_norm(f):
"""
Computes square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()
>>> s
1
>>> f
Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
>>> r
Poly(x**4 - 4*x**2 + 16, x, domain='QQ')
"""
if hasattr(f.rep, 'sqf_norm'):
s, g, r = f.rep.sqf_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_norm')
return s, f.per(g), f.per(r)
def sqf_part(f):
"""
Computes square-free part of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 3*x - 2, x).sqf_part()
Poly(x**2 - x - 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqf_part'):
result = f.rep.sqf_part()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_part')
return f.per(result)
def sqf_list(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> Poly(f).sqf_list()
(2, [(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
>>> Poly(f).sqf_list(all=True)
(2, [(Poly(1, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
"""
if hasattr(f.rep, 'sqf_list'):
coeff, factors = f.rep.sqf_list(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def sqf_list_include(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly, expand
>>> from sympy.abc import x
>>> f = expand(2*(x + 1)**3*x**4)
>>> f
2*x**7 + 6*x**6 + 6*x**5 + 2*x**4
>>> Poly(f).sqf_list_include()
[(Poly(2, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
>>> Poly(f).sqf_list_include(all=True)
[(Poly(2, x, domain='ZZ'), 1),
(Poly(1, x, domain='ZZ'), 2),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'sqf_list_include'):
factors = f.rep.sqf_list_include(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list_include')
return [(f.per(g), k) for g, k in factors]
def factor_list(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list()
(2, [(Poly(x + y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
"""
if hasattr(f.rep, 'factor_list'):
try:
coeff, factors = f.rep.factor_list()
except DomainError:
return S.One, [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def factor_list_include(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list_include()
[(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)]
"""
if hasattr(f.rep, 'factor_list_include'):
try:
factors = f.rep.factor_list_include()
except DomainError:
return [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list_include')
return [(f.per(g), k) for g, k in factors]
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.
References
==========
.. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
.. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).intervals()
[((-2, -1), 1), ((1, 2), 1)]
>>> Poly(x**2 - 3, x).intervals(eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = QQ.convert(inf)
if sup is not None:
sup = QQ.convert(sup)
if hasattr(f.rep, 'intervals'):
result = f.rep.intervals(
all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else: # pragma: no cover
raise OperationNotSupported(f, 'intervals')
if sqf:
def _real(interval):
s, t = interval
return (QQ.to_sympy(s), QQ.to_sympy(t))
if not all:
return list(map(_real, result))
def _complex(rectangle):
(u, v), (s, t) = rectangle
return (QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t))
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
else:
def _real(interval):
(s, t), k = interval
return ((QQ.to_sympy(s), QQ.to_sympy(t)), k)
if not all:
return list(map(_real, result))
def _complex(rectangle):
((u, v), (s, t)), k = rectangle
return ((QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t)), k)
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
(19/11, 26/15)
"""
if check_sqf and not f.is_sqf:
raise PolynomialError("only square-free polynomials supported")
s, t = QQ.convert(s), QQ.convert(t)
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if steps is not None:
steps = int(steps)
elif eps is None:
steps = 1
if hasattr(f.rep, 'refine_root'):
S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast)
else: # pragma: no cover
raise OperationNotSupported(f, 'refine_root')
return QQ.to_sympy(S), QQ.to_sympy(T)
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**4 - 4, x).count_roots(-3, 3)
2
>>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
1
"""
inf_real, sup_real = True, True
if inf is not None:
inf = sympify(inf)
if inf is S.NegativeInfinity:
inf = None
else:
re, im = inf.as_real_imag()
if not im:
inf = QQ.convert(inf)
else:
inf, inf_real = list(map(QQ.convert, (re, im))), False
if sup is not None:
sup = sympify(sup)
if sup is S.Infinity:
sup = None
else:
re, im = sup.as_real_imag()
if not im:
sup = QQ.convert(sup)
else:
sup, sup_real = list(map(QQ.convert, (re, im))), False
if inf_real and sup_real:
if hasattr(f.rep, 'count_real_roots'):
count = f.rep.count_real_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_real_roots')
else:
if inf_real and inf is not None:
inf = (inf, QQ.zero)
if sup_real and sup is not None:
sup = (sup, QQ.zero)
if hasattr(f.rep, 'count_complex_roots'):
count = f.rep.count_complex_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_complex_roots')
return Integer(count)
def root(f, index, radicals=True):
"""
Get an indexed root of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
>>> f.root(0)
-1/2
>>> f.root(1)
2
>>> f.root(2)
2
>>> f.root(3)
Traceback (most recent call last):
...
IndexError: root index out of [-3, 2] range, got 3
>>> Poly(x**5 + x + 1).root(0)
CRootOf(x**3 - x**2 + 1, 0)
"""
return sympy.polys.rootoftools.rootof(f, index, radicals=radicals)
def real_roots(f, multiple=True, radicals=True):
"""
Return a list of real roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).real_roots()
[CRootOf(x**3 + x + 1, 0)]
"""
reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals)
if multiple:
return reals
else:
return group(reals, multiple=False)
def all_roots(f, multiple=True, radicals=True):
"""
Return a list of real and complex roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).all_roots()
[CRootOf(x**3 + x + 1, 0),
CRootOf(x**3 + x + 1, 1),
CRootOf(x**3 + x + 1, 2)]
"""
roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals)
if multiple:
return roots
else:
return group(roots, multiple=False)
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Parameters
==========
n ... the number of digits to calculate
maxsteps ... the maximum number of iterations to do
If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
exception. You need to rerun with higher maxsteps.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3).nroots(n=15)
[-1.73205080756888, 1.73205080756888]
>>> Poly(x**2 - 3).nroots(n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
from sympy.functions.elementary.complexes import sign
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute numerical roots of %s" % f)
if f.degree() <= 0:
return []
# For integer and rational coefficients, convert them to integers only
# (for accuracy). Otherwise just try to convert the coefficients to
# mpmath.mpc and raise an exception if the conversion fails.
if f.rep.dom is ZZ:
coeffs = [int(coeff) for coeff in f.all_coeffs()]
elif f.rep.dom is QQ:
denoms = [coeff.q for coeff in f.all_coeffs()]
from sympy.core.numbers import ilcm
fac = ilcm(*denoms)
coeffs = [int(coeff*fac) for coeff in f.all_coeffs()]
else:
coeffs = [coeff.evalf(n=n).as_real_imag()
for coeff in f.all_coeffs()]
try:
coeffs = [mpmath.mpc(*coeff) for coeff in coeffs]
except TypeError:
raise DomainError("Numerical domain expected, got %s" % \
f.rep.dom)
dps = mpmath.mp.dps
mpmath.mp.dps = n
try:
# We need to add extra precision to guard against losing accuracy.
# 10 times the degree of the polynomial seems to work well.
roots = mpmath.polyroots(coeffs, maxsteps=maxsteps,
cleanup=cleanup, error=False, extraprec=f.degree()*10)
# Mpmath puts real roots first, then complex ones (as does all_roots)
# so we make sure this convention holds here, too.
roots = list(map(sympify,
sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag)))))
except NoConvergence:
raise NoConvergence(
'convergence to root failed; try n < %s or maxsteps > %s' % (
n, maxsteps))
finally:
mpmath.mp.dps = dps
return roots
def ground_roots(f):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
{0: 2, 1: 2}
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute ground roots of %s" % f)
roots = {}
for factor, k in f.factor_list()[1]:
if factor.is_linear:
a, b = factor.all_coeffs()
roots[-b/a] = k
return roots
def nth_power_roots_poly(f, n):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**4 - x**2 + 1)
>>> f.nth_power_roots_poly(2)
Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(3)
Poly(x**4 + 2*x**2 + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(4)
Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(12)
Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"must be a univariate polynomial")
N = sympify(n)
if N.is_Integer and N >= 1:
n = int(N)
else:
raise ValueError("'n' must an integer and n >= 1, got %s" % n)
x = f.gen
t = Dummy('t')
r = f.resultant(f.__class__.from_expr(x**n - t, x, t))
return r.replace(t, x)
def cancel(f, g, include=False):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
(1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
(Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
if hasattr(F, 'cancel'):
result = F.cancel(G, include=include)
else: # pragma: no cover
raise OperationNotSupported(f, 'cancel')
if not include:
if dom.has_assoc_Ring:
dom = dom.get_ring()
cp, cq, p, q = result
cp = dom.to_sympy(cp)
cq = dom.to_sympy(cq)
return cp/cq, per(p), per(q)
else:
return tuple(map(per, result))
@property
def is_zero(f):
"""
Returns ``True`` if ``f`` is a zero polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_zero
True
>>> Poly(1, x).is_zero
False
"""
return f.rep.is_zero
@property
def is_one(f):
"""
Returns ``True`` if ``f`` is a unit polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_one
False
>>> Poly(1, x).is_one
True
"""
return f.rep.is_one
@property
def is_sqf(f):
"""
Returns ``True`` if ``f`` is a square-free polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).is_sqf
False
>>> Poly(x**2 - 1, x).is_sqf
True
"""
return f.rep.is_sqf
@property
def is_monic(f):
"""
Returns ``True`` if the leading coefficient of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 2, x).is_monic
True
>>> Poly(2*x + 2, x).is_monic
False
"""
return f.rep.is_monic
@property
def is_primitive(f):
"""
Returns ``True`` if GCD of the coefficients of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 6*x + 12, x).is_primitive
False
>>> Poly(x**2 + 3*x + 6, x).is_primitive
True
"""
return f.rep.is_primitive
@property
def is_ground(f):
"""
Returns ``True`` if ``f`` is an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x, x).is_ground
False
>>> Poly(2, x).is_ground
True
>>> Poly(y, x).is_ground
True
"""
return f.rep.is_ground
@property
def is_linear(f):
"""
Returns ``True`` if ``f`` is linear in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x + y + 2, x, y).is_linear
True
>>> Poly(x*y + 2, x, y).is_linear
False
"""
return f.rep.is_linear
@property
def is_quadratic(f):
"""
Returns ``True`` if ``f`` is quadratic in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x*y + 2, x, y).is_quadratic
True
>>> Poly(x*y**2 + 2, x, y).is_quadratic
False
"""
return f.rep.is_quadratic
@property
def is_monomial(f):
"""
Returns ``True`` if ``f`` is zero or has only one term.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(3*x**2, x).is_monomial
True
>>> Poly(3*x**2 + 1, x).is_monomial
False
"""
return f.rep.is_monomial
@property
def is_homogeneous(f):
"""
Returns ``True`` if ``f`` is a homogeneous polynomial.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you want not
only to check if a polynomial is homogeneous but also compute its
homogeneous order, then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y, x, y).is_homogeneous
True
>>> Poly(x**3 + x*y, x, y).is_homogeneous
False
"""
return f.rep.is_homogeneous
@property
def is_irreducible(f):
"""
Returns ``True`` if ``f`` has no factors over its domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
True
>>> Poly(x**2 + 1, x, modulus=2).is_irreducible
False
"""
return f.rep.is_irreducible
@property
def is_univariate(f):
"""
Returns ``True`` if ``f`` is a univariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_univariate
True
>>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
False
>>> Poly(x*y**2 + x*y + 1, x).is_univariate
True
>>> Poly(x**2 + x + 1, x, y).is_univariate
False
"""
return len(f.gens) == 1
@property
def is_multivariate(f):
"""
Returns ``True`` if ``f`` is a multivariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_multivariate
False
>>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
True
>>> Poly(x*y**2 + x*y + 1, x).is_multivariate
False
>>> Poly(x**2 + x + 1, x, y).is_multivariate
True
"""
return len(f.gens) != 1
@property
def is_cyclotomic(f):
"""
Returns ``True`` if ``f`` is a cyclotomic polnomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> Poly(f).is_cyclotomic
False
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> Poly(g).is_cyclotomic
True
"""
return f.rep.is_cyclotomic
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
@_polifyit
def __add__(f, g):
return f.add(g)
@_polifyit
def __radd__(f, g):
return g.add(f)
@_polifyit
def __sub__(f, g):
return f.sub(g)
@_polifyit
def __rsub__(f, g):
return g.sub(f)
@_polifyit
def __mul__(f, g):
return f.mul(g)
@_polifyit
def __rmul__(f, g):
return g.mul(f)
@_sympifyit('n', NotImplemented)
def __pow__(f, n):
if n.is_Integer and n >= 0:
return f.pow(n)
else:
return NotImplemented
@_polifyit
def __divmod__(f, g):
return f.div(g)
@_polifyit
def __rdivmod__(f, g):
return g.div(f)
@_polifyit
def __mod__(f, g):
return f.rem(g)
@_polifyit
def __rmod__(f, g):
return g.rem(f)
@_polifyit
def __floordiv__(f, g):
return f.quo(g)
@_polifyit
def __rfloordiv__(f, g):
return g.quo(f)
@_sympifyit('g', NotImplemented)
def __truediv__(f, g):
return f.as_expr()/g.as_expr()
@_sympifyit('g', NotImplemented)
def __rtruediv__(f, g):
return g.as_expr()/f.as_expr()
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if f.gens != g.gens:
return False
if f.rep.dom != g.rep.dom:
return False
return f.rep == g.rep
@_sympifyit('g', NotImplemented)
def __ne__(f, g):
return not f == g
def __bool__(f):
return not f.is_zero
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(sympify(g))
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True)
@public
class PurePoly(Poly):
"""Class for representing pure polynomials. """
def _hashable_content(self):
"""Allow SymPy to hash Poly instances. """
return (self.rep,)
def __hash__(self):
return super(PurePoly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial.
Examples
========
>>> from sympy import PurePoly
>>> from sympy.abc import x, y
>>> PurePoly(x**2 + 1).free_symbols
set()
>>> PurePoly(x**2 + y).free_symbols
set()
>>> PurePoly(x**2 + y, x).free_symbols
{y}
"""
return self.free_symbols_in_domain
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if len(f.gens) != len(g.gens):
return False
if f.rep.dom != g.rep.dom:
try:
dom = f.rep.dom.unify(g.rep.dom, f.gens)
except UnificationFailed:
return False
f = f.set_domain(dom)
g = g.set_domain(dom)
return f.rep == g.rep
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if len(f.gens) != len(g.gens):
raise UnificationFailed("can't unify %s with %s" % (f, g))
if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)):
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
gens = f.gens
dom = f.rep.dom.unify(g.rep.dom, gens)
F = f.rep.convert(dom)
G = g.rep.convert(dom)
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
@public
def poly_from_expr(expr, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return _poly_from_expr(expr, opt)
def _poly_from_expr(expr, opt):
"""Construct a polynomial from an expression. """
orig, expr = expr, sympify(expr)
if not isinstance(expr, Basic):
raise PolificationFailed(opt, orig, expr)
elif expr.is_Poly:
poly = expr.__class__._from_poly(expr, opt)
opt.gens = poly.gens
opt.domain = poly.domain
if opt.polys is None:
opt.polys = True
return poly, opt
elif opt.expand:
expr = expr.expand()
rep, opt = _dict_from_expr(expr, opt)
if not opt.gens:
raise PolificationFailed(opt, orig, expr)
monoms, coeffs = list(zip(*list(rep.items())))
domain = opt.domain
if domain is None:
opt.domain, coeffs = construct_domain(coeffs, opt=opt)
else:
coeffs = list(map(domain.from_sympy, coeffs))
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
if opt.polys is None:
opt.polys = False
return poly, opt
@public
def parallel_poly_from_expr(exprs, *gens, **args):
"""Construct polynomials from expressions. """
opt = options.build_options(gens, args)
return _parallel_poly_from_expr(exprs, opt)
def _parallel_poly_from_expr(exprs, opt):
"""Construct polynomials from expressions. """
from sympy.functions.elementary.piecewise import Piecewise
if len(exprs) == 2:
f, g = exprs
if isinstance(f, Poly) and isinstance(g, Poly):
f = f.__class__._from_poly(f, opt)
g = g.__class__._from_poly(g, opt)
f, g = f.unify(g)
opt.gens = f.gens
opt.domain = f.domain
if opt.polys is None:
opt.polys = True
return [f, g], opt
origs, exprs = list(exprs), []
_exprs, _polys = [], []
failed = False
for i, expr in enumerate(origs):
expr = sympify(expr)
if isinstance(expr, Basic):
if expr.is_Poly:
_polys.append(i)
else:
_exprs.append(i)
if opt.expand:
expr = expr.expand()
else:
failed = True
exprs.append(expr)
if failed:
raise PolificationFailed(opt, origs, exprs, True)
if _polys:
# XXX: this is a temporary solution
for i in _polys:
exprs[i] = exprs[i].as_expr()
reps, opt = _parallel_dict_from_expr(exprs, opt)
if not opt.gens:
raise PolificationFailed(opt, origs, exprs, True)
for k in opt.gens:
if isinstance(k, Piecewise):
raise PolynomialError("Piecewise generators do not make sense")
coeffs_list, lengths = [], []
all_monoms = []
all_coeffs = []
for rep in reps:
monoms, coeffs = list(zip(*list(rep.items())))
coeffs_list.extend(coeffs)
all_monoms.append(monoms)
lengths.append(len(coeffs))
domain = opt.domain
if domain is None:
opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt)
else:
coeffs_list = list(map(domain.from_sympy, coeffs_list))
for k in lengths:
all_coeffs.append(coeffs_list[:k])
coeffs_list = coeffs_list[k:]
polys = []
for monoms, coeffs in zip(all_monoms, all_coeffs):
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
polys.append(poly)
if opt.polys is None:
opt.polys = bool(_polys)
return polys, opt
def _update_args(args, key, value):
"""Add a new ``(key, value)`` pair to arguments ``dict``. """
args = dict(args)
if key not in args:
args[key] = value
return args
@public
def degree(f, gen=0):
"""
Return the degree of ``f`` in the given variable.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import degree
>>> from sympy.abc import x, y
>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-oo
See also
========
sympy.polys.polytools.Poly.total_degree
degree_list
"""
f = sympify(f, strict=True)
gen_is_Num = sympify(gen, strict=True).is_Number
if f.is_Poly:
p = f
isNum = p.as_expr().is_Number
else:
isNum = f.is_Number
if not isNum:
if gen_is_Num:
p, _ = poly_from_expr(f)
else:
p, _ = poly_from_expr(f, gen)
if isNum:
return S.Zero if f else S.NegativeInfinity
if not gen_is_Num:
if f.is_Poly and gen not in p.gens:
# try recast without explicit gens
p, _ = poly_from_expr(f.as_expr())
if gen not in p.gens:
return S.Zero
elif not f.is_Poly and len(f.free_symbols) > 1:
raise TypeError(filldedent('''
A symbolic generator of interest is required for a multivariate
expression like func = %s, e.g. degree(func, gen = %s) instead of
degree(func, gen = %s).
''' % (f, next(ordered(f.free_symbols)), gen)))
return Integer(p.degree(gen))
@public
def total_degree(f, *gens):
"""
Return the total_degree of ``f`` in the given variables.
Examples
========
>>> from sympy import total_degree, Poly
>>> from sympy.abc import x, y
>>> total_degree(1)
0
>>> total_degree(x + x*y)
2
>>> total_degree(x + x*y, x)
1
If the expression is a Poly and no variables are given
then the generators of the Poly will be used:
>>> p = Poly(x + x*y, y)
>>> total_degree(p)
1
To deal with the underlying expression of the Poly, convert
it to an Expr:
>>> total_degree(p.as_expr())
2
This is done automatically if any variables are given:
>>> total_degree(p, x)
1
See also
========
degree
"""
p = sympify(f)
if p.is_Poly:
p = p.as_expr()
if p.is_Number:
rv = 0
else:
if f.is_Poly:
gens = gens or f.gens
rv = Poly(p, gens).total_degree()
return Integer(rv)
@public
def degree_list(f, *gens, **args):
"""
Return a list of degrees of ``f`` in all variables.
Examples
========
>>> from sympy import degree_list
>>> from sympy.abc import x, y
>>> degree_list(x**2 + y*x + 1)
(2, 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('degree_list', 1, exc)
degrees = F.degree_list()
return tuple(map(Integer, degrees))
@public
def LC(f, *gens, **args):
"""
Return the leading coefficient of ``f``.
Examples
========
>>> from sympy import LC
>>> from sympy.abc import x, y
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
4
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LC', 1, exc)
return F.LC(order=opt.order)
@public
def LM(f, *gens, **args):
"""
Return the leading monomial of ``f``.
Examples
========
>>> from sympy import LM
>>> from sympy.abc import x, y
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LM', 1, exc)
monom = F.LM(order=opt.order)
return monom.as_expr()
@public
def LT(f, *gens, **args):
"""
Return the leading term of ``f``.
Examples
========
>>> from sympy import LT
>>> from sympy.abc import x, y
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LT', 1, exc)
monom, coeff = F.LT(order=opt.order)
return coeff*monom.as_expr()
@public
def pdiv(f, g, *gens, **args):
"""
Compute polynomial pseudo-division of ``f`` and ``g``.
Examples
========
>>> from sympy import pdiv
>>> from sympy.abc import x
>>> pdiv(x**2 + 1, 2*x - 4)
(2*x + 4, 20)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pdiv', 2, exc)
q, r = F.pdiv(G)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def prem(f, g, *gens, **args):
"""
Compute polynomial pseudo-remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import prem
>>> from sympy.abc import x
>>> prem(x**2 + 1, 2*x - 4)
20
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('prem', 2, exc)
r = F.prem(G)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def pquo(f, g, *gens, **args):
"""
Compute polynomial pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pquo
>>> from sympy.abc import x
>>> pquo(x**2 + 1, 2*x - 4)
2*x + 4
>>> pquo(x**2 - 1, 2*x - 1)
2*x + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pquo', 2, exc)
try:
q = F.pquo(G)
except ExactQuotientFailed:
raise ExactQuotientFailed(f, g)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def pexquo(f, g, *gens, **args):
"""
Compute polynomial exact pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pexquo
>>> from sympy.abc import x
>>> pexquo(x**2 - 1, 2*x - 2)
2*x + 2
>>> pexquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pexquo', 2, exc)
q = F.pexquo(G)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def div(f, g, *gens, **args):
"""
Compute polynomial division of ``f`` and ``g``.
Examples
========
>>> from sympy import div, ZZ, QQ
>>> from sympy.abc import x
>>> div(x**2 + 1, 2*x - 4, domain=ZZ)
(0, x**2 + 1)
>>> div(x**2 + 1, 2*x - 4, domain=QQ)
(x/2 + 1, 5)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('div', 2, exc)
q, r = F.div(G, auto=opt.auto)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def rem(f, g, *gens, **args):
"""
Compute polynomial remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import rem, ZZ, QQ
>>> from sympy.abc import x
>>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
x**2 + 1
>>> rem(x**2 + 1, 2*x - 4, domain=QQ)
5
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('rem', 2, exc)
r = F.rem(G, auto=opt.auto)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def quo(f, g, *gens, **args):
"""
Compute polynomial quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import quo
>>> from sympy.abc import x
>>> quo(x**2 + 1, 2*x - 4)
x/2 + 1
>>> quo(x**2 - 1, x - 1)
x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('quo', 2, exc)
q = F.quo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def exquo(f, g, *gens, **args):
"""
Compute polynomial exact quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import exquo
>>> from sympy.abc import x
>>> exquo(x**2 - 1, x - 1)
x + 1
>>> exquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('exquo', 2, exc)
q = F.exquo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def half_gcdex(f, g, *gens, **args):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import half_gcdex
>>> from sympy.abc import x
>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, h = domain.half_gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('half_gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(h)
s, h = F.half_gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), h.as_expr()
else:
return s, h
@public
def gcdex(f, g, *gens, **args):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import gcdex
>>> from sympy.abc import x
>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, t, h = domain.gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h)
s, t, h = F.gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), t.as_expr(), h.as_expr()
else:
return s, t, h
@public
def invert(f, g, *gens, **args):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import invert, S
>>> from sympy.core.numbers import mod_inverse
>>> from sympy.abc import x
>>> invert(x**2 - 1, 2*x - 1)
-4/3
>>> invert(x**2 - 1, x - 1)
Traceback (most recent call last):
...
NotInvertible: zero divisor
For more efficient inversion of Rationals,
use the :obj:`~.mod_inverse` function:
>>> mod_inverse(3, 5)
2
>>> (S(2)/5).invert(S(7)/3)
5/2
See Also
========
sympy.core.numbers.mod_inverse
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.invert(a, b))
except NotImplementedError:
raise ComputationFailed('invert', 2, exc)
h = F.invert(G, auto=opt.auto)
if not opt.polys:
return h.as_expr()
else:
return h
@public
def subresultants(f, g, *gens, **args):
"""
Compute subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import subresultants
>>> from sympy.abc import x
>>> subresultants(x**2 + 1, x**2 - 1)
[x**2 + 1, x**2 - 1, -2]
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('subresultants', 2, exc)
result = F.subresultants(G)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def resultant(f, g, *gens, includePRS=False, **args):
"""
Compute resultant of ``f`` and ``g``.
Examples
========
>>> from sympy import resultant
>>> from sympy.abc import x
>>> resultant(x**2 + 1, x**2 - 1)
4
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('resultant', 2, exc)
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
if not opt.polys:
if includePRS:
return result.as_expr(), [r.as_expr() for r in R]
return result.as_expr()
else:
if includePRS:
return result, R
return result
@public
def discriminant(f, *gens, **args):
"""
Compute discriminant of ``f``.
Examples
========
>>> from sympy import discriminant
>>> from sympy.abc import x
>>> discriminant(x**2 + 2*x + 3)
-8
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('discriminant', 1, exc)
result = F.discriminant()
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cofactors(f, g, *gens, **args):
"""
Compute GCD and cofactors of ``f`` and ``g``.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import cofactors
>>> from sympy.abc import x
>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
(x - 1, x + 1, x - 2)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
h, cff, cfg = domain.cofactors(a, b)
except NotImplementedError:
raise ComputationFailed('cofactors', 2, exc)
else:
return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg)
h, cff, cfg = F.cofactors(G)
if not opt.polys:
return h.as_expr(), cff.as_expr(), cfg.as_expr()
else:
return h, cff, cfg
@public
def gcd_list(seq, *gens, **args):
"""
Compute GCD of a list of polynomials.
Examples
========
>>> from sympy import gcd_list
>>> from sympy.abc import x
>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x - 1
"""
seq = sympify(seq)
def try_non_polynomial_gcd(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.zero
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.gcd(result, number)
if domain.is_one(result):
break
return domain.to_sympy(result)
return None
result = try_non_polynomial_gcd(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[0])
# abs ensures that the gcd is always non-negative
return abs(a/lc)
except PolificationFailed as exc:
result = try_non_polynomial_gcd(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('gcd_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.Zero
else:
return Poly(0, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.gcd(poly)
if result.is_one:
break
if not opt.polys:
return result.as_expr()
else:
return result
@public
def gcd(f, g=None, *gens, **args):
"""
Compute GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import gcd
>>> from sympy.abc import x
>>> gcd(x**2 - 1, x**2 - 3*x + 2)
x - 1
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return gcd_list(f, *gens, **args)
elif g is None:
raise TypeError("gcd() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
# abs ensures that the returned gcd is always non-negative
return abs(a/frc.as_numer_denom()[0])
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.gcd(a, b))
except NotImplementedError:
raise ComputationFailed('gcd', 2, exc)
result = F.gcd(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm_list(seq, *gens, **args):
"""
Compute LCM of a list of polynomials.
Examples
========
>>> from sympy import lcm_list
>>> from sympy.abc import x
>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x**5 - x**4 - 2*x**3 - x**2 + x + 2
"""
seq = sympify(seq)
def try_non_polynomial_lcm(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.one
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.lcm(result, number)
return domain.to_sympy(result)
return None
result = try_non_polynomial_lcm(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[1])
return a*lc
except PolificationFailed as exc:
result = try_non_polynomial_lcm(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('lcm_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.One
else:
return Poly(1, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.lcm(poly)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm(f, g=None, *gens, **args):
"""
Compute LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import lcm
>>> from sympy.abc import x
>>> lcm(x**2 - 1, x**2 - 3*x + 2)
x**3 - 2*x**2 - x + 2
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return lcm_list(f, *gens, **args)
elif g is None:
raise TypeError("lcm() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
return a*frc.as_numer_denom()[1]
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.lcm(a, b))
except NotImplementedError:
raise ComputationFailed('lcm', 2, exc)
result = F.lcm(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def terms_gcd(f, *gens, **args):
"""
Remove GCD of terms from ``f``.
If the ``deep`` flag is True, then the arguments of ``f`` will have
terms_gcd applied to them.
If a fraction is factored out of ``f`` and ``f`` is an Add, then
an unevaluated Mul will be returned so that automatic simplification
does not redistribute it. The hint ``clear``, when set to False, can be
used to prevent such factoring when all coefficients are not fractions.
Examples
========
>>> from sympy import terms_gcd, cos
>>> from sympy.abc import x, y
>>> terms_gcd(x**6*y**2 + x**3*y, x, y)
x**3*y*(x**3*y + 1)
The default action of polys routines is to expand the expression
given to them. terms_gcd follows this behavior:
>>> terms_gcd((3+3*x)*(x+x*y))
3*x*(x*y + x + y + 1)
If this is not desired then the hint ``expand`` can be set to False.
In this case the expression will be treated as though it were comprised
of one or more terms:
>>> terms_gcd((3+3*x)*(x+x*y), expand=False)
(3*x + 3)*(x*y + x)
In order to traverse factors of a Mul or the arguments of other
functions, the ``deep`` hint can be used:
>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
3*x*(x + 1)*(y + 1)
>>> terms_gcd(cos(x + x*y), deep=True)
cos(x*(y + 1))
Rationals are factored out by default:
>>> terms_gcd(x + y/2)
(2*x + y)/2
Only the y-term had a coefficient that was a fraction; if one
does not want to factor out the 1/2 in cases like this, the
flag ``clear`` can be set to False:
>>> terms_gcd(x + y/2, clear=False)
x + y/2
>>> terms_gcd(x*y/2 + y**2, clear=False)
y*(x/2 + y)
The ``clear`` flag is ignored if all coefficients are fractions:
>>> terms_gcd(x/3 + y/2, clear=False)
(2*x + 3*y)/6
See Also
========
sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms
"""
from sympy.core.relational import Equality
orig = sympify(f)
if isinstance(f, Equality):
return Equality(*(terms_gcd(s, *gens, **args) for s in [f.lhs, f.rhs]))
elif isinstance(f, Relational):
raise TypeError("Inequalities can not be used with terms_gcd. Found: %s" %(f,))
if not isinstance(f, Expr) or f.is_Atom:
return orig
if args.get('deep', False):
new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args])
args.pop('deep')
args['expand'] = False
return terms_gcd(new, *gens, **args)
clear = args.pop('clear', True)
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
J, f = F.terms_gcd()
if opt.domain.is_Ring:
if opt.domain.is_Field:
denom, f = f.clear_denoms(convert=True)
coeff, f = f.primitive()
if opt.domain.is_Field:
coeff /= denom
else:
coeff = S.One
term = Mul(*[x**j for x, j in zip(f.gens, J)])
if coeff == 1:
coeff = S.One
if term == 1:
return orig
if clear:
return _keep_coeff(coeff, term*f.as_expr())
# base the clearing on the form of the original expression, not
# the (perhaps) Mul that we have now
coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul()
return _keep_coeff(coeff, term*f, clear=False)
@public
def trunc(f, p, *gens, **args):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import trunc
>>> from sympy.abc import x
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('trunc', 1, exc)
result = F.trunc(sympify(p))
if not opt.polys:
return result.as_expr()
else:
return result
@public
def monic(f, *gens, **args):
"""
Divide all coefficients of ``f`` by ``LC(f)``.
Examples
========
>>> from sympy import monic
>>> from sympy.abc import x
>>> monic(3*x**2 + 4*x + 2)
x**2 + 4*x/3 + 2/3
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('monic', 1, exc)
result = F.monic(auto=opt.auto)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def content(f, *gens, **args):
"""
Compute GCD of coefficients of ``f``.
Examples
========
>>> from sympy import content
>>> from sympy.abc import x
>>> content(6*x**2 + 8*x + 12)
2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('content', 1, exc)
return F.content()
@public
def primitive(f, *gens, **args):
"""
Compute content and the primitive form of ``f``.
Examples
========
>>> from sympy.polys.polytools import primitive
>>> from sympy.abc import x
>>> primitive(6*x**2 + 8*x + 12)
(2, 3*x**2 + 4*x + 6)
>>> eq = (2 + 2*x)*x + 2
Expansion is performed by default:
>>> primitive(eq)
(2, x**2 + x + 1)
Set ``expand`` to False to shut this off. Note that the
extraction will not be recursive; use the as_content_primitive method
for recursive, non-destructive Rational extraction.
>>> primitive(eq, expand=False)
(1, x*(2*x + 2) + 2)
>>> eq.as_content_primitive()
(2, x*(x + 1) + 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('primitive', 1, exc)
cont, result = F.primitive()
if not opt.polys:
return cont, result.as_expr()
else:
return cont, result
@public
def compose(f, g, *gens, **args):
"""
Compute functional composition ``f(g)``.
Examples
========
>>> from sympy import compose
>>> from sympy.abc import x
>>> compose(x**2 + x, x - 1)
x**2 - x
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('compose', 2, exc)
result = F.compose(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def decompose(f, *gens, **args):
"""
Compute functional decomposition of ``f``.
Examples
========
>>> from sympy import decompose
>>> from sympy.abc import x
>>> decompose(x**4 + 2*x**3 - x - 1)
[x**2 - x - 1, x**2 + x]
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('decompose', 1, exc)
result = F.decompose()
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def sturm(f, *gens, **args):
"""
Compute Sturm sequence of ``f``.
Examples
========
>>> from sympy import sturm
>>> from sympy.abc import x
>>> sturm(x**3 - 2*x**2 + x - 3)
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sturm', 1, exc)
result = F.sturm(auto=opt.auto)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def gff_list(f, *gens, **args):
"""
Compute a list of greatest factorial factors of ``f``.
Note that the input to ff() and rf() should be Poly instances to use the
definitions here.
Examples
========
>>> from sympy import gff_list, ff, Poly
>>> from sympy.abc import x
>>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)
>>> gff_list(f)
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
>>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f
True
>>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \
1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)
>>> gff_list(f)
[(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]
>>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
True
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('gff_list', 1, exc)
factors = F.gff_list()
if not opt.polys:
return [(g.as_expr(), k) for g, k in factors]
else:
return factors
@public
def gff(f, *gens, **args):
"""Compute greatest factorial factorization of ``f``. """
raise NotImplementedError('symbolic falling factorial')
@public
def sqf_norm(f, *gens, **args):
"""
Compute square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import sqf_norm, sqrt
>>> from sympy.abc import x
>>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
(1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_norm', 1, exc)
s, g, r = F.sqf_norm()
if not opt.polys:
return Integer(s), g.as_expr(), r.as_expr()
else:
return Integer(s), g, r
@public
def sqf_part(f, *gens, **args):
"""
Compute square-free part of ``f``.
Examples
========
>>> from sympy import sqf_part
>>> from sympy.abc import x
>>> sqf_part(x**3 - 3*x - 2)
x**2 - x - 2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_part', 1, exc)
result = F.sqf_part()
if not opt.polys:
return result.as_expr()
else:
return result
def _sorted_factors(factors, method):
"""Sort a list of ``(expr, exp)`` pairs. """
if method == 'sqf':
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (exp, len(rep), len(poly.gens), rep)
else:
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (len(rep), len(poly.gens), exp, rep)
return sorted(factors, key=key)
def _factors_product(factors):
"""Multiply a list of ``(expr, exp)`` pairs. """
return Mul(*[f.as_expr()**k for f, k in factors])
def _symbolic_factor_list(expr, opt, method):
"""Helper function for :func:`_symbolic_factor`. """
coeff, factors = S.One, []
args = [i._eval_factor() if hasattr(i, '_eval_factor') else i
for i in Mul.make_args(expr)]
for arg in args:
if arg.is_Number or (isinstance(arg, Expr) and pure_complex(arg)):
coeff *= arg
continue
elif arg.is_Pow:
base, exp = arg.args
if base.is_Number and exp.is_Number:
coeff *= arg
continue
if base.is_Number:
factors.append((base, exp))
continue
else:
base, exp = arg, S.One
try:
poly, _ = _poly_from_expr(base, opt)
except PolificationFailed as exc:
factors.append((exc.expr, exp))
else:
func = getattr(poly, method + '_list')
_coeff, _factors = func()
if _coeff is not S.One:
if exp.is_Integer:
coeff *= _coeff**exp
elif _coeff.is_positive:
factors.append((_coeff, exp))
else:
_factors.append((_coeff, S.One))
if exp is S.One:
factors.extend(_factors)
elif exp.is_integer:
factors.extend([(f, k*exp) for f, k in _factors])
else:
other = []
for f, k in _factors:
if f.as_expr().is_positive:
factors.append((f, k*exp))
else:
other.append((f, k))
factors.append((_factors_product(other), exp))
if method == 'sqf':
factors = [(reduce(mul, (f for f, _ in factors if _ == k)), k)
for k in set(i for _, i in factors)]
return coeff, factors
def _symbolic_factor(expr, opt, method):
"""Helper function for :func:`_factor`. """
if isinstance(expr, Expr):
if hasattr(expr,'_eval_factor'):
return expr._eval_factor()
coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method)
return _keep_coeff(coeff, _factors_product(factors))
elif hasattr(expr, 'args'):
return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args])
elif hasattr(expr, '__iter__'):
return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr])
else:
return expr
def _generic_factor_list(expr, gens, args, method):
"""Helper function for :func:`sqf_list` and :func:`factor_list`. """
options.allowed_flags(args, ['frac', 'polys'])
opt = options.build_options(gens, args)
expr = sympify(expr)
if isinstance(expr, (Expr, Poly)):
if isinstance(expr, Poly):
numer, denom = expr, 1
else:
numer, denom = together(expr).as_numer_denom()
cp, fp = _symbolic_factor_list(numer, opt, method)
cq, fq = _symbolic_factor_list(denom, opt, method)
if fq and not opt.frac:
raise PolynomialError("a polynomial expected, got %s" % expr)
_opt = opt.clone(dict(expand=True))
for factors in (fp, fq):
for i, (f, k) in enumerate(factors):
if not f.is_Poly:
f, _ = _poly_from_expr(f, _opt)
factors[i] = (f, k)
fp = _sorted_factors(fp, method)
fq = _sorted_factors(fq, method)
if not opt.polys:
fp = [(f.as_expr(), k) for f, k in fp]
fq = [(f.as_expr(), k) for f, k in fq]
coeff = cp/cq
if not opt.frac:
return coeff, fp
else:
return coeff, fp, fq
else:
raise PolynomialError("a polynomial expected, got %s" % expr)
def _generic_factor(expr, gens, args, method):
"""Helper function for :func:`sqf` and :func:`factor`. """
fraction = args.pop('fraction', True)
options.allowed_flags(args, [])
opt = options.build_options(gens, args)
opt['fraction'] = fraction
return _symbolic_factor(sympify(expr), opt, method)
def to_rational_coeffs(f):
"""
try to transform a polynomial to have rational coefficients
try to find a transformation ``x = alpha*y``
``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with
rational coefficients, ``lc`` the leading coefficient.
If this fails, try ``x = y + beta``
``f(x) = g(y)``
Returns ``None`` if ``g`` not found;
``(lc, alpha, None, g)`` in case of rescaling
``(None, None, beta, g)`` in case of translation
Notes
=====
Currently it transforms only polynomials without roots larger than 2.
Examples
========
>>> from sympy import sqrt, Poly, simplify
>>> from sympy.polys.polytools import to_rational_coeffs
>>> from sympy.abc import x
>>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX')
>>> lc, r, _, g = to_rational_coeffs(p)
>>> lc, r
(7 + 5*sqrt(2), 2 - 2*sqrt(2))
>>> g
Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ')
>>> r1 = simplify(1/r)
>>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p
True
"""
from sympy.simplify.simplify import simplify
def _try_rescale(f, f1=None):
"""
try rescaling ``x -> alpha*x`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the rescaling is successful,
``alpha`` is the rescaling factor, and ``f`` is the rescaled
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
lc = f.LC()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
coeffs = [simplify(coeffx) for coeffx in coeffs]
if coeffs[-2]:
rescale1_x = simplify(coeffs[-2]/coeffs[-1])
coeffs1 = []
for i in range(len(coeffs)):
coeffx = simplify(coeffs[i]*rescale1_x**(i + 1))
if not coeffx.is_rational:
break
coeffs1.append(coeffx)
else:
rescale_x = simplify(1/rescale1_x)
x = f.gens[0]
v = [x**n]
for i in range(1, n + 1):
v.append(coeffs1[i - 1]*x**(n - i))
f = Add(*v)
f = Poly(f)
return lc, rescale_x, f
return None
def _try_translate(f, f1=None):
"""
try translating ``x -> x + alpha`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the translating is successful,
``alpha`` is the translating factor, and ``f`` is the shifted
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
c = simplify(coeffs[0])
if c and not c.is_rational:
func = Add
if c.is_Add:
args = c.args
func = c.func
else:
args = [c]
c1, c2 = sift(args, lambda z: z.is_rational, binary=True)
alpha = -func(*c2)/n
f2 = f1.shift(alpha)
return alpha, f2
return None
def _has_square_roots(p):
"""
Return True if ``f`` is a sum with square roots but no other root
"""
from sympy.core.exprtools import Factors
coeffs = p.coeffs()
has_sq = False
for y in coeffs:
for x in Add.make_args(y):
f = Factors(x).factors
r = [wx.q for b, wx in f.items() if
b.is_number and wx.is_Rational and wx.q >= 2]
if not r:
continue
if min(r) == 2:
has_sq = True
if max(r) > 2:
return False
return has_sq
if f.get_domain().is_EX and _has_square_roots(f):
f1 = f.monic()
r = _try_rescale(f, f1)
if r:
return r[0], r[1], None, r[2]
else:
r = _try_translate(f, f1)
if r:
return None, None, r[0], r[1]
return None
def _torational_factor_list(p, x):
"""
helper function to factor polynomial using to_rational_coeffs
Examples
========
>>> from sympy.polys.polytools import _torational_factor_list
>>> from sympy.abc import x
>>> from sympy import sqrt, expand, Mul
>>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
>>> factors = _torational_factor_list(p, x); factors
(-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
>>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)}))
>>> factors = _torational_factor_list(p, x); factors
(1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
"""
from sympy.simplify.simplify import simplify
p1 = Poly(p, x, domain='EX')
n = p1.degree()
res = to_rational_coeffs(p1)
if not res:
return None
lc, r, t, g = res
factors = factor_list(g.as_expr())
if lc:
c = simplify(factors[0]*lc*r**n)
r1 = simplify(1/r)
a = []
for z in factors[1:][0]:
a.append((simplify(z[0].subs({x: x*r1})), z[1]))
else:
c = factors[0]
a = []
for z in factors[1:][0]:
a.append((z[0].subs({x: x - t}), z[1]))
return (c, a)
@public
def sqf_list(f, *gens, **args):
"""
Compute a list of square-free factors of ``f``.
Examples
========
>>> from sympy import sqf_list
>>> from sympy.abc import x
>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
(2, [(x + 1, 2), (x + 2, 3)])
"""
return _generic_factor_list(f, gens, args, method='sqf')
@public
def sqf(f, *gens, **args):
"""
Compute square-free factorization of ``f``.
Examples
========
>>> from sympy import sqf
>>> from sympy.abc import x
>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
2*(x + 1)**2*(x + 2)**3
"""
return _generic_factor(f, gens, args, method='sqf')
@public
def factor_list(f, *gens, **args):
"""
Compute a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import factor_list
>>> from sympy.abc import x, y
>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
(2, [(x + y, 1), (x**2 + 1, 2)])
"""
return _generic_factor_list(f, gens, args, method='factor')
@public
def factor(f, *gens, deep=False, **args):
"""
Compute the factorization of expression, ``f``, into irreducibles. (To
factor an integer into primes, use ``factorint``.)
There two modes implemented: symbolic and formal. If ``f`` is not an
instance of :class:`Poly` and generators are not specified, then the
former mode is used. Otherwise, the formal mode is used.
In symbolic mode, :func:`factor` will traverse the expression tree and
factor its components without any prior expansion, unless an instance
of :class:`~.Add` is encountered (in this case formal factorization is
used). This way :func:`factor` can handle large or symbolic exponents.
By default, the factorization is computed over the rationals. To factor
over other domain, e.g. an algebraic or finite field, use appropriate
options: ``extension``, ``modulus`` or ``domain``.
Examples
========
>>> from sympy import factor, sqrt, exp
>>> from sympy.abc import x, y
>>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
2*(x + y)*(x**2 + 1)**2
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, modulus=2)
(x + 1)**2
>>> factor(x**2 + 1, gaussian=True)
(x - I)*(x + I)
>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))
>>> factor((x**2 - 1)/(x**2 + 4*x + 4))
(x - 1)*(x + 1)/(x + 2)**2
>>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
(x + 2)**20000000*(x**2 + 1)
By default, factor deals with an expression as a whole:
>>> eq = 2**(x**2 + 2*x + 1)
>>> factor(eq)
2**(x**2 + 2*x + 1)
If the ``deep`` flag is True then subexpressions will
be factored:
>>> factor(eq, deep=True)
2**((x + 1)**2)
If the ``fraction`` flag is False then rational expressions
won't be combined. By default it is True.
>>> factor(5*x + 3*exp(2 - 7*x), deep=True)
(5*x*exp(7*x) + 3*exp(2))*exp(-7*x)
>>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
5*x + 3*exp(2)*exp(-7*x)
See Also
========
sympy.ntheory.factor_.factorint
"""
f = sympify(f)
if deep:
from sympy.simplify.simplify import bottom_up
def _try_factor(expr):
"""
Factor, but avoid changing the expression when unable to.
"""
fac = factor(expr, *gens, **args)
if fac.is_Mul or fac.is_Pow:
return fac
return expr
f = bottom_up(f, _try_factor)
# clean up any subexpressions that may have been expanded
# while factoring out a larger expression
partials = {}
muladd = f.atoms(Mul, Add)
for p in muladd:
fac = factor(p, *gens, **args)
if (fac.is_Mul or fac.is_Pow) and fac != p:
partials[p] = fac
return f.xreplace(partials)
try:
return _generic_factor(f, gens, args, method='factor')
except PolynomialError as msg:
if not f.is_commutative:
from sympy.core.exprtools import factor_nc
return factor_nc(f)
else:
raise PolynomialError(msg)
@public
def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
Examples
========
>>> from sympy import intervals
>>> from sympy.abc import x
>>> intervals(x**2 - 3)
[((-2, -1), 1), ((1, 2), 1)]
>>> intervals(x**2 - 3, eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if not hasattr(F, '__iter__'):
try:
F = Poly(F)
except GeneratorsNeeded:
return []
return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else:
polys, opt = parallel_poly_from_expr(F, domain='QQ')
if len(opt.gens) > 1:
raise MultivariatePolynomialError
for i, poly in enumerate(polys):
polys[i] = poly.rep.rep
if eps is not None:
eps = opt.domain.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = opt.domain.convert(inf)
if sup is not None:
sup = opt.domain.convert(sup)
intervals = dup_isolate_real_roots_list(polys, opt.domain,
eps=eps, inf=inf, sup=sup, strict=strict, fast=fast)
result = []
for (s, t), indices in intervals:
s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t)
result.append(((s, t), indices))
return result
@public
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import refine_root
>>> from sympy.abc import x
>>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
(19/11, 26/15)
"""
try:
F = Poly(f)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except GeneratorsNeeded:
raise PolynomialError(
"can't refine a root of %s, not a polynomial" % f)
return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf)
@public
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
If one of ``inf`` or ``sup`` is complex, it will return the number of roots
in the complex rectangle with corners at ``inf`` and ``sup``.
Examples
========
>>> from sympy import count_roots, I
>>> from sympy.abc import x
>>> count_roots(x**4 - 4, -3, 3)
2
>>> count_roots(x**4 - 4, 0, 1 + 3*I)
1
"""
try:
F = Poly(f, greedy=False)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except GeneratorsNeeded:
raise PolynomialError("can't count roots of %s, not a polynomial" % f)
return F.count_roots(inf=inf, sup=sup)
@public
def real_roots(f, multiple=True):
"""
Return a list of real roots with multiplicities of ``f``.
Examples
========
>>> from sympy import real_roots
>>> from sympy.abc import x
>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
[-1/2, 2, 2]
"""
try:
F = Poly(f, greedy=False)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except GeneratorsNeeded:
raise PolynomialError(
"can't compute real roots of %s, not a polynomial" % f)
return F.real_roots(multiple=multiple)
@public
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Examples
========
>>> from sympy import nroots
>>> from sympy.abc import x
>>> nroots(x**2 - 3, n=15)
[-1.73205080756888, 1.73205080756888]
>>> nroots(x**2 - 3, n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
try:
F = Poly(f, greedy=False)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except GeneratorsNeeded:
raise PolynomialError(
"can't compute numerical roots of %s, not a polynomial" % f)
return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup)
@public
def ground_roots(f, *gens, **args):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import ground_roots
>>> from sympy.abc import x
>>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
{0: 2, 1: 2}
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except PolificationFailed as exc:
raise ComputationFailed('ground_roots', 1, exc)
return F.ground_roots()
@public
def nth_power_roots_poly(f, n, *gens, **args):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import nth_power_roots_poly, factor, roots
>>> from sympy.abc import x
>>> f = x**4 - x**2 + 1
>>> g = factor(nth_power_roots_poly(f, 2))
>>> g
(x**2 - x + 1)**2
>>> R_f = [ (r**2).expand() for r in roots(f) ]
>>> R_g = roots(g).keys()
>>> set(R_f) == set(R_g)
True
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
# root of sin(x) + 1 is -1 but when someone
# passes an Expr instead of Poly they may not expect
# that the generator will be sin(x), not x
raise PolynomialError("generator must be a Symbol")
except PolificationFailed as exc:
raise ComputationFailed('nth_power_roots_poly', 1, exc)
result = F.nth_power_roots_poly(n)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cancel(f, *gens, **args):
"""
Cancel common factors in a rational function ``f``.
Examples
========
>>> from sympy import cancel, sqrt, Symbol, together
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
(2*x + 2)/(x - 1)
>>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
sqrt(6)/2
Note: due to automatic distribution of Rationals, a sum divided by an integer
will appear as a sum. To recover a rational form use `together` on the result:
>>> cancel(x/2 + 1)
x/2 + 1
>>> together(_)
(x + 2)/2
"""
from sympy.core.exprtools import factor_terms
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.rings import sring
options.allowed_flags(args, ['polys'])
f = sympify(f)
opt = {}
if 'polys' in args:
opt['polys'] = args['polys']
if not isinstance(f, (tuple, Tuple)):
if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr):
return f
f = factor_terms(f, radical=True)
p, q = f.as_numer_denom()
elif len(f) == 2:
p, q = f
if isinstance(p, Poly) and isinstance(q, Poly):
opt['gens'] = p.gens
opt['domain'] = p.domain
opt['polys'] = opt.get('polys', True)
p, q = p.as_expr(), q.as_expr()
elif isinstance(f, Tuple):
return factor_terms(f)
else:
raise ValueError('unexpected argument: %s' % f)
try:
if f.has(Piecewise):
raise PolynomialError()
R, (F, G) = sring((p, q), *gens, **args)
if not R.ngens:
if not isinstance(f, (tuple, Tuple)):
return f.expand()
else:
return S.One, p, q
except PolynomialError as msg:
if f.is_commutative and not f.has(Piecewise):
raise PolynomialError(msg)
# Handling of noncommutative and/or piecewise expressions
if f.is_Add or f.is_Mul:
c, nc = sift(f.args, lambda x:
x.is_commutative is True and not x.has(Piecewise),
binary=True)
nc = [cancel(i) for i in nc]
return f.func(cancel(f.func(*c)), *nc)
else:
reps = []
pot = preorder_traversal(f)
next(pot)
for e in pot:
# XXX: This should really skip anything that's not Expr.
if isinstance(e, (tuple, Tuple, BooleanAtom)):
continue
try:
reps.append((e, cancel(e)))
pot.skip() # this was handled successfully
except NotImplementedError:
pass
return f.xreplace(dict(reps))
c, (P, Q) = 1, F.cancel(G)
if opt.get('polys', False) and not 'gens' in opt:
opt['gens'] = R.symbols
if not isinstance(f, (tuple, Tuple)):
return c*(P.as_expr()/Q.as_expr())
else:
P, Q = P.as_expr(), Q.as_expr()
if not opt.get('polys', False):
return c, P, Q
else:
return c, Poly(P, *gens, **opt), Poly(Q, *gens, **opt)
@public
def reduced(f, G, *gens, **args):
"""
Reduces a polynomial ``f`` modulo a set of polynomials ``G``.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import reduced
>>> from sympy.abc import x, y
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
([2*x, 1], x**2 + y**2 + y)
"""
options.allowed_flags(args, ['polys', 'auto'])
try:
polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('reduced', 0, exc)
domain = opt.domain
retract = False
if opt.auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
@public
def groebner(F, *gens, **args):
"""
Computes the reduced Groebner basis for a set of polynomials.
Use the ``order`` argument to set the monomial ordering that will be
used to compute the basis. Allowed orders are ``lex``, ``grlex`` and
``grevlex``. If no order is specified, it defaults to ``lex``.
For more information on Groebner bases, see the references and the docstring
of :func:`~.solve_poly_system`.
Examples
========
Example taken from [1].
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> F = [x*y - 2*y, 2*y**2 - x**2]
>>> groebner(F, x, y, order='lex')
GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y,
domain='ZZ', order='lex')
>>> groebner(F, x, y, order='grlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grlex')
>>> groebner(F, x, y, order='grevlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grevlex')
By default, an improved implementation of the Buchberger algorithm is
used. Optionally, an implementation of the F5B algorithm can be used. The
algorithm can be set using the ``method`` flag or with the
:func:`sympy.polys.polyconfig.setup` function.
>>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]
>>> groebner(F, x, y, method='buchberger')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
>>> groebner(F, x, y, method='f5b')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
References
==========
1. [Buchberger01]_
2. [Cox97]_
"""
return GroebnerBasis(F, *gens, **args)
@public
def is_zero_dimensional(F, *gens, **args):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
return GroebnerBasis(F, *gens, **args).is_zero_dimensional
@public
class GroebnerBasis(Basic):
"""Represents a reduced Groebner basis. """
def __new__(cls, F, *gens, **args):
"""Compute a reduced Groebner basis for a system of polynomials. """
options.allowed_flags(args, ['polys', 'method'])
try:
polys, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('groebner', len(F), exc)
from sympy.polys.rings import PolyRing
ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly]
G = _groebner(polys, ring, method=opt.method)
G = [Poly._from_dict(g, opt) for g in G]
return cls._new(G, opt)
@classmethod
def _new(cls, basis, options):
obj = Basic.__new__(cls)
obj._basis = tuple(basis)
obj._options = options
return obj
@property
def args(self):
basis = (p.as_expr() for p in self._basis)
return (Tuple(*basis), Tuple(*self._options.gens))
@property
def exprs(self):
return [poly.as_expr() for poly in self._basis]
@property
def polys(self):
return list(self._basis)
@property
def gens(self):
return self._options.gens
@property
def domain(self):
return self._options.domain
@property
def order(self):
return self._options.order
def __len__(self):
return len(self._basis)
def __iter__(self):
if self._options.polys:
return iter(self.polys)
else:
return iter(self.exprs)
def __getitem__(self, item):
if self._options.polys:
basis = self.polys
else:
basis = self.exprs
return basis[item]
def __hash__(self):
return hash((self._basis, tuple(self._options.items())))
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._basis == other._basis and self._options == other._options
elif iterable(other):
return self.polys == list(other) or self.exprs == list(other)
else:
return False
def __ne__(self, other):
return not self == other
@property
def is_zero_dimensional(self):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
def single_var(monomial):
return sum(map(bool, monomial)) == 1
exponents = Monomial([0]*len(self.gens))
order = self._options.order
for poly in self.polys:
monomial = poly.LM(order=order)
if single_var(monomial):
exponents *= monomial
# If any element of the exponents vector is zero, then there's
# a variable for which there's no degree bound and the ideal
# generated by this Groebner basis isn't zero-dimensional.
return all(exponents)
def fglm(self, order):
"""
Convert a Groebner basis from one ordering to another.
The FGLM algorithm converts reduced Groebner bases of zero-dimensional
ideals from one ordering to another. This method is often used when it
is infeasible to compute a Groebner basis with respect to a particular
ordering directly.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import groebner
>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
>>> G = groebner(F, x, y, order='grlex')
>>> list(G.fglm('lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
>>> list(groebner(F, x, y, order='lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
References
==========
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
Computation of Zero-dimensional Groebner Bases by Change of
Ordering
"""
opt = self._options
src_order = opt.order
dst_order = monomial_key(order)
if src_order == dst_order:
return self
if not self.is_zero_dimensional:
raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension")
polys = list(self._basis)
domain = opt.domain
opt = opt.clone(dict(
domain=domain.get_field(),
order=dst_order,
))
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, src_order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
G = matrix_fglm(polys, _ring, dst_order)
G = [Poly._from_dict(dict(g), opt) for g in G]
if not domain.is_Field:
G = [g.clear_denoms(convert=True)[1] for g in G]
opt.domain = domain
return self._new(G, opt)
def reduce(self, expr, auto=True):
"""
Reduces a polynomial modulo a Groebner basis.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import groebner, expand
>>> from sympy.abc import x, y
>>> f = 2*x**4 - x**2 + y**3 + y**2
>>> G = groebner([x**3 - x, y**3 - y])
>>> G.reduce(f)
([2*x, 1], x**2 + y**2 + y)
>>> Q, r = _
>>> expand(sum(q*g for q, g in zip(Q, G)) + r)
2*x**4 - x**2 + y**3 + y**2
>>> _ == f
True
"""
poly = Poly._from_expr(expr, self._options)
polys = [poly] + list(self._basis)
opt = self._options
domain = opt.domain
retract = False
if auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
def contains(self, poly):
"""
Check if ``poly`` belongs the ideal generated by ``self``.
Examples
========
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> f = 2*x**3 + y**3 + 3*y
>>> G = groebner([x**2 + y**2 - 1, x*y - 2])
>>> G.contains(f)
True
>>> G.contains(f + 1)
False
"""
return self.reduce(poly)[1] == 0
@public
def poly(expr, *gens, **args):
"""
Efficiently transform an expression into a polynomial.
Examples
========
>>> from sympy import poly
>>> from sympy.abc import x
>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
"""
options.allowed_flags(args, [])
def _poly(expr, opt):
terms, poly_terms = [], []
for term in Add.make_args(expr):
factors, poly_factors = [], []
for factor in Mul.make_args(term):
if factor.is_Add:
poly_factors.append(_poly(factor, opt))
elif factor.is_Pow and factor.base.is_Add and \
factor.exp.is_Integer and factor.exp >= 0:
poly_factors.append(
_poly(factor.base, opt).pow(factor.exp))
else:
factors.append(factor)
if not poly_factors:
terms.append(term)
else:
product = poly_factors[0]
for factor in poly_factors[1:]:
product = product.mul(factor)
if factors:
factor = Mul(*factors)
if factor.is_Number:
product = product.mul(factor)
else:
product = product.mul(Poly._from_expr(factor, opt))
poly_terms.append(product)
if not poly_terms:
result = Poly._from_expr(expr, opt)
else:
result = poly_terms[0]
for term in poly_terms[1:]:
result = result.add(term)
if terms:
term = Add(*terms)
if term.is_Number:
result = result.add(term)
else:
result = result.add(Poly._from_expr(term, opt))
return result.reorder(*opt.get('gens', ()), **args)
expr = sympify(expr)
if expr.is_Poly:
return Poly(expr, *gens, **args)
if 'expand' not in args:
args['expand'] = False
opt = options.build_options(gens, args)
return _poly(expr, opt)
|
13740aa01d4b005a7c1ec7e50e484af67f0d12474e11e5e05f15ae548936baf3 | """Algorithms for computing symbolic roots of polynomials. """
from __future__ import print_function, division
import math
from sympy.core import S, I, pi
from sympy.core.compatibility import ordered, reduce
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.logic import fuzzy_not
from sympy.core.mul import expand_2arg, Mul
from sympy.core.numbers import Rational, igcd, comp
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, sqrt, im, cos, acos, Piecewise
from sympy.functions.elementary.miscellaneous import root
from sympy.ntheory import divisors, isprime, nextprime
from sympy.polys.domains import EX
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
DomainError)
from sympy.polys.polyquinticconst import PolyQuintic
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
from sympy.polys.rationaltools import together
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.simplify import simplify, powsimp
from sympy.utilities import public
def roots_linear(f):
"""Returns a list of roots of a linear polynomial."""
r = -f.nth(0)/f.nth(1)
dom = f.get_domain()
if not dom.is_Numerical:
if dom.is_Composite:
r = factor(r)
else:
r = simplify(r)
return [r]
def roots_quadratic(f):
"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
a, b, c = f.all_coeffs()
dom = f.get_domain()
def _sqrt(d):
# remove squares from square root since both will be represented
# in the results; a similar thing is happening in roots() but
# must be duplicated here because not all quadratics are binomials
co = []
other = []
for di in Mul.make_args(d):
if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
co.append(Pow(di.base, di.exp//2))
else:
other.append(di)
if co:
d = Mul(*other)
co = Mul(*co)
return co*sqrt(d)
return sqrt(d)
def _simplify(expr):
if dom.is_Composite:
return factor(expr)
else:
return simplify(expr)
if c is S.Zero:
r0, r1 = S.Zero, -b/a
if not dom.is_Numerical:
r1 = _simplify(r1)
elif r1.is_negative:
r0, r1 = r1, r0
elif b is S.Zero:
r = -c/a
if not dom.is_Numerical:
r = _simplify(r)
R = _sqrt(r)
r0 = -R
r1 = R
else:
d = b**2 - 4*a*c
A = 2*a
B = -b/A
if not dom.is_Numerical:
d = _simplify(d)
B = _simplify(B)
D = factor_terms(_sqrt(d)/A)
r0 = B - D
r1 = B + D
if a.is_negative:
r0, r1 = r1, r0
elif not dom.is_Numerical:
r0, r1 = [expand_2arg(i) for i in (r0, r1)]
return [r0, r1]
def roots_cubic(f, trig=False):
"""Returns a list of roots of a cubic polynomial.
References
==========
[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
(accessed November 17, 2014).
"""
if trig:
a, b, c, d = f.all_coeffs()
p = (3*a*c - b**2)/3/a**2
q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
if (D > 0) == True:
rv = []
for k in range(3):
rv.append(2*sqrt(-p/3)*cos(acos(q/p*sqrt(-3/p)*Rational(3, 2))/3 - k*pi*Rational(2, 3)))
return [i - b/3/a for i in rv]
_, a, b, c = f.monic().all_coeffs()
if c is S.Zero:
x1, x2 = roots([1, a, b], multiple=True)
return [x1, S.Zero, x2]
p = b - a**2/3
q = c - a*b/3 + 2*a**3/27
pon3 = p/3
aon3 = a/3
u1 = None
if p is S.Zero:
if q is S.Zero:
return [-aon3]*3
if q.is_real:
if q.is_positive:
u1 = -root(q, 3)
elif q.is_negative:
u1 = root(-q, 3)
elif q is S.Zero:
y1, y2 = roots([1, 0, p], multiple=True)
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
elif q.is_real and q.is_negative:
u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
coeff = I*sqrt(3)/2
if u1 is None:
u1 = S.One
u2 = Rational(-1, 2) + coeff
u3 = Rational(-1, 2) - coeff
a, b, c, d = S(1), a, b, c
D0 = b**2 - 3*a*c
D1 = 2*b**3 - 9*a*b*c + 27*a**2*d
C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]]
u2 = u1*(Rational(-1, 2) + coeff)
u3 = u1*(Rational(-1, 2) - coeff)
if p is S.Zero:
return [u1 - aon3, u2 - aon3, u3 - aon3]
soln = [
-u1 + pon3/u1 - aon3,
-u2 + pon3/u2 - aon3,
-u3 + pon3/u3 - aon3
]
return soln
def _roots_quartic_euler(p, q, r, a):
"""
Descartes-Euler solution of the quartic equation
Parameters
==========
p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
a: shift of the roots
Notes
=====
This is a helper function for ``roots_quartic``.
Look for solutions of the form ::
``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``
To satisfy the quartic equation one must have
``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
so that ``R`` must satisfy the Descartes-Euler resolvent equation
``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``
If the resolvent does not have a rational solution, return None;
in that case it is likely that the Ferrari method gives a simpler
solution.
Examples
========
>>> from sympy import S
>>> from sympy.polys.polyroots import _roots_quartic_euler
>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
>>> _roots_quartic_euler(p, q, r, S(0))[0]
-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
"""
# solve the resolvent equation
x = Dummy('x')
eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
xsols = list(roots(Poly(eq, x), cubics=False).keys())
xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
if not xsols:
return None
R = max(xsols)
c1 = sqrt(R)
B = -q*c1/(4*R)
A = -R - p/2
c2 = sqrt(A + B)
c3 = sqrt(A - B)
return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]
def roots_quartic(f):
r"""
Returns a list of roots of a quartic polynomial.
There are many references for solving quartic expressions available [1-5].
This reviewer has found that many of them require one to select from among
2 or more possible sets of solutions and that some solutions work when one
is searching for real roots but don't work when searching for complex roots
(though this is not always stated clearly). The following routine has been
tested and found to be correct for 0, 2 or 4 complex roots.
The quasisymmetric case solution [6] looks for quartics that have the form
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
Although no general solution that is always applicable for all
coefficients is known to this reviewer, certain conditions are tested
to determine the simplest 4 expressions that can be returned:
1) `f = c + a*(a**2/8 - b/2) == 0`
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
a) `p == 0`
b) `p != 0`
Examples
========
>>> from sympy import Poly
>>> from sympy.polys.polyroots import roots_quartic
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
References
==========
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
5. http://www.albmath.org/files/Math_5713.pdf
6. http://www.statemaster.com/encyclopedia/Quartic-equation
7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
"""
_, a, b, c, d = f.monic().all_coeffs()
if not d:
return [S.Zero] + roots([1, a, b, c], multiple=True)
elif (c/a)**2 == d:
x, m = f.gen, c/a
g = Poly(x**2 + a*x + b - 2*m, x)
z1, z2 = roots_quadratic(g)
h1 = Poly(x**2 - z1*x + m, x)
h2 = Poly(x**2 - z2*x + m, x)
r1 = roots_quadratic(h1)
r2 = roots_quadratic(h2)
return r1 + r2
else:
a2 = a**2
e = b - 3*a2/8
f = _mexpand(c + a*(a2/8 - b/2))
g = _mexpand(d - a*(a*(3*a2/256 - b/16) + c/4))
aon4 = a/4
if f is S.Zero:
y1, y2 = [sqrt(tmp) for tmp in
roots([1, e, g], multiple=True)]
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
if g is S.Zero:
y = [S.Zero] + roots([1, 0, e, f], multiple=True)
return [tmp - aon4 for tmp in y]
else:
# Descartes-Euler method, see [7]
sols = _roots_quartic_euler(e, f, g, aon4)
if sols:
return sols
# Ferrari method, see [1, 2]
a2 = a**2
e = b - 3*a2/8
f = c + a*(a2/8 - b/2)
g = d - a*(a*(3*a2/256 - b/16) + c/4)
p = -e**2/12 - g
q = -e**3/108 + e*g/3 - f**2/8
TH = Rational(1, 3)
def _ans(y):
w = sqrt(e + 2*y)
arg1 = 3*e + 2*y
arg2 = 2*f/w
ans = []
for s in [-1, 1]:
root = sqrt(-(arg1 + s*arg2))
for t in [-1, 1]:
ans.append((s*w - t*root)/2 - aon4)
return ans
# p == 0 case
y1 = e*Rational(-5, 6) - q**TH
if p.is_zero:
return _ans(y1)
# if p != 0 then u below is not 0
root = sqrt(q**2/4 + p**3/27)
r = -q/2 + root # or -q/2 - root
u = r**TH # primary root of solve(x**3 - r, x)
y2 = e*Rational(-5, 6) + u - p/u/3
if fuzzy_not(p.is_zero):
return _ans(y2)
# sort it out once they know the values of the coefficients
return [Piecewise((a1, Eq(p, 0)), (a2, True))
for a1, a2 in zip(_ans(y1), _ans(y2))]
def roots_binomial(f):
"""Returns a list of roots of a binomial polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
n = f.degree()
a, b = f.nth(n), f.nth(0)
base = -cancel(b/a)
alpha = root(base, n)
if alpha.is_number:
alpha = alpha.expand(complex=True)
# define some parameters that will allow us to order the roots.
# If the domain is ZZ this is guaranteed to return roots sorted
# with reals before non-real roots and non-real sorted according
# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
neg = base.is_negative
even = n % 2 == 0
if neg:
if even == True and (base + 1).is_positive:
big = True
else:
big = False
# get the indices in the right order so the computed
# roots will be sorted when the domain is ZZ
ks = []
imax = n//2
if even:
ks.append(imax)
imax -= 1
if not neg:
ks.append(0)
for i in range(imax, 0, -1):
if neg:
ks.extend([i, -i])
else:
ks.extend([-i, i])
if neg:
ks.append(0)
if big:
for i in range(0, len(ks), 2):
pair = ks[i: i + 2]
pair = list(reversed(pair))
# compute the roots
roots, d = [], 2*I*pi/n
for k in ks:
zeta = exp(k*d).expand(complex=True)
roots.append((alpha*zeta).expand(power_base=False))
return roots
def _inv_totient_estimate(m):
"""
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
Examples
========
>>> from sympy.polys.polyroots import _inv_totient_estimate
>>> _inv_totient_estimate(192)
(192, 840)
>>> _inv_totient_estimate(400)
(400, 1750)
"""
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
a, b = 1, 1
for p in primes:
a *= p
b *= p - 1
L = m
U = int(math.ceil(m*(float(a)/b)))
P = p = 2
primes = []
while P <= U:
p = nextprime(p)
primes.append(p)
P *= p
P //= p
b = 1
for p in primes[:-1]:
b *= p - 1
U = int(math.ceil(m*(float(P)/b)))
return L, U
def roots_cyclotomic(f, factor=False):
"""Compute roots of cyclotomic polynomials. """
L, U = _inv_totient_estimate(f.degree())
for n in range(L, U + 1):
g = cyclotomic_poly(n, f.gen, polys=True)
if f.expr == g.expr:
break
else: # pragma: no cover
raise RuntimeError("failed to find index of a cyclotomic polynomial")
roots = []
if not factor:
# get the indices in the right order so the computed
# roots will be sorted
h = n//2
ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
d = 2*I*pi/n
for k in reversed(ks):
roots.append(exp(k*d).expand(complex=True))
else:
g = Poly(f, extension=root(-1, n))
for h, _ in ordered(g.factor_list()[1]):
roots.append(-h.TC())
return roots
def roots_quintic(f):
"""
Calculate exact roots of a solvable quintic
"""
result = []
coeff_5, coeff_4, p, q, r, s = f.all_coeffs()
# Eqn must be of the form x^5 + px^3 + qx^2 + rx + s
if coeff_4:
return result
if coeff_5 != 1:
l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5]
if not all(coeff.is_Rational for coeff in l):
return result
f = Poly(f/coeff_5)
quintic = PolyQuintic(f)
# Eqn standardized. Algo for solving starts here
if not f.is_irreducible:
return result
f20 = quintic.f20
# Check if f20 has linear factors over domain Z
if f20.is_irreducible:
return result
# Now, we know that f is solvable
for _factor in f20.factor_list()[1]:
if _factor[0].is_linear:
theta = _factor[0].root(0)
break
d = discriminant(f)
delta = sqrt(d)
# zeta = a fifth root of unity
zeta1, zeta2, zeta3, zeta4 = quintic.zeta
T = quintic.T(theta, d)
tol = S(1e-10)
alpha = T[1] + T[2]*delta
alpha_bar = T[1] - T[2]*delta
beta = T[3] + T[4]*delta
beta_bar = T[3] - T[4]*delta
disc = alpha**2 - 4*beta
disc_bar = alpha_bar**2 - 4*beta_bar
l0 = quintic.l0(theta)
l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2))
l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2))
l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2))
l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2))
order = quintic.order(theta, d)
test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
# Comparing floats
if not comp(test, 0, tol):
l2, l3 = l3, l2
# Now we have correct order of l's
R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4
Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
sol = Symbol('sol')
# Simplifying improves performance a lot for exact expressions
R1 = _quintic_simplify(R1)
R2 = _quintic_simplify(R2)
R3 = _quintic_simplify(R3)
R4 = _quintic_simplify(R4)
# Solve imported here. Causing problems if imported as 'solve'
# and hence the changed name
from sympy.solvers.solvers import solve as _solve
a, b = symbols('a b', cls=Dummy)
_sol = _solve( sol**5 - a - I*b, sol)
for i in range(5):
_sol[i] = factor(_sol[i])
R1 = R1.as_real_imag()
R2 = R2.as_real_imag()
R3 = R3.as_real_imag()
R4 = R4.as_real_imag()
for i, currentroot in enumerate(_sol):
Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] }))
Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] }))
Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] }))
Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] }))
for i in range(1, 5):
for j in range(5):
Res_n[i][j] = Res[i][j].n()
Res[i][j] = _quintic_simplify(Res[i][j])
r1 = Res[1][0]
r1_n = Res_n[1][0]
for i in range(5):
if comp(im(r1_n*Res_n[4][i]), 0, tol):
r4 = Res[4][i]
break
# Now we have various Res values. Each will be a list of five
# values. We have to pick one r value from those five for each Res
u, v = quintic.uv(theta, d)
testplus = (u + v*delta*sqrt(5)).n()
testminus = (u - v*delta*sqrt(5)).n()
# Evaluated numbers suffixed with _n
# We will use evaluated numbers for calculation. Much faster.
r4_n = r4.n()
r2 = r3 = None
for i in range(5):
r2temp_n = Res_n[2][i]
for j in range(5):
# Again storing away the exact number and using
# evaluated numbers in computations
r3temp_n = Res_n[3][j]
if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
r2 = Res[2][i]
r3 = Res[3][j]
break
if r2:
break
else:
return [] # fall back to normal solve
# Now, we have r's so we can get roots
x1 = (r1 + r2 + r3 + r4)/5
x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
result = [x1, x2, x3, x4, x5]
# Now check if solutions are distinct
saw = set()
for r in result:
r = r.n(2)
if r in saw:
# Roots were identical. Abort, return []
# and fall back to usual solve
return []
saw.add(r)
return result
def _quintic_simplify(expr):
expr = powsimp(expr)
expr = cancel(expr)
return together(expr)
def _integer_basis(poly):
"""Compute coefficient basis for a polynomial over integers.
Returns the integer ``div`` such that substituting ``x = div*y``
``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
than those of ``p``.
For example ``x**5 + 512*x + 1024 = 0``
with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``
Returns the integer ``div`` or ``None`` if there is no possible scaling.
Examples
========
>>> from sympy.polys import Poly
>>> from sympy.abc import x
>>> from sympy.polys.polyroots import _integer_basis
>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
>>> _integer_basis(p)
4
"""
monoms, coeffs = list(zip(*poly.terms()))
monoms, = list(zip(*monoms))
coeffs = list(map(abs, coeffs))
if coeffs[0] < coeffs[-1]:
coeffs = list(reversed(coeffs))
n = monoms[0]
monoms = [n - i for i in reversed(monoms)]
else:
return None
monoms = monoms[:-1]
coeffs = coeffs[:-1]
divs = reversed(divisors(gcd_list(coeffs))[1:])
try:
div = next(divs)
except StopIteration:
return None
while True:
for monom, coeff in zip(monoms, coeffs):
if coeff % div**monom != 0:
try:
div = next(divs)
except StopIteration:
return None
else:
break
else:
return div
def preprocess_roots(poly):
"""Try to get rid of symbolic coefficients from ``poly``. """
coeff = S.One
poly_func = poly.func
try:
_, poly = poly.clear_denoms(convert=True)
except DomainError:
return coeff, poly
poly = poly.primitive()[1]
poly = poly.retract()
# TODO: This is fragile. Figure out how to make this independent of construct_domain().
if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
poly = poly.inject()
strips = list(zip(*poly.monoms()))
gens = list(poly.gens[1:])
base, strips = strips[0], strips[1:]
for gen, strip in zip(list(gens), strips):
reverse = False
if strip[0] < strip[-1]:
strip = reversed(strip)
reverse = True
ratio = None
for a, b in zip(base, strip):
if not a and not b:
continue
elif not a or not b:
break
elif b % a != 0:
break
else:
_ratio = b // a
if ratio is None:
ratio = _ratio
elif ratio != _ratio:
break
else:
if reverse:
ratio = -ratio
poly = poly.eval(gen, 1)
coeff *= gen**(-ratio)
gens.remove(gen)
if gens:
poly = poly.eject(*gens)
if poly.is_univariate and poly.get_domain().is_ZZ:
basis = _integer_basis(poly)
if basis is not None:
n = poly.degree()
def func(k, coeff):
return coeff//basis**(n - k[0])
poly = poly.termwise(func)
coeff *= basis
if not isinstance(poly, poly_func):
poly = poly_func(poly)
return coeff, poly
@public
def roots(f, *gens,
auto=True,
cubics=True,
trig=False,
quartics=True,
quintics=False,
multiple=False,
filter=None,
predicate=None,
**flags):
"""
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or
a list of the polynomial's coefficients), returns a dictionary
with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get
a complete set of roots use RootOf class or numerical methods
instead. By default cubic and quartic formulas are used in
the algorithm. To disable them because of unreadable output
set ``cubics=False`` or ``quartics=False`` respectively. If cubic
roots are real but are expressed in terms of complex numbers
(casus irreducibilis [1]) the ``trig`` flag can be set to True to
have the solutions returned in terms of cosine and inverse cosine
functions.
To get roots from a specific domain set the ``filter`` flag with
one of the following specifiers: Z, Q, R, I, C. By default all
roots are returned (this is equivalent to setting ``filter='C'``).
By default a dictionary is returned giving a compact result in
case of multiple roots. However to get a list containing all
those roots set the ``multiple`` flag to True; the list will
have identical roots appearing next to each other in the result.
(For a given Poly, the all_roots method will give the roots in
sorted numerical order.)
Examples
========
>>> from sympy import Poly, roots
>>> from sympy.abc import x, y
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x))
{-sqrt(y): 1, sqrt(y): 1}
>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}
>>> roots([1, 0, -1])
{-1: 1, 1: 1}
References
==========
.. [1] https://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
"""
from sympy.polys.polytools import to_rational_coeffs
flags = dict(flags)
if isinstance(f, list):
if gens:
raise ValueError('redundant generators given')
x = Dummy('x')
poly, i = {}, len(f) - 1
for coeff in f:
poly[i], i = sympify(coeff), i - 1
f = Poly(poly, x, field=True)
else:
try:
F = Poly(f, *gens, **flags)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
raise PolynomialError("generator must be a Symbol")
else:
f = F
if f.length == 2 and f.degree() != 1:
# check for foo**n factors in the constant
n = f.degree()
npow_bases = []
others = []
expr = f.as_expr()
con = expr.as_independent(*gens)[0]
for p in Mul.make_args(con):
if p.is_Pow and not p.exp % n:
npow_bases.append(p.base**(p.exp/n))
else:
others.append(p)
if npow_bases:
b = Mul(*npow_bases)
B = Dummy()
d = roots(Poly(expr - con + B**n*Mul(*others), *gens,
**flags), *gens, **flags)
rv = {}
for k, v in d.items():
rv[k.subs(B, b)] = v
return rv
except GeneratorsNeeded:
if multiple:
return []
else:
return {}
if f.is_multivariate:
raise PolynomialError('multivariate polynomials are not supported')
def _update_dict(result, currentroot, k):
if currentroot in result:
result[currentroot] += k
else:
result[currentroot] = k
def _try_decompose(f):
"""Find roots using functional decomposition. """
factors, roots = f.decompose(), []
for currentroot in _try_heuristics(factors[0]):
roots.append(currentroot)
for currentfactor in factors[1:]:
previous, roots = list(roots), []
for currentroot in previous:
g = currentfactor - Poly(currentroot, f.gen)
for currentroot in _try_heuristics(g):
roots.append(currentroot)
return roots
def _try_heuristics(f):
"""Find roots using formulas and some tricks. """
if f.is_ground:
return []
if f.is_monomial:
return [S.Zero]*f.degree()
if f.length() == 2:
if f.degree() == 1:
return list(map(cancel, roots_linear(f)))
else:
return roots_binomial(f)
result = []
for i in [-1, 1]:
if not f.eval(i):
f = f.quo(Poly(f.gen - i, f.gen))
result.append(i)
break
n = f.degree()
if n == 1:
result += list(map(cancel, roots_linear(f)))
elif n == 2:
result += list(map(cancel, roots_quadratic(f)))
elif f.is_cyclotomic:
result += roots_cyclotomic(f)
elif n == 3 and cubics:
result += roots_cubic(f, trig=trig)
elif n == 4 and quartics:
result += roots_quartic(f)
elif n == 5 and quintics:
result += roots_quintic(f)
return result
# Convert the generators to symbols
dumgens = symbols('x:%d' % len(f.gens), cls=Dummy)
f = f.per(f.rep, dumgens)
(k,), f = f.terms_gcd()
if not k:
zeros = {}
else:
zeros = {S.Zero: k}
coeff, f = preprocess_roots(f)
if auto and f.get_domain().is_Ring:
f = f.to_field()
# Use EX instead of ZZ_I or QQ_I
if f.get_domain().is_QQ_I:
f = f.per(f.rep.convert(EX))
rescale_x = None
translate_x = None
result = {}
if not f.is_ground:
dom = f.get_domain()
if not dom.is_Exact and dom.is_Numerical:
for r in f.nroots():
_update_dict(result, r, 1)
elif f.degree() == 1:
result[roots_linear(f)[0]] = 1
elif f.length() == 2:
roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
for r in roots_fun(f):
_update_dict(result, r, 1)
else:
_, factors = Poly(f.as_expr()).factor_list()
if len(factors) == 1 and f.degree() == 2:
for r in roots_quadratic(f):
_update_dict(result, r, 1)
else:
if len(factors) == 1 and factors[0][1] == 1:
if f.get_domain().is_EX:
res = to_rational_coeffs(f)
if res:
if res[0] is None:
translate_x, f = res[2:]
else:
rescale_x, f = res[1], res[-1]
result = roots(f)
if not result:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for r in _try_heuristics(f):
_update_dict(result, r, 1)
else:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for currentfactor, k in factors:
for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
_update_dict(result, r, k)
if coeff is not S.One:
_result, result, = result, {}
for currentroot, k in _result.items():
result[coeff*currentroot] = k
if filter not in [None, 'C']:
handlers = {
'Z': lambda r: r.is_Integer,
'Q': lambda r: r.is_Rational,
'R': lambda r: all(a.is_real for a in r.as_numer_denom()),
'I': lambda r: r.is_imaginary,
}
try:
query = handlers[filter]
except KeyError:
raise ValueError("Invalid filter: %s" % filter)
for zero in dict(result).keys():
if not query(zero):
del result[zero]
if predicate is not None:
for zero in dict(result).keys():
if not predicate(zero):
del result[zero]
if rescale_x:
result1 = {}
for k, v in result.items():
result1[k*rescale_x] = v
result = result1
if translate_x:
result1 = {}
for k, v in result.items():
result1[k + translate_x] = v
result = result1
# adding zero roots after non-trivial roots have been translated
result.update(zeros)
if not multiple:
return result
else:
zeros = []
for zero in ordered(result):
zeros.extend([zero]*result[zero])
return zeros
def root_factors(f, *gens, filter=None, **args):
"""
Returns all factors of a univariate polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.polys.polyroots import root_factors
>>> root_factors(x**2 - y, x)
[x - sqrt(y), x + sqrt(y)]
"""
args = dict(args)
F = Poly(f, *gens, **args)
if not F.is_Poly:
return [f]
if F.is_multivariate:
raise ValueError('multivariate polynomials are not supported')
x = F.gens[0]
zeros = roots(F, filter=filter)
if not zeros:
factors = [F]
else:
factors, N = [], 0
for r, n in ordered(zeros.items()):
factors, N = factors + [Poly(x - r, x)]*n, N + n
if N < F.degree():
G = reduce(lambda p, q: p*q, factors)
factors.append(F.quo(G))
if not isinstance(f, Poly):
factors = [ f.as_expr() for f in factors ]
return factors
|
e8dd8a4ac685ca902d04e7d166a2499638ed605640655a481d5d0983cba2ac10 | """Sparse polynomial rings. """
from __future__ import print_function, division
from typing import Any, Dict
from operator import add, mul, lt, le, gt, ge
from types import GeneratorType
from sympy.core.compatibility import is_sequence, reduce
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
CoercionFailed, GeneratorsError,
ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
_parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute
@public
def ring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring,) + _ring.gens
@public
def xring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring, _ring.gens)
@public
def vring(symbols, domain, order=lex):
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z # noqa:
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
return _ring
@public
def sring(exprs, *symbols, **options):
"""Construct a ring deriving generators and domain from options and input expressions.
Parameters
==========
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
options : keyword arguments understood by :class:`~.Options`
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.rings import sring
>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
# TODO: rewrite this so that it doesn't use expand() (see poly()).
reps, opt = _parallel_dict_from_expr(exprs, opt)
if opt.domain is None:
# NOTE: this is inefficient because construct_domain() automatically
# performs conversion to the target domain. It shouldn't do this.
coeffs = sum([ list(rep.values()) for rep in reps ], [])
opt.domain, _ = construct_domain(coeffs, opt=opt)
_ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = list(map(_ring.from_dict, reps))
if single:
return (_ring, polys[0])
else:
return (_ring, polys)
def _parse_symbols(symbols):
if isinstance(symbols, str):
return _symbols(symbols, seq=True) if symbols else ()
elif isinstance(symbols, Expr):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, str) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
_ring_cache = {} # type: Dict[Any, Any]
class PolyRing(DefaultPrinting, IPolys):
"""Multivariate distributed polynomial ring. """
def __new__(cls, symbols, domain, order=lex):
symbols = tuple(_parse_symbols(symbols))
ngens = len(symbols)
domain = DomainOpt.preprocess(domain)
order = OrderOpt.preprocess(order)
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _ring_cache.get(_hash_tuple)
if obj is None:
if domain.is_Composite and set(symbols) & set(domain.symbols):
raise GeneratorsError("polynomial ring and it's ground domain share generators")
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero_monom = (0,)*ngens
obj.gens = obj._gens()
obj._gens_set = set(obj.gens)
obj._one = [(obj.zero_monom, domain.one)]
if ngens:
# These expect monomials in at least one variable
codegen = MonomialOps(ngens)
obj.monomial_mul = codegen.mul()
obj.monomial_pow = codegen.pow()
obj.monomial_mulpow = codegen.mulpow()
obj.monomial_ldiv = codegen.ldiv()
obj.monomial_div = codegen.div()
obj.monomial_lcm = codegen.lcm()
obj.monomial_gcd = codegen.gcd()
else:
monunit = lambda a, b: ()
obj.monomial_mul = monunit
obj.monomial_pow = monunit
obj.monomial_mulpow = lambda a, b, c: ()
obj.monomial_ldiv = monunit
obj.monomial_div = monunit
obj.monomial_lcm = monunit
obj.monomial_gcd = monunit
if order is lex:
obj.leading_expv = lambda f: max(f)
else:
obj.leading_expv = lambda f: max(f, key=order)
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_ring_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
one = self.domain.one
_gens = []
for i in range(self.ngens):
expv = self.monomial_basis(i)
poly = self.zero
poly[expv] = one
_gens.append(poly)
return tuple(_gens)
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __getstate__(self):
state = self.__dict__.copy()
del state["leading_expv"]
for key, value in state.items():
if key.startswith("monomial_"):
del state[key]
return state
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, PolyRing) and \
(self.symbols, self.domain, self.ngens, self.order) == \
(other.symbols, other.domain, other.ngens, other.order)
def __ne__(self, other):
return not self == other
def clone(self, symbols=None, domain=None, order=None):
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
def monomial_basis(self, i):
"""Return the ith-basis element. """
basis = [0]*self.ngens
basis[i] = 1
return tuple(basis)
@property
def zero(self):
return self.dtype()
@property
def one(self):
return self.dtype(self._one)
def domain_new(self, element, orig_domain=None):
return self.domain.convert(element, orig_domain)
def ground_new(self, coeff):
return self.term_new(self.zero_monom, coeff)
def term_new(self, monom, coeff):
coeff = self.domain_new(coeff)
poly = self.zero
if coeff:
poly[monom] = coeff
return poly
def ring_new(self, element):
if isinstance(element, PolyElement):
if self == element.ring:
return element
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, dict):
return self.from_dict(element)
elif isinstance(element, list):
try:
return self.from_terms(element)
except ValueError:
return self.from_list(element)
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = ring_new
def from_dict(self, element):
domain_new = self.domain_new
poly = self.zero
for monom, coeff in element.items():
coeff = domain_new(coeff)
if coeff:
poly[monom] = coeff
return poly
def from_terms(self, element):
return self.from_dict(dict(element))
def from_list(self, element):
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
def _rebuild_expr(self, expr, mapping):
domain = self.domain
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
elif expr.is_Pow and expr.exp.is_Integer and expr.exp >= 0:
return _rebuild(expr.base)**int(expr.exp)
else:
return domain.convert(expr)
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
poly = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
else:
return self.ring_new(poly)
def index(self, gen):
"""Compute index of ``gen`` in ``self.gens``. """
if gen is None:
if self.ngens:
i = 0
else:
i = -1 # indicate impossible choice
elif isinstance(gen, int):
i = gen
if 0 <= i and i < self.ngens:
pass
elif -self.ngens <= i and i <= -1:
i = -i - 1
else:
raise ValueError("invalid generator index: %s" % gen)
elif isinstance(gen, self.dtype):
try:
i = self.gens.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
elif isinstance(gen, str):
try:
i = self.symbols.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
else:
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
return i
def drop(self, *gens):
"""Remove specified generators from this ring. """
indices = set(map(self.index, gens))
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def __getitem__(self, key):
symbols = self.symbols[key]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def to_ground(self):
# TODO: should AlgebraicField be a Composite domain?
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
return self.clone(domain=self.domain.domain)
else:
raise ValueError("%s is not a composite domain" % self.domain)
def to_domain(self):
return PolynomialRing(self)
def to_field(self):
from sympy.polys.fields import FracField
return FracField(self.symbols, self.domain, self.order)
@property
def is_univariate(self):
return len(self.gens) == 1
@property
def is_multivariate(self):
return len(self.gens) > 1
def add(self, *objs):
"""
Add a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
"""
p = self.zero
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p += self.add(*obj)
else:
p += obj
return p
def mul(self, *objs):
"""
Multiply a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
"""
p = self.one
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p *= self.mul(*obj)
else:
p *= obj
return p
def drop_to_ground(self, *gens):
r"""
Remove specified generators from the ring and inject them into
its domain.
"""
indices = set(map(self.index, gens))
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
if not symbols:
return self
else:
return self.clone(symbols=symbols, domain=self.drop(*gens))
def compose(self, other):
"""Add the generators of ``other`` to ``self``"""
if self != other:
syms = set(self.symbols).union(set(other.symbols))
return self.clone(symbols=list(syms))
else:
return self
def add_gens(self, symbols):
"""Add the elements of ``symbols`` as generators to ``self``"""
syms = set(self.symbols).union(set(symbols))
return self.clone(symbols=list(syms))
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
"""Element of multivariate distributed polynomial ring. """
def new(self, init):
return self.__class__(init)
def parent(self):
return self.ring.to_domain()
def __getnewargs__(self):
return (self.ring, list(self.iterterms()))
_hash = None
def __hash__(self):
# XXX: This computes a hash of a dictionary, but currently we don't
# protect dictionary from being changed so any use site modifications
# will make hashing go wrong. Use this feature with caution until we
# figure out how to make a safe API without compromising speed of this
# low-level class.
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.ring, frozenset(self.items())))
return _hash
def copy(self):
"""Return a copy of polynomial self.
Polynomials are mutable; if one is interested in preserving
a polynomial, and one plans to use inplace operations, one
can copy the polynomial. This method makes a shallow copy.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
"""
return self.new(self)
def set_ring(self, new_ring):
if self.ring == new_ring:
return self
elif self.ring.symbols != new_ring.symbols:
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
return new_ring.from_terms(terms)
else:
return new_ring.from_dict(self)
def as_expr(self, *symbols):
if symbols and len(symbols) != self.ring.ngens:
raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols)))
else:
symbols = self.ring.symbols
return expr_from_dict(self.as_expr_dict(), *symbols)
def as_expr_dict(self):
to_sympy = self.ring.domain.to_sympy
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
def clear_denoms(self):
domain = self.ring.domain
if not domain.is_Field or not domain.has_assoc_Ring:
return domain.one, self
ground_ring = domain.get_ring()
common = ground_ring.one
lcm = ground_ring.lcm
denom = domain.denom
for coeff in self.values():
common = lcm(common, denom(coeff))
poly = self.new([ (k, v*common) for k, v in self.items() ])
return common, poly
def strip_zero(self):
"""Eliminate monomials with zero coefficient. """
for k, v in list(self.items()):
if not v:
del self[k]
def __eq__(p1, p2):
"""Equality test for polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = (x + y)**2 + (x - y)**2
>>> p1 == 4*x*y
False
>>> p1 == 2*(x**2 + y**2)
True
"""
if not p2:
return not p1
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
return dict.__eq__(p1, p2)
elif len(p1) > 1:
return False
else:
return p1.get(p1.ring.zero_monom) == p2
def __ne__(p1, p2):
return not p1 == p2
def almosteq(p1, p2, tolerance=None):
"""Approximate equality test for polynomials. """
ring = p1.ring
if isinstance(p2, ring.dtype):
if set(p1.keys()) != set(p2.keys()):
return False
almosteq = ring.domain.almosteq
for k in p1.keys():
if not almosteq(p1[k], p2[k], tolerance):
return False
return True
elif len(p1) > 1:
return False
else:
try:
p2 = ring.domain.convert(p2)
except CoercionFailed:
return False
else:
return ring.domain.almosteq(p1.const(), p2, tolerance)
def sort_key(self):
return (len(self), self.terms())
def _cmp(p1, p2, op):
if isinstance(p2, p1.ring.dtype):
return op(p1.sort_key(), p2.sort_key())
else:
return NotImplemented
def __lt__(p1, p2):
return p1._cmp(p2, lt)
def __le__(p1, p2):
return p1._cmp(p2, le)
def __gt__(p1, p2):
return p1._cmp(p2, gt)
def __ge__(p1, p2):
return p1._cmp(p2, ge)
def _drop(self, gen):
ring = self.ring
i = ring.index(gen)
if ring.ngens == 1:
return i, ring.domain
else:
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols)
def drop(self, gen):
i, ring = self._drop(gen)
if self.ring.ngens == 1:
if self.is_ground:
return self.coeff(1)
else:
raise ValueError("can't drop %s" % gen)
else:
poly = ring.zero
for k, v in self.items():
if k[i] == 0:
K = list(k)
del K[i]
poly[tuple(K)] = v
else:
raise ValueError("can't drop %s" % gen)
return poly
def _drop_to_ground(self, gen):
ring = self.ring
i = ring.index(gen)
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols, domain=ring[i])
def drop_to_ground(self, gen):
if self.ring.ngens == 1:
raise ValueError("can't drop only generator to ground")
i, ring = self._drop_to_ground(gen)
poly = ring.zero
gen = ring.domain.gens[0]
for monom, coeff in self.iterterms():
mon = monom[:i] + monom[i+1:]
if not mon in poly:
poly[mon] = (gen**monom[i]).mul_ground(coeff)
else:
poly[mon] += (gen**monom[i]).mul_ground(coeff)
return poly
def to_dense(self):
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
def to_dict(self):
return dict(self)
def str(self, printer, precedence, exp_pattern, mul_symbol):
if not self:
return printer._print(self.ring.domain.zero)
prec_mul = precedence["Mul"]
prec_atom = precedence["Atom"]
ring = self.ring
symbols = ring.symbols
ngens = ring.ngens
zm = ring.zero_monom
sexpvs = []
for expv, coeff in self.terms():
negative = ring.domain.is_negative(coeff)
sign = " - " if negative else " + "
sexpvs.append(sign)
if expv == zm:
scoeff = printer._print(coeff)
if negative and scoeff.startswith("-"):
scoeff = scoeff[1:]
else:
if negative:
coeff = -coeff
if coeff != self.ring.one:
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
else:
scoeff = ''
sexpv = []
for i in range(ngens):
exp = expv[i]
if not exp:
continue
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
if exp != 1:
if exp != int(exp) or exp < 0:
sexp = printer.parenthesize(exp, prec_atom, strict=False)
else:
sexp = exp
sexpv.append(exp_pattern % (symbol, sexp))
else:
sexpv.append('%s' % symbol)
if scoeff:
sexpv = [scoeff] + sexpv
sexpvs.append(mul_symbol.join(sexpv))
if sexpvs[0] in [" + ", " - "]:
head = sexpvs.pop(0)
if head == " - ":
sexpvs.insert(0, "-")
return "".join(sexpvs)
@property
def is_generator(self):
return self in self.ring._gens_set
@property
def is_ground(self):
return not self or (len(self) == 1 and self.ring.zero_monom in self)
@property
def is_monomial(self):
return not self or (len(self) == 1 and self.LC == 1)
@property
def is_term(self):
return len(self) <= 1
@property
def is_negative(self):
return self.ring.domain.is_negative(self.LC)
@property
def is_positive(self):
return self.ring.domain.is_positive(self.LC)
@property
def is_nonnegative(self):
return self.ring.domain.is_nonnegative(self.LC)
@property
def is_nonpositive(self):
return self.ring.domain.is_nonpositive(self.LC)
@property
def is_zero(f):
return not f
@property
def is_one(f):
return f == f.ring.one
@property
def is_monic(f):
return f.ring.domain.is_one(f.LC)
@property
def is_primitive(f):
return f.ring.domain.is_one(f.content())
@property
def is_linear(f):
return all(sum(monom) <= 1 for monom in f.itermonoms())
@property
def is_quadratic(f):
return all(sum(monom) <= 2 for monom in f.itermonoms())
@property
def is_squarefree(f):
if not f.ring.ngens:
return True
return f.ring.dmp_sqf_p(f)
@property
def is_irreducible(f):
if not f.ring.ngens:
return True
return f.ring.dmp_irreducible_p(f)
@property
def is_cyclotomic(f):
if f.ring.is_univariate:
return f.ring.dup_cyclotomic_p(f)
else:
raise MultivariatePolynomialError("cyclotomic polynomial")
def __neg__(self):
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
def __pos__(self):
return self
def __add__(p1, p2):
"""Add two polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> (x + y)**2 + (x - y)**2
2*x**2 + 2*y**2
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) + v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__radd__(p1)
else:
return NotImplemented
try:
cp2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
if not cp2:
return p
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = cp2
else:
if p2 == -p[zm]:
del p[zm]
else:
p[zm] += cp2
return p
def __radd__(p1, n):
p = p1.copy()
if not n:
return p
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = n
else:
if n == -p[zm]:
del p[zm]
else:
p[zm] += n
return p
def __sub__(p1, p2):
"""Subtract polynomial p2 from p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = x + y**2
>>> p2 = x*y + y**2
>>> p1 - p2
-x*y + x
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) - v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rsub__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = -p2
else:
if p2 == p[zm]:
del p[zm]
else:
p[zm] -= p2
return p
def __rsub__(p1, n):
"""n - p1 with n convertible to the coefficient domain.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 - p
-x - y + 4
"""
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
p = ring.zero
for expv in p1:
p[expv] = -p1[expv]
p += n
return p
def __mul__(p1, p2):
"""Multiply two polynomials.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', QQ)
>>> p1 = x + y
>>> p2 = x - y
>>> p1*p2
x**2 - y**2
"""
ring = p1.ring
p = ring.zero
if not p1 or not p2:
return p
elif isinstance(p2, ring.dtype):
get = p.get
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
p2it = list(p2.items())
for exp1, v1 in p1.items():
for exp2, v2 in p2it:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, zero) + v1*v2
p.strip_zero()
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmul__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = v1*p2
if v:
p[exp1] = v
return p
def __rmul__(p1, p2):
"""p2 * p1 with p2 in the coefficient domain of p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 * p
4*x + 4*y
"""
p = p1.ring.zero
if not p2:
return p
try:
p2 = p.ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = p2*v1
if v:
p[exp1] = v
return p
def __pow__(self, n):
"""raise polynomial to power `n`
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p**3
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
"""
ring = self.ring
if not n:
if self:
return ring.one
else:
raise ValueError("0**0")
elif len(self) == 1:
monom, coeff = list(self.items())[0]
p = ring.zero
if coeff == 1:
p[ring.monomial_pow(monom, n)] = coeff
else:
p[ring.monomial_pow(monom, n)] = coeff**n
return p
# For ring series, we need negative and rational exponent support only
# with monomials.
n = int(n)
if n < 0:
raise ValueError("Negative exponent")
elif n == 1:
return self.copy()
elif n == 2:
return self.square()
elif n == 3:
return self*self.square()
elif len(self) <= 5: # TODO: use an actual density measure
return self._pow_multinomial(n)
else:
return self._pow_generic(n)
def _pow_generic(self, n):
p = self.ring.one
c = self
while True:
if n & 1:
p = p*c
n -= 1
if not n:
break
c = c.square()
n = n // 2
return p
def _pow_multinomial(self, n):
multinomials = list(multinomial_coefficients(len(self), n).items())
monomial_mulpow = self.ring.monomial_mulpow
zero_monom = self.ring.zero_monom
terms = list(self.iterterms())
zero = self.ring.domain.zero
poly = self.ring.zero
for multinomial, multinomial_coeff in multinomials:
product_monom = zero_monom
product_coeff = multinomial_coeff
for exp, (monom, coeff) in zip(multinomial, terms):
if exp:
product_monom = monomial_mulpow(product_monom, monom, exp)
product_coeff *= coeff**exp
monom = tuple(product_monom)
coeff = product_coeff
coeff = poly.get(monom, zero) + coeff
if coeff:
poly[monom] = coeff
else:
del poly[monom]
return poly
def square(self):
"""square of a polynomial
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
x**2 + 2*x*y**2 + y**4
"""
ring = self.ring
p = ring.zero
get = p.get
keys = list(self.keys())
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
for i in range(len(keys)):
k1 = keys[i]
pk = self[k1]
for j in range(i):
k2 = keys[j]
exp = monomial_mul(k1, k2)
p[exp] = get(exp, zero) + pk*self[k2]
p = p.imul_num(2)
get = p.get
for k, v in self.items():
k2 = monomial_mul(k, k)
p[k2] = get(k2, zero) + v**2
p.strip_zero()
return p
def __divmod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.div(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rdivmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return (p1.quo_ground(p2), p1.rem_ground(p2))
def __rdivmod__(p1, p2):
return NotImplemented
def __mod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.rem(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.rem_ground(p2)
def __rmod__(p1, p2):
return NotImplemented
def __truediv__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
if p2.is_monomial:
return p1*(p2**(-1))
else:
return p1.quo(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rtruediv__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.quo_ground(p2)
def __rtruediv__(p1, p2):
return NotImplemented
__floordiv__ = __truediv__
__rfloordiv__ = __rtruediv__
# TODO: use // (__floordiv__) for exquo()?
def _term_div(self):
zm = self.ring.zero_monom
domain = self.ring.domain
domain_quo = domain.quo
monomial_div = self.ring.monomial_div
if domain.is_Field:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, domain_quo(a_lc, b_lc)
else:
return None
else:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, domain_quo(a_lc, b_lc)
else:
return None
return term_div
def div(self, fv):
"""Division algorithm, see [CLO] p64.
fv array of polynomials
return qv, r such that
self = sum(fv[i]*qv[i]) + r
All polynomials are required not to be Laurent polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
"""
ring = self.ring
ret_single = False
if isinstance(fv, PolyElement):
ret_single = True
fv = [fv]
if any(not f for f in fv):
raise ZeroDivisionError("polynomial division")
if not self:
if ret_single:
return ring.zero, ring.zero
else:
return [], ring.zero
for f in fv:
if f.ring != ring:
raise ValueError('self and f must have the same ring')
s = len(fv)
qv = [ring.zero for i in range(s)]
p = self.copy()
r = ring.zero
term_div = self._term_div()
expvs = [fx.leading_expv() for fx in fv]
while p:
i = 0
divoccurred = 0
while i < s and divoccurred == 0:
expv = p.leading_expv()
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
if term is not None:
expv1, c = term
qv[i] = qv[i]._iadd_monom((expv1, c))
p = p._iadd_poly_monom(fv[i], (expv1, -c))
divoccurred = 1
else:
i += 1
if not divoccurred:
expv = p.leading_expv()
r = r._iadd_monom((expv, p[expv]))
del p[expv]
if expv == ring.zero_monom:
r += p
if ret_single:
if not qv:
return ring.zero, r
else:
return qv[0], r
else:
return qv, r
def rem(self, G):
f = self
if isinstance(G, PolyElement):
G = [G]
if any(not g for g in G):
raise ZeroDivisionError("polynomial division")
ring = f.ring
domain = ring.domain
zero = domain.zero
monomial_mul = ring.monomial_mul
r = ring.zero
term_div = f._term_div()
ltf = f.LT
f = f.copy()
get = f.get
while f:
for g in G:
tq = term_div(ltf, g.LT)
if tq is not None:
m, c = tq
for mg, cg in g.iterterms():
m1 = monomial_mul(mg, m)
c1 = get(m1, zero) - c*cg
if not c1:
del f[m1]
else:
f[m1] = c1
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
break
else:
ltm, ltc = ltf
if ltm in r:
r[ltm] += ltc
else:
r[ltm] = ltc
del f[ltm]
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
return r
def quo(f, G):
return f.div(G)[0]
def exquo(f, G):
q, r = f.div(G)
if not r:
return q
else:
raise ExactQuotientFailed(f, G)
def _iadd_monom(self, mc):
"""add to self the monomial coeff*x0**i0*x1**i1*...
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x**4 + 2*y
>>> m = (1, 2)
>>> p1 = p._iadd_monom((m, 5))
>>> p1
x**4 + 5*x*y**2 + 2*y
>>> p1 is p
True
>>> p = x
>>> p1 = p._iadd_monom((m, 5))
>>> p1
5*x*y**2 + x
>>> p1 is p
False
"""
if self in self.ring._gens_set:
cpself = self.copy()
else:
cpself = self
expv, coeff = mc
c = cpself.get(expv)
if c is None:
cpself[expv] = coeff
else:
c += coeff
if c:
cpself[expv] = c
else:
del cpself[expv]
return cpself
def _iadd_poly_monom(self, p2, mc):
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p1 = x**4 + 2*y
>>> p2 = y + z
>>> m = (1, 2, 3)
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
>>> p1
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
"""
p1 = self
if p1 in p1.ring._gens_set:
p1 = p1.copy()
(m, c) = mc
get = p1.get
zero = p1.ring.domain.zero
monomial_mul = p1.ring.monomial_mul
for k, v in p2.items():
ka = monomial_mul(k, m)
coeff = get(ka, zero) + v*c
if coeff:
p1[ka] = coeff
else:
del p1[ka]
return p1
def degree(f, x=None):
"""
The leading degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return max([ monom[i] for monom in f.itermonoms() ])
def degrees(f):
"""
A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(max, list(zip(*f.itermonoms()))))
def tail_degree(f, x=None):
"""
The tail degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return min([ monom[i] for monom in f.itermonoms() ])
def tail_degrees(f):
"""
A tuple containing tail degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(min, list(zip(*f.itermonoms()))))
def leading_expv(self):
"""Leading monomial tuple according to the monomial ordering.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
"""
if self:
return self.ring.leading_expv(self)
else:
return None
def _get_coeff(self, expv):
return self.get(expv, self.ring.domain.zero)
def coeff(self, element):
"""
Returns the coefficient that stands next to the given monomial.
Parameters
==========
element : PolyElement (with ``is_monomial = True``) or 1
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
"""
if element == 1:
return self._get_coeff(self.ring.zero_monom)
elif isinstance(element, self.ring.dtype):
terms = list(element.iterterms())
if len(terms) == 1:
monom, coeff = terms[0]
if coeff == self.ring.domain.one:
return self._get_coeff(monom)
raise ValueError("expected a monomial, got %s" % element)
def const(self):
"""Returns the constant coeffcient. """
return self._get_coeff(self.ring.zero_monom)
@property
def LC(self):
return self._get_coeff(self.leading_expv())
@property
def LM(self):
expv = self.leading_expv()
if expv is None:
return self.ring.zero_monom
else:
return expv
def leading_monom(self):
"""
Leading monomial as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv:
p[expv] = self.ring.domain.one
return p
@property
def LT(self):
expv = self.leading_expv()
if expv is None:
return (self.ring.zero_monom, self.ring.domain.zero)
else:
return (expv, self._get_coeff(expv))
def leading_term(self):
"""Leading term as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv is not None:
p[expv] = self[expv]
return p
def _sorted(self, seq, order):
if order is None:
order = self.ring.order
else:
order = OrderOpt.preprocess(order)
if order is lex:
return sorted(seq, key=lambda monom: monom[0], reverse=True)
else:
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
def coeffs(self, order=None):
"""Ordered list of polynomial coefficients.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
"""
return [ coeff for _, coeff in self.terms(order) ]
def monoms(self, order=None):
"""Ordered list of polynomial monomials.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
"""
return [ monom for monom, _ in self.terms(order) ]
def terms(self, order=None):
"""Ordered list of polynomial terms.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]
>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
"""
return self._sorted(list(self.items()), order)
def itercoeffs(self):
"""Iterator over coefficients of a polynomial. """
return iter(self.values())
def itermonoms(self):
"""Iterator over monomials of a polynomial. """
return iter(self.keys())
def iterterms(self):
"""Iterator over terms of a polynomial. """
return iter(self.items())
def listcoeffs(self):
"""Unordered list of polynomial coefficients. """
return list(self.values())
def listmonoms(self):
"""Unordered list of polynomial monomials. """
return list(self.keys())
def listterms(self):
"""Unordered list of polynomial terms. """
return list(self.items())
def imul_num(p, c):
"""multiply inplace the polynomial p by an element in the
coefficient ring, provided p is not one of the generators;
else multiply not inplace
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
"""
if p in p.ring._gens_set:
return p*c
if not c:
p.clear()
return
for exp in p:
p[exp] *= c
return p
def content(f):
"""Returns GCD of polynomial's coefficients. """
domain = f.ring.domain
cont = domain.zero
gcd = domain.gcd
for coeff in f.itercoeffs():
cont = gcd(cont, coeff)
return cont
def primitive(f):
"""Returns content and a primitive polynomial. """
cont = f.content()
return cont, f.quo_ground(cont)
def monic(f):
"""Divides all coefficients by the leading coefficient. """
if not f:
return f
else:
return f.quo_ground(f.LC)
def mul_ground(f, x):
if not x:
return f.ring.zero
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
return f.new(terms)
def mul_monom(f, monom):
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def mul_term(f, term):
monom, coeff = term
if not f or not coeff:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.mul_ground(coeff)
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def quo_ground(f, x):
domain = f.ring.domain
if not x:
raise ZeroDivisionError('polynomial division')
if not f or x == domain.one:
return f
if domain.is_Field:
quo = domain.quo
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
else:
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
return f.new(terms)
def quo_term(f, term):
monom, coeff = term
if not coeff:
raise ZeroDivisionError("polynomial division")
elif not f:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.quo_ground(coeff)
term_div = f._term_div()
terms = [ term_div(t, term) for t in f.iterterms() ]
return f.new([ t for t in terms if t is not None ])
def trunc_ground(f, p):
if f.ring.domain.is_ZZ:
terms = []
for monom, coeff in f.iterterms():
coeff = coeff % p
if coeff > p // 2:
coeff = coeff - p
terms.append((monom, coeff))
else:
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
poly = f.new(terms)
poly.strip_zero()
return poly
rem_ground = trunc_ground
def extract_ground(self, g):
f = self
fc = f.content()
gc = g.content()
gcd = f.ring.domain.gcd(fc, gc)
f = f.quo_ground(gcd)
g = g.quo_ground(gcd)
return gcd, f, g
def _norm(f, norm_func):
if not f:
return f.ring.domain.zero
else:
ground_abs = f.ring.domain.abs
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
def max_norm(f):
return f._norm(max)
def l1_norm(f):
return f._norm(sum)
def deflate(f, *G):
ring = f.ring
polys = [f] + list(G)
J = [0]*ring.ngens
for p in polys:
for monom in p.itermonoms():
for i, m in enumerate(monom):
J[i] = igcd(J[i], m)
for i, b in enumerate(J):
if not b:
J[i] = 1
J = tuple(J)
if all(b == 1 for b in J):
return J, polys
H = []
for p in polys:
h = ring.zero
for I, coeff in p.iterterms():
N = [ i // j for i, j in zip(I, J) ]
h[tuple(N)] = coeff
H.append(h)
return J, H
def inflate(f, J):
poly = f.ring.zero
for I, coeff in f.iterterms():
N = [ i*j for i, j in zip(I, J) ]
poly[tuple(N)] = coeff
return poly
def lcm(self, g):
f = self
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
c = domain.lcm(fc, gc)
h = (f*g).quo(f.gcd(g))
if not domain.is_Field:
return h.mul_ground(c)
else:
return h.monic()
def gcd(f, g):
return f.cofactors(g)[0]
def cofactors(f, g):
if not f and not g:
zero = f.ring.zero
return zero, zero, zero
elif not f:
h, cff, cfg = f._gcd_zero(g)
return h, cff, cfg
elif not g:
h, cfg, cff = g._gcd_zero(f)
return h, cff, cfg
elif len(f) == 1:
h, cff, cfg = f._gcd_monom(g)
return h, cff, cfg
elif len(g) == 1:
h, cfg, cff = g._gcd_monom(f)
return h, cff, cfg
J, (f, g) = f.deflate(g)
h, cff, cfg = f._gcd(g)
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
def _gcd_zero(f, g):
one, zero = f.ring.one, f.ring.zero
if g.is_nonnegative:
return g, zero, one
else:
return -g, zero, -one
def _gcd_monom(f, g):
ring = f.ring
ground_gcd = ring.domain.gcd
ground_quo = ring.domain.quo
monomial_gcd = ring.monomial_gcd
monomial_ldiv = ring.monomial_ldiv
mf, cf = list(f.iterterms())[0]
_mgcd, _cgcd = mf, cf
for mg, cg in g.iterterms():
_mgcd = monomial_gcd(_mgcd, mg)
_cgcd = ground_gcd(_cgcd, cg)
h = f.new([(_mgcd, _cgcd)])
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
return h, cff, cfg
def _gcd(f, g):
ring = f.ring
if ring.domain.is_QQ:
return f._gcd_QQ(g)
elif ring.domain.is_ZZ:
return f._gcd_ZZ(g)
else: # TODO: don't use dense representation (port PRS algorithms)
return ring.dmp_inner_gcd(f, g)
def _gcd_ZZ(f, g):
return heugcd(f, g)
def _gcd_QQ(self, g):
f = self
ring = f.ring
new_ring = ring.clone(domain=ring.domain.get_ring())
cf, f = f.clear_denoms()
cg, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
h, cff, cfg = f._gcd_ZZ(g)
h = h.set_ring(ring)
c, h = h.LC, h.monic()
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
return h, cff, cfg
def cancel(self, g):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
f = self
ring = f.ring
if not f:
return f, ring.one
domain = ring.domain
if not (domain.is_Field and domain.has_assoc_Ring):
_, p, q = f.cofactors(g)
if q.is_negative:
p, q = -p, -q
else:
new_ring = ring.clone(domain=domain.get_ring())
cq, f = f.clear_denoms()
cp, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
_, p, q = f.cofactors(g)
_, cp, cq = new_ring.domain.cofactors(cp, cq)
p = p.set_ring(ring)
q = q.set_ring(ring)
p_neg = p.is_negative
q_neg = q.is_negative
if p_neg and q_neg:
p, q = -p, -q
elif p_neg:
cp, p = -cp, -p
elif q_neg:
cp, q = -cp, -q
p = p.mul_ground(cp)
q = q.mul_ground(cq)
return p, q
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
"""
ring = f.ring
i = ring.index(x)
m = ring.monomial_basis(i)
g = ring.zero
for expv, coeff in f.iterterms():
if expv[i]:
e = ring.monomial_ldiv(expv, m)
g[e] = ring.domain_new(coeff*expv[i])
return g
def __call__(f, *values):
if 0 < len(values) <= f.ring.ngens:
return f.evaluate(list(zip(f.ring.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
def evaluate(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
(X, a), x = x[0], x[1:]
f = f.evaluate(X, a)
if not x:
return f
else:
x = [ (Y.drop(X), a) for (Y, a) in x ]
return f.evaluate(x)
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return result
else:
poly = ring.drop(x).zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def subs(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
for X, a in x:
f = f.subs(X, a)
return f
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return ring.ground_new(result)
else:
poly = ring.zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def compose(f, x, a=None):
ring = f.ring
poly = ring.zero
gens_map = dict(list(zip(ring.gens, list(range(ring.ngens)))))
if a is not None:
replacements = [(x, a)]
else:
if isinstance(x, list):
replacements = list(x)
elif isinstance(x, dict):
replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]])
else:
raise ValueError("expected a generator, value pair a sequence of such pairs")
for k, (x, g) in enumerate(replacements):
replacements[k] = (gens_map[x], ring.ring_new(g))
for monom, coeff in f.iterterms():
monom = list(monom)
subpoly = ring.one
for i, g in replacements:
n, monom[i] = monom[i], 0
if n:
subpoly *= g**n
subpoly = subpoly.mul_term((tuple(monom), coeff))
poly += subpoly
return poly
# TODO: following methods should point to polynomial
# representation independent algorithm implementations.
def pdiv(f, g):
return f.ring.dmp_pdiv(f, g)
def prem(f, g):
return f.ring.dmp_prem(f, g)
def pquo(f, g):
return f.ring.dmp_quo(f, g)
def pexquo(f, g):
return f.ring.dmp_exquo(f, g)
def half_gcdex(f, g):
return f.ring.dmp_half_gcdex(f, g)
def gcdex(f, g):
return f.ring.dmp_gcdex(f, g)
def subresultants(f, g):
return f.ring.dmp_subresultants(f, g)
def resultant(f, g):
return f.ring.dmp_resultant(f, g)
def discriminant(f):
return f.ring.dmp_discriminant(f)
def decompose(f):
if f.ring.is_univariate:
return f.ring.dup_decompose(f)
else:
raise MultivariatePolynomialError("polynomial decomposition")
def shift(f, a):
if f.ring.is_univariate:
return f.ring.dup_shift(f, a)
else:
raise MultivariatePolynomialError("polynomial shift")
def sturm(f):
if f.ring.is_univariate:
return f.ring.dup_sturm(f)
else:
raise MultivariatePolynomialError("sturm sequence")
def gff_list(f):
return f.ring.dmp_gff_list(f)
def sqf_norm(f):
return f.ring.dmp_sqf_norm(f)
def sqf_part(f):
return f.ring.dmp_sqf_part(f)
def sqf_list(f, all=False):
return f.ring.dmp_sqf_list(f, all=all)
def factor_list(f):
return f.ring.dmp_factor_list(f)
|
bb3ffd2bce0dbed3a443d7c5df5d2b0dff1db6c3f35ec4566408880d9b8caa54 | """Tools and arithmetics for monomials of distributed polynomials. """
from __future__ import print_function, division
from itertools import combinations_with_replacement, product
from textwrap import dedent
from sympy.core import Mul, S, Tuple, sympify
from sympy.core.compatibility import exec_, iterable
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr
from sympy.utilities import public
from sympy.core.compatibility import is_sequence
@public
def itermonomials(variables, max_degrees, min_degrees=None):
r"""
`max_degrees` and `min_degrees` are either both integers or both lists.
Unless otherwise specified, `min_degrees` is either 0 or [0,...,0].
A generator of all monomials `monom` is returned, such that
either
min_degree <= total_degree(monom) <= max_degree,
or
min_degrees[i] <= degree_list(monom)[i] <= max_degrees[i], for all i.
Case I:: `max_degrees` and `min_degrees` are both integers.
===========================================================
Given a set of variables `V` and a min_degree `N` and a max_degree `M`
generate a set of monomials of degree less than or equal to `N` and greater
than or equal to `M`. The total number of monomials in commutative
variables is huge and is given by the following formula if `M = 0`:
.. math::
\frac{(\#V + N)!}{\#V! N!}
For example if we would like to generate a dense polynomial of
a total degree `N = 50` and `M = 0`, which is the worst case, in 5
variables, assuming that exponents and all of coefficients are 32-bit long
and stored in an array we would need almost 80 GiB of memory! Fortunately
most polynomials, that we will encounter, are sparse.
Examples
========
Consider monomials in commutative variables `x` and `y`
and non-commutative variables `a` and `b`::
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2]
>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3]
>>> a, b = symbols('a, b', commutative=False)
>>> set(itermonomials([a, b, x], 2))
{1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b}
>>> sorted(itermonomials([x, y], 2, 1), key=monomial_key('grlex', [y, x]))
[x, y, x**2, x*y, y**2]
Case II:: `max_degrees` and `min_degrees` are both lists.
=========================================================
If max_degrees = [d_1, ..., d_n] and min_degrees = [e_1, ..., e_n],
the number of monomials generated is:
(d_1 - e_1 + 1) * ... * (d_n - e_n + 1)
Example
=======
Let us generate all monomials `monom` in variables `x`, and `y`
such that [1, 2][i] <= degree_list(monom)[i] <= [2, 4][i], i = 0, 1 ::
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y]))
[x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2]
"""
n = len(variables)
if is_sequence(max_degrees):
if len(max_degrees) != n:
raise ValueError('Argument sizes do not match')
if min_degrees is None:
min_degrees = [0]*n
elif not is_sequence(min_degrees):
raise ValueError('min_degrees is not a list')
else:
if len(min_degrees) != n:
raise ValueError('Argument sizes do not match')
if any(i < 0 for i in min_degrees):
raise ValueError("min_degrees can't contain negative numbers")
total_degree = False
else:
max_degree = max_degrees
if max_degree < 0:
raise ValueError("max_degrees can't be negative")
if min_degrees is None:
min_degree = 0
else:
if min_degrees < 0:
raise ValueError("min_degrees can't be negative")
min_degree = min_degrees
total_degree = True
if total_degree:
if min_degree > max_degree:
return
if not variables or max_degree == 0:
yield S.One
return
# Force to list in case of passed tuple or other incompatible collection
variables = list(variables) + [S.One]
if all(variable.is_commutative for variable in variables):
monomials_list_comm = []
for item in combinations_with_replacement(variables, max_degree):
powers = dict()
for variable in variables:
powers[variable] = 0
for variable in item:
if variable != 1:
powers[variable] += 1
if max(powers.values()) >= min_degree:
monomials_list_comm.append(Mul(*item))
for mon in set(monomials_list_comm):
yield mon
else:
monomials_list_non_comm = []
for item in product(variables, repeat=max_degree):
powers = dict()
for variable in variables:
powers[variable] = 0
for variable in item:
if variable != 1:
powers[variable] += 1
if max(powers.values()) >= min_degree:
monomials_list_non_comm.append(Mul(*item))
for mon in set(monomials_list_non_comm):
yield mon
else:
if any(min_degrees[i] > max_degrees[i] for i in range(n)):
raise ValueError('min_degrees[i] must be <= max_degrees[i] for all i')
power_lists = []
for var, min_d, max_d in zip(variables, min_degrees, max_degrees):
power_lists.append([var**i for i in range(min_d, max_d + 1)])
for powers in product(*power_lists):
yield Mul(*powers)
def monomial_count(V, N):
r"""
Computes the number of monomials.
The number of monomials is given by the following formula:
.. math::
\frac{(\#V + N)!}{\#V! N!}
where `N` is a total degree and `V` is a set of variables.
Examples
========
>>> from sympy.polys.monomials import itermonomials, monomial_count
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y
>>> monomial_count(2, 2)
6
>>> M = list(itermonomials([x, y], 2))
>>> sorted(M, key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2]
>>> len(M)
6
"""
from sympy import factorial
return factorial(V + N) / factorial(V) / factorial(N)
def monomial_mul(A, B):
"""
Multiplication of tuples representing monomials.
Examples
========
Lets multiply `x**3*y**4*z` with `x*y**2`::
>>> from sympy.polys.monomials import monomial_mul
>>> monomial_mul((3, 4, 1), (1, 2, 0))
(4, 6, 1)
which gives `x**4*y**5*z`.
"""
return tuple([ a + b for a, b in zip(A, B) ])
def monomial_div(A, B):
"""
Division of tuples representing monomials.
Examples
========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_div
>>> monomial_div((3, 4, 1), (1, 2, 0))
(2, 2, 1)
which gives `x**2*y**2*z`. However::
>>> monomial_div((3, 4, 1), (1, 2, 2)) is None
True
`x*y**2*z**2` does not divide `x**3*y**4*z`.
"""
C = monomial_ldiv(A, B)
if all(c >= 0 for c in C):
return tuple(C)
else:
return None
def monomial_ldiv(A, B):
"""
Division of tuples representing monomials.
Examples
========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_ldiv
>>> monomial_ldiv((3, 4, 1), (1, 2, 0))
(2, 2, 1)
which gives `x**2*y**2*z`.
>>> monomial_ldiv((3, 4, 1), (1, 2, 2))
(2, 2, -1)
which gives `x**2*y**2*z**-1`.
"""
return tuple([ a - b for a, b in zip(A, B) ])
def monomial_pow(A, n):
"""Return the n-th pow of the monomial. """
return tuple([ a*n for a in A ])
def monomial_gcd(A, B):
"""
Greatest common divisor of tuples representing monomials.
Examples
========
Lets compute GCD of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_gcd
>>> monomial_gcd((1, 4, 1), (3, 2, 0))
(1, 2, 0)
which gives `x*y**2`.
"""
return tuple([ min(a, b) for a, b in zip(A, B) ])
def monomial_lcm(A, B):
"""
Least common multiple of tuples representing monomials.
Examples
========
Lets compute LCM of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_lcm
>>> monomial_lcm((1, 4, 1), (3, 2, 0))
(3, 4, 1)
which gives `x**3*y**4*z`.
"""
return tuple([ max(a, b) for a, b in zip(A, B) ])
def monomial_divides(A, B):
"""
Does there exist a monomial X such that XA == B?
Examples
========
>>> from sympy.polys.monomials import monomial_divides
>>> monomial_divides((1, 2), (3, 4))
True
>>> monomial_divides((1, 2), (0, 2))
False
"""
return all(a <= b for a, b in zip(A, B))
def monomial_max(*monoms):
"""
Returns maximal degree for each variable in a set of monomials.
Examples
========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
We wish to find out what is the maximal degree for each of `x`, `y`
and `z` variables::
>>> from sympy.polys.monomials import monomial_max
>>> monomial_max((3,4,5), (0,5,1), (6,3,9))
(6, 5, 9)
"""
M = list(monoms[0])
for N in monoms[1:]:
for i, n in enumerate(N):
M[i] = max(M[i], n)
return tuple(M)
def monomial_min(*monoms):
"""
Returns minimal degree for each variable in a set of monomials.
Examples
========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
We wish to find out what is the minimal degree for each of `x`, `y`
and `z` variables::
>>> from sympy.polys.monomials import monomial_min
>>> monomial_min((3,4,5), (0,5,1), (6,3,9))
(0, 3, 1)
"""
M = list(monoms[0])
for N in monoms[1:]:
for i, n in enumerate(N):
M[i] = min(M[i], n)
return tuple(M)
def monomial_deg(M):
"""
Returns the total degree of a monomial.
Examples
========
The total degree of `xy^2` is 3:
>>> from sympy.polys.monomials import monomial_deg
>>> monomial_deg((1, 2))
3
"""
return sum(M)
def term_div(a, b, domain):
"""Division of two terms in over a ring/field. """
a_lm, a_lc = a
b_lm, b_lc = b
monom = monomial_div(a_lm, b_lm)
if domain.is_Field:
if monom is not None:
return monom, domain.quo(a_lc, b_lc)
else:
return None
else:
if not (monom is None or a_lc % b_lc):
return monom, domain.quo(a_lc, b_lc)
else:
return None
class MonomialOps(object):
"""Code generator of fast monomial arithmetic functions. """
def __init__(self, ngens):
self.ngens = ngens
def _build(self, code, name):
ns = {}
exec_(code, ns)
return ns[name]
def _vars(self, name):
return [ "%s%s" % (name, i) for i in range(self.ngens) ]
def mul(self):
name = "monomial_mul"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s + %s" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def pow(self):
name = "monomial_pow"
template = dedent("""\
def %(name)s(A, k):
(%(A)s,) = A
return (%(Ak)s,)
""")
A = self._vars("a")
Ak = [ "%s*k" % a for a in A ]
code = template % dict(name=name, A=", ".join(A), Ak=", ".join(Ak))
return self._build(code, name)
def mulpow(self):
name = "monomial_mulpow"
template = dedent("""\
def %(name)s(A, B, k):
(%(A)s,) = A
(%(B)s,) = B
return (%(ABk)s,)
""")
A = self._vars("a")
B = self._vars("b")
ABk = [ "%s + %s*k" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), ABk=", ".join(ABk))
return self._build(code, name)
def ldiv(self):
name = "monomial_ldiv"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s - %s" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def div(self):
name = "monomial_div"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
%(RAB)s
return (%(R)s,)
""")
A = self._vars("a")
B = self._vars("b")
RAB = [ "r%(i)s = a%(i)s - b%(i)s\n if r%(i)s < 0: return None" % dict(i=i) for i in range(self.ngens) ]
R = self._vars("r")
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), RAB="\n ".join(RAB), R=", ".join(R))
return self._build(code, name)
def lcm(self):
name = "monomial_lcm"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s if %s >= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def gcd(self):
name = "monomial_gcd"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s if %s <= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
@public
class Monomial(PicklableWithSlots):
"""Class representing a monomial, i.e. a product of powers. """
__slots__ = ('exponents', 'gens')
def __init__(self, monom, gens=None):
if not iterable(monom):
rep, gens = dict_from_expr(sympify(monom), gens=gens)
if len(rep) == 1 and list(rep.values())[0] == 1:
monom = list(rep.keys())[0]
else:
raise ValueError("Expected a monomial got {}".format(monom))
self.exponents = tuple(map(int, monom))
self.gens = gens
def rebuild(self, exponents, gens=None):
return self.__class__(exponents, gens or self.gens)
def __len__(self):
return len(self.exponents)
def __iter__(self):
return iter(self.exponents)
def __getitem__(self, item):
return self.exponents[item]
def __hash__(self):
return hash((self.__class__.__name__, self.exponents, self.gens))
def __str__(self):
if self.gens:
return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ])
else:
return "%s(%s)" % (self.__class__.__name__, self.exponents)
def as_expr(self, *gens):
"""Convert a monomial instance to a SymPy expression. """
gens = gens or self.gens
if not gens:
raise ValueError(
"can't convert %s to an expression without generators" % self)
return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ])
def __eq__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
return False
return self.exponents == exponents
def __ne__(self, other):
return not self == other
def __mul__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise NotImplementedError
return self.rebuild(monomial_mul(self.exponents, exponents))
def __truediv__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise NotImplementedError
result = monomial_div(self.exponents, exponents)
if result is not None:
return self.rebuild(result)
else:
raise ExactQuotientFailed(self, Monomial(other))
__floordiv__ = __truediv__
def __pow__(self, other):
n = int(other)
if not n:
return self.rebuild([0]*len(self))
elif n > 0:
exponents = self.exponents
for i in range(1, n):
exponents = monomial_mul(exponents, self.exponents)
return self.rebuild(exponents)
else:
raise ValueError("a non-negative integer expected, got %s" % other)
def gcd(self, other):
"""Greatest common divisor of monomials. """
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise TypeError(
"an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_gcd(self.exponents, exponents))
def lcm(self, other):
"""Least common multiple of monomials. """
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise TypeError(
"an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_lcm(self.exponents, exponents))
|
111036954d46f67ea5787040fa9672c30382c2b34afc41182acd51e711c4e0c1 | """Sparse rational function fields. """
from __future__ import print_function, division
from typing import Any, Dict
from operator import add, mul, lt, le, gt, ge
from sympy.core.compatibility import is_sequence, reduce
from sympy.core.expr import Expr
from sympy.core.mod import Mod
from sympy.core.numbers import Exp1
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import CantSympify, sympify
from sympy.functions.elementary.exponential import ExpBase
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.constructor import construct_domain
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import _parallel_dict_from_expr
from sympy.polys.rings import PolyElement
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute
@public
def field(symbols, domain, order=lex):
"""Construct new rational function field returning (field, x1, ..., xn). """
_field = FracField(symbols, domain, order)
return (_field,) + _field.gens
@public
def xfield(symbols, domain, order=lex):
"""Construct new rational function field returning (field, (x1, ..., xn)). """
_field = FracField(symbols, domain, order)
return (_field, _field.gens)
@public
def vfield(symbols, domain, order=lex):
"""Construct new rational function field and inject generators into global namespace. """
_field = FracField(symbols, domain, order)
pollute([ sym.name for sym in _field.symbols ], _field.gens)
return _field
@public
def sfield(exprs, *symbols, **options):
"""Construct a field deriving generators and domain
from options and input expressions.
Parameters
==========
exprs : :class:`Expr` or sequence of :class:`Expr` (sympifiable)
symbols : sequence of :class:`Symbol`/:class:`Expr`
options : keyword arguments understood by :class:`Options`
Examples
========
>>> from sympy.core import symbols
>>> from sympy.functions import exp, log
>>> from sympy.polys.fields import sfield
>>> x = symbols("x")
>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
>>> K
Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
>>> f
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
numdens = []
for expr in exprs:
numdens.extend(expr.as_numer_denom())
reps, opt = _parallel_dict_from_expr(numdens, opt)
if opt.domain is None:
# NOTE: this is inefficient because construct_domain() automatically
# performs conversion to the target domain. It shouldn't do this.
coeffs = sum([list(rep.values()) for rep in reps], [])
opt.domain, _ = construct_domain(coeffs, opt=opt)
_field = FracField(opt.gens, opt.domain, opt.order)
fracs = []
for i in range(0, len(reps), 2):
fracs.append(_field(tuple(reps[i:i+2])))
if single:
return (_field, fracs[0])
else:
return (_field, fracs)
_field_cache = {} # type: Dict[Any, Any]
class FracField(DefaultPrinting):
"""Multivariate distributed rational function field. """
def __new__(cls, symbols, domain, order=lex):
from sympy.polys.rings import PolyRing
ring = PolyRing(symbols, domain, order)
symbols = ring.symbols
ngens = ring.ngens
domain = ring.domain
order = ring.order
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _field_cache.get(_hash_tuple)
if obj is None:
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.ring = ring
obj.dtype = type("FracElement", (FracElement,), {"field": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero = obj.dtype(ring.zero)
obj.one = obj.dtype(ring.one)
obj.gens = obj._gens()
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_field_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
return tuple([ self.dtype(gen) for gen in self.ring.gens ])
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, FracField) and \
(self.symbols, self.ngens, self.domain, self.order) == \
(other.symbols, other.ngens, other.domain, other.order)
def __ne__(self, other):
return not self == other
def raw_new(self, numer, denom=None):
return self.dtype(numer, denom)
def new(self, numer, denom=None):
if denom is None: denom = self.ring.one
numer, denom = numer.cancel(denom)
return self.raw_new(numer, denom)
def domain_new(self, element):
return self.domain.convert(element)
def ground_new(self, element):
try:
return self.new(self.ring.ground_new(element))
except CoercionFailed:
domain = self.domain
if not domain.is_Field and domain.has_assoc_Field:
ring = self.ring
ground_field = domain.get_field()
element = ground_field.convert(element)
numer = ring.ground_new(ground_field.numer(element))
denom = ring.ground_new(ground_field.denom(element))
return self.raw_new(numer, denom)
else:
raise
def field_new(self, element):
if isinstance(element, FracElement):
if self == element.field:
return element
if isinstance(self.domain, FractionField) and \
self.domain.field == element.field:
return self.ground_new(element)
elif isinstance(self.domain, PolynomialRing) and \
self.domain.ring.to_field() == element.field:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, PolyElement):
denom, numer = element.clear_denoms()
if isinstance(self.domain, PolynomialRing) and \
numer.ring == self.domain.ring:
numer = self.ring.ground_new(numer)
elif isinstance(self.domain, FractionField) and \
numer.ring == self.domain.field.to_ring():
numer = self.ring.ground_new(numer)
else:
numer = numer.set_ring(self.ring)
denom = self.ring.ground_new(denom)
return self.raw_new(numer, denom)
elif isinstance(element, tuple) and len(element) == 2:
numer, denom = list(map(self.ring.ring_new, element))
return self.new(numer, denom)
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = field_new
def _rebuild_expr(self, expr, mapping):
domain = self.domain
powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
if gen.is_Pow or isinstance(gen, ExpBase))
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
b, e = expr.as_base_exp()
# look for bg**eg whose integer power may be b**e
for gen, (bg, eg) in powers:
if bg == b and Mod(e, eg) == 0:
return mapping.get(gen)**int(e/eg)
if e.is_Integer and e is not S.One:
return _rebuild(b)**int(e)
try:
return domain.convert(expr)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
return domain.get_field().convert(expr)
else:
raise
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
frac = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
else:
return self.field_new(frac)
def to_domain(self):
return FractionField(self)
def to_ring(self):
from sympy.polys.rings import PolyRing
return PolyRing(self.symbols, self.domain, self.order)
class FracElement(DomainElement, DefaultPrinting, CantSympify):
"""Element of multivariate distributed rational function field. """
def __init__(self, numer, denom=None):
if denom is None:
denom = self.field.ring.one
elif not denom:
raise ZeroDivisionError("zero denominator")
self.numer = numer
self.denom = denom
def raw_new(f, numer, denom):
return f.__class__(numer, denom)
def new(f, numer, denom):
return f.raw_new(*numer.cancel(denom))
def to_poly(f):
if f.denom != 1:
raise ValueError("f.denom should be 1")
return f.numer
def parent(self):
return self.field.to_domain()
def __getnewargs__(self):
return (self.field, self.numer, self.denom)
_hash = None
def __hash__(self):
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.field, self.numer, self.denom))
return _hash
def copy(self):
return self.raw_new(self.numer.copy(), self.denom.copy())
def set_field(self, new_field):
if self.field == new_field:
return self
else:
new_ring = new_field.ring
numer = self.numer.set_ring(new_ring)
denom = self.denom.set_ring(new_ring)
return new_field.new(numer, denom)
def as_expr(self, *symbols):
return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
def __eq__(f, g):
if isinstance(g, FracElement) and f.field == g.field:
return f.numer == g.numer and f.denom == g.denom
else:
return f.numer == g and f.denom == f.field.ring.one
def __ne__(f, g):
return not f == g
def __bool__(f):
return bool(f.numer)
def sort_key(self):
return (self.denom.sort_key(), self.numer.sort_key())
def _cmp(f1, f2, op):
if isinstance(f2, f1.field.dtype):
return op(f1.sort_key(), f2.sort_key())
else:
return NotImplemented
def __lt__(f1, f2):
return f1._cmp(f2, lt)
def __le__(f1, f2):
return f1._cmp(f2, le)
def __gt__(f1, f2):
return f1._cmp(f2, gt)
def __ge__(f1, f2):
return f1._cmp(f2, ge)
def __pos__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(f.numer, f.denom)
def __neg__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(-f.numer, f.denom)
def _extract_ground(self, element):
domain = self.field.domain
try:
element = domain.convert(element)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
ground_field = domain.get_field()
try:
element = ground_field.convert(element)
except CoercionFailed:
pass
else:
return -1, ground_field.numer(element), ground_field.denom(element)
return 0, None, None
else:
return 1, element, None
def __add__(f, g):
"""Add rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer + g.numer, f.denom)
else:
return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer + f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__radd__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__radd__(f)
return f.__radd__(g)
def __radd__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __sub__(f, g):
"""Subtract rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return -g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer - g.numer, f.denom)
else:
return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer - f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rsub__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rsub__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer - f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
def __rsub__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(-f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(-f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __mul__(f, g):
"""Multiply rational functions ``f`` and ``g``. """
field = f.field
if not f or not g:
return field.zero
elif isinstance(g, field.dtype):
return f.new(f.numer*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rmul__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rmul__(f)
return f.__rmul__(g)
def __rmul__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_numer, f.denom*g_denom)
def __truediv__(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
field = f.field
if not g:
raise ZeroDivisionError
elif isinstance(g, field.dtype):
return f.new(f.numer*g.denom, f.denom*g.numer)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer, f.denom*g)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rtruediv__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rtruediv__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer, f.denom*g_numer)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom, f.denom*g_numer)
def __rtruediv__(f, c):
if not f:
raise ZeroDivisionError
elif isinstance(c, f.field.ring.dtype):
return f.new(f.denom*c, f.numer)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.denom*g_numer, f.numer)
elif not op:
return NotImplemented
else:
return f.new(f.denom*g_numer, f.numer*g_denom)
def __pow__(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if n >= 0:
return f.raw_new(f.numer**n, f.denom**n)
elif not f:
raise ZeroDivisionError
else:
return f.raw_new(f.denom**-n, f.numer**-n)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.fields import field
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = field("x,y,z", ZZ)
>>> ((x**2 + y)/(z + 1)).diff(x)
2*x/(z + 1)
"""
x = x.to_poly()
return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
def __call__(f, *values):
if 0 < len(values) <= f.field.ngens:
return f.evaluate(list(zip(f.field.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
def evaluate(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
else:
x = x.to_poly()
numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
field = numer.ring.to_field()
return field.new(numer, denom)
def subs(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.subs(x), f.denom.subs(x)
else:
x = x.to_poly()
numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
return f.new(numer, denom)
def compose(f, x, a=None):
raise NotImplementedError
|
1c93bc6420e8dddedefab04ec0a620f84975623c89d65427f23053e9e6401e0c | """Computational algebraic field theory. """
from __future__ import print_function, division
from sympy import (
S, Rational, AlgebraicNumber, GoldenRatio, TribonacciConstant,
Add, Mul, sympify, Dummy, expand_mul, I, pi
)
from sympy.functions import sqrt, cbrt
from sympy.core.compatibility import reduce
from sympy.core.exprtools import Factors
from sympy.core.function import _mexpand
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.ntheory import sieve
from sympy.ntheory.factor_ import divisors
from sympy.polys.domains import ZZ, QQ
from sympy.polys.orthopolys import dup_chebyshevt
from sympy.polys.polyerrors import (
IsomorphismFailed,
CoercionFailed,
NotAlgebraic,
GeneratorsError,
)
from sympy.polys.polytools import (
Poly, PurePoly, invert, factor_list, groebner, resultant,
degree, poly_from_expr, parallel_poly_from_expr, lcm
)
from sympy.polys.polyutils import dict_from_expr, expr_from_dict
from sympy.polys.ring_series import rs_compose_add
from sympy.polys.rings import ring
from sympy.polys.rootoftools import CRootOf
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import PythonCodePrinter, MpmathPrinter
from sympy.simplify.radsimp import _split_gcd
from sympy.simplify.simplify import _is_sum_surds
from sympy.utilities import (
numbered_symbols, variations, lambdify, public, sift
)
from mpmath import pslq, mp
def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5):
"""
Return a factor having root ``v``
It is assumed that one of the factors has root ``v``.
"""
if isinstance(factors[0], tuple):
factors = [f[0] for f in factors]
if len(factors) == 1:
return factors[0]
points = {x:v}
symbols = dom.symbols if hasattr(dom, 'symbols') else []
t = QQ(1, 10)
for n in range(bound**len(symbols)):
prec1 = 10
n_temp = n
for s in symbols:
points[s] = n_temp % bound
n_temp = n_temp // bound
while True:
candidates = []
eps = t**(prec1 // 2)
for f in factors:
if abs(f.as_expr().evalf(prec1, points)) < eps:
candidates.append(f)
if candidates:
factors = candidates
if len(factors) == 1:
return factors[0]
if prec1 > prec:
break
prec1 *= 2
raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v)
def _separate_sq(p):
"""
helper function for ``_minimal_polynomial_sq``
It selects a rational ``g`` such that the polynomial ``p``
consists of a sum of terms whose surds squared have gcd equal to ``g``
and a sum of terms with surds squared prime with ``g``;
then it takes the field norm to eliminate ``sqrt(g)``
See simplify.simplify.split_surds and polytools.sqf_norm.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> from sympy.polys.numberfields import _separate_sq
>>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
>>> p = _separate_sq(p); p
-x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
>>> p = _separate_sq(p); p
-x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
>>> p = _separate_sq(p); p
-x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400
"""
from sympy.utilities.iterables import sift
def is_sqrt(expr):
return expr.is_Pow and expr.exp is S.Half
# p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
a = []
for y in p.args:
if not y.is_Mul:
if is_sqrt(y):
a.append((S.One, y**2))
elif y.is_Atom:
a.append((y, S.One))
elif y.is_Pow and y.exp.is_integer:
a.append((y, S.One))
else:
raise NotImplementedError
continue
T, F = sift(y.args, is_sqrt, binary=True)
a.append((Mul(*F), Mul(*T)**2))
a.sort(key=lambda z: z[1])
if a[-1][1] is S.One:
# there are no surds
return p
surds = [z for y, z in a]
for i in range(len(surds)):
if surds[i] != 1:
break
g, b1, b2 = _split_gcd(*surds[i:])
a1 = []
a2 = []
for y, z in a:
if z in b1:
a1.append(y*z**S.Half)
else:
a2.append(y*z**S.Half)
p1 = Add(*a1)
p2 = Add(*a2)
p = _mexpand(p1**2) - _mexpand(p2**2)
return p
def _minimal_polynomial_sq(p, n, x):
"""
Returns the minimal polynomial for the ``nth-root`` of a sum of surds
or ``None`` if it fails.
Parameters
==========
p : sum of surds
n : positive integer
x : variable of the returned polynomial
Examples
========
>>> from sympy.polys.numberfields import _minimal_polynomial_sq
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> q = 1 + sqrt(2) + sqrt(3)
>>> _minimal_polynomial_sq(q, 3, x)
x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8
"""
from sympy.simplify.simplify import _is_sum_surds
p = sympify(p)
n = sympify(n)
if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
return None
pn = p**Rational(1, n)
# eliminate the square roots
p -= x
while 1:
p1 = _separate_sq(p)
if p1 is p:
p = p1.subs({x:x**n})
break
else:
p = p1
# _separate_sq eliminates field extensions in a minimal way, so that
# if n = 1 then `p = constant*(minimal_polynomial(p))`
# if n > 1 it contains the minimal polynomial as a factor.
if n == 1:
p1 = Poly(p)
if p.coeff(x**p1.degree(x)) < 0:
p = -p
p = p.primitive()[1]
return p
# by construction `p` has root `pn`
# the minimal polynomial is the factor vanishing in x = pn
factors = factor_list(p)[1]
result = _choose_factor(factors, x, pn)
return result
def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
"""
return the minimal polynomial for ``op(ex1, ex2)``
Parameters
==========
op : operation ``Add`` or ``Mul``
ex1, ex2 : expressions for the algebraic elements
x : indeterminate of the polynomials
dom: ground domain
mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
Examples
========
>>> from sympy import sqrt, Add, Mul, QQ
>>> from sympy.polys.numberfields import _minpoly_op_algebraic_element
>>> from sympy.abc import x, y
>>> p1 = sqrt(sqrt(2) + 1)
>>> p2 = sqrt(sqrt(2) - 1)
>>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
x - 1
>>> q1 = sqrt(y)
>>> q2 = 1 / y
>>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
x**2*y**2 - 2*x*y - y**3 + 1
References
==========
.. [1] https://en.wikipedia.org/wiki/Resultant
.. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
"Degrees of sums in a separable field extension".
"""
y = Dummy(str(x))
if mp1 is None:
mp1 = _minpoly_compose(ex1, x, dom)
if mp2 is None:
mp2 = _minpoly_compose(ex2, y, dom)
else:
mp2 = mp2.subs({x: y})
if op is Add:
# mp1a = mp1.subs({x: x - y})
if dom == QQ:
R, X = ring('X', QQ)
p1 = R(dict_from_expr(mp1)[0])
p2 = R(dict_from_expr(mp2)[0])
else:
(p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
r = p1.compose(p2)
mp1a = r.as_expr()
elif op is Mul:
mp1a = _muly(mp1, x, y)
else:
raise NotImplementedError('option not available')
if op is Mul or dom != QQ:
r = resultant(mp1a, mp2, gens=[y, x])
else:
r = rs_compose_add(p1, p2)
r = expr_from_dict(r.as_expr_dict(), x)
deg1 = degree(mp1, x)
deg2 = degree(mp2, y)
if op is Mul and deg1 == 1 or deg2 == 1:
# if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
# r = mp2(x - a), so that `r` is irreducible
return r
r = Poly(r, x, domain=dom)
_, factors = r.factor_list()
res = _choose_factor(factors, x, op(ex1, ex2), dom)
return res.as_expr()
def _invertx(p, x):
"""
Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))``
"""
p1 = poly_from_expr(p, x)[0]
n = degree(p1)
a = [c * x**(n - i) for (i,), c in p1.terms()]
return Add(*a)
def _muly(p, x, y):
"""
Returns ``_mexpand(y**deg*p.subs({x:x / y}))``
"""
p1 = poly_from_expr(p, x)[0]
n = degree(p1)
a = [c * x**i * y**(n - i) for (i,), c in p1.terms()]
return Add(*a)
def _minpoly_pow(ex, pw, x, dom, mp=None):
"""
Returns ``minpoly(ex**pw, x)``
Parameters
==========
ex : algebraic element
pw : rational number
x : indeterminate of the polynomial
dom: ground domain
mp : minimal polynomial of ``p``
Examples
========
>>> from sympy import sqrt, QQ, Rational
>>> from sympy.polys.numberfields import _minpoly_pow, minpoly
>>> from sympy.abc import x, y
>>> p = sqrt(1 + sqrt(2))
>>> _minpoly_pow(p, 2, x, QQ)
x**2 - 2*x - 1
>>> minpoly(p**2, x)
x**2 - 2*x - 1
>>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y))
x**3 - y
>>> minpoly(y**Rational(1, 3), x)
x**3 - y
"""
pw = sympify(pw)
if not mp:
mp = _minpoly_compose(ex, x, dom)
if not pw.is_rational:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
if pw < 0:
if mp == x:
raise ZeroDivisionError('%s is zero' % ex)
mp = _invertx(mp, x)
if pw == -1:
return mp
pw = -pw
ex = 1/ex
y = Dummy(str(x))
mp = mp.subs({x: y})
n, d = pw.as_numer_denom()
res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom)
_, factors = res.factor_list()
res = _choose_factor(factors, x, ex**pw, dom)
return res.as_expr()
def _minpoly_add(x, dom, *a):
"""
returns ``minpoly(Add(*a), dom, x)``
"""
mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom)
p = a[0] + a[1]
for px in a[2:]:
mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp)
p = p + px
return mp
def _minpoly_mul(x, dom, *a):
"""
returns ``minpoly(Mul(*a), dom, x)``
"""
mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom)
p = a[0] * a[1]
for px in a[2:]:
mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp)
p = p * px
return mp
def _minpoly_sin(ex, x):
"""
Returns the minimal polynomial of ``sin(ex)``
see http://mathworld.wolfram.com/TrigonometryAngles.html
"""
c, a = ex.args[0].as_coeff_Mul()
if a is pi:
if c.is_rational:
n = c.q
q = sympify(n)
if q.is_prime:
# for a = pi*p/q with q odd prime, using chebyshevt
# write sin(q*a) = mp(sin(a))*sin(a);
# the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
a = dup_chebyshevt(n, ZZ)
return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
if c.p == 1:
if q == 9:
return 64*x**6 - 96*x**4 + 36*x**2 - 3
if n % 2 == 1:
# for a = pi*p/q with q odd, use
# sin(q*a) = 0 to see that the minimal polynomial must be
# a factor of dup_chebyshevt(n, ZZ)
a = dup_chebyshevt(n, ZZ)
a = [x**(n - i)*a[i] for i in range(n + 1)]
r = Add(*a)
_, factors = factor_list(r)
res = _choose_factor(factors, x, ex)
return res
expr = ((1 - cos(2*c*pi))/2)**S.Half
res = _minpoly_compose(expr, x, QQ)
return res
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_cos(ex, x):
"""
Returns the minimal polynomial of ``cos(ex)``
see http://mathworld.wolfram.com/TrigonometryAngles.html
"""
from sympy import sqrt
c, a = ex.args[0].as_coeff_Mul()
if a is pi:
if c.is_rational:
if c.p == 1:
if c.q == 7:
return 8*x**3 - 4*x**2 - 4*x + 1
if c.q == 9:
return 8*x**3 - 6*x + 1
elif c.p == 2:
q = sympify(c.q)
if q.is_prime:
s = _minpoly_sin(ex, x)
return _mexpand(s.subs({x:sqrt((1 - x)/2)}))
# for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
n = int(c.q)
a = dup_chebyshevt(n, ZZ)
a = [x**(n - i)*a[i] for i in range(n + 1)]
r = Add(*a) - (-1)**c.p
_, factors = factor_list(r)
res = _choose_factor(factors, x, ex)
return res
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_exp(ex, x):
"""
Returns the minimal polynomial of ``exp(ex)``
"""
c, a = ex.args[0].as_coeff_Mul()
q = sympify(c.q)
if a == I*pi:
if c.is_rational:
if c.p == 1 or c.p == -1:
if q == 3:
return x**2 - x + 1
if q == 4:
return x**4 + 1
if q == 6:
return x**4 - x**2 + 1
if q == 8:
return x**8 + 1
if q == 9:
return x**6 - x**3 + 1
if q == 10:
return x**8 - x**6 + x**4 - x**2 + 1
if q.is_prime:
s = 0
for i in range(q):
s += (-x)**i
return s
# x**(2*q) = product(factors)
factors = [cyclotomic_poly(i, x) for i in divisors(2*q)]
mp = _choose_factor(factors, x, ex)
return mp
else:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_rootof(ex, x):
"""
Returns the minimal polynomial of a ``CRootOf`` object.
"""
p = ex.expr
p = p.subs({ex.poly.gens[0]:x})
_, factors = factor_list(p, x)
result = _choose_factor(factors, x, ex)
return result
def _minpoly_compose(ex, x, dom):
"""
Computes the minimal polynomial of an algebraic element
using operations on minimal polynomials
Examples
========
>>> from sympy import minimal_polynomial, sqrt, Rational
>>> from sympy.abc import x, y
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
x**2 - 2*x - 1
>>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
x**2*y**2 - 2*x*y - y**3 + 1
"""
if ex.is_Rational:
return ex.q*x - ex.p
if ex is I:
_, factors = factor_list(x**2 + 1, x, domain=dom)
return x**2 + 1 if len(factors) == 1 else x - I
if ex is GoldenRatio:
_, factors = factor_list(x**2 - x - 1, x, domain=dom)
if len(factors) == 1:
return x**2 - x - 1
else:
return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom)
if ex is TribonacciConstant:
_, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom)
if len(factors) == 1:
return x**3 - x**2 - x - 1
else:
fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
return _choose_factor(factors, x, fac, dom=dom)
if hasattr(dom, 'symbols') and ex in dom.symbols:
return x - ex
if dom.is_QQ and _is_sum_surds(ex):
# eliminate the square roots
ex -= x
while 1:
ex1 = _separate_sq(ex)
if ex1 is ex:
return ex
else:
ex = ex1
if ex.is_Add:
res = _minpoly_add(x, dom, *ex.args)
elif ex.is_Mul:
f = Factors(ex).factors
r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
if r[True] and dom == QQ:
ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
r1 = dict(r[True])
dens = [y.q for y in r1.values()]
lcmdens = reduce(lcm, dens, 1)
neg1 = S.NegativeOne
expn1 = r1.pop(neg1, S.Zero)
nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()]
ex2 = Mul(*nums)
mp1 = minimal_polynomial(ex1, x)
# use the fact that in SymPy canonicalization products of integers
# raised to rational powers are organized in relatively prime
# bases, and that in ``base**(n/d)`` a perfect power is
# simplified with the root
# Powers of -1 have to be treated separately to preserve sign.
mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens)
ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
else:
res = _minpoly_mul(x, dom, *ex.args)
elif ex.is_Pow:
res = _minpoly_pow(ex.base, ex.exp, x, dom)
elif ex.__class__ is sin:
res = _minpoly_sin(ex, x)
elif ex.__class__ is cos:
res = _minpoly_cos(ex, x)
elif ex.__class__ is exp:
res = _minpoly_exp(ex, x)
elif ex.__class__ is CRootOf:
res = _minpoly_rootof(ex, x)
else:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
return res
@public
def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
"""
Computes the minimal polynomial of an algebraic element.
Parameters
==========
ex : Expr
Element or expression whose minimal polynomial is to be calculated.
x : Symbol, optional
Independent variable of the minimal polynomial
compose : boolean, optional (default=True)
Method to use for computing minimal polynomial. If ``compose=True``
(default) then ``_minpoly_compose`` is used, if ``compose=False`` then
groebner bases are used.
polys : boolean, optional (default=False)
If ``True`` returns a ``Poly`` object else an ``Expr`` object.
domain : Domain, optional
Ground domain
Notes
=====
By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
are computed, then the arithmetic operations on them are performed using the resultant
and factorization.
If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
The default algorithm stalls less frequently.
If no ground domain is given, it will be generated automatically from the expression.
Examples
========
>>> from sympy import minimal_polynomial, sqrt, solve, QQ
>>> from sympy.abc import x, y
>>> minimal_polynomial(sqrt(2), x)
x**2 - 2
>>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
x - sqrt(2)
>>> minimal_polynomial(sqrt(2) + sqrt(3), x)
x**4 - 10*x**2 + 1
>>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
x**3 + x + 3
>>> minimal_polynomial(sqrt(y), x)
x**2 - y
"""
from sympy.polys.polytools import degree
from sympy.polys.domains import FractionField
from sympy.core.basic import preorder_traversal
ex = sympify(ex)
if ex.is_number:
# not sure if it's always needed but try it for numbers (issue 8354)
ex = _mexpand(ex, recursive=True)
for expr in preorder_traversal(ex):
if expr.is_AlgebraicNumber:
compose = False
break
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
if not domain:
if ex.free_symbols:
domain = FractionField(QQ, list(ex.free_symbols))
else:
domain = QQ
if hasattr(domain, 'symbols') and x in domain.symbols:
raise GeneratorsError("the variable %s is an element of the ground "
"domain %s" % (x, domain))
if compose:
result = _minpoly_compose(ex, x, domain)
result = result.primitive()[1]
c = result.coeff(x**degree(result, x))
if c.is_negative:
result = expand_mul(-result)
return cls(result, x, field=True) if polys else result.collect(x)
if not domain.is_QQ:
raise NotImplementedError("groebner method only works for QQ")
result = _minpoly_groebner(ex, x, cls)
return cls(result, x, field=True) if polys else result.collect(x)
def _minpoly_groebner(ex, x, cls):
"""
Computes the minimal polynomial of an algebraic number
using Groebner bases
Examples
========
>>> from sympy import minimal_polynomial, sqrt, Rational
>>> from sympy.abc import x
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
x**2 - 2*x - 1
"""
from sympy.polys.polytools import degree
from sympy.core.function import expand_multinomial
generator = numbered_symbols('a', cls=Dummy)
mapping, symbols = {}, {}
def update_mapping(ex, exp, base=None):
a = next(generator)
symbols[ex] = a
if base is not None:
mapping[ex] = a**exp + base
else:
mapping[ex] = exp.as_expr(a)
return a
def bottom_up_scan(ex):
if ex.is_Atom:
if ex is S.ImaginaryUnit:
if ex not in mapping:
return update_mapping(ex, 2, 1)
else:
return symbols[ex]
elif ex.is_Rational:
return ex
elif ex.is_Add:
return Add(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Mul:
return Mul(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Pow:
if ex.exp.is_Rational:
if ex.exp < 0:
minpoly_base = _minpoly_groebner(ex.base, x, cls)
inverse = invert(x, minpoly_base).as_expr()
base_inv = inverse.subs(x, ex.base).expand()
if ex.exp == -1:
return bottom_up_scan(base_inv)
else:
ex = base_inv**(-ex.exp)
if not ex.exp.is_Integer:
base, exp = (
ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
else:
base, exp = ex.base, ex.exp
base = bottom_up_scan(base)
expr = base**exp
if expr not in mapping:
return update_mapping(expr, 1/exp, -base)
else:
return symbols[expr]
elif ex.is_AlgebraicNumber:
if ex.root not in mapping:
return update_mapping(ex.root, ex.minpoly)
else:
return symbols[ex.root]
raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
def simpler_inverse(ex):
"""
Returns True if it is more likely that the minimal polynomial
algorithm works better with the inverse
"""
if ex.is_Pow:
if (1/ex.exp).is_integer and ex.exp < 0:
if ex.base.is_Add:
return True
if ex.is_Mul:
hit = True
for p in ex.args:
if p.is_Add:
return False
if p.is_Pow:
if p.base.is_Add and p.exp > 0:
return False
if hit:
return True
return False
inverted = False
ex = expand_multinomial(ex)
if ex.is_AlgebraicNumber:
return ex.minpoly.as_expr(x)
elif ex.is_Rational:
result = ex.q*x - ex.p
else:
inverted = simpler_inverse(ex)
if inverted:
ex = ex**-1
res = None
if ex.is_Pow and (1/ex.exp).is_Integer:
n = 1/ex.exp
res = _minimal_polynomial_sq(ex.base, n, x)
elif _is_sum_surds(ex):
res = _minimal_polynomial_sq(ex, S.One, x)
if res is not None:
result = res
if res is None:
bus = bottom_up_scan(ex)
F = [x - bus] + list(mapping.values())
G = groebner(F, list(symbols.values()) + [x], order='lex')
_, factors = factor_list(G[-1])
# by construction G[-1] has root `ex`
result = _choose_factor(factors, x, ex)
if inverted:
result = _invertx(result, x)
if result.coeff(x**degree(result, x)) < 0:
result = expand_mul(-result)
return result
minpoly = minimal_polynomial
def _coeffs_generator(n):
"""Generate coefficients for `primitive_element()`. """
for coeffs in variations([1, -1, 2, -2, 3, -3], n, repetition=True):
# Two linear combinations with coeffs of opposite signs are
# opposites of each other. Hence it suffices to test only one.
if coeffs[0] > 0:
yield list(coeffs)
@public
def primitive_element(extension, x=None, *, ex=False, coeffs=_coeffs_generator, polys=False):
"""Construct a common number field for all extensions. """
if not extension:
raise ValueError("can't compute primitive element for empty extension")
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
coeffs_generator = coeffs
if not ex:
gen, coeffs = extension[0], [1]
# XXX when minimal_polynomial is extended to work
# with AlgebraicNumbers this test can be removed
if isinstance(gen, AlgebraicNumber):
g = gen.minpoly.replace(x)
else:
g = minimal_polynomial(gen, x, polys=True)
for ext in extension[1:]:
_, factors = factor_list(g, extension=ext)
g = _choose_factor(factors, x, gen)
s, _, g = g.sqf_norm()
gen += s*ext
coeffs.append(s)
if not polys:
return g.as_expr(), coeffs
else:
return cls(g), coeffs
generator = numbered_symbols('y', cls=Dummy)
F, Y = [], []
for ext in extension:
y = next(generator)
if ext.is_Poly:
if ext.is_univariate:
f = ext.as_expr(y)
else:
raise ValueError("expected minimal polynomial, got %s" % ext)
else:
f = minpoly(ext, y)
F.append(f)
Y.append(y)
for coeffs in coeffs_generator(len(Y)):
f = x - sum([ c*y for c, y in zip(coeffs, Y)])
G = groebner(F + [f], Y + [x], order='lex', field=True)
H, g = G[:-1], cls(G[-1], x, domain='QQ')
for i, (h, y) in enumerate(zip(H, Y)):
try:
H[i] = Poly(y - h, x,
domain='QQ').all_coeffs() # XXX: composite=False
except CoercionFailed: # pragma: no cover
break # G is not a triangular set
else:
break
else: # pragma: no cover
raise RuntimeError("run out of coefficient configurations")
_, g = g.clear_denoms()
if not polys:
return g.as_expr(), coeffs, H
else:
return g, coeffs, H
def is_isomorphism_possible(a, b):
"""Returns `True` if there is a chance for isomorphism. """
n = a.minpoly.degree()
m = b.minpoly.degree()
if m % n != 0:
return False
if n == m:
return True
da = a.minpoly.discriminant()
db = b.minpoly.discriminant()
i, k, half = 1, m//n, db//2
while True:
p = sieve[i]
P = p**k
if P > half:
break
if ((da % p) % 2) and not (db % P):
return False
i += 1
return True
def field_isomorphism_pslq(a, b):
"""Construct field isomorphism using PSLQ algorithm. """
if not a.root.is_real or not b.root.is_real:
raise NotImplementedError("PSLQ doesn't support complex coefficients")
f = a.minpoly
g = b.minpoly.replace(f.gen)
n, m, prev = 100, b.minpoly.degree(), None
for i in range(1, 5):
A = a.root.evalf(n)
B = b.root.evalf(n)
basis = [1, B] + [ B**i for i in range(2, m) ] + [A]
dps, mp.dps = mp.dps, n
coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000)
mp.dps = dps
if coeffs is None:
break
if coeffs != prev:
prev = coeffs
else:
break
coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]]
while not coeffs[-1]:
coeffs.pop()
coeffs = list(reversed(coeffs))
h = Poly(coeffs, f.gen, domain='QQ')
if f.compose(h).rem(g).is_zero:
d, approx = len(coeffs) - 1, 0
for i, coeff in enumerate(coeffs):
approx += coeff*B**(d - i)
if A*approx < 0:
return [ -c for c in coeffs ]
else:
return coeffs
elif f.compose(-h).rem(g).is_zero:
return [ -c for c in coeffs ]
else:
n *= 2
return None
def field_isomorphism_factor(a, b):
"""Construct field isomorphism via factorization. """
_, factors = factor_list(a.minpoly, extension=b)
for f, _ in factors:
if f.degree() == 1:
coeffs = f.rep.TC().to_sympy_list()
d, terms = len(coeffs) - 1, []
for i, coeff in enumerate(coeffs):
terms.append(coeff*b.root**(d - i))
root = Add(*terms)
if (a.root - root).evalf(chop=True) == 0:
return coeffs
if (a.root + root).evalf(chop=True) == 0:
return [-c for c in coeffs]
return None
@public
def field_isomorphism(a, b, *, fast=True):
"""Construct an isomorphism between two number fields. """
a, b = sympify(a), sympify(b)
if not a.is_AlgebraicNumber:
a = AlgebraicNumber(a)
if not b.is_AlgebraicNumber:
b = AlgebraicNumber(b)
if a == b:
return a.coeffs()
n = a.minpoly.degree()
m = b.minpoly.degree()
if n == 1:
return [a.root]
if m % n != 0:
return None
if fast:
try:
result = field_isomorphism_pslq(a, b)
if result is not None:
return result
except NotImplementedError:
pass
return field_isomorphism_factor(a, b)
@public
def to_number_field(extension, theta=None, *, gen=None):
"""Express `extension` in the field generated by `theta`. """
if hasattr(extension, '__iter__'):
extension = list(extension)
else:
extension = [extension]
if len(extension) == 1 and type(extension[0]) is tuple:
return AlgebraicNumber(extension[0])
minpoly, coeffs = primitive_element(extension, gen, polys=True)
root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ])
if theta is None:
return AlgebraicNumber((minpoly, root))
else:
theta = sympify(theta)
if not theta.is_AlgebraicNumber:
theta = AlgebraicNumber(theta, gen=gen)
coeffs = field_isomorphism(root, theta)
if coeffs is not None:
return AlgebraicNumber(theta, coeffs)
else:
raise IsomorphismFailed(
"%s is not in a subfield of %s" % (root, theta.root))
class IntervalPrinter(MpmathPrinter, LambdaPrinter):
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
def _print_Integer(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr)
def _print_Rational(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Half(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Pow(self, expr):
return super(MpmathPrinter, self)._print_Pow(expr, rational=True)
@public
def isolate(alg, eps=None, fast=False):
"""Give a rational isolating interval for an algebraic number. """
alg = sympify(alg)
if alg.is_Rational:
return (alg, alg)
elif not alg.is_real:
raise NotImplementedError(
"complex algebraic numbers are not supported")
func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())
poly = minpoly(alg, polys=True)
intervals = poly.intervals(sqf=True)
dps, done = mp.dps, False
try:
while not done:
alg = func()
for a, b in intervals:
if a <= alg.a and alg.b <= b:
done = True
break
else:
mp.dps *= 2
finally:
mp.dps = dps
if eps is not None:
a, b = poly.refine_root(a, b, eps=eps, fast=fast)
return (a, b)
|
391b8a2a597a69da21a16967de62613b6b7693a625423fd6955d0deda0d87f77 | """py.test hacks to support XFAIL/XPASS"""
from __future__ import print_function, division
import sys
import functools
import os
import contextlib
import warnings
from sympy.core.compatibility import get_function_name
from sympy.utilities.exceptions import SymPyDeprecationWarning
ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None)
try:
import pytest
USE_PYTEST = getattr(sys, '_running_pytest', False)
except ImportError:
USE_PYTEST = False
if USE_PYTEST:
raises = pytest.raises
warns = pytest.warns
skip = pytest.skip
XFAIL = pytest.mark.xfail
SKIP = pytest.mark.skip
slow = pytest.mark.slow
nocache_fail = pytest.mark.nocache_fail
from _pytest.outcomes import Failed
else:
# Not using pytest so define the things that would have been imported from
# there.
# _pytest._code.code.ExceptionInfo
class ExceptionInfo:
def __init__(self, value):
self.value = value
def __repr__(self):
return "<ExceptionInfo {!r}>".format(self.value)
def raises(expectedException, code=None):
"""
Tests that ``code`` raises the exception ``expectedException``.
``code`` may be a callable, such as a lambda expression or function
name.
If ``code`` is not given or None, ``raises`` will return a context
manager for use in ``with`` statements; the code to execute then
comes from the scope of the ``with``.
``raises()`` does nothing if the callable raises the expected exception,
otherwise it raises an AssertionError.
Examples
========
>>> from sympy.testing.pytest import raises
>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ZeroDivisionError(...)>
>>> raises(ZeroDivisionError, lambda: 1/2)
Traceback (most recent call last):
...
Failed: DID NOT RAISE
>>> with raises(ZeroDivisionError):
... n = 1/0
>>> with raises(ZeroDivisionError):
... n = 1/2
Traceback (most recent call last):
...
Failed: DID NOT RAISE
Note that you cannot test multiple statements via
``with raises``:
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise, aborting the ``with``
... n = 9999/0 # never executed
This is just what ``with`` is supposed to do: abort the
contained statement sequence at the first exception and let
the context manager deal with the exception.
To test multiple statements, you'll need a separate ``with``
for each:
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise
>>> with raises(ZeroDivisionError):
... n = 9999/0 # will also execute and raise
"""
if code is None:
return RaisesContext(expectedException)
elif callable(code):
try:
code()
except expectedException as e:
return ExceptionInfo(e)
raise Failed("DID NOT RAISE")
elif isinstance(code, str):
raise TypeError(
'\'raises(xxx, "code")\' has been phased out; '
'change \'raises(xxx, "expression")\' '
'to \'raises(xxx, lambda: expression)\', '
'\'raises(xxx, "statement")\' '
'to \'with raises(xxx): statement\'')
else:
raise TypeError(
'raises() expects a callable for the 2nd argument.')
class RaisesContext(object):
def __init__(self, expectedException):
self.expectedException = expectedException
def __enter__(self):
return None
def __exit__(self, exc_type, exc_value, traceback):
if exc_type is None:
raise Failed("DID NOT RAISE")
return issubclass(exc_type, self.expectedException)
class XFail(Exception):
pass
class XPass(Exception):
pass
class Skipped(Exception):
pass
class Failed(Exception):
pass
def XFAIL(func):
def wrapper():
try:
func()
except Exception as e:
message = str(e)
if message != "Timeout":
raise XFail(get_function_name(func))
else:
raise Skipped("Timeout")
raise XPass(get_function_name(func))
wrapper = functools.update_wrapper(wrapper, func)
return wrapper
def skip(str):
raise Skipped(str)
def SKIP(reason):
"""Similar to ``skip()``, but this is a decorator. """
def wrapper(func):
def func_wrapper():
raise Skipped(reason)
func_wrapper = functools.update_wrapper(func_wrapper, func)
return func_wrapper
return wrapper
def slow(func):
func._slow = True
def func_wrapper():
func()
func_wrapper = functools.update_wrapper(func_wrapper, func)
func_wrapper.__wrapped__ = func
return func_wrapper
def nocache_fail(func):
"Dummy decorator for marking tests that fail when cache is disabled"
return func
@contextlib.contextmanager
def warns(warningcls, *, match=''):
'''Like raises but tests that warnings are emitted.
>>> from sympy.testing.pytest import warns
>>> import warnings
>>> with warns(UserWarning):
... warnings.warn('deprecated', UserWarning)
>>> with warns(UserWarning):
... pass
Traceback (most recent call last):
...
Failed: DID NOT WARN. No warnings of type UserWarning\
was emitted. The list of emitted warnings is: [].
'''
# Absorbs all warnings in warnrec
with warnings.catch_warnings(record=True) as warnrec:
# Hide all warnings but make sure that our warning is emitted
warnings.simplefilter("ignore")
warnings.filterwarnings("always", match, warningcls)
# Now run the test
yield
# Raise if expected warning not found
if not any(issubclass(w.category, warningcls) for w in warnrec):
msg = ('Failed: DID NOT WARN.'
' No warnings of type %s was emitted.'
' The list of emitted warnings is: %s.'
) % (warningcls, [w.message for w in warnrec])
raise Failed(msg)
@contextlib.contextmanager
def warns_deprecated_sympy():
'''Shorthand for ``warns(SymPyDeprecationWarning)``
This is the recommended way to test that ``SymPyDeprecationWarning`` is
emitted for deprecated features in SymPy. To test for other warnings use
``warns``. To suppress warnings without asserting that they are emitted
use ``ignore_warnings``.
>>> from sympy.testing.pytest import warns_deprecated_sympy
>>> from sympy.utilities.exceptions import SymPyDeprecationWarning
>>> with warns_deprecated_sympy():
... SymPyDeprecationWarning("Don't use", feature="old thing",
... deprecated_since_version="1.0", issue=123).warn()
>>> with warns_deprecated_sympy():
... pass
Traceback (most recent call last):
...
Failed: DID NOT WARN. No warnings of type \
SymPyDeprecationWarning was emitted. The list of emitted warnings is: [].
'''
with warns(SymPyDeprecationWarning):
yield
@contextlib.contextmanager
def ignore_warnings(warningcls):
'''Context manager to suppress warnings during tests.
This function is useful for suppressing warnings during tests. The warns
function should be used to assert that a warning is raised. The
ignore_warnings function is useful in situation when the warning is not
guaranteed to be raised (e.g. on importing a module) or if the warning
comes from third-party code.
When the warning is coming (reliably) from SymPy the warns function should
be preferred to ignore_warnings.
>>> from sympy.testing.pytest import ignore_warnings
>>> import warnings
Here's a warning:
>>> with warnings.catch_warnings(): # reset warnings in doctest
... warnings.simplefilter('error')
... warnings.warn('deprecated', UserWarning)
Traceback (most recent call last):
...
UserWarning: deprecated
Let's suppress it with ignore_warnings:
>>> with warnings.catch_warnings(): # reset warnings in doctest
... warnings.simplefilter('error')
... with ignore_warnings(UserWarning):
... warnings.warn('deprecated', UserWarning)
(No warning emitted)
'''
# Absorbs all warnings in warnrec
with warnings.catch_warnings(record=True) as warnrec:
# Make sure our warning doesn't get filtered
warnings.simplefilter("always", warningcls)
# Now run the test
yield
# Reissue any warnings that we aren't testing for
for w in warnrec:
if not issubclass(w.category, warningcls):
warnings.warn_explicit(w.message, w.category, w.filename, w.lineno)
|
89cd81172f2068d0e344bc658a92341a987e69a1ff967a3948c89be7587749e2 | """
This is our testing framework.
Goals:
* it should be compatible with py.test and operate very similarly
(or identically)
* doesn't require any external dependencies
* preferably all the functionality should be in this file only
* no magic, just import the test file and execute the test functions, that's it
* portable
"""
from __future__ import print_function, division
import os
import sys
import platform
import inspect
import traceback
import pdb
import re
import linecache
import time
from fnmatch import fnmatch
from timeit import default_timer as clock
import doctest as pdoctest # avoid clashing with our doctest() function
from doctest import DocTestFinder, DocTestRunner
import random
import subprocess
import shutil
import signal
import stat
import tempfile
import warnings
from contextlib import contextmanager
from sympy.core.cache import clear_cache
from sympy.core.compatibility import (exec_, PY3, unwrap)
from sympy.external import import_module
IS_WINDOWS = (os.name == 'nt')
ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None)
# emperically generated list of the proportion of time spent running
# an even split of tests. This should periodically be regenerated.
# A list of [.6, .1, .3] would mean that if the tests are evenly split
# into '1/3', '2/3', '3/3', the first split would take 60% of the time,
# the second 10% and the third 30%. These lists are normalized to sum
# to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3].
#
# This list can be generated with the code:
# from time import time
# import sympy
# import os
# os.environ["TRAVIS_BUILD_NUMBER"] = '2' # Mock travis to get more correct densities
# delays, num_splits = [], 30
# for i in range(1, num_splits + 1):
# tic = time()
# sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests
# delays.append(time() - tic)
# tot = sum(delays)
# print([round(x / tot, 4) for x in delays])
SPLIT_DENSITY = [
0.0059, 0.0027, 0.0068, 0.0011, 0.0006,
0.0058, 0.0047, 0.0046, 0.004, 0.0257,
0.0017, 0.0026, 0.004, 0.0032, 0.0016,
0.0015, 0.0004, 0.0011, 0.0016, 0.0014,
0.0077, 0.0137, 0.0217, 0.0074, 0.0043,
0.0067, 0.0236, 0.0004, 0.1189, 0.0142,
0.0234, 0.0003, 0.0003, 0.0047, 0.0006,
0.0013, 0.0004, 0.0008, 0.0007, 0.0006,
0.0139, 0.0013, 0.0007, 0.0051, 0.002,
0.0004, 0.0005, 0.0213, 0.0048, 0.0016,
0.0012, 0.0014, 0.0024, 0.0015, 0.0004,
0.0005, 0.0007, 0.011, 0.0062, 0.0015,
0.0021, 0.0049, 0.0006, 0.0006, 0.0011,
0.0006, 0.0019, 0.003, 0.0044, 0.0054,
0.0057, 0.0049, 0.0016, 0.0006, 0.0009,
0.0006, 0.0012, 0.0006, 0.0149, 0.0532,
0.0076, 0.0041, 0.0024, 0.0135, 0.0081,
0.2209, 0.0459, 0.0438, 0.0488, 0.0137,
0.002, 0.0003, 0.0008, 0.0039, 0.0024,
0.0005, 0.0004, 0.003, 0.056, 0.0026]
SPLIT_DENSITY_SLOW = [0.0086, 0.0004, 0.0568, 0.0003, 0.0032, 0.0005, 0.0004, 0.0013, 0.0016, 0.0648, 0.0198, 0.1285, 0.098, 0.0005, 0.0064, 0.0003, 0.0004, 0.0026, 0.0007, 0.0051, 0.0089, 0.0024, 0.0033, 0.0057, 0.0005, 0.0003, 0.001, 0.0045, 0.0091, 0.0006, 0.0005, 0.0321, 0.0059, 0.1105, 0.216, 0.1489, 0.0004, 0.0003, 0.0006, 0.0483]
class Skipped(Exception):
pass
class TimeOutError(Exception):
pass
class DependencyError(Exception):
pass
# add more flags ??
future_flags = division.compiler_flag
def _indent(s, indent=4):
"""
Add the given number of space characters to the beginning of
every non-blank line in ``s``, and return the result.
If the string ``s`` is Unicode, it is encoded using the stdout
encoding and the ``backslashreplace`` error handler.
"""
# This regexp matches the start of non-blank lines:
return re.sub('(?m)^(?!$)', indent*' ', s)
pdoctest._indent = _indent # type: ignore
# override reporter to maintain windows and python3
def _report_failure(self, out, test, example, got):
"""
Report that the given example failed.
"""
s = self._checker.output_difference(example, got, self.optionflags)
s = s.encode('raw_unicode_escape').decode('utf8', 'ignore')
out(self._failure_header(test, example) + s)
if PY3 and IS_WINDOWS:
DocTestRunner.report_failure = _report_failure # type: ignore
def convert_to_native_paths(lst):
"""
Converts a list of '/' separated paths into a list of
native (os.sep separated) paths and converts to lowercase
if the system is case insensitive.
"""
newlst = []
for i, rv in enumerate(lst):
rv = os.path.join(*rv.split("/"))
# on windows the slash after the colon is dropped
if sys.platform == "win32":
pos = rv.find(':')
if pos != -1:
if rv[pos + 1] != '\\':
rv = rv[:pos + 1] + '\\' + rv[pos + 1:]
newlst.append(os.path.normcase(rv))
return newlst
def get_sympy_dir():
"""
Returns the root sympy directory and set the global value
indicating whether the system is case sensitive or not.
"""
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..")
sympy_dir = os.path.normpath(sympy_dir)
return os.path.normcase(sympy_dir)
def setup_pprint():
from sympy import pprint_use_unicode, init_printing
import sympy.interactive.printing as interactive_printing
# force pprint to be in ascii mode in doctests
use_unicode_prev = pprint_use_unicode(False)
# hook our nice, hash-stable strprinter
init_printing(pretty_print=False)
# Prevent init_printing() in doctests from affecting other doctests
interactive_printing.NO_GLOBAL = True
return use_unicode_prev
@contextmanager
def raise_on_deprecated():
"""Context manager to make DeprecationWarning raise an error
This is to catch SymPyDeprecationWarning from library code while running
tests and doctests. It is important to use this context manager around
each individual test/doctest in case some tests modify the warning
filters.
"""
with warnings.catch_warnings():
warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*')
yield
def run_in_subprocess_with_hash_randomization(
function, function_args=(),
function_kwargs=None, command=sys.executable,
module='sympy.testing.runtests', force=False):
"""
Run a function in a Python subprocess with hash randomization enabled.
If hash randomization is not supported by the version of Python given, it
returns False. Otherwise, it returns the exit value of the command. The
function is passed to sys.exit(), so the return value of the function will
be the return value.
The environment variable PYTHONHASHSEED is used to seed Python's hash
randomization. If it is set, this function will return False, because
starting a new subprocess is unnecessary in that case. If it is not set,
one is set at random, and the tests are run. Note that if this
environment variable is set when Python starts, hash randomization is
automatically enabled. To force a subprocess to be created even if
PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a
subprocess in Python versions that do not support hash randomization (see
below), because those versions of Python do not support the ``-R`` flag.
``function`` should be a string name of a function that is importable from
the module ``module``, like "_test". The default for ``module`` is
"sympy.testing.runtests". ``function_args`` and ``function_kwargs``
should be a repr-able tuple and dict, respectively. The default Python
command is sys.executable, which is the currently running Python command.
This function is necessary because the seed for hash randomization must be
set by the environment variable before Python starts. Hence, in order to
use a predetermined seed for tests, we must start Python in a separate
subprocess.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
Examples
========
>>> from sympy.testing.runtests import (
... run_in_subprocess_with_hash_randomization)
>>> # run the core tests in verbose mode
>>> run_in_subprocess_with_hash_randomization("_test",
... function_args=("core",),
... function_kwargs={'verbose': True}) # doctest: +SKIP
# Will return 0 if sys.executable supports hash randomization and tests
# pass, 1 if they fail, and False if it does not support hash
# randomization.
"""
cwd = get_sympy_dir()
# Note, we must return False everywhere, not None, as subprocess.call will
# sometimes return None.
# First check if the Python version supports hash randomization
# If it doesn't have this support, it won't recognize the -R flag
p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, cwd=cwd)
p.communicate()
if p.returncode != 0:
return False
hash_seed = os.getenv("PYTHONHASHSEED")
if not hash_seed:
os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32))
else:
if not force:
return False
function_kwargs = function_kwargs or {}
# Now run the command
commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" %
(module, function, function, repr(function_args),
repr(function_kwargs)))
try:
p = subprocess.Popen([command, "-R", "-c", commandstring], cwd=cwd)
p.communicate()
except KeyboardInterrupt:
p.wait()
finally:
# Put the environment variable back, so that it reads correctly for
# the current Python process.
if hash_seed is None:
del os.environ["PYTHONHASHSEED"]
else:
os.environ["PYTHONHASHSEED"] = hash_seed
return p.returncode
def run_all_tests(test_args=(), test_kwargs=None,
doctest_args=(), doctest_kwargs=None,
examples_args=(), examples_kwargs=None):
"""
Run all tests.
Right now, this runs the regular tests (bin/test), the doctests
(bin/doctest), the examples (examples/all.py), and the sage tests (see
sympy/external/tests/test_sage.py).
This is what ``setup.py test`` uses.
You can pass arguments and keyword arguments to the test functions that
support them (for now, test, doctest, and the examples). See the
docstrings of those functions for a description of the available options.
For example, to run the solvers tests with colors turned off:
>>> from sympy.testing.runtests import run_all_tests
>>> run_all_tests(test_args=("solvers",),
... test_kwargs={"colors:False"}) # doctest: +SKIP
"""
cwd = get_sympy_dir()
tests_successful = True
test_kwargs = test_kwargs or {}
doctest_kwargs = doctest_kwargs or {}
examples_kwargs = examples_kwargs or {'quiet': True}
try:
# Regular tests
if not test(*test_args, **test_kwargs):
# some regular test fails, so set the tests_successful
# flag to false and continue running the doctests
tests_successful = False
# Doctests
print()
if not doctest(*doctest_args, **doctest_kwargs):
tests_successful = False
# Examples
print()
sys.path.append("examples") # examples/all.py
from all import run_examples # type: ignore
if not run_examples(*examples_args, **examples_kwargs):
tests_successful = False
# Sage tests
if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"):
# run Sage tests; Sage currently doesn't support Windows or Python 3
# Only run Sage tests if 'bin/test' is present (it is missing from
# our release because everything in the 'bin' directory gets
# installed).
dev_null = open(os.devnull, 'w')
if subprocess.call("sage -v", shell=True, stdout=dev_null,
stderr=dev_null) == 0:
if subprocess.call("sage -python bin/test "
"sympy/external/tests/test_sage.py",
shell=True, cwd=cwd) != 0:
tests_successful = False
if tests_successful:
return
else:
# Return nonzero exit code
sys.exit(1)
except KeyboardInterrupt:
print()
print("DO *NOT* COMMIT!")
sys.exit(1)
def test(*paths, subprocess=True, rerun=0, **kwargs):
"""
Run tests in the specified test_*.py files.
Tests in a particular test_*.py file are run if any of the given strings
in ``paths`` matches a part of the test file's path. If ``paths=[]``,
tests in all test_*.py files are run.
Notes:
- If sort=False, tests are run in random order (not default).
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
**Explanation of test results**
====== ===============================================================
Output Meaning
====== ===============================================================
. passed
F failed
X XPassed (expected to fail but passed)
f XFAILed (expected to fail and indeed failed)
s skipped
w slow
T timeout (e.g., when ``--timeout`` is used)
K KeyboardInterrupt (when running the slow tests with ``--slow``,
you can interrupt one of them without killing the test runner)
====== ===============================================================
Colors have no additional meaning and are used just to facilitate
interpreting the output.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.test() # doctest: +SKIP
Run one file:
>>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP
>>> sympy.test("_basic") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... "sympy/functions") # doctest: +SKIP
Run all tests in sympy/core and sympy/utilities:
>>> sympy.test("/core", "/util") # doctest: +SKIP
Run specific test from a file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... kw="test_equality") # doctest: +SKIP
Run specific test from any file:
>>> sympy.test(kw="subs") # doctest: +SKIP
Run the tests with verbose mode on:
>>> sympy.test(verbose=True) # doctest: +SKIP
Don't sort the test output:
>>> sympy.test(sort=False) # doctest: +SKIP
Turn on post-mortem pdb:
>>> sympy.test(pdb=True) # doctest: +SKIP
Turn off colors:
>>> sympy.test(colors=False) # doctest: +SKIP
Force colors, even when the output is not to a terminal (this is useful,
e.g., if you are piping to ``less -r`` and you still want colors)
>>> sympy.test(force_colors=False) # doctest: +SKIP
The traceback verboseness can be set to "short" or "no" (default is
"short")
>>> sympy.test(tb='no') # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. For instance, to run the first half of the test suite:
>>> sympy.test(split='1/2') # doctest: +SKIP
The ``time_balance`` option can be passed in conjunction with ``split``.
If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt
to split the tests such that each split takes equal time. This heuristic
for balancing is based on pre-recorded test data.
>>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP
You can disable running the tests in a separate subprocess using
``subprocess=False``. This is done to support seeding hash randomization,
which is enabled by default in the Python versions where it is supported.
If subprocess=False, hash randomization is enabled/disabled according to
whether it has been enabled or not in the calling Python process.
However, even if it is enabled, the seed cannot be printed unless it is
called from a new Python process.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
If hash randomization is not supported ``subprocess=False`` is used
automatically.
>>> sympy.test(subprocess=False) # doctest: +SKIP
To set the hash randomization seed, set the environment variable
``PYTHONHASHSEED`` before running the tests. This can be done from within
Python using
>>> import os
>>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP
Or from the command line using
$ PYTHONHASHSEED=42 ./bin/test
If the seed is not set, a random seed will be chosen.
Note that to reproduce the same hash values, you must use both the same seed
as well as the same architecture (32-bit vs. 64-bit).
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_test",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_test(*paths, **kwargs))
if not val or i == 0:
return val
def _test(*paths,
verbose=False, tb="short", kw=None, pdb=False, colors=True,
force_colors=False, sort=True, seed=None, timeout=False,
fail_on_timeout=False, slow=False, enhance_asserts=False, split=None,
time_balance=True, blacklist=('sympy/integrals/rubi/rubi_tests/tests',),
fast_threshold=None, slow_threshold=None):
"""
Internal function that actually runs the tests.
All keyword arguments from ``test()`` are passed to this function except for
``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstring of
``test()`` for more information.
"""
kw = kw or ()
# ensure that kw is a tuple
if isinstance(kw, str):
kw = (kw,)
post_mortem = pdb
if seed is None:
seed = random.randrange(100000000)
if ON_TRAVIS and timeout is False:
# Travis times out if no activity is seen for 10 minutes.
timeout = 595
fail_on_timeout = True
if ON_TRAVIS:
# pyglet does not work on Travis
blacklist = list(blacklist) + ['sympy/plotting/pygletplot/tests']
blacklist = convert_to_native_paths(blacklist)
r = PyTestReporter(verbose=verbose, tb=tb, colors=colors,
force_colors=force_colors, split=split)
t = SymPyTests(r, kw, post_mortem, seed,
fast_threshold=fast_threshold,
slow_threshold=slow_threshold)
test_files = t.get_test_files('sympy')
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
density = None
if time_balance:
if slow:
density = SPLIT_DENSITY_SLOW
else:
density = SPLIT_DENSITY
if split:
matched = split_list(matched, split, density=density)
t._testfiles.extend(matched)
return int(not t.test(sort=sort, timeout=timeout, slow=slow,
enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout))
def doctest(*paths, subprocess=True, rerun=0, **kwargs):
r"""
Runs doctests in all \*.py files in the sympy directory which match
any of the given strings in ``paths`` or all tests if paths=[].
Notes:
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.doctest() # doctest: +SKIP
Run one file:
>>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP
>>> sympy.doctest("polynomial.rst") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP
Run any file having polynomial in its name, doc/src/modules/polynomial.rst,
sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py:
>>> sympy.doctest("polynomial") # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. Note that the regular doctests and the Sphinx
doctests are split independently. For instance, to run the first half of
the test suite:
>>> sympy.doctest(split='1/2') # doctest: +SKIP
The ``subprocess`` and ``verbose`` options are the same as with the function
``test()``. See the docstring of that function for more information.
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_doctest",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_doctest(*paths, **kwargs))
if not val or i == 0:
return val
def _get_doctest_blacklist():
'''Get the default blacklist for the doctests'''
blacklist = []
blacklist.extend([
"doc/src/modules/plotting.rst", # generates live plots
"doc/src/modules/physics/mechanics/autolev_parser.rst",
"sympy/galgebra.py", # no longer part of SymPy
"sympy/this.py", # prints text
"sympy/physics/gaussopt.py", # raises deprecation warning
"sympy/matrices/densearith.py", # raises deprecation warning
"sympy/matrices/densesolve.py", # raises deprecation warning
"sympy/matrices/densetools.py", # raises deprecation warning
"sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code
"sympy/parsing/autolev/_antlr/autolevparser.py", # generated code
"sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code
"sympy/parsing/latex/_antlr/latexlexer.py", # generated code
"sympy/parsing/latex/_antlr/latexparser.py", # generated code
"sympy/integrals/rubi/rubi.py",
"sympy/plotting/pygletplot/__init__.py", # crashes on some systems
"sympy/plotting/pygletplot/plot.py", # crashes on some systems
])
# autolev parser tests
num = 12
for i in range (1, num+1):
blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py")
blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"])
if import_module('numpy') is None:
blacklist.extend([
"sympy/plotting/experimental_lambdify.py",
"sympy/plotting/plot_implicit.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py",
"examples/intermediate/sample.py",
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py",
"doc/src/modules/numeric-computation.rst"
])
else:
if import_module('matplotlib') is None:
blacklist.extend([
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py"
])
else:
# Use a non-windowed backend, so that the tests work on Travis
import matplotlib
matplotlib.use('Agg')
if ON_TRAVIS or import_module('pyglet') is None:
blacklist.extend(["sympy/plotting/pygletplot"])
if import_module('theano') is None:
blacklist.extend([
"sympy/printing/theanocode.py",
"doc/src/modules/numeric-computation.rst",
])
if import_module('antlr4') is None:
blacklist.extend([
"sympy/parsing/autolev/__init__.py",
"sympy/parsing/latex/_parse_latex_antlr.py",
])
if import_module('lfortran') is None:
#throws ImportError when lfortran not installed
blacklist.extend([
"sympy/parsing/sym_expr.py",
])
# disabled because of doctest failures in asmeurer's bot
blacklist.extend([
"sympy/utilities/autowrap.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py"
])
# blacklist these modules until issue 4840 is resolved
blacklist.extend([
"sympy/conftest.py", # Python 2.7 issues
"sympy/testing/benchmarking.py",
])
# These are deprecated stubs to be removed:
blacklist.extend([
"sympy/utilities/benchmarking.py",
"sympy/utilities/tmpfiles.py",
"sympy/utilities/pytest.py",
"sympy/utilities/runtests.py",
"sympy/utilities/quality_unicode.py",
"sympy/utilities/randtest.py",
])
blacklist = convert_to_native_paths(blacklist)
return blacklist
def _doctest(*paths, **kwargs):
"""
Internal function that actually runs the doctests.
All keyword arguments from ``doctest()`` are passed to this function
except for ``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstrings of
``doctest()`` and ``test()`` for more information.
"""
from sympy import pprint_use_unicode
normal = kwargs.get("normal", False)
verbose = kwargs.get("verbose", False)
colors = kwargs.get("colors", True)
force_colors = kwargs.get("force_colors", False)
blacklist = kwargs.get("blacklist", [])
split = kwargs.get('split', None)
blacklist.extend(_get_doctest_blacklist())
# Use a non-windowed backend, so that the tests work on Travis
if import_module('matplotlib') is not None:
import matplotlib
matplotlib.use('Agg')
# Disable warnings for external modules
import sympy.external
sympy.external.importtools.WARN_OLD_VERSION = False
sympy.external.importtools.WARN_NOT_INSTALLED = False
# Disable showing up of plots
from sympy.plotting.plot import unset_show
unset_show()
r = PyTestReporter(verbose, split=split, colors=colors,\
force_colors=force_colors)
t = SymPyDocTests(r, normal)
test_files = t.get_test_files('sympy')
test_files.extend(t.get_test_files('examples', init_only=False))
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# take only what was requested...but not blacklisted items
# and allow for partial match anywhere or fnmatch of name
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
t._testfiles.extend(matched)
# run the tests and record the result for this *py portion of the tests
if t._testfiles:
failed = not t.test()
else:
failed = False
# N.B.
# --------------------------------------------------------------------
# Here we test *.rst files at or below doc/src. Code from these must
# be self supporting in terms of imports since there is no importing
# of necessary modules by doctest.testfile. If you try to pass *.py
# files through this they might fail because they will lack the needed
# imports and smarter parsing that can be done with source code.
#
test_files = t.get_test_files('doc/src', '*.rst', init_only=False)
test_files.sort()
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# Take only what was requested as long as it's not on the blacklist.
# Paths were already made native in *py tests so don't repeat here.
# There's no chance of having a *py file slip through since we
# only have *rst files in test_files.
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
first_report = True
for rst_file in matched:
if not os.path.isfile(rst_file):
continue
old_displayhook = sys.displayhook
try:
use_unicode_prev = setup_pprint()
out = sympytestfile(
rst_file, module_relative=False, encoding='utf-8',
optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
finally:
# make sure we return to the original displayhook in case some
# doctest has changed that
sys.displayhook = old_displayhook
# The NO_GLOBAL flag overrides the no_global flag to init_printing
# if True
import sympy.interactive.printing as interactive_printing
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
rstfailed, tested = out
if tested:
failed = rstfailed or failed
if first_report:
first_report = False
msg = 'rst doctests start'
if not t._testfiles:
r.start(msg=msg)
else:
r.write_center(msg)
print()
# use as the id, everything past the first 'sympy'
file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:]
print(file_id, end=" ")
# get at least the name out so it is know who is being tested
wid = r.terminal_width - len(file_id) - 1 # update width
test_file = '[%s]' % (tested)
report = '[%s]' % (rstfailed or 'OK')
print(''.join(
[test_file, ' '*(wid - len(test_file) - len(report)), report])
)
# the doctests for *py will have printed this message already if there was
# a failure, so now only print it if there was intervening reporting by
# testing the *rst as evidenced by first_report no longer being True.
if not first_report and failed:
print()
print("DO *NOT* COMMIT!")
return int(failed)
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def split_list(l, split, density=None):
"""
Splits a list into part a of b
split should be a string of the form 'a/b'. For instance, '1/3' would give
the split one of three.
If the length of the list is not divisible by the number of splits, the
last split will have more items.
`density` may be specified as a list. If specified,
tests will be balanced so that each split has as equal-as-possible
amount of mass according to `density`.
>>> from sympy.testing.runtests import split_list
>>> a = list(range(10))
>>> split_list(a, '1/3')
[0, 1, 2]
>>> split_list(a, '2/3')
[3, 4, 5]
>>> split_list(a, '3/3')
[6, 7, 8, 9]
"""
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b where a and b are ints")
i, t = map(int, m.groups())
if not density:
return l[(i - 1)*len(l)//t : i*len(l)//t]
# normalize density
tot = sum(density)
density = [x / tot for x in density]
def density_inv(x):
"""Interpolate the inverse to the cumulative
distribution function given by density"""
if x <= 0:
return 0
if x >= sum(density):
return 1
# find the first time the cumulative sum surpasses x
# and linearly interpolate
cumm = 0
for i, d in enumerate(density):
cumm += d
if cumm >= x:
break
frac = (d - (cumm - x)) / d
return (i + frac) / len(density)
lower_frac = density_inv((i - 1) / t)
higher_frac = density_inv(i / t)
return l[int(lower_frac*len(l)) : int(higher_frac*len(l))]
from collections import namedtuple
SymPyTestResults = namedtuple('SymPyTestResults', 'failed attempted')
def sympytestfile(filename, module_relative=True, name=None, package=None,
globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False,
parser=pdoctest.DocTestParser(), encoding=None):
"""
Test examples in the given file. Return (#failures, #tests).
Optional keyword arg ``module_relative`` specifies how filenames
should be interpreted:
- If ``module_relative`` is True (the default), then ``filename``
specifies a module-relative path. By default, this path is
relative to the calling module's directory; but if the
``package`` argument is specified, then it is relative to that
package. To ensure os-independence, ``filename`` should use
"/" characters to separate path segments, and should not
be an absolute path (i.e., it may not begin with "/").
- If ``module_relative`` is False, then ``filename`` specifies an
os-specific path. The path may be absolute or relative (to
the current working directory).
Optional keyword arg ``name`` gives the name of the test; by default
use the file's basename.
Optional keyword argument ``package`` is a Python package or the
name of a Python package whose directory should be used as the
base directory for a module relative filename. If no package is
specified, then the calling module's directory is used as the base
directory for module relative filenames. It is an error to
specify ``package`` if ``module_relative`` is False.
Optional keyword arg ``globs`` gives a dict to be used as the globals
when executing examples; by default, use {}. A copy of this dict
is actually used for each docstring, so that each docstring's
examples start with a clean slate.
Optional keyword arg ``extraglobs`` gives a dictionary that should be
merged into the globals that are used to execute examples. By
default, no extra globals are used.
Optional keyword arg ``verbose`` prints lots of stuff if true, prints
only failures if false; by default, it's true iff "-v" is in sys.argv.
Optional keyword arg ``report`` prints a summary at the end when true,
else prints nothing at the end. In verbose mode, the summary is
detailed, else very brief (in fact, empty if all tests passed).
Optional keyword arg ``optionflags`` or's together module constants,
and defaults to 0. Possible values (see the docs for details):
- DONT_ACCEPT_TRUE_FOR_1
- DONT_ACCEPT_BLANKLINE
- NORMALIZE_WHITESPACE
- ELLIPSIS
- SKIP
- IGNORE_EXCEPTION_DETAIL
- REPORT_UDIFF
- REPORT_CDIFF
- REPORT_NDIFF
- REPORT_ONLY_FIRST_FAILURE
Optional keyword arg ``raise_on_error`` raises an exception on the
first unexpected exception or failure. This allows failures to be
post-mortem debugged.
Optional keyword arg ``parser`` specifies a DocTestParser (or
subclass) that should be used to extract tests from the files.
Optional keyword arg ``encoding`` specifies an encoding that should
be used to convert the file to unicode.
Advanced tomfoolery: testmod runs methods of a local instance of
class doctest.Tester, then merges the results into (or creates)
global Tester instance doctest.master. Methods of doctest.master
can be called directly too, if you want to do something unusual.
Passing report=0 to testmod is especially useful then, to delay
displaying a summary. Invoke doctest.master.summarize(verbose)
when you're done fiddling.
"""
if package and not module_relative:
raise ValueError("Package may only be specified for module-"
"relative paths.")
# Relativize the path
if not PY3:
text, filename = pdoctest._load_testfile(
filename, package, module_relative)
if encoding is not None:
text = text.decode(encoding)
else:
text, filename = pdoctest._load_testfile(
filename, package, module_relative, encoding)
# If no name was given, then use the file's name.
if name is None:
name = os.path.basename(filename)
# Assemble the globals.
if globs is None:
globs = {}
else:
globs = globs.copy()
if extraglobs is not None:
globs.update(extraglobs)
if '__name__' not in globs:
globs['__name__'] = '__main__'
if raise_on_error:
runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags)
else:
runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags)
runner._checker = SymPyOutputChecker()
# Read the file, convert it to a test, and run it.
test = parser.get_doctest(text, globs, name, filename, 0)
runner.run(test, compileflags=future_flags)
if report:
runner.summarize()
if pdoctest.master is None:
pdoctest.master = runner
else:
pdoctest.master.merge(runner)
return SymPyTestResults(runner.failures, runner.tries)
class SymPyTests(object):
def __init__(self, reporter, kw="", post_mortem=False,
seed=None, fast_threshold=None, slow_threshold=None):
self._post_mortem = post_mortem
self._kw = kw
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._testfiles = []
self._seed = seed if seed is not None else random.random()
# Defaults in seconds, from human / UX design limits
# http://www.nngroup.com/articles/response-times-3-important-limits/
#
# These defaults are *NOT* set in stone as we are measuring different
# things, so others feel free to come up with a better yardstick :)
if fast_threshold:
self._fast_threshold = float(fast_threshold)
else:
self._fast_threshold = 8
if slow_threshold:
self._slow_threshold = float(slow_threshold)
else:
self._slow_threshold = 10
def test(self, sort=False, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
"""
Runs the tests returning True if all tests pass, otherwise False.
If sort=False run tests in random order.
"""
if sort:
self._testfiles.sort()
elif slow:
pass
else:
random.seed(self._seed)
random.shuffle(self._testfiles)
self._reporter.start(self._seed)
for f in self._testfiles:
try:
self.test_file(f, sort, timeout, slow,
enhance_asserts, fail_on_timeout)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def _enhance_asserts(self, source):
from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple,
Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations)
ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=',
"Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not',
"In": 'in', "NotIn": 'not in'}
class Transform(NodeTransformer):
def visit_Assert(self, stmt):
if isinstance(stmt.test, Compare):
compare = stmt.test
values = [compare.left] + compare.comparators
names = [ "_%s" % i for i, _ in enumerate(values) ]
names_store = [ Name(n, Store()) for n in names ]
names_load = [ Name(n, Load()) for n in names ]
target = Tuple(names_store, Store())
value = Tuple(values, Load())
assign = Assign([target], value)
new_compare = Compare(names_load[0], compare.ops, names_load[1:])
msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s"
msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load()))
test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset)
return [assign, test]
else:
return stmt
tree = parse(source)
new_tree = Transform().visit(tree)
return fix_missing_locations(new_tree)
def test_file(self, filename, sort=True, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
reporter = self._reporter
funcs = []
try:
gl = {'__file__': filename}
try:
if PY3:
open_file = lambda: open(filename, encoding="utf8")
else:
open_file = lambda: open(filename)
with open_file() as f:
source = f.read()
if self._kw:
for l in source.splitlines():
if l.lstrip().startswith('def '):
if any(l.find(k) != -1 for k in self._kw):
break
else:
return
if enhance_asserts:
try:
source = self._enhance_asserts(source)
except ImportError:
pass
code = compile(source, filename, "exec", flags=0, dont_inherit=True)
exec_(code, gl)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
reporter.import_error(filename, sys.exc_info())
return
except Exception:
reporter.test_exception(sys.exc_info())
clear_cache()
self._count += 1
random.seed(self._seed)
disabled = gl.get("disabled", False)
if not disabled:
# we need to filter only those functions that begin with 'test_'
# We have to be careful about decorated functions. As long as
# the decorator uses functools.wraps, we can detect it.
funcs = []
for f in gl:
if (f.startswith("test_") and (inspect.isfunction(gl[f])
or inspect.ismethod(gl[f]))):
func = gl[f]
# Handle multiple decorators
while hasattr(func, '__wrapped__'):
func = func.__wrapped__
if inspect.getsourcefile(func) == filename:
funcs.append(gl[f])
if slow:
funcs = [f for f in funcs if getattr(f, '_slow', False)]
# Sorting of XFAILed functions isn't fixed yet :-(
funcs.sort(key=lambda x: inspect.getsourcelines(x)[1])
i = 0
while i < len(funcs):
if inspect.isgeneratorfunction(funcs[i]):
# some tests can be generators, that return the actual
# test functions. We unpack it below:
f = funcs.pop(i)
for fg in f():
func = fg[0]
args = fg[1:]
fgw = lambda: func(*args)
funcs.insert(i, fgw)
i += 1
else:
i += 1
# drop functions that are not selected with the keyword expression:
funcs = [x for x in funcs if self.matches(x)]
if not funcs:
return
except Exception:
reporter.entering_filename(filename, len(funcs))
raise
reporter.entering_filename(filename, len(funcs))
if not sort:
random.shuffle(funcs)
for f in funcs:
start = time.time()
reporter.entering_test(f)
try:
if getattr(f, '_slow', False) and not slow:
raise Skipped("Slow")
with raise_on_deprecated():
if timeout:
self._timeout(f, timeout, fail_on_timeout)
else:
random.seed(self._seed)
f()
except KeyboardInterrupt:
if getattr(f, '_slow', False):
reporter.test_skip("KeyboardInterrupt")
else:
raise
except Exception:
if timeout:
signal.alarm(0) # Disable the alarm. It could not be handled before.
t, v, tr = sys.exc_info()
if t is AssertionError:
reporter.test_fail((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
elif t.__name__ == "Skipped":
reporter.test_skip(v)
elif t.__name__ == "XFail":
reporter.test_xfail()
elif t.__name__ == "XPass":
reporter.test_xpass(v)
else:
reporter.test_exception((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
else:
reporter.test_pass()
taken = time.time() - start
if taken > self._slow_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.slow_test_functions.append(
(filename + "::" + f.__name__, taken))
if getattr(f, '_slow', False) and slow:
if taken < self._fast_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.fast_test_functions.append(
(filename + "::" + f.__name__, taken))
reporter.leaving_filename()
def _timeout(self, function, timeout, fail_on_timeout):
def callback(x, y):
signal.alarm(0)
if fail_on_timeout:
raise TimeOutError("Timed out after %d seconds" % timeout)
else:
raise Skipped("Timeout")
signal.signal(signal.SIGALRM, callback)
signal.alarm(timeout) # Set an alarm with a given timeout
function()
signal.alarm(0) # Disable the alarm
def matches(self, x):
"""
Does the keyword expression self._kw match "x"? Returns True/False.
Always returns True if self._kw is "".
"""
if not self._kw:
return True
for kw in self._kw:
if x.__name__.find(kw) != -1:
return True
return False
def get_test_files(self, dir, pat='test_*.py'):
"""
Returns the list of test_*.py (default) files at or below directory
``dir`` relative to the sympy home directory.
"""
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)])
return sorted([os.path.normcase(gi) for gi in g])
class SymPyDocTests(object):
def __init__(self, reporter, normal):
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._normal = normal
self._testfiles = []
def test(self):
"""
Runs the tests and returns True if all tests pass, otherwise False.
"""
self._reporter.start()
for f in self._testfiles:
try:
self.test_file(f)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def test_file(self, filename):
clear_cache()
from sympy.core.compatibility import StringIO
import sympy.interactive.printing as interactive_printing
from sympy import pprint_use_unicode
rel_name = filename[len(self._root_dir) + 1:]
dirname, file = os.path.split(filename)
module = rel_name.replace(os.sep, '.')[:-3]
if rel_name.startswith("examples"):
# Examples files do not have __init__.py files,
# So we have to temporarily extend sys.path to import them
sys.path.insert(0, dirname)
module = file[:-3] # remove ".py"
try:
module = pdoctest._normalize_module(module)
tests = SymPyDocTestFinder().find(module)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
self._reporter.import_error(filename, sys.exc_info())
return
finally:
if rel_name.startswith("examples"):
del sys.path[0]
tests = [test for test in tests if len(test.examples) > 0]
# By default tests are sorted by alphabetical order by function name.
# We sort by line number so one can edit the file sequentially from
# bottom to top. However, if there are decorated functions, their line
# numbers will be too large and for now one must just search for these
# by text and function name.
tests.sort(key=lambda x: -x.lineno)
if not tests:
return
self._reporter.entering_filename(filename, len(tests))
for test in tests:
assert len(test.examples) != 0
if self._reporter._verbose:
self._reporter.write("\n{} ".format(test.name))
# check if there are external dependencies which need to be met
if '_doctest_depends_on' in test.globs:
try:
self._check_dependencies(**test.globs['_doctest_depends_on'])
except DependencyError as e:
self._reporter.test_skip(v=str(e))
continue
runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS |
pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
runner._checker = SymPyOutputChecker()
old = sys.stdout
new = StringIO()
sys.stdout = new
# If the testing is normal, the doctests get importing magic to
# provide the global namespace. If not normal (the default) then
# then must run on their own; all imports must be explicit within
# a function's docstring. Once imported that import will be
# available to the rest of the tests in a given function's
# docstring (unless clear_globs=True below).
if not self._normal:
test.globs = {}
# if this is uncommented then all the test would get is what
# comes by default with a "from sympy import *"
#exec('from sympy import *') in test.globs
test.globs['print_function'] = print_function
old_displayhook = sys.displayhook
use_unicode_prev = setup_pprint()
try:
f, t = runner.run(test, compileflags=future_flags,
out=new.write, clear_globs=False)
except KeyboardInterrupt:
raise
finally:
sys.stdout = old
if f > 0:
self._reporter.doctest_fail(test.name, new.getvalue())
else:
self._reporter.test_pass()
sys.displayhook = old_displayhook
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
self._reporter.leaving_filename()
def get_test_files(self, dir, pat='*.py', init_only=True):
r"""
Returns the list of \*.py files (default) from which docstrings
will be tested which are at or below directory ``dir``. By default,
only those that have an __init__.py in their parent directory
and do not start with ``test_`` will be included.
"""
def importable(x):
"""
Checks if given pathname x is an importable module by checking for
__init__.py file.
Returns True/False.
Currently we only test if the __init__.py file exists in the
directory with the file "x" (in theory we should also test all the
parent dirs).
"""
init_py = os.path.join(os.path.dirname(x), "__init__.py")
return os.path.exists(init_py)
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files
if not f.startswith('test_') and fnmatch(f, pat)])
if init_only:
# skip files that are not importable (i.e. missing __init__.py)
g = [x for x in g if importable(x)]
return [os.path.normcase(gi) for gi in g]
def _check_dependencies(self,
executables=(),
modules=(),
disable_viewers=(),
python_version=(3, 5)):
"""
Checks if the dependencies for the test are installed.
Raises ``DependencyError`` it at least one dependency is not installed.
"""
for executable in executables:
if not shutil.which(executable):
raise DependencyError("Could not find %s" % executable)
for module in modules:
if module == 'matplotlib':
matplotlib = import_module(
'matplotlib',
import_kwargs={'fromlist':
['pyplot', 'cm', 'collections']},
min_module_version='1.0.0', catch=(RuntimeError,))
if matplotlib is None:
raise DependencyError("Could not import matplotlib")
else:
if not import_module(module):
raise DependencyError("Could not import %s" % module)
if disable_viewers:
tempdir = tempfile.mkdtemp()
os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH'])
vw = ('#!/usr/bin/env {}\n'
'import sys\n'
'if len(sys.argv) <= 1:\n'
' exit("wrong number of args")\n').format(
'python3' if PY3 else 'python')
for viewer in disable_viewers:
with open(os.path.join(tempdir, viewer), 'w') as fh:
fh.write(vw)
# make the file executable
os.chmod(os.path.join(tempdir, viewer),
stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR)
if python_version:
if sys.version_info < python_version:
raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version)))
if 'pyglet' in modules:
# monkey-patch pyglet s.t. it does not open a window during
# doctesting
import pyglet
class DummyWindow(object):
def __init__(self, *args, **kwargs):
self.has_exit = True
self.width = 600
self.height = 400
def set_vsync(self, x):
pass
def switch_to(self):
pass
def push_handlers(self, x):
pass
def close(self):
pass
pyglet.window.Window = DummyWindow
class SymPyDocTestFinder(DocTestFinder):
"""
A class used to extract the DocTests that are relevant to a given
object, from its docstring and the docstrings of its contained
objects. Doctests can currently be extracted from the following
object types: modules, functions, classes, methods, staticmethods,
classmethods, and properties.
Modified from doctest's version to look harder for code that
appears comes from a different module. For example, the @vectorize
decorator makes it look like functions come from multidimensional.py
even though their code exists elsewhere.
"""
def _find(self, tests, obj, name, module, source_lines, globs, seen):
"""
Find tests for the given object and any contained objects, and
add them to ``tests``.
"""
if self._verbose:
print('Finding tests in %s' % name)
# If we've already processed this object, then ignore it.
if id(obj) in seen:
return
seen[id(obj)] = 1
# Make sure we don't run doctests for classes outside of sympy, such
# as in numpy or scipy.
if inspect.isclass(obj):
if obj.__module__.split('.')[0] != 'sympy':
return
# Find a test for this object, and add it to the list of tests.
test = self._get_test(obj, name, module, globs, source_lines)
if test is not None:
tests.append(test)
if not self._recurse:
return
# Look for tests in a module's contained objects.
if inspect.ismodule(obj):
for rawname, val in obj.__dict__.items():
# Recurse to functions & classes.
if inspect.isfunction(val) or inspect.isclass(val):
# Make sure we don't run doctests functions or classes
# from different modules
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (rawname %s)" % (val, module, rawname)
try:
valname = '%s.%s' % (name, rawname)
self._find(tests, val, valname, module,
source_lines, globs, seen)
except KeyboardInterrupt:
raise
# Look for tests in a module's __test__ dictionary.
for valname, val in getattr(obj, '__test__', {}).items():
if not isinstance(valname, str):
raise ValueError("SymPyDocTestFinder.find: __test__ keys "
"must be strings: %r" %
(type(valname),))
if not (inspect.isfunction(val) or inspect.isclass(val) or
inspect.ismethod(val) or inspect.ismodule(val) or
isinstance(val, str)):
raise ValueError("SymPyDocTestFinder.find: __test__ values "
"must be strings, functions, methods, "
"classes, or modules: %r" %
(type(val),))
valname = '%s.__test__.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
# Look for tests in a class's contained objects.
if inspect.isclass(obj):
for valname, val in obj.__dict__.items():
# Special handling for staticmethod/classmethod.
if isinstance(val, staticmethod):
val = getattr(obj, valname)
if isinstance(val, classmethod):
val = getattr(obj, valname).__func__
# Recurse to methods, properties, and nested classes.
if ((inspect.isfunction(unwrap(val)) or
inspect.isclass(val) or
isinstance(val, property)) and
self._from_module(module, val)):
# Make sure we don't run doctests functions or classes
# from different modules
if isinstance(val, property):
if hasattr(val.fget, '__module__'):
if val.fget.__module__ != module.__name__:
continue
else:
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (valname %s)" % (
val, module, valname)
valname = '%s.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
def _get_test(self, obj, name, module, globs, source_lines):
"""
Return a DocTest for the given object, if it defines a docstring;
otherwise, return None.
"""
lineno = None
# Extract the object's docstring. If it doesn't have one,
# then return None (no test for this object).
if isinstance(obj, str):
# obj is a string in the case for objects in the polys package.
# Note that source_lines is a binary string (compiled polys
# modules), which can't be handled by _find_lineno so determine
# the line number here.
docstring = obj
matches = re.findall(r"line \d+", name)
assert len(matches) == 1, \
"string '%s' does not contain lineno " % name
# NOTE: this is not the exact linenumber but its better than no
# lineno ;)
lineno = int(matches[0][5:])
else:
try:
if obj.__doc__ is None:
docstring = ''
else:
docstring = obj.__doc__
if not isinstance(docstring, str):
docstring = str(docstring)
except (TypeError, AttributeError):
docstring = ''
# Don't bother if the docstring is empty.
if self._exclude_empty and not docstring:
return None
# check that properties have a docstring because _find_lineno
# assumes it
if isinstance(obj, property):
if obj.fget.__doc__ is None:
return None
# Find the docstring's location in the file.
if lineno is None:
obj = unwrap(obj)
# handling of properties is not implemented in _find_lineno so do
# it here
if hasattr(obj, 'func_closure') and obj.func_closure is not None:
tobj = obj.func_closure[0].cell_contents
elif isinstance(obj, property):
tobj = obj.fget
else:
tobj = obj
lineno = self._find_lineno(tobj, source_lines)
if lineno is None:
return None
# Return a DocTest for this object.
if module is None:
filename = None
else:
filename = getattr(module, '__file__', module.__name__)
if filename[-4:] in (".pyc", ".pyo"):
filename = filename[:-1]
globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {})
return self._parser.get_doctest(docstring, globs, name,
filename, lineno)
class SymPyDocTestRunner(DocTestRunner):
"""
A class used to run DocTest test cases, and accumulate statistics.
The ``run`` method is used to process a single DocTest case. It
returns a tuple ``(f, t)``, where ``t`` is the number of test cases
tried, and ``f`` is the number of test cases that failed.
Modified from the doctest version to not reset the sys.displayhook (see
issue 5140).
See the docstring of the original DocTestRunner for more information.
"""
def run(self, test, compileflags=None, out=None, clear_globs=True):
"""
Run the examples in ``test``, and display the results using the
writer function ``out``.
The examples are run in the namespace ``test.globs``. If
``clear_globs`` is true (the default), then this namespace will
be cleared after the test runs, to help with garbage
collection. If you would like to examine the namespace after
the test completes, then use ``clear_globs=False``.
``compileflags`` gives the set of flags that should be used by
the Python compiler when running the examples. If not
specified, then it will default to the set of future-import
flags that apply to ``globs``.
The output of each example is checked using
``SymPyDocTestRunner.check_output``, and the results are
formatted by the ``SymPyDocTestRunner.report_*`` methods.
"""
self.test = test
if compileflags is None:
compileflags = pdoctest._extract_future_flags(test.globs)
save_stdout = sys.stdout
if out is None:
out = save_stdout.write
sys.stdout = self._fakeout
# Patch pdb.set_trace to restore sys.stdout during interactive
# debugging (so it's not still redirected to self._fakeout).
# Note that the interactive output will go to *our*
# save_stdout, even if that's not the real sys.stdout; this
# allows us to write test cases for the set_trace behavior.
save_set_trace = pdb.set_trace
self.debugger = pdoctest._OutputRedirectingPdb(save_stdout)
self.debugger.reset()
pdb.set_trace = self.debugger.set_trace
# Patch linecache.getlines, so we can see the example's source
# when we're inside the debugger.
self.save_linecache_getlines = pdoctest.linecache.getlines
linecache.getlines = self.__patched_linecache_getlines
# Fail for deprecation warnings
with raise_on_deprecated():
try:
test.globs['print_function'] = print_function
return self.__run(test, compileflags, out)
finally:
sys.stdout = save_stdout
pdb.set_trace = save_set_trace
linecache.getlines = self.save_linecache_getlines
if clear_globs:
test.globs.clear()
# We have to override the name mangled methods.
monkeypatched_methods = [
'patched_linecache_getlines',
'run',
'record_outcome'
]
for method in monkeypatched_methods:
oldname = '_DocTestRunner__' + method
newname = '_SymPyDocTestRunner__' + method
setattr(SymPyDocTestRunner, newname, getattr(DocTestRunner, oldname))
class SymPyOutputChecker(pdoctest.OutputChecker):
"""
Compared to the OutputChecker from the stdlib our OutputChecker class
supports numerical comparison of floats occurring in the output of the
doctest examples
"""
def __init__(self):
# NOTE OutputChecker is an old-style class with no __init__ method,
# so we can't call the base class version of __init__ here
got_floats = r'(\d+\.\d*|\.\d+)'
# floats in the 'want' string may contain ellipses
want_floats = got_floats + r'(\.{3})?'
front_sep = r'\s|\+|\-|\*|,'
back_sep = front_sep + r'|j|e'
fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep)
self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep)
self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
def check_output(self, want, got, optionflags):
"""
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
"""
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
class Reporter(object):
"""
Parent class for all reporters.
"""
pass
class PyTestReporter(Reporter):
"""
Py.test like reporter. Should produce output identical to py.test.
"""
def __init__(self, verbose=False, tb="short", colors=True,
force_colors=False, split=None):
self._verbose = verbose
self._tb_style = tb
self._colors = colors
self._force_colors = force_colors
self._xfailed = 0
self._xpassed = []
self._failed = []
self._failed_doctest = []
self._passed = 0
self._skipped = 0
self._exceptions = []
self._terminal_width = None
self._default_width = 80
self._split = split
self._active_file = ''
self._active_f = None
# TODO: Should these be protected?
self.slow_test_functions = []
self.fast_test_functions = []
# this tracks the x-position of the cursor (useful for positioning
# things on the screen), without the need for any readline library:
self._write_pos = 0
self._line_wrap = False
def root_dir(self, dir):
self._root_dir = dir
@property
def terminal_width(self):
if self._terminal_width is not None:
return self._terminal_width
def findout_terminal_width():
if sys.platform == "win32":
# Windows support is based on:
#
# http://code.activestate.com/recipes/
# 440694-determine-size-of-console-window-on-windows/
from ctypes import windll, create_string_buffer
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(_, _, _, _, _, left, _, right, _, _, _) = \
struct.unpack("hhhhHhhhhhh", csbi.raw)
return right - left
else:
return self._default_width
if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty():
return self._default_width # leave PIPEs alone
try:
process = subprocess.Popen(['stty', '-a'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout = process.stdout.read()
if PY3:
stdout = stdout.decode("utf-8")
except (OSError, IOError):
pass
else:
# We support the following output formats from stty:
#
# 1) Linux -> columns 80
# 2) OS X -> 80 columns
# 3) Solaris -> columns = 80
re_linux = r"columns\s+(?P<columns>\d+);"
re_osx = r"(?P<columns>\d+)\s*columns;"
re_solaris = r"columns\s+=\s+(?P<columns>\d+);"
for regex in (re_linux, re_osx, re_solaris):
match = re.search(regex, stdout)
if match is not None:
columns = match.group('columns')
try:
width = int(columns)
except ValueError:
pass
if width != 0:
return width
return self._default_width
width = findout_terminal_width()
self._terminal_width = width
return width
def write(self, text, color="", align="left", width=None,
force_colors=False):
"""
Prints a text on the screen.
It uses sys.stdout.write(), so no readline library is necessary.
Parameters
==========
color : choose from the colors below, "" means default color
align : "left"/"right", "left" is a normal print, "right" is aligned on
the right-hand side of the screen, filled with spaces if
necessary
width : the screen width
"""
color_templates = (
("Black", "0;30"),
("Red", "0;31"),
("Green", "0;32"),
("Brown", "0;33"),
("Blue", "0;34"),
("Purple", "0;35"),
("Cyan", "0;36"),
("LightGray", "0;37"),
("DarkGray", "1;30"),
("LightRed", "1;31"),
("LightGreen", "1;32"),
("Yellow", "1;33"),
("LightBlue", "1;34"),
("LightPurple", "1;35"),
("LightCyan", "1;36"),
("White", "1;37"),
)
colors = {}
for name, value in color_templates:
colors[name] = value
c_normal = '\033[0m'
c_color = '\033[%sm'
if width is None:
width = self.terminal_width
if align == "right":
if self._write_pos + len(text) > width:
# we don't fit on the current line, create a new line
self.write("\n")
self.write(" "*(width - self._write_pos - len(text)))
if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \
sys.stdout.isatty():
# the stdout is not a terminal, this for example happens if the
# output is piped to less, e.g. "bin/test | less". In this case,
# the terminal control sequences would be printed verbatim, so
# don't use any colors.
color = ""
elif sys.platform == "win32":
# Windows consoles don't support ANSI escape sequences
color = ""
elif not self._colors:
color = ""
if self._line_wrap:
if text[0] != "\n":
sys.stdout.write("\n")
# Avoid UnicodeEncodeError when printing out test failures
if PY3 and IS_WINDOWS:
text = text.encode('raw_unicode_escape').decode('utf8', 'ignore')
elif PY3 and not sys.stdout.encoding.lower().startswith('utf'):
text = text.encode(sys.stdout.encoding, 'backslashreplace'
).decode(sys.stdout.encoding)
if color == "":
sys.stdout.write(text)
else:
sys.stdout.write("%s%s%s" %
(c_color % colors[color], text, c_normal))
sys.stdout.flush()
l = text.rfind("\n")
if l == -1:
self._write_pos += len(text)
else:
self._write_pos = len(text) - l - 1
self._line_wrap = self._write_pos >= width
self._write_pos %= width
def write_center(self, text, delim="="):
width = self.terminal_width
if text != "":
text = " %s " % text
idx = (width - len(text)) // 2
t = delim*idx + text + delim*(width - idx - len(text))
self.write(t + "\n")
def write_exception(self, e, val, tb):
# remove the first item, as that is always runtests.py
tb = tb.tb_next
t = traceback.format_exception(e, val, tb)
self.write("".join(t))
def start(self, seed=None, msg="test process starts"):
self.write_center(msg)
executable = sys.executable
v = tuple(sys.version_info)
python_version = "%s.%s.%s-%s-%s" % v
implementation = platform.python_implementation()
if implementation == 'PyPy':
implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info
self.write("executable: %s (%s) [%s]\n" %
(executable, python_version, implementation))
from sympy.utilities.misc import ARCH
self.write("architecture: %s\n" % ARCH)
from sympy.core.cache import USE_CACHE
self.write("cache: %s\n" % USE_CACHE)
from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
self.write("ground types: %s %s\n" % (GROUND_TYPES, version))
numpy = import_module('numpy')
self.write("numpy: %s\n" % (None if not numpy else numpy.__version__))
if seed is not None:
self.write("random seed: %d\n" % seed)
from sympy.utilities.misc import HASH_RANDOMIZATION
self.write("hash randomization: ")
hash_seed = os.getenv("PYTHONHASHSEED") or '0'
if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)):
self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed)
else:
self.write("off\n")
if self._split:
self.write("split: %s\n" % self._split)
self.write('\n')
self._t_start = clock()
def finish(self):
self._t_end = clock()
self.write("\n")
global text, linelen
text = "tests finished: %d passed, " % self._passed
linelen = len(text)
def add_text(mytext):
global text, linelen
"""Break new text if too long."""
if linelen + len(mytext) > self.terminal_width:
text += '\n'
linelen = 0
text += mytext
linelen += len(mytext)
if len(self._failed) > 0:
add_text("%d failed, " % len(self._failed))
if len(self._failed_doctest) > 0:
add_text("%d failed, " % len(self._failed_doctest))
if self._skipped > 0:
add_text("%d skipped, " % self._skipped)
if self._xfailed > 0:
add_text("%d expected to fail, " % self._xfailed)
if len(self._xpassed) > 0:
add_text("%d expected to fail but passed, " % len(self._xpassed))
if len(self._exceptions) > 0:
add_text("%d exceptions, " % len(self._exceptions))
add_text("in %.2f seconds" % (self._t_end - self._t_start))
if self.slow_test_functions:
self.write_center('slowest tests', '_')
sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1])
for slow_func_name, taken in sorted_slow:
print('%s - Took %.3f seconds' % (slow_func_name, taken))
if self.fast_test_functions:
self.write_center('unexpectedly fast tests', '_')
sorted_fast = sorted(self.fast_test_functions,
key=lambda r: r[1])
for fast_func_name, taken in sorted_fast:
print('%s - Took %.3f seconds' % (fast_func_name, taken))
if len(self._xpassed) > 0:
self.write_center("xpassed tests", "_")
for e in self._xpassed:
self.write("%s: %s\n" % (e[0], e[1]))
self.write("\n")
if self._tb_style != "no" and len(self._exceptions) > 0:
for e in self._exceptions:
filename, f, (t, val, tb) = e
self.write_center("", "_")
if f is None:
s = "%s" % filename
else:
s = "%s:%s" % (filename, f.__name__)
self.write_center(s, "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed) > 0:
for e in self._failed:
filename, f, (t, val, tb) = e
self.write_center("", "_")
self.write_center("%s:%s" % (filename, f.__name__), "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed_doctest) > 0:
for e in self._failed_doctest:
filename, msg = e
self.write_center("", "_")
self.write_center("%s" % filename, "_")
self.write(msg)
self.write("\n")
self.write_center(text)
ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \
len(self._failed_doctest) == 0
if not ok:
self.write("DO *NOT* COMMIT!\n")
return ok
def entering_filename(self, filename, n):
rel_name = filename[len(self._root_dir) + 1:]
self._active_file = rel_name
self._active_file_error = False
self.write(rel_name)
self.write("[%d] " % n)
def leaving_filename(self):
self.write(" ")
if self._active_file_error:
self.write("[FAIL]", "Red", align="right")
else:
self.write("[OK]", "Green", align="right")
self.write("\n")
if self._verbose:
self.write("\n")
def entering_test(self, f):
self._active_f = f
if self._verbose:
self.write("\n" + f.__name__ + " ")
def test_xfail(self):
self._xfailed += 1
self.write("f", "Green")
def test_xpass(self, v):
message = str(v)
self._xpassed.append((self._active_file, message))
self.write("X", "Green")
def test_fail(self, exc_info):
self._failed.append((self._active_file, self._active_f, exc_info))
self.write("F", "Red")
self._active_file_error = True
def doctest_fail(self, name, error_msg):
# the first line contains "******", remove it:
error_msg = "\n".join(error_msg.split("\n")[1:])
self._failed_doctest.append((name, error_msg))
self.write("F", "Red")
self._active_file_error = True
def test_pass(self, char="."):
self._passed += 1
if self._verbose:
self.write("ok", "Green")
else:
self.write(char, "Green")
def test_skip(self, v=None):
char = "s"
self._skipped += 1
if v is not None:
message = str(v)
if message == "KeyboardInterrupt":
char = "K"
elif message == "Timeout":
char = "T"
elif message == "Slow":
char = "w"
if self._verbose:
if v is not None:
self.write(message + ' ', "Blue")
else:
self.write(" - ", "Blue")
self.write(char, "Blue")
def test_exception(self, exc_info):
self._exceptions.append((self._active_file, self._active_f, exc_info))
if exc_info[0] is TimeOutError:
self.write("T", "Red")
else:
self.write("E", "Red")
self._active_file_error = True
def import_error(self, filename, exc_info):
self._exceptions.append((filename, None, exc_info))
rel_name = filename[len(self._root_dir) + 1:]
self.write(rel_name)
self.write("[?] Failed to import", "Red")
self.write(" ")
self.write("[FAIL]", "Red", align="right")
self.write("\n")
|
a5dc59169f2be5b6382d56272cbf3f35ba16ef05d71572e6ebfb4d419c20b842 | from sympy.vector.coordsysrect import CoordSys3D, CoordSysCartesian
from sympy.vector.vector import (Vector, VectorAdd, VectorMul,
BaseVector, VectorZero, Cross, Dot, cross, dot)
from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul,
BaseDyadic, DyadicZero)
from sympy.vector.scalar import BaseScalar
from sympy.vector.deloperator import Del
from sympy.vector.functions import (express, matrix_to_vector,
laplacian, is_conservative,
is_solenoidal, scalar_potential,
directional_derivative,
scalar_potential_difference)
from sympy.vector.point import Point
from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
from sympy.vector.implicitregion import ImplicitRegion
from sympy.vector.parametricregion import (ParametricRegion, parametric_region_list)
from sympy.vector.integrals import (ParametricIntegral, vector_integrate)
__all__ = [
'Vector', 'VectorAdd', 'VectorMul', 'BaseVector', 'VectorZero', 'Cross',
'Dot', 'cross', 'dot',
'Dyadic', 'DyadicAdd', 'DyadicMul', 'BaseDyadic', 'DyadicZero',
'BaseScalar',
'Del',
'CoordSys3D', 'CoordSysCartesian',
'express', 'matrix_to_vector', 'laplacian', 'is_conservative',
'is_solenoidal', 'scalar_potential', 'directional_derivative',
'scalar_potential_difference',
'Point',
'AxisOrienter', 'BodyOrienter', 'SpaceOrienter', 'QuaternionOrienter',
'Gradient', 'Divergence', 'Curl', 'Laplacian', 'gradient', 'curl',
'divergence',
'ParametricRegion', 'parametric_region_list', 'ImplicitRegion',
'ParametricIntegral', 'vector_integrate',
]
|
6bcbb23318dcc522c555e41fc610302b2cacc52ad8c03636885d4de99069c51b | from typing import Any, Dict
from sympy.simplify import simplify as simp, trigsimp as tsimp
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.core.assumptions import StdFactKB
from sympy import factor as fctr, diff as df, Integral
from sympy.core import S, Add, Mul
from sympy.core.expr import Expr
class BasisDependent(Expr):
"""
Super class containing functionality common to vectors and
dyadics.
Named so because the representation of these quantities in
sympy.vector is dependent on the basis they are expressed in.
"""
@call_highest_priority('__radd__')
def __add__(self, other):
return self._add_func(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self._add_func(other, self)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return self._add_func(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return self._add_func(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return self._mul_func(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self._mul_func(other, self)
def __neg__(self):
return self._mul_func(S.NegativeOne, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self._div_helper(other)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
return TypeError("Invalid divisor for division")
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""
Implements the SymPy evalf routine for this quantity.
evalf's documentation
=====================
"""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
vec = self.zero
for k, v in self.components.items():
vec += v.evalf(n, **options) * k
return vec
evalf.__doc__ += Expr.evalf.__doc__ # type: ignore
n = evalf
def simplify(self, **kwargs):
"""
Implements the SymPy simplify routine for this quantity.
simplify's documentation
========================
"""
simp_components = [simp(v, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*simp_components)
simplify.__doc__ += simp.__doc__ # type: ignore
def trigsimp(self, **opts):
"""
Implements the SymPy trigsimp routine, for this quantity.
trigsimp's documentation
========================
"""
trig_components = [tsimp(v, **opts) * k for
k, v in self.components.items()]
return self._add_func(*trig_components)
trigsimp.__doc__ += tsimp.__doc__ # type: ignore
def _eval_simplify(self, **kwargs):
return self.simplify(**kwargs)
def _eval_trigsimp(self, **opts):
return self.trigsimp(**opts)
def _eval_derivative(self, wrt):
return self.diff(wrt)
def _eval_Integral(self, *symbols, **assumptions):
integral_components = [Integral(v, *symbols, **assumptions) * k
for k, v in self.components.items()]
return self._add_func(*integral_components)
def as_numer_denom(self):
"""
Returns the expression as a tuple wrt the following
transformation -
expression -> a/b -> a, b
"""
return self, S.One
def factor(self, *args, **kwargs):
"""
Implements the SymPy factor routine, on the scalar parts
of a basis-dependent expression.
factor's documentation
========================
"""
fctr_components = [fctr(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*fctr_components)
factor.__doc__ += fctr.__doc__ # type: ignore
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return (S.One, self)
def as_coeff_add(self, *deps):
"""Efficiently extract the coefficient of a summation. """
l = [x * self.components[x] for x in self.components]
return 0, tuple(l)
def diff(self, *args, **kwargs):
"""
Implements the SymPy diff routine, for vectors.
diff's documentation
========================
"""
for x in args:
if isinstance(x, BasisDependent):
raise TypeError("Invalid arg for differentiation")
diff_components = [df(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*diff_components)
diff.__doc__ += df.__doc__ # type: ignore
def doit(self, **hints):
"""Calls .doit() on each term in the Dyadic"""
doit_components = [self.components[x].doit(**hints) * x
for x in self.components]
return self._add_func(*doit_components)
class BasisDependentAdd(BasisDependent, Add):
"""
Denotes sum of basis dependent quantities such that they cannot
be expressed as base or Mul instances.
"""
def __new__(cls, *args, **options):
components = {}
# Check each arg and simultaneously learn the components
for i, arg in enumerate(args):
if not isinstance(arg, cls._expr_type):
if isinstance(arg, Mul):
arg = cls._mul_func(*(arg.args))
elif isinstance(arg, Add):
arg = cls._add_func(*(arg.args))
else:
raise TypeError(str(arg) +
" cannot be interpreted correctly")
# If argument is zero, ignore
if arg == cls.zero:
continue
# Else, update components accordingly
if hasattr(arg, "components"):
for x in arg.components:
components[x] = components.get(x, 0) + arg.components[x]
temp = list(components.keys())
for x in temp:
if components[x] == 0:
del components[x]
# Handle case of zero vector
if len(components) == 0:
return cls.zero
# Build object
newargs = [x * components[x] for x in components]
obj = super().__new__(cls, *newargs, **options)
if isinstance(obj, Mul):
return cls._mul_func(*obj.args)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = components
obj._sys = (list(components.keys()))[0]._sys
return obj
class BasisDependentMul(BasisDependent, Mul):
"""
Denotes product of base- basis dependent quantity with a scalar.
"""
def __new__(cls, *args, **options):
from sympy.vector import Cross, Dot, Curl, Gradient
count = 0
measure_number = S.One
zeroflag = False
extra_args = []
# Determine the component and check arguments
# Also keep a count to ensure two vectors aren't
# being multiplied
for arg in args:
if isinstance(arg, cls._zero_func):
count += 1
zeroflag = True
elif arg == S.Zero:
zeroflag = True
elif isinstance(arg, (cls._base_func, cls._mul_func)):
count += 1
expr = arg._base_instance
measure_number *= arg._measure_number
elif isinstance(arg, cls._add_func):
count += 1
expr = arg
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
extra_args.append(arg)
else:
measure_number *= arg
# Make sure incompatible types weren't multiplied
if count > 1:
raise ValueError("Invalid multiplication")
elif count == 0:
return Mul(*args, **options)
# Handle zero vector case
if zeroflag:
return cls.zero
# If one of the args was a VectorAdd, return an
# appropriate VectorAdd instance
if isinstance(expr, cls._add_func):
newargs = [cls._mul_func(measure_number, x) for
x in expr.args]
return cls._add_func(*newargs)
obj = super().__new__(cls, measure_number,
expr._base_instance,
*extra_args,
**options)
if isinstance(obj, Add):
return cls._add_func(*obj.args)
obj._base_instance = expr._base_instance
obj._measure_number = measure_number
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = {expr._base_instance: measure_number}
obj._sys = expr._base_instance._sys
return obj
def _sympystr(self, printer):
measure_str = printer._print(self._measure_number)
if ('(' in measure_str or '-' in measure_str or
'+' in measure_str):
measure_str = '(' + measure_str + ')'
return measure_str + '*' + printer._print(self._base_instance)
class BasisDependentZero(BasisDependent):
"""
Class to denote a zero basis dependent instance.
"""
# XXX: Can't type the keys as BaseVector because of cyclic import
# problems.
components = {} # type: Dict[Any, Expr]
def __new__(cls):
obj = super().__new__(cls)
# Pre-compute a specific hash value for the zero vector
# Use the same one always
obj._hash = tuple([S.Zero, cls]).__hash__()
return obj
def __hash__(self):
return self._hash
@call_highest_priority('__req__')
def __eq__(self, other):
return isinstance(other, self._zero_func)
__req__ = __eq__
@call_highest_priority('__radd__')
def __add__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__add__')
def __radd__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__rsub__')
def __sub__(self, other):
if isinstance(other, self._expr_type):
return -other
else:
raise TypeError("Invalid argument types for subtraction")
@call_highest_priority('__sub__')
def __rsub__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for subtraction")
def __neg__(self):
return self
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self
def _sympystr(self, printer):
return '0'
|
705eed7b2e92182ac78c8b3aa0efbd3f2986292634cac4200ee94b9d51b089ad | from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.deloperator import Del
from sympy.vector.scalar import BaseScalar
from sympy.vector.vector import Vector, BaseVector
from sympy.vector.operators import gradient, curl, divergence
from sympy import diff, integrate, S, simplify
from sympy.core import sympify
from sympy.vector.dyadic import Dyadic
def express(expr, system, system2=None, variables=False):
"""
Global function for 'express' functionality.
Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
coordinate system.
If 'variables' is True, then the coordinate variables (base scalars)
of other coordinate systems present in the vector/scalar field or
dyadic are also substituted in terms of the base scalars of the
given system.
Parameters
==========
expr : Vector/Dyadic/scalar(sympyfiable)
The expression to re-express in CoordSys3D 'system'
system: CoordSys3D
The coordinate system the expr is to be expressed in
system2: CoordSys3D
The other coordinate system required for re-expression
(only for a Dyadic Expr)
variables : boolean
Specifies whether to substitute the coordinate variables present
in expr, in terms of those of parameter system
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol, cos, sin
>>> N = CoordSys3D('N')
>>> q = Symbol('q')
>>> B = N.orient_new_axis('B', q, N.k)
>>> from sympy.vector import express
>>> express(B.i, N)
(cos(q))*N.i + (sin(q))*N.j
>>> express(N.x, B, variables=True)
B.x*cos(q) - B.y*sin(q)
>>> d = N.i.outer(N.i)
>>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
True
"""
if expr == 0 or expr == Vector.zero:
return expr
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D \
instance")
if isinstance(expr, Vector):
if system2 is not None:
raise ValueError("system2 should not be provided for \
Vectors")
# Given expr is a Vector
if variables:
# If variables attribute is True, substitute
# the coordinate variables in the Vector
system_list = []
for x in expr.atoms(BaseScalar, BaseVector):
if x.system != system:
system_list.append(x.system)
system_list = set(system_list)
subs_dict = {}
for f in system_list:
subs_dict.update(f.scalar_map(system))
expr = expr.subs(subs_dict)
# Re-express in this coordinate system
outvec = Vector.zero
parts = expr.separate()
for x in parts:
if x != system:
temp = system.rotation_matrix(x) * parts[x].to_matrix(x)
outvec += matrix_to_vector(temp, system)
else:
outvec += parts[x]
return outvec
elif isinstance(expr, Dyadic):
if system2 is None:
system2 = system
if not isinstance(system2, CoordSys3D):
raise TypeError("system2 should be a CoordSys3D \
instance")
outdyad = Dyadic.zero
var = variables
for k, v in expr.components.items():
outdyad += (express(v, system, variables=var) *
(express(k.args[0], system, variables=var) |
express(k.args[1], system2, variables=var)))
return outdyad
else:
if system2 is not None:
raise ValueError("system2 should not be provided for \
Vectors")
if variables:
# Given expr is a scalar field
system_set = set()
expr = sympify(expr)
# Substitute all the coordinate variables
for x in expr.atoms(BaseScalar):
if x.system != system:
system_set.add(x.system)
subs_dict = {}
for f in system_set:
subs_dict.update(f.scalar_map(system))
return expr.subs(subs_dict)
return expr
def directional_derivative(field, direction_vector):
"""
Returns the directional derivative of a scalar or vector field computed
along a given vector in coordinate system which parameters are expressed.
Parameters
==========
field : Vector or Scalar
The scalar or vector field to compute the directional derivative of
direction_vector : Vector
The vector to calculated directional derivative along them.
Examples
========
>>> from sympy.vector import CoordSys3D, directional_derivative
>>> R = CoordSys3D('R')
>>> f1 = R.x*R.y*R.z
>>> v1 = 3*R.i + 4*R.j + R.k
>>> directional_derivative(f1, v1)
R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
>>> f2 = 5*R.x**2*R.z
>>> directional_derivative(f2, v1)
5*R.x**2 + 30*R.x*R.z
"""
from sympy.vector.operators import _get_coord_sys_from_expr
coord_sys = _get_coord_sys_from_expr(field)
if len(coord_sys) > 0:
# TODO: This gets a random coordinate system in case of multiple ones:
coord_sys = next(iter(coord_sys))
field = express(field, coord_sys, variables=True)
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
out = Vector.dot(direction_vector, i) * diff(field, x)
out += Vector.dot(direction_vector, j) * diff(field, y)
out += Vector.dot(direction_vector, k) * diff(field, z)
if out == 0 and isinstance(field, Vector):
out = Vector.zero
return out
elif isinstance(field, Vector):
return Vector.zero
else:
return S.Zero
def laplacian(expr):
"""
Return the laplacian of the given field computed in terms of
the base scalars of the given coordinate system.
Parameters
==========
expr : SymPy Expr or Vector
expr denotes a scalar or vector field.
Examples
========
>>> from sympy.vector import CoordSys3D, laplacian
>>> R = CoordSys3D('R')
>>> f = R.x**2*R.y**5*R.z
>>> laplacian(f)
20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
>>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
>>> laplacian(f)
2*R.i + 6*R.y*R.j + 12*R.z**2*R.k
"""
delop = Del()
if expr.is_Vector:
return (gradient(divergence(expr)) - curl(curl(expr))).doit()
return delop.dot(delop(expr)).doit()
def is_conservative(field):
"""
Checks if a field is conservative.
Parameters
==========
field : Vector
The field to check for conservative property
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_conservative
>>> R = CoordSys3D('R')
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_conservative(R.z*R.j)
False
"""
# Field is conservative irrespective of system
# Take the first coordinate system in the result of the
# separate method of Vector
if not isinstance(field, Vector):
raise TypeError("field should be a Vector")
if field == Vector.zero:
return True
return curl(field).simplify() == Vector.zero
def is_solenoidal(field):
"""
Checks if a field is solenoidal.
Parameters
==========
field : Vector
The field to check for solenoidal property
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_solenoidal
>>> R = CoordSys3D('R')
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_solenoidal(R.y * R.j)
False
"""
# Field is solenoidal irrespective of system
# Take the first coordinate system in the result of the
# separate method in Vector
if not isinstance(field, Vector):
raise TypeError("field should be a Vector")
if field == Vector.zero:
return True
return divergence(field).simplify() is S.Zero
def scalar_potential(field, coord_sys):
"""
Returns the scalar potential function of a field in a given
coordinate system (without the added integration constant).
Parameters
==========
field : Vector
The vector field whose scalar potential function is to be
calculated
coord_sys : CoordSys3D
The coordinate system to do the calculation in
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import scalar_potential, gradient
>>> R = CoordSys3D('R')
>>> scalar_potential(R.k, R) == R.z
True
>>> scalar_field = 2*R.x**2*R.y*R.z
>>> grad_field = gradient(scalar_field)
>>> scalar_potential(grad_field, R)
2*R.x**2*R.y*R.z
"""
# Check whether field is conservative
if not is_conservative(field):
raise ValueError("Field is not conservative")
if field == Vector.zero:
return S.Zero
# Express the field exntirely in coord_sys
# Substitute coordinate variables also
if not isinstance(coord_sys, CoordSys3D):
raise TypeError("coord_sys must be a CoordSys3D")
field = express(field, coord_sys, variables=True)
dimensions = coord_sys.base_vectors()
scalars = coord_sys.base_scalars()
# Calculate scalar potential function
temp_function = integrate(field.dot(dimensions[0]), scalars[0])
for i, dim in enumerate(dimensions[1:]):
partial_diff = diff(temp_function, scalars[i + 1])
partial_diff = field.dot(dim) - partial_diff
temp_function += integrate(partial_diff, scalars[i + 1])
return temp_function
def scalar_potential_difference(field, coord_sys, point1, point2):
"""
Returns the scalar potential difference between two points in a
certain coordinate system, wrt a given field.
If a scalar field is provided, its values at the two points are
considered. If a conservative vector field is provided, the values
of its scalar potential function at the two points are used.
Returns (potential at point2) - (potential at point1)
The position vectors of the two Points are calculated wrt the
origin of the coordinate system provided.
Parameters
==========
field : Vector/Expr
The field to calculate wrt
coord_sys : CoordSys3D
The coordinate system to do the calculations in
point1 : Point
The initial Point in given coordinate system
position2 : Point
The second Point in the given coordinate system
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import scalar_potential_difference
>>> R = CoordSys3D('R')
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
2*R.x**2*R.y
>>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
>>> scalar_potential_difference(vectfield, R, P, Q)
-2*R.x**2*R.y + 18
"""
if not isinstance(coord_sys, CoordSys3D):
raise TypeError("coord_sys must be a CoordSys3D")
if isinstance(field, Vector):
# Get the scalar potential function
scalar_fn = scalar_potential(field, coord_sys)
else:
# Field is a scalar
scalar_fn = field
# Express positions in required coordinate system
origin = coord_sys.origin
position1 = express(point1.position_wrt(origin), coord_sys,
variables=True)
position2 = express(point2.position_wrt(origin), coord_sys,
variables=True)
# Get the two positions as substitution dicts for coordinate variables
subs_dict1 = {}
subs_dict2 = {}
scalars = coord_sys.base_scalars()
for i, x in enumerate(coord_sys.base_vectors()):
subs_dict1[scalars[i]] = x.dot(position1)
subs_dict2[scalars[i]] = x.dot(position2)
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
def matrix_to_vector(matrix, system):
"""
Converts a vector in matrix form to a Vector instance.
It is assumed that the elements of the Matrix represent the
measure numbers of the components of the vector along basis
vectors of 'system'.
Parameters
==========
matrix : SymPy Matrix, Dimensions: (3, 1)
The matrix to be converted to a vector
system : CoordSys3D
The coordinate system the vector is to be defined in
Examples
========
>>> from sympy import ImmutableMatrix as Matrix
>>> m = Matrix([1, 2, 3])
>>> from sympy.vector import CoordSys3D, matrix_to_vector
>>> C = CoordSys3D('C')
>>> v = matrix_to_vector(m, C)
>>> v
C.i + 2*C.j + 3*C.k
>>> v.to_matrix(C) == m
True
"""
outvec = Vector.zero
vects = system.base_vectors()
for i, x in enumerate(matrix):
outvec += x * vects[i]
return outvec
def _path(from_object, to_object):
"""
Calculates the 'path' of objects starting from 'from_object'
to 'to_object', along with the index of the first common
ancestor in the tree.
Returns (index, list) tuple.
"""
if from_object._root != to_object._root:
raise ValueError("No connecting path found between " +
str(from_object) + " and " + str(to_object))
other_path = []
obj = to_object
while obj._parent is not None:
other_path.append(obj)
obj = obj._parent
other_path.append(obj)
object_set = set(other_path)
from_path = []
obj = from_object
while obj not in object_set:
from_path.append(obj)
obj = obj._parent
index = len(from_path)
i = other_path.index(obj)
while i >= 0:
from_path.append(other_path[i])
i -= 1
return index, from_path
def orthogonalize(*vlist, orthonormal=False):
"""
Takes a sequence of independent vectors and orthogonalizes them
using the Gram - Schmidt process. Returns a list of
orthogonal or orthonormal vectors.
Parameters
==========
vlist : sequence of independent vectors to be made orthogonal.
orthonormal : Optional parameter
Set to True if the vectors returned should be
orthonormal.
Default: False
Examples
========
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> from sympy.vector.functions import orthogonalize
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + 2*j
>>> v2 = 2*i + 3*j
>>> orthogonalize(v1, v2)
[C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process
"""
if not all(isinstance(vec, Vector) for vec in vlist):
raise TypeError('Each element must be of Type Vector')
ortho_vlist = []
for i, term in enumerate(vlist):
for j in range(i):
term -= ortho_vlist[j].projection(vlist[i])
# TODO : The following line introduces a performance issue
# and needs to be changed once a good solution for issue #10279 is
# found.
if simplify(term).equals(Vector.zero):
raise ValueError("Vector set not linearly independent")
ortho_vlist.append(term)
if orthonormal:
ortho_vlist = [vec.normalize() for vec in ortho_vlist]
return ortho_vlist
|
ffb5a328ca1c6e4cb36ac7141f867682f8f2d9a7cff3952308bfcd9eabb95b64 | from sympy import S, simplify
from sympy.core import Basic, diff
from sympy.matrices import Matrix
from sympy.vector import (CoordSys3D, Vector, ParametricRegion,
parametric_region_list, ImplicitRegion)
from sympy.vector.operators import _get_coord_sys_from_expr
from sympy.integrals import Integral, integrate
from sympy.utilities.iterables import topological_sort, default_sort_key
from sympy.geometry.entity import GeometryEntity
class ParametricIntegral(Basic):
"""
Represents integral of a scalar or vector field
over a Parametric Region
Examples
========
>>> from sympy import cos, sin, pi
>>> from sympy.vector import CoordSys3D, ParametricRegion, ParametricIntegral
>>> from sympy.abc import r, t, theta, phi
>>> C = CoordSys3D('C')
>>> curve = ParametricRegion((3*t - 2, t + 1), (t, 1, 2))
>>> ParametricIntegral(C.x, curve)
5*sqrt(10)/2
>>> length = ParametricIntegral(1, curve)
>>> length
sqrt(10)
>>> semisphere = ParametricRegion((2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)),\
(theta, 0, 2*pi), (phi, 0, pi/2))
>>> ParametricIntegral(C.z, semisphere)
8*pi
>>> ParametricIntegral(C.j + C.k, ParametricRegion((r*cos(theta), r*sin(theta)), r, theta))
0
"""
def __new__(cls, field, parametricregion):
coord_set = _get_coord_sys_from_expr(field)
if len(coord_set) == 0:
coord_sys = CoordSys3D('C')
elif len(coord_set) > 1:
raise ValueError
else:
coord_sys = next(iter(coord_set))
if parametricregion.dimensions == 0:
return S.Zero
base_vectors = coord_sys.base_vectors()
base_scalars = coord_sys.base_scalars()
parametricfield = field
r = Vector.zero
for i in range(len(parametricregion.definition)):
r += base_vectors[i]*parametricregion.definition[i]
if len(coord_set) != 0:
for i in range(len(parametricregion.definition)):
parametricfield = parametricfield.subs(base_scalars[i], parametricregion.definition[i])
if parametricregion.dimensions == 1:
parameter = parametricregion.parameters[0]
r_diff = diff(r, parameter)
lower, upper = parametricregion.limits[parameter][0], parametricregion.limits[parameter][1]
if isinstance(parametricfield, Vector):
integrand = simplify(r_diff.dot(parametricfield))
else:
integrand = simplify(r_diff.magnitude()*parametricfield)
result = integrate(integrand, (parameter, lower, upper))
elif parametricregion.dimensions == 2:
u, v = cls._bounds_case(parametricregion.parameters, parametricregion.limits)
r_u = diff(r, u)
r_v = diff(r, v)
normal_vector = simplify(r_u.cross(r_v))
if isinstance(parametricfield, Vector):
integrand = parametricfield.dot(normal_vector)
else:
integrand = parametricfield*normal_vector.magnitude()
integrand = simplify(integrand)
lower_u, upper_u = parametricregion.limits[u][0], parametricregion.limits[u][1]
lower_v, upper_v = parametricregion.limits[v][0], parametricregion.limits[v][1]
result = integrate(integrand, (u, lower_u, upper_u), (v, lower_v, upper_v))
else:
variables = cls._bounds_case(parametricregion.parameters, parametricregion.limits)
coeff = Matrix(parametricregion.definition).jacobian(variables).det()
integrand = simplify(parametricfield*coeff)
l = [(var, parametricregion.limits[var][0], parametricregion.limits[var][1]) for var in variables]
result = integrate(integrand, *l)
if not isinstance(result, Integral):
return result
else:
return super().__new__(cls, field, parametricregion)
@classmethod
def _bounds_case(cls, parameters, limits):
V = list(limits.keys())
E = list()
for p in V:
lower_p = limits[p][0]
upper_p = limits[p][1]
lower_p = lower_p.atoms()
upper_p = upper_p.atoms()
for q in V:
if p == q:
continue
if lower_p.issuperset(set([q])) or upper_p.issuperset(set([q])):
E.append((p, q))
if not E:
return parameters
else:
return topological_sort((V, E), key=default_sort_key)
@property
def field(self):
return self.args[0]
@property
def parametricregion(self):
return self.args[1]
def vector_integrate(field, *region):
"""
Compute the integral of a vector/scalar field
over a a region or a set of parameters.
Examples
========
>>> from sympy.vector import CoordSys3D, ParametricRegion, vector_integrate
>>> from sympy.abc import t
>>> C = CoordSys3D('C')
>>> region = ParametricRegion((t, t**2), (t, 1, 5))
>>> vector_integrate(C.x*C.i, region)
12
Integrals over special regions can also be calculated using geometry module.
>>> from sympy.geometry import Point, Circle, Triangle
>>> c = Circle(Point(0, 2), 5)
>>> vector_integrate(C.x**2 + C.y**2, c)
290*pi
>>> triangle = Triangle(Point(-2, 3), Point(2, 3), Point(0, 5))
>>> vector_integrate(3*C.x**2*C.y*C.i + C.j, triangle)
-8
Integrals over some simple implicit regions can be computed. But in most cases,
it takes too long to compute over them.
>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> c2 = ImplicitRegion((x, y), (x - 2)**2 + (y - 1)**2 - 9)
>>> vector_integrate(1, c2)
12*pi
>>> vector_integrate(12*C.y**3, (C.y, 1, 3))
240
>>> vector_integrate(C.x**2*C.z, C.x)
C.x**3*C.z/3
"""
if len(region) == 1:
if isinstance(region[0], ParametricRegion):
return ParametricIntegral(field, region[0])
if isinstance(region[0], ImplicitRegion):
region = parametric_region_list(region[0])[0]
return vector_integrate(field, region)
if isinstance(region[0], GeometryEntity):
regions_list = parametric_region_list(region[0])
result = 0
for reg in regions_list:
result += vector_integrate(field, reg)
return result
return integrate(field, *region)
|
c490d84d9ff24800bfcbf9b8aef97fd7909ef631810d24e6bc74528f9c36ccf0 | from sympy import S, Rational, gcd, sqrt, sign, symbols, Complement
from sympy.core import Basic, Tuple, diff, expand, Eq, Integer
from sympy.core.compatibility import ordered
from sympy.core.symbol import _symbol
from sympy.solvers import solveset, nonlinsolve, diophantine
from sympy.polys import total_degree
from sympy.geometry import Point
from sympy.ntheory.factor_ import core
class ImplicitRegion(Basic):
"""
Represents an implicit region in space.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, t
>>> from sympy.vector import ImplicitRegion
>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
ImplicitRegion((x, y), x**2 + y**2 - 4)
>>> ImplicitRegion((x, y), Eq(y*x, 1))
ImplicitRegion((x, y), x*y - 1)
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.degree
2
>>> parabola.equation
-4*x + y**2
>>> parabola.rational_parametrization(t)
(4/t**2, 4/t)
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
>>> r.variables
(x, y, z)
>>> r.singular_points()
FiniteSet((0, 0, 0))
>>> r.regular_point()
(-10, -10, 200)
Parameters
==========
variables : tuple to map variables in implicit equation to base scalars.
equation : An expression or Eq denoting the implicit equation of the region.
"""
def __new__(cls, variables, equation):
if not isinstance(variables, Tuple):
variables = Tuple(*variables)
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
return super().__new__(cls, variables, equation)
@property
def variables(self):
return self.args[0]
@property
def equation(self):
return self.args[1]
@property
def degree(self):
return total_degree(self.equation)
def regular_point(self):
"""
Returns a point on the implicit region.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
>>> circle.regular_point()
(-2, -1)
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
>>> parabola.regular_point()
(0, 0)
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
>>> r.regular_point()
(-10, -10, 20)
References
==========
- Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz,
J. Kepler Universitat Linz, 1996. Availaible:
https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf
"""
equation = self.equation
if len(self.variables) == 1:
return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],)
elif len(self.variables) == 2:
if self.degree == 2:
coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation)
if b**2 == 4*a*c:
x_reg, y_reg = self._regular_point_parabola(*coeffs)
else:
x_reg, y_reg = self._regular_point_ellipse(*coeffs)
return x_reg, y_reg
if len(self.variables) == 3:
x, y, z = self.variables
for x_reg in range(-10, 10):
for y_reg in range(-10, 10):
if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty:
return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0])
if len(self.singular_points()) != 0:
return list[self.singular_points()][0]
raise NotImplementedError()
def _regular_point_parabola(self, a, b, c, d, e, f):
ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a != 0:
d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2)
if d_dash != 0:
y_reg = -f_dash/d_dash
x_reg = -(d + b*y_reg)/(2*a)
else:
ok = False
elif c != 0:
d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2)
if d_dash != 0:
x_reg = -f_dash/d_dash
y_reg = -(e + b*x_reg)/(2*c)
else:
ok = False
if ok:
return x_reg, y_reg
else:
raise ValueError("Rational Point on the conic does not exist")
def _regular_point_ellipse(self, a, b, c, d, e, f):
D = 4*a*c - b**2
ok = D
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a == 0 and c == 0:
K = -1
L = 4*(d*e - b*f)
elif c != 0:
K = D
L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f
else:
K = D
L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f
ok = L != 0 and not(K > 0 and L < 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
K = Rational(K).limit_denominator(10**12)
L = Rational(L).limit_denominator(10**12)
k1, k2 = K.p, K.q
l1, l2 = L.p, L.q
g = gcd(k2, l2)
a1 = (l2*k2)/g
b1 = (k1*l2)/g
c1 = -(l1*k2)/g
a2 = sign(a1)*core(abs(a1), 2)
r1 = sqrt(a1/a2)
b2 = sign(b1)*core(abs(b1), 2)
r2 = sqrt(b1/b2)
c2 = sign(c1)*core(abs(c1), 2)
r3 = sqrt(c1/c2)
g = gcd(gcd(a2, b2), c2)
a2 = a2/g
b2 = b2/g
c2 = c2/g
g1 = gcd(a2, b2)
a2 = a2/g1
b2 = b2/g1
c2 = c2*g1
g2 = gcd(a2,c2)
a2 = a2/g2
b2 = b2*g2
c2 = c2/g2
g3 = gcd(b2, c2)
a2 = a2*g3
b2 = b2/g3
c2 = c2/g3
x, y, z = symbols("x y z")
eq = a2*x**2 + b2*y**2 + c2*z**2
solutions = diophantine(eq)
if len(solutions) == 0:
raise ValueError("Rational Point on the conic does not exist")
flag = False
for sol in solutions:
syms = Tuple(*sol).free_symbols
rep = {s: 3 for s in syms}
sol_z = sol[2]
if sol_z == 0:
flag = True
continue
if not (isinstance(sol_z, Integer) or isinstance(sol_z, int)):
syms_z = sol_z.free_symbols
if len(syms_z) == 1:
p = next(iter(syms_z))
p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers))
rep[p] = next(iter(p_values))
if len(syms_z) == 2:
p, q = list(ordered(syms_z))
for i in S.Integers:
subs_sol_z = sol_z.subs(p, i)
q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers))
if not q_values.is_empty:
rep[p] = i
rep[q] = next(iter(q_values))
break
if len(syms) != 0:
x, y, z = tuple(s.subs(rep) for s in sol)
else:
x, y, z = sol
flag = False
break
if flag:
raise ValueError("Rational Point on the conic does not exist")
x = (x*g3)/r1
y = (y*g2)/r2
z = (z*g1)/r3
x = x/z
y = y/z
if a == 0 and c == 0:
x_reg = (x + y - 2*e)/(2*b)
y_reg = (x - y - 2*d)/(2*b)
elif c != 0:
x_reg = (x - 2*d*c + b*e)/K
y_reg = (y - b*x_reg - e)/(2*c)
else:
y_reg = (x - 2*e*a + b*d)/K
x_reg = (y - b*y_reg - d)/(2*a)
return x_reg, y_reg
def singular_points(self):
"""
Returns a set of singular points of the region.
The singular points are those points on the region
where all partial derivatives vanish.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
>>> I.singular_points()
FiniteSet((1, 1))
"""
eq_list = [self.equation]
for var in self.variables:
eq_list += [diff(self.equation, var)]
return nonlinsolve(eq_list, list(self.variables))
def multiplicity(self, point):
"""
Returns the multiplicity of a singular point on the region.
A singular point (x,y) of region is said to be of multiplicity m
if all the partial derivatives off to order m - 1 vanish there.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
>>> I.singular_points()
FiniteSet((0, 0, 0))
>>> I.multiplicity((0, 0, 0))
2
"""
if isinstance(point, Point):
point = point.args
modified_eq = self.equation
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
if len(modified_eq.args) != 0:
terms = modified_eq.args
m = min([total_degree(term) for term in terms])
else:
terms = modified_eq
m = total_degree(terms)
return m
def rational_parametrization(self, parameters=('t', 's'), reg_point=None):
"""
Returns the rational parametrization of implict region.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, s, t
>>> from sympy.vector import ImplicitRegion
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.rational_parametrization()
(4/t**2, 4/t)
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
>>> circle.rational_parametrization()
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> I.rational_parametrization()
(t**2 - 1, t*(t**2 - 1))
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> cubic_curve.rational_parametrization(parameters=(t))
(t**2 - 1, t*(t**2 - 1))
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
>>> sphere.rational_parametrization(parameters=(t, s))
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))
For some conics, regular_points() is unable to find a point on curve.
To calulcate the parametric representation in such cases, user need
to determine a point on the region and pass it using reg_point.
>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
>>> c.rational_parametrization(reg_point=(3/4, 0))
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
References
==========
- Christoph M. Hoffmann, "Conversion Methods between Parametric and
Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available:
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech
"""
equation = self.equation
degree = self.degree
if degree == 1:
if len(self.variables) == 1:
return (equation,)
elif len(self.variables) == 2:
x, y = self.variables
y_par = list(solveset(equation, y))[0]
return x, y_par
else:
raise NotImplementedError()
point = ()
# Finding the (n - 1) fold point of the monoid of degree
if degree == 2:
# For degree 2 curves, either a regular point or a singular point can be used.
if reg_point is not None:
# Using point provided by the user as regular point
if isinstance(point, Point):
point = point.args
point = reg_point
else:
if len(self.singular_points()) != 0:
point = list(self.singular_points())[0]
else:
point = self.regular_point()
if len(self.singular_points()) != 0:
singular_points = self.singular_points()
for spoint in singular_points:
syms = Tuple(*spoint).free_symbols
rep = {s: 2 for s in syms}
if len(syms) != 0:
spoint = tuple(s.subs(rep) for s in spoint)
if self.multiplicity(spoint) == degree - 1:
point = spoint
break
if len(point) == 0:
# The region in not a monoid
raise NotImplementedError()
modified_eq = equation
# Shifting the region such that fold point moves to origin
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
hn = hn_1 = 0
for term in modified_eq.args:
if total_degree(term) == degree:
hn += term
else:
hn_1 += term
hn_1 = -1*hn_1
if not isinstance(parameters, tuple):
parameters = (parameters,)
if len(self.variables) == 2:
parameter1 = parameters[0]
if parameter1 == 's':
# To avoid name conflict between parameters
s = _symbol('s_', real=True)
else:
s = _symbol('s', real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: s, self.variables[1]: t})
hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t})
x_par = (s*(hn_1/hn)).subs(s, 1) + point[0]
y_par = (t*(hn_1/hn)).subs(s, 1) + point[1]
return x_par, y_par
elif len(self.variables) == 3:
parameter1, parameter2 = parameters
if parameter1 == 'r' or parameter2 == 'r':
# To avoid name conflict between parameters
r = _symbol('r_', real=True)
else:
r = _symbol('r', real=True)
s = _symbol(parameter2, real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
x_par = (r*(hn_1/hn)).subs(r, 1) + point[0]
y_par = (s*(hn_1/hn)).subs(r, 1) + point[1]
z_par = (t*(hn_1/hn)).subs(r, 1) + point[2]
return x_par, y_par, z_par
raise NotImplementedError()
def conic_coeff(variables, equation):
if total_degree(equation) != 2:
raise ValueError()
x = variables[0]
y = variables[1]
equation = expand(equation)
a = equation.coeff(x**2)
b = equation.coeff(x*y)
c = equation.coeff(y**2)
d = equation.coeff(x, 1).coeff(y, 0)
e = equation.coeff(y, 1).coeff(x, 0)
f = equation.coeff(x, 0).coeff(y, 0)
return a, b, c, d, e, f
|
6bee39b2d2934336ed98ae7e600b8a4f0438e60d809ae349ee2fca792e86ff71 | from functools import singledispatch
from sympy import pi, tan
from sympy.simplify import trigsimp
from sympy.core import Basic, Tuple
from sympy.core.symbol import _symbol
from sympy.solvers import solve
from sympy.geometry import Point, Segment, Curve, Ellipse, Polygon
from sympy.vector import ImplicitRegion
class ParametricRegion(Basic):
"""
Represents a parametric region in space.
Examples
========
>>> from sympy import cos, sin, pi
>>> from sympy.abc import r, theta, t, a, b, x, y
>>> from sympy.vector import ParametricRegion
>>> ParametricRegion((t, t**2), (t, -1, 2))
ParametricRegion((t, t**2), (t, -1, 2))
>>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
>>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
>>> ParametricRegion((a*cos(t), b*sin(t)), t)
ParametricRegion((a*cos(t), b*sin(t)), t)
>>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
>>> circle.parameters
(r, theta)
>>> circle.definition
(r*cos(theta), r*sin(theta))
>>> circle.limits
{theta: (0, pi)}
Dimension of a parametric region determines whether a region is a curve, surface
or volume region. It does not represent its dimensions in space.
>>> circle.dimensions
1
Parameters
==========
definition : tuple to define base scalars in terms of parameters.
bounds : Parameter or a tuple of length 3 to define parameter and corresponding lower and upper bound.
"""
def __new__(cls, definition, *bounds):
parameters = ()
limits = {}
if not isinstance(bounds, Tuple):
bounds = Tuple(*bounds)
for bound in bounds:
if isinstance(bound, tuple) or isinstance(bound, Tuple):
if len(bound) != 3:
raise ValueError("Tuple should be in the form (parameter, lowerbound, upperbound)")
parameters += (bound[0],)
limits[bound[0]] = (bound[1], bound[2])
else:
parameters += (bound,)
if not (isinstance(definition, tuple) or isinstance(definition, Tuple)):
definition = (definition,)
obj = super().__new__(cls, Tuple(*definition), *bounds)
obj._parameters = parameters
obj._limits = limits
return obj
@property
def definition(self):
return self.args[0]
@property
def limits(self):
return self._limits
@property
def parameters(self):
return self._parameters
@property
def dimensions(self):
return len(self.limits)
@singledispatch
def parametric_region_list(reg):
"""
Returns a list of ParametricRegion objects representing the geometric region.
Examples
========
>>> from sympy.abc import t
>>> from sympy.vector import parametric_region_list
>>> from sympy.geometry import Point, Curve, Ellipse, Segment, Polygon
>>> p = Point(2, 5)
>>> parametric_region_list(p)
[ParametricRegion((2, 5))]
>>> c = Curve((t**3, 4*t), (t, -3, 4))
>>> parametric_region_list(c)
[ParametricRegion((t**3, 4*t), (t, -3, 4))]
>>> e = Ellipse(Point(1, 3), 2, 3)
>>> parametric_region_list(e)
[ParametricRegion((2*cos(t) + 1, 3*sin(t) + 3), (t, 0, 2*pi))]
>>> s = Segment(Point(1, 3), Point(2, 6))
>>> parametric_region_list(s)
[ParametricRegion((t + 1, 3*t + 3), (t, 0, 1))]
>>> p1, p2, p3, p4 = [(0, 1), (2, -3), (5, 3), (-2, 3)]
>>> poly = Polygon(p1, p2, p3, p4)
>>> parametric_region_list(poly)
[ParametricRegion((2*t, 1 - 4*t), (t, 0, 1)), ParametricRegion((3*t + 2, 6*t - 3), (t, 0, 1)),\
ParametricRegion((5 - 7*t, 3), (t, 0, 1)), ParametricRegion((2*t - 2, 3 - 2*t), (t, 0, 1))]
"""
raise ValueError("SymPy cannot determine parametric representation of the region.")
@parametric_region_list.register(Point)
def _(obj):
return [ParametricRegion(obj.args)]
@parametric_region_list.register(Curve)
def _(obj):
definition = obj.arbitrary_point(obj.parameter).args
bounds = obj.limits
return [ParametricRegion(definition, bounds)]
@parametric_region_list.register(Ellipse)
def _(obj, parameter='t'):
definition = obj.arbitrary_point(parameter).args
t = _symbol(parameter, real=True)
bounds = (t, 0, 2*pi)
return [ParametricRegion(definition, bounds)]
@parametric_region_list.register(Segment)
def _(obj, parameter='t'):
t = _symbol(parameter, real=True)
definition = obj.arbitrary_point(t).args
for i in range(0, 3):
lower_bound = solve(definition[i] - obj.points[0].args[i], t)
upper_bound = solve(definition[i] - obj.points[1].args[i], t)
if len(lower_bound) == 1 and len(upper_bound) == 1:
bounds = t, lower_bound[0], upper_bound[0]
break
definition_tuple = obj.arbitrary_point(parameter).args
return [ParametricRegion(definition_tuple, bounds)]
@parametric_region_list.register(Polygon)
def _(obj, parameter='t'):
l = [parametric_region_list(side, parameter)[0] for side in obj.sides]
return l
@parametric_region_list.register(ImplicitRegion)
def _(obj, parameters=('t', 's')):
definition = obj.rational_parametrization(parameters)
bounds = []
for i in range(len(obj.variables) - 1):
# Each parameter is replaced by its tangent to simplify intergation
parameter = _symbol(parameters[i], real=True)
definition = [trigsimp(elem.subs(parameter, tan(parameter))) for elem in definition]
bounds.append((parameter, 0, 2*pi),)
definition = Tuple(*definition)
return [ParametricRegion(definition, *bounds)]
|
2ee653fbc1d39aa9b4b75e9a44b9ff1c8a4e1da497d92c93f135be84b956dd65 | """Geometrical Points.
Contains
========
Point
Point2D
Point3D
When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:
>>> from sympy.geometry.point import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False
"""
import warnings
from sympy.core import S, sympify, Expr
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.matrices import Matrix
from sympy.core.numbers import Float
from sympy.core.parameters import global_parameters
from sympy.core.add import Add
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name, Undecidable
from .entity import GeometryEntity
class Point(GeometryEntity):
"""A point in a n-dimensional Euclidean space.
Parameters
==========
coords : sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created
as appropriate.
evaluate : if `True` (default), all floats are turn into
exact types.
dim : number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
on_morph : indicates what should happen when the number of
coordinates of a point need to be changed by adding or
removing zeros. Possible values are `'warn'`, `'error'`, or
`ignore` (default). No warning or error is given when `*args`
is empty and `dim` is given. An error is always raised when
trying to remove nonzero coordinates.
Attributes
==========
length
origin: A `Point` representing the origin of the
appropriately-dimensioned space.
Raises
======
TypeError : When instantiating with anything but a Point or sequence
ValueError : when instantiating with a sequence with length < 2 or
when trying to reduce dimensions if keyword `on_morph='error'` is
set.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
is_Point = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
on_morph = kwargs.get('on_morph', 'ignore')
# unpack into coords
coords = args[0] if len(args) == 1 else args
# check args and handle quickly handle Point instances
if isinstance(coords, Point):
# even if we're mutating the dimension of a point, we
# don't reevaluate its coordinates
evaluate = False
if len(coords) == kwargs.get('dim', len(coords)):
return coords
if not is_sequence(coords):
raise TypeError(filldedent('''
Expecting sequence of coordinates, not `{}`'''
.format(func_name(coords))))
# A point where only `dim` is specified is initialized
# to zeros.
if len(coords) == 0 and kwargs.get('dim', None):
coords = (S.Zero,)*kwargs.get('dim')
coords = Tuple(*coords)
dim = kwargs.get('dim', len(coords))
if len(coords) < 2:
raise ValueError(filldedent('''
Point requires 2 or more coordinates or
keyword `dim` > 1.'''))
if len(coords) != dim:
message = ("Dimension of {} needs to be changed "
"from {} to {}.").format(coords, len(coords), dim)
if on_morph == 'ignore':
pass
elif on_morph == "error":
raise ValueError(message)
elif on_morph == 'warn':
warnings.warn(message)
else:
raise ValueError(filldedent('''
on_morph value should be 'error',
'warn' or 'ignore'.'''))
if any(coords[dim:]):
raise ValueError('Nonzero coordinates cannot be removed.')
if any(a.is_number and im(a) for a in coords):
raise ValueError('Imaginary coordinates are not permitted.')
if not all(isinstance(a, Expr) for a in coords):
raise TypeError('Coordinates must be valid SymPy expressions.')
# pad with zeros appropriately
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
# Turn any Floats into rationals and simplify
# any expressions before we instantiate
if evaluate:
coords = coords.xreplace({
f: simplify(nsimplify(f, rational=True))
for f in coords.atoms(Float)})
# return 2D or 3D instances
if len(coords) == 2:
kwargs['_nocheck'] = True
return Point2D(*coords, **kwargs)
elif len(coords) == 3:
kwargs['_nocheck'] = True
return Point3D(*coords, **kwargs)
# the general Point
return GeometryEntity.__new__(cls, *coords)
def __abs__(self):
"""Returns the distance between this point and the origin."""
origin = Point([0]*len(self))
return Point.distance(origin, self)
def __add__(self, other):
"""Add other to self by incrementing self's coordinates by
those of other.
Notes
=====
>>> from sympy.geometry.point import Point
When sequences of coordinates are passed to Point methods, they
are converted to a Point internally. This __add__ method does
not do that so if floating point values are used, a floating
point result (in terms of SymPy Floats) will be returned.
>>> Point(1, 2) + (.1, .2)
Point2D(1.1, 2.2)
If this is not desired, the `translate` method can be used or
another Point can be added:
>>> Point(1, 2).translate(.1, .2)
Point2D(11/10, 11/5)
>>> Point(1, 2) + Point(.1, .2)
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.translate
"""
try:
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
except TypeError:
raise GeometryError("Don't know how to add {} and a Point object".format(other))
coords = [simplify(a + b) for a, b in zip(s, o)]
return Point(coords, evaluate=False)
def __contains__(self, item):
return item in self.args
def __truediv__(self, divisor):
"""Divide point's coordinates by a factor."""
divisor = sympify(divisor)
coords = [simplify(x/divisor) for x in self.args]
return Point(coords, evaluate=False)
def __eq__(self, other):
if not isinstance(other, Point) or len(self.args) != len(other.args):
return False
return self.args == other.args
def __getitem__(self, key):
return self.args[key]
def __hash__(self):
return hash(self.args)
def __iter__(self):
return self.args.__iter__()
def __len__(self):
return len(self.args)
def __mul__(self, factor):
"""Multiply point's coordinates by a factor.
Notes
=====
>>> from sympy.geometry.point import Point
When multiplying a Point by a floating point number,
the coordinates of the Point will be changed to Floats:
>>> Point(1, 2)*0.1
Point2D(0.1, 0.2)
If this is not desired, the `scale` method can be used or
else only multiply or divide by integers:
>>> Point(1, 2).scale(1.1, 1.1)
Point2D(11/10, 11/5)
>>> Point(1, 2)*11/10
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.scale
"""
factor = sympify(factor)
coords = [simplify(x*factor) for x in self.args]
return Point(coords, evaluate=False)
def __rmul__(self, factor):
"""Multiply a factor by point's coordinates."""
return self.__mul__(factor)
def __neg__(self):
"""Negate the point."""
coords = [-x for x in self.args]
return Point(coords, evaluate=False)
def __sub__(self, other):
"""Subtract two points, or subtract a factor from this point's
coordinates."""
return self + [-x for x in other]
@classmethod
def _normalize_dimension(cls, *points, **kwargs):
"""Ensure that points have the same dimension.
By default `on_morph='warn'` is passed to the
`Point` constructor."""
# if we have a built-in ambient dimension, use it
dim = getattr(cls, '_ambient_dimension', None)
# override if we specified it
dim = kwargs.get('dim', dim)
# if no dim was given, use the highest dimensional point
if dim is None:
dim = max(i.ambient_dimension for i in points)
if all(i.ambient_dimension == dim for i in points):
return list(points)
kwargs['dim'] = dim
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
return [Point(i, **kwargs) for i in points]
@staticmethod
def affine_rank(*args):
"""The affine rank of a set of points is the dimension
of the smallest affine space containing all the points.
For example, if the points lie on a line (and are not all
the same) their affine rank is 1. If the points lie on a plane
but not a line, their affine rank is 2. By convention, the empty
set has affine rank -1."""
if len(args) == 0:
return -1
# make sure we're genuinely points
# and translate every point to the origin
points = Point._normalize_dimension(*[Point(i) for i in args])
origin = points[0]
points = [i - origin for i in points[1:]]
m = Matrix([i.args for i in points])
# XXX fragile -- what is a better way?
return m.rank(iszerofunc = lambda x:
abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
@property
def ambient_dimension(self):
"""Number of components this point has."""
return getattr(self, '_ambient_dimension', len(self))
@classmethod
def are_coplanar(cls, *points):
"""Return True if there exists a plane in which all the points
lie. A trivial True value is returned if `len(points) < 3` or
all Points are 2-dimensional.
Parameters
==========
A set of points
Raises
======
ValueError : if less than 3 unique points are given
Returns
=======
boolean
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
"""
if len(points) <= 1:
return True
points = cls._normalize_dimension(*[Point(i) for i in points])
# quick exit if we are in 2D
if points[0].ambient_dimension == 2:
return True
points = list(uniq(points))
return Point.affine_rank(*points) <= 2
def distance(self, other):
"""The Euclidean distance between self and another GeometricEntity.
Returns
=======
distance : number or symbolic expression.
Raises
======
TypeError : if other is not recognized as a GeometricEntity or is a
GeometricEntity for which distance is not defined.
See Also
========
sympy.geometry.line.Segment.length
sympy.geometry.point.Point.taxicab_distance
Examples
========
>>> from sympy.geometry import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
The computed distance may be symbolic, too:
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
"""
if not isinstance(other, GeometryEntity):
try:
other = Point(other, dim=self.ambient_dimension)
except TypeError:
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
if isinstance(other, Point):
s, p = Point._normalize_dimension(self, Point(other))
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
distance = getattr(other, 'distance', None)
if distance is None:
raise TypeError("distance between Point and %s is not defined" % type(other))
return distance(self)
def dot(self, p):
"""Return dot product of self with another Point."""
if not is_sequence(p):
p = Point(p) # raise the error via Point
return Add(*(a*b for a, b in zip(self, p)))
def equals(self, other):
"""Returns whether the coordinates of self and other agree."""
# a point is equal to another point if all its components are equal
if not isinstance(other, Point) or len(self) != len(other):
return False
return all(a.equals(b) for a, b in zip(self, other))
def evalf(self, prec=None, **options):
"""Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point
where the coordinates are evaluated as floating point numbers to
the precision indicated (default=15).
Parameters
==========
prec : int
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Rational
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point2D(1/2, 3/2)
>>> p1.evalf()
Point2D(0.5, 1.5)
"""
coords = [x.evalf(prec, **options) for x in self.args]
return Point(*coords, evaluate=False)
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other)
if isinstance(other, Point):
if self == other:
return [self]
p1, p2 = Point._normalize_dimension(self, other)
if p1 == self and p1 == p2:
return [self]
return []
return other.intersection(self)
def is_collinear(self, *args):
"""Returns `True` if there exists a line
that contains `self` and `points`. Returns `False` otherwise.
A trivially True value is returned if no points are given.
Parameters
==========
args : sequence of Points
Returns
=======
is_collinear : boolean
See Also
========
sympy.geometry.line.Line
Examples
========
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
return Point.affine_rank(*points) <= 1
def is_concyclic(self, *args):
"""Do `self` and the given sequence of points lie in a circle?
Returns True if the set of points are concyclic and
False otherwise. A trivial value of True is returned
if there are fewer than 2 other points.
Parameters
==========
args : sequence of Points
Returns
=======
is_concyclic : boolean
Examples
========
>>> from sympy import Point
Define 4 points that are on the unit circle:
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
True
Define a point not on that circle:
>>> p = Point(1, 1)
>>> p.is_concyclic(p1, p2, p3)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
if not Point.affine_rank(*points) <= 2:
return False
origin = points[0]
points = [p - origin for p in points]
# points are concyclic if they are coplanar and
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
# i and j. Rearranging this equation gives us the following
# condition: the matrix `mat` must not a pivot in the last
# column.
mat = Matrix([list(i) + [i.dot(i)] for i in points])
rref, pivots = mat.rref()
if len(origin) not in pivots:
return True
return False
@property
def is_nonzero(self):
"""True if any coordinate is nonzero, False if every coordinate is zero,
and None if it cannot be determined."""
is_zero = self.is_zero
if is_zero is None:
return None
return not is_zero
def is_scalar_multiple(self, p):
"""Returns whether each coordinate of `self` is a scalar
multiple of the corresponding coordinate in point p.
"""
s, o = Point._normalize_dimension(self, Point(p))
# 2d points happen a lot, so optimize this function call
if s.ambient_dimension == 2:
(x1, y1), (x2, y2) = s.args, o.args
rv = (x1*y2 - x2*y1).equals(0)
if rv is None:
raise Undecidable(filldedent(
'''can't determine if %s is a scalar multiple of
%s''' % (s, o)))
# if the vectors p1 and p2 are linearly dependent, then they must
# be scalar multiples of each other
m = Matrix([s.args, o.args])
return m.rank() < 2
@property
def is_zero(self):
"""True if every coordinate is zero, False if any coordinate is not zero,
and None if it cannot be determined."""
nonzero = [x.is_nonzero for x in self.args]
if any(nonzero):
return False
if any(x is None for x in nonzero):
return None
return True
@property
def length(self):
"""
Treating a Point as a Line, this returns 0 for the length of a Point.
Examples
========
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
"""
return S.Zero
def midpoint(self, p):
"""The midpoint between self and point p.
Parameters
==========
p : Point
Returns
=======
midpoint : Point
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
"""
s, p = Point._normalize_dimension(self, Point(p))
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
@property
def origin(self):
"""A point of all zeros of the same ambient dimension
as the current point"""
return Point([0]*len(self), evaluate=False)
@property
def orthogonal_direction(self):
"""Returns a non-zero point that is orthogonal to the
line containing `self` and the origin.
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
"""
dim = self.ambient_dimension
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
if self[0].is_zero:
return Point([1] + (dim - 1)*[0])
if self[1].is_zero:
return Point([0,1] + (dim - 2)*[0])
# if the first two coordinates aren't zero, we can create a non-zero
# orthogonal vector by swapping them, negating one, and padding with zeros
return Point([-self[1], self[0]] + (dim - 2)*[0])
@staticmethod
def project(a, b):
"""Project the point `a` onto the line between the origin
and point `b` along the normal direction.
Parameters
==========
a : Point
b : Point
Returns
=======
p : Point
See Also
========
sympy.geometry.line.LinearEntity.projection
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
"""
a, b = Point._normalize_dimension(Point(a), Point(b))
if b.is_zero:
raise ValueError("Cannot project to the zero vector.")
return b*(a.dot(b) / b.dot(b))
def taxicab_distance(self, p):
"""The Taxicab Distance from self to point p.
Returns the sum of the horizontal and vertical distances to point p.
Parameters
==========
p : Point
Returns
=======
taxicab_distance : The sum of the horizontal
and vertical distances to point p.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
"""
s, p = Point._normalize_dimension(self, Point(p))
return Add(*(abs(a - b) for a, b in zip(s, p)))
def canberra_distance(self, p):
"""The Canberra Distance from self to point p.
Returns the weighted sum of horizontal and vertical distances to
point p.
Parameters
==========
p : Point
Returns
=======
canberra_distance : The weighted sum of horizontal and vertical
distances to point p. The weight used is the sum of absolute values
of the coordinates.
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
Raises
======
ValueError when both vectors are zero.
See Also
========
sympy.geometry.point.Point.distance
"""
s, p = Point._normalize_dimension(self, Point(p))
if self.is_zero and p.is_zero:
raise ValueError("Cannot project to the zero vector.")
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
@property
def unit(self):
"""Return the Point that is in the same direction as `self`
and a distance of 1 from the origin"""
return self / abs(self)
n = evalf
class Point2D(Point):
"""A point in a 2-dimensional Euclidean space.
Parameters
==========
coords : sequence of 2 coordinate values.
Attributes
==========
x
y
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When trying to create a point with more than two dimensions.
When `intersection` is called with object other than a Point.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point2D
>>> from sympy.abc import x
>>> Point2D(1, 2)
Point2D(1, 2)
>>> Point2D([1, 2])
Point2D(1, 2)
>>> Point2D(0, x)
Point2D(0, x)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point2D(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point2D(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
_ambient_dimension = 2
def __new__(cls, *args, _nocheck=False, **kwargs):
if not _nocheck:
kwargs['dim'] = 2
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
return (self.x, self.y, self.x, self.y)
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
See Also
========
translate, scale
Examples
========
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
"""
from sympy import cos, sin, Point
c = cos(angle)
s = sin(angle)
rv = self
if pt is not None:
pt = Point(pt, dim=2)
rv -= pt
x, y = rv.args
rv = Point(c*x - s*y, s*x + c*y)
if pt is not None:
rv += pt
return rv
def scale(self, x=1, y=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
rotate, translate
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return Point(self.x*x, self.y*y)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 3x3 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point2D.rotate
sympy.geometry.point.Point2D.scale
sympy.geometry.point.Point2D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
raise ValueError("matrix must be a 3x3 matrix")
col, row = matrix.shape
x, y = self.args
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
def translate(self, x=0, y=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
sympy.geometry.point.Point2D.rotate, scale
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
>>> t + Point2D(2, 2)
Point2D(2, 3)
"""
return Point(self.x + x, self.y + y)
@property
def coordinates(self):
"""
Returns the two coordinates of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.coordinates
(0, 1)
"""
return self.args
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
"""
return self.args[1]
class Point3D(Point):
"""A point in a 3-dimensional Euclidean space.
Parameters
==========
coords : sequence of 3 coordinate values.
Attributes
==========
x
y
z
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When `intersection` is called with object other than a Point.
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D(0, x, 3)
Point3D(0, x, 3)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
"""
_ambient_dimension = 3
def __new__(cls, *args, _nocheck=False, **kwargs):
if not _nocheck:
kwargs['dim'] = 3
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@staticmethod
def are_collinear(*points):
"""Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if
the set of points are collinear, or False otherwise.
Parameters
==========
points : sequence of Point
Returns
=======
are_collinear : boolean
See Also
========
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
"""
return Point.is_collinear(*points)
def direction_cosine(self, point):
"""
Gives the direction cosine between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
"""
a = self.direction_ratio(point)
b = sqrt(Add(*(i**2 for i in a)))
return [(point.x - self.x) / b,(point.y - self.y) / b,
(point.z - self.z) / b]
def direction_ratio(self, point):
"""
Gives the direction ratio between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
"""
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=3)
if isinstance(other, Point3D):
if self == other:
return [self]
return []
return other.intersection(self)
def scale(self, x=1, y=1, z=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
translate
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
"""
if pt:
pt = Point3D(pt)
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
return Point3D(self.x*x, self.y*y, self.z*z)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 4x4 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point3D.scale
sympy.geometry.point.Point3D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
raise ValueError("matrix must be a 4x4 matrix")
col, row = matrix.shape
from sympy.matrices.expressions import Transpose
x, y, z = self.args
m = Transpose(matrix)
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
def translate(self, x=0, y=0, z=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
scale
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
"""
return Point3D(self.x + x, self.y + y, self.z + z)
@property
def coordinates(self):
"""
Returns the three coordinates of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.coordinates
(0, 1, 2)
"""
return self.args
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
"""
return self.args[1]
@property
def z(self):
"""
Returns the Z coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
"""
return self.args[2]
|
11ec6620770b14deb8afe2630f4449342f945e39c73c920a052f57c626326de6 | """Elliptical geometrical entities.
Contains
* Ellipse
* Circle
"""
from sympy import Expr, Eq
from sympy.core import S, pi, sympify
from sympy.core.parameters import global_parameters
from sympy.core.logic import fuzzy_bool
from sympy.core.numbers import Rational, oo
from sympy.core.compatibility import ordered
from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
from sympy.simplify import simplify, trigsimp
from sympy.functions.elementary.miscellaneous import sqrt, Max
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.elliptic_integrals import elliptic_e
from sympy.geometry.exceptions import GeometryError
from sympy.geometry.line import Ray2D, Segment2D, Line2D, LinearEntity3D
from sympy.polys import DomainError, Poly, PolynomialError
from sympy.polys.polyutils import _not_a_coeff, _nsort
from sympy.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import filldedent, func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point, Point2D, Point3D
from .line import Line, Segment
from .util import idiff
import random
class Ellipse(GeometrySet):
"""An elliptical GeometryEntity.
Parameters
==========
center : Point, optional
Default value is Point(0, 0)
hradius : number or SymPy expression, optional
vradius : number or SymPy expression, optional
eccentricity : number or SymPy expression, optional
Two of `hradius`, `vradius` and `eccentricity` must be supplied to
create an Ellipse. The third is derived from the two supplied.
Attributes
==========
center
hradius
vradius
area
circumference
eccentricity
periapsis
apoapsis
focus_distance
foci
Raises
======
GeometryError
When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
as parameters.
TypeError
When `center` is not a Point.
See Also
========
Circle
Notes
-----
Constructed from a center and two radii, the first being the horizontal
radius (along the x-axis) and the second being the vertical radius (along
the y-axis).
When symbolic value for hradius and vradius are used, any calculation that
refers to the foci or the major or minor axis will assume that the ellipse
has its major radius on the x-axis. If this is not true then a manual
rotation is necessary.
Examples
========
>>> from sympy import Ellipse, Point, Rational
>>> e1 = Ellipse(Point(0, 0), 5, 1)
>>> e1.hradius, e1.vradius
(5, 1)
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
>>> e2
Ellipse(Point2D(3, 1), 3, 9/5)
"""
def __contains__(self, o):
if isinstance(o, Point):
x = Dummy('x', real=True)
y = Dummy('y', real=True)
res = self.equation(x, y).subs({x: o.x, y: o.y})
return trigsimp(simplify(res)) is S.Zero
elif isinstance(o, Ellipse):
return self == o
return False
def __eq__(self, o):
"""Is the other GeometryEntity the same as this ellipse?"""
return isinstance(o, Ellipse) and (self.center == o.center and
self.hradius == o.hradius and
self.vradius == o.vradius)
def __hash__(self):
return super().__hash__()
def __new__(
cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
hradius = sympify(hradius)
vradius = sympify(vradius)
eccentricity = sympify(eccentricity)
if center is None:
center = Point(0, 0)
else:
center = Point(center, dim=2)
if len(center) != 2:
raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
raise ValueError(filldedent('''
Exactly two arguments of "hradius", "vradius", and
"eccentricity" must not be None.'''))
if eccentricity is not None:
if eccentricity.is_negative:
raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
elif hradius is None:
hradius = vradius / sqrt(1 - eccentricity**2)
elif vradius is None:
vradius = hradius * sqrt(1 - eccentricity**2)
if hradius == vradius:
return Circle(center, hradius, **kwargs)
if hradius == 0 or vradius == 0:
return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
if hradius.is_real is False or vradius.is_real is False:
raise GeometryError("Invalid value encountered when computing hradius / vradius.")
return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG ellipse element for the Ellipse.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
c = N(self.center)
h, v = N(self.hradius), N(self.vradius)
return (
'<ellipse fill="{1}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
@property
def ambient_dimension(self):
return 2
@property
def apoapsis(self):
"""The apoapsis of the ellipse.
The greatest distance between the focus and the contour.
Returns
=======
apoapsis : number
See Also
========
periapsis : Returns shortest distance between foci and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.apoapsis
2*sqrt(2) + 3
"""
return self.major * (1 + self.eccentricity)
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the functions.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.arbitrary_point()
Point2D(3*cos(t), 2*sin(t))
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('Symbol %s already appears in object '
'and cannot be used as a parameter.' % t.name))
return Point(self.center.x + self.hradius*cos(t),
self.center.y + self.vradius*sin(t))
@property
def area(self):
"""The area of the ellipse.
Returns
=======
area : number
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.area
3*pi
"""
return simplify(S.Pi * self.hradius * self.vradius)
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
h, v = self.hradius, self.vradius
return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
@property
def center(self):
"""The center of the ellipse.
Returns
=======
center : number
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.center
Point2D(0, 0)
"""
return self.args[0]
@property
def circumference(self):
"""The circumference of the ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.circumference
12*elliptic_e(8/9)
"""
if self.eccentricity == 1:
# degenerate
return 4*self.major
elif self.eccentricity == 0:
# circle
return 2*pi*self.hradius
else:
return 4*self.major*elliptic_e(self.eccentricity**2)
@property
def eccentricity(self):
"""The eccentricity of the ellipse.
Returns
=======
eccentricity : number
Examples
========
>>> from sympy import Point, Ellipse, sqrt
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, sqrt(2))
>>> e1.eccentricity
sqrt(7)/3
"""
return self.focus_distance / self.major
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
-----
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Ellipse, S
>>> from sympy.abc import t
>>> e = Ellipse((0, 0), 3, 2)
>>> e.encloses_point((0, 0))
True
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
False
>>> e.encloses_point((4, 0))
False
"""
p = Point(p, dim=2)
if p in self:
return False
if len(self.foci) == 2:
# if the combined distance from the foci to p (h1 + h2) is less
# than the combined distance from the foci to the minor axis
# (which is the same as the major axis length) then p is inside
# the ellipse
h1, h2 = [f.distance(p) for f in self.foci]
test = 2*self.major - (h1 + h2)
else:
test = self.radius - self.center.distance(p)
return fuzzy_bool(test.is_positive)
def equation(self, x='x', y='y', _slope=None):
"""
Returns the equation of an ellipse aligned with the x and y axes;
when slope is given, the equation returned corresponds to an ellipse
with a major axis having that slope.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
_slope : Expr, optional
The slope of the major axis. Ignored when 'None'.
Returns
=======
equation : sympy expression
See Also
========
arbitrary_point : Returns parameterized point on ellipse
Examples
========
>>> from sympy import Point, Ellipse, pi
>>> from sympy.abc import x, y
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> eq1 = e1.equation(x, y); eq1
y**2/4 + (x/3 - 1/3)**2 - 1
>>> eq2 = e1.equation(x, y, _slope=1); eq2
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
A point on e1 satisfies eq1. Let's use one on the x-axis:
>>> p1 = e1.center + Point(e1.major, 0)
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
When rotated the same as the rotated ellipse, about the center
point of the ellipse, it will satisfy the rotated ellipse's
equation, too:
>>> r1 = p1.rotate(pi/4, e1.center)
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
References
==========
.. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
.. [2] https://en.wikipedia.org/wiki/Ellipse#Equation_of_a_shifted_ellipse
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
dx = x - self.center.x
dy = y - self.center.y
if _slope is not None:
L = (dy - _slope*dx)**2
l = (_slope*dy + dx)**2
h = 1 + _slope**2
b = h*self.major**2
a = h*self.minor**2
return l/b + L/a - 1
else:
t1 = (dx/self.hradius)**2
t2 = (dy/self.vradius)**2
return t1 + t2 - 1
def evolute(self, x='x', y='y'):
"""The equation of evolute of the ellipse.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
Returns
=======
equation : sympy expression
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> e1.evolute()
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
"""
if len(self.args) != 3:
raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
@property
def foci(self):
"""The foci of the ellipse.
Notes
-----
The foci can only be calculated if the major/minor axes are known.
Raises
======
ValueError
When the major and minor axis cannot be determined.
See Also
========
sympy.geometry.point.Point
focus_distance : Returns the distance between focus and center
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.foci
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
"""
c = self.center
hr, vr = self.hradius, self.vradius
if hr == vr:
return (c, c)
# calculate focus distance manually, since focus_distance calls this
# routine
fd = sqrt(self.major**2 - self.minor**2)
if hr == self.minor:
# foci on the y-axis
return (c + Point(0, -fd), c + Point(0, fd))
elif hr == self.major:
# foci on the x-axis
return (c + Point(-fd, 0), c + Point(fd, 0))
@property
def focus_distance(self):
"""The focal distance of the ellipse.
The distance between the center and one focus.
Returns
=======
focus_distance : number
See Also
========
foci
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.focus_distance
2*sqrt(2)
"""
return Point.distance(self.center, self.foci[0])
@property
def hradius(self):
"""The horizontal radius of the ellipse.
Returns
=======
hradius : number
See Also
========
vradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.hradius
3
"""
return self.args[1]
def intersection(self, o):
"""The intersection of this ellipse and another geometrical entity
`o`.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntity objects
Notes
-----
Currently supports intersections with Point, Line, Segment, Ray,
Circle and Ellipse types.
See Also
========
sympy.geometry.entity.GeometryEntity
Examples
========
>>> from sympy import Ellipse, Point, Line
>>> e = Ellipse(Point(0, 0), 5, 7)
>>> e.intersection(Point(0, 0))
[]
>>> e.intersection(Point(5, 0))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
[Point2D(0, -7), Point2D(0, 7)]
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
[]
>>> e = Ellipse(Point(-1, 0), 4, 3)
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
"""
# TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
x = Dummy('x', real=True)
y = Dummy('y', real=True)
if isinstance(o, Point):
if o in self:
return [o]
else:
return []
elif isinstance(o, (Segment2D, Ray2D)):
ellipse_equation = self.equation(x, y)
result = solve([ellipse_equation, Line(o.points[0], o.points[1]).equation(x, y)], [x, y])
return list(ordered([Point(i) for i in result if i in o]))
elif isinstance(o, Polygon):
return o.intersection(self)
elif isinstance(o, (Ellipse, Line2D)):
if o == self:
return self
else:
ellipse_equation = self.equation(x, y)
return list(ordered([Point(i) for i in solve([ellipse_equation, o.equation(x, y)], [x, y])]))
elif isinstance(o, LinearEntity3D):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Intersection not handled for %s' % func_name(o))
def is_tangent(self, o):
"""Is `o` tangent to the ellipse?
Parameters
==========
o : GeometryEntity
An Ellipse, LinearEntity or Polygon
Raises
======
NotImplementedError
When the wrong type of argument is supplied.
Returns
=======
is_tangent: boolean
True if o is tangent to the ellipse, False otherwise.
See Also
========
tangent_lines
Examples
========
>>> from sympy import Point, Ellipse, Line
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
>>> e1 = Ellipse(p0, 3, 2)
>>> l1 = Line(p1, p2)
>>> e1.is_tangent(l1)
True
"""
if isinstance(o, Point2D):
return False
elif isinstance(o, Ellipse):
intersect = self.intersection(o)
if isinstance(intersect, Ellipse):
return True
elif intersect:
return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
else:
return False
elif isinstance(o, Line2D):
hit = self.intersection(o)
if not hit:
return False
if len(hit) == 1:
return True
# might return None if it can't decide
return hit[0].equals(hit[1])
elif isinstance(o, Ray2D):
intersect = self.intersection(o)
if len(intersect) == 1:
return intersect[0] != o.source and not self.encloses_point(o.source)
else:
return False
elif isinstance(o, (Segment2D, Polygon)):
all_tangents = False
segments = o.sides if isinstance(o, Polygon) else [o]
for segment in segments:
intersect = self.intersection(segment)
if len(intersect) == 1:
if not any(intersect[0] in i for i in segment.points) \
and all(not self.encloses_point(i) for i in segment.points):
all_tangents = True
continue
else:
return False
else:
return all_tangents
return all_tangents
elif isinstance(o, (LinearEntity3D, Point3D)):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Is_tangent not handled for %s' % func_name(o))
@property
def major(self):
"""Longer axis of the ellipse (if it can be determined) else hradius.
Returns
=======
major : number or expression
See Also
========
hradius, vradius, minor
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.major
3
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).major
a
>>> Ellipse(p1, b, a).major
b
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).major
m + 1
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = b - a < 0
if o == True:
return a
elif o == False:
return b
return self.hradius
@property
def minor(self):
"""Shorter axis of the ellipse (if it can be determined) else vradius.
Returns
=======
minor : number or expression
See Also
========
hradius, vradius, major
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.minor
1
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).minor
b
>>> Ellipse(p1, b, a).minor
a
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).minor
m
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = a - b < 0
if o == True:
return a
elif o == False:
return b
return self.vradius
def normal_lines(self, p, prec=None):
"""Normal lines between `p` and the ellipse.
Parameters
==========
p : Point
Returns
=======
normal_lines : list with 1, 2 or 4 Lines
Examples
========
>>> from sympy import Point, Ellipse
>>> e = Ellipse((0, 0), 2, 3)
>>> c = e.center
>>> e.normal_lines(c + Point(1, 0))
[Line2D(Point2D(0, 0), Point2D(1, 0))]
>>> e.normal_lines(c)
[Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
Off-axis points require the solution of a quartic equation. This
often leads to very large expressions that may be of little practical
use. An approximate solution of `prec` digits can be obtained by
passing in the desired value:
>>> e.normal_lines((3, 3), prec=2)
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
Whereas the above solution has an operation count of 12, the exact
solution has an operation count of 2020.
"""
p = Point(p, dim=2)
# XXX change True to something like self.angle == 0 if the arbitrarily
# rotated ellipse is introduced.
# https://github.com/sympy/sympy/issues/2815)
if True:
rv = []
if p.x == self.center.x:
rv.append(Line(self.center, slope=oo))
if p.y == self.center.y:
rv.append(Line(self.center, slope=0))
if rv:
# at these special orientations of p either 1 or 2 normals
# exist and we are done
return rv
# find the 4 normal points and construct lines through them with
# the corresponding slope
x, y = Dummy('x', real=True), Dummy('y', real=True)
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
norm = -1/dydx
slope = Line(p, (x, y)).slope
seq = slope - norm
# TODO: Replace solve with solveset, when this line is tested
yis = solve(seq, y)[0]
xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
if len(xeq.free_symbols) == 1:
try:
# this is so much faster, it's worth a try
xsol = Poly(xeq, x).real_roots()
except (DomainError, PolynomialError, NotImplementedError):
# TODO: Replace solve with solveset, when these lines are tested
xsol = _nsort(solve(xeq, x), separated=True)[0]
points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
else:
raise NotImplementedError(
'intersections for the general ellipse are not supported')
slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
if prec is not None:
points = [pt.n(prec) for pt in points]
slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
@property
def periapsis(self):
"""The periapsis of the ellipse.
The shortest distance between the focus and the contour.
Returns
=======
periapsis : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.periapsis
3 - 2*sqrt(2)
"""
return self.major * (1 - self.eccentricity)
@property
def semilatus_rectum(self):
"""
Calculates the semi-latus rectum of the Ellipse.
Semi-latus rectum is defined as one half of the the chord through a
focus parallel to the conic section directrix of a conic section.
Returns
=======
semilatus_rectum : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
periapsis : The shortest distance between the focus and the contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.semilatus_rectum
1/3
References
==========
[1] http://mathworld.wolfram.com/SemilatusRectum.html
[2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
"""
return self.major * (1 - self.eccentricity ** 2)
def auxiliary_circle(self):
"""Returns a Circle whose diameter is the major axis of the ellipse.
Examples
========
>>> from sympy import Ellipse, Point, symbols
>>> c = Point(1, 2)
>>> Ellipse(c, 8, 7).auxiliary_circle()
Circle(Point2D(1, 2), 8)
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).auxiliary_circle()
Circle(Point2D(1, 2), Max(a, b))
"""
return Circle(self.center, Max(self.hradius, self.vradius))
def director_circle(self):
"""
Returns a Circle consisting of all points where two perpendicular
tangent lines to the ellipse cross each other.
Returns
=======
Circle
A director circle returned as a geometric object.
Examples
========
>>> from sympy import Ellipse, Point, symbols
>>> c = Point(3,8)
>>> Ellipse(c, 7, 9).director_circle()
Circle(Point2D(3, 8), sqrt(130))
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).director_circle()
Circle(Point2D(3, 8), sqrt(a**2 + b**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Director_circle
"""
return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.plot_interval()
[t, -pi, pi]
"""
t = _symbol(parameter, real=True)
return [t, -S.Pi, S.Pi]
def random_point(self, seed=None):
"""A random point on the ellipse.
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.random_point() # gives some random point
Point2D(...)
>>> p1 = e1.random_point(seed=0); p1.n(2)
Point2D(2.1, 1.4)
Notes
=====
When creating a random point, one may simply replace the
parameter with a random number. When doing so, however, the
random number should be made a Rational or else the point
may not test as being in the ellipse:
>>> from sympy.abc import t
>>> from sympy import Rational
>>> arb = e1.arbitrary_point(t); arb
Point2D(3*cos(t), 2*sin(t))
>>> arb.subs(t, .1) in e1
False
>>> arb.subs(t, Rational(.1)) in e1
True
>>> arb.subs(t, Rational('.1')) in e1
True
See Also
========
sympy.geometry.point.Point
arbitrary_point : Returns parameterized point on ellipse
"""
from sympy import sin, cos, Rational
t = _symbol('t', real=True)
x, y = self.arbitrary_point(t).args
# get a random value in [-1, 1) corresponding to cos(t)
# and confirm that it will test as being in the ellipse
if seed is not None:
rng = random.Random(seed)
else:
rng = random
# simplify this now or else the Float will turn s into a Float
r = Rational(rng.random())
c = 2*r - 1
s = sqrt(1 - c**2)
return Point(x.subs(cos(t), c), y.subs(sin(t), s))
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
>>> from sympy import Ellipse, Line, Point
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
Traceback (most recent call last):
...
NotImplementedError:
General Ellipse is not supported but the equation of the reflected
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
Notes
=====
Until the general ellipse (with no axis parallel to the x-axis) is
supported a NotImplemented error is raised and the equation whose
zeros define the rotated ellipse is given.
"""
if line.slope in (0, oo):
c = self.center
c = c.reflect(line)
return self.func(c, -self.hradius, self.vradius)
else:
x, y = [uniquely_named_symbol(
name, (self, line), modify=lambda s: '_' + s, real=True)
for name in 'xy']
expr = self.equation(x, y)
p = Point(x, y).reflect(line)
result = expr.subs(zip((x, y), p.args
), simultaneous=True)
raise NotImplementedError(filldedent(
'General Ellipse is not supported but the equation '
'of the reflected Ellipse is given by the zeros of: ' +
"f(%s, %s) = %s" % (str(x), str(y), str(result))))
def rotate(self, angle=0, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
Note: since the general ellipse is not supported, only rotations that
are integer multiples of pi/2 are allowed.
Examples
========
>>> from sympy import Ellipse, pi
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
Ellipse(Point2D(0, 1), 1, 2)
>>> Ellipse((1, 0), 2, 1).rotate(pi)
Ellipse(Point2D(-1, 0), 2, 1)
"""
if self.hradius == self.vradius:
return self.func(self.center.rotate(angle, pt), self.hradius)
if (angle/S.Pi).is_integer:
return super().rotate(angle, pt)
if (2*angle/S.Pi).is_integer:
return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
# XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the major and minor
axes which must be scaled and they are not GeometryEntities.
Examples
========
>>> from sympy import Ellipse
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
Circle(Point2D(0, 0), 4)
>>> Ellipse((0, 0), 2, 1).scale(2)
Ellipse(Point2D(0, 0), 4, 1)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
h = self.hradius
v = self.vradius
return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
def tangent_lines(self, p):
"""Tangent lines between `p` and the ellipse.
If `p` is on the ellipse, returns the tangent line through point `p`.
Otherwise, returns the tangent line(s) from `p` to the ellipse, or
None if no tangent line is possible (e.g., `p` inside ellipse).
Parameters
==========
p : Point
Returns
=======
tangent_lines : list with 1 or 2 Lines
Raises
======
NotImplementedError
Can only find tangent lines for a point, `p`, on the ellipse.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Line
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.tangent_lines(Point(3, 0))
[Line2D(Point2D(3, 0), Point2D(3, -12))]
"""
p = Point(p, dim=2)
if self.encloses_point(p):
return []
if p in self:
delta = self.center - p
rise = (self.vradius**2)*delta.x
run = -(self.hradius**2)*delta.y
p2 = Point(simplify(p.x + run),
simplify(p.y + rise))
return [Line(p, p2)]
else:
if len(self.foci) == 2:
f1, f2 = self.foci
maj = self.hradius
test = (2*maj -
Point.distance(f1, p) -
Point.distance(f2, p))
else:
test = self.radius - Point.distance(self.center, p)
if test.is_number and test.is_positive:
return []
# else p is outside the ellipse or we can't tell. In case of the
# latter, the solutions returned will only be valid if
# the point is not inside the ellipse; if it is, nan will result.
x, y = Dummy('x'), Dummy('y')
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
slope = Line(p, Point(x, y)).slope
# TODO: Replace solve with solveset, when this line is tested
tangent_points = solve([slope - dydx, eq], [x, y])
# handle horizontal and vertical tangent lines
if len(tangent_points) == 1:
assert tangent_points[0][
0] == p.x or tangent_points[0][1] == p.y
return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
# others
return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
@property
def vradius(self):
"""The vertical radius of the ellipse.
Returns
=======
vradius : number
See Also
========
hradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.vradius
1
"""
return self.args[2]
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment area of an ellipse.
Parameters
==========
point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the ellipse.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of an ellise.
I_xy is product moment of area of an ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.second_moment_of_area()
(3*pi/4, 27*pi/4, 0)
References
==========
https://en.wikipedia.org/wiki/List_of_second_moments_of_area
"""
I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
I_xy = 0
if point is None:
return I_xx, I_yy, I_xy
# parallel axis theorem
I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
return I_xx, I_yy, I_xy
def polar_second_moment_of_area(self):
"""Returns the polar second moment of area of an Ellipse
It is a constituent of the second moment of area, linked through
the perpendicular axis theorem. While the planar second moment of
area describes an object's resistance to deflection (bending) when
subjected to a force applied to a plane parallel to the central
axis, the polar second moment of area describes an object's
resistance to deflection when subjected to a moment applied in a
plane perpendicular to the object's central axis (i.e. parallel to
the cross-section)
References
==========
https://en.wikipedia.org/wiki/Polar_moment_of_inertia
Examples
========
>>> from sympy import symbols, Circle, Ellipse
>>> c = Circle((5, 5), 4)
>>> c.polar_second_moment_of_area()
128*pi
>>> a, b = symbols('a, b')
>>> e = Ellipse((0, 0), a, b)
>>> e.polar_second_moment_of_area()
pi*a**3*b/4 + pi*a*b**3/4
"""
second_moment = self.second_moment_of_area()
return second_moment[0] + second_moment[1]
def section_modulus(self, point=None):
"""Returns a tuple with the section modulus of an ellipse
Section modulus is a geometric property of an ellipse defined as the
ratio of second moment of area to the distance of the extreme end of
the ellipse from the centroidal axis.
References
==========
https://en.wikipedia.org/wiki/Section_modulus
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point at which section modulus is to be found.
If "point=None" section modulus will be calculated for the
point farthest from the centroidal axis of the ellipse.
Returns
=======
S_x, S_y: numbers or SymPy expressions
S_x is the section modulus with respect to the x-axis
S_y is the section modulus with respect to the y-axis
A negative sign indicates that the section modulus is
determined for a point below the centroidal axis.
Examples
========
>>> from sympy import Symbol, Ellipse, Circle, Point2D
>>> d = Symbol('d', positive=True)
>>> c = Circle((0, 0), d/2)
>>> c.section_modulus()
(pi*d**3/32, pi*d**3/32)
>>> e = Ellipse(Point2D(0, 0), 2, 4)
>>> e.section_modulus()
(8*pi, 4*pi)
>>> e.section_modulus((2, 2))
(16*pi, 4*pi)
"""
x_c, y_c = self.center
if point is None:
# taking x and y as maximum distances from centroid
x_min, y_min, x_max, y_max = self.bounds
y = max(y_c - y_min, y_max - y_c)
x = max(x_c - x_min, x_max - x_c)
else:
# taking x and y as distances of the given point from the center
point = Point2D(point)
y = point.y - y_c
x = point.x - x_c
second_moment = self.second_moment_of_area()
S_x = second_moment[0]/y
S_y = second_moment[1]/x
return S_x, S_y
class Circle(Ellipse):
"""A circle in space.
Constructed simply from a center and a radius, from three
non-collinear points, or the equation of a circle.
Parameters
==========
center : Point
radius : number or sympy expression
points : sequence of three Points
equation : equation of a circle
Attributes
==========
radius (synonymous with hradius, vradius, major and minor)
circumference
equation
Raises
======
GeometryError
When the given equation is not that of a circle.
When trying to construct circle from incorrect parameters.
See Also
========
Ellipse, sympy.geometry.point.Point
Examples
========
>>> from sympy import Eq
>>> from sympy.geometry import Point, Circle
>>> from sympy.abc import x, y, a, b
A circle constructed from a center and radius:
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.hradius, c1.vradius, c1.radius
(5, 5, 5)
A circle constructed from three points:
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
>>> c2.hradius, c2.vradius, c2.radius, c2.center
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
A circle can be constructed from an equation in the form
`a*x**2 + by**2 + gx + hy + c = 0`, too:
>>> Circle(x**2 + y**2 - 25)
Circle(Point2D(0, 0), 5)
If the variables corresponding to x and y are named something
else, their name or symbol can be supplied:
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
Circle(Point2D(0, 0), 5)
"""
def __new__(cls, *args, **kwargs):
from sympy.geometry.util import find
from .polygon import Triangle
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
x = kwargs.get('x', 'x')
y = kwargs.get('y', 'y')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
x = find(x, equation)
y = find(y, equation)
try:
a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
except ValueError:
raise GeometryError("The given equation is not that of a circle.")
if a == 0 or b == 0 or a != b:
raise GeometryError("The given equation is not that of a circle.")
center_x = -c/a/2
center_y = -d/b/2
r2 = (center_x**2) + (center_y**2) - e
return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
else:
c, r = None, None
if len(args) == 3:
args = [Point(a, dim=2, evaluate=evaluate) for a in args]
t = Triangle(*args)
if not isinstance(t, Triangle):
return t
c = t.circumcenter
r = t.circumradius
elif len(args) == 2:
# Assume (center, radius) pair
c = Point(args[0], dim=2, evaluate=evaluate)
r = args[1]
# this will prohibit imaginary radius
try:
r = Point(r, 0, evaluate=evaluate).x
except ValueError:
raise GeometryError("Circle with imaginary radius is not permitted")
if not (c is None or r is None):
if r == 0:
return c
return GeometryEntity.__new__(cls, c, r, **kwargs)
raise GeometryError("Circle.__new__ received unknown arguments")
@property
def circumference(self):
"""The circumference of the circle.
Returns
=======
circumference : number or SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.circumference
12*pi
"""
return 2 * S.Pi * self.radius
def equation(self, x='x', y='y'):
"""The equation of the circle.
Parameters
==========
x : str or Symbol, optional
Default value is 'x'.
y : str or Symbol, optional
Default value is 'y'.
Returns
=======
equation : SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.equation()
x**2 + y**2 - 25
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (x - self.center.x)**2
t2 = (y - self.center.y)**2
return t1 + t2 - self.major**2
def intersection(self, o):
"""The intersection of this circle with another geometrical entity.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntities
Examples
========
>>> from sympy import Point, Circle, Line, Ray
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
>>> p4 = Point(5, 0)
>>> c1 = Circle(p1, 5)
>>> c1.intersection(p2)
[]
>>> c1.intersection(p4)
[Point2D(5, 0)]
>>> c1.intersection(Ray(p1, p2))
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
>>> c1.intersection(Line(p2, p3))
[]
"""
return Ellipse.intersection(self, o)
@property
def radius(self):
"""The radius of the circle.
Returns
=======
radius : number or sympy expression
See Also
========
Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.radius
6
"""
return self.args[1]
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
"""
c = self.center
c = c.reflect(line)
return self.func(c, -self.radius)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle
>>> Circle((0, 0), 1).scale(2, 2)
Circle(Point2D(0, 0), 2)
>>> Circle((0, 0), 1).scale(2, 4)
Ellipse(Point2D(0, 0), 2, 4)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
c = c.scale(x, y)
x, y = [abs(i) for i in (x, y)]
if x == y:
return self.func(c, x*self.radius)
h = v = self.radius
return Ellipse(c, hradius=h*x, vradius=v*y)
@property
def vradius(self):
"""
This Ellipse property is an alias for the Circle's radius.
Whereas hradius, major and minor can use Ellipse's conventions,
the vradius does not exist for a circle. It is always a positive
value in order that the Circle, like Polygons, will have an
area that can be positive or negative as determined by the sign
of the hradius.
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.vradius
6
"""
return abs(self.radius)
from .polygon import Polygon
|
0263e1d9cebec18238f867d3e526ba1a4bd634cb6636d8547d62ac55ec8494d8 | """The definition of the base geometrical entity with attributes common to
all derived geometrical entities.
Contains
========
GeometryEntity
GeometricSet
Notes
=====
A GeometryEntity is any object that has special geometric properties.
A GeometrySet is a superclass of any GeometryEntity that can also
be viewed as a sympy.sets.Set. In particular, points are the only
GeometryEntity not considered a Set.
Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
R3 are currently the only ambient spaces implemented.
"""
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.sympify import sympify
from sympy.functions import cos, sin
from sympy.matrices import eye
from sympy.multipledispatch import dispatch
from sympy.sets import Set
from sympy.sets.handlers.intersection import intersection_sets
from sympy.sets.handlers.union import union_sets
from sympy.utilities.misc import func_name
# How entities are ordered; used by __cmp__ in GeometryEntity
ordering_of_classes = [
"Point2D",
"Point3D",
"Point",
"Segment2D",
"Ray2D",
"Line2D",
"Segment3D",
"Line3D",
"Ray3D",
"Segment",
"Ray",
"Line",
"Plane",
"Triangle",
"RegularPolygon",
"Polygon",
"Circle",
"Ellipse",
"Curve",
"Parabola"
]
class GeometryEntity(Basic):
"""The base class for all geometrical entities.
This class doesn't represent any particular geometric entity, it only
provides the implementation of some methods common to all subclasses.
"""
def __cmp__(self, other):
"""Comparison of two GeometryEntities."""
n1 = self.__class__.__name__
n2 = other.__class__.__name__
c = (n1 > n2) - (n1 < n2)
if not c:
return 0
i1 = -1
for cls in self.__class__.__mro__:
try:
i1 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i1 = -1
if i1 == -1:
return c
i2 = -1
for cls in other.__class__.__mro__:
try:
i2 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i2 = -1
if i2 == -1:
return c
return (i1 > i2) - (i1 < i2)
def __contains__(self, other):
"""Subclasses should implement this method for anything more complex than equality."""
if type(self) == type(other):
return self == other
raise NotImplementedError()
def __getnewargs__(self):
"""Returns a tuple that will be passed to __new__ on unpickling."""
return tuple(self.args)
def __ne__(self, o):
"""Test inequality of two geometrical entities."""
return not self == o
def __new__(cls, *args, **kwargs):
# Points are sequences, but they should not
# be converted to Tuples, so use this detection function instead.
def is_seq_and_not_point(a):
# we cannot use isinstance(a, Point) since we cannot import Point
if hasattr(a, 'is_Point') and a.is_Point:
return False
return is_sequence(a)
args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
return Basic.__new__(cls, *args)
def __radd__(self, a):
"""Implementation of reverse add method."""
return a.__add__(self)
def __rtruediv__(self, a):
"""Implementation of reverse division method."""
return a.__truediv__(self)
def __repr__(self):
"""String representation of a GeometryEntity that can be evaluated
by sympy."""
return type(self).__name__ + repr(self.args)
def __rmul__(self, a):
"""Implementation of reverse multiplication method."""
return a.__mul__(self)
def __rsub__(self, a):
"""Implementation of reverse subtraction method."""
return a.__sub__(self)
def __str__(self):
"""String representation of a GeometryEntity."""
from sympy.printing import sstr
return type(self).__name__ + sstr(self.args)
def _eval_subs(self, old, new):
from sympy.geometry.point import Point, Point3D
if is_sequence(old) or is_sequence(new):
if isinstance(self, Point3D):
old = Point3D(old)
new = Point3D(new)
else:
old = Point(old)
new = Point(new)
return self._subs(old, new)
def _repr_svg_(self):
"""SVG representation of a GeometryEntity suitable for IPython"""
from sympy.core.evalf import N
try:
bounds = self.bounds
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
width="{1}" height="{2}" viewBox="{0}"
preserveAspectRatio="xMinYMin meet">
<defs>
<marker id="markerCircle" markerWidth="8" markerHeight="8"
refx="5" refy="5" markerUnits="strokeWidth">
<circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
</marker>
<marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
</marker>
<marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
</marker>
</defs>'''
# Establish SVG canvas that will fit all the data + small space
xmin, ymin, xmax, ymax = map(N, bounds)
if xmin == xmax and ymin == ymax:
# This is a point; buffer using an arbitrary size
xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
else:
# Expand bounds by a fraction of the data ranges
expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
widest_part = max([xmax - xmin, ymax - ymin])
expand_amount = widest_part * expand
xmin -= expand_amount
ymin -= expand_amount
xmax += expand_amount
ymax += expand_amount
dx = xmax - xmin
dy = ymax - ymin
width = min([max([100., dx]), 300])
height = min([max([100., dy]), 300])
scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
try:
svg = self._svg(scale_factor)
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
view_box = "{} {} {} {}".format(xmin, ymin, dx, dy)
transform = "matrix(1,0,0,-1,0,{})".format(ymax + ymin)
svg_top = svg_top.format(view_box, width, height)
return svg_top + (
'<g transform="{}">{}</g></svg>'
).format(transform, svg)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the GeometryEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
raise NotImplementedError()
def _sympy_(self):
return self
@property
def ambient_dimension(self):
"""What is the dimension of the space that the object is contained in?"""
raise NotImplementedError()
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
raise NotImplementedError()
def encloses(self, o):
"""
Return True if o is inside (not on or outside) the boundaries of self.
The object will be decomposed into Points and individual Entities need
only define an encloses_point method for their class.
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
sympy.geometry.polygon.Polygon.encloses_point
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t)
True
>>> t.encloses(t2)
False
"""
from sympy.geometry.point import Point
from sympy.geometry.line import Segment, Ray, Line
from sympy.geometry.ellipse import Ellipse
from sympy.geometry.polygon import Polygon, RegularPolygon
if isinstance(o, Point):
return self.encloses_point(o)
elif isinstance(o, Segment):
return all(self.encloses_point(x) for x in o.points)
elif isinstance(o, Ray) or isinstance(o, Line):
return False
elif isinstance(o, Ellipse):
return self.encloses_point(o.center) and \
self.encloses_point(
Point(o.center.x + o.hradius, o.center.y)) and \
not self.intersection(o)
elif isinstance(o, Polygon):
if isinstance(o, RegularPolygon):
if not self.encloses_point(o.center):
return False
return all(self.encloses_point(v) for v in o.vertices)
raise NotImplementedError()
def equals(self, o):
return self == o
def intersection(self, o):
"""
Returns a list of all of the intersections of self with o.
Notes
=====
An entity is not required to implement this method.
If two different types of entities can intersect, the item with
higher index in ordering_of_classes should implement
intersections with anything having a lower index.
See Also
========
sympy.geometry.util.intersection
"""
raise NotImplementedError()
def is_similar(self, other):
"""Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or
shrinking) of one of the entities will allow one to obtain the other.
Notes
=====
This method is not intended to be used directly but rather
through the `are_similar` function found in util.py.
An entity is not required to implement this method.
If two different types of entities can be similar, it is only
required that one of them be able to determine this.
See Also
========
scale
"""
raise NotImplementedError()
def reflect(self, line):
"""
Reflects an object across a line.
Parameters
==========
line: Line
Examples
========
>>> from sympy import pi, sqrt, Line, RegularPolygon
>>> l = Line((0, pi), slope=sqrt(2))
>>> pent = RegularPolygon((1, 2), 1, 5)
>>> rpent = pent.reflect(l)
>>> rpent
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
>>> from sympy import pi, Line, Circle, Point
>>> l = Line((0, pi), slope=1)
>>> circ = Circle(Point(0, 0), 5)
>>> rcirc = circ.reflect(l)
>>> rcirc
Circle(Point2D(-pi, pi), -5)
"""
from sympy import atan, Point, Dummy, oo
g = self
l = line
o = Point(0, 0)
if l.slope.is_zero:
y = l.args[0].y
if not y: # x-axis
return g.scale(y=-1)
reps = [(p, p.translate(y=2*(y - p.y))) for p in g.atoms(Point)]
elif l.slope is oo:
x = l.args[0].x
if not x: # y-axis
return g.scale(x=-1)
reps = [(p, p.translate(x=2*(x - p.x))) for p in g.atoms(Point)]
else:
if not hasattr(g, 'reflect') and not all(
isinstance(arg, Point) for arg in g.args):
raise NotImplementedError(
'reflect undefined or non-Point args in %s' % g)
a = atan(l.slope)
c = l.coefficients
d = -c[-1]/c[1] # y-intercept
# apply the transform to a single point
x, y = Dummy(), Dummy()
xf = Point(x, y)
xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
).rotate(a, o).translate(y=d)
# replace every point using that transform
reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
return g.xreplace(dict(reps))
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
The default pt is the origin, Point(0, 0)
See Also
========
scale, translate
Examples
========
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.rotate(angle, pt))
else:
newargs.append(a)
return type(self)(*newargs)
def scale(self, x=1, y=1, pt=None):
"""Scale the object by multiplying the x,y-coordinates by x and y.
If pt is given, the scaling is done relative to that point; the
object is shifted by -pt, scaled, and shifted by pt.
See Also
========
rotate, translate
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
"""
from sympy.geometry.point import Point
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
def translate(self, x=0, y=0):
"""Shift the object by adding to the x,y-coordinates the values x and y.
See Also
========
rotate, scale
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.translate(x, y))
else:
newargs.append(a)
return self.func(*newargs)
def parameter_value(self, other, t):
"""Return the parameter corresponding to the given point.
Evaluating an arbitrary point of the entity at this parameter
value will return the given point.
Examples
========
>>> from sympy import Line, Point
>>> from sympy.abc import t
>>> a = Point(0, 0)
>>> b = Point(2, 2)
>>> Line(a, b).parameter_value((1, 1), t)
{t: 1/2}
>>> Line(a, b).arbitrary_point(t).subs(_)
Point2D(1, 1)
"""
from sympy.geometry.point import Point
from sympy.core.symbol import Dummy
from sympy.solvers.solvers import solve
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
T = Dummy('t', real=True)
sol = solve(self.arbitrary_point(T) - other, T, dict=True)
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return {t: sol[0][T]}
class GeometrySet(GeometryEntity, Set):
"""Parent class of all GeometryEntity that are also Sets
(compatible with sympy.sets)
"""
def _contains(self, other):
"""sympy.sets uses the _contains method, so include it for compatibility."""
if isinstance(other, Set) and other.is_FiniteSet:
return all(self.__contains__(i) for i in other)
return self.__contains__(other)
@dispatch(GeometrySet, Set) # type:ignore # noqa:F811
def union_sets(self, o): # noqa:F811
""" Returns the union of self and o
for use with sympy.sets.Set, if possible. """
from sympy.sets import Union, FiniteSet
# if its a FiniteSet, merge any points
# we contain and return a union with the rest
if o.is_FiniteSet:
other_points = [p for p in o if not self._contains(p)]
if len(other_points) == len(o):
return None
return Union(self, FiniteSet(*other_points))
if self._contains(o):
return self
return None
@dispatch(GeometrySet, Set) # type: ignore # noqa:F811
def intersection_sets(self, o): # noqa:F811
""" Returns a sympy.sets.Set of intersection objects,
if possible. """
from sympy.sets import FiniteSet, Union
from sympy.geometry import Point
try:
# if o is a FiniteSet, find the intersection directly
# to avoid infinite recursion
if o.is_FiniteSet:
inter = FiniteSet(*(p for p in o if self.contains(p)))
else:
inter = self.intersection(o)
except NotImplementedError:
# sympy.sets.Set.reduce expects None if an object
# doesn't know how to simplify
return None
# put the points in a FiniteSet
points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
non_points = [p for p in inter if not isinstance(p, Point)]
return Union(*(non_points + [points]))
def translate(x, y):
"""Return the matrix to translate a 2-D point by x and y."""
rv = eye(3)
rv[2, 0] = x
rv[2, 1] = y
return rv
def scale(x, y, pt=None):
"""Return the matrix to multiply a 2-D point's coordinates by x and y.
If pt is given, the scaling is done relative to that point."""
rv = eye(3)
rv[0, 0] = x
rv[1, 1] = y
if pt:
from sympy.geometry.point import Point
pt = Point(pt, dim=2)
tr1 = translate(*(-pt).args)
tr2 = translate(*pt.args)
return tr1*rv*tr2
return rv
def rotate(th):
"""Return the matrix to rotate a 2-D point about the origin by ``angle``.
The angle is measured in radians. To Point a point about a point other
then the origin, translate the Point, do the rotation, and
translate it back:
>>> from sympy.geometry.entity import rotate, translate
>>> from sympy import Point, pi
>>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
>>> Point(1, 1).transform(rot_about_11)
Point2D(1, 1)
>>> Point(0, 0).transform(rot_about_11)
Point2D(2, 0)
"""
s = sin(th)
rv = eye(3)*cos(th)
rv[0, 1] = s
rv[1, 0] = -s
rv[2, 2] = 1
return rv
|
bb9632a35803c1b2ca73f2cc714d2ae10231b8a0a855f2b9136e94dffb156d43 | """Utility functions for geometrical entities.
Contains
========
intersection
convex_hull
closest_points
farthest_points
are_coplanar
are_similar
"""
from sympy import Function, Symbol, solve, sqrt
from sympy.core.compatibility import (
is_sequence, ordered)
from sympy.core.containers import OrderedSet
from .point import Point, Point2D
def find(x, equation):
"""
Checks whether the parameter 'x' is present in 'equation' or not.
If it is present then it returns the passed parameter 'x' as a free
symbol, else, it returns a ValueError.
"""
free = equation.free_symbols
xs = [i for i in free if (i.name if isinstance(x, str) else i) == x]
if not xs:
raise ValueError('could not find %s' % x)
if len(xs) != 1:
raise ValueError('ambiguous %s' % x)
return xs[0]
def _ordered_points(p):
"""Return the tuple of points sorted numerically according to args"""
return tuple(sorted(p, key=lambda x: x.args))
def are_coplanar(*e):
""" Returns True if the given entities are coplanar otherwise False
Parameters
==========
e: entities to be checked for being coplanar
Returns
=======
Boolean
Examples
========
>>> from sympy import Point3D, Line3D
>>> from sympy.geometry.util import are_coplanar
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
>>> are_coplanar(a, b, c)
False
"""
from sympy.geometry.line import LinearEntity3D
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point3D
from sympy.geometry.plane import Plane
# XXX update tests for coverage
e = set(e)
# first work with a Plane if present
for i in list(e):
if isinstance(i, Plane):
e.remove(i)
return all(p.is_coplanar(i) for p in e)
if all(isinstance(i, Point3D) for i in e):
if len(e) < 3:
return False
# remove pts that are collinear with 2 pts
a, b = e.pop(), e.pop()
for i in list(e):
if Point3D.are_collinear(a, b, i):
e.remove(i)
if not e:
return False
else:
# define a plane
p = Plane(a, b, e.pop())
for i in e:
if i not in p:
return False
return True
else:
pt3d = []
for i in e:
if isinstance(i, Point3D):
pt3d.append(i)
elif isinstance(i, LinearEntity3D):
pt3d.extend(i.args)
elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
# all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
for p in i.args:
if isinstance(p, Point):
pt3d.append(Point3D(*(p.args + (0,))))
return are_coplanar(*pt3d)
def are_similar(e1, e2):
"""Are two geometrical entities similar.
Can one geometrical entity be uniformly scaled to the other?
Parameters
==========
e1 : GeometryEntity
e2 : GeometryEntity
Returns
=======
are_similar : boolean
Raises
======
GeometryError
When `e1` and `e2` cannot be compared.
Notes
=====
If the two objects are equal then they are similar.
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy import Point, Circle, Triangle, are_similar
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
>>> are_similar(t1, t2)
True
>>> are_similar(t1, t3)
False
"""
from .exceptions import GeometryError
if e1 == e2:
return True
is_similar1 = getattr(e1, 'is_similar', None)
if is_similar1:
return is_similar1(e2)
is_similar2 = getattr(e2, 'is_similar', None)
if is_similar2:
return is_similar2(e1)
n1 = e1.__class__.__name__
n2 = e2.__class__.__name__
raise GeometryError(
"Cannot test similarity between %s and %s" % (n1, n2))
def centroid(*args):
"""Find the centroid (center of mass) of the collection containing only Points,
Segments or Polygons. The centroid is the weighted average of the individual centroid
where the weights are the lengths (of segments) or areas (of polygons).
Overlapping regions will add to the weight of that region.
If there are no objects (or a mixture of objects) then None is returned.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment,
sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy import Point, Segment, Polygon
>>> from sympy.geometry.util import centroid
>>> p = Polygon((0, 0), (10, 0), (10, 10))
>>> q = p.translate(0, 20)
>>> p.centroid, q.centroid
(Point2D(20/3, 10/3), Point2D(20/3, 70/3))
>>> centroid(p, q)
Point2D(20/3, 40/3)
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
>>> centroid(p, q)
Point2D(1, 2 - sqrt(2))
>>> centroid(Point(0, 0), Point(2, 0))
Point2D(1, 0)
Stacking 3 polygons on top of each other effectively triples the
weight of that polygon:
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
>>> centroid(p, q)
Point2D(3/2, 1/2)
>>> centroid(p, p, p, q) # centroid x-coord shifts left
Point2D(11/10, 1/2)
Stacking the squares vertically above and below p has the same
effect:
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point2D(11/10, 1/2)
"""
from sympy.geometry import Polygon, Segment, Point
if args:
if all(isinstance(g, Point) for g in args):
c = Point(0, 0)
for g in args:
c += g
den = len(args)
elif all(isinstance(g, Segment) for g in args):
c = Point(0, 0)
L = 0
for g in args:
l = g.length
c += g.midpoint*l
L += l
den = L
elif all(isinstance(g, Polygon) for g in args):
c = Point(0, 0)
A = 0
for g in args:
a = g.area
c += g.centroid*a
A += a
den = A
c /= den
return c.func(*[i.simplify() for i in c.args])
def closest_points(*args):
"""Return the subset of points from a set of points that were
the closest to each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
[2] Sweep line algorithm
https://en.wikipedia.org/wiki/Sweep_line_algorithm
Examples
========
>>> from sympy.geometry import closest_points, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> closest_points(*_)
{(Point2D(0, 0), Point2D(3, 0))}
"""
from collections import deque
from math import sqrt as _sqrt
from sympy.functions.elementary.miscellaneous import sqrt
p = [Point2D(i) for i in set(args)]
if len(p) < 2:
raise ValueError('At least 2 distinct points must be given.')
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
else:
from math import hypot
rv = [(0, 1)]
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
i = 2
left = 0
box = deque([0, 1])
while i < len(p):
while left < i and p[i][0] - p[left][0] > best_dist:
box.popleft()
left += 1
for j in box:
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
if d < best_dist:
rv = [(j, i)]
elif d == best_dist:
rv.append((j, i))
else:
continue
best_dist = d
box.append(i)
i += 1
return {tuple([p[i] for i in pair]) for pair in rv}
def convex_hull(*args, polygon=True):
"""The convex hull surrounding the Points contained in the list of entities.
Parameters
==========
args : a collection of Points, Segments and/or Polygons
Optional parameters
===================
polygon : Boolean. If True, returns a Polygon, if false a tuple, see below.
Default is True.
Returns
=======
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where
``L`` and ``U`` are the lower and upper hulls, respectively.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line.
References
==========
[1] https://en.wikipedia.org/wiki/Graham_scan
[2] Andrew's Monotone Chain Algorithm
(A.M. Andrew,
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
http://geomalgorithms.com/a10-_hull-1.html
See Also
========
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy.geometry import convex_hull
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
>>> convex_hull(*points, **dict(polygon=False))
([Point2D(-5, 2), Point2D(15, 4)],
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
"""
from .entity import GeometryEntity
from .point import Point
from .line import Segment
from .polygon import Polygon
p = OrderedSet()
for e in args:
if not isinstance(e, GeometryEntity):
try:
e = Point(e)
except NotImplementedError:
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
if isinstance(e, Point):
p.add(e)
elif isinstance(e, Segment):
p.update(e.points)
elif isinstance(e, Polygon):
p.update(e.vertices)
else:
raise NotImplementedError(
'Convex hull for %s not implemented.' % type(e))
# make sure all our points are of the same dimension
if any(len(x) != 2 for x in p):
raise ValueError('Can only compute the convex hull in two dimensions')
p = list(p)
if len(p) == 1:
return p[0] if polygon else (p[0], None)
elif len(p) == 2:
s = Segment(p[0], p[1])
return s if polygon else (s, None)
def _orientation(p, q, r):
'''Return positive if p-q-r are clockwise, neg if ccw, zero if
collinear.'''
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
# scan to find upper and lower convex hulls of a set of 2d points.
U = []
L = []
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
for p_i in p:
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
U.pop()
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
L.pop()
U.append(p_i)
L.append(p_i)
U.reverse()
convexHull = tuple(L + U[1:-1])
if len(convexHull) == 2:
s = Segment(convexHull[0], convexHull[1])
return s if polygon else (s, None)
if polygon:
return Polygon(*convexHull)
else:
U.reverse()
return (U, L)
def farthest_points(*args):
"""Return the subset of points from a set of points that were
the furthest apart from each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
[2] Rotating Callipers Technique
https://en.wikipedia.org/wiki/Rotating_calipers
Examples
========
>>> from sympy.geometry import farthest_points, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> farthest_points(*_)
{(Point2D(0, 0), Point2D(3, 4))}
"""
from math import sqrt as _sqrt
def rotatingCalipers(Points):
U, L = convex_hull(*Points, **dict(polygon=False))
if L is None:
if isinstance(U, Point):
raise ValueError('At least two distinct points must be given.')
yield U.args
else:
i = 0
j = len(L) - 1
while i < len(U) - 1 or j > 0:
yield U[i], L[j]
# if all the way through one side of hull, advance the other side
if i == len(U) - 1:
j -= 1
elif j == 0:
i += 1
# still points left on both lists, compare slopes of next hull edges
# being careful to avoid divide-by-zero in slope calculation
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
i += 1
else:
j -= 1
p = [Point2D(i) for i in set(args)]
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
else:
from math import hypot
rv = []
diam = 0
for pair in rotatingCalipers(args):
h, q = _ordered_points(pair)
d = hypot(h.x - q.x, h.y - q.y)
if d > diam:
rv = [(h, q)]
elif d == diam:
rv.append((h, q))
else:
continue
diam = d
return set(rv)
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = {y}
elif isinstance(y, Function):
pass
else:
raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
f = {s: Function(s.name)(x) for s in eq.free_symbols
if s != x and s in dep}
if isinstance(y, Symbol):
dydx = Function(y.name)(x).diff(x)
else:
dydx = y.diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
def intersection(*entities, pairwise=False, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy.geometry import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
from .entity import GeometryEntity
from .point import Point
if len(entities) <= 1:
return []
# entities may be an immutable tuple
entities = list(entities)
for i, e in enumerate(entities):
if not isinstance(e, GeometryEntity):
entities[i] = Point(e)
if not pairwise:
# find the intersection common to all objects
res = entities[0].intersection(entities[1])
for entity in entities[2:]:
newres = []
for x in res:
newres.extend(x.intersection(entity))
res = newres
return res
# find all pairwise intersections
ans = []
for j in range(0, len(entities)):
for k in range(j + 1, len(entities)):
ans.extend(intersection(entities[j], entities[k]))
return list(ordered(set(ans)))
|
eb98c67acff1e2ff3957665ca343336c14802b3cc570efc4ef638590a276cfe3 | """
This module implements Holonomic Functions and
various operations on them.
"""
from sympy import (Symbol, S, Dummy, Order, rf, I,
solve, limit, Float, nsimplify, gamma)
from sympy.core.compatibility import ordered
from sympy.core.numbers import NaN, Infinity, NegativeInfinity
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.exponential import exp_polar, exp
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.printing import sstr
from sympy.simplify.hyperexpand import hyperexpand
from .linearsolver import NewMatrix
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra:
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, str):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator:
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction:
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S.Zero)
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(0)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
# solving the linear system using gauss jordan solver
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero_matrix:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(S.Zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the intiial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if not i in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j in range(len(c)):
if c[j] == 0:
c2.append(S.Zero)
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(c[j] / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S.Zero]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S.Zero
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S.Zero
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[S.Zero for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = S.One
# making the ansatz
lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
homo_sys = [[S.Zero for q in range(a * b)]]
homo_sys = NewMatrix(homo_sys).transpose()
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
# until a non trivial solution is found
while sol[0].is_zero_matrix:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b].is_zero:
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = S.Zero
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = S.Zero
lin_sys.append([coeff_mul[i][j] for i in range(a)
for j in range(b)])
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S.Zero
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method can't compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S.One
system = [coeffs]
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
sol = S.Zero
while True:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
if sol.is_zero_matrix is not True:
break
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S.Zero
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S.Zero
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 --> x_2 --> x_3 ... --> x_n`.
Returns values of the function at :math:`x_1, x_2, ... x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S.Zero
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate through the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to `b` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S.Zero
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
r1 = 1
for i in range(len(a)):
r1 = r1 * (x * Dx + a[i])
r2 = Dx
for i in range(len(b)):
r2 = r2 * (x * Dx + b[i] - 1)
sol = r1 - r2
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simplified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
mnp = (-1)**(m + n - p)
r1 = x * mnp
for i in range(len(a)):
r1 *= x * Dx + 1 - a[i]
r2 = 1
for i in range(len(b)):
r2 *= x * Dx - b[i]
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
isn't able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in `x` appearing as coefficients
in the annihilator.
initcond:
Set it false if you don't want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
from sympy.core import Add, Mul, Pow
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S.One)
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S.Zero, )
bmq = (1 - i for i in bq)
k = S.One
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S.Zero
sol_q = S.Zero
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] == x else S.Zero
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] == x else S.Zero
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=[]):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
from sympy import (sin, cos, exp, log, erf, sqrt, pi,
sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
711b24dd9e0bac3b5808b337cc80545d2a1cfe619957cc78afbd483fadcfd840 | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import print_function, division
from typing import Any, Dict as tDict, List, Set
from abc import abstractmethod, ABCMeta
from collections import defaultdict
import operator
import itertools
from sympy import Rational, prod, Integer, default_sort_key
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.assumptions import ManagedProperties
from sympy.core.compatibility import reduce, SYMPY_INTS
from sympy.core.containers import Tuple, Dict
from sympy.core.decorators import deprecated
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.matrices import eye
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.decorator import memoize_property
import warnings
@deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4")
def deprecate_data():
pass
@deprecated(useinstead=".substitute_indices()", issue=17515,
deprecated_since_version="1.5")
def deprecate_fun_eval():
pass
@deprecated(useinstead="tensor_heads()", issue=17108,
deprecated_since_version="1.5")
def deprecate_TensorType():
pass
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py`` in combinatorics module
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm == 0 or h.comm == 1:
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = dict() # type: tDict[Any, Any]
_substitutions_dict_tensmul = dict() # type: tDict[Any, Any]
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, list(range(rank))))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, sympy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager(object):
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metirc
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the ``metric_symmetry`` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to ``None``)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the ``.set_metric()`` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
SymPyDeprecationWarning(useinstead="dummy_name",
feature="dummy_fmt", issue=17517,
deprecated_since_version="1.5").warn()
dummy_name = kwargs.get('dummy_fmt')
if isinstance(name, str):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, str):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, str):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(useinstead="metric_symmetry or .set_metric()",
feature="metric argument", issue=17517,
deprecated_since_version="1.5").warn()
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
#metric_antisym = metric
else:
metric_name = metric.name
#metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{0}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(useinstead="TensorSymmetry class constructor and methods", issue=17108,
deprecated_since_version="1.5")
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
deprecate_TensorType()
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(useinstead="TensorHead class constructor or tensor_heads()",
issue=17108, deprecated_since_version="1.5")
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
tensor = Tensor(self, indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power on abstract tensors.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class _TensorMetaclass(ManagedProperties, ABCMeta):
pass
class TensExpr(Expr, metaclass=_TensorMetaclass):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __truediv__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rtruediv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power without ndarray data.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
@property
@abstractmethod
def nocoeff(self):
raise NotImplementedError("abstract method")
@property
@abstractmethod
def coeff(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_indices(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_free_indices(self): # type: () -> List[TensorIndex]
raise NotImplementedError("abstract method")
@abstractmethod
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
raise NotImplementedError("abstract method")
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy import Matrix
deprecate_data()
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@staticmethod
def _contract_and_permute_with_metric(metric, array, pos, dim):
# TODO: add possibility of metric after (spinors)
from .array import tensorcontraction, tensorproduct, permutedims
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(dim))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape)])):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
def _expand_partial_derivative(self):
# simply delegate the _expand_partial_derivative() to
# its arguments to expand a possibly found PartialDerivative
return self.func(*[
a._expand_partial_derivative()
if isinstance(a, TensExpr) else a
for a in self.args])
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
args.sort(key=default_sort_key)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self): # type: () -> List[TensorIndex]
return self.free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
return self.func(*newargs)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].get_free_indices()
else:
return set()
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
if not isinstance(t, TensExpr):
return [], [], []
if hasattr(t, "_index_structure") and hasattr(t, "components"):
x = get_index_structure(t)
return t.components, x.free, x.dum
return [], [], []
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
def get_indices_set(x): # type: (Expr) -> Set[TensorIndex]
if isinstance(x, TensExpr):
return set(x.get_free_indices())
return set()
indices0 = get_indices_set(args[0]) # type: Set[TensorIndex]
list_indices = [get_indices_set(arg) for arg in args[1:]] # type: List[Set[TensorIndex]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set([])
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set([]):
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
def _eval_partial_derivative(self, s):
# Evaluation like Add
list_addends = []
for a in self.args:
if isinstance(a, TensExpr):
list_addends.append(a._eval_partial_derivative(s))
# do not call diff if s is no symbol
elif s._diff_wrt:
list_addends.append(a._eval_derivative(s))
return self.func(*list_addends)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
_index_structure = None # type: _IndexStructure
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free = obj._index_structure.free[:]
obj._dum = obj._index_structure.dum[:]
obj._ext_rank = obj._index_structure._ext_rank
obj._coeff = S.One
obj._nocoeff = obj
obj._component = tensor_head
obj._components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def free(self):
return self._free
@property
def dum(self):
return self._dum
@property
def ext_rank(self):
return self._ext_rank
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self._nocoeff
@property
def component(self):
return self._component
@property
def components(self):
return self._components
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **kwargs):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
def _get_free_indices_set(self):
return set([i[0] for i in self._index_structure.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos)
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> Tensor
# TODO: this could be optimized by only swapping the indices
# instead of visiting the whole expression tree:
return self.xreplace(repl)
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices1 = self.get_indices()
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
for pos in (p1, p2):
if indices1[pos].is_up ^ indices2[pos].is_up:
metric = replacement_dict[indices1[pos].tensor_index_type]
if indices1[pos].is_up:
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
if not isinstance(s, Tensor):
return S.Zero
else:
# @a_i/@a_k = delta_i^k
# @a_i/@a^k = g_ij delta^j_k
# @a^i/@a^k = delta^i_k
# @a^i/@a_k = g^ij delta_j^k
# TODO: if there is no metric present, the derivative should be zero?
if self.head != s.head:
return S.Zero
# if heads are the same, provide delta and/or metric products
# for every free index pair in the appropriate tensor
# assumed that the free indices are in proper order
# A contravariante index in the derivative becomes covariant
# after performing the derivative and vice versa
kronecker_delta_list = [1]
# not guarantee a correct index order
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
if iself.tensor_index_type != iother.tensor_index_type:
raise ValueError("index types not compatible")
else:
tensor_index_type = iself.tensor_index_type
tensor_metric = tensor_index_type.metric
dummy = TensorIndex("d_" + str(count), tensor_index_type,
is_up=iself.is_up)
if iself.is_up == iother.is_up:
kroneckerdelta = tensor_index_type.delta(iself, -iother)
else:
kroneckerdelta = (
TensMul(tensor_metric(iself, dummy),
tensor_index_type.delta(-dummy, -iother))
)
kronecker_delta_list.append(kroneckerdelta)
return TensMul.fromiter(kronecker_delta_list).doit()
# doit necessary to rename dummy indices accordingly
class TensMul(TensExpr, AssocOp):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
_index_structure = None # type: _IndexStructure
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types[:]
obj._index_structure = index_structure
obj._free = index_structure.free[:]
obj._dum = index_structure.dum[:]
obj._free_indices = set([x[0] for x in obj.free])
obj._rank = len(obj.free)
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
index_types = property(lambda self: self._index_types)
free = property(lambda self: self._free)
dum = property(lambda self: self._dum)
free_indices = property(lambda self: self._free_indices)
rank = property(lambda self: self._rank)
ext_rank = property(lambda self: self._ext_rank)
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all([_has_index_order(arg) for arg in args])
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **kwargs):
is_canon_bp = self._is_canon_bp
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return set([i[0] for i in self.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos)
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Returns the list of free indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in [0, 1]:
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = dict()
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s):
# Evaluation like Mul
terms = []
for i, arg in enumerate(self.args):
# checking whether some tensor instance is differentiated
# or some other thing is necessary, but ugly
if isinstance(arg, TensExpr):
d = arg._eval_partial_derivative(s)
else:
# do not call diff is s is no symbol
if s._diff_wrt:
d = arg._eval_derivative(s)
else:
d = S.Zero
if d:
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
return TensAdd.fromiter(terms)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self):
return self._free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
# TODO: can be improved:
return self.xreplace(repl)
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
41a068017a5a56c0a559511dff6d240e33ecad455ac8be768970e871dc4bd18b | r"""Module that defines indexed objects
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from __future__ import print_function, division
from sympy import Number
from sympy.core.assumptions import StdFactKB
from sympy.core import Expr, Tuple, sympify, S
from sympy.core.symbol import _filter_assumptions, Symbol
from sympy.core.compatibility import (is_sequence, NotIterable,
Iterable)
from sympy.core.logic import fuzzy_bool, fuzzy_not
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.multipledispatch import dispatch
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``:
``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``.
>>> A = IndexedBase('A')
>>> a_ij = A[i, j] # Prefer this,
>>> b_ij = Indexed(A, i, j) # over this.
>>> a_ij == b_ij
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.utilities.misc import filldedent
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (str, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
The base can only be replaced with a string, Symbol,
IndexedBase or an object with a method for getting
items (i.e. an object with a `__getitem__` method).
"""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
obj = Expr.__new__(cls, base, *args, **kw_args)
try:
IndexedBase._set_assumptions(obj, base.assumptions0)
except AttributeError:
IndexedBase._set_assumptions(obj, {})
return obj
def _hashable_content(self):
return super(Indexed, self)._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
from sympy.utilities.misc import filldedent
if self.base.shape:
return self.base.shape
sizes = []
for i in self.indices:
upper = getattr(i, 'upper', None)
lower = getattr(i, 'lower', None)
if None in (upper, lower):
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
try:
size = upper - lower + 1
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
sizes.append(size)
return Tuple(*sizes)
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
for i in self.indices:
sentinel = object()
upper = getattr(i, 'upper', sentinel)
lower = getattr(i, 'lower', sentinel)
if sentinel not in (upper, lower):
ranges.append(Tuple(lower, upper))
else:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
Assumptions can be specified with keyword arguments the same way as for Symbol:
>>> A_real = IndexedBase('A', real=True)
>>> A_real.is_real
True
>>> A != A_real
True
Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase:
>>> I = symbols('I', integer=True)
>>> C_inherit = IndexedBase(I)
>>> C_explicit = IndexedBase('I', integer=True)
>>> C_inherit == C_explicit
True
"""
is_commutative = True
is_symbol = True
is_Atom = True
@staticmethod
def _set_assumptions(obj, assumptions):
"""Set assumptions on obj, making sure to apply consistent values."""
tmp_asm_copy = assumptions.copy()
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
def __new__(cls, label, shape=None, *, offset=S.Zero, strides=None, **kw_args):
from sympy import MatrixBase, NDimArray
assumptions, kw_args = _filter_assumptions(kw_args)
if isinstance(label, str):
label = Symbol(label, **assumptions)
elif isinstance(label, Symbol):
assumptions = label._merge(assumptions)
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
IndexedBase._set_assumptions(obj, assumptions)
return obj
@property
def name(self):
return self._name
def _hashable_content(self):
return super(IndexedBase, self)._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
from sympy.utilities.misc import filldedent
if isinstance(label, str):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if (bound.is_integer is False and bound is not S.Infinity
and bound is not S.NegativeInfinity):
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if range is not S.Infinity and fuzzy_not(range.is_integer):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
@dispatch(Idx, Idx)
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs if rhs.upper is None else rhs.upper
other_lower = rhs if rhs.lower is None else rhs.lower
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Idx, Number)
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs
other_lower = rhs
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Number, Idx)
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = lhs
other_lower = lhs
if rhs.upper is not None and (rhs.upper <= other_lower) == True:
return True
if rhs.lower is not None and (rhs.lower > other_upper) == True:
return False
return None
|
ec5b3cb14fd3adc4001279de7f966d91249b03e9223a5af3d2f5f7dea28dabca | from typing import Dict, Any
import inspect
from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
# XXX: This parameter to dispatch isn't documented and isn't used anywhere in
# sympy. Maybe it should just be removed.
global_namespace = dict() # type: Dict[str, Any]
def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
""" Dispatch function on the types of the inputs
Supports dispatch on all non-keyword arguments.
Collects implementations based on the function name. Ignores namespaces.
If ambiguous type signatures occur a warning is raised when the function is
defined suggesting the additional method to break the ambiguity.
Examples
--------
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def f(x):
... return x + 1
>>> @dispatch(float)
... def f(x): # noqa: F811
... return x - 1
>>> f(3)
4
>>> f(3.0)
2.0
Specify an isolated namespace with the namespace keyword argument
>>> my_namespace = dict()
>>> @dispatch(int, namespace=my_namespace)
... def foo(x):
... return x + 1
Dispatch on instance methods within classes
>>> class MyClass(object):
... @dispatch(list)
... def __init__(self, data):
... self.data = data
... @dispatch(int)
... def __init__(self, datum): # noqa: F811
... self.data = [datum]
"""
types = tuple(types)
def _(func):
name = func.__name__
if ismethod(func):
dispatcher = inspect.currentframe().f_back.f_locals.get(
name,
MethodDispatcher(name))
else:
if name not in namespace:
namespace[name] = Dispatcher(name)
dispatcher = namespace[name]
dispatcher.add(types, func, on_ambiguity=on_ambiguity)
return dispatcher
return _
def ismethod(func):
""" Is func a method?
Note that this has to work as the method is defined but before the class is
defined. At this stage methods look like functions.
"""
signature = inspect.signature(func)
return signature.parameters.get('self', None) is not None
|
2e2e424537b50fe1d3fa153c83393278c73c61b0839da98717f1d33359e53615 | from typing import Set
from warnings import warn
import inspect
from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
from .utils import expand_tuples
import itertools as itl
class MDNotImplementedError(NotImplementedError):
""" A NotImplementedError for multiple dispatch """
### Functions for on_ambiguity
def ambiguity_warn(dispatcher, ambiguities):
""" Raise warning when ambiguity is detected
Parameters
----------
dispatcher : Dispatcher
The dispatcher on which the ambiguity was detected
ambiguities : set
Set of type signature pairs that are ambiguous within this dispatcher
See Also:
Dispatcher.add
warning_text
"""
warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
class RaiseNotImplementedError:
"""Raise ``NotImplementedError`` when called."""
def __init__(self, dispatcher):
self.dispatcher = dispatcher
def __call__(self, *args, **kwargs):
types = tuple(type(a) for a in args)
raise NotImplementedError(
"Ambiguous signature for %s: <%s>" % (
self.dispatcher.name, str_signature(types)
))
def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
"""
If super signature for ambiguous types is duplicate types, ignore it.
Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
Parameters
----------
dispatcher : Dispatcher
The dispatcher on which the ambiguity was detected
ambiguities : set
Set of type signature pairs that are ambiguous within this dispatcher
See Also:
Dispatcher.add
ambiguity_warn
"""
for amb in ambiguities:
signature = tuple(super_signature(amb))
if len(set(signature)) == 1:
continue
dispatcher.add(
signature, RaiseNotImplementedError(dispatcher),
on_ambiguity=ambiguity_register_error_ignore_dup
)
###
_unresolved_dispatchers = set() # type: Set[Dispatcher]
_resolve = [True]
def halt_ordering():
_resolve[0] = False
def restart_ordering(on_ambiguity=ambiguity_warn):
_resolve[0] = True
while _unresolved_dispatchers:
dispatcher = _unresolved_dispatchers.pop()
dispatcher.reorder(on_ambiguity=on_ambiguity)
class Dispatcher:
""" Dispatch methods based on type signature
Use ``dispatch`` to add implementations
Examples
--------
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def f(x):
... return x + 1
>>> @dispatch(float)
... def f(x): # noqa: F811
... return x - 1
>>> f(3)
4
>>> f(3.0)
2.0
"""
__slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
def __init__(self, name, doc=None):
self.name = self.__name__ = name
self.funcs = dict()
self._cache = dict()
self.ordering = []
self.doc = doc
def register(self, *types, **kwargs):
""" Register dispatcher with new implementation
>>> from sympy.multipledispatch.dispatcher import Dispatcher
>>> f = Dispatcher('f')
>>> @f.register(int)
... def inc(x):
... return x + 1
>>> @f.register(float)
... def dec(x):
... return x - 1
>>> @f.register(list)
... @f.register(tuple)
... def reverse(x):
... return x[::-1]
>>> f(1)
2
>>> f(1.0)
0.0
>>> f([1, 2, 3])
[3, 2, 1]
"""
def _(func):
self.add(types, func, **kwargs)
return func
return _
@classmethod
def get_func_params(cls, func):
if hasattr(inspect, "signature"):
sig = inspect.signature(func)
return sig.parameters.values()
@classmethod
def get_func_annotations(cls, func):
""" Get annotations of function positional parameters
"""
params = cls.get_func_params(func)
if params:
Parameter = inspect.Parameter
params = (param for param in params
if param.kind in
(Parameter.POSITIONAL_ONLY,
Parameter.POSITIONAL_OR_KEYWORD))
annotations = tuple(
param.annotation
for param in params)
if all(ann is not Parameter.empty for ann in annotations):
return annotations
def add(self, signature, func, on_ambiguity=ambiguity_warn):
""" Add new types/method pair to dispatcher
>>> from sympy.multipledispatch import Dispatcher
>>> D = Dispatcher('add')
>>> D.add((int, int), lambda x, y: x + y)
>>> D.add((float, float), lambda x, y: x + y)
>>> D(1, 2)
3
>>> D(1, 2.0)
Traceback (most recent call last):
...
NotImplementedError: Could not find signature for add: <int, float>
When ``add`` detects a warning it calls the ``on_ambiguity`` callback
with a dispatcher/itself, and a set of ambiguous type signature pairs
as inputs. See ``ambiguity_warn`` for an example.
"""
# Handle annotations
if not signature:
annotations = self.get_func_annotations(func)
if annotations:
signature = annotations
# Handle union types
if any(isinstance(typ, tuple) for typ in signature):
for typs in expand_tuples(signature):
self.add(typs, func, on_ambiguity)
return
for typ in signature:
if not isinstance(typ, type):
str_sig = ', '.join(c.__name__ if isinstance(c, type)
else str(c) for c in signature)
raise TypeError("Tried to dispatch on non-type: %s\n"
"In signature: <%s>\n"
"In function: %s" %
(typ, str_sig, self.name))
self.funcs[signature] = func
self.reorder(on_ambiguity=on_ambiguity)
self._cache.clear()
def reorder(self, on_ambiguity=ambiguity_warn):
if _resolve[0]:
self.ordering = ordering(self.funcs)
amb = ambiguities(self.funcs)
if amb:
on_ambiguity(self, amb)
else:
_unresolved_dispatchers.add(self)
def __call__(self, *args, **kwargs):
types = tuple([type(arg) for arg in args])
try:
func = self._cache[types]
except KeyError:
func = self.dispatch(*types)
if not func:
raise NotImplementedError(
'Could not find signature for %s: <%s>' %
(self.name, str_signature(types)))
self._cache[types] = func
try:
return func(*args, **kwargs)
except MDNotImplementedError:
funcs = self.dispatch_iter(*types)
next(funcs) # burn first
for func in funcs:
try:
return func(*args, **kwargs)
except MDNotImplementedError:
pass
raise NotImplementedError("Matching functions for "
"%s: <%s> found, but none completed successfully"
% (self.name, str_signature(types)))
def __str__(self):
return "<dispatched %s>" % self.name
__repr__ = __str__
def dispatch(self, *types):
""" Deterimine appropriate implementation for this type signature
This method is internal. Users should call this object as a function.
Implementation resolution occurs within the ``__call__`` method.
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def inc(x):
... return x + 1
>>> implementation = inc.dispatch(int)
>>> implementation(3)
4
>>> print(inc.dispatch(float))
None
See Also:
``sympy.multipledispatch.conflict`` - module to determine resolution order
"""
if types in self.funcs:
return self.funcs[types]
try:
return next(self.dispatch_iter(*types))
except StopIteration:
return None
def dispatch_iter(self, *types):
n = len(types)
for signature in self.ordering:
if len(signature) == n and all(map(issubclass, types, signature)):
result = self.funcs[signature]
yield result
def resolve(self, types):
""" Deterimine appropriate implementation for this type signature
.. deprecated:: 0.4.4
Use ``dispatch(*types)`` instead
"""
warn("resolve() is deprecated, use dispatch(*types)",
DeprecationWarning)
return self.dispatch(*types)
def __getstate__(self):
return {'name': self.name,
'funcs': self.funcs}
def __setstate__(self, d):
self.name = d['name']
self.funcs = d['funcs']
self.ordering = ordering(self.funcs)
self._cache = dict()
@property
def __doc__(self):
docs = ["Multiply dispatched method: %s" % self.name]
if self.doc:
docs.append(self.doc)
other = []
for sig in self.ordering[::-1]:
func = self.funcs[sig]
if func.__doc__:
s = 'Inputs: <%s>\n' % str_signature(sig)
s += '-' * len(s) + '\n'
s += func.__doc__.strip()
docs.append(s)
else:
other.append(str_signature(sig))
if other:
docs.append('Other signatures:\n ' + '\n '.join(other))
return '\n\n'.join(docs)
def _help(self, *args):
return self.dispatch(*map(type, args)).__doc__
def help(self, *args, **kwargs):
""" Print docstring for the function corresponding to inputs """
print(self._help(*args))
def _source(self, *args):
func = self.dispatch(*map(type, args))
if not func:
raise TypeError("No function found")
return source(func)
def source(self, *args, **kwargs):
""" Print source code for the function corresponding to inputs """
print(self._source(*args))
def source(func):
s = 'File: %s\n\n' % inspect.getsourcefile(func)
s = s + inspect.getsource(func)
return s
class MethodDispatcher(Dispatcher):
""" Dispatch methods based on type signature
See Also:
Dispatcher
"""
@classmethod
def get_func_params(cls, func):
if hasattr(inspect, "signature"):
sig = inspect.signature(func)
return itl.islice(sig.parameters.values(), 1, None)
def __get__(self, instance, owner):
self.obj = instance
self.cls = owner
return self
def __call__(self, *args, **kwargs):
types = tuple([type(arg) for arg in args])
func = self.dispatch(*types)
if not func:
raise NotImplementedError('Could not find signature for %s: <%s>' %
(self.name, str_signature(types)))
return func(self.obj, *args, **kwargs)
def str_signature(sig):
""" String representation of type signature
>>> from sympy.multipledispatch.dispatcher import str_signature
>>> str_signature((int, float))
'int, float'
"""
return ', '.join(cls.__name__ for cls in sig)
def warning_text(name, amb):
""" The text for ambiguity warnings """
text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
text += "The following signatures may result in ambiguous behavior:\n"
for pair in amb:
text += "\t" + \
', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
text += "\n\nConsider making the following additions:\n\n"
text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
+ ')\ndef %s(...)' % name for s in amb])
return text
|
1ff43737d7dc3c65e9ffa5d0b727b139d69dcf73b5fbb8e2e4babfa94271df62 | """
Boolean algebra module for SymPy
"""
from collections import defaultdict
from itertools import chain, combinations, product
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import ordered, as_int
from sympy.core.decorators import sympify_method_args, sympify_return
from sympy.core.function import Application, Derivative
from sympy.core.numbers import Number
from sympy.core.operations import LatticeOp
from sympy.core.singleton import Singleton, S
from sympy.core.sympify import converter, _sympify, sympify
from sympy.utilities.iterables import sift, ibin
from sympy.utilities.misc import filldedent
def as_Boolean(e):
"""Like bool, return the Boolean value of an expression, e,
which can be any instance of Boolean or bool.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(0) is false
True
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
>>> as_Boolean(nan)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `nan`.
"""
from sympy.core.symbol import Symbol
if e == True:
return S.true
if e == False:
return S.false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return S.false if z else S.true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
@sympify_method_args
class Boolean(Basic):
"""A boolean object is an object for which logic operations make sense."""
__slots__ = ()
@sympify_return([('other', 'Boolean')], NotImplemented)
def __and__(self, other):
return And(self, other)
__rand__ = __and__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __or__(self, other):
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __rshift__(self, other):
return Implies(self, other)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __lshift__(self, other):
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns True if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
FiniteSet(0)
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
return self.subs(reps)._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
class BooleanAtom(Boolean):
"""
Base class of BooleanTrue and BooleanFalse.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__truediv__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
class BooleanTrue(BooleanAtom, metaclass=Singleton):
"""
SymPy version of True, a singleton that can be accessed via S.true.
This is the SymPy version of True, for use in the logic module. The
primary advantage of using true instead of True is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the assumptions system uses a three-valued logic
(``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false``
represent a two-valued logic. When in doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Don't compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __bool__(self):
return True
def __hash__(self):
return hash(True)
@property
def negated(self):
return S.false
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet
"""
return S.UniversalSet
class BooleanFalse(BooleanAtom, metaclass=Singleton):
"""
SymPy version of False, a singleton that can be accessed via S.false.
This is the SymPy version of False, for use in the logic module. The
primary advantage of using false instead of False is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
False they act bitwise on 0. Functions in the logic module will return this
class when they evaluate to false.
Notes
======
See note in :py:class`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __bool__(self):
return False
def __hash__(self):
return hash(False)
@property
def negated(self):
return S.true
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
converter[bool] = lambda x: S.true if x else S.false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for And, Or, Not, etc.
"""
is_Boolean = True
def _eval_simplify(self, **kwargs):
rv = self.func(*[
a._eval_simplify(**kwargs) for a in self.args])
return simplify_logic(rv)
def simplify(self, **kwargs):
from sympy.simplify.simplify import simplify
return simplify(self, **kwargs)
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin:
for r in rel:
if x in bin and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
S.true in r.args or
S.false in r.args):
reps[r] = S.false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
def to_anf(self, deep=True):
return self._to_anf(*self.args, deep=deep)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set()
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
@classmethod
def _to_anf(cls, *args, **kwargs):
deep = kwargs.get('deep', True)
argset = set()
for arg in args:
if deep:
if not is_literal(arg) or isinstance(arg, Not):
arg = arg.to_anf(deep=deep)
argset.add(arg)
else:
argset.add(arg)
return cls(*argset, remove_true=False)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
from sympy.core.relational import Eq
from sympy.functions.elementary.piecewise import Piecewise
if x in self.binary_symbols:
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
def _apply_patternbased_simplification(self, rv, patterns, measure,
dominatingvalue,
replacementvalue=None):
"""
Replace patterns of Relational
Parameters
==========
rv : Expr
Boolean expression
patterns : tuple
Tuple of tuples, with (pattern to simplify, simplified pattern)
measure : function
Simplification measure
dominatingvalue : boolean or None
The dominating value for the function of consideration.
For example, for And S.false is dominating. As soon as one
expression is S.false in And, the whole expression is S.false.
replacementvalue : boolean or None, optional
The resulting value for the whole expression if one argument
evaluates to dominatingvalue.
For example, for Nand S.false is dominating, but in this case
the resulting value is S.true. Default is None. If replacementvalue
is None and dominatingvalue is not None,
replacementvalue = dominatingvalue
"""
from sympy.core.relational import Relational, _canonical
if replacementvalue is None and dominatingvalue is not None:
replacementvalue = dominatingvalue
# Use replacement patterns for Relationals
changed = True
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if len(Rel) <= 1:
return rv
Rel, nonRealRel = sift(Rel, lambda i: all(s.is_real is not False
for s in i.free_symbols),
binary=True)
Rel = [i.canonical for i in Rel]
while changed and len(Rel) >= 2:
changed = False
# Sort based on ordered
Rel = list(ordered(Rel))
# Create a list of possible replacements
results = []
# Try all combinations
for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2):
for k, (pattern, simp) in enumerate(patterns):
res = []
# use SymPy matching
oldexpr = rv.func(pi, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing first relational
# This and the rest should not be required with a better
# canonical
oldexpr = rv.func(pi.reversed, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing second relational
oldexpr = rv.func(pi, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing both relationals
oldexpr = rv.func(pi.reversed, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.subs(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return replacementvalue
# add replacement
if not isinstance(np, ITE):
# We only want to use ITE replacements if
# they simplify to a relational
costsaving = measure(oldexpr) - measure(np)
if costsaving > 0:
results.append((costsaving, (i, j, np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
cost, replacement = results[0]
i, j, newrel = replacement
# Remove the old relationals
del Rel[j]
del Rel[i]
if dominatingvalue is None or newrel != ~dominatingvalue:
# Insert the new one (no need to insert a value that will
# not affect the result)
Rel.append(newrel)
# We did change something so try again
changed = True
rv = rv.func(*([_canonical(i) for i in ordered(Rel)]
+ nonRel + nonRealRel))
return rv
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, giving False immediately
if any of them are False, and True if they are all True.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will return different things if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
args = BooleanFunction.binary_check_and_simplify(*args)
args = LatticeOp._new_args_filter(args, And)
newargs = []
rel = set()
for x in ordered(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
elif c.negated.canonical in rel:
return [S.false]
else:
rel.add(c)
newargs.append(x)
return newargs
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == False:
return S.false
elif i != True:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
return self.func(*args)
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
if not eqs:
return rv
measure, ratio = kwargs['measure'], kwargs['ratio']
reps = {}
sifted = {}
if eqs:
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if e.lhs != x or x in e.rhs.free_symbols:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.func(e.rhs, reps[x]))
else:
reps[x] = e.rhs
eqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.subs(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel))
patterns = simplify_patterns_and()
return self._apply_patternbased_simplification(rv, patterns,
measure, False)
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nor(self, *args, **kwargs):
return Nor(*[Not(arg) for arg in self.args])
def to_anf(self, deep=True):
if deep:
result = And._to_anf(*self.args, deep=deep)
return distribute_xor_over_and(result)
return self
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, giving True immediately
if any of them are True, and False if they are all False.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [S.true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == True:
return S.true
elif i != False:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
return self.func(*args)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nand(self, *args, **kwargs):
return Nand(*[Not(arg) for arg in self.args])
def _eval_simplify(self, **kwargs):
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, Or):
return rv
patterns = simplify_patterns_or()
return self._apply_patternbased_simplification(rv, patterns,
kwargs['measure'], S.true)
def to_anf(self, deep=True):
args = range(1, len(self.args) + 1)
args = (combinations(self.args, j) for j in args)
args = chain.from_iterable(args) # powerset
args = (And(*arg) for arg in args)
args = map(lambda x: to_anf(x, deep=deep) if deep else x, args)
return Xor(*list(args), remove_true=False)
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns True if the statement is False
Returns False if the statement is True
Examples
========
>>> from sympy.logic.boolalg import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
from sympy import (
Equality, GreaterThan, LessThan,
StrictGreaterThan, StrictLessThan, Unequality)
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if isinstance(arg, Equality):
return Unequality(*arg.args)
if isinstance(arg, Unequality):
return Equality(*arg.args)
if isinstance(arg, StrictLessThan):
return GreaterThan(*arg.args)
if isinstance(arg, StrictGreaterThan):
return LessThan(*arg.args)
if isinstance(arg, LessThan):
return StrictGreaterThan(*arg.args)
if isinstance(arg, GreaterThan):
return StrictLessThan(*arg.args)
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, ~b, simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[~arg for arg in args]),
simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [~s if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
def to_anf(self, deep=True):
return Xor._to_anf(true, self.args[0], deep=deep)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
x ^ y
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, remove_true=True, **kwargs):
argset = set()
obj = super().__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, r.negated.canonical)
for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset and remove_true:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [~s if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
def _eval_rewrite_as_Or(self, *args, **kwargs):
a = self.args
return Or(*[_convert_to_varsSOP(x, self.args)
for x in _get_odd_parity_terms(len(a))])
def _eval_rewrite_as_And(self, *args, **kwargs):
a = self.args
return And(*[_convert_to_varsPOS(x, self.args)
for x in _get_even_parity_terms(len(a))])
def _eval_simplify(self, **kwargs):
# as standard simplify uses simplify_logic which writes things as
# And and Or, we only simplify the partial expressions before using
# patterns
rv = self.func(*[a._eval_simplify(**kwargs) for a in self.args])
if not isinstance(rv, Xor): # This shouldn't really happen here
return rv
patterns = simplify_patterns_xor()
return self._apply_patternbased_simplification(rv, patterns,
kwargs['measure'], None)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
"""
Logical implication.
A implies B is equivalent to !A v B
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(True if x else False)
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A == True or A == False or B == True or B == False:
return Or(Not(A), B)
elif A == B:
return S.true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return S.true
if A.negated.canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(~a, b, simplify=simplify)
def to_anf(self, deep=True):
a, b = self.args
return Xor._to_anf(true, a, And(a, b), deep=deep)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
Equivalent(A, B) is True iff A and B are both True or both False
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(True if x else False)
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, r.negated.canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[~arg for arg in argset])
_args = frozenset(argset)
obj = super().__new__(cls, _args)
obj._argset = _args
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(~a, b))
args.append(Or(~self.args[-1], self.args[0]))
return And._to_nnf(*args, simplify=simplify)
def to_anf(self, deep=True):
a = And(*self.args)
b = And(*[to_anf(Not(arg), deep=False) for arg in self.args])
b = distribute_xor_over_and(b)
return Xor._to_anf(a, b, deep=deep)
class ITE(BooleanFunction):
"""
If then else clause.
ITE(A, B, C) evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is S.true:
a = a.rhs
elif a.rhs is S.true:
a = a.lhs
elif a.lhs is S.false:
a = ~a.rhs
elif a.rhs is S.false:
a = ~a.lhs
else:
# binary can only equal True or False
a = S.false
if isinstance(_a, Ne):
a = ~a
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if S.true in a.args:
a = a.lhs if a.rhs is S.true else a.rhs
elif S.false in a.args:
a = ~a.lhs if a.rhs is S.false else ~a.rhs
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = ~a
if a is S.true:
return b
if a is S.false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is S.true and c is S.false:
return a
if b is S.false and c is S.true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
# end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in the expr s.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in the sentence s.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def distribute_xor_over_and(expr):
"""
Given a sentence s consisting of conjunction and
exclusive disjunctions of literals, return an
equivalent exclusive disjunction.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not
>>> from sympy.abc import A, B, C
>>> distribute_xor_over_and(And(Xor(Not(A), B), C))
(B & C) ^ (C & ~A)
"""
return _distribute((expr, Xor, And))
def _distribute(info):
"""
Distributes info[1] over info[2] with respect to info[0].
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2])
for c in conj.args])), remove_true=False)
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2])
for x in info[0].args])),
remove_true=False)
else:
return info[0]
def to_anf(expr, deep=True):
r"""
Converts expr to Algebraic Normal Form (ANF).
ANF is a canonical normal form, which means that two
equivalent formulas will convert to the same ANF.
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it can be:
- purely true,
- purely false,
- conjunction of variables,
- exclusive disjunction.
The exclusive disjunction can only contain true, variables
or conjunction of variables. No negations are permitted.
If ``deep`` is ``False``, arguments of the boolean
expression are considered variables, i.e. only the
top-level expression is converted to ANF.
Examples
========
>>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent
>>> from sympy.logic.boolalg import to_anf
>>> from sympy.abc import A, B, C
>>> to_anf(Not(A))
A ^ True
>>> to_anf(And(Or(A, B), Not(C)))
A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C)
>>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False)
True ^ ~A ^ (~A & (Equivalent(B, C)))
"""
expr = sympify(expr)
if is_anf(expr):
return expr
return expr.to_anf(deep=deep)
def to_nnf(expr, simplify=True):
"""
Converts expr to Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplify is True, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence s to conjunctive normal
form: ((A | ~B | ...) & (B | C | ...) & ...).
If simplify is True, the expr is evaluated to its simplest CNF
form using the Quine-McCluskey algorithm; this may take a long
time if there are more than 8 variables and requires that the
``force`` flag be set to True (default is False).
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'cnf', True, force=force)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
res = distribute_and_over_or(expr)
return res
def to_dnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence s to disjunctive normal
form: ((A & ~B & ...) | (B & C & ...) | ...).
If simplify is True, the expr is evaluated to its simplest DNF form using
the Quine-McCluskey algorithm; this may take a long
time if there are more than 8 variables and requires that the
``force`` flag be set to True (default is False).
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'dnf', True, force=force)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_anf(expr):
r"""
Checks if expr is in Algebraic Normal Form (ANF).
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it is purely true, purely false, conjunction of
variables or exclusive disjunction. The exclusive
disjunction can only contain true, variables or
conjunction of variables. No negations are permitted.
Examples
========
>>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf
>>> from sympy.abc import A, B, C
>>> is_anf(true)
True
>>> is_anf(A)
True
>>> is_anf(And(A, B, C))
True
>>> is_anf(Xor(A, Not(B)))
False
"""
expr = sympify(expr)
if is_literal(expr) and not isinstance(expr, Not):
return True
if isinstance(expr, And):
for arg in expr.args:
if not arg.is_Symbol:
return False
return True
elif isinstance(expr, Xor):
for arg in expr.args:
if isinstance(arg, And):
for a in arg.args:
if not a.is_Symbol:
return False
elif is_literal(arg):
if isinstance(arg, Not):
return False
else:
return False
return True
else:
return False
def is_nnf(expr, simplified=True):
"""
Checks if expr is in Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplified is True, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
vals = function1.make_args(expr) if isinstance(expr, function1) else [expr]
for lit in vals:
if isinstance(lit, function2):
vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit]
for l in vals2:
if is_literal(l) is False:
return False
elif is_literal(lit) is False:
return False
return True
def eliminate_implications(expr):
"""
Change >>, <<, and Equivalent into &, |, and ~. That is, return an
expression that is equivalent to s, but has only &, |, and ~ as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
if isinstance(expr, Not):
return is_literal(expr.args[0])
elif expr in (True, False) or expr.is_Atom:
return True
elif not isinstance(expr, BooleanFunction) and all(
a.is_Atom for a in expr.args):
return True
return False
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1)))))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [{append_symbol(arg, symbols) for arg in Or.make_args(c)}
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by ``term``.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
def integer_to_term(k, n_bits=None):
"""
Return a list of the base-2 digits in the integer, ``k``.
Parameters
==========
k : int
n_bits : int
If ``n_bits`` is given and the number of digits in the binary
representation of ``k`` is smaller than ``n_bits`` then left-pad the
list with 0s.
Examples
========
>>> from sympy.logic.boolalg import integer_to_term
>>> integer_to_term(4)
[1, 0, 0]
>>> integer_to_term(4, 6)
[0, 0, 0, 1, 0, 0]
"""
s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0)))
return list(map(int, s))
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : string or boolean expression
variables : list of variables
input : boolean (default True)
indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If input is false, truth_table returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.logic.boolalg import integer_to_term
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, integer_to_term(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product([0, 1], repeat=len(variables))
for term in table:
term = list(term)
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield term, value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns -1.
"""
index = -1
for x, (i, j) in enumerate(zip(minterm1, minterm2)):
if i != j:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = []
for i, m in enumerate(minterm):
if m == 0:
temp.append(Not(variables[i]))
elif m == 1:
temp.append(variables[i])
else:
pass # ignore the 3s
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = []
for i, m in enumerate(maxterm):
if m == 1:
temp.append(Not(variables[i]))
elif m == 0:
temp.append(variables[i])
else:
pass # ignore the 3s
return Or(*temp)
def _convert_to_varsANF(term, variables):
"""
Converts a term in the expansion of a function from binary to it's
variable form (for ANF).
Parameters
==========
term : list of 1's and 0's (complementation patter)
variables : list of variables
"""
temp = []
for i, m in enumerate(term):
if m == 1:
temp.append(variables[i])
else:
pass # ignore 0s
if temp == []:
return BooleanTrue()
return And(*temp)
def _get_odd_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an odd number of ones.
"""
op = []
for i in range(1, 2**n):
e = ibin(i, n)
if sum(e) % 2 == 1:
op.append(e)
return op
def _get_even_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an even number of ones.
"""
op = []
for i in range(2**n):
e = ibin(i, n)
if sum(e) % 2 == 0:
op.append(e)
return op
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
simplified_terms = []
todo = list(range(len(terms)))
for i, ti in enumerate(terms[:-1]):
for j_i, tj in enumerate(terms[(i + 1):]):
index = _check_pair(ti, tj)
if index != -1:
todo[i] = todo[j_i + i + 1] = None
newterm = ti[:]
newterm[index] = 3
if newterm not in simplified_terms:
simplified_terms.append(newterm)
simplified_terms.extend(
[terms[i] for i in [_ for _ in todo if _ is not None]])
return simplified_terms
def _compare_term(minterm, term):
"""
Return True if a binary term is satisfied by the given term. Used
for recognizing prime implicants.
"""
for i, x in enumerate(term):
if x != 3 and x != minterm[i]:
return False
return True
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
if len(terms):
# Create dominating matrix
dommatrix = [[0]*len(l1) for n in range(len(terms))]
for primei, prime in enumerate(l1):
for termi, term in enumerate(terms):
if _compare_term(term, prime):
dommatrix[termi][primei] = 1
# Non-dominated prime implicants, dominated set to None
ndprimeimplicants = list(range(len(l1)))
# Non-dominated terms, dominated set to None
ndterms = list(range(len(terms)))
# Mark dominated rows and columns
oldndterms = None
oldndprimeimplicants = None
while ndterms != oldndterms or \
ndprimeimplicants != oldndprimeimplicants:
oldndterms = ndterms[:]
oldndprimeimplicants = ndprimeimplicants[:]
for rowi, row in enumerate(dommatrix):
if ndterms[rowi] is not None:
row = [row[i] for i in
[_ for _ in ndprimeimplicants if _ is not None]]
for row2i, row2 in enumerate(dommatrix):
if rowi != row2i and ndterms[row2i] is not None:
row2 = [row2[i] for i in
[_ for _ in ndprimeimplicants
if _ is not None]]
if all(a >= b for (a, b) in zip(row2, row)):
# row2 dominating row, keep row
ndterms[row2i] = None
for coli in range(len(l1)):
if ndprimeimplicants[coli] is not None:
col = [dommatrix[a][coli] for a in range(len(terms))]
col = [col[i] for i in
[_ for _ in oldndterms if _ is not None]]
for col2i in range(len(l1)):
if coli != col2i and \
ndprimeimplicants[col2i] is not None:
col2 = [dommatrix[a][col2i]
for a in range(len(terms))]
col2 = [col2[i] for i in
[_ for _ in oldndterms if _ is not None]]
if all(a >= b for (a, b) in zip(col, col2)):
# col dominating col2, keep col
ndprimeimplicants[col2i] = None
l1 = [l1[i] for i in [_ for _ in ndprimeimplicants if _ is not None]]
return l1
else:
return []
def _input_to_binlist(inputlist, variables):
binlist = []
bits = len(variables)
for val in inputlist:
if isinstance(val, int):
binlist.append(ibin(val, bits))
elif isinstance(val, dict):
nonspecvars = list(variables)
for key in val.keys():
nonspecvars.remove(key)
for t in product([0, 1], repeat=len(nonspecvars)):
d = dict(zip(nonspecvars, t))
d.update(val)
binlist.append([d[v] for v in variables])
elif isinstance(val, (list, tuple)):
if len(val) != bits:
raise ValueError("Each term must contain {} bits as there are"
"\n{} variables (or be an integer)."
"".format(bits, bits))
binlist.append(list(val))
else:
raise TypeError("A term list can only contain lists,"
" ints or dicts.")
return binlist
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest Sum of Products form.
The variables must be given as the first argument.
Return a logical Or function (i.e., the "sum of products" or "SOP"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (x & y & z) | (~w & ~y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
old = None
new = minterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest Product of Sums form.
The variables must be given as the first argument.
Return a logical And function (i.e., the "product of sums" or "POS"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product([0, 1], repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
old = None
new = maxterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def ANFform(variables, truthvalues):
"""
The ANFform function converts the list of truth values to
Algebraic Normal Form (ANF).
The variables must be given as the first argument.
Return True, False, logical And funciton (i.e., the
"Zhegalkin monomial") or logical Xor function (i.e.,
the "Zhegalkin polynomial"). When True and False
are represented by 1 and 0, respectively, then
And is multiplication and Xor is addition.
Formally a "Zhegalkin monomial" is the product (logical
And) of a finite set of distinct variables, including
the empty set whose product is denoted 1 (True).
A "Zhegalkin polynomial" is the sum (logical Xor) of a
set of Zhegalkin monomials, with the empty set denoted
by 0 (False).
Parameters
==========
variables : list of variables
truthvalues : list of 1's and 0's (result column of truth table)
Examples
========
>>> from sympy.logic.boolalg import ANFform
>>> from sympy.abc import x, y
>>> ANFform([x], [1, 0])
x ^ True
>>> ANFform([x, y], [0, 1, 1, 1])
x ^ y ^ (x & y)
References
==========
.. [2] https://en.wikipedia.org/wiki/Zhegalkin_polynomial
"""
n_vars = len(variables)
n_values = len(truthvalues)
if n_values != 2 ** n_vars:
raise ValueError("The number of truth values must be equal to 2^%d, "
"got %d" % (n_vars, n_values))
variables = [sympify(v) for v in variables]
coeffs = anf_coeffs(truthvalues)
terms = []
for i, t in enumerate(product([0, 1], repeat=n_vars)):
if coeffs[i] == 1:
terms.append(t)
return Xor(*[_convert_to_varsANF(x, variables) for x in terms],
remove_true=False)
def anf_coeffs(truthvalues):
"""
Convert a list of truth values of some boolean expression
to the list of coefficients of the polynomial mod 2 (exclusive
disjunction) representing the boolean expression in ANF
(i.e., the "Zhegalkin polynomial").
There are 2^n possible Zhegalkin monomials in n variables, since
each monomial is fully specified by the presence or absence of
each variable.
We can enumerate all the monomials. For example, boolean
function with four variables (a, b, c, d) can contain
up to 2^4 = 16 monomials. The 13-th monomial is the
product a & b & d, because 13 in binary is 1, 1, 0, 1.
A given monomial's presence or absence in a polynomial corresponds
to that monomial's coefficient being 1 or 0 respectively.
Examples
========
>>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor
>>> from sympy.abc import a, b, c
>>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1]
>>> coeffs = anf_coeffs(truthvalues)
>>> coeffs
[0, 1, 1, 0, 0, 0, 1, 0]
>>> polynomial = Xor(*[
... bool_monomial(k, [a, b, c])
... for k, coeff in enumerate(coeffs) if coeff == 1
... ])
>>> polynomial
b ^ c ^ (a & b)
"""
s = '{:b}'.format(len(truthvalues))
n = len(s) - 1
if len(truthvalues) != 2**n:
raise ValueError("The number of truth values must be a power of two, "
"got %d" % len(truthvalues))
coeffs = [[v] for v in truthvalues]
for i in range(n):
tmp = []
for j in range(2 ** (n-i-1)):
tmp.append(coeffs[2*j] +
list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1])))
coeffs = tmp
return coeffs[0]
def bool_minterm(k, variables):
"""
Return the k-th minterm.
Minterms are numbered by a binary encoding of the complementation
pattern of the variables. This convention assigns the value 1 to
the direct form and 0 to the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation patter)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_minterm
>>> from sympy.abc import x, y, z
>>> bool_minterm([1, 0, 1], [x, y, z])
x & z & ~y
>>> bool_minterm(6, [x, y, z])
x & y & ~z
References
==========
.. [3] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms
"""
if isinstance(k, int):
k = integer_to_term(k, len(variables))
variables = list(map(sympify, variables))
return _convert_to_varsSOP(k, variables)
def bool_maxterm(k, variables):
"""
Return the k-th maxterm.
Each maxterm is assigned an index based on the opposite
conventional binary encoding used for minterms. The maxterm
convention assigns the value 0 to the direct form and 1 to
the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation pattern)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_maxterm
>>> from sympy.abc import x, y, z
>>> bool_maxterm([1, 0, 1], [x, y, z])
y | ~x | ~z
>>> bool_maxterm(6, [x, y, z])
z | ~x | ~y
References
==========
.. [4] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms
"""
if isinstance(k, int):
k = integer_to_term(k, len(variables))
variables = list(map(sympify, variables))
return _convert_to_varsPOS(k, variables)
def bool_monomial(k, variables):
"""
Return the k-th monomial.
Monomials are numbered by a binary encoding of the presence and
absences of the variables. This convention assigns the value
1 to the presence of variable and 0 to the absence of variable.
Each boolean function can be uniquely represented by a
Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin
Polynomial of the boolean function with n variables can contain
up to 2^n monomials. We can enumarate all the monomials.
Each monomial is fully specified by the presence or absence
of each variable.
For example, boolean function with four variables (a, b, c, d)
can contain up to 2^4 = 16 monomials. The 13-th monomial is the
product a & b & d, because 13 in binary is 1, 1, 0, 1.
Parameters
==========
k : int or list of 1's and 0's
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_monomial
>>> from sympy.abc import x, y, z
>>> bool_monomial([1, 0, 1], [x, y, z])
x & z
>>> bool_monomial(6, [x, y, z])
x & y
"""
if isinstance(k, int):
k = integer_to_term(k, len(variables))
variables = list(map(sympify, variables))
return _convert_to_varsANF(k, variables)
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(_find_predicates(i) for i in expr.args))
def simplify_logic(expr, form=None, deep=True, force=False):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an Or or And object in SymPy.
Parameters
==========
expr : string or boolean expression
form : string ('cnf' or 'dnf') or None (default).
If 'cnf' or 'dnf', the simplest expression in the corresponding
normal form is returned; if None, the answer is returned
according to the form with fewest args (in CNF by default).
deep : boolean (default True)
Indicates whether to recursively simplify any
non-boolean functions contained within the input.
force : boolean (default False)
As the simplifications require exponential time in the number
of variables, there is by default a limit on expressions with
8 variables. When the expression has more than 8 variables
only symbolical simplification (controlled by ``deep``) is
made. By setting force to ``True``, this limit is removed. Be
aware that this can lead to very long simplification times.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> S(b)
(z & ~x & ~y) | (~x & ~y & ~z)
>>> simplify_logic(_)
~x & ~y
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
# check for quick exit: right form and all args are
# literal and do not involve Not
isc = is_cnf(expr)
isd = is_dnf(expr)
form_ok = (
isc and form == 'cnf' or
isd and form == 'dnf')
if form_ok and all(is_literal(a)
for a in expr.args):
return expr
if deep:
variables = _find_predicates(expr)
from sympy.simplify.simplify import simplify
s = [simplify(v) for v in variables]
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# get variables in case not deep or after doing
# deep simplification since they may have changed
variables = _find_predicates(expr)
if not force and len(variables) > 8:
return expr
# group into constants and variable values
c, v = sift(variables, lambda x: x in (True, False), binary=True)
variables = c + v
truthtable = []
# standardize constants to be 1 or 0 in keeping with truthtable
c = [1 if i == True else 0 for i in c]
for t in product([0, 1], repeat=len(v)):
if expr.xreplace(dict(zip(v, t))) == True:
truthtable.append(c + list(t))
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return SOPform(variables, truthtable)
return POSform(variables, truthtable)
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol;
# of times it appeared as a Not(symbol);
# of times it appeared as a Symbol in an And or Or;
# of times it appeared as a Not(Symbol) in an And or Or;
a sorted tuple of tuples, (i, j, k), where i is the number of arguments
in an And or Or with which it appeared as a Symbol, and j is
the number of arguments that were Not(Symbol); k is the number
of times that (i, j) was seen.
]
Examples
========
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not, Xor, to_cnf, symbols
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, ((2, 0, 1),)): [x],
(0, 0, 1, 0, ((2, 1, 1),)): [a, b],
(0, 0, 1, 2, ((2, 0, 1),)): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]}
In the following, the (5, 2, 6) means that there were 6 Or
functions in which a symbol appeared as itself amongst 5 arguments in
which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)``
is counted once for a0, a1 and a2.
>>> dict(finger(to_cnf(Xor(*symbols('a:5')))))
{(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args), sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1][o] += 1
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()]))
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of bool1, and the mapping of variables
that makes the two expressions bool1 and bool2 represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, And(x, y) is logically equivalent to And(a, b) for
the mapping {x: a, y:b} or {x: b, y:a}.
If no such mapping exists, return False.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
And(x, Not(y), Or(w, Not(z))).
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification makes them the same?
if len(function1.args) != len(function2.args):
return None # maybe simplification makes them the same?
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
def simplify_patterns_and():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# With a better canonical fewer results are required
_matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)),
(And(Eq(a, b), Gt(a, b)), S.false),
(And(Eq(a, b), Le(a, b)), Eq(a, b)),
(And(Eq(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Gt(a, b)), Gt(a, b)),
(And(Ge(a, b), Le(a, b)), Eq(a, b)),
(And(Ge(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Ne(a, b)), Gt(a, b)),
(And(Gt(a, b), Le(a, b)), S.false),
(And(Gt(a, b), Lt(a, b)), S.false),
(And(Gt(a, b), Ne(a, b)), Gt(a, b)),
(And(Le(a, b), Lt(a, b)), Lt(a, b)),
(And(Le(a, b), Ne(a, b)), Lt(a, b)),
(And(Lt(a, b), Ne(a, b)), Lt(a, b)),
# Min/max
(And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))),
(And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))),
(And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))),
(And(Le(a, b), Le(a, c)), Le(a, Min(b, c))),
(And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))),
(And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))),
# Sign
(And(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))),
)
return _matchers_and
def simplify_patterns_or():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)),
(Or(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Or(Eq(a, b), Le(a, b)), Le(a, b)),
(Or(Eq(a, b), Lt(a, b)), Le(a, b)),
(Or(Ge(a, b), Gt(a, b)), Ge(a, b)),
(Or(Ge(a, b), Le(a, b)), S.true),
(Or(Ge(a, b), Lt(a, b)), S.true),
(Or(Ge(a, b), Ne(a, b)), S.true),
(Or(Gt(a, b), Le(a, b)), S.true),
(Or(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Or(Gt(a, b), Ne(a, b)), Ne(a, b)),
(Or(Le(a, b), Lt(a, b)), Le(a, b)),
(Or(Le(a, b), Ne(a, b)), S.true),
(Or(Lt(a, b), Ne(a, b)), Ne(a, b)),
# Min/max
(Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))),
(Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))),
(Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))),
(Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))),
(Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))),
(Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))),
)
return _matchers_or
def simplify_patterns_xor():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)),
(Xor(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Xor(Eq(a, b), Le(a, b)), Lt(a, b)),
(Xor(Eq(a, b), Lt(a, b)), Le(a, b)),
(Xor(Ge(a, b), Gt(a, b)), Eq(a, b)),
(Xor(Ge(a, b), Le(a, b)), Ne(a, b)),
(Xor(Ge(a, b), Lt(a, b)), S.true),
(Xor(Ge(a, b), Ne(a, b)), Le(a, b)),
(Xor(Gt(a, b), Le(a, b)), S.true),
(Xor(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Xor(Gt(a, b), Ne(a, b)), Lt(a, b)),
(Xor(Le(a, b), Lt(a, b)), Eq(a, b)),
(Xor(Le(a, b), Ne(a, b)), Ge(a, b)),
(Xor(Lt(a, b), Ne(a, b)), Gt(a, b)),
# Min/max
(Xor(Ge(a, b), Ge(a, c)),
And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))),
(Xor(Ge(a, b), Gt(a, c)),
ITE(b > c, And(Gt(a, c), Lt(a, b)),
And(Ge(a, b), Le(a, c)))),
(Xor(Gt(a, b), Gt(a, c)),
And(Gt(a, Min(b, c)), Le(a, Max(b, c)))),
(Xor(Le(a, b), Le(a, c)),
And(Le(a, Max(b, c)), Gt(a, Min(b, c)))),
(Xor(Le(a, b), Lt(a, c)),
ITE(b < c, And(Lt(a, c), Gt(a, b)),
And(Le(a, b), Ge(a, c)))),
(Xor(Lt(a, b), Lt(a, c)),
And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))),
)
return _matchers_xor
|
d9b86e09c9782061552d34a2117d110b463efa8832c2c19134ce6c553c357cb1 | """
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from sympy.core.logic import FuzzyBool
from collections import defaultdict
from inspect import isfunction
from sympy.assumptions.refine import refine
from sympy.core import SympifyError, Add
from sympy.core.basic import Atom
from sympy.core.compatibility import (
Iterable, as_int, is_sequence, reduce)
from sympy.core.decorators import call_highest_priority
from sympy.core.logic import fuzzy_and
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions import Abs
from sympy.polys.polytools import Poly
from sympy.simplify import simplify as _simplify
from sympy.simplify.simplify import dotprodsimp as _dotprodsimp
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
from .utilities import _get_intermediate_simp_bool
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class NonInvertibleMatrixError(ValueError, MatrixError):
"""The matrix in not invertible (division by multidimensional zero error)."""
pass
class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
"""The matrix is not a positive-definite matrix."""
pass
class MatrixRequired:
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None # type: int
cols = None # type: int
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combintion of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
@property
def shape(self):
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
lambda i, j: entry(i, j))
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_todok(self):
dok = {}
rows, cols = self.shape
for i in range(rows):
for j in range(cols):
val = self[i, j]
if val != self.zero:
dok[i, j] = val
return dok
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def _eval_vech(self, diagonal):
c = self.cols
v = []
if diagonal:
for j in range(c):
for i in range(j, c):
v.append(self[i, j])
else:
for j in range(c):
for i in range(j + 1, c):
v.append(self[i, j])
return self._new(len(v), 1, v)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise IndexError("Column {} is out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"`self` and `other` must have the same number of rows.")
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
sympy.matrices.dense.MutableDenseMatrix.col_op
sympy.matrices.dense.MutableDenseMatrix.col_swap
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
-n <= i < n where n is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise IndexError("Row {} is out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
return self._eval_row_join(other)
def diagonal(self, k=0):
"""Returns the kth diagonal of self. The main diagonal
corresponds to `k=0`; diagonals above and below correspond to
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
for which `j - i = k`, are returned in order of increasing
`i + j`, starting with `i + j = |k|`.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]])
>>> _.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[-2]])
Even though the diagonal is returned as a Matrix, the element
retrieval can be done with a single index:
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
2
See Also
========
diag - to create a diagonal matrix
"""
rv = []
k = as_int(k)
r = 0 if k > 0 else -k
c = 0 if r else k
while True:
if r == self.rows or c == self.cols:
break
rv.append(self[r, c])
r += 1
c += 1
if not rv:
raise ValueError(filldedent('''
The %s diagonal is out of range [%s, %s]''' % (
k, 1 - self.rows, self.cols - 1)))
return self._new(1, len(rv), rv)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
sympy.matrices.dense.MutableDenseMatrix.row_op
sympy.matrices.dense.MutableDenseMatrix.row_swap
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy.matrices import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def todok(self):
"""Return the matrix as dictionary of keys.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix.eye(3)
>>> M.todok()
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
"""
return self._eval_todok()
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
def vech(self, diagonal=True, check_symmetry=True):
"""Reshapes the matrix into a column vector by stacking the
elements in the lower triangle.
Parameters
==========
diagonal : bool, optional
If ``True``, it includes the diagonal elements.
check_symmetry : bool, optional
If ``True``, it checks whether the matrix is symmetric.
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
Notes
=====
This should work for symmetric matrices and ``vech`` can
represent symmetric matrices in vector form with less size than
``vec``.
See Also
========
vec
"""
if not self.is_square:
raise NonSquareMatrixError
if check_symmetry and not self.is_symmetric():
raise ValueError("The matrix is not symmetric.")
return self._eval_vech(diagonal)
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
def entry(i, j):
return cls.one if i == j else cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return cls.one
return cls.zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return cls.one
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return cls.one
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
def entry(i, j):
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy.matrices import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matrices. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
When `unpack` is False, elements within a list need not all be
of the same length. Setting `strict` to True would raise a
ValueError for the following:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy.matrices import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
See Also
========
eye
diagonal - to extract a diagonal
.dense.diag
.expressions.blockmatrix.BlockMatrix
.sparsetools.banded - to create multi-diagonal matrices
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
from sympy.matrices.sparse import SparseMatrix
klass = kwargs.get('cls', kls)
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
rmax = cmax = 0 # keep track of the biggest index seen
for m in args:
if isinstance(m, list):
if strict:
# if malformed, Matrix will raise an error
_ = Matrix(m)
r, c = _.shape
m = _.tolist()
else:
r, c, smat = SparseMatrix._handle_creation_inputs(m)
for (i, j), _ in smat.items():
diag_entries[(i + rmax, j + cmax)] = _
m = [] # to skip process below
elif hasattr(m, 'shape'): # a Matrix
# convert to list of lists
r, c = m.shape
m = m.tolist()
else: # in this case, we're a single value
diag_entries[(rmax, cmax)] = m
rmax += 1
cmax += 1
continue
# process list of lists
for i in range(len(m)):
for j, _ in enumerate(m[i]):
diag_entries[(i + rmax, j + cmax)] = _
rmax += r
cmax += c
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = rmax, cmax
else:
cols = rows if cols is None else cols
if rows < rmax or cols < cmax:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(rmax, cmax, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
rows, cols : Integer, optional
Specifies the shape of the Jordan block matrix. See Notes
section for the details of how these key works.
.. note::
This feature will be deprecated in the future.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Notes
=====
.. note::
This feature will be deprecated in the future.
The keyword arguments ``size``, ``rows``, ``cols`` relates to
the Jordan block size specifications.
If you want to create a square Jordan block, specify either
one of the three arguments.
If you want to create a rectangular Jordan block, specify
``rows`` and ``cols`` individually.
+--------------------------------+---------------------+
| Arguments Given | Matrix Shape |
+----------+----------+----------+----------+----------+
| size | rows | cols | rows | cols |
+==========+==========+==========+==========+==========+
| size | Any | size | size |
+----------+----------+----------+----------+----------+
| | None | ValueError |
| +----------+----------+----------+----------+
| None | rows | None | rows | rows |
| +----------+----------+----------+----------+
| | None | cols | cols | cols |
+ +----------+----------+----------+----------+
| | rows | cols | rows | cols |
+----------+----------+----------+----------+----------+
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
if 'rows' in kwargs or 'cols' in kwargs:
SymPyDeprecationWarning(
feature="Keyword arguments 'rows' or 'cols'",
issue=16102,
useinstead="a more generic banded matrix constructor",
deprecated_since_version="1.4"
).warn()
klass = kwargs.pop('cls', kls)
rows = kwargs.pop('rows', None)
cols = kwargs.pop('cols', None)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if (size, rows, cols) == (None, None, None):
raise ValueError("Must supply a matrix size")
if size is not None:
rows, cols = size, size
elif rows is not None and cols is None:
cols = rows
elif cols is not None and rows is None:
rows = cols
rows, cols = as_int(rows), as_int(cols)
return klass._eval_jordan_block(rows, cols, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
@classmethod
def companion(kls, poly):
"""Returns a companion matrix of a polynomial.
Examples
========
>>> from sympy import Matrix, Poly, Symbol, symbols
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> Matrix.companion(p)
Matrix([
[0, 0, 0, 0, -c0],
[1, 0, 0, 0, -c1],
[0, 1, 0, 0, -c2],
[0, 0, 1, 0, -c3],
[0, 0, 0, 1, -c4]])
"""
poly = kls._sympify(poly)
if not isinstance(poly, Poly):
raise ValueError("{} must be a Poly instance.".format(poly))
if not poly.is_monic:
raise ValueError("{} must be a monic polynomial.".format(poly))
if not poly.is_univariate:
raise ValueError(
"{} must be a univariate polynomial.".format(poly))
size = poly.degree()
if not size >= 1:
raise ValueError(
"{} must have degree not less than 1.".format(poly))
coeffs = poly.all_coeffs()
def entry(i, j):
if j == size - 1:
return -coeffs[-1 - i]
elif i == j + 1:
return kls.one
return kls.zero
return kls._new(size, size, entry)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self if i))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general sympy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero_matrix
def _eval_is_Identity(self) -> FuzzyBool:
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j)
for i in range(self.rows)
for j in range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero_matrix
def _eval_is_zero_matrix(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def _has_positive_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and((x.is_positive for x in diagonal_entries))
def _has_nonnegative_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and((x.is_nonnegative for x in diagonal_entries))
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
>>> Matrix([[x, y], [y, x]])
Matrix([
[x, y],
[y, x]])
>>> _.atoms()
{x, y}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2 , 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite wouldn't
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If 'simplify=False' is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
sympy.matrices.matrices.MatrixEigen.is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_weakly_diagonally_dominant(self):
r"""Tests if the matrix is row weakly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row weakly diagonally dominant if
.. math::
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_weakly_diagonally_dominant
True
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_weakly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_weakly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_nonnegative
return fuzzy_and((test_row(i) for i in range(rows)))
@property
def is_strongly_diagonally_dominant(self):
r"""Tests if the matrix is row strongly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row strongly diagonally dominant if
.. math::
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_strongly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_positive
return fuzzy_and((test_row(i) for i in range(rows)))
@property
def is_hermitian(self):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
return self._eval_is_matrix_hermitian(_simplify)
@property
def is_Identity(self) -> FuzzyBool:
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero_matrix(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero_matrix
True
>>> b.is_zero_matrix
True
>>> c.is_zero_matrix
False
>>> d.is_zero_matrix
True
>>> e.is_zero_matrix
"""
return self._eval_is_zero_matrix()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self): # type: ignore
from sympy.functions.elementary.complexes import re, im
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self, deep=True, **hints):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
# XXX: Ignoring deep and hints...
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> from sympy import I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **kwargs):
return self.applyfunc(lambda x: x.doit())
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""Apply evalf() to each element of self."""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
return self.applyfunc(lambda i: i.evalf(n, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
r"""Permute the rows or columns of a matrix by the given list of
swaps.
Parameters
==========
perm : Permutation, list, or list of lists
A representation for the permutation.
If it is ``Permutation``, it is used directly with some
resizing with respect to the matrix size.
If it is specified as list of lists,
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
from applying the product of cycles. The direction how the
cyclic product is applied is described in below.
If it is specified as a list, the list should represent
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
would would form the swapping function
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
orientation : 'rows', 'cols'
A flag to control whether to permute the rows or the columns
direction : 'forward', 'backward'
A flag to control whether to apply the permutations from
the start of the list first, or from the back of the list
first.
For example, if the permutation specification is
``[[0, 1], [0, 2]]``,
If the flag is set to ``'forward'``, the cycle would be
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
If the flag is set to ``'backward'``, the cycle would be
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
If the argument ``perm`` is not in a form of list of lists,
this flag takes no effect.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Notes
=====
If a bijective function
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
permutation.
If the matrix `A` is the matrix to permute, represented as
a horizontal or a vertical stack of vectors:
.. math::
A =
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
\end{bmatrix}
If the matrix `B` is the result, the permutation of matrix rows
is defined as:
.. math::
B := \begin{bmatrix}
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
\end{bmatrix}
And the permutation of matrix columns is defined as:
.. math::
B := \begin{bmatrix}
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
\cdots & \alpha_{\sigma(n-1)}
\end{bmatrix}
"""
from sympy.combinatorics import Permutation
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
if not isinstance(perm, (Permutation, Iterable)):
raise ValueError(
"{} must be a list, a list of lists, "
"or a SymPy permutation object.".format(perm))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
if perm and not isinstance(perm, Permutation) and \
isinstance(perm[0], Iterable):
if direction == 'forward':
perm = list(reversed(perm))
perm = Permutation(perm, size=max_index+1)
else:
perm = Permutation(perm, size=max_index+1)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='cols', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='rows', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False, simultaneous=True, exact=None):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(
lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
def rot90(self, k=1):
"""Rotates Matrix by 90 degrees
Parameters
==========
k : int
Specifies how many times the matrix is rotated by 90 degrees
(clockwise when positive, counter-clockwise when negative).
Examples
========
>>> from sympy import Matrix, symbols
>>> A = Matrix(2, 2, symbols('a:d'))
>>> A
Matrix([
[a, b],
[c, d]])
Rotating the matrix clockwise one time:
>>> A.rot90(1)
Matrix([
[c, a],
[d, b]])
Rotating the matrix anticlockwise two times:
>>> A.rot90(-2)
Matrix([
[d, c],
[b, a]])
"""
mod = k%4
if mod == 0:
return self
if mod == 1:
return self[::-1, ::].T
if mod == 2:
return self[::-1, ::-1]
if mod == 3:
return self[::, ::-1].T
def simplify(self, **kwargs):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import sin, cos
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(**kwargs))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
args = (list(args[0]),)
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
@property
def C(self):
'''By-element conjugation'''
return self.conjugate()
def n(self, *args, **kwargs):
"""Apply evalf() to each element of self."""
return self.evalf(*args, **kwargs)
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
def _eval_simplify(self, **kwargs):
# XXX: We can't use self.simplify here as mutable subclasses will
# override simplify and have it return None
return MatrixOperations.simplify(self, **kwargs)
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
try:
return Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
return reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion(num - 1)
else:
a = b = self._eval_pow_by_recursion(num // 2)
return a.multiply(b)
def _eval_pow_by_cayley(self, exp):
from sympy.discrete.recurrences import linrec_coeffs
row = self.shape[0]
p = self.charpoly()
coeffs = (-p).all_coeffs()[1:]
coeffs = linrec_coeffs(coeffs, exp)
new_mat = self.eye(row)
ans = self.zeros(row)
for i in range(row):
ans += coeffs[i]*new_mat
new_mat *= self
return ans
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
if prevsimp is None:
prevsimp = [True]*len(self)
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
prevsimp=prevsimp)
else:
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
prevsimp=prevsimp)
m = a.multiply(b, dotprodsimp=False)
lenm = len(m)
elems = [None]*lenm
for i in range(lenm):
if prevsimp[i]:
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
else:
elems[i] = m[i]
return m._new(m.rows, m.cols, elems)
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
from sympy import Mod
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes don't match."""
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * (self.one / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
def __mod__(self, other):
return self.applyfunc(lambda x: x % other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
return self.multiply(other)
def multiply(self, other, dotprodsimp=None):
"""Same as __mul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_mul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.matrices.MatrixBase.cross
sympy.matrices.matrices.MatrixBase.dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, exp):
"""Return self**exp a scalar or symbol."""
return self.pow(exp)
def pow(self, exp, method=None):
r"""Return self**exp a scalar or symbol.
Parameters
==========
method : multiply, mulsimp, jordan, cayley
If multiply then it returns exponentiation using recursion.
If jordan then Jordan form exponentiation will be used.
If cayley then the exponentiation is done using Cayley-Hamilton
theorem.
If mulsimp then the exponentiation is done using recursion
with dotprodsimp. This specifies whether intermediate term
algebraic simplification is used during naive matrix power to
control expression blowup and thus speed up calculation.
If None, then it heuristically decides which method to use.
"""
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
raise TypeError('No such method')
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
exp = sympify(exp)
if exp.is_zero:
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
if exp == 1:
return a
diagonal = getattr(a, 'is_diagonal', None)
if diagonal is not None and diagonal():
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
if exp.is_Number and exp % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**exp]])
if exp < 0:
exp = -exp
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
if method == 'jordan':
try:
return jordan_pow(exp)
except MatrixError:
if method == 'jordan':
raise
elif method == 'cayley':
if not exp.is_Number or exp % 1 != 0:
raise ValueError("cayley method is only valid for integer powers")
return a._eval_pow_by_cayley(exp)
elif method == "mulsimp":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("mulsimp method is only valid for integer powers")
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif method == "multiply":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("multiply method is only valid for integer powers")
return a._eval_pow_by_recursion(exp)
elif method is None and exp.is_Number and exp % 1 == 0:
# Decide heuristically which method to apply
if a.rows == 2 and exp > 100000:
return jordan_pow(exp)
elif _get_intermediate_simp_bool(True, None):
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif exp > 10000:
return a._eval_pow_by_cayley(exp)
else:
return a._eval_pow_by_recursion(exp)
if jordan_pow:
try:
return jordan_pow(exp)
except NonInvertibleMatrixError:
# Raised by jordan_pow on zero determinant matrix unless exp is
# definitely known to be a non-negative integer.
# Here we raise if n is definitely not a non-negative integer
# but otherwise we can leave this as an unevaluated MatPow.
if exp.is_integer is False or exp.is_nonnegative is False:
raise
from sympy.matrices.expressions import MatPow
return MatPow(a, exp)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self.rmultiply(other)
def rmultiply(self, other, dotprodsimp=None):
"""Same as __rmul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_rmul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True # type: bool
class _MinimalMatrix:
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
zero = S.Zero
one = S.One
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice don't have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _CastableMatrix: # this is needed here ONLY FOR TESTS.
def as_mutable(self):
return self
def as_immutable(self):
return self
class _MatrixWrapper:
"""Wrapper class providing the minimum functionality for a matrix-like
object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
math operations should work on matrix-like objects. This one is intended for
matrix-like objects which use the same indexing format as SymPy with respect
to returning matrix elements instead of rows for non-tuple indexes.
"""
is_Matrix = False # needs to be here because of __getattr__
is_MatrixLike = True
def __init__(self, mat, shape):
self.mat = mat
self.shape = shape
self.rows, self.cols = shape
def __getitem__(self, key):
if isinstance(key, tuple):
return sympify(self.mat.__getitem__(key))
return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
def __iter__(self): # supports numpy.matrix and numpy.array
mat = self.mat
cols = self.cols
return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
return mat
if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
return mat
shape = None
if hasattr(mat, 'shape'): # numpy, scipy.sparse
if len(mat.shape) == 2:
shape = mat.shape
elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
shape = (mat.rows, mat.cols)
if shape:
return _MatrixWrapper(mat, shape)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if type(j) is not int:
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
e7323aca47dbbc3b21c20e3d15200d4b5b8d44c7698336bc08b8fd9927ef91e0 | import random
from sympy.core import SympifyError, Add
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, reduce
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import \
a2idx, classof, ShapeError
from sympy.matrices.matrices import MatrixBase
from sympy.simplify.simplify import simplify as _simplify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import filldedent
from .decompositions import _cholesky, _LDLdecomposition
from .solvers import _lower_triangular_solve, _upper_triangular_solve
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
def _compare_sequence(a, b):
"""Compares the elements of a list/tuple `a`
and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])`
is True, whereas `(1,2) == [1, 2]` is False"""
if type(a) is type(b):
# if they are the same type, compare directly
return a == b
# there is no overhead for calling `tuple` on a
# tuple
return tuple(a) == tuple(b)
class DenseMatrix(MatrixBase):
is_MatrixExpr = False # type: bool
_op_priority = 10.01
_class_priority = 4
def __eq__(self, other):
other = sympify(other)
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, Matrix):
return _compare_sequence(self._mat, other._mat)
elif isinstance(other, MatrixBase):
return _compare_sequence(self._mat, Matrix(other)._mat)
def __getitem__(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._mat[i*self.cols + j]
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
i = range(self.rows)[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
j = range(self.cols)[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# row-wise decomposition of matrix
if isinstance(key, slice):
return self._mat[key]
return self._mat[a2idx(key)]
def __setitem__(self, key, value):
raise NotImplementedError()
def _eval_add(self, other):
# we assume both arguments are dense matrices since
# sparse matrices have a higher priority
mat = [a + b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_extract(self, rowsList, colsList):
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices), copy=False)
def _eval_matrix_mul(self, other):
other_len = other.rows*other.cols
new_len = self.rows*other.cols
new_mat = [self.zero]*new_len
# if we multiply an n x 0 with a 0 x m, the
# expected behavior is to produce an n x m matrix of zeros
if self.cols != 0 and other.rows != 0:
self_cols = self.cols
mat = self._mat
other_mat = other._mat
for i in range(new_len):
row, col = i // other.cols, i % other.cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other.cols)
vec = [mat[a]*other_mat[b] for a, b in zip(row_indices, col_indices)]
try:
new_mat[i] = Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
new_mat[i] = reduce(lambda a, b: a + b, vec)
return classof(self, other)._new(self.rows, other.cols, new_mat, copy=False)
def _eval_matrix_mul_elementwise(self, other):
mat = [a*b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_inverse(self, **kwargs):
return self.inv(method=kwargs.get('method', 'GE'),
iszerofunc=kwargs.get('iszerofunc', _iszero),
try_block_diag=kwargs.get('try_block_diag', False))
def _eval_scalar_mul(self, other):
mat = [other*a for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [a*other for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_tolist(self):
mat = list(self._mat)
cols = self.cols
return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
if self.rows and self.cols:
return cls._new(self.tolist())
return cls._new(self.rows, self.cols, [])
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.Expr.equals
"""
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
def cholesky(self, hermitian=True):
return _cholesky(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True):
return _LDLdecomposition(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs):
return _lower_triangular_solve(self, rhs)
def upper_triangular_solve(self, rhs):
return _upper_triangular_solve(self, rhs)
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MatrixBase):
__hash__ = None
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, copy=True, **kwargs):
if copy is False:
# The input was rows, cols, [list].
# It should be used directly without creating a copy.
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
self = object.__new__(cls)
self.rows = rows
self.cols = cols
self._mat = flat_list
return self
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._mat[i*self.cols + j] = value
def as_mutable(self):
return self.copy()
def _eval_col_del(self, col):
for j in range(self.rows-1, -1, -1):
del self._mat[col + j*self.cols]
self.cols -= 1
def _eval_row_del(self, row):
del self._mat[row*self.cols: (row+1)*self.cols]
self.rows -= 1
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill the matrix with the scalar value.
See Also
========
zeros
ones
"""
self._mat = [value]*len(self)
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
i0 = i*self.cols
ri = self._mat[i0: i0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def simplify(self, **kwargs):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
for i in range(len(self._mat)):
self._mat[i] = _simplify(self._mat[i], **kwargs)
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
i0 = i*self.cols
k0 = k*self.cols
ri = self._mat[i0: i0 + self.cols]
rk = self._mat[k0: k0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]
is_zero = False
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
return Matrix.eye(*args, **kwargs)
def diag(*values, strict=True, unpack=False, **kwargs):
"""Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will
produce a block-diagonal matrix.
Examples
========
This version of diag is a thin wrapper to Matrix.diag that differs
in that it treats all lists like matrices -- even when a single list
is given. If this is not desired, either put a `*` before the list or
set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector
Matrix([
[1],
[2],
[3]])
See Also
========
.common.MatrixCommon.eye
.common.MatrixCommon.diagonal - to extract a diagonal
.common.MatrixCommon.diag
.expressions.blockmatrix.BlockMatrix
"""
return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
def GramSchmidt(vlist, orthonormal=False):
"""Apply the Gram-Schmidt process to a set of vectors.
Parameters
==========
vlist : List of Matrix
Vectors to be orthogonalized for.
orthonormal : Bool, optional
If true, return an orthonormal basis.
Returns
=======
vlist : List of Matrix
Orthogonalized vectors
Notes
=====
This routine is mostly duplicate from ``Matrix.orthogonalize``,
except for some difference that this always raises error when
linearly dependent vectors are found, and the keyword ``normalize``
has been named as ``orthonormal`` in this function.
See Also
========
.matrices.MatrixSubspaces.orthogonalize
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
return MutableDenseMatrix.orthogonalize(
*vlist, normalize=orthonormal, rankcheck=True
)
def hessian(f, varlist, constraints=[]):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy.matrices import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy.matrices import matrix_multiply_elementwise
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.common.MatrixCommon.__mul__
"""
return A.multiply_elementwise(B)
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of ``random.Random``, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
``random.Random`` with given ``seed`` will be created;
* otherwise, a new ``random.Random`` with default seed will be used.
Examples
========
>>> from sympy.matrices import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
if c is None:
c = r
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if not symmetric:
m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
if percent == 100:
return m
z = int(r*c*(100 - percent) // 100)
m._mat[:z] = [S.Zero]*z
prng.shuffle(m._mat)
return m
# Symmetric case
if r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
m = zeros(r)
ij = [(i, j) for i in range(r) for j in range(i, r)]
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
for i, j in ij:
value = prng.randint(min, max)
m[i, j] = m[j, i] = value
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
hessian
"""
for index in range(0, len(functions)):
functions[index] = sympify(functions[index])
n = len(functions)
if n == 0:
return 1
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.zeros(*args, **kwargs)
|
3815d1620de0ad091d37ec9c010b89b3414bcf80b62ef6e95d8ca2afec2db73e | from sympy.core.function import expand_mul
from sympy.core.symbol import Dummy, uniquely_named_symbol, symbols
from sympy.utilities.iterables import numbered_symbols
from .common import ShapeError, NonSquareMatrixError, NonInvertibleMatrixError
from .eigen import _fuzzy_positive_definite
from .utilities import _get_intermediate_simp, _iszero
def _diagonal_solve(M, rhs):
"""Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_diagonal():
raise TypeError("Matrix should be diagonal")
if rhs.rows != M.rows:
raise TypeError("Size mis-match")
return M._new(
rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / M[i, i])
def _lower_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(M.rows):
if M[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i))) / M[i, i])
return M._new(X)
def _lower_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in range(rhs.rows):
for u, v in rows[i]:
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _upper_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(M.rows)):
if M[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i + 1, M.rows))) / M[i, i])
return M._new(X)
def _upper_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in reversed(range(rhs.rows)):
for u, v in reversed(rows[i]):
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _cholesky_solve(M, rhs):
"""Solves ``Ax = B`` using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L = M.cholesky(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
if hermitian:
return (L.H).upper_triangular_solve(Y)
else:
return (L.T).upper_triangular_solve(Y)
def _LDLsolve(M, rhs):
"""Solves ``Ax = B`` using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L, D = M.LDLdecomposition(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
Z = D.diagonal_solve(Y)
if hermitian:
return (L.H).upper_triangular_solve(Z)
else:
return (L.T).upper_triangular_solve(Z)
def _LUsolve(M, rhs, iszerofunc=_iszero):
"""Solve the linear system ``Ax = rhs`` for ``x`` where ``A = M``.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != M.rows:
raise ShapeError(
"``M`` and ``rhs`` must have the same number of rows.")
m = M.rows
n = M.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
try:
A, perm = M.LUdecomposition_Simple(
iszerofunc=_iszero, rankcheck=True)
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
dps = _get_intermediate_simp()
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
scale = A[i, i]
b.row_op(i, lambda x, _: dps(x / scale))
return rhs.__class__(b)
def _QRsolve(M, b):
"""Solve the linear system ``Ax = b``.
``M`` is the matrix ``A``, the method argument is the vector
``b``. The method returns the solution vector ``x``. If ``b`` is a
matrix, the system is solved for each column of ``b`` and the
return value is a matrix of the same shape as ``b``.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
dps = _get_intermediate_simp(expand_mul, expand_mul)
Q, R = M.QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
tmp = dps(tmp)
x.append(tmp / R[j, j])
return M._new([row._mat for row in reversed(x)])
def _gauss_jordan_solve(M, B, freevar=False):
"""
Solves ``Ax = B`` using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : List
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the index of the free variables
in the solutions (column Matrix) will be returned by freevar, if
the flag `freevar` is set to `True`.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> taus_zeroes = { tau:0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([
[2],
[0],
[5],
[0]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[0, -2],
[3, -1]])
>>> params
Matrix(0, 2, [])
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
cls = M.__class__
aug = M.hstack(M.copy(), B.copy())
B_cols = B.cols
row, col = aug[:, :-B_cols].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-B_cols], A[:, -B_cols:]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Get index of free symbols (free parameters)
# non-pivots columns are free variables
free_var_index = [c for c in range(A.cols) if c not in pivots]
# Bring to block form
permutation = Matrix(pivots + free_var_index).T
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, :].is_zero_matrix:
raise ValueError("Linear system has no solution")
# Free parameters
# what are current unnumbered free symbol names?
name = uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890'),
modify=lambda s: '_' + s).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape(
col - rank, B_cols)
# Full parametric solution
V = A[:rank, free_var_index]
vt = v[:rank, :]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, B_cols)
for k in range(col):
sol[permutation[k], :] = free_sol[k,:]
sol, tau = cls(sol), cls(tau)
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def _pinv_solve(M, B, arbitrary_matrix=None):
"""Solve ``Ax = B`` using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = M
A_pinv = M.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{}_:{}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = M.__class__(cols, rows, w).T
return A_pinv.multiply(B) + (eye(A.cols) -
A_pinv.multiply(A)).multiply(arbitrary_matrix)
def _solve(M, rhs, method='GJ'):
"""Solves linear equation where the unique solution exists.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string, optional
If set to ``'GJ'`` or ``'GE'``, the Gauss-Jordan elimination will be
used, which is implemented in the routine ``gauss_jordan_solve``.
If set to ``'LU'``, ``LUsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
It also supports the methods available for special linear systems
For positive definite systems:
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
To use a different method and to compute the solution via the
inverse, use a method defined in the .inv() docstring.
Returns
=======
solutions : Matrix
Vector representing the solution.
Raises
======
ValueError
If there is not a unique solution then a ``ValueError`` will be
raised.
If ``M`` is not square, a ``ValueError`` and a different routine
for solving the system will be suggested.
"""
if method == 'GJ' or method == 'GE':
try:
soln, param = M.gauss_jordan_solve(rhs)
if param:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible. "
"Try ``M.gauss_jordan_solve(rhs)`` to obtain a parametric solution.")
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return soln
elif method == 'LU':
return M.LUsolve(rhs)
elif method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
return M.inv(method=method).multiply(rhs)
def _solve_least_squares(M, rhs, method='CH'):
"""Return the least-square fit to the data.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string or boolean, optional
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
Otherwise, the conjugate of ``M`` will be used to create a system
of equations that is passed to ``solve`` along with the hint
defined by ``method``.
Returns
=======
solutions : Matrix
Vector representing the solution.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
t = M.H
return (t * M).solve(t * rhs, method=method)
|
c8d24e60469d037dcc2785a55d807b692d79af43165c63513d2a417a1c616518 | import mpmath as mp
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import (
Callable, NotIterable, as_int, is_sequence)
from sympy.core.decorators import deprecated
from sympy.core.expr import Expr
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.core.sympify import _sympify
from sympy.functions import exp, factorial, log
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.polys import cancel
from sympy.printing import sstr
from sympy.printing.defaults import Printable
from sympy.simplify import simplify as _simplify
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
from .common import (
MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError,
ShapeError)
from .utilities import _iszero, _is_zero_after_expand_mul
from .determinant import (
_find_reasonable_pivot, _find_reasonable_pivot_naive,
_adjugate, _charpoly, _cofactor, _cofactor_matrix,
_det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix)
from .reductions import _is_echelon, _echelon_form, _rank, _rref
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize
from .eigen import (
_eigenvals, _eigenvects,
_bidiagonalize, _bidiagonal_decomposition,
_is_diagonalizable, _diagonalize,
_is_positive_definite, _is_positive_semidefinite,
_is_negative_definite, _is_negative_semidefinite, _is_indefinite,
_jordan_form, _left_eigenvects, _singular_values)
from .decompositions import (
_rank_decomposition, _cholesky, _LDLdecomposition,
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF,
_QRdecomposition)
from .graph import _connected_components, _connected_components_decomposition
from .solvers import (
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve,
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve,
_pinv_solve, _solve, _solve_least_squares)
from .inverse import (
_pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR,
_inv, _inv_block)
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations. Should not be instantiated
directly. See ``determinant.py`` for their implementations."""
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
return _det_bareiss(self, iszerofunc=iszerofunc)
def _eval_det_berkowitz(self):
return _det_berkowitz(self)
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc)
def _eval_determinant(self): # for expressions.determinant.Determinant
return _det(self)
def adjugate(self, method="berkowitz"):
return _adjugate(self, method=method)
def charpoly(self, x='lambda', simplify=_simplify):
return _charpoly(self, x=x, simplify=simplify)
def cofactor(self, i, j, method="berkowitz"):
return _cofactor(self, i, j, method=method)
def cofactor_matrix(self, method="berkowitz"):
return _cofactor_matrix(self, method=method)
def det(self, method="bareiss", iszerofunc=None):
return _det(self, method=method, iszerofunc=iszerofunc)
def minor(self, i, j, method="berkowitz"):
return _minor(self, i, j, method=method)
def minor_submatrix(self, i, j):
return _minor_submatrix(self, i, j)
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__
_eval_det_lu.__doc__ = _det_LU.__doc__
_eval_determinant.__doc__ = _det.__doc__
adjugate.__doc__ = _adjugate.__doc__
charpoly.__doc__ = _charpoly.__doc__
cofactor.__doc__ = _cofactor.__doc__
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__
det.__doc__ = _det.__doc__
minor.__doc__ = _minor.__doc__
minor_submatrix.__doc__ = _minor_submatrix.__doc__
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations. Should not be instantiated
directly. See ``reductions.py`` for some of their implementations."""
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify,
with_pivots=with_pivots)
@property
def is_echelon(self):
return _is_echelon(self)
def rank(self, iszerofunc=_iszero, simplify=False):
return _rank(self, iszerofunc=iszerofunc, simplify=simplify)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
normalize_last=True):
return _rref(self, iszerofunc=iszerofunc, simplify=simplify,
pivots=pivots, normalize_last=normalize_last)
echelon_form.__doc__ = _echelon_form.__doc__
is_echelon.__doc__ = _is_echelon.__doc__
rank.__doc__ = _rank.__doc__
rref.__doc__ = _rref.__doc__
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. ``error_str``
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# define self_col according to error_str
self_cols = self.cols if error_str == 'col' else self.rows
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
elif op == "n<->m":
# we need two cols to swap. It doesn't matter
# how they were specified, so gather them together and
# remove `None`
cols = {col, k, col1, col2}.difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = {col, col1, col2}.difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
elif op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
else:
raise ValueError('invalid operation %s' % repr(op))
return op, col, k, col1, col2
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* "n->kn" (column n goes to k*n)
* "n<->m" (swap column n and column m)
* "n->n+km" (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* "n->kn" (row n goes to k*n)
* "n<->m" (swap row n and row m)
* "n->n+km" (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces of a matrix.
Should not be instantiated directly. See ``subspaces.py`` for their
implementations."""
def columnspace(self, simplify=False):
return _columnspace(self, simplify=simplify)
def nullspace(self, simplify=False, iszerofunc=_iszero):
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc)
def rowspace(self, simplify=False):
return _rowspace(self, simplify=simplify)
# This is a classmethod but is converted to such later in order to allow
# assignment of __doc__ since that does not work for already wrapped
# classmethods in Python 3.6.
def orthogonalize(cls, *vecs, **kwargs):
return _orthogonalize(cls, *vecs, **kwargs)
columnspace.__doc__ = _columnspace.__doc__
nullspace.__doc__ = _nullspace.__doc__
rowspace.__doc__ = _rowspace.__doc__
orthogonalize.__doc__ = _orthogonalize.__doc__
orthogonalize = classmethod(orthogonalize)
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly. See ``eigen.py`` for their
implementations."""
def eigenvals(self, error_when_incomplete=True, **flags):
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags)
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
return _eigenvects(self, error_when_incomplete=error_when_incomplete,
iszerofunc=iszerofunc, **flags)
def is_diagonalizable(self, reals_only=False, **kwargs):
return _is_diagonalizable(self, reals_only=reals_only, **kwargs)
def diagonalize(self, reals_only=False, sort=False, normalize=False):
return _diagonalize(self, reals_only=reals_only, sort=sort,
normalize=normalize)
def bidiagonalize(self, upper=True):
return _bidiagonalize(self, upper=upper)
def bidiagonal_decomposition(self, upper=True):
return _bidiagonal_decomposition(self, upper=upper)
@property
def is_positive_definite(self):
return _is_positive_definite(self)
@property
def is_positive_semidefinite(self):
return _is_positive_semidefinite(self)
@property
def is_negative_definite(self):
return _is_negative_definite(self)
@property
def is_negative_semidefinite(self):
return _is_negative_semidefinite(self)
@property
def is_indefinite(self):
return _is_indefinite(self)
def jordan_form(self, calc_transform=True, **kwargs):
return _jordan_form(self, calc_transform=calc_transform, **kwargs)
def left_eigenvects(self, **flags):
return _left_eigenvects(self, **flags)
def singular_values(self):
return _singular_values(self)
eigenvals.__doc__ = _eigenvals.__doc__
eigenvects.__doc__ = _eigenvects.__doc__
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__
diagonalize.__doc__ = _diagonalize.__doc__
is_positive_definite.__doc__ = _is_positive_definite.__doc__
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__
is_negative_definite.__doc__ = _is_negative_definite.__doc__
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__
is_indefinite.__doc__ = _is_indefinite.__doc__
jordan_form.__doc__ = _jordan_form.__doc__
left_eigenvects.__doc__ = _left_eigenvects.__doc__
singular_values.__doc__ = _singular_values.__doc__
bidiagonalize.__doc__ = _bidiagonalize.__doc__
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy.tensor.array.array_derivatives import ArrayDerivative
kwargs.setdefault('evaluate', True)
deriv = ArrayDerivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def integrate(self, *args, **kwargs):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args, **kwargs))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both ``self`` and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and ``self`` can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("``self`` must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def _legacy_array_dot(self, b):
"""Compatibility function for deprecated behavior of ``matrix.dot(vector)``
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat * b).tolist())
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (
self.shape, b.shape))
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = self.one, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [self.one, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([self.one, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return _det_bareiss(self)
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon,
Printable):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
zero = S.Zero
one = S.One
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __len__(self):
"""Return the number of elements of ``self``.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def _matrix_pow_by_jordan_blocks(self, num):
from sympy.matrices import diag, MutableMatrix
from sympy import binomial
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0,0]
if l.is_zero:
if N == 1 and n.is_nonnegative:
jc[0,0] = l**n
elif not (n.is_integer and n.is_nonnegative):
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
else:
for i in range(N):
jc[0,i] = KroneckerDelta(i, n)
else:
for i in range(N):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[0,i] = l**(n-i)*bn
for i in range(N):
for j in range(1, N-i):
jc[j,i+j] = jc [j-1,i+j-1]
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P.multiply(diag(*jordan_cells))
.multiply(P.inv()))
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def irregular(cls, ntop, *matrices, **kwargs):
"""Return a matrix filled by the given matrices which
are listed in order of appearance from left to right, top to
bottom as they first appear in the matrix. They must fill the
matrix completely.
Examples
========
>>> from sympy import ones, Matrix
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
Matrix([
[1, 2, 2, 2, 3, 3],
[1, 2, 2, 2, 3, 3],
[4, 2, 2, 2, 5, 5],
[6, 6, 7, 7, 5, 5]])
"""
from sympy.core.compatibility import as_int
ntop = as_int(ntop)
# make sure we are working with explicit matrices
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
for i in matrices]
q = list(range(len(b)))
dat = [i.rows for i in b]
active = [q.pop(0) for _ in range(ntop)]
cols = sum([b[i].cols for i in active])
rows = []
while any(dat):
r = []
for a, j in enumerate(active):
r.extend(b[j][-dat[j], :])
dat[j] -= 1
if dat[j] == 0 and q:
active[a] = q.pop(0)
if len(r) != cols:
raise ValueError(filldedent('''
Matrices provided do not appear to fill
the space completely.'''))
rows.append(r)
return cls._new(rows)
@classmethod
def _handle_ndarray(cls, arg):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = arg.__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
flat_list = [cls._sympify(i) for i in arr]
return arr.shape[0], 1, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
See Also
========
irregular - filling a matrix with irregular blocks
"""
from sympy.matrices.sparse import SparseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.utilities.iterables import reshape
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
elif isinstance(args[0], mp.matrix):
M = args[0]
flat_list = [cls._sympify(x) for x in M]
return M.rows, M.cols, flat_list
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
return cls._handle_ndarray(args[0])
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
dat = list(args[0])
ismat = lambda i: isinstance(i, MatrixBase) and (
evaluate or
isinstance(i, BlockMatrix) or
isinstance(i, MatrixSymbol))
raw = lambda i: is_sequence(i) and not ismat(i)
evaluate = kwargs.get('evaluate', True)
if evaluate:
def do(x):
# make Block and Symbol explicit
if isinstance(x, (list, tuple)):
return type(x)([do(i) for i in x])
if isinstance(x, BlockMatrix) or \
isinstance(x, MatrixSymbol) and \
all(_.is_Integer for _ in x.shape):
return x.as_explicit()
return x
dat = do(dat)
if dat == [] or dat == [[]]:
rows = cols = 0
flat_list = []
elif not any(raw(i) or ismat(i) for i in dat):
# a column as a list of values
flat_list = [cls._sympify(i) for i in dat]
rows = len(flat_list)
cols = 1 if rows else 0
elif evaluate and all(ismat(i) for i in dat):
# a column as a list of matrices
ncol = {i.cols for i in dat if any(i.shape)}
if ncol:
if len(ncol) != 1:
raise ValueError('mismatched dimensions')
flat_list = [_ for i in dat for r in i.tolist() for _ in r]
cols = ncol.pop()
rows = len(flat_list)//cols
else:
rows = cols = 0
flat_list = []
elif evaluate and any(ismat(i) for i in dat):
ncol = set()
flat_list = []
for i in dat:
if ismat(i):
flat_list.extend(
[k for j in i.tolist() for k in j])
if any(i.shape):
ncol.add(i.cols)
elif raw(i):
if i:
ncol.add(len(i))
flat_list.extend(i)
else:
ncol.add(1)
flat_list.append(i)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
cols = ncol.pop()
rows = len(flat_list)//cols
else:
# list of lists; each sublist is a logical row
# which might consist of many rows if the values in
# the row are matrices
flat_list = []
ncol = set()
rows = cols = 0
for row in dat:
if not is_sequence(row) and \
not getattr(row, 'is_Matrix', False):
raise ValueError('expecting list of lists')
if hasattr(row, '__array__'):
if 0 in row.shape:
continue
elif not row:
continue
if evaluate and all(ismat(i) for i in row):
r, c, flatT = cls._handle_creation_inputs(
[i.T for i in row])
T = reshape(flatT, [c])
flat = \
[T[i][j] for j in range(c) for i in range(r)]
r, c = c, r
else:
r = 1
if getattr(row, 'is_Matrix', False):
c = 1
flat = [row]
else:
c = len(row)
flat = [cls._sympify(i) for i in row]
ncol.add(c)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
flat_list.extend(flat)
rows += r
cols = ncol.pop() if ncol else 0
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError(filldedent('''
Data type not understood; expecting list of lists
or lists of values.'''))
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return self.zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self._mat)
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
from sympy.matrices.expressions.matexpr import MatrixExpr
if not isinstance(b, MatrixBase) and not isinstance(b, MatrixExpr):
raise TypeError(
"{} must be a Matrix, not {}.".format(b, type(b)))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if ``self.rows == 4``).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation
sympy.matrices.common.MatrixCommon.H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if (1 not in mat.shape) or (1 not in b.shape) :
SymPyDeprecationWarning(
feature="Dot product of non row/column vectors",
issue=13815,
deprecated_since_version="1.2",
useinstead="* to take matrix products").warn()
return mat._legacy_array_dot(b)
if len(mat) != len(b):
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def _eval_matrix_exp_jblock(self):
"""A helper function to compute an exponential of a Jordan block
matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_exp_jblock()
Matrix([[exp(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_exp_jblock()
Matrix([
[exp(lamda), exp(lamda), exp(lamda)/2],
[ 0, exp(lamda), exp(lamda)],
[ 0, 0, exp(lamda)]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
"""
size = self.rows
l = self[0, 0]
exp_l = exp(l)
bands = {i: exp_l / factorial(i) for i in range(size)}
from .sparsetools import banded
return self.__class__(banded(size, bands))
def analytic_func(self, f, x):
"""
Computes f(A) where A is a Square Matrix
and f is an analytic function.
Examples
========
>>> from sympy import Symbol, Matrix, S, log
>>> x = Symbol('x')
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> f = log(x)
>>> m.analytic_func(f, x)
Matrix([
[ 0, log(2)],
[log(2), 0]])
Parameters
==========
f : Expr
Analytic Function
x : Symbol
parameter of f
"""
from sympy import diff
f, x = _sympify(f), _sympify(x)
if not self.is_square:
raise NonSquareMatrixError
if not x.is_symbol:
raise ValueError("{} must be a symbol.".format(x))
if x not in f.free_symbols:
raise ValueError(
"{} must be a parameter of {}.".format(x, f))
if x in self.free_symbols:
raise ValueError(
"{} must not be a parameter of {}.".format(x, self))
eigen = self.eigenvals()
max_mul = max(eigen.values())
derivative = {}
dd = f
for i in range(max_mul - 1):
dd = diff(dd, x)
derivative[i + 1] = dd
n = self.shape[0]
r = self.zeros(n)
f_val = self.zeros(n, 1)
row = 0
for i in eigen:
mul = eigen[i]
f_val[row] = f.subs(x, i)
if f_val[row].is_number and not f_val[row].is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"function {} is not analytic at the given "
"eigenvalue {}".format(f, f_val[row]))
val = 1
for a in range(n):
r[row, a] = val
val *= i
if mul > 1:
coe = [1 for ii in range(n)]
deri = 1
while mul > 1:
row = row + 1
mul -= 1
d_i = derivative[deri].subs(x, i)
if d_i.is_number and not d_i.is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"derivative {} is not analytic at the given "
"eigenvalue {}".format(derivative[deri], d_i))
f_val[row] = d_i
for a in range(n):
if a - deri + 1 <= 0:
r[row, a] = 0
coe[a] = 0
continue
coe[a] = coe[a]*(a - deri + 1)
r[row, a] = coe[a]*pow(i, a - deri)
deri += 1
row += 1
c = r.solve(f_val)
ans = self.zeros(n)
pre = self.eye(n)
for i in range(n):
ans = ans + c[i]*pre
pre *= self
return ans
def exp(self):
"""Return the exponential of a square matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> t = Symbol('t')
>>> m = Matrix([[0, 1], [-1, 0]]) * t
>>> m.exp()
Matrix([
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
from sympy.matrices import diag
from sympy import re
eJ = diag(*blocks)
# n = self.rows
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None)
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def _eval_matrix_log_jblock(self):
"""Helper function to compute logarithm of a jordan block.
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_log_jblock()
Matrix([[log(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_log_jblock()
Matrix([
[log(lamda), 1/lamda, -1/(2*lamda**2)],
[ 0, log(lamda), 1/lamda],
[ 0, 0, log(lamda)]])
"""
size = self.rows
l = self[0, 0]
if l.is_zero:
raise MatrixError(
'Could not take logarithm or reciprocal for the given '
'eigenvalue {}'.format(l))
bands = {0: log(l)}
for i in range(1, size):
bands[i] = -((-l) ** -i) / i
from .sparsetools import banded
return self.__class__(banded(size, bands))
def log(self, simplify=cancel):
"""Return the logarithm of a square matrix
Parameters
==========
simplify : function, bool
The function to simplify the result with.
Default is ``cancel``, which is effective to reduce the
expression growing for taking reciprocals and inverses for
symbolic matrices.
Examples
========
>>> from sympy import S, Matrix
Examples for positive-definite matrices:
>>> m = Matrix([[1, 1], [0, 1]])
>>> m.log()
Matrix([
[0, 1],
[0, 0]])
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> m.log()
Matrix([
[ 0, log(2)],
[log(2), 0]])
Examples for non positive-definite matrices:
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
>>> m.log()
Matrix([
[ I*pi/2, log(2) - I*pi/2],
[log(2) - I*pi/2, I*pi/2]])
>>> m = Matrix(
... [[0, 0, 0, 1],
... [0, 0, 1, 0],
... [0, 1, 0, 0],
... [1, 0, 0, 0]])
>>> m.log()
Matrix([
[ I*pi/2, 0, 0, -I*pi/2],
[ 0, I*pi/2, -I*pi/2, 0],
[ 0, -I*pi/2, I*pi/2, 0],
[-I*pi/2, 0, 0, I*pi/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Logarithm is valid only for square matrices")
try:
if simplify:
P, J = simplify(self).jordan_form()
else:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Logarithm is implemented only for matrices for which "
"the Jordan normal form can be computed")
blocks = [
cell._eval_matrix_log_jblock()
for cell in cells]
from sympy.matrices import diag
eJ = diag(*blocks)
if simplify:
ret = simplify(P * eJ * simplify(P.inv()))
ret = self.__class__(ret)
else:
ret = P * eJ * P.inv()
return ret
def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s)
p = self.charpoly(x)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of ``self``'s
range.
See Also
========
key2ij
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx_(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx_(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for ``self``'s range or returning slices
unchanged.
See Also
========
key2bounds
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx_(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx_(key, len(self)), self.cols)
def normalized(self, iszerofunc=_iszero):
"""Return the normalized version of ``self``.
Parameters
==========
iszerofunc : Function, optional
A function to determine whether ``self`` is a zero vector.
The default ``_iszero`` tests to see if each element is
exactly zero.
Returns
=======
Matrix
Normalized vector form of ``self``.
It has the same length as a unit vector. However, a zero vector
will be returned for a vector with norm 0.
Raises
======
ShapeError
If the matrix is not in a vector form.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
if iszerofunc(norm):
out = self.zeros(self.rows, self.cols)
else:
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord is S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord is S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord is S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
str) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
return _rank_decomposition(self, iszerofunc=iszerofunc,
simplify=simplify)
def cholesky(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LDLdecomposition(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc,
rankcheck=rankcheck)
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc,
simpfunc=simpfunc, rankcheck=rankcheck)
def LUdecompositionFF(self):
return _LUdecompositionFF(self)
def QRdecomposition(self):
return _QRdecomposition(self)
def diagonal_solve(self, rhs):
return _diagonal_solve(self, rhs)
def lower_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def upper_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def cholesky_solve(self, rhs):
return _cholesky_solve(self, rhs)
def LDLsolve(self, rhs):
return _LDLsolve(self, rhs)
def LUsolve(self, rhs, iszerofunc=_iszero):
return _LUsolve(self, rhs, iszerofunc=iszerofunc)
def QRsolve(self, b):
return _QRsolve(self, b)
def gauss_jordan_solve(self, B, freevar=False):
return _gauss_jordan_solve(self, B, freevar=freevar)
def pinv_solve(self, B, arbitrary_matrix=None):
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix)
def solve(self, rhs, method='GJ'):
return _solve(self, rhs, method=method)
def solve_least_squares(self, rhs, method='CH'):
return _solve_least_squares(self, rhs, method=method)
def pinv(self, method='RD'):
return _pinv(self, method=method)
def inv_mod(self, m):
return _inv_mod(self, m)
def inverse_ADJ(self, iszerofunc=_iszero):
return _inv_ADJ(self, iszerofunc=iszerofunc)
def inverse_BLOCK(self, iszerofunc=_iszero):
return _inv_block(self, iszerofunc=iszerofunc)
def inverse_GE(self, iszerofunc=_iszero):
return _inv_GE(self, iszerofunc=iszerofunc)
def inverse_LU(self, iszerofunc=_iszero):
return _inv_LU(self, iszerofunc=iszerofunc)
def inverse_CH(self, iszerofunc=_iszero):
return _inv_CH(self, iszerofunc=iszerofunc)
def inverse_LDL(self, iszerofunc=_iszero):
return _inv_LDL(self, iszerofunc=iszerofunc)
def inverse_QR(self, iszerofunc=_iszero):
return _inv_QR(self, iszerofunc=iszerofunc)
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False):
return _inv(self, method=method, iszerofunc=iszerofunc,
try_block_diag=try_block_diag)
def connected_components(self):
return _connected_components(self)
def connected_components_decomposition(self):
return _connected_components_decomposition(self)
rank_decomposition.__doc__ = _rank_decomposition.__doc__
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
LUdecomposition.__doc__ = _LUdecomposition.__doc__
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__
QRdecomposition.__doc__ = _QRdecomposition.__doc__
diagonal_solve.__doc__ = _diagonal_solve.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
cholesky_solve.__doc__ = _cholesky_solve.__doc__
LDLsolve.__doc__ = _LDLsolve.__doc__
LUsolve.__doc__ = _LUsolve.__doc__
QRsolve.__doc__ = _QRsolve.__doc__
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__
pinv_solve.__doc__ = _pinv_solve.__doc__
solve.__doc__ = _solve.__doc__
solve_least_squares.__doc__ = _solve_least_squares.__doc__
pinv.__doc__ = _pinv.__doc__
inv_mod.__doc__ = _inv_mod.__doc__
inverse_ADJ.__doc__ = _inv_ADJ.__doc__
inverse_GE.__doc__ = _inv_GE.__doc__
inverse_LU.__doc__ = _inv_LU.__doc__
inverse_CH.__doc__ = _inv_CH.__doc__
inverse_LDL.__doc__ = _inv_LDL.__doc__
inverse_QR.__doc__ = _inv_QR.__doc__
inverse_BLOCK.__doc__ = _inv_block.__doc__
inv.__doc__ = _inv.__doc__
connected_components.__doc__ = _connected_components.__doc__
connected_components_decomposition.__doc__ = \
_connected_components_decomposition.__doc__
@deprecated(
issue=15109,
useinstead="from sympy.matrices.common import classof",
deprecated_since_version="1.3")
def classof(A, B):
from sympy.matrices.common import classof as classof_
return classof_(A, B)
@deprecated(
issue=15109,
deprecated_since_version="1.3",
useinstead="from sympy.matrices.common import a2idx")
def a2idx(j, n=None):
from sympy.matrices.common import a2idx as a2idx_
return a2idx_(j, n)
|
2dc7ed4d69e82d47ca42119814858f4c34ad9dd9fd22390bd7efe957805b0b63 | from types import FunctionType
from collections import Counter
from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.compatibility import default_sort_key
from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
from sympy.core.logic import fuzzy_and, fuzzy_or
from sympy.core.numbers import Float
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys import roots
from sympy.simplify import nsimplify, simplify as _simplify
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .common import MatrixError, NonSquareMatrixError
from .determinant import _find_reasonable_pivot
from .utilities import _iszero
def _eigenvals_triangular(M, multiple=False):
"""A fast decision for eigenvalues of an upper or a lower triangular
matrix.
"""
diagonal_entries = [M[i, i] for i in range(M.rows)]
if multiple:
return diagonal_entries
return dict(Counter(diagonal_entries))
def _eigenvals_eigenvects_mpmath(M):
norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))
v1 = None
prec = max([x._prec for x in M.atoms(Float)])
eps = 2**-prec
while prec < DEFAULT_MAXPREC:
with workprec(prec):
A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
E, ER = mp.eig(A)
v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
if v1 is not None and mp.fabs(v1 - v2) < eps:
return E, ER
v1 = v2
prec *= 2
# we get here because the next step would have taken us
# past MAXPREC or because we never took a step; in case
# of the latter, we refuse to send back a solution since
# it would not have been verified; we also resist taking
# a small step to arrive exactly at MAXPREC since then
# the two calculations might be artificially close.
raise PrecisionExhausted
def _eigenvals_mpmath(M, multiple=False):
"""Compute eigenvalues using mpmath"""
E, _ = _eigenvals_eigenvects_mpmath(M)
result = [_sympify(x) for x in E]
if multiple:
return result
return dict(Counter(result))
def _eigenvects_mpmath(M):
E, ER = _eigenvals_eigenvects_mpmath(M)
result = []
for i in range(M.rows):
eigenval = _sympify(E[i])
eigenvect = _sympify(ER[:, i])
result.append((eigenval, 1, [eigenvect]))
return result
# This functions is a candidate for caching if it gets implemented for matrices.
def _eigenvals(
M, error_when_incomplete=True, *, simplify=False, multiple=False,
rational=False, **flags):
r"""Return eigenvalues using the Berkowitz algorithm to compute
the characteristic polynomial.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvals()
{-1: 1, 0: 1, 2: 1}
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix $A$ can be computed by solving a matrix
equation $\det(A - \lambda I) = 0$
"""
if not M:
if multiple:
return []
return {}
if not M.is_square:
raise NonSquareMatrixError("{} must be a square matrix.".format(M))
if M.is_upper or M.is_lower:
return _eigenvals_triangular(M, multiple=multiple)
if all(x.is_number for x in M) and M.has(Float):
return _eigenvals_mpmath(M, multiple=multiple)
if rational:
M = M.applyfunc(
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
if multiple:
return _eigenvals_list(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
return _eigenvals_dict(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
def _eigenvals_list(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.connected_components()
all_eigs = []
for b in iblocks:
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=True, **flags)
if error_when_incomplete:
if len(eigs) != block.rows:
raise MatrixError(
"Could not compute eigenvalues for {}. if you see this "
"error, please report to SymPy issue tracker."
.format(block))
all_eigs += eigs
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return [simplify(value) for value in all_eigs]
def _eigenvals_dict(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.connected_components()
all_eigs = {}
for b in iblocks:
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=False, **flags)
if error_when_incomplete:
if sum(eigs.values()) != block.rows:
raise MatrixError(
"Could not compute eigenvalues for {}. if you see this "
"error, please report to SymPy issue tracker."
.format(block))
for k, v in eigs.items():
if k in all_eigs:
all_eigs[k] += v
else:
all_eigs[k] = v
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return {simplify(key): value for key, value in all_eigs.items()}
def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = M - M.eye(M.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc)
# The nullspace for a real eigenvalue should be non-trivial.
# If we didn't find an eigenvector, try once more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
return ret
# This functions is a candidate for caching if it gets implemented for matrices.
def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
"""Return list of triples (eigenval, multiplicity, eigenspace).
Parameters
==========
error_when_incomplete : bool, optional
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
iszerofunc : function, optional
Specifies a zero testing function to be used in ``rref``.
Default value is ``_iszero``, which uses SymPy's naive and fast
default assumption handler.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
is tested as non-zero, and ``None`` if it is undecidable.
simplify : bool or function, optional
If ``True``, ``as_content_primitive()`` will be used to tidy up
normalization artifacts.
It will also be used by the ``nullspace`` routine.
chop : bool or positive number, optional
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
When ``chop=True`` a default precision will be used; a number will
be interpreted as the desired level of precision.
Returns
=======
ret : [(eigenval, multiplicity, eigenspace), ...]
A ragged list containing tuples of data obtained by ``eigenvals``
and ``nullspace``.
``eigenspace`` is a list containing the ``eigenvector`` for each
eigenvalue.
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
Raises
======
NotImplementedError
If failed to compute nullspace.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
See Also
========
eigenvals
MatrixSubspaces.nullspace
"""
simplify = flags.get('simplify', True)
primitive = flags.get('simplify', False)
flags.pop('multiple', None) # remove this if it's there
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
has_floats = M.has(Float)
if has_floats:
if all(x.is_number for x in M):
return _eigenvects_mpmath(M)
M = M.applyfunc(lambda x: nsimplify(x, rational=True))
eigenvals = M.eigenvals(
rational=False, error_when_incomplete=error_when_incomplete,
**flags)
eigenvals = sorted(eigenvals.items(), key=default_sort_key)
ret = []
for val, mult in eigenvals:
vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
ret.append((val, mult, vects))
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
from sympy import gcd
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
for val, mult, es in ret]
return ret
def _is_diagonalizable_with_eigen(M, reals_only=False):
"""See _is_diagonalizable. This function returns the bool along with the
eigenvectors to avoid calculating them again in functions like
``diagonalize``."""
if not M.is_square:
return False, []
eigenvecs = M.eigenvects(simplify=True)
for val, mult, basis in eigenvecs:
if reals_only and not val.is_real: # if we have a complex eigenvalue
return False, eigenvecs
if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
return False, eigenvecs
return True, eigenvecs
def _is_diagonalizable(M, reals_only=False, **kwargs):
"""Returns ``True`` if a matrix is diagonalizable.
Parameters
==========
reals_only : bool, optional
If ``True``, it tests whether the matrix can be diagonalized
to contain only real numbers on the diagonal.
If ``False``, it tests whether the matrix can be diagonalized
at all, even with numbers that may not be real.
Examples
========
Example of a diagonalizable matrix:
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
>>> M.is_diagonalizable()
True
Example of a non-diagonalizable matrix:
>>> M = Matrix([[0, 1], [0, 0]])
>>> M.is_diagonalizable()
False
Example of a matrix that is diagonalized in terms of non-real entries:
>>> M = Matrix([[0, 1], [-1, 0]])
>>> M.is_diagonalizable(reals_only=False)
True
>>> M.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
if 'clear_cache' in kwargs:
SymPyDeprecationWarning(
feature='clear_cache',
deprecated_since_version=1.4,
issue=15887
).warn()
if 'clear_subproducts' in kwargs:
SymPyDeprecationWarning(
feature='clear_subproducts',
deprecated_since_version=1.4,
issue=15887
).warn()
if not M.is_square:
return False
if all(e.is_real for e in M) and M.is_symmetric():
return True
if all(e.is_complex for e in M) and M.is_hermitian:
return True
return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]
#G&VL, Matrix Computations, Algo 5.4.2
def _householder_vector(x):
if not x.cols == 1:
raise ValueError("Input must be a column matrix")
v = x.copy()
v_plus = x.copy()
v_minus = x.copy()
q = x[0, 0] / abs(x[0, 0])
norm_x = x.norm()
v_plus[0, 0] = x[0, 0] + q * norm_x
v_minus[0, 0] = x[0, 0] - q * norm_x
if x[1:, 0].norm() == 0:
bet = 0
v[0, 0] = 1
else:
if v_plus.norm() <= v_minus.norm():
v = v_plus
else:
v = v_minus
v = v / v[0]
bet = 2 / (v.norm() ** 2)
return v, bet
def _bidiagonal_decmp_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
U, V = A.eye(m), A.eye(n)
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m - i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
temp = A.eye(m)
temp[i:, i:] = hh_mat
U = U * temp
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
temp = A.eye(n)
temp[i+1:, i+1:] = hh_mat
V = temp * V
return U, A, V
def _eval_bidiag_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m-i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
return A
def _bidiagonal_decomposition(M, upper=True):
"""
Returns (U,B,V.H)
$A = UBV^{H}$
where A is the input matrix, and B is its Bidiagonalized form
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
"""
if type(upper) is not bool:
raise ValueError("upper must be a boolean")
if not upper:
X = _bidiagonal_decmp_hholder(M.H)
return X[2].H, X[1].H, X[0].H
return _bidiagonal_decmp_hholder(M)
def _bidiagonalize(M, upper=True):
"""
Returns $B$, the Bidiagonalized form of the input matrix.
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
"""
if type(upper) is not bool:
raise ValueError("upper must be a boolean")
if not upper:
return _eval_bidiag_hholder(M.H).H
return _eval_bidiag_hholder(M)
def _diagonalize(M, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> M
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = M.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * M * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not M.is_square:
raise NonSquareMatrixError()
is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
reals_only=reals_only)
if not is_diagonalizable:
raise MatrixError("Matrix is not diagonalizable")
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return M.hstack(*p_cols), M.diag(*diag)
def _fuzzy_positive_definite(M):
positive_diagonals = M._has_positive_diagonals()
if positive_diagonals is False:
return False
if positive_diagonals and M.is_strongly_diagonally_dominant:
return True
return None
def _fuzzy_positive_semidefinite(M):
nonnegative_diagonals = M._has_nonnegative_diagonals()
if nonnegative_diagonals is False:
return False
if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
return True
return None
def _is_positive_definite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_definite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_definite_GE(M)
def _is_positive_semidefinite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_semidefinite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_semidefinite_cholesky(M)
def _is_negative_definite(M):
return _is_positive_definite(-M)
def _is_negative_semidefinite(M):
return _is_positive_semidefinite(-M)
def _is_indefinite(M):
if M.is_hermitian:
eigen = M.eigenvals()
args1 = [x.is_positive for x in eigen.keys()]
any_positive = fuzzy_or(args1)
args2 = [x.is_negative for x in eigen.keys()]
any_negative = fuzzy_or(args2)
return fuzzy_and([any_positive, any_negative])
elif M.is_square:
return (M + M.H).is_indefinite
return False
def _is_positive_definite_GE(M):
"""A division-free gaussian elimination method for testing
positive-definiteness."""
M = M.as_mutable()
size = M.rows
for i in range(size):
is_positive = M[i, i].is_positive
if is_positive is not True:
return is_positive
for j in range(i+1, size):
M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
return True
def _is_positive_semidefinite_cholesky(M):
"""Uses Cholesky factorization with complete pivoting
References
==========
.. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf
.. [2] https://www.value-at-risk.net/cholesky-factorization/
"""
M = M.as_mutable()
for k in range(M.rows):
diags = [M[i, i] for i in range(k, M.rows)]
pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)
if nonzero:
return None
if pivot is None:
for i in range(k+1, M.rows):
for j in range(k, M.cols):
iszero = M[i, j].is_zero
if iszero is None:
return None
elif iszero is False:
return False
return True
if M[k, k].is_negative or pivot_val.is_negative:
return False
if pivot > 0:
M.col_swap(k, k+pivot)
M.row_swap(k, k+pivot)
M[k, k] = sqrt(M[k, k])
M[k, k+1:] /= M[k, k]
M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]
return M[-1, -1].is_nonnegative
_doc_positive_definite = \
r"""Finds out the definiteness of a matrix.
Explanation
===========
A square real matrix $A$ is:
- A positive definite matrix if $x^T A x > 0$
for all non-zero real vectors $x$.
- A positive semidefinite matrix if $x^T A x \geq 0$
for all non-zero real vectors $x$.
- A negative definite matrix if $x^T A x < 0$
for all non-zero real vectors $x$.
- A negative semidefinite matrix if $x^T A x \leq 0$
for all non-zero real vectors $x$.
- An indefinite matrix if there exists non-zero real vectors
$x, y$ with $x^T A x > 0 > y^T A y$.
A square complex matrix $A$ is:
- A positive definite matrix if $\text{re}(x^H A x) > 0$
for all non-zero complex vectors $x$.
- A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
for all non-zero complex vectors $x$.
- A negative definite matrix if $\text{re}(x^H A x) < 0$
for all non-zero complex vectors $x$.
- A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
for all non-zero complex vectors $x$.
- An indefinite matrix if there exists non-zero complex vectors
$x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.
A matrix need not be symmetric or hermitian to be positive definite.
- A real non-symmetric matrix is positive definite if and only if
$\frac{A + A^T}{2}$ is positive definite.
- A complex non-hermitian matrix is positive definite if and only if
$\frac{A + A^H}{2}$ is positive definite.
And this extension can apply for all the definitions above.
However, for complex cases, you can restrict the definition of
$\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
to be hermitian.
But we do not present this restriction for computation because you
can check ``M.is_hermitian`` independently with this and use
the same procedure.
Examples
========
An example of symmetric positive definite matrix:
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])
>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric positive semidefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric negative definite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric indefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of non-symmetric positive definite matrix.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
Notes
=====
Although some people trivialize the definition of positive definite
matrices only for symmetric or hermitian matrices, this restriction
is not correct because it does not classify all instances of
positive definite matrices from the definition $x^T A x > 0$ or
$\text{re}(x^H A x) > 0$.
For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
the example above is an example of real positive definite matrix
that is not symmetric.
However, since the following formula holds true;
.. math::
\text{re}(x^H A x) > 0 \iff
\text{re}(x^H \frac{A + A^H}{2} x) > 0
We can classify all positive definite matrices that may or may not
be symmetric or hermitian by transforming the matrix to
$\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
(which is guaranteed to be always real symmetric or complex
hermitian) and we can defer most of the studies to symmetric or
hermitian positive definite matrices.
But it is a different problem for the existance of Cholesky
decomposition. Because even though a non symmetric or a non
hermitian matrix can be positive definite, Cholesky or LDL
decomposition does not exist because the decompositions require the
matrix to be symmetric or hermitian.
References
==========
.. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
.. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
.. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
Math. Monthly 77, 259-264 1970.
"""
_is_positive_definite.__doc__ = _doc_positive_definite
_is_positive_semidefinite.__doc__ = _doc_positive_definite
_is_negative_definite.__doc__ = _doc_positive_definite
_is_negative_semidefinite.__doc__ = _doc_positive_definite
_is_indefinite.__doc__ = _doc_positive_definite
def _jordan_form(M, calc_transform=True, *, chop=False):
"""Return $(P, J)$ where $J$ is a Jordan block
matrix and $P$ is a matrix such that $M = P J P^{-1}$
Parameters
==========
calc_transform : bool
If ``False``, then only $J$ is returned.
chop : bool
All matrices are converted to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = M.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not M.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
mat = M
has_floats = M.has(Float)
if has_floats:
try:
max_prec = max(term._prec for term in M._mat if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If ``has_floats`` is `True`, cast all ``args`` as
matrices of floats."""
if has_floats:
args = [m.evalf(n=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of ``(M - val*I)**pow`` for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
mat_cache[(val, 1)], dotprodsimp=None)
else:
mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val, algebraic_multiplicity):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where ``E = M - val*I``"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = M.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
if nullity == algebraic_multiplicity:
break
nullity = cols - eig_mat(val, i).rank()
i += 1
# Due to issues like #7146 and #15872, SymPy sometimes
# gives the wrong rank. In this case, raise an error
# instead of returning an incorrect matrix
if nullity < ret[-1] or nullity > algebraic_multiplicity:
raise MatrixError(
"SymPy had encountered an inconsistent "
"result while computing Jordan block: "
"{}".format(M))
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = M.hstack(*(small_basis + [v])).echelon_form(
with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# make sure that we found all the roots by counting
# the algebraic multiplicity
if sum(m for m in eigs.values()) != mat.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(mat))
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = list(sorted(eigs.keys(), key=default_sort_key))
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0]
for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
algebraic_multiplicity = eigs[eig]
chain = nullity_chain(eig, algebraic_multiplicity)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes = = [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
(eig, size) for size, num in size_nums for _ in range(num))
jordan_form_size = sum(size for eig, size in block_structure)
if jordan_form_size != M.rows:
raise MatrixError(
"SymPy had encountered an inconsistent result while "
"computing Jordan block. : {}".format(M))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def _left_eigenvects(M, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = M.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def _singular_values(M):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> M.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
if M.rows >= M.cols:
valmultpairs = M.H.multiply(M).eigenvals()
else:
valmultpairs = M.multiply(M.H).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# Pad with zeros if singular values are computed in reverse way,
# to give consistent format.
if len(vals) < M.cols:
vals += [M.zero] * (M.cols - len(vals))
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
|
015a2768f769fbc9665e2c12e529d4509abec353b5a0c7f2b9608c99d1abbeb6 | from sympy.core.compatibility import reduce
from .utilities import _iszero
def _columnspace(M, simplify=False):
"""Returns a list of vectors (Matrix objects) that span columnspace of ``M``
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> M.columnspace()
[Matrix([
[ 1],
[-2],
[ 3]]), Matrix([
[0],
[0],
[6]])]
See Also
========
nullspace
rowspace
"""
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
return [M.col(i) for i in pivots]
def _nullspace(M, simplify=False, iszerofunc=_iszero):
"""Returns list of vectors (Matrix objects) that span nullspace of ``M``
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> M.nullspace()
[Matrix([
[-3],
[ 1],
[ 0]])]
See Also
========
columnspace
rowspace
"""
reduced, pivots = M.rref(iszerofunc=iszerofunc, simplify=simplify)
free_vars = [i for i in range(M.cols) if i not in pivots]
basis = []
for free_var in free_vars:
# for each free variable, we will set it to 1 and all others
# to 0. Then, we will use back substitution to solve the system
vec = [M.zero] * M.cols
vec[free_var] = M.one
for piv_row, piv_col in enumerate(pivots):
vec[piv_col] -= reduced[piv_row, free_var]
basis.append(vec)
return [M._new(M.cols, 1, b) for b in basis]
def _rowspace(M, simplify=False):
"""Returns a list of vectors that span the row space of ``M``.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> M.rowspace()
[Matrix([[1, 3, 0]]), Matrix([[0, 0, 6]])]
"""
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
return [reduced.row(i) for i in range(len(pivots))]
def _orthogonalize(cls, *vecs, normalize=False, rankcheck=False):
"""Apply the Gram-Schmidt orthogonalization procedure
to vectors supplied in ``vecs``.
Parameters
==========
vecs
vectors to be made orthogonal
normalize : bool
If ``True``, return an orthonormal basis.
rankcheck : bool
If ``True``, the computation does not stop when encountering
linearly dependent vectors.
If ``False``, it will raise ``ValueError`` when any zero
or linearly dependent vectors are found.
Returns
=======
list
List of orthogonal (or orthonormal) basis vectors.
Examples
========
>>> from sympy import I, Matrix
>>> v = [Matrix([1, I]), Matrix([1, -I])]
>>> Matrix.orthogonalize(*v)
[Matrix([
[1],
[I]]), Matrix([
[ 1],
[-I]])]
See Also
========
MatrixBase.QRdecomposition
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
def project(a, b):
return b * (a.dot(b, hermitian=True) / b.dot(b, hermitian=True))
def perp_to_subspace(vec, basis):
"""projects vec onto the subspace given
by the orthogonal basis ``basis``"""
components = [project(vec, b) for b in basis]
if len(basis) == 0:
return vec
return vec - reduce(lambda a, b: a + b, components)
ret = []
vecs = list(vecs) # make sure we start with a non-zero vector
while len(vecs) > 0 and vecs[0].is_zero_matrix:
if rankcheck is False:
del vecs[0]
else:
raise ValueError("GramSchmidt: vector set not linearly independent")
for vec in vecs:
perp = perp_to_subspace(vec, ret)
if not perp.is_zero_matrix:
ret.append(cls(perp))
elif rankcheck is True:
raise ValueError("GramSchmidt: vector set not linearly independent")
if normalize:
ret = [vec / vec.norm() for vec in ret]
return ret
|
d0f30ef06d30b27566002b2c965e670c5c2af7b14e64f209c8a136d34bd11829 | from sympy.core import Expr
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.sets import ImageSet
from sympy.sets.sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
class SetExpr(Expr):
"""An expression that can take on values of a set
>>> from sympy import Interval, FiniteSet
>>> from sympy.sets.setexpr import SetExpr
>>> a = SetExpr(Interval(0, 5))
>>> b = SetExpr(FiniteSet(1, 10))
>>> (a + b).set
Union(Interval(1, 6), Interval(10, 15))
>>> (2*a + b).set
Interval(1, 20)
"""
_op_priority = 11.0
def __new__(cls, setarg):
return Expr.__new__(cls, setarg)
set = property(lambda self: self.args[0])
def _latex(self, printer):
return r"SetExpr\left({0}\right)".format(printer._print(self.set))
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return _setexpr_apply_operation(set_add, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return _setexpr_apply_operation(set_add, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return _setexpr_apply_operation(set_mul, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return _setexpr_apply_operation(set_mul, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return _setexpr_apply_operation(set_sub, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return _setexpr_apply_operation(set_sub, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return _setexpr_apply_operation(set_pow, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return _setexpr_apply_operation(set_pow, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return _setexpr_apply_operation(set_div, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
return _setexpr_apply_operation(set_div, other, self)
def _eval_func(self, func):
# TODO: this could be implemented straight into `imageset`:
res = set_function(func, self.set)
if res is None:
return SetExpr(ImageSet(func, self.set))
return SetExpr(res)
def _setexpr_apply_operation(op, x, y):
if isinstance(x, SetExpr):
x = x.set
if isinstance(y, SetExpr):
y = y.set
out = op(x, y)
return SetExpr(out)
|
656c3d5462de2d5c57419e23acb682bd6dfaffa444b956be050d2c9370ca5c0e | from __future__ import print_function, division
from functools import reduce
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
from sympy.core.numbers import oo, Integer
from sympy.core.relational import Eq
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols, Symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And
from sympy.sets.sets import (Set, Interval, Union, FiniteSet,
ProductSet)
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import cartes
class Rationals(Set, metaclass=Singleton):
"""
Represents the rational numbers. This set is also available as
the Singleton, S.Rationals.
Examples
========
>>> from sympy import S
>>> S.Half in S.Rationals
True
>>> iterable = iter(S.Rationals)
>>> [next(iterable) for i in range(12)]
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
"""
is_iterable = True
_inf = S.NegativeInfinity
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
if other.is_Number:
return other.is_Rational
return other.is_rational
def __iter__(self):
from sympy.core.numbers import igcd, Rational
yield S.Zero
yield S.One
yield S.NegativeOne
d = 2
while True:
for n in range(d):
if igcd(n, d) == 1:
yield Rational(n, d)
yield Rational(d, n)
yield Rational(-n, d)
yield Rational(-d, n)
d += 1
@property
def _boundary(self):
return S.Reals
class Naturals(Set, metaclass=Singleton):
"""
Represents the natural numbers (or counting numbers) which are all
positive integers starting from 1. This set is also available as
the Singleton, S.Naturals.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
See Also
========
Naturals0 : non-negative integers (i.e. includes 0, too)
Integers : also includes negative integers
"""
is_iterable = True
_inf = S.One
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
elif other.is_positive and other.is_integer:
return True
elif other.is_integer is False or other.is_positive is False:
return False
def _eval_is_subset(self, other):
return Range(1, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(1, oo).is_superset(other)
def __iter__(self):
i = self._inf
while True:
yield i
i = i + 1
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), x >= self.inf, x < oo)
class Naturals0(Naturals):
"""Represents the whole numbers which are all the non-negative integers,
inclusive of zero.
See Also
========
Naturals : positive integers; does not include 0
Integers : also includes the negative integers
"""
_inf = S.Zero
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer and other.is_nonnegative:
return S.true
elif other.is_integer is False or other.is_nonnegative is False:
return S.false
def _eval_is_subset(self, other):
return Range(oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(oo).is_superset(other)
class Integers(Set, metaclass=Singleton):
"""
Represents all integers: positive, negative and zero. This set is also
available as the Singleton, S.Integers.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}
See Also
========
Naturals0 : non-negative integers
Integers : positive and negative integers and zero
"""
is_iterable = True
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
return other.is_integer
def __iter__(self):
yield S.Zero
i = S.One
while True:
yield i
yield -i
i = i + 1
@property
def _inf(self):
return S.NegativeInfinity
@property
def _sup(self):
return S.Infinity
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), -oo < x, x < oo)
def _eval_is_subset(self, other):
return Range(-oo, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(-oo, oo).is_superset(other)
class Reals(Interval, metaclass=Singleton):
"""
Represents all real numbers
from negative infinity to positive infinity,
including all integer, rational and irrational numbers.
This set is also available as the Singleton, S.Reals.
Examples
========
>>> from sympy import S, Rational, pi, I
>>> 5 in S.Reals
True
>>> Rational(-1, 2) in S.Reals
True
>>> pi in S.Reals
True
>>> 3*I in S.Reals
False
>>> S.Reals.contains(pi)
True
See Also
========
ComplexRegion
"""
def __new__(cls):
return Interval.__new__(cls, S.NegativeInfinity, S.Infinity)
def __eq__(self, other):
return other == Interval(S.NegativeInfinity, S.Infinity)
def __hash__(self):
return hash(Interval(S.NegativeInfinity, S.Infinity))
class ImageSet(Set):
"""
Image of a set under a mathematical function. The transformation
must be given as a Lambda function which has as many arguments
as the elements of the set upon which it operates, e.g. 1 argument
when acting on the set of integers or 2 arguments when acting on
a complex region.
This function is not normally called directly, but is called
from `imageset`.
Examples
========
>>> from sympy import Symbol, S, pi, Dummy, Lambda
>>> from sympy.sets.sets import FiniteSet, Interval
>>> from sympy.sets.fancysets import ImageSet
>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
FiniteSet(1, 4, 9)
>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
`x` value is in `base_set` or not before passing it as args)
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
FiniteSet(0)
See Also
========
sympy.sets.sets.imageset
"""
def __new__(cls, flambda, *sets):
if not isinstance(flambda, Lambda):
raise ValueError('First argument must be a Lambda')
signature = flambda.signature
if len(signature) != len(sets):
raise ValueError('Incompatible signature')
sets = [_sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Set arguments to ImageSet should of type Set")
if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
raise ValueError("Signature %s does not match sets %s" % (signature, sets))
if flambda is S.IdentityFunction and len(sets) == 1:
return sets[0]
if not set(flambda.variables) & flambda.expr.free_symbols:
is_empty = fuzzy_or(s.is_empty for s in sets)
if is_empty == True:
return S.EmptySet
elif is_empty == False:
return FiniteSet(flambda.expr)
return Basic.__new__(cls, flambda, *sets)
lamda = property(lambda self: self.args[0])
base_sets = property(lambda self: self.args[1:])
@property
def base_set(self):
# XXX: Maybe deprecate this? It is poorly defined in handling
# the multivariate case...
sets = self.base_sets
if len(sets) == 1:
return sets[0]
else:
return ProductSet(*sets).flatten()
@property
def base_pset(self):
return ProductSet(*self.base_sets)
@classmethod
def _check_sig(cls, sig_i, set_i):
if sig_i.is_symbol:
return True
elif isinstance(set_i, ProductSet):
sets = set_i.sets
if len(sig_i) != len(sets):
return False
# Recurse through the signature for nested tuples:
return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
else:
# XXX: Need a better way of checking whether a set is a set of
# Tuples or not. For example a FiniteSet can contain Tuples
# but so can an ImageSet or a ConditionSet. Others like
# Integers, Reals etc can not contain Tuples. We could just
# list the possibilities here... Current code for e.g.
# _contains probably only works for ProductSet.
return True # Give the benefit of the doubt
def __iter__(self):
already_seen = set()
for i in self.base_pset:
val = self.lamda(*i)
if val in already_seen:
continue
else:
already_seen.add(val)
yield val
def _is_multivariate(self):
return len(self.lamda.variables) > 1
def _contains(self, other):
from sympy.solvers.solveset import _solveset_multi
def get_symsetmap(signature, base_sets):
'''Attempt to get a map of symbols to base_sets'''
queue = list(zip(signature, base_sets))
symsetmap = {}
for sig, base_set in queue:
if sig.is_symbol:
symsetmap[sig] = base_set
elif base_set.is_ProductSet:
sets = base_set.sets
if len(sig) != len(sets):
raise ValueError("Incompatible signature")
# Recurse
queue.extend(zip(sig, sets))
else:
# If we get here then we have something like sig = (x, y) and
# base_set = {(1, 2), (3, 4)}. For now we give up.
return None
return symsetmap
def get_equations(expr, candidate):
'''Find the equations relating symbols in expr and candidate.'''
queue = [(expr, candidate)]
for e, c in queue:
if not isinstance(e, Tuple):
yield Eq(e, c)
elif not isinstance(c, Tuple) or len(e) != len(c):
yield False
return
else:
queue.extend(zip(e, c))
# Get the basic objects together:
other = _sympify(other)
expr = self.lamda.expr
sig = self.lamda.signature
variables = self.lamda.variables
base_sets = self.base_sets
# Use dummy symbols for ImageSet parameters so they don't match
# anything in other
rep = {v: Dummy(v.name) for v in variables}
variables = [v.subs(rep) for v in variables]
sig = sig.subs(rep)
expr = expr.subs(rep)
# Map the parts of other to those in the Lambda expr
equations = []
for eq in get_equations(expr, other):
# Unsatisfiable equation?
if eq is False:
return False
equations.append(eq)
# Map the symbols in the signature to the corresponding domains
symsetmap = get_symsetmap(sig, base_sets)
if symsetmap is None:
# Can't factor the base sets to a ProductSet
return None
# Which of the variables in the Lambda signature need to be solved for?
symss = (eq.free_symbols for eq in equations)
variables = set(variables) & reduce(set.union, symss, set())
# Use internal multivariate solveset
variables = tuple(variables)
base_sets = [symsetmap[v] for v in variables]
solnset = _solveset_multi(equations, variables, base_sets)
if solnset is None:
return None
return fuzzy_not(solnset.is_empty)
@property
def is_iterable(self):
return all(s.is_iterable for s in self.base_sets)
def doit(self, **kwargs):
from sympy.sets.setexpr import SetExpr
f = self.lamda
sig = f.signature
if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
base_set = self.base_sets[0]
return SetExpr(base_set)._eval_func(f).set
if all(s.is_FiniteSet for s in self.base_sets):
return FiniteSet(*(f(*a) for a in cartes(*self.base_sets)))
return self
class Range(Set):
"""
Represents a range of integers. Can be called as Range(stop),
Range(start, stop), or Range(start, stop, step); when stop is
not given it defaults to 1.
`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value
(juse as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]
The step can also be negative:
>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]
The stop value is made canonical so equivalent ranges always
have the same args:
>>> Range(0, 10, 3)
Range(0, 12, 3)
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
set (``Range`` is always a subset of ``Integers``). If the starting point
is infinite, then the final value is ``stop - step``. To iterate such a
range, it needs to be reversed:
>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
TypeError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0
Although Range is a set (and supports the normal set
operations) it maintains the order of the elements and can
be used in contexts where `range` would be used.
>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]
Although slicing of a Range will always return a Range -- possibly
empty -- an empty set will be returned from any intersection that
is empty:
>>> Range(3)[:0]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet
>>> Range(3).intersect(Range(4, oo))
EmptySet
Range will accept symbolic arguments but has very limited support
for doing anything other than displaying the Range:
>>> from sympy import Symbol, pprint
>>> from sympy.abc import i, j, k
>>> Range(i, j, k).start
i
>>> Range(i, j, k).inf
Traceback (most recent call last):
...
ValueError: invalid method for symbolic range
Better success will be had when using integer symbols:
>>> n = Symbol('n', integer=True)
>>> r = Range(n, n + 20, 3)
>>> r.inf
n
>>> pprint(r)
{n, n + 3, ..., n + 17}
"""
is_iterable = True
def __new__(cls, *args):
from sympy.functions.elementary.integers import ceiling
if len(args) == 1:
if isinstance(args[0], range):
raise TypeError(
'use sympify(%s) to convert range to Range' % args[0])
# expand range
slc = slice(*args)
if slc.step == 0:
raise ValueError("step cannot be 0")
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
try:
ok = []
for w in (start, stop, step):
w = sympify(w)
if w in [S.NegativeInfinity, S.Infinity] or (
w.has(Symbol) and w.is_integer != False):
ok.append(w)
elif not w.is_Integer:
raise ValueError
else:
ok.append(w)
except ValueError:
raise ValueError(filldedent('''
Finite arguments to Range must be integers; `imageset` can define
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
[0, 1/10, 1/5].'''))
start, stop, step = ok
null = False
if any(i.has(Symbol) for i in (start, stop, step)):
if start == stop:
null = True
else:
end = stop
elif start.is_infinite:
span = step*(stop - start)
if span is S.NaN or span <= 0:
null = True
elif step.is_Integer and stop.is_infinite and abs(step) != 1:
raise ValueError(filldedent('''
Step size must be %s in this case.''' % (1 if step > 0 else -1)))
else:
end = stop
else:
oostep = step.is_infinite
if oostep:
step = S.One if step > 0 else S.NegativeOne
n = ceiling((stop - start)/step)
if n <= 0:
null = True
elif oostep:
end = start + 1
step = S.One # make it a canonical single step
else:
end = start + n*step
if null:
start = end = S.Zero
step = S.One
return Basic.__new__(cls, start, end, step)
start = property(lambda self: self.args[0])
stop = property(lambda self: self.args[1])
step = property(lambda self: self.args[2])
@property
def reversed(self):
"""Return an equivalent Range in the opposite order.
Examples
========
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
"""
if self.has(Symbol):
_ = self.size # validate
if not self:
return self
return self.func(
self.stop - self.step, self.start - self.step, -self.step)
def _contains(self, other):
if not self:
return S.false
if other.is_infinite:
return S.false
if not other.is_integer:
return other.is_integer
if self.has(Symbol):
try:
_ = self.size # validate
except ValueError:
return
if self.start.is_finite:
ref = self.start
elif self.stop.is_finite:
ref = self.stop
else: # both infinite; step is +/- 1 (enforced by __new__)
return S.true
if self.size == 1:
return Eq(other, self[0])
res = (ref - other) % self.step
if res == S.Zero:
return And(other >= self.inf, other <= self.sup)
elif res.is_Integer: # off sequence
return S.false
else: # symbolic/unsimplified residue modulo step
return None
def __iter__(self):
if self.has(Symbol):
_ = self.size # validate
if self.start in [S.NegativeInfinity, S.Infinity]:
raise TypeError("Cannot iterate over Range with infinite start")
elif self:
i = self.start
step = self.step
while True:
if (step > 0 and not (self.start <= i < self.stop)) or \
(step < 0 and not (self.stop < i <= self.start)):
break
yield i
i += step
def __len__(self):
rv = self.size
if rv is S.Infinity:
raise ValueError('Use .size to get the length of an infinite Range')
return int(rv)
@property
def size(self):
if not self:
return S.Zero
dif = self.stop - self.start
if self.has(Symbol):
if dif.has(Symbol) or self.step.has(Symbol) or (
not self.start.is_integer and not self.stop.is_integer):
raise ValueError('invalid method for symbolic range')
if dif.is_infinite:
return S.Infinity
return Integer(abs(dif//self.step))
@property
def is_finite_set(self):
if self.start.is_integer and self.stop.is_integer:
return True
return self.size.is_finite
def __bool__(self):
return self.start != self.stop
def __getitem__(self, i):
from sympy.functions.elementary.integers import ceiling
ooslice = "cannot slice from the end with an infinite value"
zerostep = "slice step cannot be zero"
infinite = "slicing not possible on range with infinite start"
# if we had to take every other element in the following
# oo, ..., 6, 4, 2, 0
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
ambiguous = "cannot unambiguously re-stride from the end " + \
"with an infinite value"
if isinstance(i, slice):
if self.size.is_finite: # validates, too
start, stop, step = i.indices(self.size)
n = ceiling((stop - start)/step)
if n <= 0:
return Range(0)
canonical_stop = start + n*step
end = canonical_stop - step
ss = step*self.step
return Range(self[start], self[end] + ss, ss)
else: # infinite Range
start = i.start
stop = i.stop
if i.step == 0:
raise ValueError(zerostep)
step = i.step or 1
ss = step*self.step
#---------------------
# handle infinite Range
# i.e. Range(-oo, oo) or Range(oo, -oo, -1)
# --------------------
if self.start.is_infinite and self.stop.is_infinite:
raise ValueError(infinite)
#---------------------
# handle infinite on right
# e.g. Range(0, oo) or Range(0, -oo, -1)
# --------------------
if self.stop.is_infinite:
# start and stop are not interdependent --
# they only depend on step --so we use the
# equivalent reversed values
return self.reversed[
stop if stop is None else -stop + 1:
start if start is None else -start:
step].reversed
#---------------------
# handle infinite on the left
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
# --------------------
# consider combinations of
# start/stop {== None, < 0, == 0, > 0} and
# step {< 0, > 0}
if start is None:
if stop is None:
if step < 0:
return Range(self[-1], self.start, ss)
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step < 0:
return Range(self[-1], self[stop], ss)
else: # > 0
return Range(self.start, self[stop], ss)
elif stop == 0:
if step > 0:
return Range(0)
else: # < 0
raise ValueError(ooslice)
elif stop == 1:
if step > 0:
raise ValueError(ooslice) # infinite singleton
else: # < 0
raise ValueError(ooslice)
else: # > 1
raise ValueError(ooslice)
elif start < 0:
if stop is None:
if step < 0:
return Range(self[start], self.start, ss)
else: # > 0
return Range(self[start], self.stop, ss)
elif stop < 0:
return Range(self[start], self[stop], ss)
elif stop == 0:
if step < 0:
raise ValueError(ooslice)
else: # > 0
return Range(0)
elif stop > 0:
raise ValueError(ooslice)
elif start == 0:
if stop is None:
if step < 0:
raise ValueError(ooslice) # infinite singleton
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step > 1:
raise ValueError(ambiguous)
elif step == 1:
return Range(self.start, self[stop], ss)
else: # < 0
return Range(0)
else: # >= 0
raise ValueError(ooslice)
elif start > 0:
raise ValueError(ooslice)
else:
if not self:
raise IndexError('Range index out of range')
if i == 0:
if self.start.is_infinite:
raise ValueError(ooslice)
if self.has(Symbol):
if (self.stop > self.start) == self.step.is_positive and self.step.is_positive is not None:
pass
else:
_ = self.size # validate
return self.start
if i == -1:
if self.stop.is_infinite:
raise ValueError(ooslice)
n = self.stop - self.step
if n.is_Integer or (
n.is_integer and (
(n - self.start).is_nonnegative ==
self.step.is_positive)):
return n
_ = self.size # validate
rv = (self.stop if i < 0 else self.start) + i*self.step
if rv.is_infinite:
raise ValueError(ooslice)
if rv < self.inf or rv > self.sup:
raise IndexError("Range index out of range")
return rv
@property
def _inf(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[0]
elif self.step.is_negative:
return self[-1]
_ = self.size # validate
if self.step > 0:
return self.start
else:
return self.stop - self.step
@property
def _sup(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[-1]
elif self.step.is_negative:
return self[0]
_ = self.size # validate
if self.step > 0:
return self.stop - self.step
else:
return self.start
@property
def _boundary(self):
return self
def as_relational(self, x):
"""Rewrite a Range in terms of equalities and logic operators. """
from sympy.functions.elementary.integers import floor
if self.size == 1:
return Eq(x, self[0])
else:
return And(
Eq(x, floor(x)),
x >= self.inf if self.inf in self else x > self.inf,
x <= self.sup if self.sup in self else x < self.sup)
converter[range] = lambda r: Range(r.start, r.stop, r.step)
def normalize_theta_set(theta):
"""
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns
a normalized value of theta in the Set. For Interval, a maximum of
one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi],
returned normalized value would be [0, 2*pi). As of now intervals
with end points as non-multiples of `pi` is not supported.
Raises
======
NotImplementedError
The algorithms for Normalizing theta Set are not yet
implemented.
ValueError
The input is not valid, i.e. the input is not a real set.
RuntimeError
It is a bug, please report to the github issue tracker.
Examples
========
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
FiniteSet(0, pi)
"""
from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
if theta.is_Interval:
interval_len = theta.measure
# one complete circle
if interval_len >= 2*S.Pi:
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
k = coeff(theta.start)
return Union(Interval(0, k*S.Pi, False, True),
Interval(k*S.Pi, 2*S.Pi, True, True))
return Interval(0, 2*S.Pi, False, True)
k_start, k_end = coeff(theta.start), coeff(theta.end)
if k_start is None or k_end is None:
raise NotImplementedError("Normalizing theta without pi as coefficient is "
"not yet implemented")
new_start = k_start*S.Pi
new_end = k_end*S.Pi
if new_start > new_end:
return Union(Interval(S.Zero, new_end, False, theta.right_open),
Interval(new_start, 2*S.Pi, theta.left_open, True))
else:
return Interval(new_start, new_end, theta.left_open, theta.right_open)
elif theta.is_FiniteSet:
new_theta = []
for element in theta:
k = coeff(element)
if k is None:
raise NotImplementedError('Normalizing theta without pi as '
'coefficient, is not Implemented.')
else:
new_theta.append(k*S.Pi)
return FiniteSet(*new_theta)
elif theta.is_Union:
return Union(*[normalize_theta_set(interval) for interval in theta.args])
elif theta.is_subset(S.Reals):
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
"implemented" % type(theta))
else:
raise ValueError(" %s is not a real set" % (theta))
class ComplexRegion(Set):
"""
Represents the Set of all Complex Numbers. It can represent a
region of Complex Plane in both the standard forms Polar and
Rectangular coordinates.
* Polar Form
Input is in the form of the ProductSet or Union of ProductSets
of the intervals of r and theta, & use the flag polar=True.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
* Rectangular Form
Input is in the form of the ProductSet or Union of ProductSets
of interval of x and y the of the Complex numbers in a Plane.
Default input type is in rectangular form.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets import Interval
>>> from sympy import S, I, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c = Interval(1, 8)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
* c1 represents the rectangular region in complex plane
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
(2, 6), of the four vertices.
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
* c2 represents the Union of two rectangular regions in complex
plane. One of them surrounded by the coordinates of c1 and
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
(4, 8).
>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False
>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
* c2 represents the region in complex plane inside the
Unit Disk centered at the origin.
>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
>>> intersection == upper_half_unit_disk
True
See Also
========
CartesianComplexRegion
PolarComplexRegion
Complexes
"""
is_ComplexRegion = True
def __new__(cls, sets, polar=False):
if polar is False:
return CartesianComplexRegion(sets)
elif polar is True:
return PolarComplexRegion(sets)
else:
raise ValueError("polar should be either True or False")
@property
def sets(self):
"""
Return raw input sets to the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.sets
ProductSet(Interval(2, 3), Interval(4, 5))
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.sets
Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
return self.args[0]
@property
def psets(self):
"""
Return a tuple of sets (ProductSets) input of the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.psets
(ProductSet(Interval(2, 3), Interval(4, 5)),)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.psets
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
if self.sets.is_ProductSet:
psets = ()
psets = psets + (self.sets, )
else:
psets = self.sets.args
return psets
@property
def a_interval(self):
"""
Return the union of intervals of `x` when, self is in
rectangular form, or the union of intervals of `r` when
self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
"""
a_interval = []
for element in self.psets:
a_interval.append(element.args[0])
a_interval = Union(*a_interval)
return a_interval
@property
def b_interval(self):
"""
Return the union of intervals of `y` when, self is in
rectangular form, or the union of intervals of `theta`
when self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
"""
b_interval = []
for element in self.psets:
b_interval.append(element.args[1])
b_interval = Union(*b_interval)
return b_interval
@property
def _measure(self):
"""
The measure of self.sets.
Examples
========
>>> from sympy import Interval, ComplexRegion, S
>>> a, b = Interval(2, 5), Interval(4, 8)
>>> c = Interval(0, 2*S.Pi)
>>> c1 = ComplexRegion(a*b)
>>> c1.measure
12
>>> c2 = ComplexRegion(a*c, polar=True)
>>> c2.measure
6*pi
"""
return self.sets._measure
@classmethod
def from_real(cls, sets):
"""
Converts given subset of real numbers to a complex region.
Examples
========
>>> from sympy import Interval, ComplexRegion
>>> unit = Interval(0,1)
>>> ComplexRegion.from_real(unit)
CartesianComplexRegion(ProductSet(Interval(0, 1), FiniteSet(0)))
"""
if not sets.is_subset(S.Reals):
raise ValueError("sets must be a subset of the real line")
return CartesianComplexRegion(sets * FiniteSet(0))
def _contains(self, other):
from sympy.functions import arg, Abs
from sympy.core.containers import Tuple
other = sympify(other)
isTuple = isinstance(other, Tuple)
if isTuple and len(other) != 2:
raise ValueError('expecting Tuple of length 2')
# If the other is not an Expression, and neither a Tuple
if not isinstance(other, Expr) and not isinstance(other, Tuple):
return S.false
# self in rectangular form
if not self.polar:
re, im = other if isTuple else other.as_real_imag()
return fuzzy_or(fuzzy_and([
pset.args[0]._contains(re),
pset.args[1]._contains(im)])
for pset in self.psets)
# self in polar form
elif self.polar:
if other.is_zero:
# ignore undefined complex argument
return fuzzy_or(pset.args[0]._contains(S.Zero)
for pset in self.psets)
if isTuple:
r, theta = other
else:
r, theta = Abs(other), arg(other)
if theta.is_real and theta.is_number:
# angles in psets are normalized to [0, 2pi)
theta %= 2*S.Pi
return fuzzy_or(fuzzy_and([
pset.args[0]._contains(r),
pset.args[1]._contains(theta)])
for pset in self.psets)
class CartesianComplexRegion(ComplexRegion):
"""
Set representing a square region of the complex plane.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets.sets import Interval
>>> from sympy import I
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
>>> 2 + 5*I in region
True
>>> 5*I in region
False
See also
========
ComplexRegion
PolarComplexRegion
Complexes
"""
polar = False
variables = symbols('x, y', cls=Dummy)
def __new__(cls, sets):
if sets == S.Reals*S.Reals:
return S.Complexes
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
# ** ProductSet of FiniteSets in the Complex Plane. **
# For Cases like ComplexRegion({2, 4}*{3}), It
# would return {2 + 3*I, 4 + 3*I}
# FIXME: This should probably be handled with something like:
# return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
complex_num = []
for x in sets.args[0]:
for y in sets.args[1]:
complex_num.append(x + S.ImaginaryUnit*y)
return FiniteSet(*complex_num)
else:
return Set.__new__(cls, sets)
@property
def expr(self):
x, y = self.variables
return x + S.ImaginaryUnit*y
class PolarComplexRegion(ComplexRegion):
"""
Set representing a polar region of the complex plane.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion, Interval
>>> from sympy import oo, pi, I
>>> rset = Interval(0, oo)
>>> thetaset = Interval(0, pi)
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
>>> 1 + I in upper_half_plane
True
>>> 1 - I in upper_half_plane
False
See also
========
ComplexRegion
CartesianComplexRegion
Complexes
"""
polar = True
variables = symbols('r, theta', cls=Dummy)
def __new__(cls, sets):
new_sets = []
# sets is Union of ProductSets
if not sets.is_ProductSet:
for k in sets.args:
new_sets.append(k)
# sets is ProductSets
else:
new_sets.append(sets)
# Normalize input theta
for k, v in enumerate(new_sets):
new_sets[k] = ProductSet(v.args[0],
normalize_theta_set(v.args[1]))
sets = Union(*new_sets)
return Set.__new__(cls, sets)
@property
def expr(self):
from sympy.functions.elementary.trigonometric import sin, cos
r, theta = self.variables
return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
class Complexes(CartesianComplexRegion, metaclass=Singleton):
"""
The Set of all complex numbers
Examples
========
>>> from sympy import S, I
>>> S.Complexes
Complexes
>>> 1 + I in S.Complexes
True
See also
========
Reals
ComplexRegion
"""
is_empty = False
is_finite_set = False
# Override property from superclass since Complexes has no args
@property
def sets(self):
return ProductSet(S.Reals, S.Reals)
def __new__(cls):
return Set.__new__(cls)
def __str__(self):
return "S.Complexes"
def __repr__(self):
return "S.Complexes"
|
83d18056b4298c7137494639cfbc6315805f60ed839e1be66f694f0a903722ab | from __future__ import print_function, division
from typing import Optional
from collections import defaultdict
import inspect
from sympy.core.basic import Basic
from sympy.core.compatibility import iterable, ordered, reduce
from sympy.core.containers import Tuple
from sympy.core.decorators import (deprecated, sympify_method_args,
sympify_return)
from sympy.core.evalf import EvalfMixin
from sympy.core.parameters import global_parameters
from sympy.core.expr import Expr
from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
fuzzy_not)
from sympy.core.numbers import Float
from sympy.core.operations import LatticeOp
from sympy.core.relational import Eq, Ne, is_lt
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.sets.contains import Contains
from sympy.utilities import subsets
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import iproduct, sift, roundrobin
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None # type: Optional[bool]
is_UniversalSet = None # type: Optional[bool]
is_Complement = None # type: Optional[bool]
is_ComplexRegion = False
is_empty = None # type: FuzzyBool
is_finite_set = None # type: FuzzyBool
@property # type: ignore
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
infimum = infimum.evalf() # issue #18505
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(FiniteSet(3), Interval.Lopen(1, 2))
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it isn't, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the 'in' operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
other = sympify(other, strict=True)
c = self._contains(other)
if isinstance(c, Contains):
return c
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval
A power set of an empty set:
>>> A = EmptySet
>>> A.powerset()
FiniteSet(EmptySet)
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
FiniteSet(0, 1)
>>> Interval(0, 1, True, False).boundary
FiniteSet(0, 1)
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
# x in y must evaluate to T or F; to entertain a None
# result with Set use y.contains(x)
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), FiniteSet(1, 2, 3))
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
SymPyDeprecationWarning(
feature="ProductSet(iterable)",
useinstead="ProductSet(*iterable)",
issue=17557,
deprecated_since_version="1.5"
).warn()
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
for s2 in _flatten(s.sets):
yield s2
else:
yield s
return ProductSet(*_flatten(self.sets))
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all([bool(s) for s in self.sets])
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
# Only allow real intervals
if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if is_lt(end, start):
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if (not isinstance(other, Expr) or other is S.NaN
or other.is_real is False):
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if other.is_real is not None:
return other.is_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._evalf(prec), self.right._evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
class Union(Set, LatticeOp, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if all(isinstance(i, (FiniteSet, Interval)) for i in self.args):
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
raise NotImplementedError('relational of Union with non-Intervals')
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(*(set._eval_evalf(prec) for set in self.args))
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - set((s,))
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A \mid x \notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
FiniteSet(0, 2)
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(Set, metaclass=Singleton):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property # type: ignore
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(Set, metaclass=Singleton):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
FiniteSet(1, 2, 3, 4)
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
FiniteSet(1, 2, 3, 4)
>>> f - FiniteSet(2)
FiniteSet(1, 3, 4)
>>> f + FiniteSet(2, 5)
FiniteSet(1, 2, 3, 4, 5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
# keep the form of the first canonical arg
dargs = {}
for i in reversed(list(ordered(args))):
if i.is_Symbol:
dargs[i] = i
else:
try:
dargs[i.as_dummy()] = i
except TypeError:
# e.g. i = class without args like `Interval`
dargs[i] = i
_args_set = set(dargs.values())
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
# Splitting in sub-intervals is only done for S.Reals;
# other cases that need splitting will first pass through
# Set._complement().
nums, syms = [], []
for m in self.args:
if m.is_number and m.is_real:
nums.append(m)
elif m.is_real == False:
pass # drop non-reals
else:
syms.append(m) # various symbolic expressions
if other == S.Reals and nums != []:
nums.sort()
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []: # no splitting necessary or possible:
if syms:
return Complement(other, FiniteSet(*syms), evaluate=False)
else:
return other
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._evalf(prec) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all((fs_test(arg) for arg in args)):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
FiniteSet(1, 2, 4, 5)
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
class DisjointUnion(Set):
""" Represents the disjoint union (also known as the external disjoint union)
of a finite number of sets.
Examples
========
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
>>> A = FiniteSet(1, 2, 3)
>>> B = Interval(0, 5)
>>> DisjointUnion(A, B)
DisjointUnion(FiniteSet(1, 2, 3), Interval(0, 5))
>>> DisjointUnion(A, B).rewrite(Union)
Union(ProductSet(FiniteSet(1, 2, 3), FiniteSet(0)), ProductSet(Interval(0, 5), FiniteSet(1)))
>>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
>>> DisjointUnion(C, C)
DisjointUnion(FiniteSet(x, y, z), FiniteSet(x, y, z))
>>> DisjointUnion(C, C).rewrite(Union)
ProductSet(FiniteSet(x, y, z), FiniteSet(0, 1))
References
==========
https://en.wikipedia.org/wiki/Disjoint_union
"""
def __new__(cls, *sets):
dj_collection = []
for set_i in sets:
if isinstance(set_i, Set):
dj_collection.append(set_i)
else:
raise TypeError("Invalid input: '%s', input args \
to DisjointUnion must be Sets" % set_i)
obj = Basic.__new__(cls, *dj_collection)
return obj
@property
def sets(self):
return self.args
@property
def is_empty(self):
return fuzzy_and(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def is_iterable(self):
if self.is_empty:
return False
iter_flag = True
for set_i in self.sets:
if not set_i.is_empty:
iter_flag = iter_flag and set_i.is_iterable
return iter_flag
def _eval_rewrite_as_Union(self, *sets):
"""
Rewrites the disjoint union as the union of (``set`` x {``i``})
where ``set`` is the element in ``sets`` at index = ``i``
"""
dj_union = EmptySet()
index = 0
for set_i in sets:
if isinstance(set_i, Set):
cross = ProductSet(set_i, FiniteSet(index))
dj_union = Union(dj_union, cross)
index = index + 1
return dj_union
def _contains(self, element):
"""
'in' operator for DisjointUnion
Examples
========
>>> from sympy import Interval, DisjointUnion
>>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
>>> (0.5, 0) in D
True
>>> (0.5, 1) in D
True
>>> (1.5, 0) in D
False
>>> (1.5, 1) in D
True
Passes operation on to constituent sets
"""
if not isinstance(element, Tuple) or len(element) != 2:
return False
if not element[1].is_Integer:
return False
if element[1] >= len(self.sets) or element[1] < 0:
return False
return element[0] in self.sets[element[1]]
def __iter__(self):
if self.is_iterable:
from sympy.core.numbers import Integer
iters = []
for i, s in enumerate(self.sets):
iters.append(iproduct(s, {Integer(i)}))
return iter(roundrobin(*iters))
else:
raise ValueError("'%s' is not iterable." % self)
def __len__(self):
"""
Returns the length of the disjoint union, i.e., the number of elements in the set.
Examples
========
>>> from sympy import FiniteSet, DisjointUnion, EmptySet
>>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
>>> len(D1)
7
>>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
>>> len(D2)
6
>>> D3 = DisjointUnion(EmptySet, EmptySet)
>>> len(D3)
0
Adds up the lengths of the constituent sets.
"""
if self.is_finite_set:
size = 0
for set in self.sets:
size += len(set)
return size
else:
raise ValueError("'%s' is not a finite set." % self)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, imageset, sin, Lambda
>>> from sympy.abc import x
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
s = inspect.signature(f).parameters
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(uniquely_named_symbol(
Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = set((new_set, ))
new_args = (args - set((s, t))).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - set((s,))
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - set((s, t))).union(set((new_set, )))
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
8b7fb7a5f9723e3dc8c35215de3e8d8b2e4ea06e5faf30af6b6d28475ba54490 | """Plotting module for Sympy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from sympy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Don't use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from __future__ import print_function, division
import warnings
from sympy import sympify, Expr, Tuple, Dummy, Symbol
from sympy.external import import_module
from sympy.core.function import arity
from sympy.core.compatibility import Callable
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
##############################################################################
# The public interface
##############################################################################
class Plot(object):
"""The central class of the plotting module.
For interactive work the function ``plot`` is better suited.
This class permits the plotting of sympy expressions using numerous
backends (matplotlib, textplot, the old pyglet module for sympy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of sympy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (eg title, xlabel, scale, etc) and
per-data series options (eg name) and aesthetics (eg. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or
parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str
- ylabel : str
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
- backend : {'default', 'matplotlib', 'text'}
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
Parametric3DLineSeries support the following:
Aesthetics:
- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args,
title=None, xlabel=None, ylabel=None, aspect_ratio='auto',
xlim=None, ylim=None, axis_center='auto', axis=True,
xscale='linear', yscale='linear', legend=False, autoscale=True,
margin=0, annotations=None, markers=None, rectangles=None,
fill=None, backend='default', **kwargs):
super(Plot, self).__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = title
self.xlabel = xlabel
self.ylabel = ylabel
self.aspect_ratio = aspect_ratio
self.axis_center = axis_center
self.axis = axis
self.xscale = xscale
self.yscale = yscale
self.legend = legend
self.autoscale = autoscale
self.margin = margin
self.annotations = annotations
self.markers = markers
self.rectangles = rectangles
self.fill = fill
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
self.backend = plot_backends[backend]
is_real = \
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
is_finite = \
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
self.xlim = None
self.ylim = None
if xlim:
if not is_real(xlim):
raise ValueError(
"All numbers from xlim={} must be real".format(xlim))
if not is_finite(xlim):
raise ValueError(
"All numbers from xlim={} must be finite".format(xlim))
self.xlim = (float(xlim[0]), float(xlim[1]))
if ylim:
if not is_real(ylim):
raise ValueError(
"All numbers from ylim={} must be real".format(ylim))
if not is_finite(ylim):
raise ValueError(
"All numbers from ylim={} must be finite".format(ylim))
self.ylim = (float(ylim[0]), float(ylim[1]))
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
class PlotGrid(object):
"""This class helps to plot subplots from already created sympy plots
in a single figure.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot, plot3d, PlotGrid
>>> x, y = symbols('x, y')
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
>>> p3 = plot(x**3, (x, -5, 5))
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plotting vertically in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 1 , p1, p2)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plotting horizontally in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(1, 3 , p2, p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Plotting in a grid form:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 2, p1, p2 ,p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[3]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
"""
def __init__(self, nrows, ncolumns, *args, show=True, **kwargs):
"""
Parameters
==========
nrows : The number of rows that should be in the grid of the
required subplot
ncolumns : The number of columns that should be in the grid
of the required subplot
nrows and ncolumns together define the required grid
Arguments
=========
A list of predefined plot objects entered in a row-wise sequence
i.e. plot objects which are to be in the top row of the required
grid are written first, then the second row objects and so on
Keyword arguments
=================
show : Boolean
The default value is set to ``True``. Set show to ``False`` and
the function will not display the subplot. The returned instance
of the ``PlotGrid`` class can then be used to save or display the
plot by calling the ``save()`` and ``show()`` methods
respectively.
"""
self.nrows = nrows
self.ncolumns = ncolumns
self._series = []
self.args = args
for arg in args:
self._series.append(arg._series)
self.backend = DefaultBackend
if show:
self.show()
def show(self):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
plot_strs = [('Plot[%d]:' % i) + str(plot)
for i, plot in enumerate(self.args)]
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries(object):
"""Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given.
(eg TextBackend supports only LineOver1DRange).
It's the backend responsibility to know how to use the class of
data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (eg. The LineOver1DRange belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
# Different from is_contour as the colormap in backend will be
# different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super(BaseSeries, self).__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super(Line2DBaseSeries, self).__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_segments(self):
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
nargs = arity(c)
if nargs == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super(List2DSeries, self).__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super(LineOver1DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.label = kwargs.get('label', None) or str(self.expr)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
self.xscale = kwargs.get('xscale', 'linear')
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
.. [1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return super(LineOver1DRangeSeries, self).get_segments()
else:
f = lambdify([self.var], self.expr)
list_segments = []
np = import_module('numpy')
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
if self.xscale == 'log':
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
np.log10(p[0])))
else:
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif p[1] is None and q[1] is None:
if self.xscale == 'log':
xarray = np.logspace(p[0], q[0], 10)
else:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if any(y is not None for y in yarray):
for i in range(len(yarray) - 1):
if yarray[i] is not None or yarray[i + 1] is not None:
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
# Sample further if one of the end points in None (i.e. a
# complex value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start = f(self.start)
f_end = f(self.end)
sample(np.array([self.start, f_start]),
np.array([self.end, f_end]), 0)
return list_segments
def get_points(self):
np = import_module('numpy')
if self.only_integers is True:
if self.xscale == 'log':
list_x = np.logspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
if self.xscale == 'log':
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric sympy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super(Parametric2DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = kwargs.get('label', None) or \
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return super(Parametric2DLineSeries, self).get_segments()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
list_segments = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if any(x is not None and y is not None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
# Sample further if one of the end points in None (i.e. a complex
# value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
sample(self.start, self.end, start, end, 0)
return list_segments
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super(Line3DBaseSeries, self).__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of two parametric sympy
expressions and a range."""
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super(Parametric3DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = kwargs.get('label', None) or \
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
np = import_module('numpy')
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
list_x = np.array(list_x, dtype=np.float64)
list_y = np.array(list_y, dtype=np.float64)
list_z = np.array(list_z, dtype=np.float64)
list_x = np.ma.masked_invalid(list_x)
list_y = np.ma.masked_invalid(list_y)
list_z = np.ma.masked_invalid(list_z)
self._xlim = (np.amin(list_x), np.amax(list_x))
self._ylim = (np.amin(list_y), np.amax(list_y))
self._zlim = (np.amin(list_z), np.amax(list_z))
return list_x, list_y, list_z
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super(SurfaceBaseSeries, self).__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
nargs = arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a sympy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super(SurfaceOver2DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
mesh_z = f(mesh_x, mesh_y)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_z = np.ma.masked_invalid(mesh_z)
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric sympy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super(ParametricSurfaceSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
np = import_module('numpy')
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
mesh_x = fx(mesh_u, mesh_v)
mesh_y = fy(mesh_u, mesh_v)
mesh_z = fz(mesh_u, mesh_v)
mesh_x = np.array(mesh_x, dtype=np.float64)
mesh_y = np.array(mesh_y, dtype=np.float64)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_x = np.ma.masked_invalid(mesh_x)
mesh_y = np.ma.masked_invalid(mesh_y)
mesh_z = np.ma.masked_invalid(mesh_z)
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super(ContourSeries, self).__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend(object):
def __init__(self, parent):
super(BaseBackend, self).__init__()
self.parent = parent
# Don't have to check for the success of importing matplotlib in each case;
# we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
def __init__(self, parent):
super(MatplotlibBackend, self).__init__(parent)
self.matplotlib = import_module('matplotlib',
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
if aspect != 'auto':
aspect = float(aspect[1]) / aspect[0]
if isinstance(self.parent, Plot):
nrows, ncolumns = 1, 1
series_list = [self.parent._series]
elif isinstance(self.parent, PlotGrid):
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
series_list = self.parent._series
self.ax = []
self.fig = self.plt.figure()
for i, series in enumerate(series_list):
are_3D = [s.is_3D for s in series]
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
elif all(are_3D):
# mpl_toolkits.mplot3d is necessary for
# projection='3d'
mpl_toolkits = import_module('mpl_toolkits', # noqa
import_kwargs={'fromlist': ['mplot3d']})
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
elif not any(are_3D):
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
self.ax[i].spines['left'].set_position('zero')
self.ax[i].spines['right'].set_color('none')
self.ax[i].spines['bottom'].set_position('zero')
self.ax[i].spines['top'].set_color('none')
self.ax[i].xaxis.set_ticks_position('bottom')
self.ax[i].yaxis.set_ticks_position('left')
def _process_series(self, series, ax, parent):
np = import_module('numpy')
mpl_toolkits = import_module(
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
xlims, ylims, zlims = [], [], []
for s in series:
# Create the collections
if s.is_2Dline:
collection = self.LineCollection(s.get_segments())
ax.add_collection(collection)
elif s.is_contour:
ax.contour(*s.get_meshes())
elif s.is_3Dline:
# TODO too complicated, I blame matplotlib
art3d = mpl_toolkits.mplot3d.art3d
collection = art3d.Line3DCollection(s.get_segments())
ax.add_collection(collection)
x, y, z = s.get_points()
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_implicit:
points = s.get_raster()
if len(points) == 2:
# interval math plotting
x, y = _matplotlib_list(points[0])
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
# XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise NotImplementedError(
'{} is not supported in the sympy plotting module '
'with matplotlib backend. Please report this issue.'
.format(ax))
# Customise the collections with the corresponding per-series
# options.
if hasattr(s, 'label'):
collection.set_label(s.label)
if s.is_line and s.line_color:
if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable):
color_array = s.get_color_array()
collection.set_array(color_array)
else:
collection.set_color(s.line_color)
if s.is_3Dsurface and s.surface_color:
if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check
warnings.warn('The version of matplotlib is too old to use surface coloring.')
elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
Axes3D = mpl_toolkits.mplot3d.Axes3D
if not isinstance(ax, Axes3D):
ax.autoscale_view(
scalex=ax.get_autoscalex_on(),
scaley=ax.get_autoscaley_on())
else:
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
if xlims:
xlims = np.array(xlims)
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
ax.set_xlim(xlim)
else:
ax.set_xlim([0, 1])
if ylims:
ylims = np.array(ylims)
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
ax.set_ylim(ylim)
else:
ax.set_ylim([0, 1])
if zlims:
zlims = np.array(zlims)
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
ax.set_zlim(zlim)
else:
ax.set_zlim([0, 1])
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
if parent.xscale and not isinstance(ax, Axes3D):
ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(ax, Axes3D):
ax.set_yscale(parent.yscale)
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(ax, Axes3D):
pass
elif val == 'center':
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = ax.get_xlim()
yl, yh = ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
ax.spines['left'].set_position(pos_left)
ax.spines['bottom'].set_position(pos_bottom)
else:
ax.spines['left'].set_position(('data', val[0]))
ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
ax.set_axis_off()
if parent.legend:
if ax.legend():
ax.legend_.set_visible(parent.legend)
if parent.margin:
ax.set_xmargin(parent.margin)
ax.set_ymargin(parent.margin)
if parent.title:
ax.set_title(parent.title)
if parent.xlabel:
ax.set_xlabel(parent.xlabel, position=(1, 0))
if parent.ylabel:
ax.set_ylabel(parent.ylabel, position=(0, 1))
if parent.annotations:
for a in parent.annotations:
ax.annotate(**a)
if parent.markers:
for marker in parent.markers:
# make a copy of the marker dictionary
# so that it doesn't get altered
m = marker.copy()
args = m.pop('args')
ax.plot(*args, **m)
if parent.rectangles:
for r in parent.rectangles:
rect = self.matplotlib.patches.Rectangle(**r)
ax.add_patch(rect)
if parent.fill:
ax.fill_between(**parent.fill)
# xlim and ylim shoulld always be set at last so that plot limits
# doesn't get altered during the process.
if parent.xlim:
ax.set_xlim(parent.xlim)
if parent.ylim:
ax.set_ylim(parent.ylim)
def process_series(self):
"""
Iterates over every ``Plot`` object and further calls
_process_series()
"""
parent = self.parent
if isinstance(parent, Plot):
series_list = [parent._series]
else:
series_list = parent._series
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
if isinstance(self.parent, PlotGrid):
parent = self.parent.args[i]
self._process_series(series, ax, parent)
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.fig.tight_layout()
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super(TextBackend, self).__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1:],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float)
vector_b = (z - y).astype(np.float)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend([None, None, None, None])
ylist.extend([None, None, None, None])
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the followings:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : float, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
If there are multiple plots, then the same series series are
applied to all the plots. If you want to set these options
separately, you can index the ``Plot`` object returned and set
it.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the matplotlib's annotate() function.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the matplotlib's plot() function along with the marker
related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the matplotlib's
patches.Rectangle class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the matplotlib's fill_between() function.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
``n`` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
nb_of_points : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``nb_of_points`` number of points.
If the ``adaptive`` flag is set to ``True``, this will be
ignored.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x.name)
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, show=True, **kwargs):
"""
Plots a 2D parametric curve.
Parameters
==========
args
Common specifications are:
- Plotting a single parametric curve with a range
``plot_parametric((expr_x, expr_y), range)``
- Plotting multiple parametric curves with the same range
``plot_parametric((expr_x, expr_y), ..., range)``
- Plotting multiple parametric curves with different ranges
``plot_parametric((expr_x, expr_y, range), ...)``
``expr_x`` is the expression representing $x$ component of the
parametric function.
``expr_y`` is the expression representing $y$ component of the
parametric function.
``range`` is a 3-tuple denoting the parameter symbol, start and
stop. For example, ``(u, 0, 5)``.
If the range is not specified, then a default range of (-10, 10)
is used.
However, if the arguments are specified as
``(expr_x, expr_y, range), ...``, you must specify the ranges
for each expressions manually.
Default range may change in the future if a more advanced
algorithm is implemented.
adaptive : bool, optional
Specifies whether to use the adaptive sampling or not.
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
depth : int, optional
The recursion depth of the adaptive algorithm. A depth of
value $n$ samples a maximum of $2^n$ points.
nb_of_points : int, optional
Used when the ``adaptive`` flag is set to ``False``.
Specifies the number of the points used for the uniform
sampling.
line_color : function
A function which returns a float.
Specifies the color of the plot.
See :class:`Plot` for more details.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot_parametric
>>> u = symbols('u')
A parametric plot with a single expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
A parametric plot with multiple expressions with the same range:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
A parametric plot with multiple expressions with different ranges
for each curve:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
Notes
=====
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the curve. The adaptive algorithm uses a random point
near the midpoint of two points that has to be further sampled.
Hence, repeating the same plot command can give slightly different
results because of the random sampling.
If there are multiple plots, then the same optional arguments are
applied to all the plots drawn in the same canvas. If you want to
set these options separately, you can index the returned ``Plot``
object and set it.
For example, when you specify ``line_color`` once, it would be
applied simultaneously to both series.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import pi
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
If you want to specify the line color for the specific series, you
should index each item and apply the property manually.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p[0].line_color = 'red'
>>> p.show()
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, show=True, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``expr_z`` : Expression representing the function along z.
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
``label``: str
The label to the plot. It will be used when called with ``legend=True``
to denote the function with the given label in the plot.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, show=True, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, show=True, **kwargs):
"""
Plots a 3D parametric surface plot.
Usage
=====
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x``: Expression representing the function along ``x``.
``expr_y``: Expression representing the function along ``y``.
``expr_z``: Expression representing the function along ``z``.
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
variable.
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
variable.
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
``nb_of_points_v`` of points
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
``nb_of_points_y`` of points
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, show=True, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges)
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if not args:
return []
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
# Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
# Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
dd4b354bb53508fc0281db55e7da9dd140f19c72c102e1a5d4cb8cdc9a8b5ad1 | from sympy import (S, symbols, FiniteSet, Eq, Matrix, MatrixSymbol, Float, And,
ImmutableMatrix, Ne, Lt, Gt, exp, Not, Rational, Lambda, erf,
Piecewise, factorial, Interval, oo, Contains, sqrt, pi, ceiling,
gamma, lowergamma, Sum, Range, Tuple, ImmutableDenseMatrix)
from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E,
StochasticStateSpaceOf, variance, ContinuousMarkovChain,
BernoulliProcess, PoissonProcess, WienerProcess,
GammaProcess, sample_stochastic_process)
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import RandomIndexedSymbol
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.testing.pytest import raises, skip, ignore_warnings
from sympy.external import import_module
from sympy.stats.frv_types import BernoulliDistribution
from sympy.stats.drv_types import PoissonDistribution
from sympy.stats.crv_types import NormalDistribution, GammaDistribution
from sympy.core.symbol import Str
def test_DiscreteMarkovChain():
# pass only the name
X = DiscreteMarkovChain("X")
assert isinstance(X.state_space, Range)
assert isinstance(X.index_of, Range)
assert not X._is_numeric
assert X.index_set == S.Naturals0
assert isinstance(X.transition_probabilities, MatrixSymbol)
t = symbols('t', positive=True, integer=True)
assert isinstance(X[t], RandomIndexedSymbol)
assert E(X[0]) == Expectation(X[0])
raises(TypeError, lambda: DiscreteMarkovChain(1))
raises(NotImplementedError, lambda: X(t))
raises(ValueError, lambda: sample_stochastic_process(t))
raises(ValueError, lambda: next(sample_stochastic_process(X)))
# pass name and state_space
# any hashable object should be a valid state
# states should be valid as a tuple/set/list/Tuple/Range
sym = symbols('a', real=True)
state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
Tuple(1, exp(sym), Str('World'), sympify=False), Range(-1, 7, 2)]
chains = [DiscreteMarkovChain("Y", state_spaces[0]),
DiscreteMarkovChain("Y", state_spaces[1]),
DiscreteMarkovChain("Y", state_spaces[2])]
for i, Y in enumerate(chains):
assert isinstance(Y.transition_probabilities, MatrixSymbol)
assert Y.state_space == Tuple(*state_spaces[i])
assert Y.number_of_states == 3
assert not Y._is_numeric # because no transition matrix is provided
assert Y.index_of[state_spaces[i][0]] == 0
assert Y.index_of[state_spaces[i][1]] == 1
assert Y.index_of[state_spaces[i][2]] == 2
with ignore_warnings(UserWarning): # TODO: Restore tests once warnings are removed
assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
assert E(Y[0]) == Expectation(Y[0])
raises(ValueError, lambda: next(sample_stochastic_process(Y)))
raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
Y = DiscreteMarkovChain("Y", Range(1, t, 2))
assert Y.number_of_states == ceiling((t-1)/2)
raises(NotImplementedError, lambda: Y.index_of)
# pass name and transition_probabilities
chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))]
for Z in chains:
assert Z.number_of_states == Z.transition_probabilities.shape[0]
assert isinstance(Z.transition_probabilities, ImmutableDenseMatrix)
assert isinstance(Z.state_space, Tuple)
assert Z._is_numeric
# pass name, state_space and transition_probabilities
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
TS = MatrixSymbol('T', 3, 3)
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
assert YS._transient2transient() == None
assert YS._transient2absorbing() == None
assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3])
raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
(TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0
assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
assert P(Eq(YS[3], 3), Eq(YS[1], 1)) is S.Zero
TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]])
assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert E(Y[3], evaluate=False) == Expectation(Y[3])
assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
TSO = MatrixSymbol('T', 4, 4)
raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))
# extended tests for probability queries
TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
Probability(Eq(Y[0], 0))/4
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0))
# testing properties of Markov chain
TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
assert Y3._transient2absorbing() == None
raises (ValueError, lambda: Y3.fundamental_matrix())
assert Y2.is_absorbing_chain() == True
assert Y3.is_absorbing_chain() == False
TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]])
Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]])
assert Y4.limiting_distribution == w
assert Y4.is_regular() == True
TS1 = MatrixSymbol('T', 3, 3)
Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
assert Y5.limiting_distribution(w, TO4).doit() == True
TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]])
Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0], [0, S.Half]])
assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0], [S.Half, 0, S.Half], [0, S.Half, 0]])
assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]])
assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]])
# testing miscellaneous queries
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))
# testing miscellaneous queries with different state space
X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
a = X.state_space.args[0]
c = X.state_space.args[2]
assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0
assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
def test_sample_stochastic_process():
if not import_module('scipy'):
skip('SciPy Not installed. Skip sampling tests')
import random
random.seed(0)
numpy = import_module('numpy')
if numpy:
numpy.random.seed(0) # scipy uses numpy to sample so to set its seed
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(Y)) in Y.state_space
Z = DiscreteMarkovChain("Z", ['1', 1, None], T)
for samps in range(10):
assert next(sample_stochastic_process(Z)) in Z.state_space
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(X)) in X.state_space
W = DiscreteMarkovChain('W', [1, pi, oo], T)
for samps in range(10):
assert next(sample_stochastic_process(W)) in W.state_space
def test_ContinuousMarkovChain():
T1 = Matrix([[S(-2), S(2), S.Zero],
[S.Zero, S.NegativeOne, S.One],
[Rational(3, 2), Rational(3, 2), S(-3)]])
C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]])
T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]])
C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
A, t = C2.generator_matrix, symbols('t', positive=True)
assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0],
[S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0],
[S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]])
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half
assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half)
assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half
assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half)
+ (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2))
raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0))
TS1 = MatrixSymbol('G', 3, 3)
CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
A = CS1.generator_matrix
assert CS1.transition_probabilities(A)(t) == exp(t*A)
def test_BernoulliProcess():
B = BernoulliProcess("B", p=0.6, success=1, failure=0)
assert B.state_space == FiniteSet(0, 1)
assert B.index_set == S.Naturals0
assert B.success == 1
assert B.failure == 0
X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T')
assert X.state_space == FiniteSet('H', 'T')
H, T = symbols("H,T")
assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3
t, x = symbols('t, x', positive=True, integer=True)
assert isinstance(B[t], RandomIndexedSymbol)
raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0))
raises(NotImplementedError, lambda: B(t))
raises(IndexError, lambda: B[-3])
assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]),
Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True))
*Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True))))
assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]),
Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True))
*Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True))))
# Test for the sum distribution of Bernoulli Process RVs
Y = B[1] + B[2] + B[3]
assert P(Eq(Y, 0)).round(2) == Float(0.06, 1)
assert P(Eq(Y, 2)).round(2) == Float(0.43, 2)
assert P(Eq(Y, 4)).round(2) == 0
assert P(Gt(Y, 1)).round(2) == Float(0.65, 2)
# Test for independency of each Random Indexed variable
assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1)
assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3)
assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3)
assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2)
assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2)
assert E(B[1]) == 0.6
assert P(B[1] > 0).round(2) == Float(0.60, 2)
assert P(B[1] < 1).round(2) == Float(0.40, 2)
assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2)
assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2)
assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2)
assert P(Eq(B[2], 1), B[2] > 0) == 1
assert P(Eq(B[5], 3)) == 0
assert P(Eq(B[1], 1), B[1] < 0) == 0
assert P(B[2] > 0, Eq(B[2], 1)) == 1
assert P(B[2] < 0, Eq(B[2], 1)) == 0
assert P(B[2] > 0, B[2]==7) == 0
assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1)
raises(ValueError, lambda: P(3))
raises(ValueError, lambda: P(B[3] > 0, 3))
# test issue 19456
expr = Sum(B[t], (t, 0, 4))
expr2 = Sum(B[t], (t, 1, 3))
expr3 = Sum(B[t]**2, (t, 1, 3))
assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4]
assert expr2.doit() == Y
assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2
assert B[2*t].free_symbols == {B[2*t], t}
assert B[4].free_symbols == {B[4]}
assert B[x*t].free_symbols == {B[x*t], x, t}
def test_PoissonProcess():
X = PoissonProcess("X", 3)
assert X.state_space == S.Naturals0
assert X.index_set == Interval(0, oo)
assert X.lamda == 3
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(X(t)) == PoissonDistribution(3*t)
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-5))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)),
6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3)))))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)),
12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6)))))
assert P(X(t) < 1) == exp(-3*t)
assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda)
res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
assert res == 3*exp(-3)
# Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
& Contains(y, Interval.Lopen(3, 4))) == res**4
# Return Probability because of overlapping intervals
assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == \
Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4)))
raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3),
Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d
assert P(Eq(X(3), 2)) == 81*exp(-9)/2
assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2
# Check that probability works correctly by adding it to 1
res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
assert res1 == 691*exp(-15)
assert (res1 + res2).simplify() == 1
# Check Not and Or
assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6)
raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
assert E(X(t)) == 3*t # property of the distribution at a given timestamp
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75
assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == \
Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2)))
# Value Error because of infinite time bound
raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))
# Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2))) == 0
assert E(X(2) + x*E(X(5))) == 15*x + 6
assert E(x*X(1) + y) == 3*x + y
assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4
Y = PoissonProcess("Y", 6)
Z = X + Y
assert Z.lamda == X.lamda + Y.lamda == 9
raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance
N, M = Z.split(4, 5)
assert N.lamda == 4
assert M.lamda == 5
raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9
raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
# check if it handles queries with two random variables in one args
res1 = P(Eq(N(3), N(5)))
assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
res2 = P(N(3) > N(1))
assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
assert P(N(3) < N(1)) == 0 # condition is not possible
res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1))
assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))
# tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
X = PoissonProcess('X', 10) # 11.1
assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261)
assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0
assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7))
X = PoissonProcess('X', 2) # 11.2
assert P(X(S(1)/2) < 1) == exp(-1)
assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)
X = PoissonProcess('X', 3)
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6)
# check few properties
assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2))
assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1))
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2))
assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))
def test_WienerProcess():
X = WienerProcess("X")
assert X.state_space == S.Reals
assert X.index_set == Interval(0, oo)
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(X(t)) == NormalDistribution(0, sqrt(t))
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-2))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi)))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(
Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi)))
assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2
assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
erf(sqrt(2)/2)/2
# Equivalent to P(X(1)>1)**4
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
& Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
(1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16
# Contains an overlapping interval so, return Probability
assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2),
Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2)))
assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify()) == \
'-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
# Distribution has mean 0 at each timestamp
assert E(X(t)) == 0
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2),
Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1)))
assert E(X(t) + x*E(X(3))) == 0
def test_GammaProcess_symbolic():
t, d, x, y, g, l = symbols('t d x y g l', positive=True)
X = GammaProcess("X", l, g)
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-1))
assert isinstance(X(t), RandomIndexedSymbol)
assert X.state_space == Interval(0, oo)
assert X.distribution(X(t)) == GammaDistribution(g*t, 1/l)
assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda(
(X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g
- 1)/(gamma(3*g)*gamma(5*g))))
# property of the gamma process at any given timestamp
assert E(X(t)) == g*t/l
assert variance(X(t)).simplify() == g*t/l**2
# Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3
assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)
def test_GammaProcess_numeric():
t, d, x, y = symbols('t d x y', positive=True)
X = GammaProcess("X", 1, 2)
assert X.state_space == Interval(0, oo)
assert X.index_set == Interval(0, oo)
assert X.lamda == 1
assert X.gamma == 2
raises(ValueError, lambda: GammaProcess("X", -1, 2))
raises(ValueError, lambda: GammaProcess("X", 0, -2))
raises(ValueError, lambda: GammaProcess("X", -1, -2))
# all are independent because of non-overlapping intervals
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t,
Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x,
Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \
120*exp(-10)
# Check working with Not and Or
assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1
assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \
-643*exp(-4)/15 + 109*exp(-2)/15 + 1
assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l
assert E(X(2) + x*E(X(5))) == 10*x + 4
|
005521cd82284ff7121f27a71be548ab7d45de87c8277be5f881e73b839123eb | from sympy import (sqrt, exp, Trace, pi, S, Integral, MatrixSymbol, Lambda,
Dummy, Product, Abs, IndexedBase, Matrix, I, Rational)
from sympy.stats import (GaussianUnitaryEnsemble as GUE, density,
GaussianOrthogonalEnsemble as GOE,
GaussianSymplecticEnsemble as GSE,
joint_eigen_distribution,
CircularUnitaryEnsemble as CUE,
CircularOrthogonalEnsemble as COE,
CircularSymplecticEnsemble as CSE,
JointEigenDistribution,
level_spacing_distribution,
Normal, Beta)
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.random_matrix_models import GaussianEnsemble, RandomMatrixPSpace
from sympy.testing.pytest import raises
def test_GaussianEnsemble():
G = GaussianEnsemble('G', 3)
assert density(G) == G.pspace.model
raises(ValueError, lambda: GaussianEnsemble('G', 3.5))
def test_GaussianUnitaryEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
G = GUE('U', 3)
assert density(G)(H) == sqrt(2)*exp(-3*Trace(H**2)/2)/(4*pi**Rational(9, 2))
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
27*sqrt(6)*exp(-3*(l[1]**2)/2 - 3*(l[2]**2)/2 - 3*(l[3]**2)/2)*
Product(Abs(l[i] - l[j])**2, (j, i + 1, 3), (i, 1, 2))/(16*pi**Rational(3, 2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, 32*s**2*exp(-4*s**2/pi)/pi**2))
def test_GaussianOrthogonalEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GOE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2)/4)/Integral(exp(-3*Trace(_H**2)/4), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
9*sqrt(2)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j]), (j, i + 1, 3), (i, 1, 2))/(32*pi)))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, s*pi*exp(-s**2*pi/4)/2))
def test_GaussianSymplecticEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GSE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2))/Integral(exp(-3*Trace(_H**2)), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
162*sqrt(3)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j])**4, (j, i + 1, 3), (i, 1, 2))/(5*pi**Rational(3, 2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, S(262144)*s**4*exp(-64*s**2/(9*pi))/(729*pi**3)))
def test_CircularUnitaryEnsemble():
CU = CUE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CU).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k]))**2,
(j, k + 1, 3), (k, 1, 2))/(48*pi**3))
)
def test_CircularOrthogonalEnsemble():
CO = COE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CO).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k])),
(j, k + 1, 3), (k, 1, 2))/(48*pi**2))
)
def test_CircularSymplecticEnsemble():
CS = CSE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CS).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k]))**4,
(j, k + 1, 3), (k, 1, 2))/(720*pi**3))
)
def test_JointEigenDistribution():
A = Matrix([[Normal('A00', 0, 1), Normal('A01', 1, 1)],
[Beta('A10', 1, 1), Beta('A11', 1, 1)]])
JointEigenDistribution(A) == \
JointDistributionHandmade(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 +
A[0, 0]/2 + A[1, 1]/2, sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 + A[0, 0]/2 + A[1, 1]/2)
raises(ValueError, lambda: JointEigenDistribution(Matrix([[1, 0], [2, 1]])))
def test_issue_19841():
G1 = GUE('U', 2)
G2 = G1.xreplace({2: 2})
assert G1.args == G2.args
X = MatrixSymbol('X', 2, 2)
G = GSE('U', 2)
h_pspace = RandomMatrixPSpace('P', model=density(G))
H = RandomMatrixSymbol('H', 2, 2, pspace=h_pspace)
H2 = RandomMatrixSymbol('H', 2, 2, pspace=None)
assert H.doit() == H
assert (2*H).xreplace({H: X}) == 2*X
assert (2*H).xreplace({H2: X}) == 2*H
assert (2*H2).xreplace({H: X}) == 2*H2
assert (2*H2).xreplace({H2: X}) == 2*X
|
276d6664a5908bb18d4aba038976b4f23667fc5ada984a84b4ef478cda777578 | from sympy import Mul, S, Pow, Symbol, summation, Dict, factorial as fac
from sympy.core.evalf import bitcount
from sympy.core.numbers import Integer, Rational
from sympy.ntheory import (totient,
factorint, primefactors, divisors, nextprime,
primerange, pollard_rho, perfect_power, multiplicity, multiplicity_in_factorial,
trailing, divisor_count, primorial, pollard_pm1, divisor_sigma,
factorrat, reduced_totient)
from sympy.ntheory.factor_ import (smoothness, smoothness_p, proper_divisors,
antidivisors, antidivisor_count, core, udivisors, udivisor_sigma,
udivisor_count, proper_divisor_count, primenu, primeomega, small_trailing,
mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
is_deficient, is_amicable, dra, drm)
from sympy.testing.pytest import raises
from sympy.utilities.iterables import capture
def fac_multiplicity(n, p):
"""Return the power of the prime number p in the
factorization of n!"""
if p > n:
return 0
if p > n//2:
return 1
q, m = n, 0
while q >= p:
q //= p
m += q
return m
def multiproduct(seq=(), start=1):
"""
Return the product of a sequence of factors with multiplicities,
times the value of the parameter ``start``. The input may be a
sequence of (factor, exponent) pairs or a dict of such pairs.
>>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4
279936
"""
if not seq:
return start
if isinstance(seq, dict):
seq = iter(seq.items())
units = start
multi = []
for base, exp in seq:
if not exp:
continue
elif exp == 1:
units *= base
else:
if exp % 2:
units *= base
multi.append((base, exp//2))
return units * multiproduct(multi)**2
def test_trailing_bitcount():
assert trailing(0) == 0
assert trailing(1) == 0
assert trailing(-1) == 0
assert trailing(2) == 1
assert trailing(7) == 0
assert trailing(-7) == 0
for i in range(100):
assert trailing(1 << i) == i
assert trailing((1 << i) * 31337) == i
assert trailing(1 << 1000001) == 1000001
assert trailing((1 << 273956)*7**37) == 273956
# issue 12709
big = small_trailing[-1]*2
assert trailing(-big) == trailing(big)
assert bitcount(-big) == bitcount(big)
def test_multiplicity():
for b in range(2, 20):
for i in range(100):
assert multiplicity(b, b**i) == i
assert multiplicity(b, (b**i) * 23) == i
assert multiplicity(b, (b**i) * 1000249) == i
# Should be fast
assert multiplicity(10, 10**10023) == 10023
# Should exit quickly
assert multiplicity(10**10, 10**10) == 1
# Should raise errors for bad input
raises(ValueError, lambda: multiplicity(1, 1))
raises(ValueError, lambda: multiplicity(1, 2))
raises(ValueError, lambda: multiplicity(1.3, 2))
raises(ValueError, lambda: multiplicity(2, 0))
raises(ValueError, lambda: multiplicity(1.3, 0))
# handles Rationals
assert multiplicity(10, Rational(30, 7)) == 1
assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1
assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2
assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1
assert multiplicity(3, Rational(1, 9)) == -2
def test_multiplicity_in_factorial():
n = fac(1000)
for i in (2, 4, 6, 12, 30, 36, 48, 60, 72, 96):
assert multiplicity(i, n) == multiplicity_in_factorial(i, 1000)
def test_perfect_power():
raises(ValueError, lambda: perfect_power(0))
raises(ValueError, lambda: perfect_power(Rational(25, 4)))
assert perfect_power(1) is False
assert perfect_power(2) is False
assert perfect_power(3) is False
assert perfect_power(4) == (2, 2)
assert perfect_power(14) is False
assert perfect_power(25) == (5, 2)
assert perfect_power(22) is False
assert perfect_power(22, [2]) is False
assert perfect_power(137**(3*5*13)) == (137, 3*5*13)
assert perfect_power(137**(3*5*13) + 1) is False
assert perfect_power(137**(3*5*13) - 1) is False
assert perfect_power(103005006004**7) == (103005006004, 7)
assert perfect_power(103005006004**7 + 1) is False
assert perfect_power(103005006004**7 - 1) is False
assert perfect_power(103005006004**12) == (103005006004, 12)
assert perfect_power(103005006004**12 + 1) is False
assert perfect_power(103005006004**12 - 1) is False
assert perfect_power(2**10007) == (2, 10007)
assert perfect_power(2**10007 + 1) is False
assert perfect_power(2**10007 - 1) is False
assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60)
assert perfect_power((9**99 + 1)**60 + 1) is False
assert perfect_power((9**99 + 1)**60 - 1) is False
assert perfect_power((10**40000)**2, big=False) == (10**40000, 2)
assert perfect_power(10**100000) == (10, 100000)
assert perfect_power(10**100001) == (10, 100001)
assert perfect_power(13**4, [3, 5]) is False
assert perfect_power(3**4, [3, 10], factor=0) is False
assert perfect_power(3**3*5**3) == (15, 3)
assert perfect_power(2**3*5**5) is False
assert perfect_power(2*13**4) is False
assert perfect_power(2**5*3**3) is False
t = 2**24
for d in divisors(24):
m = perfect_power(t*3**d)
assert m and m[1] == d or d == 1
m = perfect_power(t*3**d, big=False)
assert m and m[1] == 2 or d == 1 or d == 3, (d, m)
def test_factorint():
assert primefactors(123456) == [2, 3, 643]
assert factorint(0) == {0: 1}
assert factorint(1) == {}
assert factorint(-1) == {-1: 1}
assert factorint(-2) == {-1: 1, 2: 1}
assert factorint(-16) == {-1: 1, 2: 4}
assert factorint(2) == {2: 1}
assert factorint(126) == {2: 1, 3: 2, 7: 1}
assert factorint(123456) == {2: 6, 3: 1, 643: 1}
assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
assert factorint(64015937) == {7993: 1, 8009: 1}
assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
#issue 19683
assert factorint(10**38 - 1) == {3: 2, 11: 1, 909090909090909091: 1, 1111111111111111111: 1}
#issue 17676
assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1}
assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1}
assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1}
assert factorint(0, multiple=True) == [0]
assert factorint(1, multiple=True) == []
assert factorint(-1, multiple=True) == [-1]
assert factorint(-2, multiple=True) == [-1, 2]
assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
assert factorint(2, multiple=True) == [2]
assert factorint(24, multiple=True) == [2, 2, 2, 3]
assert factorint(126, multiple=True) == [2, 3, 3, 7]
assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
assert factorint(64015937, multiple=True) == [7993, 8009]
assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]
assert factorint(fac(1, evaluate=False)) == {}
assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
assert factorint(fac(15, evaluate=False)) == \
{2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
assert factorint(fac(20, evaluate=False)) == \
{2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
assert factorint(fac(23, evaluate=False)) == \
{2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}
assert multiproduct(factorint(fac(200))) == fac(200)
assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
for b, e in factorint(fac(150)).items():
assert e == fac_multiplicity(150, b)
for b, e in factorint(fac(150, evaluate=False)).items():
assert e == fac_multiplicity(150, b)
assert factorint(103005006059**7) == {103005006059: 7}
assert factorint(31337**191) == {31337: 191}
assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
{2: 1000, 3: 500, 257: 127, 383: 60}
assert len(factorint(fac(10000))) == 1229
assert len(factorint(fac(10000, evaluate=False))) == 1229
assert factorint(12932983746293756928584532764589230) == \
{2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
assert factorint(727719592270351) == {727719592270351: 1}
assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
for n in range(60000):
assert multiproduct(factorint(n)) == n
assert pollard_rho(2**64 + 1, seed=1) == 274177
assert pollard_rho(19, seed=1) is None
assert factorint(3, limit=2) == {3: 1}
assert factorint(12345) == {3: 1, 5: 1, 823: 1}
assert factorint(
12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit
assert factorint(1, limit=1) == {}
assert factorint(0, 3) == {0: 1}
assert factorint(12, limit=1) == {12: 1}
assert factorint(30, limit=2) == {2: 1, 15: 1}
assert factorint(16, limit=2) == {2: 4}
assert factorint(124, limit=3) == {2: 2, 31: 1}
assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
p1 = nextprime(2**32)
p2 = nextprime(2**16)
p3 = nextprime(p2)
assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
assert factorint(primorial(17) + 1, use_pm1=0) == \
{int(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
# when prime b is closer than approx sqrt(8*p) to prime p then they are
# "close" and have a trivial factorization
a = nextprime(2**2**8) # 78 digits
b = nextprime(a + 2**2**4)
assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))
raises(ValueError, lambda: pollard_rho(4))
raises(ValueError, lambda: pollard_pm1(3))
raises(ValueError, lambda: pollard_pm1(10, B=2))
# verbose coverage
n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
assert 'with primes' in capture(lambda: factorint(n, verbose=1))
capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))
n = nextprime(2**17)
capture(lambda: factorint(n**3, verbose=1)) # perfect power termination
capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg
# exceed 1st
n = nextprime(2**17)
n *= nextprime(n)
assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
n *= nextprime(n)
assert len(factorint(n)) == 3
assert len(factorint(n, limit=p1)) == 3
n *= nextprime(2*n)
# exceed 2nd
assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
assert capture(
lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
# non-prime pm1 result
n = nextprime(8069)
n *= nextprime(2*n)*nextprime(2*n, 2)
capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result
# factor fermat composite
p1 = nextprime(2**17)
p2 = nextprime(2*p1)
assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
# Test for non integer input
raises(ValueError, lambda: factorint(4.5))
# test dict/Dict input
sans = '2**10*3**3'
n = {4: 2, 12: 3}
assert str(factorint(n)) == sans
assert str(factorint(Dict(n))) == sans
def test_divisors_and_divisor_count():
assert divisors(-1) == [1]
assert divisors(0) == []
assert divisors(1) == [1]
assert divisors(2) == [1, 2]
assert divisors(3) == [1, 3]
assert divisors(17) == [1, 17]
assert divisors(10) == [1, 2, 5, 10]
assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100]
assert divisors(101) == [1, 101]
assert divisor_count(0) == 0
assert divisor_count(-1) == 1
assert divisor_count(1) == 1
assert divisor_count(6) == 4
assert divisor_count(12) == 6
assert divisor_count(180, 3) == divisor_count(180//3)
assert divisor_count(2*3*5, 7) == 0
def test_proper_divisors_and_proper_divisor_count():
assert proper_divisors(-1) == []
assert proper_divisors(0) == []
assert proper_divisors(1) == []
assert proper_divisors(2) == [1]
assert proper_divisors(3) == [1]
assert proper_divisors(17) == [1]
assert proper_divisors(10) == [1, 2, 5]
assert proper_divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50]
assert proper_divisors(1000000007) == [1]
assert proper_divisor_count(0) == 0
assert proper_divisor_count(-1) == 0
assert proper_divisor_count(1) == 0
assert proper_divisor_count(36) == 8
assert proper_divisor_count(2*3*5) == 7
def test_udivisors_and_udivisor_count():
assert udivisors(-1) == [1]
assert udivisors(0) == []
assert udivisors(1) == [1]
assert udivisors(2) == [1, 2]
assert udivisors(3) == [1, 3]
assert udivisors(17) == [1, 17]
assert udivisors(10) == [1, 2, 5, 10]
assert udivisors(100) == [1, 4, 25, 100]
assert udivisors(101) == [1, 101]
assert udivisors(1000) == [1, 8, 125, 1000]
assert udivisor_count(0) == 0
assert udivisor_count(-1) == 1
assert udivisor_count(1) == 1
assert udivisor_count(6) == 4
assert udivisor_count(12) == 4
assert udivisor_count(180) == 8
assert udivisor_count(2*3*5*7) == 16
def test_issue_6981():
S = set(divisors(4)).union(set(divisors(Integer(2))))
assert S == {1,2,4}
def test_totient():
assert [totient(k) for k in range(1, 12)] == \
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
assert totient(5005) == 2880
assert totient(5006) == 2502
assert totient(5009) == 5008
assert totient(2**100) == 2**99
raises(ValueError, lambda: totient(30.1))
raises(ValueError, lambda: totient(20.001))
m = Symbol("m", integer=True)
assert totient(m)
assert totient(m).subs(m, 3**10) == 3**10 - 3**9
assert summation(totient(m), (m, 1, 11)) == 42
n = Symbol("n", integer=True, positive=True)
assert totient(n).is_integer
x=Symbol("x", integer=False)
raises(ValueError, lambda: totient(x))
y=Symbol("y", positive=False)
raises(ValueError, lambda: totient(y))
z=Symbol("z", positive=True, integer=True)
raises(ValueError, lambda: totient(2**(-z)))
def test_reduced_totient():
assert [reduced_totient(k) for k in range(1, 16)] == \
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4]
assert reduced_totient(5005) == 60
assert reduced_totient(5006) == 2502
assert reduced_totient(5009) == 5008
assert reduced_totient(2**100) == 2**98
m = Symbol("m", integer=True)
assert reduced_totient(m)
assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9
assert summation(reduced_totient(m), (m, 1, 16)) == 68
n = Symbol("n", integer=True, positive=True)
assert reduced_totient(n).is_integer
def test_divisor_sigma():
assert [divisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12]
assert [divisor_sigma(k, 2) for k in range(1, 12)] == \
[1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122]
assert divisor_sigma(23450) == 50592
assert divisor_sigma(23450, 0) == 24
assert divisor_sigma(23450, 1) == 50592
assert divisor_sigma(23450, 2) == 730747500
assert divisor_sigma(23450, 3) == 14666785333344
a = Symbol("a", prime=True)
b = Symbol("b", prime=True)
j = Symbol("j", integer=True, positive=True)
k = Symbol("k", integer=True, positive=True)
assert divisor_sigma(a**j*b**k) == (a**(j + 1) - 1)*(b**(k + 1) - 1)/((a - 1)*(b - 1))
assert divisor_sigma(a**j*b**k, 2) == (a**(2*j + 2) - 1)*(b**(2*k + 2) - 1)/((a**2 - 1)*(b**2 - 1))
assert divisor_sigma(a**j*b**k, 0) == (j + 1)*(k + 1)
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert divisor_sigma(m)
assert divisor_sigma(m, k)
assert divisor_sigma(m).subs(m, 3**10) == 88573
assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597
assert summation(divisor_sigma(m), (m, 1, 11)) == 99
def test_udivisor_sigma():
assert [udivisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12]
assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \
[1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332]
assert udivisor_sigma(23450) == 42432
assert udivisor_sigma(23450, 0) == 16
assert udivisor_sigma(23450, 1) == 42432
assert udivisor_sigma(23450, 2) == 702685000
assert udivisor_sigma(23450, 4) == 321426961814978248
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert udivisor_sigma(m)
assert udivisor_sigma(m, k)
assert udivisor_sigma(m).subs(m, 4**9) == 262145
assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737
assert summation(udivisor_sigma(m), (m, 2, 15)) == 169
def test_issue_4356():
assert factorint(1030903) == {53: 2, 367: 1}
def test_divisors():
assert divisors(28) == [1, 2, 4, 7, 14, 28]
assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105]
assert divisors(0) == []
def test_divisor_count():
assert divisor_count(0) == 0
assert divisor_count(6) == 4
def test_proper_divisors():
assert proper_divisors(-1) == []
assert proper_divisors(28) == [1, 2, 4, 7, 14]
assert [x for x in proper_divisors(3*5*7, True)] == [1, 3, 5, 15, 7, 21, 35]
def test_proper_divisor_count():
assert proper_divisor_count(6) == 3
assert proper_divisor_count(108) == 11
def test_antidivisors():
assert antidivisors(-1) == []
assert antidivisors(-3) == [2]
assert antidivisors(14) == [3, 4, 9]
assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158]
assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230]
assert antidivisors(393216) == [262144]
assert sorted(x for x in antidivisors(3*5*7, 1)) == \
[2, 6, 10, 11, 14, 19, 30, 42, 70]
assert antidivisors(1) == []
def test_antidivisor_count():
assert antidivisor_count(0) == 0
assert antidivisor_count(-1) == 0
assert antidivisor_count(-4) == 1
assert antidivisor_count(20) == 3
assert antidivisor_count(25) == 5
assert antidivisor_count(38) == 7
assert antidivisor_count(180) == 6
assert antidivisor_count(2*3*5) == 3
def test_smoothness_and_smoothness_p():
assert smoothness(1) == (1, 1)
assert smoothness(2**4*3**2) == (3, 16)
assert smoothness_p(10431, m=1) == \
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
assert smoothness_p(10431) == \
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
assert smoothness_p(10431, power=1) == \
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
assert smoothness_p(21477639576571, visual=1) == \
'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \
'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931'
def test_visual_factorint():
assert factorint(1, visual=1) == 1
forty2 = factorint(42, visual=True)
assert type(forty2) == Mul
assert str(forty2) == '2**1*3**1*7**1'
assert factorint(1, visual=True) is S.One
no = dict(evaluate=False)
assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no),
Pow(3, 2, **no),
Pow(7, 2, **no), **no)
assert -1 in factorint(-42, visual=True).args
def test_factorrat():
assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1'
assert str(factorrat(Rational(1, 1), visual=True)) == '1'
assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)'
assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)'
assert str(factorrat(S(-25)/14/9, visual=True)) == '-5**2/(2*3**2*7)'
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(Rational(1, 1), multiple=True) == []
assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5]
assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5]
assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3]
assert factorrat(S(-25)/14/9, multiple=True) == \
[-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5]
def test_visual_io():
sm = smoothness_p
fi = factorint
# with smoothness_p
n = 124
d = fi(n)
m = fi(d, visual=True)
t = sm(n)
s = sm(t)
for th in [d, s, t, n, m]:
assert sm(th, visual=True) == s
assert sm(th, visual=1) == s
for th in [d, s, t, n, m]:
assert sm(th, visual=False) == t
assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t]
assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t]
# with factorint
for th in [d, m, n]:
assert fi(th, visual=True) == m
assert fi(th, visual=1) == m
for th in [d, m, n]:
assert fi(th, visual=False) == d
assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d]
assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d]
# test reevaluation
no = dict(evaluate=False)
assert sm({4: 2}, visual=False) == sm(16)
assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == sm(2**10)
assert fi({4: 2}, visual=False) == fi(16)
assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == fi(2**10)
def test_core():
assert core(35**13, 10) == 42875
assert core(210**2) == 1
assert core(7776, 3) == 36
assert core(10**27, 22) == 10**5
assert core(537824) == 14
assert core(1, 6) == 1
def test_primenu():
assert primenu(2) == 1
assert primenu(2 * 3) == 2
assert primenu(2 * 3 * 5) == 3
assert primenu(3 * 25) == primenu(3) + primenu(25)
assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primenu(fac(50)) == 15
assert primenu(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primenu(n)
assert primenu(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primenu(n), (n, 2, 30)) == 43
def test_primeomega():
assert primeomega(2) == 1
assert primeomega(2 * 2) == 2
assert primeomega(2 * 2 * 3) == 3
assert primeomega(3 * 25) == primeomega(3) + primeomega(25)
assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primeomega(fac(50)) == 108
assert primeomega(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primeomega(n)
assert primeomega(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primeomega(n), (n, 2, 30)) == 59
def test_mersenne_prime_exponent():
assert mersenne_prime_exponent(1) == 2
assert mersenne_prime_exponent(4) == 7
assert mersenne_prime_exponent(10) == 89
assert mersenne_prime_exponent(25) == 21701
raises(ValueError, lambda: mersenne_prime_exponent(52))
raises(ValueError, lambda: mersenne_prime_exponent(0))
def test_is_perfect():
assert is_perfect(6) is True
assert is_perfect(15) is False
assert is_perfect(28) is True
assert is_perfect(400) is False
assert is_perfect(496) is True
assert is_perfect(8128) is True
assert is_perfect(10000) is False
def test_is_mersenne_prime():
assert is_mersenne_prime(10) is False
assert is_mersenne_prime(127) is True
assert is_mersenne_prime(511) is False
assert is_mersenne_prime(131071) is True
assert is_mersenne_prime(2147483647) is True
def test_is_abundant():
assert is_abundant(10) is False
assert is_abundant(12) is True
assert is_abundant(18) is True
assert is_abundant(21) is False
assert is_abundant(945) is True
def test_is_deficient():
assert is_deficient(10) is True
assert is_deficient(22) is True
assert is_deficient(56) is False
assert is_deficient(20) is False
assert is_deficient(36) is False
def test_is_amicable():
assert is_amicable(173, 129) is False
assert is_amicable(220, 284) is True
assert is_amicable(8756, 8756) is False
def test_dra():
assert dra(19, 12) == 8
assert dra(2718, 10) == 9
assert dra(0, 22) == 0
assert dra(23456789, 10) == 8
raises(ValueError, lambda: dra(24, -2))
raises(ValueError, lambda: dra(24.2, 5))
def test_drm():
assert drm(19, 12) == 7
assert drm(2718, 10) == 2
assert drm(0, 15) == 0
assert drm(234161, 10) == 6
raises(ValueError, lambda: drm(24, -2))
raises(ValueError, lambda: drm(11.6, 9))
|
7b146290aa5f654ecbed576fcfae387fae3658378576c7e988eeee7c20092529 | from sympy.ntheory import qs
from sympy.ntheory.qs import SievePolynomial, \
_generate_factor_base, _initialize_first_polynomial, _initialize_ith_poly, \
_gen_sieve_array, _check_smoothness, _trial_division_stage, _gauss_mod_2, \
_build_matrix, _find_factor
assert qs(10009202107, 100, 10000) == {100043, 100049}
assert qs(211107295182713951054568361 , 1000, 10000) == {13791315212531, 15307263442931}
assert qs(980835832582657*990377764891511, 3000, 50000) == {980835832582657, 990377764891511}
assert qs(18640889198609*20991129234731, 1000, 50000) == {18640889198609, 20991129234731}
n = 10009202107
M = 50
#a = 10, b = 15, modified_coeff = [a**2, 2*a*b, b**2 - N]
sieve_poly = SievePolynomial([100, 1600, -10009195707], 10, 80)
assert sieve_poly.eval(10) == -10009169707
assert sieve_poly.eval(5) == -10009185207
idx_1000, idx_5000, factor_base = _generate_factor_base(2000, n)
assert idx_1000 == 82
assert [factor_base[i].prime for i in range(15)] == [2, 3, 7, 11, 17, 19, 29, 31,\
43, 59, 61, 67, 71, 73, 79]
assert [factor_base[i].tmem_p for i in range(15)] == [1, 1, 3, 5, 3, 6, 6, 14, 1,\
16, 24, 22, 18, 22, 15]
assert [factor_base[i].log_p for i in range(5)] == [710, 1125, 1993, 2455, 2901]
g, B = _initialize_first_polynomial(n, M, factor_base, idx_1000, idx_5000, seed=0)
assert g.a == 1133107
assert g.b == 682543
assert B == [272889, 409654]
assert [factor_base[i].soln1 for i in range(15)] == [0, 0, 3, 7, 13, 0, 8, 19,\
9, 43, 27, 25, 63, 29, 19]
assert [factor_base[i].soln2 for i in range(15)] == [0, 1, 1, 3, 12, 16, 15, 6,\
15, 1, 56, 55, 61, 58, 16]
assert [factor_base[i].a_inv for i in range(15)] == [1, 1, 5, 7, 3, 5, 26, 6,\
40, 5, 21, 45, 4, 1, 8]
assert [factor_base[i].b_ainv for i in range(5)] == [[0, 0], [0, 2], [3, 0],\
[3, 9], [13, 13]]
g_1 = _initialize_ith_poly(n, factor_base, 1, g, B)
assert g_1.a == 1133107
assert g_1.b == 136765
sieve_array = _gen_sieve_array(M, factor_base)
assert sieve_array[0:5] == [8424, 13603, 1835, 5335, 710]
assert _check_smoothness(9645, factor_base) == (5, False)
assert _check_smoothness(210313, factor_base)[0][0:15] == [0, 0, 0, 0, 0, 0, 0,\
0, 0, 1, 0, 0, 1, 0, 1]
assert _check_smoothness(210313, factor_base)[1] == True
partial_relations = {}
smooth_relation, partial_relation = _trial_division_stage(n, M, factor_base,\
sieve_array, sieve_poly,\
partial_relations, ERROR_TERM=25*2**10)
assert partial_relations == {8699: (440, -10009008507),
166741: (490, -10008962007),
131449: (530, -10008921207),
6653: (550, -10008899607)}
assert [smooth_relation[i][0] for i in range(5)] == [-250, -670615476700,\
-45211565844500, -231723037747200, -1811665537200]
assert [smooth_relation[i][1] for i in range(5)] == [-10009139607, 1133094251961,\
5302606761, 53804049849, 1950723889]
assert smooth_relation[0][2][0:15] == [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert _gauss_mod_2([[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) ==\
([[[0, 1, 1], 3], [[0, 1, 1], 4]], [True, True, True, False, False], [[0, 0, 1],\
[1, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 1]])
N=1817
smooth_relations = [(2455024, 637, [0, 0, 0, 1]),
(-27993000, 81536, [0, 1, 0, 1]),
(11461840, 12544, [0, 0, 0, 0]),
(149, 20384, [0, 1, 0, 1]),
(-31138074, 19208, [0, 1, 0, 0])]
matrix = _build_matrix(smooth_relations)
assert matrix == [[0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 0], [0, 1, 0, 1], [0, 1, 0, 0]]
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
assert dependent_row == [[[0, 0, 0, 0], 2], [[0, 1, 0, 0], 3]]
assert mark == [True, True, False, False, True]
assert gauss_matrix == [[0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1]]
factor = _find_factor(dependent_row, mark, gauss_matrix, 0, smooth_relations, N)
assert factor == 23
|
b98d93a7f3e9bd72b1996489dbaade653a0ca01522860b6776d6e19d6cfc2c6d | from sympy.combinatorics.perm_groups import (PermutationGroup,
_orbit_transversal, Coset, SymmetricPermutationGroup)
from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\
DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup
from sympy.combinatorics.permutations import Permutation
from sympy.testing.pytest import skip, XFAIL
from sympy.combinatorics.generators import rubik_cube_generators
from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube
from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\
_verify_normal_closure
from sympy.testing.pytest import slow
from sympy.combinatorics.homomorphisms import is_isomorphic
rmul = Permutation.rmul
def test_has():
a = Permutation([1, 0])
G = PermutationGroup([a])
assert G.is_abelian
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert not G.is_abelian
G = PermutationGroup([a])
assert G.has(a)
assert not G.has(b)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([0, 2, 1, 3, 4])
assert PermutationGroup(a, b).degree == \
PermutationGroup(a, b).degree == 6
def test_generate():
a = Permutation([1, 0])
g = list(PermutationGroup([a]).generate())
assert g == [Permutation([0, 1]), Permutation([1, 0])]
assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1
g = PermutationGroup([a]).generate(method='dimino')
assert list(g) == [Permutation([0, 1]), Permutation([1, 0])]
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
g = G.generate()
v1 = [p.array_form for p in list(g)]
v1.sort()
assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0,
1], [2, 1, 0]]
v2 = list(G.generate(method='dimino', af=True))
assert v1 == sorted(v2)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b]).generate(af=True)
assert len(list(g)) == 360
def test_order():
a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
g = PermutationGroup([a, b])
assert g.order() == 1814400
assert PermutationGroup().order() == 1
def test_equality():
p_1 = Permutation(0, 1, 3)
p_2 = Permutation(0, 2, 3)
p_3 = Permutation(0, 1, 2)
p_4 = Permutation(0, 1, 3)
g_1 = PermutationGroup(p_1, p_2)
g_2 = PermutationGroup(p_3, p_4)
g_3 = PermutationGroup(p_2, p_1)
assert g_1 == g_2
assert g_1.generators != g_2.generators
assert g_1 == g_3
def test_stabilizer():
S = SymmetricGroup(2)
H = S.stabilizer(0)
assert H.generators == [Permutation(1)]
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
G = PermutationGroup([a, b])
G0 = G.stabilizer(0)
assert G0.order() == 60
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 6
G2_1 = G2.stabilizer(1)
v = list(G2_1.generate(af=True))
assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]
gens = (
(1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
(0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 7, 17, 18),
(0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
gens = [Permutation(p) for p in gens]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 181440
S = SymmetricGroup(3)
assert [G.order() for G in S.basic_stabilizers] == [6, 2]
def test_center():
# the center of the dihedral group D_n is of order 2 for even n
for i in (4, 6, 10):
D = DihedralGroup(i)
assert (D.center()).order() == 2
# the center of the dihedral group D_n is of order 1 for odd n>2
for i in (3, 5, 7):
D = DihedralGroup(i)
assert (D.center()).order() == 1
# the center of an abelian group is the group itself
for i in (2, 3, 5):
for j in (1, 5, 7):
for k in (1, 1, 11):
G = AbelianGroup(i, j, k)
assert G.center().is_subgroup(G)
# the center of a nonabelian simple group is trivial
for i in(1, 5, 9):
A = AlternatingGroup(i)
assert (A.center()).order() == 1
# brute-force verifications
D = DihedralGroup(5)
A = AlternatingGroup(3)
C = CyclicGroup(4)
G.is_subgroup(D*A*C)
assert _verify_centralizer(G, G)
def test_centralizer():
# the centralizer of the trivial group is the entire group
S = SymmetricGroup(2)
assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
A = AlternatingGroup(5)
assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
# a centralizer in the trivial group is the trivial group itself
triv = PermutationGroup([Permutation([0, 1, 2, 3])])
D = DihedralGroup(4)
assert triv.centralizer(D).is_subgroup(triv)
# brute-force verifications for centralizers of groups
for i in (4, 5, 6):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
D = DihedralGroup(i)
for gp in (S, A, C, D):
for gp2 in (S, A, C, D):
if not gp2.is_subgroup(gp):
assert _verify_centralizer(gp, gp2)
# verify the centralizer for all elements of several groups
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_centralizer(S, element)
A = AlternatingGroup(5)
elements = list(A.generate_dimino())
for element in elements:
assert _verify_centralizer(A, element)
D = DihedralGroup(7)
elements = list(D.generate_dimino())
for element in elements:
assert _verify_centralizer(D, element)
# verify centralizers of small groups within small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp.degree == gp2.degree:
assert _verify_centralizer(gp, gp2)
def test_coset_rank():
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
i = 0
for h in G.generate(af=True):
rk = G.coset_rank(h)
assert rk == i
h1 = G.coset_unrank(rk, af=True)
assert h == h1
i += 1
assert G.coset_unrank(48) == None
assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0]
def test_coset_factor():
a = Permutation([0, 2, 1])
G = PermutationGroup([a])
c = Permutation([2, 1, 0])
assert not G.coset_factor(c)
assert G.coset_rank(c) is None
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b])
assert g.order() == 360
d = Permutation([1, 0, 2, 3, 4, 5])
assert not g.coset_factor(d.array_form)
assert not g.contains(d)
assert Permutation(2) in G
c = Permutation([1, 0, 2, 3, 5, 4])
v = g.coset_factor(c, True)
tr = g.basic_transversals
p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))])
assert p == c
v = g.coset_factor(c)
p = Permutation.rmul(*v)
assert p == c
assert g.contains(c)
G = PermutationGroup([Permutation([2, 1, 0])])
p = Permutation([1, 0, 2])
assert G.coset_factor(p) == []
def test_orbits():
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
g = PermutationGroup([a, b])
assert g.orbit(0) == {0, 1, 2}
assert g.orbits() == [{0, 1, 2}]
assert g.is_transitive() and g.is_transitive(strict=False)
assert g.orbit_transversal(0) == \
[Permutation(
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
assert g.orbit_transversal(0, True) == \
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
(1, Permutation([1, 2, 0]))]
G = DihedralGroup(6)
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
for i, t in transversal:
slp = slps[i]
w = G.identity
for s in slp:
w = G.generators[s]*w
assert w == t
a = Permutation(list(range(1, 100)) + [0])
G = PermutationGroup([a])
assert [min(o) for o in G.orbits()] == [0]
G = PermutationGroup(rubik_cube_generators())
assert [min(o) for o in G.orbits()] == [0, 1]
assert not G.is_transitive() and not G.is_transitive(strict=False)
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
assert not G.is_transitive() and G.is_transitive(strict=False)
assert PermutationGroup(
Permutation(3)).is_transitive(strict=False) is False
def test_is_normal():
gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]]
G1 = PermutationGroup(gens_s5)
assert G1.order() == 120
gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]]
G2 = PermutationGroup(gens_a5)
assert G2.order() == 60
assert G2.is_normal(G1)
gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]]
G3 = PermutationGroup(gens3)
assert not G3.is_normal(G1)
assert G3.order() == 12
G4 = G1.normal_closure(G3.generators)
assert G4.order() == 60
gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]]
G5 = PermutationGroup(gens5)
assert G5.order() == 24
G6 = G1.normal_closure(G5.generators)
assert G6.order() == 120
assert G1.is_subgroup(G6)
assert not G1.is_subgroup(G4)
assert G2.is_subgroup(G4)
I5 = PermutationGroup(Permutation(4))
assert I5.is_normal(G5)
assert I5.is_normal(G6, strict=False)
p1 = Permutation([1, 0, 2, 3, 4])
p2 = Permutation([0, 1, 2, 4, 3])
p3 = Permutation([3, 4, 2, 1, 0])
id_ = Permutation([0, 1, 2, 3, 4])
H = PermutationGroup([p1, p3])
H_n1 = PermutationGroup([p1, p2])
H_n2_1 = PermutationGroup(p1)
H_n2_2 = PermutationGroup(p2)
H_id = PermutationGroup(id_)
assert H_n1.is_normal(H)
assert H_n2_1.is_normal(H_n1)
assert H_n2_2.is_normal(H_n1)
assert H_id.is_normal(H_n2_1)
assert H_id.is_normal(H_n1)
assert H_id.is_normal(H)
assert not H_n2_1.is_normal(H)
assert not H_n2_2.is_normal(H)
def test_eq():
a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
1, 2, 0, 3, 4, 5]]
a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
g = Permutation([1, 2, 3, 4, 5, 0])
G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
assert G1.order() == G2.order() == G3.order() == 6
assert G1.is_subgroup(G2)
assert not G1.is_subgroup(G3)
G4 = PermutationGroup([Permutation([0, 1])])
assert not G1.is_subgroup(G4)
assert G4.is_subgroup(G1, 0)
assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
def test_derived_subgroup():
a = Permutation([1, 0, 2, 4, 3])
b = Permutation([0, 1, 3, 2, 4])
G = PermutationGroup([a, b])
C = G.derived_subgroup()
assert C.order() == 3
assert C.is_normal(G)
assert C.is_subgroup(G, 0)
assert not G.is_subgroup(C, 0)
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
C = G.derived_subgroup()
assert C.order() == 12
def test_is_solvable():
a = Permutation([1, 2, 0])
b = Permutation([1, 0, 2])
G = PermutationGroup([a, b])
assert G.is_solvable
G = PermutationGroup([a])
assert G.is_solvable
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert not G.is_solvable
P = SymmetricGroup(10)
S = P.sylow_subgroup(3)
assert S.is_solvable
def test_rubik1():
gens = rubik_cube_generators()
gens1 = [gens[-1]] + [p**2 for p in gens[1:]]
G1 = PermutationGroup(gens1)
assert G1.order() == 19508428800
gens2 = [p**2 for p in gens]
G2 = PermutationGroup(gens2)
assert G2.order() == 663552
assert G2.is_subgroup(G1, 0)
C1 = G1.derived_subgroup()
assert C1.order() == 4877107200
assert C1.is_subgroup(G1, 0)
assert not G2.is_subgroup(C1, 0)
G = RubikGroup(2)
assert G.order() == 3674160
@XFAIL
def test_rubik():
skip('takes too much time')
G = PermutationGroup(rubik_cube_generators())
assert G.order() == 43252003274489856000
G1 = PermutationGroup(G[:3])
assert G1.order() == 170659735142400
assert not G1.is_normal(G)
G2 = G.normal_closure(G1.generators)
assert G2.is_subgroup(G)
def test_direct_product():
C = CyclicGroup(4)
D = DihedralGroup(4)
G = C*C*C
assert G.order() == 64
assert G.degree == 12
assert len(G.orbits()) == 3
assert G.is_abelian is True
H = D*C
assert H.order() == 32
assert H.is_abelian is False
def test_orbit_rep():
G = DihedralGroup(6)
assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]),
Permutation([4, 3, 2, 1, 0, 5])]
H = CyclicGroup(4)*G
assert H.orbit_rep(1, 5) is False
def test_schreier_vector():
G = CyclicGroup(50)
v = [0]*50
v[23] = -1
assert G.schreier_vector(23) == v
H = DihedralGroup(8)
assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
L = SymmetricGroup(4)
assert L.schreier_vector(1) == [1, -1, 0, 0]
def test_random_pr():
D = DihedralGroup(6)
r = 11
n = 3
_random_prec_n = {}
_random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1}
_random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1}
_random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1}
D._random_pr_init(r, n, _random_prec_n=_random_prec_n)
assert D._random_gens[11] == [0, 1, 2, 3, 4, 5]
_random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1}
assert D.random_pr(_random_prec=_random_prec) == \
Permutation([0, 5, 4, 3, 2, 1])
def test_is_alt_sym():
G = DihedralGroup(10)
assert G.is_alt_sym() is False
assert G._eval_is_alt_sym_naive() is False
assert G._eval_is_alt_sym_naive(only_alt=True) is False
assert G._eval_is_alt_sym_naive(only_sym=True) is False
S = SymmetricGroup(10)
assert S._eval_is_alt_sym_naive() is True
assert S._eval_is_alt_sym_naive(only_alt=True) is False
assert S._eval_is_alt_sym_naive(only_sym=True) is True
N_eps = 10
_random_prec = {'N_eps': N_eps,
0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
assert S.is_alt_sym(_random_prec=_random_prec) is True
A = AlternatingGroup(10)
assert A._eval_is_alt_sym_naive() is True
assert A._eval_is_alt_sym_naive(only_alt=True) is True
assert A._eval_is_alt_sym_naive(only_sym=True) is False
_random_prec = {'N_eps': N_eps,
0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
assert A.is_alt_sym(_random_prec=_random_prec) is False
G = PermutationGroup(
Permutation(1, 3, size=8)(0, 2, 4, 6),
Permutation(5, 7, size=8)(0, 2, 4, 6))
assert G.is_alt_sym() is False
# Tests for monte-carlo c_n parameter setting, and which guarantees
# to give False.
G = DihedralGroup(10)
assert G._eval_is_alt_sym_monte_carlo() is False
G = DihedralGroup(20)
assert G._eval_is_alt_sym_monte_carlo() is False
# A dry-running test to check if it looks up for the updated cache.
G = DihedralGroup(6)
G.is_alt_sym()
assert G.is_alt_sym() == False
def test_minimal_block():
D = DihedralGroup(6)
block_system = D.minimal_block([0, 3])
for i in range(3):
assert block_system[i] == block_system[i + 3]
S = SymmetricGroup(6)
assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]
assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4))
assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
def test_minimal_blocks():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
P = SymmetricGroup(5)
assert P.minimal_blocks() == [[0]*5]
P = PermutationGroup(Permutation(0, 3))
assert P.minimal_blocks() == False
def test_max_div():
S = SymmetricGroup(10)
assert S.max_div == 5
def test_is_primitive():
S = SymmetricGroup(5)
assert S.is_primitive() is True
C = CyclicGroup(7)
assert C.is_primitive() is True
a = Permutation(0, 1, 2, size=6)
b = Permutation(3, 4, 5, size=6)
G = PermutationGroup(a, b)
assert G.is_primitive() is False
def test_random_stab():
S = SymmetricGroup(5)
_random_el = Permutation([1, 3, 2, 0, 4])
_random_prec = {'rand': _random_el}
g = S.random_stab(2, _random_prec=_random_prec)
assert g == Permutation([1, 3, 2, 0, 4])
h = S.random_stab(1)
assert h(1) == 1
def test_transitivity_degree():
perm = Permutation([1, 2, 0])
C = PermutationGroup([perm])
assert C.transitivity_degree == 1
gen1 = Permutation([1, 2, 0, 3, 4])
gen2 = Permutation([1, 2, 3, 4, 0])
# alternating group of degree 5
Alt = PermutationGroup([gen1, gen2])
assert Alt.transitivity_degree == 3
def test_schreier_sims_random():
assert sorted(Tetra.pgroup.base) == [0, 1]
S = SymmetricGroup(3)
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
Permutation([0, 2, 1])]
assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
D = DihedralGroup(3)
_random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
Permutation([1, 0, 2])]}
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
Permutation([0, 2, 1])]
assert D.schreier_sims_random([], D.generators, 2,
_random_prec=_random_prec) == (base, strong_gens)
def test_baseswap():
S = SymmetricGroup(4)
S.schreier_sims()
base = S.base
strong_gens = S.strong_gens
assert base == [0, 1, 2]
deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
randomized = S.baseswap(base, strong_gens, 1)
assert deterministic[0] == [0, 2, 1]
assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
assert randomized[0] == [0, 2, 1]
assert _verify_bsgs(S, randomized[0], randomized[1]) is True
def test_schreier_sims_incremental():
identity = Permutation([0, 1, 2, 3, 4])
TrivialGroup = PermutationGroup([identity])
base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
S = SymmetricGroup(5)
base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(S, base, strong_gens) is True
D = DihedralGroup(2)
base, strong_gens = D.schreier_sims_incremental(base=[1])
assert _verify_bsgs(D, base, strong_gens) is True
A = AlternatingGroup(7)
gens = A.generators[:]
gen0 = gens[0]
gen1 = gens[1]
gen1 = rmul(gen1, ~gen0)
gen0 = rmul(gen0, gen1)
gen1 = rmul(gen0, gen1)
base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
assert _verify_bsgs(A, base, strong_gens) is True
C = CyclicGroup(11)
gen = C.generators[0]
base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
assert _verify_bsgs(C, base, strong_gens) is True
def _subgroup_search(i, j, k):
prop_true = lambda x: True
prop_fix_points = lambda x: [x(point) for point in points] == points
prop_comm_g = lambda x: rmul(x, g) == rmul(g, x)
prop_even = lambda x: x.is_even
for i in range(i, j, k):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
Sym = S.subgroup_search(prop_true)
assert Sym.is_subgroup(S)
Alt = S.subgroup_search(prop_even)
assert Alt.is_subgroup(A)
Sym = S.subgroup_search(prop_true, init_subgroup=C)
assert Sym.is_subgroup(S)
points = [7]
assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
points = [3, 4]
assert S.stabilizer(3).stabilizer(4).is_subgroup(
S.subgroup_search(prop_fix_points))
points = [3, 5]
fix35 = A.subgroup_search(prop_fix_points)
points = [5]
fix5 = A.subgroup_search(prop_fix_points)
assert A.subgroup_search(prop_fix_points, init_subgroup=fix35
).is_subgroup(fix5)
base, strong_gens = A.schreier_sims_incremental()
g = A.generators[0]
comm_g = \
A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
assert _verify_bsgs(comm_g, base, comm_g.generators) is True
assert [prop_comm_g(gen) is True for gen in comm_g.generators]
def test_subgroup_search():
_subgroup_search(10, 15, 2)
@XFAIL
def test_subgroup_search2():
skip('takes too much time')
_subgroup_search(16, 17, 1)
def test_normal_closure():
# the normal closure of the trivial group is trivial
S = SymmetricGroup(3)
identity = Permutation([0, 1, 2])
closure = S.normal_closure(identity)
assert closure.is_trivial
# the normal closure of the entire group is the entire group
A = AlternatingGroup(4)
assert A.normal_closure(A).is_subgroup(A)
# brute-force verifications for subgroups
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
C = CyclicGroup(i)
for gp in (A, D, C):
assert _verify_normal_closure(S, gp)
# brute-force verifications for all elements of a group
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_normal_closure(S, element)
# small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
assert _verify_normal_closure(gp, gp2)
def test_derived_series():
# the derived series of the trivial group consists only of the trivial group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.derived_series()[0].is_subgroup(triv)
# the derived series for a simple group consists only of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.derived_series()[0].is_subgroup(A)
# the derived series for S_4 is S_4 > A_4 > K_4 > triv
S = SymmetricGroup(4)
series = S.derived_series()
assert series[1].is_subgroup(AlternatingGroup(4))
assert series[2].is_subgroup(DihedralGroup(2))
assert series[3].is_trivial
def test_lower_central_series():
# the lower central series of the trivial group consists of the trivial
# group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.lower_central_series()[0].is_subgroup(triv)
# the lower central series of a simple group consists of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.lower_central_series()[0].is_subgroup(A)
# GAP-verified example
S = SymmetricGroup(6)
series = S.lower_central_series()
assert len(series) == 2
assert series[1].is_subgroup(AlternatingGroup(6))
def test_commutator():
# the commutator of the trivial group and the trivial group is trivial
S = SymmetricGroup(3)
triv = PermutationGroup([Permutation([0, 1, 2])])
assert S.commutator(triv, triv).is_subgroup(triv)
# the commutator of the trivial group and any other group is again trivial
A = AlternatingGroup(3)
assert S.commutator(triv, A).is_subgroup(triv)
# the commutator is commutative
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
# the commutator of an abelian group is trivial
S = SymmetricGroup(7)
A1 = AbelianGroup(2, 5)
A2 = AbelianGroup(3, 4)
triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
assert S.commutator(A1, A1).is_subgroup(triv)
assert S.commutator(A2, A2).is_subgroup(triv)
# examples calculated by hand
S = SymmetricGroup(3)
A = AlternatingGroup(3)
assert S.commutator(A, S).is_subgroup(A)
def test_is_nilpotent():
# every abelian group is nilpotent
for i in (1, 2, 3):
C = CyclicGroup(i)
Ab = AbelianGroup(i, i + 2)
assert C.is_nilpotent
assert Ab.is_nilpotent
Ab = AbelianGroup(5, 7, 10)
assert Ab.is_nilpotent
# A_5 is not solvable and thus not nilpotent
assert AlternatingGroup(5).is_nilpotent is False
def test_is_trivial():
for i in range(5):
triv = PermutationGroup([Permutation(list(range(i)))])
assert triv.is_trivial
def test_pointwise_stabilizer():
S = SymmetricGroup(2)
stab = S.pointwise_stabilizer([0])
assert stab.generators == [Permutation(1)]
S = SymmetricGroup(5)
points = []
stab = S
for point in (2, 0, 3, 4, 1):
stab = stab.stabilizer(point)
points.append(point)
assert S.pointwise_stabilizer(points).is_subgroup(stab)
def test_make_perm():
assert cube.pgroup.make_perm(5, seed=list(range(5))) == \
Permutation([4, 7, 6, 5, 0, 3, 2, 1])
assert cube.pgroup.make_perm(7, seed=list(range(7))) == \
Permutation([6, 7, 3, 2, 5, 4, 0, 1])
def test_elements():
from sympy.sets.sets import FiniteSet
p = Permutation(2, 3)
assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
assert FiniteSet(*PermutationGroup(p).elements) \
== FiniteSet(Permutation(2, 3), Permutation(3))
def test_is_group():
assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True
assert SymmetricGroup(4).is_group == True
def test_PermutationGroup():
assert PermutationGroup() == PermutationGroup(Permutation())
assert (PermutationGroup() == 0) is False
def test_coset_transvesal():
G = AlternatingGroup(5)
H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4))
assert G.coset_transversal(H) == \
[Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3),
Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4),
Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3),
Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)]
def test_coset_table():
G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2),
Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7));
H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7))
assert G.coset_table(H) == \
[[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1],
[5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3],
[2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5],
[6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7],
[10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9],
[7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]]
def test_subgroup():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert H.is_subgroup(G)
def test_generator_product():
G = SymmetricGroup(5)
p = Permutation(0, 2, 3)(1, 4)
gens = G.generator_product(p)
assert all(g in G.strong_gens for g in gens)
w = G.identity
for g in gens:
w = g*w
assert w == p
def test_sylow_subgroup():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
S = P.sylow_subgroup(2)
assert S.order() == 4
P = DihedralGroup(12)
S = P.sylow_subgroup(3)
assert S.order() == 3
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2))
S = P.sylow_subgroup(3)
assert S.order() == 9
S = P.sylow_subgroup(2)
assert S.order() == 8
P = SymmetricGroup(10)
S = P.sylow_subgroup(2)
assert S.order() == 256
S = P.sylow_subgroup(3)
assert S.order() == 81
S = P.sylow_subgroup(5)
assert S.order() == 25
# the length of the lower central series
# of a p-Sylow subgroup of Sym(n) grows with
# the highest exponent exp of p such
# that n >= p**exp
exp = 1
length = 0
for i in range(2, 9):
P = SymmetricGroup(i)
S = P.sylow_subgroup(2)
ls = S.lower_central_series()
if i // 2**exp > 0:
# length increases with exponent
assert len(ls) > length
length = len(ls)
exp += 1
else:
assert len(ls) == length
G = SymmetricGroup(100)
S = G.sylow_subgroup(3)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 3 > 0
G = AlternatingGroup(100)
S = G.sylow_subgroup(2)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 2 > 0
G = DihedralGroup(18)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
G = DihedralGroup(50)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
@slow
def test_presentation():
def _test(P):
G = P.presentation()
return G.order() == P.order()
def _strong_test(P):
G = P.strong_presentation()
chk = len(G.generators) == len(P.strong_gens)
return chk and G.order() == P.order()
P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7))
assert _test(P)
P = AlternatingGroup(5)
assert _test(P)
P = SymmetricGroup(5)
assert _test(P)
P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)])
assert _strong_test(P)
P = DihedralGroup(6)
assert _strong_test(P)
a = Permutation(0,1)(2,3)
b = Permutation(0,2)(3,1)
c = Permutation(4,5)
P = PermutationGroup(c, a, b)
assert _strong_test(P)
def test_polycyclic():
a = Permutation([0, 1, 2])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert G.is_polycyclic == True
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert G.is_polycyclic == False
def test_elementary():
a = Permutation([1, 5, 2, 0, 3, 6, 4])
G = PermutationGroup([a])
assert G.is_elementary(7) == False
a = Permutation(0, 1)(2, 3)
b = Permutation(0, 2)(3, 1)
G = PermutationGroup([a, b])
assert G.is_elementary(2) == True
c = Permutation(4, 5, 6)
G = PermutationGroup([a, b, c])
assert G.is_elementary(2) == False
G = SymmetricGroup(4).sylow_subgroup(2)
assert G.is_elementary(2) == False
H = AlternatingGroup(4).sylow_subgroup(2)
assert H.is_elementary(2) == True
def test_perfect():
G = AlternatingGroup(3)
assert G.is_perfect == False
G = AlternatingGroup(5)
assert G.is_perfect == True
def test_index():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert G.index(H) == 4
def test_cyclic():
G = SymmetricGroup(2)
assert G.is_cyclic
G = AbelianGroup(3, 7)
assert G.is_cyclic
G = AbelianGroup(7, 7)
assert not G.is_cyclic
G = AlternatingGroup(3)
assert G.is_cyclic
G = AlternatingGroup(4)
assert not G.is_cyclic
# Order less than 6
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1))
assert G.is_cyclic
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3)
)
assert G.is_cyclic
G = PermutationGroup(
Permutation(3),
Permutation(0, 1)(2, 3),
Permutation(0, 2)(1, 3),
Permutation(0, 3)(1, 2)
)
assert G.is_cyclic is False
# Order 15
G = PermutationGroup(
Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13)
)
assert G.is_cyclic
# Distinct prime orders
assert PermutationGroup._distinct_primes_lemma([3, 5]) is True
assert PermutationGroup._distinct_primes_lemma([5, 7]) is True
assert PermutationGroup._distinct_primes_lemma([2, 3]) is None
assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None
assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3))
assert G.is_cyclic
assert G._is_abelian
def test_abelian_invariants():
G = AbelianGroup(2, 3, 4)
assert G.abelian_invariants() == [2, 3, 4]
G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)])
assert G.abelian_invariants() == [2, 2]
G = AlternatingGroup(7)
assert G.abelian_invariants() == []
G = AlternatingGroup(4)
assert G.abelian_invariants() == [3]
G = DihedralGroup(4)
assert G.abelian_invariants() == [2, 2]
G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)])
assert G.abelian_invariants() == [7]
G = DihedralGroup(12)
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3]
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
assert G.abelian_invariants() == [3]
G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)])
assert G.abelian_invariants() == [2, 4]
G = SymmetricGroup(30)
S = G.sylow_subgroup(2)
assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3, 3, 3, 3]
S = G.sylow_subgroup(5)
assert S.abelian_invariants() == [5, 5, 5]
def test_composition_series():
a = Permutation(1, 2, 3)
b = Permutation(1, 2)
G = PermutationGroup([a, b])
comp_series = G.composition_series()
assert comp_series == G.derived_series()
# The first group in the composition series is always the group itself and
# the last group in the series is the trivial group.
S = SymmetricGroup(4)
assert S.composition_series()[0] == S
assert len(S.composition_series()) == 5
A = AlternatingGroup(4)
assert A.composition_series()[0] == A
assert len(A.composition_series()) == 4
# the composition series for C_8 is C_8 > C_4 > C_2 > triv
G = CyclicGroup(8)
series = G.composition_series()
assert is_isomorphic(series[1], CyclicGroup(4))
assert is_isomorphic(series[2], CyclicGroup(2))
assert series[3].is_trivial
def test_is_symmetric():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 2, 1)
b = Permutation(1, 2, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 1, 2, 3)
b = Permutation(0, 3)(1, 2)
assert PermutationGroup(a, b).is_symmetric == False
def test_conjugacy_class():
S = SymmetricGroup(4)
x = Permutation(1, 2, 3)
C = {Permutation(0, 1, 2, size = 4), Permutation(0, 1, 3),
Permutation(0, 2, 1, size = 4), Permutation(0, 2, 3),
Permutation(0, 3, 1), Permutation(0, 3, 2),
Permutation(1, 2, 3), Permutation(1, 3, 2)}
assert S.conjugacy_class(x) == C
def test_conjugacy_classes():
S = SymmetricGroup(3)
expected = [{Permutation(size = 3)},
{Permutation(0, 1, size = 3), Permutation(0, 2), Permutation(1, 2)},
{Permutation(0, 1, 2), Permutation(0, 2, 1)}]
computed = S.conjugacy_classes()
assert len(expected) == len(computed)
assert all(e in computed for e in expected)
def test_coset_class():
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
#Creating right coset
rht_coset = G*a
#Checking whether it is left coset or right coset
assert rht_coset.is_right_coset
assert not rht_coset.is_left_coset
#Creating list representation of coset
list_repr = rht_coset.as_list()
expected = [Permutation(0, 2), Permutation(0, 2, 1), Permutation(1, 2), Permutation(2), Permutation(2)(0, 1), Permutation(0, 1, 2)]
for ele in list_repr:
assert ele in expected
#Creating left coset
left_coset = a*G
#Checking whether it is left coset or right coset
assert not left_coset.is_right_coset
assert left_coset.is_left_coset
#Creating list representation of Coset
list_repr = left_coset.as_list()
expected = [Permutation(2)(0, 1), Permutation(0, 1, 2), Permutation(1, 2),
Permutation(2), Permutation(0, 2), Permutation(0, 2, 1)]
for ele in list_repr:
assert ele in expected
G = PermutationGroup(Permutation(1, 2, 3, 4), Permutation(2, 3, 4))
H = PermutationGroup(Permutation(1, 2, 3, 4))
g = Permutation(1, 3)(2, 4)
rht_coset = Coset(g, H, G, dir='+')
assert rht_coset.is_right_coset
list_repr = rht_coset.as_list()
expected = [Permutation(1, 2, 3, 4), Permutation(4), Permutation(1, 3)(2, 4),
Permutation(1, 4, 3, 2)]
for ele in list_repr:
assert ele in expected
def test_symmetricpermutationgroup():
a = SymmetricPermutationGroup(5)
assert a.degree == 5
assert a.order() == 120
assert a.identity() == Permutation(4)
|
d6d04969cf2470dd6e1ed7eef6ed85854c5dd61570766842a15a4013d7b10f4d | from sympy import (
Abs, And, binomial, Catalan, combsimp, cos, Derivative, E, Eq, exp, EulerGamma,
factorial, Function, harmonic, I, Integral, KroneckerDelta, log,
nan, oo, pi, Piecewise, Product, product, Rational, S, simplify, Identity,
sin, sqrt, Sum, summation, Symbol, symbols, sympify, zeta, gamma,
Indexed, Idx, IndexedBase, prod, Dummy, lowergamma, Range, floor,
rf, MatrixSymbol)
from sympy.abc import a, b, c, d, k, m, x, y, z
from sympy.concrete.summations import telescopic, _dummy_with_inherited_properties_concrete
from sympy.concrete.expr_with_intlimits import ReorderError
from sympy.core.facts import InconsistentAssumptions
from sympy.testing.pytest import XFAIL, raises, slow
from sympy.matrices import \
Matrix, SparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix
from sympy.core.mod import Mod
n = Symbol('n', integer=True)
def test_karr_convention():
# Test the Karr summation convention that we want to hold.
# See his paper "Summation in Finite Terms" for a detailed
# reasoning why we really want exactly this definition.
# The convention is described on page 309 and essentially
# in section 1.4, definition 3:
#
# \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n
# \sum_{m <= i < n} f(i) = 0 for m = n
# \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n
#
# It is important to note that he defines all sums with
# the upper limit being *exclusive*.
# In contrast, sympy and the usual mathematical notation has:
#
# sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b)
#
# with the upper limit *inclusive*. So translating between
# the two we find that:
#
# \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i)
#
# where we intentionally used two different ways to typeset the
# sum and its limits.
i = Symbol("i", integer=True)
k = Symbol("k", integer=True)
j = Symbol("j", integer=True)
# A simple example with a concrete summand and symbolic limits.
# The normal sum: m = k and n = k + j and therefore m < n:
m = k
n = k + j
a = m
b = n - 1
S1 = Sum(i**2, (i, a, b)).doit()
# The reversed sum: m = k + j and n = k and therefore m > n:
m = k + j
n = k
a = m
b = n - 1
S2 = Sum(i**2, (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum: m = k and n = k and therefore m = n:
m = k
n = k
a = m
b = n - 1
Sz = Sum(i**2, (i, a, b)).doit()
assert Sz == 0
# Another example this time with an unspecified summand and
# numeric limits. (We can not do both tests in the same example.)
f = Function("f")
# The normal sum with m < n:
m = 2
n = 11
a = m
b = n - 1
S1 = Sum(f(i), (i, a, b)).doit()
# The reversed sum with m > n:
m = 11
n = 2
a = m
b = n - 1
S2 = Sum(f(i), (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum with m = n:
m = 5
n = 5
a = m
b = n - 1
Sz = Sum(f(i), (i, a, b)).doit()
assert Sz == 0
e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True))
s = Sum(e, (i, 0, 11))
assert s.n(3) == s.doit().n(3)
def test_karr_proposition_2a():
# Test Karr, page 309, proposition 2, part a
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
def test_the_sum(m, n):
# g
g = i**3 + 2*i**2 - 3*i
# f = Delta g
f = simplify(g.subs(i, i+1) - g)
# The sum
a = m
b = n - 1
S = Sum(f, (i, a, b)).doit()
# Test if Sum_{m <= i < n} f(i) = g(n) - g(m)
assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0
# m < n
test_the_sum(u, u+v)
# m = n
test_the_sum(u, u )
# m > n
test_the_sum(u+v, u )
def test_karr_proposition_2b():
# Test Karr, page 309, proposition 2, part b
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
w = Symbol("w", integer=True)
def test_the_sum(l, n, m):
# Summand
s = i**3
# First sum
a = l
b = n - 1
S1 = Sum(s, (i, a, b)).doit()
# Second sum
a = l
b = m - 1
S2 = Sum(s, (i, a, b)).doit()
# Third sum
a = m
b = n - 1
S3 = Sum(s, (i, a, b)).doit()
# Test if S1 = S2 + S3 as required
assert S1 - (S2 + S3) == 0
# l < m < n
test_the_sum(u, u+v, u+v+w)
# l < m = n
test_the_sum(u, u+v, u+v )
# l < m > n
test_the_sum(u, u+v+w, v )
# l = m < n
test_the_sum(u, u, u+v )
# l = m = n
test_the_sum(u, u, u )
# l = m > n
test_the_sum(u+v, u+v, u )
# l > m < n
test_the_sum(u+v, u, u+w )
# l > m = n
test_the_sum(u+v, u, u )
# l > m > n
test_the_sum(u+v+w, u+v, u )
def test_arithmetic_sums():
assert summation(1, (n, a, b)) == b - a + 1
assert Sum(S.NaN, (n, a, b)) is S.NaN
assert Sum(x, (n, a, a)).doit() == x
assert Sum(x, (x, a, a)).doit() == a
assert Sum(x, (n, 1, a)).doit() == a*x
assert Sum(x, (x, Range(1, 11))).doit() == 55
assert Sum(x, (x, Range(1, 11, 2))).doit() == 25
assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2)))
lo, hi = 1, 2
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 3 and s2.doit() == 0
lo, hi = x, x + 1
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 2*x + 1 and s2.doit() == 0
assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \
y**2 + 2
assert summation(1, (n, 1, 10)) == 10
assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000
assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \
2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2
assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1)
assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2)
assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum)
assert summation(k, (k, 0, oo)) is oo
assert summation(k, (k, Range(1, 11))) == 55
def test_polynomial_sums():
assert summation(n**2, (n, 3, 8)) == 199
assert summation(n, (n, a, b)) == \
((a + b)*(b - a + 1)/2).expand()
assert summation(n**2, (n, 1, b)) == \
((2*b**3 + 3*b**2 + b)/6).expand()
assert summation(n**3, (n, 1, b)) == \
((b**4 + 2*b**3 + b**2)/4).expand()
assert summation(n**6, (n, 1, b)) == \
((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand()
def test_geometric_sums():
assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
assert summation(S.Half**n, (n, 1, oo)) == 1
assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
assert summation(2**n, (n, 1, oo)) is oo
assert summation(2**(-n), (n, 1, oo)) == 1
assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15)
assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1)
# issue 6664:
assert summation(x**n, (n, 0, oo)) == \
Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))
assert summation(-2**n, (n, 0, oo)) is -oo
assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))
# issue 6802:
assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1
assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - Rational(4, 3)
assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S.Half
assert summation(y**x, (x, a, b)) == \
Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
assert summation((-2)**(y*x + 2), (x, 0, n)) == \
4*Piecewise((n + 1, Eq((-2)**y, 1)),
((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))
# issue 8251:
assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) is oo
#issue 9908:
assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2))
#issue 11642:
result = Sum(0.5**n, (n, 1, oo)).doit()
assert result == 1
assert result.is_Float
result = Sum(0.25**n, (n, 1, oo)).doit()
assert result == 1/3.
assert result.is_Float
result = Sum(0.99999**n, (n, 1, oo)).doit()
assert result == 99999
assert result.is_Float
result = Sum(S.Half**n, (n, 1, oo)).doit()
assert result == 1
assert not result.is_Float
result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit()
assert result == Rational(3, 2)
assert not result.is_Float
assert Sum(1.0**n, (n, 1, oo)).doit() is oo
assert Sum(2.43**n, (n, 1, oo)).doit() is oo
# Issue 13979
i, k, q = symbols('i k q', integer=True)
result = summation(
exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1)
)
assert result.simplify() == Piecewise(
(1, Eq(exp(-2*I*pi*(k - q)/n), 1)), (0, True)
)
def test_harmonic_sums():
assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n))
assert summation(1/k, (k, 1, n)) == harmonic(n)
assert summation(n/k, (k, 1, n)) == n*harmonic(n)
assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4)
def test_composite_sums():
f = S.Half*(7 - 6*n + Rational(1, 7)*n**3)
s = summation(f, (n, a, b))
assert not isinstance(s, Sum)
A = 0
for i in range(-3, 5):
A += f.subs(n, i)
B = s.subs(a, -3).subs(b, 4)
assert A == B
def test_hypergeometric_sums():
assert summation(
binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n
assert summation(binomial(2*k, k)/5**k, (k, -oo, oo)) == sqrt(5)
def test_other_sums():
f = m**2 + m*exp(m)
g = 3*exp(Rational(3, 2))/2 + exp(S.Half)/2 - exp(Rational(-1, 2))/2 - 3*exp(Rational(-3, 2))/2 + 5
assert summation(f, (m, Rational(-3, 2), Rational(3, 2))) == g
assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10)
fac = factorial
def NS(e, n=15, **options):
return str(sympify(e).evalf(n, **options))
def test_evalf_fast_series():
# Euler transformed series for sqrt(1+x)
assert NS(Sum(
fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)
# Some series for exp(1)
estr = NS(E, 100)
assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr
pistr = NS(pi, 100)
# Ramanujan series for pi
assert NS(9801/sqrt(8)/Sum(fac(
4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
assert NS(1/Sum(
binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
# Machin's formula for pi
assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr
# Apery's constant
astr = NS(zeta(3), 100)
P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
n + 12463
assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
def test_evalf_fast_series_issue_4021():
# Catalan's constant
assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3*
fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \
NS(Catalan, 100)
astr = NS(zeta(3), 100)
assert NS(5*Sum(
(-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr
assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1)
**3 / fac(3*n), (n, 1, oo))/4, 100) == astr
def test_evalf_slow_series():
assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15)
assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50)
assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15)
assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100)
assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50)
def test_euler_maclaurin():
# Exact polynomial sums with E-M
def check_exact(f, a, b, m, n):
A = Sum(f, (k, a, b))
s, e = A.euler_maclaurin(m, n)
assert (e == 0) and (s.expand() == A.doit())
check_exact(k**4, a, b, 0, 2)
check_exact(k**4 + 2*k, a, b, 1, 2)
check_exact(k**4 + k**2, a, b, 1, 5)
check_exact(k**5, 2, 6, 1, 2)
check_exact(k**5, 2, 6, 1, 3)
assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
# Not exact
assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
# Numerical test
for mi, ni in [(2, 4), (2, 20), (10, 20), (18, 20)]:
A = Sum(1/k**3, (k, 1, oo))
s, e = A.euler_maclaurin(mi, ni)
assert abs((s - zeta(3)).evalf()) < e.evalf()
raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
@slow
def test_evalf_euler_maclaurin():
assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266'
assert NS(Sum(1/k**k, (k, 1, oo)),
50) == '1.2912859970626635404072825905956005414986193682745'
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15)
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50)
assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844'
assert NS(Sum(log(k)/k**2, (k, 1, oo)),
50) == '0.93754825431584375370257409456786497789786028861483'
assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008'
assert NS(Sum(1/k, (k, 1000000, 2000000)),
50) == '0.69314793056000780941723211364567656807940638436025'
def test_evalf_symbolic():
f, g = symbols('f g', cls=Function)
# issue 6328
expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3))
assert expr.evalf() == expr
def test_evalf_issue_3273():
assert Sum(0, (k, 1, oo)).evalf() == 0
def test_simple_products():
assert Product(S.NaN, (x, 1, 3)) is S.NaN
assert product(S.NaN, (x, 1, 3)) is S.NaN
assert Product(x, (n, a, a)).doit() == x
assert Product(x, (x, a, a)).doit() == a
assert Product(x, (y, 1, a)).doit() == x**a
lo, hi = 1, 2
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == 2
assert s2.doit() == 1
lo, hi = x, x + 1
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
s3 = 1 / Product(n, (n, hi + 1, lo - 1))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == x*(x + 1)
assert s2.doit() == 1
assert s3.doit() == x*(x + 1)
assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \
(y**2 + 1)*(y**2 + 3)
assert product(2, (n, a, b)) == 2**(b - a + 1)
assert product(n, (n, 1, b)) == factorial(b)
assert product(n**3, (n, 1, b)) == factorial(b)**3
assert product(3**(2 + n), (n, a, b)) \
== 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2)
assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5)
assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2)
assert isinstance(product(cos(n), (n, x, x + S.Half)), Product)
# If Product managed to evaluate this one, it most likely got it wrong!
assert isinstance(Product(n**n, (n, 1, b)), Product)
def test_rational_products():
assert combsimp(product(1 + 1/n, (n, a, b))) == (1 + b)/a
assert combsimp(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a)
assert combsimp(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1))
assert combsimp(product(n/(n + 1)/(n + 2), (n, a, b))) == \
a*gamma(a + 2)/(b + 1)/gamma(b + 3)
assert combsimp(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \
b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2))
def test_wallis_product():
# Wallis product, given in two different forms to ensure that Product
# can factor simple rational expressions
A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b))
B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b))
R = pi*gamma(b + 1)**2/(2*gamma(b + S.Half)*gamma(b + Rational(3, 2)))
assert simplify(A.doit()) == R
assert simplify(B.doit()) == R
# This one should eventually also be doable (Euler's product formula for sin)
# assert Product(1+x/n**2, (n, 1, b)) == ...
def test_telescopic_sums():
#checks also input 2 of comment 1 issue 4127
assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n)
f = Function("f")
assert Sum(
f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m)
assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \
cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3)
# dummy variable shouldn't matter
assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \
telescopic(1/k, -k/(1 + k), (k, n - 1, n))
assert Sum(1/x/(x - 1), (x, a, b)).doit() == -((a - b - 1)/(b*(a - 1)))
def test_sum_reconstruct():
s = Sum(n**2, (n, -1, 1))
assert s == Sum(*s.args)
raises(ValueError, lambda: Sum(x, x))
raises(ValueError, lambda: Sum(x, (x, 1)))
def test_limit_subs():
for F in (Sum, Product, Integral):
assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2)
assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \
F(a, (a, c, 4))
assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
def test_function_subs():
f = Function("f")
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
assert S.subs(f(x),x) == S
raises(ValueError, lambda: S.subs(f(y),x+y) )
S = Sum(x*log(y),(x,0,oo),(y,0,oo))
assert S.subs(log(y),y) == S
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
def test_equality():
# if this fails remove special handling below
raises(ValueError, lambda: Sum(x, x))
r = symbols('x', real=True)
for F in (Sum, Product, Integral):
try:
assert F(x, x) != F(y, y)
assert F(x, (x, 1, 2)) != F(x, x)
assert F(x, (x, x)) != F(x, x) # or else they print the same
assert F(1, x) != F(1, y)
except ValueError:
pass
assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit
assert F(a, (x, 1, x)) != F(a, (y, 1, y))
assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression
assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions
assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff
assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x)))
# issue 5265
assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))
def test_Sum_doit():
f = Function('f')
assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
3*Integral(a**2)
assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)
# test nested sum evaluation
s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()
# Integer assumes finite
assert Sum(KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((1, And(-oo <= y, y < oo)), (0, True))
assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == 1
assert Sum(m*KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((m, And(-oo <= y, y < oo)), (0, True))
assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == x
assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
3 * Piecewise((1, And(1 <= k, k <= 3)), (0, True))
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
f(1) + f(2) + f(3)
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
Sum(f(n), (n, 1, oo))
# issue 2597
nmax = symbols('N', integer=True, positive=True)
pw = Piecewise((1, And(1 <= n, n <= nmax)), (0, True))
assert Sum(pw, (n, 1, nmax)).doit() == Sum(Piecewise((1, nmax >= n),
(0, True)), (n, 1, nmax))
q, s = symbols('q, s')
assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
(Sum(n**(-2*s), (n, 1, oo)), True))
assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
(Sum((n + 1)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
(zeta(s, q), And(q > 0, s > 1)),
(Sum((n + q)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
(zeta(s, 2*q), And(2*q > 0, s > 1)),
(Sum((n + q)**(-s), (n, q, oo)), True))
assert summation(1/n**2, (n, 1, oo)) == zeta(2)
assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
def test_Product_doit():
assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9
assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \
6*Integral(a**2)**3
assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3
def test_Sum_interface():
assert isinstance(Sum(0, (n, 0, 2)), Sum)
assert Sum(nan, (n, 0, 2)) is nan
assert Sum(nan, (n, 0, oo)) is nan
assert Sum(0, (n, 0, 2)).doit() == 0
assert isinstance(Sum(0, (n, 0, oo)), Sum)
assert Sum(0, (n, 0, oo)).doit() == 0
raises(ValueError, lambda: Sum(1))
raises(ValueError, lambda: summation(1))
def test_diff():
assert Sum(x, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2))
e = Sum(x*y, (x, 1, a))
assert e.diff(a) == Derivative(e, a)
assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \
Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24
assert Sum(x, (x, 1, 2)).diff(y) == 0
def test_hypersum():
from sympy import sin
assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
assert simplify(summation((-1)**n*x**(2*n + 1) /
factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120
assert summation(1/(n + 2)**3, (n, 1, oo)) == Rational(-9, 8) + zeta(3)
assert summation(1/n**4, (n, 1, oo)) == pi**4/90
s = summation(x**n*n, (n, -oo, 0))
assert s.is_Piecewise
assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
assert s.args[0].args[1] == (abs(1/x) < 1)
m = Symbol('n', integer=True, positive=True)
assert summation(binomial(m, k), (k, 0, m)) == 2**m
def test_issue_4170():
assert summation(1/factorial(k), (k, 0, oo)) == E
def test_is_commutative():
from sympy.physics.secondquant import NO, F, Fd
m = Symbol('m', commutative=False)
for f in (Sum, Product, Integral):
assert f(z, (z, 1, 1)).is_commutative is True
assert f(z*y, (z, 1, 6)).is_commutative is True
assert f(m*x, (x, 1, 2)).is_commutative is False
assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
def test_is_zero():
for func in [Sum, Product]:
assert func(0, (x, 1, 1)).is_zero is True
assert func(x, (x, 1, 1)).is_zero is None
assert Sum(0, (x, 1, 0)).is_zero is True
assert Product(0, (x, 1, 0)).is_zero is False
def test_is_number():
# is number should not rely on evaluation or assumptions,
# it should be equivalent to `not foo.free_symbols`
assert Sum(1, (x, 1, 1)).is_number is True
assert Sum(1, (x, 1, x)).is_number is False
assert Sum(0, (x, y, z)).is_number is False
assert Sum(x, (y, 1, 2)).is_number is False
assert Sum(x, (y, 1, 1)).is_number is False
assert Sum(x, (x, 1, 2)).is_number is True
assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Product(2, (x, 1, 1)).is_number is True
assert Product(2, (x, 1, y)).is_number is False
assert Product(0, (x, y, z)).is_number is False
assert Product(1, (x, y, z)).is_number is False
assert Product(x, (y, 1, x)).is_number is False
assert Product(x, (y, 1, 2)).is_number is False
assert Product(x, (y, 1, 1)).is_number is False
assert Product(x, (x, 1, 2)).is_number is True
def test_free_symbols():
for func in [Sum, Product]:
assert func(1, (x, 1, 2)).free_symbols == set()
assert func(0, (x, 1, y)).free_symbols == {y}
assert func(2, (x, 1, y)).free_symbols == {y}
assert func(x, (x, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y)).free_symbols == {x, y}
assert func(x, (y, 1, 2)).free_symbols == {x}
assert func(x, (y, 1, 1)).free_symbols == {x}
assert func(x, (y, 1, z)).free_symbols == {x, z}
assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z}
assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z}
assert Sum(1, (x, 1, y)).free_symbols == {y}
# free_symbols answers whether the object *as written* has free symbols,
# not whether the evaluated expression has free symbols
assert Product(1, (x, 1, y)).free_symbols == {y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Sum(A*B**n, (n, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
p = Sum(B**n*A, (n, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_noncommutativity_honoured():
A, B = symbols("A B", commutative=False)
M = symbols('M', integer=True, positive=True)
p = Sum(A*B**n, (n, 1, M))
assert p.doit() == A*Piecewise((M, Eq(B, 1)),
((B - B**(M + 1))*(1 - B)**(-1), True))
p = Sum(B**n*A, (n, 1, M))
assert p.doit() == Piecewise((M, Eq(B, 1)),
((B - B**(M + 1))*(1 - B)**(-1), True))*A
p = Sum(B**n*A*B**n, (n, 1, M))
assert p.doit() == p
def test_issue_4171():
assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) is oo
assert summation(2*k + 1, (k, 0, oo)) is oo
def test_issue_6273():
assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == 1
def test_issue_6274():
assert Sum(x, (x, 1, 0)).doit() == 0
assert NS(Sum(x, (x, 1, 0))) == '0'
assert Sum(n, (n, 10, 5)).doit() == -30
assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000'
def test_simplify_sum():
y, t, v = symbols('y, t, v')
_simplify = lambda e: simplify(e, doit=False)
assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \
Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k))
assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \
Sum(x, (x, n, a))
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \
Sum(x, (x, n, a))
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \
Sum(x, (x, n, a)) + Sum(1, (x, n, k))
assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \
4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6))
assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \
Sum(x*(3*x + 1), (x, a, b))
assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \
4 * y * Sum(z, (z, n, k))) + 1 == \
4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1
assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \
1 + Sum(x, (x, a, c))
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \
Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \
Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \
_simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c)))
assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \
Sum(x, (x, a, b)) * Sum(x**2, (x, a, b))
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \
== (x + y + z) * Sum(1, (t, a, b)) # issue 8596
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \
Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596
assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \
(Sum(x, (x, a, b)) / 3)
assert _simplify(Sum(Function('f')(x) * y * z, (x, a, b)) / (y * z)) \
== Sum(Function('f')(x), (x, a, b))
assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0
assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b)))
assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \
c * (y + 1) * Sum(x, (x, a, b))
assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum(x, (x, a, b), (y, a, b))
assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b))
assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \
c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b))
assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \
Sum(d * t, (x, b, c)), (t, a, b))) == \
d * Sum(1, (x, a, c)) * Sum(t, (t, a, b))
def test_change_index():
b, v, w = symbols('b, v, w', integer = True)
assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \
Sum(y - 1, (y, a + 1, b + 1))
assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \
Sum((x+1)**2, (x, a - 1, b - 1))
assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \
Sum((-y)**2, (y, -b, -a))
assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \
Sum(-x - 1, (x, -b - 1, -a - 1))
assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \
Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
assert Sum(x, (x, a, b)).change_index( x, x + v) == \
Sum(-v + x, (x, a + v, b + v))
assert Sum(x, (x, a, b)).change_index( x, -x - v) == \
Sum(-v - x, (x, -b - v, -a - v))
assert Sum(x, (x, a, b)).change_index(x, w*x, v) == \
Sum(v/w, (v, b*w, a*w))
raises(ValueError, lambda: Sum(x, (x, a, b)).change_index(x, 2*x))
def test_reorder():
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
Sum(x, (x, c, d), (x, a, b))
assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
(2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
Sum(x*y, (y, c, d), (x, a, b))
def test_reverse_order():
assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1))
assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
Sum(x*y, (x, 6, 0), (y, 7, -1))
assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0))
assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0))
assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0))
assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1))
assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \
Sum(-x, (x, a + 6, a))
assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \
Sum(-x, (x, a + 3, a))
assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \
Sum(-x, (x, a + 2, a))
assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
def test_issue_7097():
assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400))
def test_factor_expand_subs():
# test factoring
assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y))
assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y))
assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y))
assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y))
# test expand
assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y))
assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand() \
== Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \
== Sum(n*x**(n+1), (n, -1, oo)) + Sum(x**(n+1), (n, -1, oo))
assert Sum(a*n+a*n**2,(n,0,4)).expand() \
== Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4))
assert Sum(x**a*x**n,(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=True)
assert Sum(x**(a+n),(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=False)
# test subs
assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3))
assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3))
assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10))
def test_distribution_over_equality():
f = Function('f')
assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3))
assert Sum(Eq(f(x), x**2), (x, 0, y)) == \
Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y)))
def test_issue_2787():
n, k = symbols('n k', positive=True, integer=True)
p = symbols('p', positive=True)
binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k)
s = Sum(binomial_dist*k, (k, 0, n))
res = s.doit().simplify()
assert res == Piecewise(
(n*p, p/Abs(p - 1) <= 1),
((-p + 1)**n*Sum(k*p**k*(-p + 1)**(-k)*binomial(n, k), (k, 0, n)),
True))
# Issue #17165: make sure that another simplify does not change/increase
# the result
assert res == res.simplify()
def test_issue_4668():
assert summation(1/n, (n, 2, oo)) is oo
def test_matrix_sum():
A = Matrix([[0, 1], [n, 0]])
result = Sum(A, (n, 0, 3)).doit()
assert result == Matrix([[0, 4], [6, 0]])
assert result.__class__ == ImmutableDenseMatrix
A = SparseMatrix([[0, 1], [n, 0]])
result = Sum(A, (n, 0, 3)).doit()
assert result.__class__ == ImmutableSparseMatrix
def test_failing_matrix_sum():
n = Symbol('n')
# TODO Implement matrix geometric series summation.
A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])
assert Sum(A ** n, (n, 1, 4)).doit() == \
Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
# issue sympy/sympy#16989
assert summation(A**n, (n, 1, 1)) == A
def test_indexed_idx_sum():
i = symbols('i', cls=Idx)
r = Indexed('r', i)
assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)])
assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)])
j = symbols('j', integer=True)
assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)])
assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)])
k = Idx('k', range=(1, 3))
A = IndexedBase('A')
assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)])
assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)])
raises(ValueError, lambda: Sum(A[k], (k, 1, 4)))
raises(ValueError, lambda: Sum(A[k], (k, 0, 3)))
raises(ValueError, lambda: Sum(A[k], (k, 2, oo)))
raises(ValueError, lambda: Product(A[k], (k, 1, 4)))
raises(ValueError, lambda: Product(A[k], (k, 0, 3)))
raises(ValueError, lambda: Product(A[k], (k, 2, oo)))
def test_is_convergent():
# divergence tests --
assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false
assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false
assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false
# Raabe's test --
assert Sum(Product((3*m),(m,1,n))/Product((3*m+4),(m,1,n)),(n,1,oo)).is_convergent() is S.true
# root test --
assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false
# integral test --
# p-series test --
assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true
assert Sum(1/n**Rational(6, 5), (n, 1, oo)).is_convergent() is S.true
assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false
assert Sum(factorial(n) / factorial(n+2), (n, 1, oo)).is_convergent() is S.true
assert Sum(rf(5,n)/rf(7,n),(n,1,oo)).is_convergent() is S.true
assert Sum((rf(1, n)*rf(2, n))/(rf(3, n)*factorial(n)),(n,1,oo)).is_convergent() is S.false
# comparison test --
assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false
assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false
assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true
assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true
assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false
assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false
assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false
assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true
assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true
# alternating series tests --
assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true
# with -negativeInfinite Limits
assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true
assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false
assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true
# piecewise functions
f = Piecewise((n**(-2), n <= 1), (n**2, n > 1))
assert Sum(f, (n, 1, oo)).is_convergent() is S.false
assert Sum(f, (n, -oo, oo)).is_convergent() is S.false
assert Sum(f, (n, 1, 100)).is_convergent() is S.true
#assert Sum(f, (n, -oo, 1)).is_convergent() is S.true
# integral test
assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
# the following function has maxima located at (x, y) =
# (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050)
eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x)
assert Sum(eq, (x, 1, oo)).is_convergent() is S.true
assert Sum(eq, (x, 1, 2)).is_convergent() is S.true
assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true
assert Sum(1/(x**S.Half), (x, 1, oo)).is_convergent() is S.false
# issue 19545
assert Sum(1/n - 3/(3*n +2), (n, 1, oo)).is_convergent() is S.true
# issue 19836
assert Sum(4/(n + 2) - 5/(n + 1) + 1/n,(n, 7, oo)).is_convergent() is S.true
def test_is_absolutely_convergent():
assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true
@XFAIL
def test_convergent_failing():
# dirichlet tests
assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true
def test_issue_6966():
i, k, m = symbols('i k m', integer=True)
z_i, q_i = symbols('z_i q_i')
a_k = Sum(-q_i*z_i/k,(i,1,m))
b_k = a_k.diff(z_i)
assert isinstance(b_k, Sum)
assert b_k == Sum(-q_i/k,(i,1,m))
def test_issue_10156():
cx = Sum(2*y**2*x, (x, 1,3))
e = 2*y*Sum(2*cx*x**2, (x, 1, 9))
assert e.factor() == \
8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9))
def test_issue_10973():
assert Sum((-n + (n**3 + 1)**(S(1)/3))/log(n), (n, 1, oo)).is_convergent() is S.true
def test_issue_14129():
assert Sum( k*x**k, (k, 0, n-1)).doit() == \
Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n -
n*x**n - x*x**n + x)/(x - 1)**2, True))
assert Sum( x**k, (k, 0, n-1)).doit() == \
Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True))
assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \
Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))),
(x*(y + 1)*(n*x*y*(x + x/y)**n/(x + x/y)
+ n*x*(x + x/y)**n/(x + x/y) - n*y*(x
+ x/y)**n/(x + x/y) - x*y*(x + x/y)**n/(x
+ x/y) - x*(x + x/y)**n/(x + x/y) + y)/(x*y
+ x - y)**2, True))
def test_issue_14112():
assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false
def test_sin_times_absolutely_convergent():
assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true
def test_issue_14111():
assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false
def test_issue_14484():
raises(NotImplementedError, lambda: Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent())
def test_issue_14640():
i, n = symbols("i n", integer=True)
a, b, c = symbols("a b c")
assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum(
1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(1/a, 1)),
((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b)
assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(a**(-2), 1)),
((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2
s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit()
assert not s.has(Sum)
assert s.subs({a: 2, b: 3, n: 5}) == 122
def test_issue_15943():
s = Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit().rewrite(gamma)
assert s == -E*(n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2
) + E*gamma(n + 1)
assert s.simplify() == E*(factorial(n) - lowergamma(n + 1, 1))
def test_Sum_dummy_eq():
assert not Sum(x, (x, a, b)).dummy_eq(1)
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2)))
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b)))
d = Dummy()
assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c)))
assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)))
def test_issue_15852():
assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo))
def test_exceptions():
S = Sum(x, (x, a, b))
raises(ValueError, lambda: S.change_index(x, x**2, y))
S = Sum(x, (x, a, b), (x, 1, 4))
raises(ValueError, lambda: S.index(x))
S = Sum(x, (x, a, b), (y, 1, 4))
raises(ValueError, lambda: S.reorder([x]))
S = Sum(x, (x, y, b), (y, 1, 4))
raises(ReorderError, lambda: S.reorder_limit(0, 1))
S = Sum(x*y, (x, a, b), (y, 1, 4))
raises(NotImplementedError, lambda: S.is_convergent())
def test_sumproducts_assumptions():
M = Symbol('M', integer=True, positive=True)
m = Symbol('m', integer=True)
for func in [Sum, Product]:
assert func(m, (m, -M, M)).is_positive is None
assert func(m, (m, -M, M)).is_nonpositive is None
assert func(m, (m, -M, M)).is_negative is None
assert func(m, (m, -M, M)).is_nonnegative is None
assert func(m, (m, -M, M)).is_finite is True
m = Symbol('m', integer=True, nonnegative=True)
for func in [Sum, Product]:
assert func(m, (m, 0, M)).is_positive is None
assert func(m, (m, 0, M)).is_nonpositive is None
assert func(m, (m, 0, M)).is_negative is False
assert func(m, (m, 0, M)).is_nonnegative is True
assert func(m, (m, 0, M)).is_finite is True
m = Symbol('m', integer=True, positive=True)
for func in [Sum, Product]:
assert func(m, (m, 1, M)).is_positive is True
assert func(m, (m, 1, M)).is_nonpositive is False
assert func(m, (m, 1, M)).is_negative is False
assert func(m, (m, 1, M)).is_nonnegative is True
assert func(m, (m, 1, M)).is_finite is True
m = Symbol('m', integer=True, negative=True)
assert Sum(m, (m, -M, -1)).is_positive is False
assert Sum(m, (m, -M, -1)).is_nonpositive is True
assert Sum(m, (m, -M, -1)).is_negative is True
assert Sum(m, (m, -M, -1)).is_nonnegative is False
assert Sum(m, (m, -M, -1)).is_finite is True
assert Product(m, (m, -M, -1)).is_positive is None
assert Product(m, (m, -M, -1)).is_nonpositive is None
assert Product(m, (m, -M, -1)).is_negative is None
assert Product(m, (m, -M, -1)).is_nonnegative is None
assert Product(m, (m, -M, -1)).is_finite is True
m = Symbol('m', integer=True, nonpositive=True)
assert Sum(m, (m, -M, 0)).is_positive is False
assert Sum(m, (m, -M, 0)).is_nonpositive is True
assert Sum(m, (m, -M, 0)).is_negative is None
assert Sum(m, (m, -M, 0)).is_nonnegative is None
assert Sum(m, (m, -M, 0)).is_finite is True
assert Product(m, (m, -M, 0)).is_positive is None
assert Product(m, (m, -M, 0)).is_nonpositive is None
assert Product(m, (m, -M, 0)).is_negative is None
assert Product(m, (m, -M, 0)).is_nonnegative is None
assert Product(m, (m, -M, 0)).is_finite is True
m = Symbol('m', integer=True)
assert Sum(2, (m, 0, oo)).is_positive is None
assert Sum(2, (m, 0, oo)).is_nonpositive is None
assert Sum(2, (m, 0, oo)).is_negative is None
assert Sum(2, (m, 0, oo)).is_nonnegative is None
assert Sum(2, (m, 0, oo)).is_finite is None
assert Product(2, (m, 0, oo)).is_positive is None
assert Product(2, (m, 0, oo)).is_nonpositive is None
assert Product(2, (m, 0, oo)).is_negative is False
assert Product(2, (m, 0, oo)).is_nonnegative is None
assert Product(2, (m, 0, oo)).is_finite is None
assert Product(0, (x, M, M-1)).is_positive is True
assert Product(0, (x, M, M-1)).is_finite is True
def test_expand_with_assumptions():
M = Symbol('M', integer=True, positive=True)
x = Symbol('x', positive=True)
m = Symbol('m', nonnegative=True)
assert log(Product(x**m, (m, 0, M))).expand() == Sum(m*log(x), (m, 0, M))
assert log(Product(exp(x**m), (m, 0, M))).expand() == Sum(x**m, (m, 0, M))
assert log(Product(x**m, (m, 0, M))).rewrite(Sum).expand() == Sum(m*log(x), (m, 0, M))
assert log(Product(exp(x**m), (m, 0, M))).rewrite(Sum).expand() == Sum(x**m, (m, 0, M))
n = Symbol('n', nonnegative=True)
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
assert log(Product(x**i*y**j, (i, 1, n), (j, 1, m))).expand() \
== Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
def test_has_finite_limits():
x = Symbol('x')
assert Sum(1, (x, 1, 9)).has_finite_limits is True
assert Sum(1, (x, 1, oo)).has_finite_limits is False
M = Symbol('M')
assert Sum(1, (x, 1, M)).has_finite_limits is None
M = Symbol('M', positive=True)
assert Sum(1, (x, 1, M)).has_finite_limits is True
x = Symbol('x', positive=True)
M = Symbol('M')
assert Sum(1, (x, 1, M)).has_finite_limits is True
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_finite_limits is False
def test_has_reversed_limits():
assert Sum(1, (x, 1, 1)).has_reversed_limits is False
assert Sum(1, (x, 1, 9)).has_reversed_limits is False
assert Sum(1, (x, 1, -9)).has_reversed_limits is True
assert Sum(1, (x, 1, 0)).has_reversed_limits is True
assert Sum(1, (x, 1, oo)).has_reversed_limits is False
M = Symbol('M')
assert Sum(1, (x, 1, M)).has_reversed_limits is None
M = Symbol('M', positive=True, integer=True)
assert Sum(1, (x, 1, M)).has_reversed_limits is False
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is False
M = Symbol('M', negative=True)
assert Sum(1, (x, 1, M)).has_reversed_limits is True
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is True
assert Sum(1, (x, oo, oo)).has_reversed_limits is None
def test_has_empty_sequence():
assert Sum(1, (x, 1, 1)).has_empty_sequence is False
assert Sum(1, (x, 1, 9)).has_empty_sequence is False
assert Sum(1, (x, 1, -9)).has_empty_sequence is False
assert Sum(1, (x, 1, 0)).has_empty_sequence is True
assert Sum(1, (x, y, y - 1)).has_empty_sequence is True
assert Sum(1, (x, 3, 2), (y, -oo, oo)).has_empty_sequence is True
assert Sum(1, (y, -oo, oo), (x, 3, 2)).has_empty_sequence is True
assert Sum(1, (x, oo, oo)).has_empty_sequence is False
def test_empty_sequence():
assert Product(x*y, (x, -oo, oo), (y, 1, 0)).doit() == 1
assert Product(x*y, (y, 1, 0), (x, -oo, oo)).doit() == 1
assert Sum(x, (x, -oo, oo), (y, 1, 0)).doit() == 0
assert Sum(x, (y, 1, 0), (x, -oo, oo)).doit() == 0
def test_issue_8016():
k = Symbol('k', integer=True)
n, m = symbols('n, m', integer=True, positive=True)
s = Sum(binomial(m, k)*binomial(m, n - k)*(-1)**k, (k, 0, n))
assert s.doit().simplify() == \
cos(pi*n/2)*gamma(m + 1)/gamma(n/2 + 1)/gamma(m - n/2 + 1)
@XFAIL
def test_issue_14313():
assert Sum(S.Half**floor(n/2), (n, 1, oo)).is_convergent()
def test_issue_16735():
assert Sum(5**n/gamma(n+1), (n, 1, oo)).is_convergent() is S.true
def test_issue_14871():
assert Sum((Rational(1, 10))**n*rf(0, n)/factorial(n), (n, 0, oo)).rewrite(factorial).doit() == 1
def test_issue_17165():
n = symbols("n", integer=True)
x = symbols('x')
s = (x*Sum(x**n, (n, -1, oo)))
ssimp = s.doit().simplify()
assert ssimp == Piecewise((-1/(x - 1), Abs(x) < 1),
(x*Sum(x**n, (n, -1, oo)), True))
assert ssimp == ssimp.simplify()
def test_issue_19379():
assert Sum(factorial(n)/factorial(n + 2), (n, 1, oo)).is_convergent() is S.true
def test__dummy_with_inherited_properties_concrete():
x = Symbol('x')
from sympy import Tuple
d = _dummy_with_inherited_properties_concrete(Tuple(x, 0, 5))
assert d.is_real
assert d.is_integer
assert d.is_nonnegative
assert d.is_extended_nonnegative
d = _dummy_with_inherited_properties_concrete(Tuple(x, 1, 9))
assert d.is_real
assert d.is_integer
assert d.is_positive
assert d.is_odd is None
d = _dummy_with_inherited_properties_concrete(Tuple(x, -5, 5))
assert d.is_real
assert d.is_integer
assert d.is_positive is None
assert d.is_extended_nonnegative is None
assert d.is_odd is None
d = _dummy_with_inherited_properties_concrete(Tuple(x, -1.5, 1.5))
assert d.is_real
assert d.is_integer is None
assert d.is_positive is None
assert d.is_extended_nonnegative is None
N = Symbol('N', integer=True, positive=True)
d = _dummy_with_inherited_properties_concrete(Tuple(x, 2, N))
assert d.is_real
assert d.is_positive
assert d.is_integer
# Return None if no assumptions are added
N = Symbol('N', integer=True, positive=True)
d = _dummy_with_inherited_properties_concrete(Tuple(N, 2, 4))
assert d is None
x = Symbol('x', negative=True)
raises(InconsistentAssumptions,
lambda: _dummy_with_inherited_properties_concrete(Tuple(x, 1, 5)))
def test_matrixsymbol_summation_numerical_limits():
A = MatrixSymbol('A', 3, 3)
n = Symbol('n', integer=True)
assert Sum(A**n, (n, 0, 2)).doit() == Identity(3) + A + A**2
assert Sum(A, (n, 0, 2)).doit() == 3*A
assert Sum(n*A, (n, 0, 2)).doit() == 3*A
B = Matrix([[0, n, 0], [-1, 0, 0], [0, 0, 2]])
ans = Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) + 4*A
assert Sum(A+B, (n, 0, 3)).doit() == ans
ans = A*Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]])
assert Sum(A*B, (n, 0, 3)).doit() == ans
ans = (A**2*Matrix([[-2, 0, 0], [0,-2, 0], [0, 0, 4]]) +
A**3*Matrix([[0, -9, 0], [3, 0, 0], [0, 0, 8]]) +
A*Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 2]]))
assert Sum(A**n*B**n, (n, 1, 3)).doit() == ans
@XFAIL
def test_matrixsymbol_summation_symbolic_limits():
N = Symbol('N', integer=True, positive=True)
A = MatrixSymbol('A', 3, 3)
n = Symbol('n', integer=True)
assert Sum(A, (n, 0, N)).doit() == (N+1)*A
assert Sum(n*A, (n, 0, N)).doit() == (N**2/2+N/2)*A
|
008040da07da3e9a6ef24d6b798a4341fb2b4301b2c3ad899a4fd8294b34a2d0 | from sympy import sin, cos, exp, E, series, oo, S, Derivative, O, Integral, \
Function, PoleError, log, sqrt, N, Symbol, Subs, pi, symbols, atan, LambertW, Rational
from sympy.abc import x, y, n, k
from sympy.testing.pytest import raises
from sympy.series.gruntz import calculate_series
def test_sin():
e1 = sin(x).series(x, 0)
e2 = series(sin(x), x, 0)
assert e1 == e2
def test_cos():
e1 = cos(x).series(x, 0)
e2 = series(cos(x), x, 0)
assert e1 == e2
def test_exp():
e1 = exp(x).series(x, 0)
e2 = series(exp(x), x, 0)
assert e1 == e2
def test_exp2():
e1 = exp(cos(x)).series(x, 0)
e2 = series(exp(cos(x)), x, 0)
assert e1 == e2
def test_issue_5223():
assert series(1, x) == 1
assert next(S.Zero.lseries(x)) == 0
assert cos(x).series() == cos(x).series(x)
raises(ValueError, lambda: cos(x + y).series())
raises(ValueError, lambda: x.series(dir=""))
assert (cos(x).series(x, 1) -
cos(x + 1).series(x).subs(x, x - 1)).removeO() == 0
e = cos(x).series(x, 1, n=None)
assert [next(e) for i in range(2)] == [cos(1), -((x - 1)*sin(1))]
e = cos(x).series(x, 1, n=None, dir='-')
assert [next(e) for i in range(2)] == [cos(1), (1 - x)*sin(1)]
# the following test is exact so no need for x -> x - 1 replacement
assert abs(x).series(x, 1, dir='-') == x
assert exp(x).series(x, 1, dir='-', n=3).removeO() == \
E - E*(-x + 1) + E*(-x + 1)**2/2
D = Derivative
assert D(x**2 + x**3*y**2, x, 2, y, 1).series(x).doit() == 12*x*y
assert next(D(cos(x), x).lseries()) == D(1, x)
assert D(
exp(x), x).series(n=3) == D(1, x) + D(x, x) + D(x**2/2, x) + D(x**3/6, x) + O(x**3)
assert Integral(x, (x, 1, 3), (y, 1, x)).series(x) == -4 + 4*x
assert (1 + x + O(x**2)).getn() == 2
assert (1 + x).getn() is None
raises(PoleError, lambda: ((1/sin(x))**oo).series())
logx = Symbol('logx')
assert ((sin(x))**y).nseries(x, n=1, logx=logx) == \
exp(y*logx) + O(x*exp(y*logx), x)
assert sin(1/x).series(x, oo, n=5) == 1/x - 1/(6*x**3) + O(x**(-5), (x, oo))
assert abs(x).series(x, oo, n=5, dir='+') == x
assert abs(x).series(x, -oo, n=5, dir='-') == -x
assert abs(-x).series(x, oo, n=5, dir='+') == x
assert abs(-x).series(x, -oo, n=5, dir='-') == -x
assert exp(x*log(x)).series(n=3) == \
1 + x*log(x) + x**2*log(x)**2/2 + O(x**3*log(x)**3)
# XXX is this right? If not, fix "ngot > n" handling in expr.
p = Symbol('p', positive=True)
assert exp(sqrt(p)**3*log(p)).series(n=3) == \
1 + p**S('3/2')*log(p) + O(p**3*log(p)**3)
assert exp(sin(x)*log(x)).series(n=2) == 1 + x*log(x) + O(x**2*log(x)**2)
def test_issue_11313():
assert Integral(cos(x), x).series(x) == sin(x).series(x)
assert Derivative(sin(x), x).series(x, n=3).doit() == cos(x).series(x, n=3)
assert Derivative(x**3, x).as_leading_term(x) == 3*x**2
assert Derivative(x**3, y).as_leading_term(x) == 0
assert Derivative(sin(x), x).as_leading_term(x) == 1
assert Derivative(cos(x), x).as_leading_term(x) == -x
# This result is equivalent to zero, zero is not return because
# `Expr.series` doesn't currently detect an `x` in its `free_symbol`s.
assert Derivative(1, x).as_leading_term(x) == Derivative(1, x)
assert Derivative(exp(x), x).series(x).doit() == exp(x).series(x)
assert 1 + Integral(exp(x), x).series(x) == exp(x).series(x)
assert Derivative(log(x), x).series(x).doit() == (1/x).series(x)
assert Integral(log(x), x).series(x) == Integral(log(x), x).doit().series(x).removeO()
def test_series_of_Subs():
from sympy.abc import x, y, z
subs1 = Subs(sin(x), x, y)
subs2 = Subs(sin(x) * cos(z), x, y)
subs3 = Subs(sin(x * z), (x, z), (y, x))
assert subs1.series(x) == subs1
subs1_series = (Subs(x, x, y) + Subs(-x**3/6, x, y) +
Subs(x**5/120, x, y) + O(y**6))
assert subs1.series() == subs1_series
assert subs1.series(y) == subs1_series
assert subs1.series(z) == subs1
assert subs2.series(z) == (Subs(z**4*sin(x)/24, x, y) +
Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6))
assert subs3.series(x).doit() == subs3.doit().series(x)
assert subs3.series(z).doit() == sin(x*y)
raises(ValueError, lambda: Subs(x + 2*y, y, z).series())
assert Subs(x + y, y, z).series(x).doit() == x + z
def test_issue_3978():
f = Function('f')
assert f(x).series(x, 0, 3, dir='-') == \
f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
assert f(x).series(x, 0, 3) == \
f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
assert f(x**2).series(x, 0, 3) == \
f(0) + x**2*Subs(Derivative(f(x), x), x, 0) + O(x**3)
assert f(x**2+1).series(x, 0, 3) == \
f(1) + x**2*Subs(Derivative(f(x), x), x, 1) + O(x**3)
class TestF(Function):
pass
assert TestF(x).series(x, 0, 3) == TestF(0) + \
x*Subs(Derivative(TestF(x), x), x, 0) + \
x**2*Subs(Derivative(TestF(x), x, x), x, 0)/2 + O(x**3)
from sympy.series.acceleration import richardson, shanks
from sympy import Sum, Integer
def test_acceleration():
e = (1 + 1/n)**n
assert round(richardson(e, n, 10, 20).evalf(), 10) == round(E.evalf(), 10)
A = Sum(Integer(-1)**(k + 1) / k, (k, 1, n))
assert round(shanks(A, n, 25).evalf(), 4) == round(log(2).evalf(), 4)
assert round(shanks(A, n, 25, 5).evalf(), 10) == round(log(2).evalf(), 10)
def test_issue_5852():
assert series(1/cos(x/log(x)), x, 0) == 1 + x**2/(2*log(x)**2) + \
5*x**4/(24*log(x)**4) + O(x**6)
def test_issue_4583():
assert cos(1 + x + x**2).series(x, 0, 5) == cos(1) - x*sin(1) + \
x**2*(-sin(1) - cos(1)/2) + x**3*(-cos(1) + sin(1)/6) + \
x**4*(-11*cos(1)/24 + sin(1)/2) + O(x**5)
def test_issue_6318():
eq = (1/x)**Rational(2, 3)
assert (eq + 1).as_leading_term(x) == eq
def test_x_is_base_detection():
eq = (x**2)**Rational(2, 3)
assert eq.series() == x**Rational(4, 3)
def test_sin_power():
e = sin(x)**1.2
assert calculate_series(e, x) == x**1.2
def test_issue_7203():
assert series(cos(x), x, pi, 3) == \
-1 + (x - pi)**2/2 + O((x - pi)**3, (x, pi))
def test_exp_product_positive_factors():
a, b = symbols('a, b', positive=True)
x = a * b
assert series(exp(x), x, n=8) == 1 + a*b + a**2*b**2/2 + \
a**3*b**3/6 + a**4*b**4/24 + a**5*b**5/120 + a**6*b**6/720 + \
a**7*b**7/5040 + O(a**8*b**8, a, b)
def test_issue_8805():
assert series(1, n=8) == 1
def test_issue_9549():
y = (x**2 + x + 1) / (x**3 + x**2)
assert series(y, x, oo) == x**(-5) - 1/x**4 + x**(-3) + 1/x + O(x**(-6), (x, oo))
def test_issue_10761():
assert series(1/(x**-2 + x**-3), x, 0) == x**3 - x**4 + x**5 + O(x**6)
def test_issue_12578():
y = (1 - 1/(x/2 - 1/(2*x))**4)**(S(1)/8)
assert y.series(x, 0, n=17) == 1 - 2*x**4 - 8*x**6 - 34*x**8 - 152*x**10 - 714*x**12 - \
3472*x**14 - 17318*x**16 + O(x**17)
def test_issue_12791():
beta = symbols('beta', real=True, positive=True)
theta, varphi = symbols('theta varphi', real=True)
expr = (-beta**2*varphi*sin(theta) + beta**2*cos(theta) + \
beta*varphi*sin(theta) - beta*cos(theta) - beta + 1)/(beta*cos(theta) - 1)**2
sol = 0.5/(0.5*cos(theta) - 1)**2 - 0.25*cos(theta)/(0.5*cos(theta) - 1)**2 \
+ (beta - 0.5)*(-0.5*varphi*sin(theta)*cos(theta)/((0.5*cos(theta) - 1) \
**2*(0.5*cos(theta) - 1.0)) - 1/(0.5*cos(theta) - 1)**2 + 0.5*cos(theta) \
**2/((0.5*cos(theta) - 1)**2*(0.5*cos(theta) - 1.0)) - 1.0*cos(theta) \
/((0.5*cos(theta) - 1)**2*(0.5*cos(theta) - 1.0))) + 0.25*varphi* \
sin(theta)/(0.5*cos(theta) - 1)**2 + O((beta - 0.5)**2, (beta, 0.5))
assert expr.series(beta, 0.5, 2) == sol
def test_issue_14885():
assert series(x**Rational(-3, 2)*exp(x), x, 0) == (x**Rational(-3, 2) + 1/sqrt(x) +
sqrt(x)/2 + x**Rational(3, 2)/6 + x**Rational(5, 2)/24 + x**Rational(7, 2)/120 +
x**Rational(9, 2)/720 + x**Rational(11, 2)/5040 + O(x**6))
def test_issue_15539():
assert series(atan(x), x, -oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2
+ O(x**(-6), (x, -oo)))
assert series(atan(x), x, oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2
+ O(x**(-6), (x, oo)))
def test_issue_7259():
assert series(LambertW(x), x) == x - x**2 + 3*x**3/2 - 8*x**4/3 + 125*x**5/24 + O(x**6)
assert series(LambertW(x**2), x, n=8) == x**2 - x**4 + 3*x**6/2 + O(x**8)
assert series(LambertW(sin(x)), x, n=4) == x - x**2 + 4*x**3/3 + O(x**4)
def test_issue_11884():
assert cos(x).series(x, 1, n=1) == cos(1) + O(x - 1, (x, 1))
def test_issue_18008():
y = x*(1 + x*(1 - x))/((1 + x*(1 - x)) - (1 - x)*(1 - x))
assert y.series(x, oo, n=4) == -9/(32*x**3) - 3/(16*x**2) - 1/(8*x) + S(1)/4 + x/2 + \
O(x**(-4), (x, oo))
def test_issue_18842():
f = log(x/(1 - x))
assert f.series(x, 0.491, n=1).removeO().nsimplify() == \
-S(180019443780011)/5000000000000000
def test_issue_19534():
dt = symbols('dt', real=True)
expr = 16*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0)/45 + \
49*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + 0.051640768506639183825*dt + \
dt*(1/2 - sqrt(21)/14) + 1.0)/180 + 49*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \
0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + \
2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \
1.1854881643947648988*dt + dt*(sqrt(21)/14 + 1/2) + 1.0)/180 + \
dt*(0.66666666666666666667*dt*(2.0*dt + 1.0) + \
6.0173399699313066769*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
4.1117044797036320069*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) - \
7.0189140975801991157*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) + \
0.94010945196161777522*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \
0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + \
2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \
0.35816132904077632692*dt + 1.0) + 5.5065024887242400038*dt + 1.0)/20 + dt/20 + 1
assert N(expr.series(dt, 0, 8), 20) == -0.00092592592592592596126*dt**7 + 0.0027777777777777783175*dt**6 + \
0.016666666666666656027*dt**5 + 0.083333333333333300952*dt**4 + 0.33333333333333337034*dt**3 + \
1.0*dt**2 + 1.0*dt + 1.0
def test_issue_11407():
a, b, c, x = symbols('a b c x')
assert series(sqrt(a + b + c*x), x, 0, 1) == sqrt(a + b) + O(x)
assert series(sqrt(a + b + c + c*x), x, 0, 1) == sqrt(a + b + c) + O(x)
def test_issue_14037():
assert (sin(x**50)/x**51).series(x, n=0) == 1/x + O(1, x)
|
7ec93ea79f10ed6b3adc78ecef9b6a5796ab0407815e4efa20abc83ddda3853c | from itertools import product as cartes
from sympy import (
limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling,
atan, Abs, gamma, Symbol, S, pi, Integral, Rational, I,
tan, cot, integrate, Sum, sign, Function, subfactorial, symbols,
binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels,
acos, erf, erfc, erfi, LambertW, factorial, digamma, uppergamma,
Ei, EulerGamma, asin, atanh, acot, acoth, asec, acsc, cbrt, besselk)
from sympy.calculus.util import AccumBounds
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.testing.pytest import XFAIL, raises
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) is oo
assert limit(x, x, -oo) is -oo
assert limit(-x, x, oo) is -oo
assert limit(x**2, x, -oo) is oo
assert limit(-x**2, x, oo) is -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) is oo
assert limit(-exp(x), x, oo) is -oo
assert limit(exp(x)/x, x, oo) is oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) is oo
assert limit(x - x**2, x, oo) is -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0)
assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-')
assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((x + y + 1)**oo, x, 0, dir='-')
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) is S.NaN
assert limit(Order(2)*x, x, S.NaN) is S.NaN
assert limit(1/(x - 1), x, 1, dir="+") is oo
assert limit(1/(x - 1), x, 1, dir="-") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo
assert limit(1/sin(x), x, pi, dir="+") is -oo
assert limit(1/sin(x), x, pi, dir="-") is oo
assert limit(1/cos(x), x, pi/2, dir="+") is -oo
assert limit(1/cos(x), x, pi/2, dir="-") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") is oo
# test failing bi-directional limits
assert limit(1/x, x, 0, dir="+-") is zoo
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) is oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') is -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') is oo
assert limit(x**(-3), x, 0, dir='-') is -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))
assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0)
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) is oo
assert limit(x + exp(-x**2), x, oo) is oo
assert limit(x + exp(-exp(x)), x, oo) is oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") is oo
assert limit(1/x, x, 0, dir="-") is -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*(y + 2)
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_abs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3'))
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() is oo
def test_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1)))
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo)
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo)
# Possible improvement: AccumBounds(0, 1)
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_2929():
assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == Rational(1, 5)
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') is oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 is oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_14793():
expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \
log(factorial(x)) + S(1)/(12*x))*x**3
assert limit(expr, x, oo) == S(1)/360
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(cartes([x, -x],
[-1, 1],
[2, 3, S.Half, Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) is oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, S.Half) == sqrt(pi)
r = Symbol('r', real=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(cartes([cot, tan],
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# needs gruntz calculate_series to go to n = 32
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) is -oo
assert limit(oo - x, x, -oo) is oo
assert limit(x**2/(x - 5) - oo, x, oo) is -oo
assert limit(1/(x + sin(x)) - oo, x, 0) is -oo
assert limit(oo/x, x, oo) is oo
assert limit(x - oo + 1/x, x, oo) is -oo
assert limit(x - oo + 1/x, x, 0) is -oo
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) is oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1) == n/2
def test_factorial():
from sympy import factorial, E
f = factorial(x)
assert limit(f, x, oo) is oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == factorial(-oo)
assert limit(f, x, x**2) == factorial(x**2)
assert limit(f, x, -x**2) == factorial(-x**2)
def test_issue_6560():
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) +
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1)))
assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4
@XFAIL
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_branch_cuts():
assert limit(asin(I*x + 2), x, 0) == pi - asin(2)
assert limit(asin(I*x + 2), x, 0, '-') == asin(2)
assert limit(asin(I*x - 2), x, 0) == -asin(2)
assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2)
assert limit(acos(I*x + 2), x, 0) == -acos(2)
assert limit(acos(I*x + 2), x, 0, '-') == acos(2)
assert limit(acos(I*x - 2), x, 0) == acos(-2)
assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2)
assert limit(atan(x + 2*I), x, 0) == I*atanh(2)
assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2)
assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2)
assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2)
assert limit(atan(1/x), x, 0) == pi/2
assert limit(atan(1/x), x, 0, '-') == -pi/2
assert limit(atan(x), x, oo) == pi/2
assert limit(atan(x), x, -oo) == -pi/2
assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2)
assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2)
assert limit(acot(x), x, 0) == pi/2
assert limit(acot(x), x, 0, '-') == -pi/2
assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2)
assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2)
assert limit(log(I*x - 1), x, 0) == I*pi
assert limit(log(I*x - 1), x, 0, '-') == -I*pi
assert limit(log(-I*x - 1), x, 0) == -I*pi
assert limit(log(-I*x - 1), x, 0, '-') == I*pi
assert limit(sqrt(I*x - 1), x, 0) == I
assert limit(sqrt(I*x - 1), x, 0, '-') == -I
assert limit(sqrt(-I*x - 1), x, 0) == -I
assert limit(sqrt(-I*x - 1), x, 0, '-') == I
assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3)
assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3)
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0).simplify() == 2/cos(2*a)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_8208():
assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0
def test_issue_8229():
assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0
def test_issue_8433():
d, t = symbols('d t', positive=True)
assert limit(erf(1 - t/d), t, oo) == -1
def test_issue_8481():
k = Symbol('k', integer=True, nonnegative=True)
lamda = Symbol('lamda', real=True, positive=True)
limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0
def test_issue_8730():
assert limit(subfactorial(x), x, oo) is oo
def test_issue_9558():
assert limit(sin(x)**15, x, 0, '-') == 0
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_10976():
s, x = symbols('s x', real=True)
assert limit(erf(s*x)/erf(s), s, 0) == x
def test_issue_9041():
assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_9471():
assert limit((((27**(log(n,3))))/n**3),n,oo) == 1
assert limit((((27**(log(n,3)+1)))/n**3),n,oo) == 27
def test_issue_11496():
assert limit(erfc(log(1/x)), x, oo) == 2
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Float(0.3)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3)
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12398():
assert limit(Abs(log(x)/x**3), x, oo) == 0
assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo
def test_issue_12769():
r, z, x = symbols('r z x', real=True)
a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True)
fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \
F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \
2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \
2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \
2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1)
assert fx.subs(K, F0).cancel().together() == limit(fx, K, F0).together()
def test_issue_13332():
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) *
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36)
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, oo) is oo
assert limit(((x + sin(x))**2).expand(), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo
def test_issue_13382():
assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2
def test_issue_13403():
assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x ,oo) == 1
def test_issue_13416():
assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x ,oo) == 1
def test_issue_13462():
assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x*(x - 2)*(x - 1)/24
def test_issue_13750():
a = Symbol('a')
assert limit(erf(a - x), x, oo) == -1
assert limit(erf(sqrt(x) - x), x, oo) == -1
def test_issue_14514():
assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == Rational(5, 2)
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == Rational(-1, 2)
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
def test_issue_15146():
e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \
2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3)
assert limit(e, x, oo) == S(1)/3
def test_issue_15202():
e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1)
assert limit(e, x, oo) == exp(1)
e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x)
assert limit(e, x, oo) == 10
def test_issue_15282():
assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000
def test_issue_15984():
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0
def test_issue_13571():
assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1
def test_issue_13575():
assert limit(acos(erfi(x)), x, 1).cancel() == acos(-I*erf(I))
def test_issue_17325():
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1
assert Limit(x**2, x, 0, dir="+-").doit() == 0
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo
assert Limit(1/x, x, 0, dir="+-").doit() is zoo
def test_issue_10978():
assert LambertW(x).limit(x, 0) == 0
@XFAIL
def test_issue_14313_comment():
assert limit(floor(n/2), n, oo) is oo
@XFAIL
def test_issue_15323():
d = ((1 - 1/x)**x).diff(x)
assert limit(d, x, 1, dir='+') == 1
def test_issue_12571():
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1
def test_issue_14590():
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1)
def test_issue_14393():
a, b = symbols('a b')
assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a)*y**b/a
def test_issue_14556():
assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1)
def test_issue_14811():
assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo
def test_issue_14874():
assert limit(besselk(0, x), x, oo) == 0
def test_issue_16222():
assert limit(exp(x), x, 1000000000) == exp(1000000000)
def test_issue_16714():
assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1))
def test_issue_16722():
z = symbols('z', positive=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
z = symbols('z', positive=True, integer=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
def test_issue_17431():
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) *
(n + 2) * factorial(n) / (n + 1), n, oo) == 0
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1))
, n, oo) == 0
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0
def test_issue_17671():
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
def test_issue_17751():
a, b, c, x = symbols('a b c x', positive=True)
assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2)
def test_issue_17792():
assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi)
def test_issue_18306():
assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1
def test_issue_18378():
assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3
def test_issue_18399():
assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo
assert limit((-x)**x, x, oo) is zoo
def test_issue_18442():
assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-')
def test_issue_18452():
assert limit(abs(log(x))**x, x, 0) == 1
assert limit(abs(log(x))**x, x, 0, "-") == 1
def test_issue_18482():
assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1)
def test_issue_18501():
assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo
def test_issue_18508():
assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2)
def test_issue_18969():
a, b = symbols('a b', positive=True)
assert limit(LambertW(a), a, b) == LambertW(b)
assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b))
def test_issue_18992():
assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1)
def test_issue_18997():
assert limit(Abs(log(x)), x, 0) == oo
assert limit(Abs(log(Abs(x))), x, 0) == oo
def test_issue_19026():
x = Symbol('x', positive=True)
assert limit(Abs(log(x) + 1)/log(x), x, oo) == 1
def test_issue_19067():
x = Symbol('x')
assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1
def test_issue_19586():
assert limit(x**(2**x*3**(-x)), x, oo) == 1
def test_issue_13715():
n = Symbol('n')
p = Symbol('p', zero=True)
assert limit(n + p, n, 0) == p
def test_issue_15055():
assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1
def test_issue_16708():
m, vi = symbols('m vi', positive=True)
B, ti, d = symbols('B ti d')
assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi
def test_issue_19739():
assert limit((-S(1)/4)**x, x, oo) == 0
def test_issue_19766():
assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2
def test_issue_19770():
m = Symbol('m')
# the result is not 0 for non-real m
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', real=True)
# can be improved to give the correct result 0
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', nonzero=True)
assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1)
assert limit(cos(m*x)/x, x, oo) == 0
|
7239c8d6cf25f7c2f7b3f6a43172e0e5c7f53ae9f30c634348c376e1943051dd | from sympy import (Symbol, Rational, ln, exp, log, sqrt, E, O, pi, I, sinh,
sin, cosh, cos, tanh, coth, asinh, acosh, atanh, acoth, tan, cot, Integer,
PoleError, floor, ceiling, asin, symbols, limit, Piecewise, Eq, sign,
Derivative, S)
from sympy.abc import x, y, z
from sympy.testing.pytest import raises, XFAIL
def test_simple_1():
assert x.nseries(x, n=5) == x
assert y.nseries(x, n=5) == y
assert (1/(x*y)).nseries(y, n=5) == 1/(x*y)
assert Rational(3, 4).nseries(x, n=5) == Rational(3, 4)
assert x.nseries() == x
def test_mul_0():
assert (x*ln(x)).nseries(x, n=5) == x*ln(x)
def test_mul_1():
assert (x*ln(2 + x)).nseries(x, n=5) == x*log(2) + x**2/2 - x**3/8 + \
x**4/24 + O(x**5)
assert (x*ln(1 + x)).nseries(
x, n=5) == x**2 - x**3/2 + x**4/3 + O(x**5)
def test_pow_0():
assert (x**2).nseries(x, n=5) == x**2
assert (1/x).nseries(x, n=5) == 1/x
assert (1/x**2).nseries(x, n=5) == 1/x**2
assert (x**Rational(2, 3)).nseries(x, n=5) == (x**Rational(2, 3))
assert (sqrt(x)**3).nseries(x, n=5) == (sqrt(x)**3)
def test_pow_1():
assert ((1 + x)**2).nseries(x, n=5) == x**2 + 2*x + 1
def test_geometric_1():
assert (1/(1 - x)).nseries(x, n=5) == 1 + x + x**2 + x**3 + x**4 + O(x**5)
assert (x/(1 - x)).nseries(x, n=6) == x + x**2 + x**3 + x**4 + x**5 + O(x**6)
assert (x**3/(1 - x)).nseries(x, n=8) == x**3 + x**4 + x**5 + x**6 + \
x**7 + O(x**8)
def test_sqrt_1():
assert sqrt(1 + x).nseries(x, n=5) == 1 + x/2 - x**2/8 + x**3/16 - 5*x**4/128 + O(x**5)
def test_exp_1():
assert exp(x).nseries(x, n=5) == 1 + x + x**2/2 + x**3/6 + x**4/24 + O(x**5)
assert exp(x).nseries(x, n=12) == 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + \
x**6/720 + x**7/5040 + x**8/40320 + x**9/362880 + x**10/3628800 + \
x**11/39916800 + O(x**12)
assert exp(1/x).nseries(x, n=5) == exp(1/x)
assert exp(1/(1 + x)).nseries(x, n=4) == \
(E*(1 - x - 13*x**3/6 + 3*x**2/2)).expand() + O(x**4)
assert exp(2 + x).nseries(x, n=5) == \
(exp(2)*(1 + x + x**2/2 + x**3/6 + x**4/24)).expand() + O(x**5)
def test_exp_sqrt_1():
assert exp(1 + sqrt(x)).nseries(x, n=3) == \
(exp(1)*(1 + sqrt(x) + x/2 + sqrt(x)*x/6)).expand() + O(sqrt(x)**3)
def test_power_x_x1():
assert (exp(x*ln(x))).nseries(x, n=4) == \
1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4)
def test_power_x_x2():
assert (x**x).nseries(x, n=4) == \
1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4)
def test_log_singular1():
assert log(1 + 1/x).nseries(x, n=5) == x - log(x) - x**2/2 + x**3/3 - \
x**4/4 + O(x**5)
def test_log_power1():
e = 1 / (1/x + x ** (log(3)/log(2)))
assert e.nseries(x, n=5) == -x**(log(3)/log(2) + 2) + x + O(x**5)
def test_log_series():
l = Symbol('l')
e = 1/(1 - log(x))
assert e.nseries(x, n=5, logx=l) == 1/(1 - l)
def test_log2():
e = log(-1/x)
assert e.nseries(x, n=5) == -log(x) + log(-1)
def test_log3():
l = Symbol('l')
e = 1/log(-1/x)
assert e.nseries(x, n=4, logx=l) == 1/(-l + log(-1))
def test_series1():
e = sin(x)
assert e.nseries(x, 0, 0) != 0
assert e.nseries(x, 0, 0) == O(1, x)
assert e.nseries(x, 0, 1) == O(x, x)
assert e.nseries(x, 0, 2) == x + O(x**2, x)
assert e.nseries(x, 0, 3) == x + O(x**3, x)
assert e.nseries(x, 0, 4) == x - x**3/6 + O(x**4, x)
e = (exp(x) - 1)/x
assert e.nseries(x, 0, 3) == 1 + x/2 + x**2/6 + O(x**3)
assert x.nseries(x, 0, 2) == x
@XFAIL
def test_series1_failing():
assert x.nseries(x, 0, 0) == O(1, x)
assert x.nseries(x, 0, 1) == O(x, x)
def test_seriesbug1():
assert (1/x).nseries(x, 0, 3) == 1/x
assert (x + 1/x).nseries(x, 0, 3) == x + 1/x
def test_series2x():
assert ((x + 1)**(-2)).nseries(x, 0, 4) == 1 - 2*x + 3*x**2 - 4*x**3 + O(x**4, x)
assert ((x + 1)**(-1)).nseries(x, 0, 4) == 1 - x + x**2 - x**3 + O(x**4, x)
assert ((x + 1)**0).nseries(x, 0, 3) == 1
assert ((x + 1)**1).nseries(x, 0, 3) == 1 + x
assert ((x + 1)**2).nseries(x, 0, 3) == x**2 + 2*x + 1
assert ((x + 1)**3).nseries(x, 0, 3) == 1 + 3*x + 3*x**2 + O(x**3)
assert (1/(1 + x)).nseries(x, 0, 4) == 1 - x + x**2 - x**3 + O(x**4, x)
assert (x + 3/(1 + 2*x)).nseries(x, 0, 4) == 3 - 5*x + 12*x**2 - 24*x**3 + O(x**4, x)
assert ((1/x + 1)**3).nseries(x, 0, 3) == 1 + 3/x + 3/x**2 + x**(-3)
assert (1/(1 + 1/x)).nseries(x, 0, 4) == x - x**2 + x**3 - O(x**4, x)
assert (1/(1 + 1/x**2)).nseries(x, 0, 6) == x**2 - x**4 + O(x**6, x)
def test_bug2(): # 1/log(0)*log(0) problem
w = Symbol("w")
e = (w**(-1) + w**(
-log(3)*log(2)**(-1)))**(-1)*(3*w**(-log(3)*log(2)**(-1)) + 2*w**(-1))
e = e.expand()
assert e.nseries(w, 0, 4).subs(w, 0) == 3
def test_exp():
e = (1 + x)**(1/x)
assert e.nseries(x, n=3) == exp(1) - x*exp(1)/2 + 11*exp(1)*x**2/24 + O(x**3)
def test_exp2():
w = Symbol("w")
e = w**(1 - log(x)/(log(2) + log(x)))
logw = Symbol("logw")
assert e.nseries(
w, 0, 1, logx=logw) == exp(logw*log(2)/(log(x) + log(2)))
def test_bug3():
e = (2/x + 3/x**2)/(1/x + 1/x**2)
assert e.nseries(x, n=3) == 3 - x + x**2 + O(x**3)
def test_generalexponent():
p = 2
e = (2/x + 3/x**p)/(1/x + 1/x**p)
assert e.nseries(x, 0, 3) == 3 - x + x**2 + O(x**3)
p = S.Half
e = (2/x + 3/x**p)/(1/x + 1/x**p)
assert e.nseries(x, 0, 2) == 2 - x + sqrt(x) + x**(S(3)/2) + O(x**2)
e = 1 + sqrt(x)
assert e.nseries(x, 0, 4) == 1 + sqrt(x)
# more complicated example
def test_genexp_x():
e = 1/(1 + sqrt(x))
assert e.nseries(x, 0, 2) == \
1 + x - sqrt(x) - sqrt(x)**3 + O(x**2, x)
# more complicated example
def test_genexp_x2():
p = Rational(3, 2)
e = (2/x + 3/x**p)/(1/x + 1/x**p)
assert e.nseries(x, 0, 3) == 3 + x + x**2 - sqrt(x) - x**(S(3)/2) - x**(S(5)/2) + O(x**3)
def test_seriesbug2():
w = Symbol("w")
#simple case (1):
e = ((2*w)/w)**(1 + w)
assert e.nseries(w, 0, 1) == 2 + O(w, w)
assert e.nseries(w, 0, 1).subs(w, 0) == 2
def test_seriesbug2b():
w = Symbol("w")
#test sin
e = sin(2*w)/w
assert e.nseries(w, 0, 3) == 2 - 4*w**2/3 + O(w**3)
def test_seriesbug2d():
w = Symbol("w", real=True)
e = log(sin(2*w)/w)
assert e.series(w, n=5) == log(2) - 2*w**2/3 - 4*w**4/45 + O(w**5)
def test_seriesbug2c():
w = Symbol("w", real=True)
#more complicated case, but sin(x)~x, so the result is the same as in (1)
e = (sin(2*w)/w)**(1 + w)
assert e.series(w, 0, 1) == 2 + O(w)
assert e.series(w, 0, 3) == 2 + 2*w*log(2) + \
w**2*(Rational(-4, 3) + log(2)**2) + O(w**3)
assert e.series(w, 0, 2).subs(w, 0) == 2
def test_expbug4():
x = Symbol("x", real=True)
assert (log(
sin(2*x)/x)*(1 + x)).series(x, 0, 2) == log(2) + x*log(2) + O(x**2, x)
assert exp(
log(sin(2*x)/x)*(1 + x)).series(x, 0, 2) == 2 + 2*x*log(2) + O(x**2)
assert exp(log(2) + O(x)).nseries(x, 0, 2) == 2 + O(x)
assert ((2 + O(x))**(1 + x)).nseries(x, 0, 2) == 2 + O(x)
def test_logbug4():
assert log(2 + O(x)).nseries(x, 0, 2) == log(2) + O(x, x)
def test_expbug5():
assert exp(log(1 + x)/x).nseries(x, n=3) == exp(1) + -exp(1)*x/2 + 11*exp(1)*x**2/24 + O(x**3)
assert exp(O(x)).nseries(x, 0, 2) == 1 + O(x)
def test_sinsinbug():
assert sin(sin(x)).nseries(x, 0, 8) == x - x**3/3 + x**5/10 - 8*x**7/315 + O(x**8)
def test_issue_3258():
a = x/(exp(x) - 1)
assert a.nseries(x, 0, 5) == 1 - x/2 - x**4/720 + x**2/12 + O(x**5)
def test_issue_3204():
x = Symbol("x", nonnegative=True)
f = sin(x**3)**Rational(1, 3)
assert f.nseries(x, 0, 17) == x - x**7/18 - x**13/3240 + O(x**17)
def test_issue_3224():
f = sqrt(1 - sqrt(y))
assert f.nseries(y, 0, 2) == 1 - sqrt(y)/2 - y/8 - sqrt(y)**3/16 + O(y**2)
def test_issue_3463():
from sympy import symbols
w, i = symbols('w,i')
r = log(5)/log(3)
p = w**(-1 + r)
e = 1/x*(-log(w**(1 + r)) + log(w + w**r))
e_ser = -r*log(w)/x + p/x - p**2/(2*x) + O(w)
assert e.nseries(w, n=1) == e_ser
def test_sin():
assert sin(8*x).nseries(x, n=4) == 8*x - 256*x**3/3 + O(x**4)
assert sin(x + y).nseries(x, n=1) == sin(y) + O(x)
assert sin(x + y).nseries(x, n=2) == sin(y) + cos(y)*x + O(x**2)
assert sin(x + y).nseries(x, n=5) == sin(y) + cos(y)*x - sin(y)*x**2/2 - \
cos(y)*x**3/6 + sin(y)*x**4/24 + O(x**5)
def test_issue_3515():
e = sin(8*x)/x
assert e.nseries(x, n=6) == 8 - 256*x**2/3 + 4096*x**4/15 + O(x**6)
def test_issue_3505():
e = sin(x)**(-4)*(sqrt(cos(x))*sin(x)**2 -
cos(x)**Rational(1, 3)*sin(x)**2)
assert e.nseries(x, n=9) == Rational(-1, 12) - 7*x**2/288 - \
43*x**4/10368 - 1123*x**6/2488320 + 377*x**8/29859840 + O(x**9)
def test_issue_3501():
a = Symbol("a")
e = x**(-2)*(x*sin(a + x) - x*sin(a))
assert e.nseries(x, n=6) == cos(a) - sin(a)*x/2 - cos(a)*x**2/6 + \
sin(a)*x**3/24 + O(x**4)
e = x**(-2)*(x*cos(a + x) - x*cos(a))
assert e.nseries(x, n=6) == -sin(a) - cos(a)*x/2 + sin(a)*x**2/6 + \
cos(a)*x**3/24 + O(x**4)
def test_issue_3502():
e = sin(5*x)/sin(2*x)
assert e.nseries(x, n=2) == Rational(5, 2) + O(x**2)
assert e.nseries(x, n=6) == \
Rational(5, 2) - 35*x**2/4 + 329*x**4/48 + O(x**6)
def test_issue_3503():
e = sin(2 + x)/(2 + x)
assert e.nseries(x, n=2) == sin(2)/2 + x*cos(2)/2 - x*sin(2)/4 + O(x**2)
def test_issue_3506():
e = (x + sin(3*x))**(-2)*(x*(x + sin(3*x)) - (x + sin(3*x))*sin(2*x))
assert e.nseries(x, n=7) == \
Rational(-1, 4) + 5*x**2/96 + 91*x**4/768 + 11117*x**6/129024 + O(x**7)
def test_issue_3508():
x = Symbol("x", real=True)
assert log(sin(x)).series(x, n=5) == log(x) - x**2/6 - x**4/180 + O(x**5)
e = -log(x) + x*(-log(x) + log(sin(2*x))) + log(sin(2*x))
assert e.series(x, n=5) == \
log(2) + log(2)*x - 2*x**2/3 - 2*x**3/3 - 4*x**4/45 + O(x**5)
def test_issue_3507():
e = x**(-4)*(x**2 - x**2*sqrt(cos(x)))
assert e.nseries(x, n=9) == \
Rational(1, 4) + x**2/96 + 19*x**4/5760 + 559*x**6/645120 + 29161*x**8/116121600 + O(x**9)
def test_issue_3639():
assert sin(cos(x)).nseries(x, n=5) == \
sin(1) - x**2*cos(1)/2 - x**4*sin(1)/8 + x**4*cos(1)/24 + O(x**5)
def test_hyperbolic():
assert sinh(x).nseries(x, n=6) == x + x**3/6 + x**5/120 + O(x**6)
assert cosh(x).nseries(x, n=5) == 1 + x**2/2 + x**4/24 + O(x**5)
assert tanh(x).nseries(x, n=6) == x - x**3/3 + 2*x**5/15 + O(x**6)
assert coth(x).nseries(x, n=6) == \
1/x - x**3/45 + x/3 + 2*x**5/945 + O(x**6)
assert asinh(x).nseries(x, n=6) == x - x**3/6 + 3*x**5/40 + O(x**6)
assert acosh(x).nseries(x, n=6) == \
pi*I/2 - I*x - 3*I*x**5/40 - I*x**3/6 + O(x**6)
assert atanh(x).nseries(x, n=6) == x + x**3/3 + x**5/5 + O(x**6)
assert acoth(x).nseries(x, n=6) == x + x**3/3 + x**5/5 + pi*I/2 + O(x**6)
def test_series2():
w = Symbol("w", real=True)
x = Symbol("x", real=True)
e = w**(-2)*(w*exp(1/x - w) - w*exp(1/x))
assert e.nseries(w, n=4) == -exp(1/x) + w*exp(1/x)/2 - w**2*exp(1/x)/6 + w**3*exp(1/x)/24 + O(w**4)
def test_series3():
w = Symbol("w", real=True)
e = w**(-6)*(w**3*tan(w) - w**3*sin(w))
assert e.nseries(w, n=8) == Integer(1)/2 + w**2/8 + 13*w**4/240 + 529*w**6/24192 + O(w**8)
def test_bug4():
w = Symbol("w")
e = x/(w**4 + x**2*w**4 + 2*x*w**4)*w**4
assert e.nseries(w, n=2).removeO() in [x/(1 + 2*x + x**2),
1/(1 + x/2 + 1/x/2)/2, 1/x/(1 + 2/x + x**(-2))]
def test_bug5():
w = Symbol("w")
l = Symbol('l')
e = (-log(w) + log(1 + w*log(x)))**(-2)*w**(-2)*((-log(w) +
log(1 + x*w))*(-log(w) + log(1 + w*log(x)))*w - x*(-log(w) +
log(1 + w*log(x)))*w)
assert e.nseries(w, n=2, logx=l) == x/w/l + 1/w + O(1, w)
assert e.nseries(w, n=3, logx=l) == x/w/l + 1/w - x/l + 1/l*log(x) \
+ x*log(x)/l**2 + O(w)
def test_issue_4115():
assert (sin(x)/(1 - cos(x))).nseries(x, n=1) == 2/x + O(x)
assert (sin(x)**2/(1 - cos(x))).nseries(x, n=1) == 2 + O(x)
def test_pole():
raises(PoleError, lambda: sin(1/x).series(x, 0, 5))
raises(PoleError, lambda: sin(1 + 1/x).series(x, 0, 5))
raises(PoleError, lambda: (x*sin(1/x)).series(x, 0, 5))
def test_expsinbug():
assert exp(sin(x)).series(x, 0, 0) == O(1, x)
assert exp(sin(x)).series(x, 0, 1) == 1 + O(x)
assert exp(sin(x)).series(x, 0, 2) == 1 + x + O(x**2)
assert exp(sin(x)).series(x, 0, 3) == 1 + x + x**2/2 + O(x**3)
assert exp(sin(x)).series(x, 0, 4) == 1 + x + x**2/2 + O(x**4)
assert exp(sin(x)).series(x, 0, 5) == 1 + x + x**2/2 - x**4/8 + O(x**5)
def test_floor():
x = Symbol('x')
assert floor(x).series(x) == 0
assert floor(-x).series(x) == -1
assert floor(sin(x)).series(x) == 0
assert floor(sin(-x)).series(x) == -1
assert floor(x**3).series(x) == 0
assert floor(-x**3).series(x) == -1
assert floor(cos(x)).series(x) == 0
assert floor(cos(-x)).series(x) == 0
assert floor(5 + sin(x)).series(x) == 5
assert floor(5 + sin(-x)).series(x) == 4
assert floor(x).series(x, 2) == 2
assert floor(-x).series(x, 2) == -3
x = Symbol('x', negative=True)
assert floor(x + 1.5).series(x) == 1
def test_ceiling():
assert ceiling(x).series(x) == 1
assert ceiling(-x).series(x) == 0
assert ceiling(sin(x)).series(x) == 1
assert ceiling(sin(-x)).series(x) == 0
assert ceiling(1 - cos(x)).series(x) == 1
assert ceiling(1 - cos(-x)).series(x) == 1
assert ceiling(x).series(x, 2) == 3
assert ceiling(-x).series(x, 2) == -2
def test_abs():
a = Symbol('a')
assert abs(x).nseries(x, n=4) == x
assert abs(-x).nseries(x, n=4) == x
assert abs(x + 1).nseries(x, n=4) == x + 1
assert abs(sin(x)).nseries(x, n=4) == x - Rational(1, 6)*x**3 + O(x**4)
assert abs(sin(-x)).nseries(x, n=4) == x - Rational(1, 6)*x**3 + O(x**4)
assert abs(x - a).nseries(x, 1) == Piecewise((x - 1, Eq(1 - a, 0)),
((x - a)*sign(1 - a), True))
def test_dir():
assert abs(x).series(x, 0, dir="+") == x
assert abs(x).series(x, 0, dir="-") == -x
assert floor(x + 2).series(x, 0, dir='+') == 2
assert floor(x + 2).series(x, 0, dir='-') == 1
assert floor(x + 2.2).series(x, 0, dir='-') == 2
assert ceiling(x + 2.2).series(x, 0, dir='-') == 3
assert sin(x + y).series(x, 0, dir='-') == sin(x + y).series(x, 0, dir='+')
def test_issue_3504():
a = Symbol("a")
e = asin(a*x)/x
assert e.series(x, 4, n=2).removeO() == \
(x - 4)*(a/(4*sqrt(-16*a**2 + 1)) - asin(4*a)/16) + asin(4*a)/4
def test_issue_4441():
a, b = symbols('a,b')
f = 1/(1 + a*x)
assert f.series(x, 0, 5) == 1 - a*x + a**2*x**2 - a**3*x**3 + \
a**4*x**4 + O(x**5)
f = 1/(1 + (a + b)*x)
assert f.series(x, 0, 3) == 1 + x*(-a - b) + \
x**2*(a + b)**2 + O(x**3)
def test_issue_4329():
assert tan(x).series(x, pi/2, n=3).removeO() == \
-pi/6 + x/3 - 1/(x - pi/2)
assert cot(x).series(x, pi, n=3).removeO() == \
-x/3 + pi/3 + 1/(x - pi)
assert limit(tan(x)**tan(2*x), x, pi/4) == exp(-1)
def test_issue_5183():
assert abs(x + x**2).series(n=1) == O(x)
assert abs(x + x**2).series(n=2) == x + O(x**2)
assert ((1 + x)**2).series(x, n=6) == x**2 + 2*x + 1
assert (1 + 1/x).series() == 1 + 1/x
assert Derivative(exp(x).series(), x).doit() == \
1 + x + x**2/2 + x**3/6 + x**4/24 + O(x**5)
def test_issue_5654():
a = Symbol('a')
assert (1/(x**2+a**2)**2).nseries(x, x0=I*a, n=0) == \
-I/(4*a**3*(-I*a + x)) - 1/(4*a**2*(-I*a + x)**2) + O(1, (x, I*a))
assert (1/(x**2+a**2)**2).nseries(x, x0=I*a, n=1) == 3/(16*a**4) \
-I/(4*a**3*(-I*a + x)) - 1/(4*a**2*(-I*a + x)**2) + O(-I*a + x, (x, I*a))
def test_issue_5925():
sx = sqrt(x + z).series(z, 0, 1)
sxy = sqrt(x + y + z).series(z, 0, 1)
s1, s2 = sx.subs(x, x + y), sxy
assert (s1 - s2).expand().removeO().simplify() == 0
sx = sqrt(x + z).series(z, 0, 1)
sxy = sqrt(x + y + z).series(z, 0, 1)
assert sxy.subs({x:1, y:2}) == sx.subs(x, 3)
def test_exp_2():
assert exp(x**3).nseries(x, 0, 14) == 1 + x**3 + x**6/2 + x**9/6 + x**12/24 + O(x**14)
|
1abf32253e7a9534649c7fa1fe5b5a991d2a62e2950e2b84fce415beade77263 | from sympy import (
symbols, powsimp, MatrixSymbol, sqrt, pi, Mul, gamma, Function,
S, I, exp, simplify, sin, E, log, hyper, Symbol, Dummy, powdenest, root,
Rational, oo, signsimp)
from sympy.core.symbol import Str
from sympy.abc import x, y, z, a, b
def test_powsimp():
x, y, z, n = symbols('x,y,z,n')
f = Function('f')
assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1
assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1
assert powsimp(
f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x))
assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1)
assert exp(x)*exp(y) == exp(x)*exp(y)
assert powsimp(exp(x)*exp(y)) == exp(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
exp(x + y)*2**(x + y)
assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y))
assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y))
assert powsimp(x**2*x**y) == x**(2 + y)
# This should remain factored, because 'exp' with deep=True is supposed
# to act like old automatic exponent combining.
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
(1 + E*exp(E))*exp(-E)
x, y = symbols('x,y', nonnegative=True)
n = Symbol('n', real=True)
assert powsimp(y**n * (y/x)**(-n)) == x**n
assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
== (x*y)**(x*y)**(x*y)
assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x)
assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x)
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z)
assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z
assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
exp(x)/(1 + exp(x + y))
assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y))
assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x
assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x
p = symbols('p', positive=True)
assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2))
assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2))
# coefficient of exponent can only be simplified for positive bases
assert powsimp(2**(2*x)) == 4**x
assert powsimp((-1)**(2*x)) == (-1)**(2*x)
i = symbols('i', integer=True)
assert powsimp((-1)**(2*i)) == 1
assert powsimp((-1)**(-x)) != (-1)**x # could be 1/((-1)**x), but is not
# force=True overrides assumptions
assert powsimp((-1)**(2*x), force=True) == 1
# rational exponents allow combining of negative terms
w, n, m = symbols('w n m', negative=True)
e = i/a # not a rational exponent if `a` is unknown
ex = w**e*n**e*m**e
assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a)
e = i/3
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3)
e = (3 + i)/i
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e
eq = x**(a*Rational(2, 3))
# eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
assert powsimp(eq).exp == eq.exp == a*Rational(2, 3)
# powdenest goes the other direction
assert powsimp(2**(2*x)) == 4**x
assert powsimp(exp(p/2)) == exp(p/2)
# issue 6368
eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
assert powsimp(eq) == eq and eq.is_Mul
assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))
# issue 8836
assert str( powsimp(exp(I*pi/3)*root(-1,3)) ) == '(-1)**(2/3)'
# issue 9183
assert powsimp(-0.1**x) == -0.1**x
# issue 10095
assert powsimp((1/(2*E))**oo) == (exp(-1)/2)**oo
# PR 13131
eq = sin(2*x)**2*sin(2.0*x)**2
assert powsimp(eq) == eq
# issue 14615
assert powsimp(x**2*y**3*(x*y**2)**Rational(3, 2)
) == x*y*(x*y**2)**Rational(5, 2)
def test_powsimp_negated_base():
assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y)
assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y)
p = symbols('p', positive=True)
reps = {p: 2, a: S.Half}
assert powsimp((-p)**a/p**a).subs(reps) == ((-1)**a).subs(reps)
assert powsimp((-p)**a*p**a).subs(reps) == ((-p**2)**a).subs(reps)
n = symbols('n', negative=True)
reps = {p: -2, a: S.Half}
assert powsimp((-n)**a/n**a).subs(reps) == (-1)**(-a).subs(a, S.Half)
assert powsimp((-n)**a*n**a).subs(reps) == ((-n**2)**a).subs(reps)
# if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
eq = (-x)**a/x**a
assert powsimp(eq) == eq
def test_powsimp_nc():
x, y, z = symbols('x,y,z')
A, B, C = symbols('A B C', commutative=False)
assert powsimp(A**x*A**y, combine='all') == A**(x + y)
assert powsimp(A**x*A**y, combine='base') == A**x*A**y
assert powsimp(A**x*A**y, combine='exp') == A**(x + y)
assert powsimp(A**x*B**x, combine='all') == A**x*B**x
assert powsimp(A**x*B**x, combine='base') == A**x*B**x
assert powsimp(A**x*B**x, combine='exp') == A**x*B**x
assert powsimp(B**x*A**x, combine='all') == B**x*A**x
assert powsimp(B**x*A**x, combine='base') == B**x*A**x
assert powsimp(B**x*A**x, combine='exp') == B**x*A**x
assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z)
assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z
assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z)
assert powsimp(A**x*B**x*C**x, combine='all') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='base') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x
assert powsimp(B**x*A**x*C**x, combine='all') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='base') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x
def test_issue_6440():
assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4)
def test_powdenest():
from sympy import powdenest
from sympy.abc import x, y, z, a, b
p, q = symbols('p q', positive=True)
i, j = symbols('i,j', integer=True)
assert powdenest(x) == x
assert powdenest(x + 2*(x**(a*Rational(2, 3)))**(3*x)) == (x + 2*(x**(a*Rational(2, 3)))**(3*x))
assert powdenest((exp(a*Rational(2, 3)))**(3*x)) # -X-> (exp(a/3))**(6*x)
assert powdenest((x**(a*Rational(2, 3)))**(3*x)) == ((x**(a*Rational(2, 3)))**(3*x))
assert powdenest(exp(3*x*log(2))) == 2**(3*x)
assert powdenest(sqrt(p**2)) == p
eq = p**(2*i)*q**(4*i)
assert powdenest(eq) == (p*q**2)**(2*i)
# -X-> (x**x)**i*(x**x)**j == x**(x*(i + j))
assert powdenest((x**x)**(i + j))
assert powdenest(exp(3*y*log(x))) == x**(3*y)
assert powdenest(exp(y*(log(a) + log(b)))) == (a*b)**y
assert powdenest(exp(3*(log(a) + log(b)))) == a**3*b**3
assert powdenest(((x**(2*i))**(3*y))**x) == ((x**(2*i))**(3*y))**x
assert powdenest(((x**(2*i))**(3*y))**x, force=True) == x**(6*i*x*y)
assert powdenest(((x**(a*Rational(2, 3)))**(3*y/i))**x) == \
(((x**(a*Rational(2, 3)))**(3*y/i))**x)
assert powdenest((x**(2*i)*y**(4*i))**z, force=True) == (x*y**2)**(2*i*z)
assert powdenest((p**(2*i)*q**(4*i))**j) == (p*q**2)**(2*i*j)
e = ((p**(2*a))**(3*y))**x
assert powdenest(e) == e
e = ((x**2*y**4)**a)**(x*y)
assert powdenest(e) == e
e = (((x**2*y**4)**a)**(x*y))**3
assert powdenest(e) == ((x**2*y**4)**a)**(3*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y)), force=True) == \
(x*y**2)**(2*a*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y))**3, force=True) == \
(x*y**2)**(6*a*x*y)
assert powdenest((x**2*y**6)**i) != (x*y**3)**(2*i)
x, y = symbols('x,y', positive=True)
assert powdenest((x**2*y**6)**i) == (x*y**3)**(2*i)
assert powdenest((x**(i*Rational(2, 3))*y**(i/2))**(2*i)) == (x**Rational(4, 3)*y)**(i**2)
assert powdenest(sqrt(x**(2*i)*y**(6*i))) == (x*y**3)**i
assert powdenest(4**x) == 2**(2*x)
assert powdenest((4**x)**y) == 2**(2*x*y)
assert powdenest(4**x*y) == 2**(2*x)*y
def test_powdenest_polar():
x, y, z = symbols('x y z', polar=True)
a, b, c = symbols('a b c')
assert powdenest((x*y*z)**a) == x**a*y**a*z**a
assert powdenest((x**a*y**b)**c) == x**(a*c)*y**(b*c)
assert powdenest(((x**a)**b*y**c)**c) == x**(a*b*c)*y**(c**2)
def test_issue_5805():
arg = ((gamma(x)*hyper((), (), x))*pi)**2
assert powdenest(arg) == (pi*gamma(x)*hyper((), (), x))**2
assert arg.is_positive is None
def test_issue_9324_powsimp_on_matrix_symbol():
M = MatrixSymbol('M', 10, 10)
expr = powsimp(M, deep=True)
assert expr == M
assert expr.args[0] == Str('M')
def test_issue_6367():
z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + S.Half)
assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0
assert powsimp(z.normal()) == 0
assert simplify(z) == 0
assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2
assert powsimp(z) != 0
def test_powsimp_polar():
from sympy import polar_lift, exp_polar
x, y, z = symbols('x y z')
p, q, r = symbols('p q r', polar=True)
assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
assert powsimp(p**x * q**x) == (p*q)**x
assert p**x * (1/p)**x == 1
assert (1/p)**x == p**(-x)
assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
(p*exp_polar(1))**(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
exp_polar(x + y)*p**(x + y)
assert powsimp(
exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
== p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
sin(exp_polar(x)*exp_polar(y))
assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
sin(exp_polar(x + y))
def test_issue_5728():
b = x*sqrt(y)
a = sqrt(b)
c = sqrt(sqrt(x)*y)
assert powsimp(a*b) == sqrt(b)**3
assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5
assert powsimp(a*x**2*c**3*y) == c**3*a**5
assert powsimp(a*x*c**3*y**2) == c**7*a
assert powsimp(x*c**3*y**2) == c**7
assert powsimp(x*c**3*y) == x*y*c**3
assert powsimp(sqrt(x)*c**3*y) == c**5
assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3
assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
sqrt(x)*sqrt(y)**3*c**3
assert powsimp(a**2*a*x**2*y) == a**7
# symbolic powers work, too
b = x**y*y
a = b*sqrt(b)
assert a.is_Mul is True
assert powsimp(a) == sqrt(b)**3
# as does exp
a = x*exp(y*Rational(2, 3))
assert powsimp(a*sqrt(a)) == sqrt(a)**3
assert powsimp(a**2*sqrt(a)) == sqrt(a)**5
assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) ==
-I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3))
assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) ==
-(-1)**Rational(1, 3)*
(-n1)**Rational(1, 3)*(-n2)**Rational(1, 3)*(-n3)**Rational(1, 3)*(-n4)**Rational(1, 3))
def test_issue_10195():
a = Symbol('a', integer=True)
l = Symbol('l', even=True, nonzero=True)
n = Symbol('n', odd=True)
e_x = (-1)**(n/2 - S.Half) - (-1)**(n*Rational(3, 2) - S.Half)
assert powsimp((-1)**(l/2)) == I**l
assert powsimp((-1)**(n/2)) == I**n
assert powsimp((-1)**(n*Rational(3, 2))) == -I**n
assert powsimp(e_x) == (-1)**(n/2 - S.Half) + (-1)**(n*Rational(3, 2) +
S.Half)
assert powsimp((-1)**(a*Rational(3, 2))) == (-I)**a
def test_issue_15709():
assert powsimp(3**x*Rational(2, 3)) == 2*3**(x-1)
assert powsimp(2*3**x/3) == 2*3**(x-1)
def test_issue_11981():
x, y = symbols('x y', commutative=False)
assert powsimp((x*y)**2 * (y*x)**2) == (x*y)**2 * (y*x)**2
def test_issue_17524():
a = symbols("a", real=True)
e = (-1 - a**2)*sqrt(1 + a**2)
assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3)/2)
|
2a27f44bf061bbdd2cdc6e9a908832142c339a70c8b5feb1b508a7a982b23119 | from itertools import product
from sympy import symbols, cos
from sympy.core.numbers import pi
from sympy.codegen.scipy_nodes import cosm1
x, y, z = symbols('x y z')
def test_cosm1():
cm1_xy = cosm1(x*y)
ref_xy = cos(x*y) - 1
for wrt, deriv_order in product([x, y, z], range(0, 3)):
assert (
cm1_xy.diff(wrt, deriv_order) -
ref_xy.diff(wrt, deriv_order)
).rewrite(cos).simplify() == 0
expr_minus2 = cosm1(pi)
assert expr_minus2.rewrite(cos) == -2
assert cosm1(3.14).simplify() == cosm1(3.14) # cannot simplify with 3.14
|
ae1e2a24846061cf959b26545c875412f966be010ac06cd7a3aae3baf1fb9127 | from sympy import log, exp, cos, Symbol, Pow, sin, MatrixSymbol, sinc
from sympy.assumptions import assuming, Q
from sympy.printing import ccode
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log2, exp2, expm1, log1p
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1
from sympy.codegen.rewriting import (
optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, optims_c99,
create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt,
optims_numpy, sinc_opts
)
from sympy.testing.pytest import XFAIL
def test_log2_opt():
x = Symbol('x')
expr1 = 7*log(3*x + 5)/(log(2))
opt1 = optimize(expr1, [log2_opt])
assert opt1 == 7*log2(3*x + 5)
assert opt1.rewrite(log) == expr1
expr2 = 3*log(5*x + 7)/(13*log(2))
opt2 = optimize(expr2, [log2_opt])
assert opt2 == 3*log2(5*x + 7)/13
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2)
opt3 = optimize(expr3, [log2_opt])
assert opt3 == log2(x)
assert opt3.rewrite(log) == expr3
expr4 = log(x)/log(2) + log(x+1)
opt4 = optimize(expr4, [log2_opt])
assert opt4 == log2(x) + log(2)*log2(x+1)
assert opt4.rewrite(log) == expr4
expr5 = log(17)
opt5 = optimize(expr5, [log2_opt])
assert opt5 == expr5
expr6 = log(x + 3)/log(2)
opt6 = optimize(expr6, [log2_opt])
assert str(opt6) == 'log2(x + 3)'
assert opt6.rewrite(log) == expr6
def test_exp2_opt():
x = Symbol('x')
expr1 = 1 + 2**x
opt1 = optimize(expr1, [exp2_opt])
assert opt1 == 1 + exp2(x)
assert opt1.rewrite(Pow) == expr1
expr2 = 1 + 3**x
assert expr2 == optimize(expr2, [exp2_opt])
def test_expm1_opt():
x = Symbol('x')
expr1 = exp(x) - 1
opt1 = optimize(expr1, [expm1_opt])
assert expm1(x) - opt1 == 0
assert opt1.rewrite(exp) == expr1
expr2 = 3*exp(x) - 3
opt2 = optimize(expr2, [expm1_opt])
assert 3*expm1(x) == opt2
assert opt2.rewrite(exp) == expr2
expr3 = 3*exp(x) - 5
assert expr3 == optimize(expr3, [expm1_opt])
expr4 = 3*exp(x) + log(x) - 3
opt4 = optimize(expr4, [expm1_opt])
assert 3*expm1(x) + log(x) == opt4
assert opt4.rewrite(exp) == expr4
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, [expm1_opt])
assert 3*expm1(2*x) == opt5
assert opt5.rewrite(exp) == expr5
@XFAIL # ideally this test should pass: need to improve `expm1_opt`
def test_expm1_two_exp_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = exp(x) + exp(y) - 2
opt1 = optimize(expr1, [expm1_opt])
assert opt1 == expm1(x) + expm1(y)
def test_cosm1_opt():
x = Symbol('x')
expr1 = cos(x) - 1
opt1 = optimize(expr1, [cosm1_opt])
assert cosm1(x) - opt1 == 0
assert opt1.rewrite(cos) == expr1
expr2 = 3*cos(x) - 3
opt2 = optimize(expr2, [cosm1_opt])
assert 3*cosm1(x) == opt2
assert opt2.rewrite(cos) == expr2
expr3 = 3*cos(x) - 5
assert expr3 == optimize(expr3, [cosm1_opt])
expr4 = 3*cos(x) + log(x) - 3
opt4 = optimize(expr4, [cosm1_opt])
assert 3*cosm1(x) + log(x) == opt4
assert opt4.rewrite(cos) == expr4
expr5 = 3*cos(2*x) - 3
opt5 = optimize(expr5, [cosm1_opt])
assert 3*cosm1(2*x) == opt5
assert opt5.rewrite(cos) == expr5
@XFAIL # ideally this test should pass: need to improve `cosm1_opt`
def test_cosm1_two_cos_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = cos(x) + cos(y) - 2
opt1 = optimize(expr1, [cosm1_opt])
assert opt1 == cosm1(x) + cosm1(y)
@XFAIL # ideally this test should pass: need to add a new combined expm1_cosm1_opt?
def test_expm1_cosm1_mixed():
x = Symbol('x')
expr1 = exp(x) + cos(x) - 2
opt1 = optimize(expr1, [expm1_opt, cosm1_opt]) # need a combined opt pass?
assert opt1 == cosm1(x) + expm1(x)
def test_log1p_opt():
x = Symbol('x')
expr1 = log(x + 1)
opt1 = optimize(expr1, [log1p_opt])
assert log1p(x) - opt1 == 0
assert opt1.rewrite(log) == expr1
expr2 = log(3*x + 3)
opt2 = optimize(expr2, [log1p_opt])
assert log1p(x) + log(3) == opt2
assert (opt2.rewrite(log) - expr2).simplify() == 0
expr3 = log(2*x + 1)
opt3 = optimize(expr3, [log1p_opt])
assert log1p(2*x) - opt3 == 0
assert opt3.rewrite(log) == expr3
expr4 = log(x+3)
opt4 = optimize(expr4, [log1p_opt])
assert str(opt4) == 'log(x + 3)'
def test_optims_c99():
x = Symbol('x')
expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1
opt1 = optimize(expr1, optims_c99).simplify()
assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x)
assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1
expr2 = log(x)/log(2) + log(x + 1)
opt2 = optimize(expr2, optims_c99)
assert opt2 == log2(x) + log1p(x)
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2) + log(17*x + 17)
opt3 = optimize(expr3, optims_c99)
delta3 = opt3 - (log2(x) + log(17) + log1p(x))
assert delta3 == 0
assert (opt3.rewrite(log) - expr3).simplify() == 0
expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17)
opt4 = optimize(expr4, optims_c99).simplify()
delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x))
assert delta4 == 0
assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, optims_c99)
delta5 = opt5 - 3*expm1(2*x)
assert delta5 == 0
assert opt5.rewrite(exp) == expr5
expr6 = exp(2*x) - 3
opt6 = optimize(expr6, optims_c99)
delta6 = opt6 - (exp(2*x) - 3)
assert delta6 == 0
expr7 = log(3*x + 3)
opt7 = optimize(expr7, optims_c99)
delta7 = opt7 - (log(3) + log1p(x))
assert delta7 == 0
assert (opt7.rewrite(log) - expr7).simplify() == 0
expr8 = log(2*x + 3)
opt8 = optimize(expr8, optims_c99)
assert opt8 == expr8
def test_create_expand_pow_optimization():
cc = lambda x: ccode(
optimize(x, [create_expand_pow_optimization(4)]))
x = Symbol('x')
assert cc(x**4) == 'x*x*x*x'
assert cc(x**4 + x**2) == 'x*x + x*x*x*x'
assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x'
assert cc(sin(x)**4) == 'pow(sin(x), 4)'
# gh issue 15335
assert cc(x**(-4)) == '1.0/(x*x*x*x)'
assert cc(x**(-5)) == 'pow(x, -5)'
assert cc(-x**4) == '-x*x*x*x'
assert cc(x**4 - x**2) == '-x*x + x*x*x*x'
i = Symbol('i', integer=True)
assert cc(x**i - x**2) == 'pow(x, i) - x*x'
def test_matsolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
with assuming(Q.fullrank(A)):
assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x)
assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x
def test_logaddexp_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(exp(x) + exp(y))
opt1 = optimize(expr1, [logaddexp_opt])
assert logaddexp(x, y) - opt1 == 0
assert logaddexp(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_logaddexp2_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(2**x + 2**y)/log(2)
opt1 = optimize(expr1, [logaddexp2_opt])
assert logaddexp2(x, y) - opt1 == 0
assert logaddexp2(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_sinc_opts():
def check(d):
for k, v in d.items():
assert optimize(k, sinc_opts) == v
x = Symbol('x')
check({
sin(x)/x : sinc(x),
sin(2*x)/(2*x) : sinc(2*x),
sin(3*x)/x : 3*sinc(3*x),
x*sin(x) : x*sin(x)
})
y = Symbol('y')
check({
sin(x*y)/(x*y) : sinc(x*y),
y*sin(x/y)/x : sinc(x/y),
sin(sin(x))/sin(x) : sinc(sin(x)),
sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)),
sin(x)/y : sin(x)/y
})
def test_optims_numpy():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x = Symbol('x')
check({
sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x),
log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3)
})
@XFAIL # room for improvement, ideally this test case should pass.
def test_optims_numpy_TODO():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x, y = map(Symbol, 'x y'.split())
check({
log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y),
exp(x*sin(y)/y) - 1: expm1(x*sinc(y))
})
|
41ac77254a67589142715d3e5ef53c85c8c463d91038f7e3abf07df4f9d0fb9a | from sympy.core.add import Add
from sympy.core.basic import sympify, cacheit
from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul
from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool
from sympy.core.numbers import igcdex, Rational, pi
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh,
coth, HyperbolicFunction, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.sets import FiniteSet
from sympy.utilities.iterables import numbered_symbols
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
_singularities = (S.ComplexInfinity,)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = expand_mul(self.args[0])
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
def _peeloff_pi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of pi/2.
This assumes ARG to be an Add.
The multiple of pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> peel(x + pi/2)
(x, pi/2)
>>> peel(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, pi/2)
"""
pi_coeff = S.Zero
rest_terms = []
for a in Add.make_args(arg):
K = a.coeff(S.Pi)
if K and K.is_rational:
pi_coeff += K
else:
rest_terms.append(a)
if pi_coeff is S.Zero:
return arg, S.Zero
m1 = (pi_coeff % S.Half)*S.Pi
m2 = pi_coeff*S.Pi - m1
final_coeff = m2 / S.Pi
if final_coeff.is_integer or ((2*final_coeff).is_integer
and final_coeff.is_even is False):
return Add(*(rest_terms + [m1])), m2
return arg, S.Zero
def _pi_coeff(arg, cycles=1):
"""
When arg is a Number times pi (e.g. 3*pi/2) then return the Number
normalized to be in the range [0, 2], else None.
When an even multiple of pi is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x
>>> coeff(3*x*pi)
3*x
>>> coeff(11*pi/7)
11/7
>>> coeff(-11*pi/7)
3/7
>>> coeff(4*pi)
0
>>> coeff(5*pi)
1
>>> coeff(5.0*pi)
1
>>> coeff(5.5*pi)
3/2
>>> coeff(2 + pi)
>>> coeff(2*Dummy(integer=True)*pi)
2
>>> coeff(2*Dummy(even=True)*pi)
0
"""
arg = sympify(arg)
if arg is S.Pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(S.Pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return S(2)
else:
return c2*x
return cx
elif arg.is_zero:
return S.Zero
class sin(TrigonometricFunction):
"""
The sine function.
Returns the sine of x (measured in radians).
Explanation
===========
This function will evaluate automatically in the
case x/pi is some rational number [4]_. For example,
if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/(2*S.Pi))
if min is not S.NegativeInfinity:
min = min - d*2*S.Pi
if max is not S.Infinity:
max = max - d*2*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2),
S.Pi*Rational(7, 2))) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(8, 2))) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*S.Pi)
if 2*x > 1:
return cls((1 - x)*S.Pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*S.Pi != arg:
return cls(pi_coeff*S.Pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return sin(m)*cos(x) + cos(m)*sin(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y/sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/(sqrt(1 + 1/x**2)*x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1/x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I))/(2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I/2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - S.Pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return 2*cot_half/(1 + cot_half**2)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg - S.Pi/2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy import expand_mul
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
else:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return (-1)**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n -
1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
if not arg.subs(x, 0).is_finite:
return self
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.util import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.Infinity or arg is S.NegativeInfinity:
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + S.Pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_extended_real and arg.is_finite is False:
return AccumBounds(-1, 1)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are performed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
}
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1]
nvala, nvalb = cls(a), cls(b)
if None == nvala or None == nvalb:
return None
return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b)
if q > 12:
return None
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*S.Pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return cos(m)*cos(x) - sin(m)*sin(x)
if arg.is_zero:
return S.One
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x/sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/sqrt(1 + 1/x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1/x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I))/2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + S.Pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return (cot_half - 1)/(cot_half + 1)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calcuation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
from sympy.ntheory import factorint
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*S.Pi)
if not pi_coeff.is_Rational:
return None
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) +
sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17))
*sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# http://www.susqu.edu/brakke/constructions/65537-gon.m.txt
}
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*S.Pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/sec(arg).rewrite(csc)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + S.Pi/2)/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x)
return ((-1)**n)*lt
if not x0.is_finite:
return self
return self.func(x0)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/S.Pi)
if min is not S.NegativeInfinity:
min = min - d*S.Pi
if max is not S.Infinity:
max = max - d*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(3, 2))):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % q
# ensure simplified results are returned for n*pi/5, n*pi/10
table10 = {
1: sqrt(1 - 2*sqrt(5)/5),
2: sqrt(5 - 2*sqrt(5)),
3: sqrt(1 + 2*sqrt(5)/5),
4: sqrt(5 + 2*sqrt(5))
}
if q == 5 or q == 10:
n = 10*p/q
if n > 5:
n = 10 - n
return -table10[n]
else:
return table10[n]
if not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return 1/sresult - cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acot):
x = arg.args[0]
return 1/x
if isinstance(arg, acsc):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**a*b*(b - 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)*2/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - S.Pi/2, evaluate=False)/cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg).rewrite(sec)
cos_in_sec_form = cos(arg).rewrite(sec)
return sin_in_sec_form/cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg).rewrite(csc)
cos_in_csc_form = cos(arg).rewrite(csc)
return sin_in_csc_form/cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0)
n = x0/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi).as_leading_term(x)
return lt if n.is_even else -1/lt
if not x0.is_finite:
return self
return self.func(x0)
def _eval_is_extended_real(self):
# FIXME: currently tan(pi/2) return zoo
return self.args[0].is_extended_real
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg.is_zero:
return S.ComplexInfinity
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit*coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q == 5 or pi_coeff.q == 10:
return tan(S.Pi/2 - arg)
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return 1/sresult + cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
q = pi_coeff.q
p = pi_coeff.p % q
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult/sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if arg.is_zero:
return S.ComplexInfinity
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acos):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
if isinstance(arg, asec):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**((n + 1)//2)*2**(n + 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x)/cos(x - S.Pi/2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg).rewrite(sec)
sin_in_sec_form = sin(arg).rewrite(sec)
return cos_in_sec_form/sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg).rewrite(csc)
sin_in_csc_form = sin(arg).rewrite(csc)
return cos_in_csc_form/sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg)
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_subs(self, old, new):
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/S.Pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
_singularities = (S.ComplexInfinity,)
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
# optional, to be defined in subclasses:
_is_even = None # type: FuzzyBool
_is_odd = None # type: FuzzyBool
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t is None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = expand_mul(self.args[0])
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0])._eval_is_extended_real()
def _eval_as_leading_term(self, x, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/cos(arg).rewrite(sin))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/cos(arg).rewrite(tan))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi/2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_complex and (arg/pi - S.Half).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k)
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + S.Pi/2)/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x)
return ((-1)**n)/lt
return self.func(x0)
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1/sin(arg).rewrite(cos)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi/2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/sin(arg).rewrite(tan))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
class sinc(Function):
r"""
Represents an unnormalized sinc function:
.. math::
\operatorname{sinc}(x) =
\begin{cases}
\frac{\sin x}{x} & \qquad x \neq 0 \\
1 & \qquad x = 0
\end{cases}
Examples
========
>>> from sympy import sinc, oo, jn
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, 0)), (0, True))
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
See also
========
sin
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, S.NegativeInfinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half)/arg
def _eval_nseries(self, x, n, logx, cdir=0):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true))
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
_singularities = (1, -1, 0, S.ComplexInfinity)
@staticmethod
def _asin_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/2: S.Pi/3,
sqrt(2)/2: S.Pi/4,
1/sqrt(2): S.Pi/4,
sqrt((5 - sqrt(5))/8): S.Pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/4: S.Pi/5,
sqrt((5 + sqrt(5))/8): S.Pi*Rational(2, 5),
sqrt(2)*sqrt(5 + sqrt(5))/4: S.Pi*Rational(2, 5),
S.Half: S.Pi/6,
sqrt(2 - sqrt(2))/2: S.Pi/8,
sqrt(S.Half - sqrt(2)/4): S.Pi/8,
sqrt(2 + sqrt(2))/2: S.Pi*Rational(3, 8),
sqrt(S.Half + sqrt(2)/4): S.Pi*Rational(3, 8),
(sqrt(5) - 1)/4: S.Pi/10,
(1 - sqrt(5))/4: -S.Pi/10,
(sqrt(5) + 1)/4: S.Pi*Rational(3, 10),
sqrt(6)/4 - sqrt(2)/4: S.Pi/12,
-sqrt(6)/4 + sqrt(2)/4: -S.Pi/12,
(sqrt(3) - 1)/sqrt(8): S.Pi/12,
(1 - sqrt(3))/sqrt(8): -S.Pi/12,
sqrt(6)/4 + sqrt(2)/4: S.Pi*Rational(5, 12),
(1 + sqrt(3))/sqrt(8): S.Pi*Rational(5, 12)
}
@staticmethod
def _atan_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/3: S.Pi/6,
1/sqrt(3): S.Pi/6,
sqrt(3): S.Pi/3,
sqrt(2) - 1: S.Pi/8,
1 - sqrt(2): -S.Pi/8,
1 + sqrt(2): S.Pi*Rational(3, 8),
sqrt(5 - 2*sqrt(5)): S.Pi/5,
sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5),
sqrt(1 - 2*sqrt(5)/5): S.Pi/10,
sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10),
2 - sqrt(3): S.Pi/12,
-2 + sqrt(3): -S.Pi/12,
2 + sqrt(3): S.Pi*Rational(5, 12)
}
@staticmethod
def _acsc_table():
# Keys for which could_extract_minus_sign()
# will obviously return True are omitted.
return {
2*sqrt(3)/3: S.Pi/3,
sqrt(2): S.Pi/4,
sqrt(2 + 2*sqrt(5)/5): S.Pi/5,
1/sqrt(Rational(5, 8) - sqrt(5)/8): S.Pi/5,
sqrt(2 - 2*sqrt(5)/5): S.Pi*Rational(2, 5),
1/sqrt(Rational(5, 8) + sqrt(5)/8): S.Pi*Rational(2, 5),
2: S.Pi/6,
sqrt(4 + 2*sqrt(2)): S.Pi/8,
2/sqrt(2 - sqrt(2)): S.Pi/8,
sqrt(4 - 2*sqrt(2)): S.Pi*Rational(3, 8),
2/sqrt(2 + sqrt(2)): S.Pi*Rational(3, 8),
1 + sqrt(5): S.Pi/10,
sqrt(5) - 1: S.Pi*Rational(3, 10),
-(sqrt(5) - 1): S.Pi*Rational(-3, 10),
sqrt(6) + sqrt(2): S.Pi/12,
sqrt(6) - sqrt(2): S.Pi*Rational(5, 12),
-(sqrt(6) - sqrt(2)): S.Pi*Rational(-5, 12)
}
class asin(InverseTrigonometricFunction):
"""
The inverse sine function.
Returns the arcsine of x in radians.
Explanation
===========
``asin(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
A purely imaginary argument will lead to an asinh expression.
Examples
========
>>> from sympy import asin, oo
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
>>> asin(-oo)
oo*I
>>> asin(oo)
-oo*I
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_extended_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_extended_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return asin_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*asinh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R/F*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
if x0 is S.ComplexInfinity:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne:
return -S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 > S.One:
return S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #asin
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else S.Pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -S.Pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne:
return -S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 > S.One:
return S.Pi - res
return res
def _eval_rewrite_as_acos(self, x, **kwargs):
return S.Pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Examples
========
``acos(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when
the result is a rational multiple of pi (see the eval class method).
``acos(zoo)`` evaluates to ``zoo``
(see note in :class:`sympy.functions.elementary.trigonometric.asec`)
A purely imaginary argument will be rewritten to asinh.
Examples
========
>>> from sympy import acos, oo
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Pi/2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return pi/2 - asin_table[arg]
elif -arg in asin_table:
return pi/2 + asin_table[-arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return pi/2 - asin(arg)
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R/F*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 == 1:
return sqrt(2)*sqrt((S.One - arg).as_leading_term(x))
if x0 is S.ComplexInfinity:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne:
return 2*S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 > S.One:
return -self.func(x0)
return self.func(x0)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_extended_real()
def _eval_nseries(self, x, n, logx, cdir=0): #acos
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else S.Pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne:
return 2*S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 > S.One:
return -res
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*\
log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_asin(self, x, **kwargs):
return S.Pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_extended_real is False:
return r
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Explanation
===========
``atan(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the
result is a rational multiple of pi (see the eval class method).
Examples
========
>>> from sympy import atan, oo
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_extended_positive
def _eval_is_nonnegative(self):
return self.args[0].is_extended_nonnegative
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi/2
elif arg is S.NegativeInfinity:
return -S.Pi/2
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Pi/4
elif arg is S.NegativeOne:
return -S.Pi/4
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return AccumBounds(-S.Pi/2, S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
return atan_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*atanh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n - 1)//2)*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import im, re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
if x0 is S.ComplexInfinity:
return acot(1/arg)._eval_as_leading_term(x, cdir=cdir)
if cdir != 0:
cdir = arg.dir(x, cdir)
if re(cdir) < 0 and re(x0).is_zero and im(x0) > S.One:
return self.func(x0) - S.Pi
elif re(cdir) > 0 and re(x0).is_zero and im(x0) < S.NegativeOne:
return self.func(x0) + S.Pi
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #atan
from sympy import im, re
arg0 = self.args[0].subs(x, 0)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if arg0 is S.ComplexInfinity:
if re(cdir) > 0:
return res - S.Pi
return res
if re(cdir) < 0 and re(arg0).is_zero and im(arg0) > S.One:
return res - S.Pi
elif re(cdir) > 0 and re(arg0).is_zero and im(arg0) < S.NegativeOne:
return res + S.Pi
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x)
- log(S.One + S.ImaginaryUnit*x))
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super()._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
r"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
Explanation
===========
``acot(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``zoo``, ``0``, ``1``, ``-1`` and for some instances when the result is a
rational multiple of pi (see the eval class method).
A purely imaginary argument will lead to an ``acoth`` expression.
``acot(x)`` has a branch cut along `(-i, i)`, hence it is discontinuous
at 0. Its range for real ``x`` is `(-\frac{\pi}{2}, \frac{\pi}{2}]`.
Examples
========
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] http://dlmf.nist.gov/4.23
.. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.Pi/ 2
elif arg is S.One:
return S.Pi/4
elif arg is S.NegativeOne:
return -S.Pi/4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
ang = pi/2 - atan_table[arg]
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit*acoth(i_coeff)
if arg.is_zero:
return S.Pi*S.Half
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi/2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n + 1)//2)*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import im, re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
if cdir != 0:
cdir = arg.dir(x, cdir)
if x0.is_zero:
if re(cdir) < 0:
return self.func(x0) - S.Pi
return self.func(x0)
if re(cdir) > 0 and re(x0).is_zero and im(x0) > S.Zero and im(x0) < S.One:
return self.func(x0) + S.Pi
if re(cdir) < 0 and re(x0).is_zero and im(x0) < S.Zero and im(x0) > S.NegativeOne:
return self.func(x0) - S.Pi
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #acot
from sympy import im, re
arg0 = self.args[0].subs(x, 0)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if arg0.is_zero:
if re(cdir) < 0:
return res - S.Pi
return res
if re(cdir) > 0 and re(arg0).is_zero and im(arg0) > S.Zero and im(arg0) < S.One:
return res + S.Pi
if re(cdir) < 0 and re(arg0).is_zero and im(arg0) < S.Zero and im(arg0) > S.NegativeOne:
return res - S.Pi
return res
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (S.Pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Explanation
===========
``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments,
it can be defined [4]_ as
.. math::
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z}
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z}
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which
ultimately evaluates to ``zoo``.
As ``acos(x)`` = ``asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo
>>> asec(1)
0
>>> asec(-1)
pi
>>> asec(0)
zoo
>>> asec(-oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Pi/2
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return pi/2 - acsc_table[arg]
elif -arg in acsc_table:
return pi/2 + acsc_table[-arg]
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 == 1:
return sqrt(2)*sqrt((arg - S.One).as_leading_term(x))
if x0.is_zero:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One:
return -self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne:
return 2*S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #asec
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One:
return -res
elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne:
return 2*S.Pi - res
return res
def _eval_is_extended_real(self):
x = self.args[0]
if x.is_extended_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return S.Pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1)))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Explanation
===========
``acsc(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
Examples
========
>>> from sympy import acsc, oo
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
>>> acsc(oo)
0
>>> acsc(-oo) == acsc(oo)
True
>>> acsc(0)
zoo
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return acsc_table[arg]
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return I*log(arg.as_leading_term(x))
if x0 is S.ComplexInfinity:
return arg.as_leading_term(x)
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One:
return S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne:
return -S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #acsc
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One:
return S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne:
return -S.Pi - res
return res
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return S.Pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\
+\frac{\pi}{2} & \qquad y > 0 , x = 0 \\
-\frac{\pi}{2} & \qquad y < 0 , x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
If either `x` or `y` is complex:
.. math::
\operatorname{atan2}(y, x) =
-i\log\left(\frac{x + iy}{\sqrt{x**2 + y**2}}\right)
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1)/-1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy import Heaviside, im, re
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return S.Pi
return 2*S.Pi*(Heaviside(re(y))) - S.Pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_extended_real and y.is_extended_real:
if x.is_positive:
return atan(y/x)
elif x.is_negative:
if y.is_negative:
return atan(y/x) - S.Pi
elif y.is_nonnegative:
return atan(y/x) + S.Pi
elif x.is_zero:
if y.is_positive:
return S.Pi/2
elif y.is_negative:
return -S.Pi/2
elif y.is_zero:
return S.NaN
if y.is_zero:
if x.is_extended_nonzero:
return S.Pi*(S.One - Heaviside(x))
if x.is_number:
return Piecewise((S.Pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
from sympy import re
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
(pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
from sympy import arg
if x.is_extended_real and y.is_extended_real:
return arg(x + y*S.ImaginaryUnit)
n = x + S.ImaginaryUnit*y
d = x**2 + y**2
return arg(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d)))
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_extended_real and y.is_extended_real:
return super()._eval_evalf(prec)
|
f422e64189f9b3b1e0dfd0cd3181a34761b0ffa2650dab530c16b18fb4e78d64 | from sympy.core import sympify
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.function import (Function, ArgumentIndexError, _coeff_isneg,
expand_mul)
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
from sympy.core.mul import Mul
from sympy.core.numbers import Integer, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
_singularities = (S.ComplexInfinity,)
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy.functions import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_adjoint(self):
return self.func(self.args[0].adjoint())
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_transpose(self):
return self.func(self.args[0].transpose())
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_infinite:
if arg.is_extended_negative:
return True
if arg.is_extended_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
z = s.exp.is_zero
if z:
return True
elif s.exp.is_rational and fuzzy_not(z):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return (self.args[0] is S.NegativeInfinity)
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
from sympy import Sum, Product
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
return Mul.fromiter(self.func(x) for x in arg.args)
elif isinstance(arg, Sum) and arg.is_commutative:
return Product(self.func(arg.function), *arg.limits)
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a 'polar number' (see g-function Sphinx documentation).
Explanation
===========
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
Examples
========
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers don't "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See Also
========
sympy.simplify.powsimp.powsimp
polar_lift
periodic_argument
principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
from sympy.functions.elementary.complexes import re
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
from sympy import im, pi, re
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S.One
return ExpBase.as_base_exp(self)
class exp(ExpBase):
"""
The exponential function, :math:`e^x`.
Examples
========
>>> from sympy.functions import exp
>>> from sympy.abc import x
>>> from sympy import I, pi
>>> exp(x)
exp(x)
>>> exp(x).diff(x)
exp(x)
>>> exp(I*pi)
-1
Parameters
==========
arg : Expr
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = S.ImaginaryUnit*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -S.ImaginaryUnit
elif ask(Q.odd(coeff + S.Half)):
return S.ImaginaryUnit
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
from sympy.matrices.matrices import MatrixBase
from sympy import im, logcombine, re
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -S.ImaginaryUnit
elif (coeff + S.Half).is_odd:
return S.ImaginaryUnit
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return cls(ncoeff*S.Pi*S.ImaginaryUnit)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
if terms.is_number:
if coeff is S.NegativeInfinity:
terms = -terms
if re(terms).is_zero and terms is not S.Zero:
return S.NaN
if re(terms).is_positive and im(terms) is not S.Zero:
return S.ComplexInfinity
if re(terms).is_negative:
return S.Zero
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
term_ = logcombine(term)
if isinstance(term_, log):
if log_term is None:
log_term = term_.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
if newa.args[0] != a:
add.append(newa.args[0])
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*cls(Add(*add), evaluate=False)
elif isinstance(arg, MatrixBase):
return arg.exp()
if arg.is_zero:
return S.One
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import exp
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
import sympy
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = sympy.cos(im), sympy.sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_is_complex(self):
def complex_extended_negative(arg):
yield arg.is_complex
yield arg.is_extended_negative
return fuzzy_or(complex_extended_negative(self.args[0]))
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp/S.Pi).is_rational:
return False
else:
return s.is_algebraic
def _eval_is_extended_positive(self):
if self.args[0].is_extended_real:
return not self.args[0] is S.NegativeInfinity
elif self.args[0].is_imaginary:
arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import ceiling, limit, oo, Order, powsimp, Wild, expand_complex
arg = self.args[0]
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 in [-oo, oo]:
return self
t = Dummy("t")
nterms = n
try:
cf = Order(arg.as_leading_term(x), x).getn()
except NotImplementedError:
cf = 0
if cf and cf > 0:
nterms = ceiling(n/cf)
exp_series = exp(t)._taylor(t, nterms)
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
if cf and cf > 1:
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
else:
r += Order((arg_series - arg0)**n, x)
r = r.expand()
r = powsimp(r, deep=True, combine='exp')
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
w = Wild('w', properties=[simplerat])
r = r.replace((-1)**w, expand_complex((-1)**w))
return r
def _taylor(self, x, n):
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g.removeO())
return Add(*l)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0]
if arg.is_Add:
return Mul(*[exp(f).as_leading_term(x) for f in arg.args])
arg_1 = arg.as_leading_term(x)
if Order(x, x).contains(arg_1):
return S.One
if Order(1, x).contains(arg_1):
return exp(arg_1)
####################################################
# The correct result here should be 'None'. #
# Indeed arg in not bounded as x tends to 0. #
# Consequently the series expansion does not admit #
# the leading term. #
# For compatibility reasons, the return value here #
# is the original function, i.e. exp(arg), #
# instead of None. #
####################################################
return exp(arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I*arg + S.Pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I*arg) + I*cos(I*arg + S.Pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(S.Pi*S.ImaginaryUnit)
if coeff and coeff.is_number:
cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + S.ImaginaryUnit*sine
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if arg.is_Mul:
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
if logs:
return Pow(logs[0].args[0], arg.coeff(logs[0]))
def match_real_imag(expr):
"""
Try to match expr with a + b*I for real a and b.
``match_real_imag`` returns a tuple containing the real and imaginary
parts of expr or (None, None) if direct matching is not possible. Contrary
to ``re()``, ``im()``, ``as_real_imag()``, this helper won't force things
by returning expressions themselves containing ``re()`` or ``im()`` and it
doesn't expand its argument either.
"""
r_, i_ = expr.as_independent(S.ImaginaryUnit, as_Add=True)
if i_ == 0 and r_.is_real:
return (r_, i_)
i_ = i_.as_coefficient(S.ImaginaryUnit)
if i_ and i_.is_real and r_.is_real:
return (r_, i_)
else:
return (None, None) # simpler to check for than None
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Explanation
===========
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
``log`` represents the principal branch of the natural
logarithm. As such it has a branch cut along the negative
real axis and returns values having a complex argument in
`(-\pi, \pi]`.
Examples
========
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
See Also
========
exp
"""
_singularities = (S.Zero, S.ComplexInfinity)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy import unpolarify
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
from sympy.functions.elementary.complexes import Abs
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
return n + log(arg / base**n) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
I = S.ImaginaryUnit
if isinstance(arg, exp) and arg.args[0].is_extended_real:
return arg.args[0]
elif isinstance(arg, exp) and arg.args[0].is_number:
r_, i_ = match_real_imag(arg.args[0])
if i_ and i_.is_comparable:
i_ %= 2*S.Pi
if i_ > S.Pi:
i_ -= 2*S.Pi
return r_ + expand_mul(i_ * I, deep=False)
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
else:
return
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
if arg.is_negative:
return S.Pi * I + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
if arg.is_zero:
return S.ComplexInfinity
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(I)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return S.Pi * I * S.Half + cls(coeff)
else:
return -S.Pi * I * S.Half + cls(-coeff)
if arg.is_number and arg.is_algebraic:
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
coeff, arg_ = arg.as_independent(I, as_Add=False)
if coeff.is_negative:
coeff *= -1
arg_ *= -1
arg_ = expand_mul(arg_, deep=False)
r_, i_ = arg_.as_independent(I, as_Add=True)
i_ = i_.as_coefficient(I)
if coeff.is_real and i_ and i_.is_real and r_.is_real:
if r_.is_zero:
if i_.is_positive:
return S.Pi * I * S.Half + cls(coeff * i_)
elif i_.is_negative:
return -S.Pi * I * S.Half + cls(coeff * -i_)
else:
from sympy.simplify import ratsimp
# Check for arguments involving rational multiples of pi
t = (i_/r_).cancel()
t1 = (-t).cancel()
atan_table = {
# first quadrant only
sqrt(3): S.Pi/3,
1: S.Pi/4,
sqrt(5 - 2*sqrt(5)): S.Pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/(1 + sqrt(5)): S.Pi/5,
sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5),
sqrt(2)*sqrt(sqrt(5) + 5)/(-1 + sqrt(5)): S.Pi*Rational(2, 5),
sqrt(3)/3: S.Pi/6,
sqrt(2) - 1: S.Pi/8,
sqrt(2 - sqrt(2))/sqrt(sqrt(2) + 2): S.Pi/8,
sqrt(2) + 1: S.Pi*Rational(3, 8),
sqrt(sqrt(2) + 2)/sqrt(2 - sqrt(2)): S.Pi*Rational(3, 8),
sqrt(1 - 2*sqrt(5)/5): S.Pi/10,
(-sqrt(2) + sqrt(10))/(2*sqrt(sqrt(5) + 5)): S.Pi/10,
sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10),
(sqrt(2) + sqrt(10))/(2*sqrt(5 - sqrt(5))): S.Pi*Rational(3, 10),
2 - sqrt(3): S.Pi/12,
(-1 + sqrt(3))/(1 + sqrt(3)): S.Pi/12,
2 + sqrt(3): S.Pi*Rational(5, 12),
(1 + sqrt(3))/(-1 + sqrt(3)): S.Pi*Rational(5, 12)
}
if t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * atan_table[t]
else:
return cls(modulus) + I * (atan_table[t] - S.Pi)
elif t1 in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * (-atan_table[t1])
else:
return cls(modulus) + I * (S.Pi - atan_table[t1])
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy import unpolarify, expand_log, factorint
from sympy.concrete import Sum, Product
force = hints.get('force', False)
factor = hints.get('factor', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(arg)
logarg = None
coeff = 1
if p is not False:
arg, coeff = p
logarg = self.func(arg)
# expand as product of its prime factors if factor=True
if factor:
p = factorint(arg)
if arg not in p.keys():
logarg = sum(n*log(val) for val, n in p.items())
if logarg is not None:
return coeff*logarg
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if force or arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if len(self.args) == 2: # it's unevaluated
return simplify(self.func(*self.args), **kwargs)
expr = self.func(simplify(self.args[0], **kwargs))
if kwargs['inverse']:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=kwargs['measure'])
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import log
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
from sympy import Abs, arg
sarg = self.args[0]
if deep:
sarg = self.args[0].expand(deep, **hints)
abs = Abs(sarg)
if abs == sarg:
return self, S.Zero
arg = arg(sarg)
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(abs).expand(deep, **hints), arg)
else:
return log(abs), arg
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_extended_real(self):
return self.args[0].is_extended_positive
def _eval_is_complex(self):
z = self.args[0]
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_extended_positive(self):
return (self.args[0] - 1).is_extended_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_extended_nonnegative(self):
return (self.args[0] - 1).is_extended_nonnegative
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import im, cancel, I, Order, logcombine
from itertools import product
if not logx:
logx = log(x)
if self.args[0] == x:
return logx
arg = self.args[0]
k, l = Wild("k"), Wild("l")
r = arg.match(k*x**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(x) and not k.has(x):
r = log(k) + l*logx # XXX true regardless of assumptions?
return r
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
# TODO new and probably slow
try:
a, b = arg.leadterm(x)
s = arg.nseries(x, n=n+b, logx=logx)
except (ValueError, NotImplementedError):
s = arg.nseries(x, n=n, logx=logx)
while s.is_Order:
n += 1
s = arg.nseries(x, n=n, logx=logx)
a, b = s.removeO().leadterm(x)
p = cancel(s/(a*x**b) - 1).expand().powsimp()
if p.has(exp):
p = logcombine(p)
if isinstance(p, Order):
n = p.getn()
_, d = coeff_exp(p, x)
if not d.is_positive:
return log(a) + b*logx + Order(x**n, x)
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < n:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
pterms = {}
for term in Add.make_args(p):
co1, e1 = coeff_exp(term, x)
pterms[e1] = pterms.get(e1, S.Zero) + co1.removeO()
k = S.One
terms = {}
pk = pterms
while k*d < n:
coeff = -(-1)**k/k
for ex in pk:
terms[ex] = terms.get(ex, S.Zero) + coeff*pk[ex]
pk = mul(pk, pterms)
k += S.One
res = log(a) + b*logx
for ex in terms:
res += terms[ex]*x**(ex)
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if a.is_real and a.is_negative and im(cdir) < 0:
res -= 2*I*S.Pi
return res + Order(x**n, x)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im
arg = self.args[0].together()
x0 = arg.subs(x, 0)
if x0 == 1:
return (arg - S.One).as_leading_term(x)
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if x0.is_real and x0.is_negative and im(cdir) < 0:
return self.func(x0) -2*I*S.Pi
return self.func(arg.as_leading_term(x))
class LambertW(Function):
r"""
The Lambert W function `W(z)` is defined as the inverse
function of `w \exp(w)` [1]_.
Explanation
===========
In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))`
for any complex number `z`. The Lambert W function is a multivalued
function with infinitely many branches `W_k(z)`, indexed by
`k \in \mathbb{Z}`. Each branch gives a different solution `w`
of the equation `z = w \exp(w)`.
The Lambert W function has two partially real branches: the
principal branch (`k = 0`) is real for real `z > -1/e`, and the
`k = -1` branch is real for `-1/e < z < 0`. All branches except
`k = 0` have a logarithmic singularity at `z = 0`.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
@classmethod
def eval(cls, x, k=None):
if k == S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k.is_zero:
if x.is_zero:
return S.Zero
if x is S.Exp1:
return S.One
if x == -1/S.Exp1:
return S.NegativeOne
if x == -log(2)/2:
return -log(2)
if x == 2*log(2):
return log(2)
if x == -S.Pi/2:
return S.ImaginaryUnit*S.Pi/2
if x == exp(1 + S.Exp1):
return S.Exp1
if x is S.Infinity:
return S.Infinity
if x.is_zero:
return S.Zero
if fuzzy_not(k.is_zero):
if x.is_zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -S.Pi/2:
return -S.ImaginaryUnit*S.Pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_extended_real:
return False
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_nseries(self, x, n, logx, cdir=0):
if len(self.args) == 1:
from sympy import Order, ceiling, expand_multinomial
arg = self.args[0].nseries(x, n=n, logx=logx)
lt = arg.compute_leading_term(x, logx=logx)
lte = 1
if lt.is_Pow:
lte = lt.exp
if ceiling(n/lte) >= 1:
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
s = expand_multinomial(s)
else:
s = S.Zero
return s + Order(x**n, x)
return super()._eval_nseries(x, n, logx)
def _eval_is_zero(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if x.is_zero and k.is_zero:
return True
|
b128f77700db5f74996741e92079d517f375924b0a79bd2f4d17151ee0baa681 | from sympy.core.logic import FuzzyBool
from sympy.core import S, sympify, cacheit, pi, I, Rational
from sympy.core.add import Add
from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.elementary.exponential import exp, log, match_real_imag
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.integers import floor
from sympy.core.logic import fuzzy_or, fuzzy_and
def _rewrite_hyperbolics_as_exp(expr):
expr = sympify(expr)
return expr.xreplace({h: h.rewrite(exp)
for h in expr.atoms(HyperbolicFunction)})
###############################################################################
########################### HYPERBOLIC FUNCTIONS ##############################
###############################################################################
class HyperbolicFunction(Function):
"""
Base class for hyperbolic functions.
See Also
========
sinh, cosh, tanh, coth
"""
unbranched = True
def _peeloff_ipi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of I*pi/2.
This assumes ARG to be an Add.
The multiple of I*pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
>>> from sympy import pi, I
>>> from sympy.abc import x, y
>>> peel(x + I*pi/2)
(x, I*pi/2)
>>> peel(x + I*2*pi/3 + I*pi*y)
(x + I*pi*y + I*pi/6, I*pi/2)
"""
for a in Add.make_args(arg):
if a == S.Pi*S.ImaginaryUnit:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p == S.Pi*S.ImaginaryUnit and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit
m2 = K*S.Pi*S.ImaginaryUnit - m1
return arg - m2, m2
class sinh(HyperbolicFunction):
r"""
sinh(x) is the hyperbolic sine of x.
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$.
Examples
========
>>> from sympy import sinh
>>> from sympy.abc import x
>>> sinh(x)
sinh(x)
See Also
========
cosh, tanh, asinh
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return cosh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return asinh
@classmethod
def eval(cls, arg):
from sympy import sin
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * sin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
return arg.args[0]
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1)
if arg.func == atanh:
x = arg.args[0]
return x/sqrt(1 - x**2)
if arg.func == acoth:
x = arg.args[0]
return 1/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion.
"""
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n) / factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
"""
from sympy import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (sinh(re)*cos(im), cosh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
return sinh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)
return 2*tanh_half/(1 - tanh_half**2)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)
return 2*coth_half/(coth_half**2 - 1)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
# if `im` is of the form n*pi
# else, check if it is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
class cosh(HyperbolicFunction):
r"""
cosh(x) is the hyperbolic cosine of x.
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$.
Examples
========
>>> from sympy import cosh
>>> from sympy.abc import x
>>> cosh(x)
cosh(x)
See Also
========
sinh, tanh, acosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return sinh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import cos
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return S.One
elif arg.is_negative:
return cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cos(i_coeff)
else:
if _coeff_isneg(arg):
return cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
if arg.is_zero:
return S.One
if arg.func == asinh:
return sqrt(1 + arg.args[0]**2)
if arg.func == acosh:
return arg.args[0]
if arg.func == atanh:
return 1/sqrt(1 - arg.args[0]**2)
if arg.func == acoth:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n)/factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (cosh(re)*cos(im), sinh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
return cosh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)**2
return (1 + tanh_half)/(1 - tanh_half)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)**2
return (coth_half + 1)/(coth_half - 1)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.One
else:
return self.func(arg)
def _eval_is_real(self):
arg = self.args[0]
# `cosh(x)` is real for real OR purely imaginary `x`
if arg.is_real or arg.is_imaginary:
return True
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a)
# the imaginary part can be an expression like n*pi
# if not, check if the imaginary part is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_positive(self):
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x)
# cosh(z) is positive iff it is real and the real part is positive.
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod < pi/2, ymod > 3*pi/2])
])
])
def _eval_is_nonnegative(self):
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2])
])
])
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
class tanh(HyperbolicFunction):
r"""
tanh(x) is the hyperbolic tangent of x.
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$.
Examples
========
>>> from sympy import tanh
>>> from sympy.abc import x
>>> tanh(x)
tanh(x)
See Also
========
sinh, cosh, atanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return S.One - tanh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atanh
@classmethod
def eval(cls, arg):
from sympy import tan
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return -S.ImaginaryUnit * tan(-i_coeff)
return S.ImaginaryUnit * tan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
tanhm = tanh(m)
if tanhm is S.ComplexInfinity:
return coth(x)
else: # tanhm == 0
return tanh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
x = arg.args[0]
return x/sqrt(1 + x**2)
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1) / x
if arg.func == atanh:
return arg.args[0]
if arg.func == acoth:
return 1/arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a = 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return a*(a - 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + cos(im)**2
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return 1/coth(arg)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
re, im = arg.as_real_imag()
# if denom = 0, tanh(arg) = zoo
if re == 0 and im % pi == pi/2:
return None
# check if im is of the form n*pi/2 to make sin(2*im) = 0
# if not, im could be a number, return False in that case
return (im % (pi/2)).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
from sympy import sinh, cos
arg = self.args[0]
re, im = arg.as_real_imag()
denom = cos(im)**2 + sinh(re)**2
if denom == 0:
return False
elif denom.is_number:
return True
if arg.is_extended_real:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
class coth(HyperbolicFunction):
r"""
coth(x) is the hyperbolic cotangent of x.
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$.
Examples
========
>>> from sympy import coth
>>> from sympy.abc import x
>>> coth(x)
coth(x)
See Also
========
sinh, cosh, acoth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sinh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acoth
@classmethod
def eval(cls, arg):
from sympy import cot
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.ComplexInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return S.ImaginaryUnit * cot(-i_coeff)
return -S.ImaginaryUnit * cot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
cothm = coth(m)
if cothm is S.ComplexInfinity:
return coth(x)
else: # cothm == 0
return tanh(x)
if arg.is_zero:
return S.ComplexInfinity
if arg.func == asinh:
x = arg.args[0]
return sqrt(1 + x**2)/x
if arg.func == acosh:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
if arg.func == atanh:
return 1/arg.args[0]
if arg.func == acoth:
return arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2**(n + 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + sin(im)**2
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return 1/tanh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
class ReciprocalHyperbolicFunction(HyperbolicFunction):
"""Base class for reciprocal functions of hyperbolic functions. """
#To be defined in class
_reciprocal_of = None
_is_even = None # type: FuzzyBool
_is_odd = None # type: FuzzyBool
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
t = cls._reciprocal_of.eval(arg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
return 1/t if t is not None else t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
def as_real_imag(self, deep = True, **hints):
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=True, **hints)
return re_part + S.ImaginaryUnit*im_part
def _eval_as_leading_term(self, x, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0]).is_extended_real
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
class csch(ReciprocalHyperbolicFunction):
r"""
csch(x) is the hyperbolic cosecant of x.
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$
Examples
========
>>> from sympy import csch
>>> from sympy.abc import x
>>> csch(x)
csch(x)
See Also
========
sinh, cosh, tanh, sech, asinh, acosh
"""
_reciprocal_of = sinh
_is_odd = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function
"""
if argindex == 1:
return -coth(self.args[0]) * csch(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion
"""
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2 * (1 - 2**n) * B/F * x**n
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _sage_(self):
import sage.all as sage
return sage.csch(self.args[0]._sage_())
class sech(ReciprocalHyperbolicFunction):
r"""
sech(x) is the hyperbolic secant of x.
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$
Examples
========
>>> from sympy import sech
>>> from sympy.abc import x
>>> sech(x)
sech(x)
See Also
========
sinh, cosh, tanh, coth, csch, asinh, acosh
"""
_reciprocal_of = cosh
_is_even = True
def fdiff(self, argindex=1):
if argindex == 1:
return - tanh(self.args[0])*sech(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
return euler(n) / factorial(n) * x**(n)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return True
def _sage_(self):
import sage.all as sage
return sage.sech(self.args[0]._sage_())
###############################################################################
############################# HYPERBOLIC INVERSES #############################
###############################################################################
class InverseHyperbolicFunction(Function):
"""Base class for inverse hyperbolic functions."""
pass
class asinh(InverseHyperbolicFunction):
"""
asinh(x) is the inverse hyperbolic sine of x.
The inverse hyperbolic sine function.
Examples
========
>>> from sympy import asinh
>>> from sympy.abc import x
>>> asinh(x).diff(x)
1/sqrt(x**2 + 1)
>>> asinh(1)
log(1 + sqrt(2))
See Also
========
acosh, atanh, sinh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import asin
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return log(sqrt(2) + 1)
elif arg is S.NegativeOne:
return log(sqrt(2) - 1)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_zero:
return S.Zero
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * asin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if isinstance(arg, sinh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor((i + pi/2)/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
return m
elif even is False:
return -m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return -p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return (-1)**k * R / F * x**n / n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x**2 + 1))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sinh
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
class acosh(InverseHyperbolicFunction):
"""
acosh(x) is the inverse hyperbolic cosine of x.
The inverse hyperbolic cosine function.
Examples
========
>>> from sympy import acosh
>>> from sympy.abc import x
>>> acosh(x).diff(x)
1/sqrt(x**2 - 1)
>>> acosh(1)
0
See Also
========
asinh, atanh, cosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 - 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi*S.ImaginaryUnit
if arg.is_number:
cst_table = {
S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))),
-S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))),
S.Half: S.Pi/3,
Rational(-1, 2): S.Pi*Rational(2, 3),
sqrt(2)/2: S.Pi/4,
-sqrt(2)/2: S.Pi*Rational(3, 4),
1/sqrt(2): S.Pi/4,
-1/sqrt(2): S.Pi*Rational(3, 4),
sqrt(3)/2: S.Pi/6,
-sqrt(3)/2: S.Pi*Rational(5, 6),
(sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(5, 12),
-(sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(7, 12),
sqrt(2 + sqrt(2))/2: S.Pi/8,
-sqrt(2 + sqrt(2))/2: S.Pi*Rational(7, 8),
sqrt(2 - sqrt(2))/2: S.Pi*Rational(3, 8),
-sqrt(2 - sqrt(2))/2: S.Pi*Rational(5, 8),
(1 + sqrt(3))/(2*sqrt(2)): S.Pi/12,
-(1 + sqrt(3))/(2*sqrt(2)): S.Pi*Rational(11, 12),
(sqrt(5) + 1)/4: S.Pi/5,
-(sqrt(5) + 1)/4: S.Pi*Rational(4, 5)
}
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*S.ImaginaryUnit
return cst_table[arg]
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg == S.ImaginaryUnit*S.Infinity:
return S.Infinity + S.ImaginaryUnit*S.Pi/2
if arg == -S.ImaginaryUnit*S.Infinity:
return S.Infinity - S.ImaginaryUnit*S.Pi/2
if arg.is_zero:
return S.Pi*S.ImaginaryUnit*S.Half
if isinstance(arg, cosh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
from sympy.functions.elementary.complexes import Abs
return Abs(z)
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(i/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
if r.is_nonnegative:
return m
elif r.is_negative:
return -m
elif even is False:
m -= I*pi
if r.is_nonpositive:
return -m
elif r.is_positive:
return m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi*S.ImaginaryUnit / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * S.ImaginaryUnit * x**n / n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.ImaginaryUnit*S.Pi/2
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x + 1) * sqrt(x - 1))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cosh
class atanh(InverseHyperbolicFunction):
"""
atanh(x) is the inverse hyperbolic tangent of x.
The inverse hyperbolic tangent function.
Examples
========
>>> from sympy import atanh
>>> from sympy.abc import x
>>> atanh(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, tanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import atan
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg is S.Infinity:
return -S.ImaginaryUnit * atan(arg)
elif arg is S.NegativeInfinity:
return S.ImaginaryUnit * atan(-arg)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * atan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_zero:
return S.Zero
if isinstance(arg, tanh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(2*i/pi)
even = f.is_even
m = z - I*f*pi/2
if even is True:
return m
elif even is False:
return m - I*pi/2
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + x) - log(1 - x)) / 2
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tanh
class acoth(InverseHyperbolicFunction):
"""
acoth(x) is the inverse hyperbolic cotangent of x.
The inverse hyperbolic cotangent function.
Examples
========
>>> from sympy import acoth
>>> from sympy.abc import x
>>> acoth(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, coth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import acot
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.Zero
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * acot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_zero:
return S.Pi*S.ImaginaryUnit*S.Half
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi*S.ImaginaryUnit / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.ImaginaryUnit*S.Pi/2
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + 1/x) - log(1 - 1/x)) / 2
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return coth
class asech(InverseHyperbolicFunction):
"""
asech(x) is the inverse hyperbolic secant of x.
The inverse hyperbolic secant function.
Examples
========
>>> from sympy import asech, sqrt, S
>>> from sympy.abc import x
>>> asech(x).diff(x)
-1/(x*sqrt(1 - x**2))
>>> asech(1).diff(x)
0
>>> asech(1)
0
>>> asech(S(2))
I*pi/3
>>> asech(-sqrt(2))
3*I*pi/4
>>> asech((sqrt(6) - sqrt(2)))
I*pi/12
See Also
========
asinh, atanh, cosh, acoth
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z*sqrt(1 - z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.NegativeInfinity:
return S.Pi*S.ImaginaryUnit / 2
elif arg.is_zero:
return S.Infinity
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi*S.ImaginaryUnit
if arg.is_number:
cst_table = {
S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)),
-S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)),
(sqrt(6) - sqrt(2)): S.Pi / 12,
(sqrt(2) - sqrt(6)): 11*S.Pi / 12,
sqrt(2 - 2/sqrt(5)): S.Pi / 10,
-sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10,
2 / sqrt(2 + sqrt(2)): S.Pi / 8,
-2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8,
2 / sqrt(3): S.Pi / 6,
-2 / sqrt(3): 5*S.Pi / 6,
(sqrt(5) - 1): S.Pi / 5,
(1 - sqrt(5)): 4*S.Pi / 5,
sqrt(2): S.Pi / 4,
-sqrt(2): 3*S.Pi / 4,
sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10,
-sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10,
S(2): S.Pi / 3,
-S(2): 2*S.Pi / 3,
sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8,
-sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8,
(1 + sqrt(5)): 2*S.Pi / 5,
(-1 - sqrt(5)): 3*S.Pi / 5,
(sqrt(6) + sqrt(2)): 5*S.Pi / 12,
(-sqrt(6) - sqrt(2)): 7*S.Pi / 12,
}
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*S.ImaginaryUnit
return cst_table[arg]
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2)
if arg.is_zero:
return S.Infinity
@staticmethod
@cacheit
def expansion_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4
else:
k = n // 2
R = RisingFactorial(S.Half , k) * n
F = factorial(k) * n // 2 * n // 2
return -1 * R / F * x**n / 4
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sech
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
class acsch(InverseHyperbolicFunction):
"""
acsch(x) is the inverse hyperbolic cosecant of x.
The inverse hyperbolic cosecant function.
Examples
========
>>> from sympy import acsch, sqrt, S
>>> from sympy.abc import x
>>> acsch(x).diff(x)
-1/(x**2*sqrt(1 + x**(-2)))
>>> acsch(1).diff(x)
0
>>> acsch(1)
log(1 + sqrt(2))
>>> acsch(S.ImaginaryUnit)
-I*pi/2
>>> acsch(-2*S.ImaginaryUnit)
I*pi/6
>>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2)))
-5*I*pi/12
See Also
========
asinh
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z**2*sqrt(1 + 1/z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return log(1 + sqrt(2))
elif arg is S.NegativeOne:
return - log(1 + sqrt(2))
if arg.is_number:
cst_table = {
S.ImaginaryUnit: -S.Pi / 2,
S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12,
S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10,
S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8,
S.ImaginaryUnit*2: -S.Pi / 6,
S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5,
S.ImaginaryUnit*sqrt(2): -S.Pi / 4,
S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10,
S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3,
S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8,
S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5,
S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12,
S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2),
}
if arg in cst_table:
return cst_table[arg]*S.ImaginaryUnit
if arg is S.ComplexInfinity:
return S.Zero
if arg.is_zero:
return S.ComplexInfinity
if _coeff_isneg(arg):
return -cls(-arg)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csch
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg**2 + 1))
|
c74e5f5c1c1838777fc5090c2192bdcdefabd35e880a7d46563f88e7cbd60091 | from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef)
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import pi, I, oo
from sympy.core.relational import Eq
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, atan2
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use Basic.as_real_imag() or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E, symbols
>>> x, y = symbols('x y', real=True)
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
>>> re(5 + I + 2)
7
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Real part of expression.
See Also
========
im
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return arg
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
elif not term.has(S.ImaginaryUnit) and term.is_extended_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - S.ImaginaryUnit*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
def _sage_(self):
import sage.all as sage
return sage.real_part(self.args[0]._sage_())
class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use Basic.as_real_imag() or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> im(2*I + 17)
2
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
>>> im(2 + 3*I)
3
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Imaginary part of expression.
See Also
========
re
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return S.Zero
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return -S.ImaginaryUnit * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(S.ImaginaryUnit) or not term.is_extended_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* re(Derivative(self.args[0], x, evaluate=True))
def _sage_(self):
import sage.all as sage
return sage.imag_part(self.args[0]._sage_())
def _eval_rewrite_as_re(self, arg, **kwargs):
return -S.ImaginaryUnit*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_extended_real
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
class sign(Function):
"""
Returns the complex sign of an expression:
Explanation
===========
If the expression is real the sign will be:
* 1 if expression is positive
* 0 if expression is equal to zero
* -1 if expression is negative
If the expression is imaginary the sign will be:
* I if im(expression) is positive
* -I if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy.functions import sign
>>> from sympy.core.numbers import I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
Parameters
==========
arg : Expr
Real or imaginary expression.
Returns
=======
expr : Expr
Complex sign of expression.
See Also
========
Abs, conjugate
"""
is_complex = True
_singularities = True
def doit(self, **hints):
if self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return self
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_extended_negative:
s = -s
elif a.is_extended_positive:
pass
else:
ai = im(a)
if a.is_imaginary and ai.is_comparable: # i.e. a = I*real
s *= S.ImaginaryUnit
if ai.is_extended_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_extended_positive:
return S.One
if arg.is_extended_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return S.ImaginaryUnit
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_positive:
return S.ImaginaryUnit
if arg2.is_extended_negative:
return -S.ImaginaryUnit
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_extended_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-S.ImaginaryUnit * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _sage_(self):
import sage.all as sage
return sage.sgn(self.args[0]._sage_())
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return Heaviside(arg, H0=S(1)/2) * 2 - 1
def _eval_rewrite_as_Abs(self, arg, **kwargs):
return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True))
def _eval_simplify(self, **kwargs):
return self.func(factor_terms(self.args[0])) # XXX include doit?
class Abs(Function):
"""
Return the absolute value of the argument.
Explanation
===========
This is an extension of the built-in function abs() to accept symbolic
values. If you pass a SymPy expression to the built-in abs(), it will
pass it automatically to Abs().
Examples
========
>>> from sympy import Abs, Symbol, S, I
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
>>> Abs(3*x + 2*I)
sqrt(9*x**2 + 4)
>>> Abs(8*I)
8
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a sympy object.
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Absolute value returned can be an expression or integer depending on
input arg.
See Also
========
sign, conjugate
"""
is_extended_real = True
is_extended_negative = False
is_extended_nonnegative = True
unbranched = True
_singularities = True # non-holomorphic
def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
from sympy.core.function import expand_mul
from sympy.core.power import Pow
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
n, d = arg.as_numer_denom()
if d.free_symbols and not n.free_symbols:
return cls(n)/cls(d)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
if t.is_Pow and t.exp.is_integer and t.exp.is_negative:
bnew = cls(t.base)
if isinstance(bnew, cls):
unk.append(t)
else:
known.append(Pow(bnew, t.exp))
else:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(t)
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.Infinity
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_extended_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
return Abs(base)**exponent
if base.is_extended_nonnegative:
return base**re(exponent)
if base.is_extended_negative:
return (-base)**re(exponent)*exp(-S.Pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
return
if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return S.Infinity
if arg.is_zero:
return S.Zero
if arg.is_extended_nonnegative:
return arg
if arg.is_extended_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_nonnegative:
return arg2
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_real(self):
if self.args[0].is_finite:
return True
def _eval_is_integer(self):
if self.args[0].is_extended_real:
return self.args[0].is_integer
def _eval_is_extended_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_extended_positive(self):
is_z = self.is_zero
if is_z is not None:
return not is_z
def _eval_is_rational(self):
if self.args[0].is_extended_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_extended_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_extended_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_extended_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx, cdir=0):
direction = self.args[0].leadterm(x)[0]
if direction.has(log(x)):
direction = direction.subs(log(x), logx)
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
when = Eq(direction, 0)
return Piecewise(
((s.subs(direction, 0)), when),
(sign(direction)*s, True),
)
def _sage_(self):
import sage.all as sage
return sage.abs_symbolic(self.args[0]._sage_())
def _eval_derivative(self, x):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
return rv.rewrite(sign)
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((arg, arg >= 0), (-arg, True))
elif arg.is_imaginary:
return Piecewise((I*arg, I*arg >= 0), (-I*arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
def _eval_rewrite_as_conjugate(self, arg, **kwargs):
return (arg*conjugate(arg))**S.Half
class arg(Function):
"""
Returns the argument (in radians) of a complex number. For a positive
number, the argument is always 0.
Examples
========
>>> from sympy.functions import arg
>>> from sympy import I, sqrt
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
>>> arg(sqrt(3)/2 + I/2)
pi/6
>>> arg(4 + 3*I)
atan(3/4)
>>> arg(0.8 + 0.6*I)
0.643501108793284
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
value : Expr
Returns arc tangent of arg measured in radians.
"""
is_extended_real = True
is_real = True
is_finite = True
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if arg_.atoms(AppliedUndef):
return
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
x, y = self.args[0].as_real_imag()
return atan2(y, x)
class conjugate(Function):
"""
Returns the `complex conjugate` Ref[1] of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where a and b are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
>>> conjugate(3 + 2*I)
3 - 2*I
>>> conjugate(5 - I)
5 + I
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
arg : Expr
Complex conjugate of arg as real, imaginary or mixed expression.
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
Examples
========
>>> from sympy.functions import transpose
>>> from sympy.matrices import MatrixSymbol
>>> from sympy import Matrix
>>> A = MatrixSymbol('A', 25, 9)
>>> transpose(A)
A.T
>>> B = MatrixSymbol('B', 9, 22)
>>> transpose(B)
B.T
>>> transpose(A*B)
B.T*A.T
>>> M = Matrix([[4, 5], [2, 1], [90, 12]])
>>> M
Matrix([
[ 4, 5],
[ 2, 1],
[90, 12]])
>>> transpose(M)
Matrix([
[4, 2, 90],
[5, 1, 12]])
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the transpose of.
Returns
=======
value : Matrix
Transpose of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
Examples
========
>>> from sympy import adjoint
>>> from sympy.matrices import MatrixSymbol
>>> A = MatrixSymbol('A', 10, 5)
>>> adjoint(A)
Adjoint(A)
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the adjoint of.
Returns
=======
value : Matrix
Represents the conjugate transpose or Hermite
conjugation of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm('\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
Examples
========
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
Parameters
==========
arg : Expr
Real or complex expression.
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
class periodic_argument(Function):
"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period $P$, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.
Examples
========
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
0
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
pi
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
Parameters
==========
ar : Expr
A polar number.
period : ExprT
The period $P$.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_extended_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S.Half)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec)
def unbranched_argument(arg):
'''
Returns periodic argument of arg with period as infinity.
Examples
========
>>> from sympy import exp_polar, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp_polar(15*I*pi))
15*pi
>>> unbranched_argument(exp_polar(7*I*pi))
7*pi
See also
========
periodic_argument
'''
return periodic_argument(arg, oo)
class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
Explanation
===========
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number or infinity, `p`.
The result is "z mod exp_polar(I*p)".
Examples
========
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
Parameters
==========
x : Expr
A polar number.
period : Expr
Positive real number or infinity.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
from sympy import exp, pi, I
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like 1 + x will generally not be altered.
Note also that this function does not promote exp(x) to exp_polar(x).
If ``subs`` is True, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like posify.
If ``lift`` is True, both addition statements and non-polar symbols are
changed to their polar_lift()ed versions.
Note that lift=True implies subs=False.
Examples
========
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs={}, exponents_only=False):
"""
If p denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version eq' of `eq` such that
p(eq') == p(eq).
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes polarify.)
Examples
========
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs != {}:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
2328810fbd6f1015e137211e8ab470e9d764d7212050bcda8f1177b08420e1cb | from sympy.core import Add, S, sympify, oo, pi, Dummy, expand_func
from sympy.core.compatibility import as_int
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_and, fuzzy_not
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.error_functions import erf, erfc, Ei
from sympy.functions.elementary.complexes import re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
def intlike(n):
try:
as_int(n, strict=False)
return True
except ValueError:
return False
###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################
class gamma(Function):
r"""
The gamma function
.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
Explanation
===========
The ``gamma`` function implements the function which passes through the
values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is
an integer). More generally, $\Gamma(z)$ is defined in the whole complex
plane except at the negative integers where there are simple poles.
Examples
========
>>> from sympy import S, I, pi, gamma
>>> from sympy.abc import x
Several special values are known:
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2
The ``gamma`` function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the ``gamma`` function to arbitrary precision
on the whole complex plane:
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
See Also
========
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/GammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/
"""
unbranched = True
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
if argindex == 1:
return self.func(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif intlike(arg):
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q
if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1
if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne
for i in range(3, 2*k, 2):
coeff *= i
if arg.is_positive:
return coeff*sqrt(S.Pi) / 2**n
else:
return 2**n*sqrt(S.Pi) / coeff
def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
if arg.is_Add:
coeff, tail = arg.as_coeff_add()
if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return self.func(tail)*RisingFactorial(tail, coeff)
return self.func(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
x = self.args[0]
if x.is_nonpositive and x.is_integer:
return False
if intlike(x) and x <= 0:
return False
if x.is_positive or x.is_noninteger:
return True
def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return exp(loggamma(z))
def _eval_rewrite_as_factorial(self, z, **kwargs):
return factorial(z - 1)
def _eval_nseries(self, x, n, logx, cdir=0):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super()._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
def _sage_(self):
import sage.all as sage
return sage.gamma(self.args[0]._sage_())
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0)
if x0.is_integer and x0.is_nonpositive:
n = -x0
res = (-1)**n/self.func(n + 1)
return res/(arg + n).as_leading_term(x)
elif x0.is_finite:
return self.func(x0)
####################################################
# The correct result here should be 'None'. #
# Indeed arg in not bounded as x tends to 0. #
# Consequently the series expansion does not admit #
# the leading term. #
# For compatibility reasons, the return value here #
# is the original function, i.e. gamma(arg), #
# instead of None. #
####################################################
return self.func(arg)
###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################
class lowergamma(Function):
r"""
The lower incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
This can be shown to be the same as
.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
Examples
========
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
# function of x.
# 3) For fixed non-positive integers s,
# lowergamma(s, exp(I*2*pi*n)*x) =
# 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
# (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
# lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
# where lowergamma_unbranched(s, x) is an entire function (in fact
# of both s and x), i.e.
# lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
from sympy import unpolarify, I
if x is S.Zero:
return S.Zero
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
else:
return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)]))
if not a.is_Integer:
return (-1)**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)])
if x.is_zero:
return S.Zero
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)
else:
return self
def _eval_conjugate(self):
x = self.args[1]
if x not in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), x.conjugate())
def _eval_is_meromorphic(self, x, a):
# By https://en.wikipedia.org/wiki/Incomplete_gamma_function#Holomorphic_extension,
# lowergamma(s, z) = z**s*gamma(s)*gammastar(s, z),
# where gammastar(s, z) is holomorphic for all s and z.
# Hence the singularities of lowergamma are z = 0 (branch
# point) and nonpositive integer values of s (poles of gamma(s)).
s, z = self.args
args_merom = fuzzy_and([z._eval_is_meromorphic(x, a),
s._eval_is_meromorphic(x, a)])
if not args_merom:
return args_merom
z0 = z.subs(x, a)
if s.is_integer:
return fuzzy_and([s.is_positive, z0.is_finite])
s0 = s.subs(x, a)
return fuzzy_and([s0.is_finite, z0.is_finite, fuzzy_not(z0.is_zero)])
def _eval_aseries(self, n, args0, x, logx):
from sympy import O
s, z = self.args
if args0[0] is S.Infinity and not z.has(x):
coeff = z**s*exp(-z)
sum_expr = sum(z**k/rf(s, k + 1) for k in range(n - 1))
o = O(z**s*s**(-n))
return coeff*sum_expr + o
return super()._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
return gamma(s) - uppergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)
def _eval_is_zero(self):
x = self.args[1]
if x.is_zero:
return True
class uppergamma(Function):
r"""
The upper incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
where $\gamma(s, x)$ is the lower incomplete gamma function,
:class:`lowergamma`. This can be shown to be the same as
.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:
.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
Examples
========
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)
return self
@classmethod
def eval(cls, a, z):
from sympy import unpolarify, I, expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
return S.Zero
elif z.is_zero:
if re(a).is_positive:
return gamma(a)
# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.Zero and z.is_positive:
return -Ei(-z)
elif a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)])
else:
return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)])
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)
if not a.is_Integer:
return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)])
if a.is_zero and z.is_positive:
return -Ei(-z)
if z.is_zero and re(a).is_positive:
return gamma(a)
def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_is_meromorphic(self, x, a):
return lowergamma._eval_is_meromorphic(self, x, a)
def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
return gamma(s) - lowergamma(s, x)
def _eval_rewrite_as_tractable(self, s, x, **kwargs):
return exp(loggamma(s)) - lowergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
return expint(1 - s, x)*x**s
def _sage_(self):
import sage.all as sage
return sage.gamma(self.args[0]._sage_(), self.args[1]._sage_())
###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################
class polygamma(Function):
r"""
The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
Explanation
===========
It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th
derivative of the logarithm of the gamma function:
.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
Examples
========
Several special values are known:
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
1 - EulerGamma
>>> polygamma(0, 23)
19093197/5173168 - EulerGamma
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo
Differentiation with respect to $x$ is supported:
>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)
>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)
We can rewrite ``polygamma`` functions in terms of harmonic numbers:
>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Polygamma_function
.. [2] http://mathworld.wolfram.com/PolygammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
n = self.args[0]
# the mpmath polygamma implementation valid only for nonnegative integers
if n.is_number and n.is_real:
if (n.is_integer or n == int(n)) and n.is_nonnegative:
return super()._eval_evalf(prec)
def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_real(self):
if self.args[0].is_positive and self.args[1].is_positive:
return True
def _eval_is_complex(self):
z = self.args[1]
is_negative_integer = fuzzy_and([z.is_negative, z.is_integer])
return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)])
def _eval_is_positive(self):
if self.args[0].is_positive and self.args[1].is_positive:
return self.args[0].is_odd
def _eval_is_negative(self):
if self.args[0].is_positive and self.args[1].is_positive:
return self.args[0].is_even
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super()._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]
if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
r -= Add(*l)
o = Order(1/z**n, x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
# quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
@classmethod
def eval(cls, n, z):
n, z = map(sympify, (n, z))
from sympy import unpolarify
if n.is_integer:
if n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)
if n.is_positive:
if z is S.Half:
return (-1)**(n + 1)*factorial(n)*(2**(n + 1) - 1)*zeta(n + 1)
if n is S.NegativeOne:
return loggamma(z)
else:
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
if n.is_Number:
if n.is_zero:
return S.Infinity
else:
return S.Zero
if n.is_zero:
return S.Infinity
elif z.is_Integer:
if z.is_nonpositive:
return S.ComplexInfinity
else:
if n.is_zero:
return -S.EulerGamma + harmonic(z - 1, 1)
elif n.is_odd:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
if n.is_zero:
if z is S.NaN:
return S.NaN
elif z.is_Rational:
p, q = z.as_numer_denom()
# only expand for small denominators to avoid creating long expressions
if q <= 5:
return expand_func(polygamma(S.Zero, z, evaluate=False))
elif z in (S.Infinity, S.NegativeInfinity):
return S.Infinity
else:
t = z.extract_multiplicatively(S.ImaginaryUnit)
if t in (S.Infinity, S.NegativeInfinity):
return S.Infinity
# TODO n == 1 also can do some rational z
def _eval_expand_func(self, **hints):
n, z = self.args
if n.is_Integer and n.is_nonnegative:
if z.is_Add:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
tail = Add(*[Pow(
z - i, e) for i in range(1, int(coeff) + 1)])
else:
tail = -Add(*[Pow(
z + i, e) for i in range(0, int(-coeff))])
return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail
elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [ polygamma(n, z + Rational(
i, coeff)) for i in range(0, int(coeff)) ]
if n == 0:
return Add(*tail)/coeff + log(coeff)
else:
return Add(*tail)/coeff**(n + 1)
z *= coeff
if n == 0 and z.is_Rational:
p, q = z.as_numer_denom()
# Reference:
# Values of the polygamma functions at rational arguments, J. Choi, 2007
part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
*[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
if z > 0:
n = floor(z)
z0 = z - n
return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
return polygamma(n, z)
def _eval_rewrite_as_zeta(self, n, z, **kwargs):
if n.is_integer:
if (n - S.One).is_nonnegative:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
if n.is_integer:
if n.is_zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
return o.getn() * log(x)
else:
return self.func(n, z)
class loggamma(Function):
r"""
The ``loggamma`` function implements the logarithm of the
gamma function (i.e., $\log\Gamma(x)$).
Examples
========
Several special values are known. For numerical integral
arguments we have:
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
And for symbolic values:
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
For half-integral values:
>>> from sympy import S
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
And general rational arguments:
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The ``loggamma`` function has the following limits towards infinity:
>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo
The ``loggamma`` function obeys the mirror symmetry
if $x \in \mathbb{C} \setminus \{-\infty, 0\}$:
>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(loggamma(x), x, 0, 4).cancel()
-log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4)
We can numerically evaluate the ``gamma`` function to arbitrary precision
on the whole complex plane:
>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/LogGammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
z = sympify(z)
if z.is_integer:
if z.is_nonpositive:
return S.Infinity
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
if z is S.Infinity:
return S.Infinity
elif abs(z) is S.Infinity:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN
def _eval_expand_func(self, **hints):
from sympy import Sum
z = self.args[0]
if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)
return self
def _eval_nseries(self, x, n, logx=None, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[0] != oo:
return super()._eval_aseries(n, args0, x, logx)
z = self.args[0]
r = log(z)*(z - S.Half) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, n)]
o = None
if n == 0:
o = Order(1, x)
else:
o = Order(1/z**n, x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o
def _eval_rewrite_as_intractable(self, z, **kwargs):
return log(gamma(z))
def _eval_is_real(self):
z = self.args[0]
if z.is_positive:
return True
elif z.is_nonpositive:
return False
def _eval_conjugate(self):
z = self.args[0]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())
def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _sage_(self):
import sage.all as sage
return sage.log_gamma(self.args[0]._sage_())
class digamma(Function):
r"""
The ``digamma`` function is the first derivative of the ``loggamma``
function
.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }.
In this case, ``digamma(z) = polygamma(0, z)``.
Examples
========
>>> from sympy import digamma
>>> digamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> digamma(z)
polygamma(0, z)
To retain ``digamma`` as it is:
>>> digamma(0, evaluate=False)
digamma(0)
>>> digamma(z, evaluate=False)
digamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Digamma_function
.. [2] http://mathworld.wolfram.com/DigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
return polygamma(0, z).evalf(prec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(0, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(0, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(0, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(0, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.Zero,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(0, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(0, z).expand(func=True)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return harmonic(z - 1) - S.EulerGamma
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(0, z)
def _eval_as_leading_term(self, x, cdir=0):
z = self.args[0]
return polygamma(0, z).as_leading_term(x)
class trigamma(Function):
r"""
The ``trigamma`` function is the second derivative of the ``loggamma``
function
.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
In this case, ``trigamma(z) = polygamma(1, z)``.
Examples
========
>>> from sympy import trigamma
>>> trigamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> trigamma(z)
polygamma(1, z)
To retain ``trigamma`` as it is:
>>> trigamma(0, evaluate=False)
trigamma(0)
>>> trigamma(z, evaluate=False)
trigamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigamma_function
.. [2] http://mathworld.wolfram.com/TrigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
return polygamma(1, z).evalf(prec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(1, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(1, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(1, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(1, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.One,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(1, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(1, z).expand(func=True)
def _eval_rewrite_as_zeta(self, z, **kwargs):
return zeta(2, z)
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(1, z)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return -harmonic(z - 1, 2) + S.Pi**2 / 6
def _eval_as_leading_term(self, x, cdir=0):
z = self.args[0]
return polygamma(1, z).as_leading_term(x)
###############################################################################
##################### COMPLETE MULTIVARIATE GAMMA FUNCTION ####################
###############################################################################
class multigamma(Function):
r"""
The multivariate gamma function is a generalization of the gamma function
.. math::
\Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].
In a special case, ``multigamma(x, 1) = gamma(x)``.
Examples
========
>>> from sympy import S, multigamma
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> p = Symbol('p', positive=True, integer=True)
>>> multigamma(x, p)
pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
Several special values are known:
>>> multigamma(1, 1)
1
>>> multigamma(4, 1)
6
>>> multigamma(S(3)/2, 1)
sqrt(pi)/2
Writing ``multigamma`` in terms of the ``gamma`` function:
>>> multigamma(x, 1)
gamma(x)
>>> multigamma(x, 2)
sqrt(pi)*gamma(x)*gamma(x - 1/2)
>>> multigamma(x, 3)
pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
Parameters
==========
p : order or dimension of the multivariate gamma function
See Also
========
gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma,
beta
References
==========
.. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function
"""
unbranched = True
def fdiff(self, argindex=2):
from sympy import Sum
if argindex == 2:
x, p = self.args
k = Dummy("k")
return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, p):
from sympy import Product
x, p = map(sympify, (x, p))
if p.is_positive is False or p.is_integer is False:
raise ValueError('Order parameter p must be positive integer.')
k = Dummy("k")
return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2),
(k, 1, p))).doit()
def _eval_conjugate(self):
x, p = self.args
return self.func(x.conjugate(), p)
def _eval_is_real(self):
x, p = self.args
y = 2*x
if y.is_integer and (y <= (p - 1)) is True:
return False
if intlike(y) and (y <= (p - 1)):
return False
if y > (p - 1) or y.is_noninteger:
return True
|
6a3b25b0b915f17c068d2d32a7c0c8471b4e3ede6bbefc60149a0d35522544f4 | from functools import wraps
from sympy import S, pi, I, Rational, Wild, cacheit, sympify
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_or, fuzzy_not
from sympy.core.power import Pow
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.trigonometric import sin, cos, csc, cot
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt, root
from sympy.functions.elementary.complexes import re, im
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.polys.orthopolys import spherical_bessel_fn as fn
# TODO
# o Scorer functions G1 and G2
# o Asymptotic expansions
# These are possible, e.g. for fixed order, but since the bessel type
# functions are oscillatory they are not actually tractable at
# infinity, so this is not particularly useful right now.
# o Series Expansions for functions of the second kind about zero
# o Nicer series expansions.
# o More rewriting.
# o Add solvers to ode.py (or rather add solvers for the hypergeometric equation).
class BesselBase(Function):
"""
Abstract base class for Bessel-type functions.
This class is meant to reduce code duplication.
All Bessel-type functions can 1) be differentiated, with the derivatives
expressed in terms of similar functions, and 2) be rewritten in terms
of other Bessel-type functions.
Here, Bessel-type functions are assumed to have one complex parameter.
To use this base class, define class attributes ``_a`` and ``_b`` such that
``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.
"""
@property
def order(self):
""" The order of the Bessel-type function. """
return self.args[0]
@property
def argument(self):
""" The argument of the Bessel-type function. """
return self.args[1]
@classmethod
def eval(cls, nu, z):
return
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return (self._b/2 * self.__class__(self.order - 1, self.argument) -
self._a/2 * self.__class__(self.order + 1, self.argument))
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return self.__class__(self.order.conjugate(), z.conjugate())
def _eval_is_meromorphic(self, x, a):
nu, z = self.order, self.argument
if nu.has(x):
return False
if not z._eval_is_meromorphic(x, a):
return None
z0 = z.subs(x, a)
if nu.is_integer:
if isinstance(self, (besselj, besseli, hn1, hn2, jn, yn)) or not nu.is_zero:
return fuzzy_not(z0.is_infinite)
return fuzzy_not(fuzzy_or([z0.is_zero, z0.is_infinite]))
def _eval_expand_func(self, **hints):
nu, z, f = self.order, self.argument, self.__class__
if nu.is_extended_real:
if (nu - 1).is_extended_positive:
return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() +
2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z)
elif (nu + 1).is_extended_negative:
return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z -
self._a*self._b*f(nu + 2, z)._eval_expand_func())
return self
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import besselsimp
return besselsimp(self)
class besselj(BesselBase):
r"""
Bessel function of the first kind.
Explanation
===========
The Bessel $J$ function of order $\nu$ is defined to be the function
satisfying Bessel's differential equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,
with Laurent expansion
.. math ::
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),
if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
*is* a negative integer, then the definition is
.. math ::
J_{-n}(z) = (-1)^n J_n(z).
Examples
========
Create a Bessel function object:
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
Differentiate it:
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
Rewrite in terms of spherical Bessel functions:
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
Access the parameter and argument:
>>> b.order
n
>>> b.argument
z
See Also
========
bessely, besseli, besselk
References
==========
.. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables
.. [2] Luke, Y. L. (1969), The Special Functions and Their
Approximations, Volume 1
.. [3] https://en.wikipedia.org/wiki/Bessel_function
.. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z is S.Infinity or (z is S.NegativeInfinity):
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besselj(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return S.NegativeOne**(-nu)*besselj(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(nu)*besseli(nu, newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besselj(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besselj(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besselj(nnu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return sqrt(2*z/pi)*jn(nu - S.Half, self.argument)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_())
class bessely(BesselBase):
r"""
Bessel function of the second kind.
Explanation
===========
The Bessel $Y$ function of order $\nu$ is defined as
.. math ::
Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
- J_{-\mu}(z)}{\sin(\pi \mu)},
where $J_\mu(z)$ is the Bessel function of the first kind.
It is a solution to Bessel's equation, and linearly independent from
$J_\nu$.
Examples
========
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
See Also
========
besselj, besseli, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.NegativeInfinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z is S.Infinity or z is S.NegativeInfinity:
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return S.NegativeOne**(-nu)*bessely(-nu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z))
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(besseli)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return sqrt(2*z/pi) * yn(nu - S.Half, self.argument)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_())
class besseli(BesselBase):
r"""
Modified Bessel function of the first kind.
Explanation
===========
The Bessel $I$ function is a solution to the modified Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.
It can be defined as
.. math ::
I_\nu(z) = i^{-\nu} J_\nu(iz),
where $J_\nu(z)$ is the Bessel function of the first kind.
Examples
========
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
See Also
========
besselj, bessely, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
"""
_a = -S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if im(z) is S.Infinity or im(z) is S.NegativeInfinity:
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besseli(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return besseli(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(-nu)*besselj(nu, -newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besseli(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besseli(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besseli(nnu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return self._eval_rewrite_as_besselj(*self.args).rewrite(jn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_())
class besselk(BesselBase):
r"""
Modified Bessel function of the second kind.
Explanation
===========
The Bessel $K$ function of order $\nu$ is defined as
.. math ::
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
\frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},
where $I_\mu(z)$ is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent
from $Y_\nu$.
Examples
========
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
See Also
========
besselj, besseli, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
"""
_a = S.One
_b = -S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.Infinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z in (S.Infinity, I*S.Infinity, I*S.NegativeInfinity):
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return besselk(-nu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
if nu.is_integer is False:
return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
ai = self._eval_rewrite_as_besseli(*self.args)
if ai:
return ai.rewrite(besselj)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
ay = self._eval_rewrite_as_bessely(*self.args)
if ay:
return ay.rewrite(yn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_())
class hankel1(BesselBase):
r"""
Hankel function of the first kind.
Explanation
===========
This function is defined as
.. math ::
H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),
where $J_\nu(z)$ is the Bessel function of the first kind, and
$Y_\nu(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation.
Examples
========
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
See Also
========
hankel2, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel2(self.order.conjugate(), z.conjugate())
class hankel2(BesselBase):
r"""
Hankel function of the second kind.
Explanation
===========
This function is defined as
.. math ::
H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),
where $J_\nu(z)$ is the Bessel function of the first kind, and
$Y_\nu(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation, and linearly independent from
$H_\nu^{(1)}$.
Examples
========
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
See Also
========
hankel1, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel1(self.order.conjugate(), z.conjugate())
def assume_integer_order(fn):
@wraps(fn)
def g(self, nu, z):
if nu.is_integer:
return fn(self, nu, z)
return g
class SphericalBesselBase(BesselBase):
"""
Base class for spherical Bessel functions.
These are thin wrappers around ordinary Bessel functions,
since spherical Bessel functions differ from the ordinary
ones just by a slight change in order.
To use this class, define the ``_rewrite()`` and ``_expand()`` methods.
"""
def _expand(self, **hints):
""" Expand self into a polynomial. Nu is guaranteed to be Integer. """
raise NotImplementedError('expansion')
def _rewrite(self):
""" Rewrite self in terms of ordinary Bessel functions. """
raise NotImplementedError('rewriting')
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
return self
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self._rewrite()._eval_evalf(prec)
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return self.__class__(self.order - 1, self.argument) - \
self * (self.order + 1)/self.argument
def _jn(n, z):
return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z)
def _yn(n, z):
# (-1)**(n + 1) * _jn(-n - 1, z)
return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z)
class jn(SphericalBesselBase):
r"""
Spherical Bessel function of the first kind.
Explanation
===========
This function is a solution to the spherical Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.
It can be defined as
.. math ::
j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),
where $J_\nu(z)$ is the Bessel function of the first kind.
The spherical Bessel functions of integral order are
calculated using the formula:
.. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},
where the coefficients $f_n(z)$ are available as
:func:`sympy.polys.orthopolys.spherical_bessel_fn`.
Examples
========
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
See Also
========
besselj, bessely, besselk, yn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif nu.is_integer:
if nu.is_positive:
return S.Zero
else:
return S.ComplexInfinity
if z in (S.NegativeInfinity, S.Infinity):
return S.Zero
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return (-1)**(nu) * yn(-nu - 1, z)
def _expand(self, **hints):
return _jn(self.order, self.argument)
class yn(SphericalBesselBase):
r"""
Spherical Bessel function of the second kind.
Explanation
===========
This function is another solution to the spherical Bessel equation, and
linearly independent from $j_n$. It can be defined as
.. math ::
y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),
where $Y_\nu(z)$ is the Bessel function of the second kind.
For integral orders $n$, $y_n$ is calculated using the formula:
.. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
True
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
See Also
========
besselj, bessely, besselk, jn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
def _rewrite(self):
return self._eval_rewrite_as_bessely(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return (-1)**(nu + 1) * jn(-nu - 1, z)
def _expand(self, **hints):
return _yn(self.order, self.argument)
class SphericalHankelBase(SphericalBesselBase):
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
# jn +- I*yn
# jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
# yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) +
hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z))
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
# jn +- I*yn
# jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
# yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) +
hks*I*bessely(nu + S.Half, z))
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn)
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
else:
nu = self.order
z = self.argument
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z)
def _expand(self, **hints):
n = self.order
z = self.argument
hks = self._hankel_kind_sign
# fully expanded version
# return ((fn(n, z) * sin(z) +
# (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn
# (hks * I * (-1)**(n + 1) *
# (fn(-n - 1, z) * hk * I * sin(z) +
# (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn
# )
return (_jn(n, z) + hks*I*_yn(n, z)).expand()
class hn1(SphericalHankelBase):
r"""
Spherical Hankel function of the first kind.
Explanation
===========
This function is defined as
.. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
Bessel function of the first and second kinds.
For integral orders $n$, $h_n^(1)$ is calculated using the formula:
.. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn1(nu, z)))
jn(nu, z) + I*yn(nu, z)
>>> print(expand_func(hn1(0, z)))
sin(z)/z - I*cos(z)/z
>>> print(expand_func(hn1(1, z)))
-I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
>>> hn1(nu, z).rewrite(jn)
(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn1(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
>>> hn1(nu, z).rewrite(hankel1)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
See Also
========
hn2, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = S.One
@assume_integer_order
def _eval_rewrite_as_hankel1(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel1(nu, z)
class hn2(SphericalHankelBase):
r"""
Spherical Hankel function of the second kind.
Explanation
===========
This function is defined as
.. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
Bessel function of the first and second kinds.
For integral orders $n$, $h_n^(2)$ is calculated using the formula:
.. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn2(nu, z)))
jn(nu, z) - I*yn(nu, z)
>>> print(expand_func(hn2(0, z)))
sin(z)/z + I*cos(z)/z
>>> print(expand_func(hn2(1, z)))
I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
>>> hn2(nu, z).rewrite(hankel2)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
>>> hn2(nu, z).rewrite(jn)
-(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn2(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
See Also
========
hn1, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = -S.One
@assume_integer_order
def _eval_rewrite_as_hankel2(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel2(nu, z)
def jn_zeros(n, k, method="sympy", dps=15):
"""
Zeros of the spherical Bessel function of the first kind.
Explanation
===========
This returns an array of zeros of $jn$ up to the $k$-th zero.
* method = "sympy": uses `mpmath.besseljzero
<http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
* method = "scipy": uses the
`SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
and
`newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
to find all
roots, which is faster than computing the zeros using a general
numerical solver, but it requires SciPy and only works with low
precision floating point numbers. (The function used with
method="sympy" is a recent addition to mpmath; before that a general
solver was used.)
Examples
========
>>> from sympy import jn_zeros
>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
See Also
========
jn, yn, besselj, besselk, bessely
Parameters
==========
n : integer
order of Bessel function
k : integer
number of zeros to return
"""
from math import pi
if method == "sympy":
from mpmath import besseljzero
from mpmath.libmp.libmpf import dps_to_prec
from sympy import Expr
prec = dps_to_prec(dps)
return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec),
int(l)), prec)
for l in range(1, k + 1)]
elif method == "scipy":
from scipy.optimize import newton
try:
from scipy.special import spherical_jn
f = lambda x: spherical_jn(n, x)
except ImportError:
from scipy.special import sph_jn
f = lambda x: sph_jn(n, x)[0][-1]
else:
raise NotImplementedError("Unknown method.")
def solver(f, x):
if method == "scipy":
root = newton(f, x)
else:
raise NotImplementedError("Unknown method.")
return root
# we need to approximate the position of the first root:
root = n + pi
# determine the first root exactly:
root = solver(f, root)
roots = [root]
for i in range(k - 1):
# estimate the position of the next root using the last root + pi:
root = solver(f, root + pi)
roots.append(root)
return roots
class AiryBase(Function):
"""
Abstract base class for Airy functions.
This class is meant to reduce code duplication.
"""
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def as_real_imag(self, deep=True, **hints):
z = self.args[0]
zc = z.conjugate()
f = self.func
u = (f(z)+f(zc))/2
v = I*(f(zc)-f(z))/2
return u, v
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
class airyai(AiryBase):
r"""
The Airy function $\operatorname{Ai}$ of the first kind.
Explanation
===========
The Airy function $\operatorname{Ai}(z)$ is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real $z$
.. math::
\operatorname{Ai}(z) := \frac{1}{\pi}
\int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airyai
>>> from sympy.abc import z
>>> airyai(z)
airyai(z)
Several special values are known:
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
if arg.is_zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airyaiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return ((3**Rational(1, 3)*x)**(-n)*(3**Rational(1, 3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) *
gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p)
else:
return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a))
else:
return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3)))
pf2 = z / (root(3, 3)*gamma(Rational(1, 3)))
return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.05.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg))
class airybi(AiryBase):
r"""
The Airy function $\operatorname{Bi}$ of the second kind.
Explanation
===========
The Airy function $\operatorname{Bi}(z)$ is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real $z$
.. math::
\operatorname{Bi}(z) := \frac{1}{\pi}
\int_0^\infty
\exp\left(-\frac{t^3}{3} + z t\right)
+ \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airybi
>>> from sympy.abc import z
>>> airybi(z)
airybi(z)
Several special values are known:
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> from sympy import oo
>>> airybi(oo)
oo
>>> airybi(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airyai: Airy function of the first kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
if arg.is_zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airybiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (3**Rational(1, 3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) /
((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p)
else:
return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a))
else:
b = Pow(a, ot)
c = Pow(a, -ot)
return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3)))
pf2 = z*root(3, 6) / gamma(Rational(1, 3))
return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.06.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg))
class airyaiprime(AiryBase):
r"""
The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
kind.
Explanation
===========
The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
function
.. math::
\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airyaiprime
>>> from sympy.abc import z
>>> airyaiprime(z)
airyaiprime(z)
Several special values are known:
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyaiprime(z).rewrite(hyper)
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
if arg.is_zero:
return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airyai(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airyai(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/3 * (besseli(tt, a) - besseli(-tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3)))
pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3)))
return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.07.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg))
class airybiprime(AiryBase):
r"""
The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
kind.
Explanation
===========
The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
function
.. math::
\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airybiprime
>>> from sympy.abc import z
>>> airybiprime(z)
airybiprime(z)
Several special values are known:
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> from sympy import oo
>>> airybiprime(oo)
oo
>>> airybiprime(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
if arg.is_zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airybi(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airybi(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = tt * Pow(-z, Rational(3, 2))
if re(z).is_negative:
return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3)))
pf2 = root(3, 6) / gamma(Rational(1, 3))
return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.08.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg))
class marcumq(Function):
r"""
The Marcum Q-function.
Explanation
===========
The Marcum Q-function is defined by the meromorphic continuation of
.. math::
Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx
Examples
========
>>> from sympy import marcumq
>>> from sympy.abc import m, a, b
>>> marcumq(m, a, b)
marcumq(m, a, b)
Special values:
>>> marcumq(m, 0, b)
uppergamma(m, b**2/2)/gamma(m)
>>> marcumq(0, 0, 0)
0
>>> marcumq(0, a, 0)
1 - exp(-a**2/2)
>>> marcumq(1, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2
>>> marcumq(2, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
Differentiation with respect to $a$ and $b$ is supported:
>>> from sympy import diff
>>> diff(marcumq(m, a, b), a)
a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
>>> diff(marcumq(m, a, b), b)
-a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
References
==========
.. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
.. [2] http://mathworld.wolfram.com/MarcumQ-Function.html
"""
@classmethod
def eval(cls, m, a, b):
from sympy import exp, uppergamma
if a is S.Zero:
if m is S.Zero and b is S.Zero:
return S.Zero
return uppergamma(m, b**2 * S.Half) / gamma(m)
if m is S.Zero and b is S.Zero:
return 1 - 1 / exp(a**2 * S.Half)
if a == b:
if m is S.One:
return (1 + exp(-a**2) * besseli(0, a**2))*S.Half
if m == 2:
return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2)
if a.is_zero:
if m.is_zero and b.is_zero:
return S.Zero
return uppergamma(m, b**2*S.Half) / gamma(m)
if m.is_zero and b.is_zero:
return 1 - 1 / exp(a**2*S.Half)
def fdiff(self, argindex=2):
from sympy import exp
m, a, b = self.args
if argindex == 2:
return a * (-marcumq(m, a, b) + marcumq(1+m, a, b))
elif argindex == 3:
return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Integral(self, m, a, b, **kwargs):
from sympy import Integral, exp, Dummy, oo
x = kwargs.get('x', Dummy('x'))
return a ** (1 - m) * \
Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, oo])
def _eval_rewrite_as_Sum(self, m, a, b, **kwargs):
from sympy import Sum, exp, Dummy, oo
k = kwargs.get('k', Dummy('k'))
return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, oo])
def _eval_rewrite_as_besseli(self, m, a, b, **kwargs):
if a == b:
from sympy import exp
if m == 1:
return (1 + exp(-a**2) * besseli(0, a**2)) / 2
if m.is_Integer and m >= 2:
s = sum([besseli(i, a**2) for i in range(1, m)])
return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s
def _eval_is_zero(self):
if all(arg.is_zero for arg in self.args):
return True
|
d853b71f4e38f46617b2819b1c2651a117f800aa15849d285e0c723dcfb1b80c | from itertools import product
from sympy import (jn, yn, symbols, Symbol, sin, cos, pi, S, jn_zeros, besselj,
bessely, besseli, besselk, hankel1, hankel2, hn1, hn2,
expand_func, sqrt, sinh, cosh, diff, series, gamma, hyper,
I, O, oo, conjugate, uppergamma, exp, Integral, Sum,
Rational)
from sympy.functions.special.bessel import fn
from sympy.functions.special.bessel import (airyai, airybi,
airyaiprime, airybiprime, marcumq)
from sympy.testing.randtest import (random_complex_number as randcplx,
verify_numerically as tn,
test_derivative_numerically as td,
_randint)
from sympy.simplify import besselsimp
from sympy.testing.pytest import raises, slow
from sympy.abc import z, n, k, x
randint = _randint()
def test_bessel_rand():
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2]:
assert td(f(randcplx(), z), z)
for f in [jn, yn, hn1, hn2]:
assert td(f(randint(-10, 10), z), z)
def test_bessel_twoinputs():
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn]:
raises(TypeError, lambda: f(1))
raises(TypeError, lambda: f(1, 2, 3))
def test_diff():
assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
def test_rewrite():
from sympy import polar_lift, exp, I
assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z)
assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z)
assert besseli(n, z).rewrite(besselj) == \
exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
assert besselj(n, z).rewrite(besseli) == \
exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
nu = randcplx()
assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
# check that a rewrite was triggered, when the order is set to a generic
# symbol 'nu'
assert yn(nu, z) != yn(nu, z).rewrite(jn)
assert hn1(nu, z) != hn1(nu, z).rewrite(jn)
assert hn2(nu, z) != hn2(nu, z).rewrite(jn)
assert jn(nu, z) != jn(nu, z).rewrite(yn)
assert hn1(nu, z) != hn1(nu, z).rewrite(yn)
assert hn2(nu, z) != hn2(nu, z).rewrite(yn)
# rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is
# not allowed if a generic symbol 'nu' is used as the order of the SBFs
# to avoid inconsistencies (the order of bessel[jy] is allowed to be
# complex-valued, whereas SBFs are defined only for integer orders)
order = nu
for f in (besselj, bessely):
assert hn1(order, z) == hn1(order, z).rewrite(f)
assert hn2(order, z) == hn2(order, z).rewrite(f)
assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2
assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2
# for integral orders rewriting SBFs w.r.t bessel[jy] is allowed
N = Symbol('n', integer=True)
ri = randint(-11, 10)
for order in (ri, N):
for f in (besselj, bessely):
assert yn(order, z) != yn(order, z).rewrite(f)
assert jn(order, z) != jn(order, z).rewrite(f)
assert hn1(order, z) != hn1(order, z).rewrite(f)
assert hn2(order, z) != hn2(order, z).rewrite(f)
for func, refunc in product((yn, jn, hn1, hn2),
(jn, yn, besselj, bessely)):
assert tn(func(ri, z), func(ri, z).rewrite(refunc), z)
def test_expand():
from sympy import exp_polar, I
assert expand_func(besselj(S.Half, z).rewrite(jn)) == \
sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert expand_func(bessely(S.Half, z).rewrite(yn)) == \
-sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
# XXX: teach sin/cos to work around arguments like
# x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func
assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(Rational(5, 2), z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besselj(Rational(-5, 2), z)) == \
-sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(bessely(S.Half, z)) == \
-(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(Rational(5, 2), z)) == \
sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(bessely(Rational(-5, 2), z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(Rational(-1, 2), z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(Rational(5, 2), z)) == \
sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besseli(Rational(-5, 2), z)) == \
sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besselk(S.Half, z)) == \
besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
assert besselsimp(besselk(Rational(5, 2), z)) == \
besselsimp(besselk(Rational(-5, 2), z)) == \
sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))
n = Symbol('n', integer=True, positive=True)
assert expand_func(besseli(n + 2, z)) == \
besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
assert expand_func(besselj(n + 2, z)) == \
-besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
assert expand_func(besselk(n + 2, z)) == \
besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
assert expand_func(bessely(n + 2, z)) == \
-bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z
assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \
(sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) *
exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \
sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i = Symbol('i', integer=True)
for besselx in [besselj, bessely, besseli, besselk]:
assert besselx(i, p).is_extended_real is True
assert besselx(i, x).is_extended_real is None
assert besselx(x, z).is_extended_real is None
for besselx in [besselj, besseli]:
assert besselx(i, r).is_extended_real is True
for besselx in [bessely, besselk]:
assert besselx(i, r).is_extended_real is None
@slow
def test_slow_expand():
def check(eq, ans):
return tn(eq, ans) and eq == ans
rn = randcplx(a=1, b=0, d=0, c=2)
for besselx in [besselj, bessely, besseli, besselk]:
ri = S(2*randint(-11, 10) + 1) / 2 # half integer in [-21/2, 21/2]
assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))
assert check(expand_func(besseli(rn, x)),
besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
assert check(expand_func(besseli(-rn, x)),
besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)
assert check(expand_func(besselj(rn, x)),
-besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
assert check(expand_func(besselj(-rn, x)),
-besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)
assert check(expand_func(besselk(rn, x)),
besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
assert check(expand_func(besselk(-rn, x)),
besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)
assert check(expand_func(bessely(rn, x)),
-bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
assert check(expand_func(bessely(-rn, x)),
-bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)
def test_fn():
x, z = symbols("x z")
assert fn(1, z) == 1/z**2
assert fn(2, z) == -1/z + 3/z**3
assert fn(3, z) == -6/z**2 + 15/z**4
assert fn(4, z) == 1/z - 45/z**3 + 105/z**5
def mjn(n, z):
return expand_func(jn(n, z))
def myn(n, z):
return expand_func(yn(n, z))
def test_jn():
z = symbols("z")
assert jn(0, 0) == 1
assert jn(1, 0) == 0
assert jn(-1, 0) == S.ComplexInfinity
assert jn(z, 0) == jn(z, 0, evaluate=False)
assert jn(0, oo) == 0
assert jn(0, -oo) == 0
assert mjn(0, z) == sin(z)/z
assert mjn(1, z) == sin(z)/z**2 - cos(z)/z
assert mjn(2, z) == (3/z**3 - 1/z)*sin(z) - (3/z**2) * cos(z)
assert mjn(3, z) == (15/z**4 - 6/z**2)*sin(z) + (1/z - 15/z**3)*cos(z)
assert mjn(4, z) == (1/z + 105/z**5 - 45/z**3)*sin(z) + \
(-105/z**4 + 10/z**2)*cos(z)
assert mjn(5, z) == (945/z**6 - 420/z**4 + 15/z**2)*sin(z) + \
(-1/z - 945/z**5 + 105/z**3)*cos(z)
assert mjn(6, z) == (-1/z + 10395/z**7 - 4725/z**5 + 210/z**3)*sin(z) + \
(-10395/z**6 + 1260/z**4 - 21/z**2)*cos(z)
assert expand_func(jn(n, z)) == jn(n, z)
# SBFs not defined for complex-valued orders
assert jn(2+3j, 5.2+0.3j).evalf() == jn(2+3j, 5.2+0.3j)
assert eq([jn(2, 5.2+0.3j).evalf(10)],
[0.09941975672 - 0.05452508024*I])
def test_yn():
z = symbols("z")
assert myn(0, z) == -cos(z)/z
assert myn(1, z) == -cos(z)/z**2 - sin(z)/z
assert myn(2, z) == -((3/z**3 - 1/z)*cos(z) + (3/z**2)*sin(z))
assert expand_func(yn(n, z)) == yn(n, z)
# SBFs not defined for complex-valued orders
assert yn(2+3j, 5.2+0.3j).evalf() == yn(2+3j, 5.2+0.3j)
assert eq([yn(2, 5.2+0.3j).evalf(10)],
[0.185250342 + 0.01489557397*I])
def test_sympify_yn():
assert S(15) in myn(3, pi).atoms()
assert myn(3, pi) == 15/pi**4 - 6/pi**2
def eq(a, b, tol=1e-6):
for u, v in zip(a, b):
if not (abs(u - v) < tol):
return False
return True
def test_jn_zeros():
assert eq(jn_zeros(0, 4), [3.141592, 6.283185, 9.424777, 12.566370])
assert eq(jn_zeros(1, 4), [4.493409, 7.725251, 10.904121, 14.066193])
assert eq(jn_zeros(2, 4), [5.763459, 9.095011, 12.322940, 15.514603])
assert eq(jn_zeros(3, 4), [6.987932, 10.417118, 13.698023, 16.923621])
assert eq(jn_zeros(4, 4), [8.182561, 11.704907, 15.039664, 18.301255])
def test_bessel_eval():
from sympy import I, Symbol
n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)
for f in [besselj, besseli]:
assert f(0, 0) is S.One
assert f(2.1, 0) is S.Zero
assert f(-3, 0) is S.Zero
assert f(-10.2, 0) is S.ComplexInfinity
assert f(1 + 3*I, 0) is S.Zero
assert f(-3 + I, 0) is S.ComplexInfinity
assert f(-2*I, 0) is S.NaN
assert f(n, 0) != S.One and f(n, 0) != S.Zero
assert f(m, 0) != S.One and f(m, 0) != S.Zero
assert f(k, 0) is S.Zero
assert bessely(0, 0) is S.NegativeInfinity
assert besselk(0, 0) is S.Infinity
for f in [bessely, besselk]:
assert f(1 + I, 0) is S.ComplexInfinity
assert f(I, 0) is S.NaN
for f in [besselj, bessely]:
assert f(m, S.Infinity) is S.Zero
assert f(m, S.NegativeInfinity) is S.Zero
for f in [besseli, besselk]:
assert f(m, I*S.Infinity) is S.Zero
assert f(m, I*S.NegativeInfinity) is S.Zero
for f in [besseli, besselk]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == f(3, z)
assert f(-n, z) == f(n, z)
assert f(-m, z) != f(m, z)
for f in [besselj, bessely]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == -f(3, z)
assert f(-n, z) == (-1)**n*f(n, z)
assert f(-m, z) != (-1)**m*f(m, z)
for f in [besselj, besseli]:
assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)
assert besseli(2, -z) == besseli(2, z)
assert besseli(3, -z) == -besseli(3, z)
assert besselj(0, -z) == besselj(0, z)
assert besselj(1, -z) == -besselj(1, z)
assert besseli(0, I*z) == besselj(0, z)
assert besseli(1, I*z) == I*besselj(1, z)
assert besselj(3, I*z) == -I*besseli(3, z)
def test_bessel_nan():
# FIXME: could have these return NaN; for now just fix infinite recursion
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, yn, jn]:
assert f(1, S.NaN) == f(1, S.NaN, evaluate=False)
def test_meromorphic():
assert besselj(2, x).is_meromorphic(x, 1) == True
assert besselj(2, x).is_meromorphic(x, 0) == True
assert besselj(2, x).is_meromorphic(x, oo) == False
assert besselj(S(2)/3, x).is_meromorphic(x, 1) == True
assert besselj(S(2)/3, x).is_meromorphic(x, 0) == False
assert besselj(S(2)/3, x).is_meromorphic(x, oo) == False
assert besselj(x, 2*x).is_meromorphic(x, 2) == False
assert besselk(0, x).is_meromorphic(x, 1) == True
assert besselk(2, x).is_meromorphic(x, 0) == True
assert besseli(0, x).is_meromorphic(x, 1) == True
assert besseli(2, x).is_meromorphic(x, 0) == True
assert bessely(0, x).is_meromorphic(x, 1) == True
assert bessely(0, x).is_meromorphic(x, 0) == False
assert bessely(2, x).is_meromorphic(x, 0) == True
assert hankel1(3, x**2 + 2*x).is_meromorphic(x, 1) == True
assert hankel1(0, x).is_meromorphic(x, 0) == False
assert hankel2(11, 4).is_meromorphic(x, 5) == True
assert hn1(6, 7*x**3 + 4).is_meromorphic(x, 7) == True
assert hn2(3, 2*x).is_meromorphic(x, 9) == True
assert jn(5, 2*x + 7).is_meromorphic(x, 4) == True
assert yn(8, x**2 + 11).is_meromorphic(x, 6) == True
def test_conjugate():
from sympy import conjugate, I, Symbol
n = Symbol('n')
z = Symbol('z', extended_real=False)
x = Symbol('x', extended_real=True)
y = Symbol('y', real=True, positive=True)
t = Symbol('t', negative=True)
for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]:
assert f(n, -1).conjugate() != f(conjugate(n), -1)
assert f(n, x).conjugate() != f(conjugate(n), x)
assert f(n, t).conjugate() != f(conjugate(n), t)
rz = randcplx(b=0.5)
for f in [besseli, besselj, besselk, bessely]:
assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I)
assert f(n, 0).conjugate() == f(conjugate(n), 0)
assert f(n, 1).conjugate() == f(conjugate(n), 1)
assert f(n, z).conjugate() == f(conjugate(n), conjugate(z))
assert f(n, y).conjugate() == f(conjugate(n), y)
assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz)))
assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I)
assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0)
assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1)
assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y)
assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z))
assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz)))
assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I)
assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0)
assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1)
assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y)
assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z))
assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz)))
def test_branching():
from sympy import exp_polar, polar_lift, Symbol, I, exp
assert besselj(polar_lift(k), x) == besselj(k, x)
assert besseli(polar_lift(k), x) == besseli(k, x)
n = Symbol('n', integer=True)
assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
assert besselj(n, polar_lift(x)) == besselj(n, x)
assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
assert besseli(n, polar_lift(x)) == besseli(n, x)
def tn(func, s):
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
nu = Symbol('nu')
assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
assert tn(besselj, 2)
assert tn(besselj, pi)
assert tn(besselj, I)
assert tn(besseli, 2)
assert tn(besseli, pi)
assert tn(besseli, I)
def test_airy_base():
z = Symbol('z')
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert conjugate(airyai(z)) == airyai(conjugate(z))
assert airyai(x).is_extended_real
assert airyai(x+I*y).as_real_imag() == (
airyai(x - I*y)/2 + airyai(x + I*y)/2,
I*(airyai(x - I*y) - airyai(x + I*y))/2)
def test_airyai():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airyai(z), airyai)
assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3)))
assert airyai(oo) == 0
assert airyai(-oo) == 0
assert diff(airyai(z), z) == airyaiprime(z)
assert series(airyai(z), z, 0, 3) == (
3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))
assert airyai(z).rewrite(hyper) == (
-3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))
assert isinstance(airyai(z).rewrite(besselj), airyai)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airyai(z).rewrite(besseli) == (
-z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) +
(z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
assert airyai(p).rewrite(besseli) == (
sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) -
besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == (
-sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
(1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airybi():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airybi(z), airybi)
assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3)))
assert airybi(oo) is oo
assert airybi(-oo) == 0
assert diff(airybi(z), z) == airybiprime(z)
assert series(airybi(z), z, 0, 3) == (
3**Rational(1, 3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))
assert airybi(z).rewrite(hyper) == (
3**Rational(1, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) +
3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))
assert isinstance(airybi(z).rewrite(besselj), airybi)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airybi(z).rewrite(besseli) == (
sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(1, 3) +
(z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3))/3)
assert airybi(p).rewrite(besseli) == (
sqrt(3)*sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) +
besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airybi(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(1 - (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
(1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airyaiprime():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airyaiprime(z), airyaiprime)
assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3)))
assert airyaiprime(oo) == 0
assert diff(airyaiprime(z), z) == z*airyai(z)
assert series(airyaiprime(z), z, 0, 3) == (
-3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))
assert airyaiprime(z).rewrite(hyper) == (
3**Rational(1, 3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) -
3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3))))
assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airyaiprime(z).rewrite(besseli) == (
z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) -
(z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
assert airyaiprime(p).rewrite(besseli) == (
p*(-besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airyaiprime(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
(z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airybiprime():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airybiprime(z), airybiprime)
assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3))
assert airybiprime(oo) is oo
assert airybiprime(-oo) == 0
assert diff(airybiprime(z), z) == z*airybi(z)
assert series(airybiprime(z), z, 0, 3) == (
3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))
assert airybiprime(z).rewrite(hyper) == (
3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) +
3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3)))
assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airybiprime(z).rewrite(besseli) == (
sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) +
(z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3)
assert airybiprime(p).rewrite(besseli) == (
sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
(z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_marcumq():
m = Symbol('m')
a = Symbol('a')
b = Symbol('b')
assert marcumq(0, 0, 0) == 0
assert marcumq(m, 0, b) == uppergamma(m, b**2/2)/gamma(m)
assert marcumq(2, 0, 5) == 27*exp(Rational(-25, 2))/2
assert marcumq(0, a, 0) == 1 - exp(-a**2/2)
assert marcumq(0, pi, 0) == 1 - exp(-pi**2/2)
assert marcumq(1, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(2, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
assert diff(marcumq(1, a, 3), a) == a*(-marcumq(1, a, 3) + marcumq(2, a, 3))
assert diff(marcumq(2, 3, b), b) == -b**2*exp(-b**2/2 - Rational(9, 2))*besseli(1, 3*b)/3
x = Symbol('x')
assert marcumq(2, 3, 4).rewrite(Integral, x=x) == \
Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3
assert eq([marcumq(5, -2, 3).rewrite(Integral).evalf(10)],
[0.7905769565])
k = Symbol('k')
assert marcumq(-3, -5, -7).rewrite(Sum, k=k) == \
exp(-37)*Sum((Rational(5, 7))**k*besseli(k, 35), (k, 4, oo))
assert eq([marcumq(1, 3, 1).rewrite(Sum).evalf(10)],
[0.9891705502])
assert marcumq(1, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(2, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + \
exp(-a**2)*besseli(1, a**2)
assert marcumq(3, a, a).rewrite(besseli) == (besseli(1, a**2) + besseli(2, a**2))*exp(-a**2) + \
S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(5, 8, 8).rewrite(besseli) == exp(-64)*besseli(0, 64)/2 + \
(besseli(4, 64) + besseli(3, 64) + besseli(2, 64) + besseli(1, 64))*exp(-64) + S.Half
assert marcumq(m, a, a).rewrite(besseli) == marcumq(m, a, a)
x = Symbol('x', integer=True)
assert marcumq(x, a, a).rewrite(besseli) == marcumq(x, a, a)
|
18037d1b2e43a8e912a638f07d73b360f51ade49fe7712cbfab0550af01ba1cf | from sympy import (
Symbol, Dummy, gamma, I, oo, nan, zoo, factorial, sqrt, Rational,
multigamma, log, polygamma, digamma, trigamma, EulerGamma, pi, uppergamma, S, expand_func,
loggamma, sin, cos, O, lowergamma, exp, erf, erfc, exp_polar, harmonic,
zeta, conjugate, Ei, im, re, tanh, Abs)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
from sympy.testing.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx,
verify_numerically as tn)
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', integer=True)
w = Symbol('w', real=True)
def test_gamma():
assert gamma(nan) is nan
assert gamma(oo) is oo
assert gamma(-100) is zoo
assert gamma(0) is zoo
assert gamma(-100.0) is zoo
assert gamma(1) == 1
assert gamma(2) == 1
assert gamma(3) == 2
assert gamma(102) == factorial(101)
assert gamma(S.Half) == sqrt(pi)
assert gamma(Rational(3, 2)) == sqrt(pi)*S.Half
assert gamma(Rational(5, 2)) == sqrt(pi)*Rational(3, 4)
assert gamma(Rational(7, 2)) == sqrt(pi)*Rational(15, 8)
assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
assert gamma(Rational(-3, 2)) == sqrt(pi)*Rational(4, 3)
assert gamma(Rational(-5, 2)) == sqrt(pi)*Rational(-8, 15)
assert gamma(Rational(-15, 2)) == sqrt(pi)*Rational(256, 2027025)
assert gamma(Rational(
-11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
assert gamma(Rational(
-10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
assert gamma(Rational(
14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
assert gamma(Rational(
17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
assert gamma(Rational(
19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))
assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)
assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)
assert conjugate(gamma(x)) == gamma(conjugate(x))
assert expand_func(gamma(x + Rational(3, 2))) == \
(x + S.Half)*gamma(x + S.Half)
assert expand_func(gamma(x - S.Half)) == \
gamma(S.Half + x)/(x - S.Half)
# Test a bug:
assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))
# XXX: Not sure about these tests. I can fix them by defining e.g.
# exp_polar.is_integer but I'm not sure if that makes sense.
assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
assert gamma(3*exp_polar(I*pi)/4).is_extended_nonpositive is True
y = Symbol('y', nonpositive=True, integer=True)
assert gamma(y).is_real == False
y = Symbol('y', positive=True, noninteger=True)
assert gamma(y).is_real == True
assert gamma(-1.0, evaluate=False).is_real == False
assert gamma(0, evaluate=False).is_real == False
assert gamma(-2, evaluate=False).is_real == False
def test_gamma_rewrite():
assert gamma(n).rewrite(factorial) == factorial(n - 1)
def test_gamma_series():
assert gamma(x + 1).series(x, 0, 3) == \
1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3)
assert gamma(x).series(x, -1, 3) == \
-1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \
EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \
polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1))
def tn_branch(s, func):
from sympy import I, pi, exp_polar
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_lowergamma():
from sympy import meijerg, exp_polar, I, expint
assert lowergamma(x, 0) == 0
assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
assert td(lowergamma(randcplx(), y), y)
assert td(lowergamma(x, randcplx()), x)
assert lowergamma(x, y).diff(x) == \
gamma(x)*digamma(x) - uppergamma(x, y)*log(y) \
- meijerg([], [1, 1], [0, 0, x], [], y)
assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
assert not lowergamma(S.Half - 3, x).has(lowergamma)
assert not lowergamma(S.Half + 3, x).has(lowergamma)
assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
assert tn(lowergamma(S.Half + 3, x, evaluate=False),
lowergamma(S.Half + 3, x), x)
assert tn(lowergamma(S.Half - 3, x, evaluate=False),
lowergamma(S.Half - 3, x), x)
assert tn_branch(-3, lowergamma)
assert tn_branch(-4, lowergamma)
assert tn_branch(Rational(1, 3), lowergamma)
assert tn_branch(pi, lowergamma)
assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
assert lowergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I
assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
assert conjugate(lowergamma(x, 0)) == 0
assert unchanged(conjugate, lowergamma(x, -oo))
assert lowergamma(0, x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(S(1)/3, x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(1, x, evaluate=False)._eval_is_meromorphic(x, 0) == True
assert lowergamma(x, x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(x + 1, x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(1/x, x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(0, x + 1)._eval_is_meromorphic(x, 0) == False
assert lowergamma(S(1)/3, x + 1)._eval_is_meromorphic(x, 0) == True
assert lowergamma(1, x + 1, evaluate=False)._eval_is_meromorphic(x, 0) == True
assert lowergamma(x, x + 1)._eval_is_meromorphic(x, 0) == True
assert lowergamma(x + 1, x + 1)._eval_is_meromorphic(x, 0) == True
assert lowergamma(1/x, x + 1)._eval_is_meromorphic(x, 0) == False
assert lowergamma(0, 1/x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(S(1)/3, 1/x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(1, 1/x, evaluate=False)._eval_is_meromorphic(x, 0) == False
assert lowergamma(x, 1/x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(x + 1, 1/x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(1/x, 1/x)._eval_is_meromorphic(x, 0) == False
assert lowergamma(x, 2).series(x, oo, 3) == \
2**x*(1 + 2/(x + 1))*exp(-2)/x + O(exp(x*log(2))/x**3, (x, oo))
assert lowergamma(
x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
k = Symbol('k', integer=True)
assert lowergamma(
k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
k = Symbol('k', integer=True, positive=False)
assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_uppergamma():
from sympy import meijerg, exp_polar, I, expint
assert uppergamma(4, 0) == 6
assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
assert td(uppergamma(randcplx(), y), y)
assert uppergamma(x, y).diff(x) == \
uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
assert td(uppergamma(x, randcplx()), x)
p = Symbol('p', positive=True)
assert uppergamma(0, p) == -Ei(-p)
assert uppergamma(p, 0) == gamma(p)
assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
assert not uppergamma(S.Half - 3, x).has(uppergamma)
assert not uppergamma(S.Half + 3, x).has(uppergamma)
assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
assert tn(uppergamma(S.Half + 3, x, evaluate=False),
uppergamma(S.Half + 3, x), x)
assert tn(uppergamma(S.Half - 3, x, evaluate=False),
uppergamma(S.Half - 3, x), x)
assert unchanged(uppergamma, x, -oo)
assert unchanged(uppergamma, x, 0)
assert tn_branch(-3, uppergamma)
assert tn_branch(-4, uppergamma)
assert tn_branch(Rational(1, 3), uppergamma)
assert tn_branch(pi, uppergamma)
assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
assert uppergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
gamma(y)*(1 - exp(4*pi*I*y))
assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I
assert uppergamma(-2, x) == expint(3, x)/x**2
assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
assert unchanged(conjugate, uppergamma(x, -oo))
assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)
assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_polygamma():
from sympy import I
assert polygamma(n, nan) is nan
assert polygamma(0, oo) is oo
assert polygamma(0, -oo) is oo
assert polygamma(0, I*oo) is oo
assert polygamma(0, -I*oo) is oo
assert polygamma(1, oo) == 0
assert polygamma(5, oo) == 0
assert polygamma(0, -9) is zoo
assert polygamma(0, -9) is zoo
assert polygamma(0, -1) is zoo
assert polygamma(0, 0) is zoo
assert polygamma(0, 1) == -EulerGamma
assert polygamma(0, 7) == Rational(49, 20) - EulerGamma
assert polygamma(1, 1) == pi**2/6
assert polygamma(1, 2) == pi**2/6 - 1
assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
assert polygamma(3, 1) == pi**4 / 15
assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
assert polygamma(5, 1) == 8 * pi**6 / 63
assert polygamma(1, S.Half) == pi**2 / 2
assert polygamma(2, S.Half) == -14*zeta(3)
assert polygamma(11, S.Half) == 176896*pi**12
def t(m, n):
x = S(m)/n
r = polygamma(0, x)
if r.has(polygamma):
return False
return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)
assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2)
n1 = Symbol('n1')
n2 = Symbol('n2', real=True)
n3 = Symbol('n3', integer=True)
n4 = Symbol('n4', positive=True)
n5 = Symbol('n5', positive=True, integer=True)
assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x)
assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x)
assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x)
assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x)
assert polygamma(n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x)
assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)
assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
ni = Symbol("n", integer=True)
assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
+ zeta(ni + 1))*factorial(ni)
# Polygamma of non-negative integer order is unbranched:
from sympy import exp_polar
k = Symbol('n', integer=True, nonnegative=True)
assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)
# but negative integers are branched!
k = Symbol('n', integer=True)
assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)
# Polygamma of order -1 is loggamma:
assert polygamma(-1, x) == loggamma(x)
# But smaller orders are iterated integrals and don't have a special name
assert polygamma(-2, x).func is polygamma
# Test a bug
assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
assert polygamma(2, 2.5).is_positive == False
assert polygamma(2, -2.5).is_positive == False
assert polygamma(3, 2.5).is_positive == True
assert polygamma(3, -2.5).is_positive is True
assert polygamma(-2, -2.5).is_positive is None
assert polygamma(-3, -2.5).is_positive is None
assert polygamma(2, 2.5).is_negative == True
assert polygamma(3, 2.5).is_negative == False
assert polygamma(3, -2.5).is_negative == False
assert polygamma(2, -2.5).is_negative is True
assert polygamma(-2, -2.5).is_negative is None
assert polygamma(-3, -2.5).is_negative is None
assert polygamma(I, 2).is_positive is None
assert polygamma(I, 3).is_negative is None
# issue 17350
assert polygamma(pi, 3).evalf() == polygamma(pi, 3)
assert (I*polygamma(I, pi)).as_real_imag() == \
(-im(polygamma(I, pi)), re(polygamma(I, pi)))
assert (tanh(polygamma(I, 1))).rewrite(exp) == \
(exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1)))
assert (I / polygamma(I, 4)).rewrite(exp) == \
I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\
/((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4)))
assert unchanged(polygamma, 2.3, 1.0)
# issue 12569
assert unchanged(im, polygamma(0, I))
assert polygamma(Symbol('a', positive=True), Symbol('b', positive=True)).is_real is True
assert polygamma(0, I).is_real is None
def test_polygamma_expand_func():
assert polygamma(0, x).expand(func=True) == polygamma(0, x)
assert polygamma(0, 2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, S.Half + x)/2 + log(2)
assert polygamma(1, 2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, S.Half + x)/4
assert polygamma(2, x).expand(func=True) == \
polygamma(2, x)
assert polygamma(0, -1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert polygamma(0, 1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert polygamma(0, 2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert polygamma(0, 3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert polygamma(0, 4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert polygamma(1, 1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert polygamma(0, x + y).expand(func=True) == \
polygamma(0, x + y)
assert polygamma(1, x + y).expand(func=True) == \
polygamma(1, x + y)
assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \
6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4
assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4
e = polygamma(3, 4*x + y + Rational(3, 2))
assert e.expand(func=True) == e
e = polygamma(3, x + y + Rational(3, 4))
assert e.expand(func=True, basic=False) == e
def test_digamma():
from sympy import I
assert digamma(nan) == nan
assert digamma(oo) == oo
assert digamma(-oo) == oo
assert digamma(I*oo) == oo
assert digamma(-I*oo) == oo
assert digamma(-9) == zoo
assert digamma(-9) == zoo
assert digamma(-1) == zoo
assert digamma(0) == zoo
assert digamma(1) == -EulerGamma
assert digamma(7) == Rational(49, 20) - EulerGamma
def t(m, n):
x = S(m)/n
r = digamma(x)
if r.has(digamma):
return False
return abs(digamma(x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert digamma(x).rewrite(zeta) == polygamma(0, x)
assert digamma(x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert digamma(I).is_real is None
assert digamma(x,evaluate=False).fdiff() == polygamma(1, x)
assert digamma(x,evaluate=False).is_real is None
assert digamma(x,evaluate=False).is_positive is None
assert digamma(x,evaluate=False).is_negative is None
assert digamma(x,evaluate=False).rewrite(polygamma) == polygamma(0, x)
def test_digamma_expand_func():
assert digamma(x).expand(func=True) == polygamma(0, x)
assert digamma(2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2)
assert digamma(-1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert digamma(1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert digamma(2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert digamma(3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert digamma(4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert digamma(x + y).expand(func=True) == \
polygamma(0, x + y)
def test_trigamma():
assert trigamma(nan) == nan
assert trigamma(oo) == 0
assert trigamma(1) == pi**2/6
assert trigamma(2) == pi**2/6 - 1
assert trigamma(3) == pi**2/6 - Rational(5, 4)
assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x)
assert trigamma(x, evaluate=False).rewrite(harmonic) == \
trigamma(x).rewrite(polygamma).rewrite(harmonic)
assert trigamma(x,evaluate=False).fdiff() == polygamma(2, x)
assert trigamma(x,evaluate=False).is_real is None
assert trigamma(x,evaluate=False).is_positive is None
assert trigamma(x,evaluate=False).is_negative is None
assert trigamma(x,evaluate=False).rewrite(polygamma) == polygamma(1, x)
def test_trigamma_expand_func():
assert trigamma(2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4
assert trigamma(1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert trigamma(2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert trigamma(3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert trigamma(4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert trigamma(x + y).expand(func=True) == \
polygamma(1, x + y)
assert trigamma(3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
def test_loggamma():
raises(TypeError, lambda: loggamma(2, 3))
raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))
assert loggamma(-1) is oo
assert loggamma(-2) is oo
assert loggamma(0) is oo
assert loggamma(1) == 0
assert loggamma(2) == 0
assert loggamma(3) == log(2)
assert loggamma(4) == log(6)
n = Symbol("n", integer=True, positive=True)
assert loggamma(n) == log(gamma(n))
assert loggamma(-n) is oo
assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half))
from sympy import I
assert loggamma(oo) is oo
assert loggamma(-oo) is zoo
assert loggamma(I*oo) is zoo
assert loggamma(-I*oo) is zoo
assert loggamma(zoo) is zoo
assert loggamma(nan) is nan
L = loggamma(Rational(16, 3))
E = -5*log(3) + loggamma(Rational(1, 3)) + log(4) + log(7) + log(10) + log(13)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(19, 4))
E = -4*log(4) + loggamma(Rational(3, 4)) + log(3) + log(7) + log(11) + log(15)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(23, 7))
E = -3*log(7) + log(2) + loggamma(Rational(2, 7)) + log(9) + log(16)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(19, 4) - 7)
E = -log(9) - log(5) + loggamma(Rational(3, 4)) + 3*log(4) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(23, 7) - 6)
E = -log(19) - log(12) - log(5) + loggamma(Rational(2, 7)) + 3*log(7) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
assert loggamma(x).diff(x) == polygamma(0, x)
s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4)
s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
log(x)*x**2/2
assert (s1 - s2).expand(force=True).removeO() == 0
s1 = loggamma(1/x).series(x)
s2 = (1/x - S.Half)*log(1/x) - 1/x + log(2*pi)/2 + \
x/12 - x**3/360 + x**5/1260 + O(x**7)
assert ((s1 - s2).expand(force=True)).removeO() == 0
assert loggamma(x).rewrite('intractable') == log(gamma(x))
s1 = loggamma(x).series(x).cancel()
assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
assert s1 == loggamma(x).rewrite('intractable').series(x).cancel()
assert conjugate(loggamma(x)) == loggamma(conjugate(x))
assert conjugate(loggamma(0)) is oo
assert conjugate(loggamma(1)) == loggamma(conjugate(1))
assert conjugate(loggamma(-oo)) == conjugate(zoo)
assert loggamma(Symbol('v', positive=True)).is_real is True
assert loggamma(Symbol('v', zero=True)).is_real is False
assert loggamma(Symbol('v', negative=True)).is_real is False
assert loggamma(Symbol('v', nonpositive=True)).is_real is False
assert loggamma(Symbol('v', nonnegative=True)).is_real is None
assert loggamma(Symbol('v', imaginary=True)).is_real is None
assert loggamma(Symbol('v', real=True)).is_real is None
assert loggamma(Symbol('v')).is_real is None
assert loggamma(S.Half).is_real is True
assert loggamma(0).is_real is False
assert loggamma(Rational(-1, 2)).is_real is False
assert loggamma(I).is_real is None
assert loggamma(2 + 3*I).is_real is None
def tN(N, M):
assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M
tN(0, 0)
tN(1, 1)
tN(2, 2)
tN(3, 3)
tN(4, 4)
tN(5, 5)
def test_polygamma_expansion():
# A. & S., pa. 259 and 260
assert polygamma(0, 1/x).nseries(x, n=3) == \
-log(x) - x/2 - x**2/12 + O(x**3)
assert polygamma(1, 1/x).series(x, n=5) == \
x + x**2/2 + x**3/6 + O(x**5)
assert polygamma(3, 1/x).nseries(x, n=11) == \
2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11)
def test_issue_8657():
n = Symbol('n', negative=True, integer=True)
m = Symbol('m', integer=True)
o = Symbol('o', positive=True)
p = Symbol('p', negative=True, integer=False)
assert gamma(n).is_real is False
assert gamma(m).is_real is None
assert gamma(o).is_real is True
assert gamma(p).is_real is True
assert gamma(w).is_real is None
def test_issue_8524():
x = Symbol('x', positive=True)
y = Symbol('y', negative=True)
z = Symbol('z', positive=False)
p = Symbol('p', negative=False)
q = Symbol('q', integer=True)
r = Symbol('r', integer=False)
e = Symbol('e', even=True, negative=True)
assert gamma(x).is_positive is True
assert gamma(y).is_positive is None
assert gamma(z).is_positive is None
assert gamma(p).is_positive is None
assert gamma(q).is_positive is None
assert gamma(r).is_positive is None
assert gamma(e + S.Half).is_positive is True
assert gamma(e - S.Half).is_positive is False
def test_issue_14450():
assert uppergamma(Rational(3, 8), x).evalf() == uppergamma(Rational(3, 8), x)
assert lowergamma(x, Rational(3, 8)).evalf() == lowergamma(x, Rational(3, 8))
# some values from Wolfram Alpha for comparison
assert abs(uppergamma(Rational(3, 8), 2).evalf() - 0.07105675881) < 1e-9
assert abs(lowergamma(Rational(3, 8), 2).evalf() - 2.2993794256) < 1e-9
def test_issue_14528():
k = Symbol('k', integer=True, nonpositive=True)
assert isinstance(gamma(k), gamma)
def test_multigamma():
from sympy import Product
p = Symbol('p')
_k = Dummy('_k')
assert multigamma(x, p).dummy_eq(pi**(p*(p - 1)/4)*\
Product(gamma(x + (1 - _k)/2), (_k, 1, p)))
assert conjugate(multigamma(x, p)).dummy_eq(pi**((conjugate(p) - 1)*\
conjugate(p)/4)*Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert conjugate(multigamma(x, 1)) == gamma(conjugate(x))
p = Symbol('p', positive=True)
assert conjugate(multigamma(x, p)).dummy_eq(pi**((p - 1)*p/4)*\
Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert multigamma(nan, 1) is nan
assert multigamma(oo, 1).doit() is oo
assert multigamma(1, 1) == 1
assert multigamma(2, 1) == 1
assert multigamma(3, 1) == 2
assert multigamma(102, 1) == factorial(101)
assert multigamma(S.Half, 1) == sqrt(pi)
assert multigamma(1, 2) == pi
assert multigamma(2, 2) == pi/2
assert multigamma(1, 3) is zoo
assert multigamma(2, 3) == pi**2/2
assert multigamma(3, 3) == 3*pi**2/2
assert multigamma(x, 1).diff(x) == gamma(x)*polygamma(0, x)
assert multigamma(x, 2).diff(x) == sqrt(pi)*gamma(x)*gamma(x - S.Half)*\
polygamma(0, x) + sqrt(pi)*gamma(x)*gamma(x - S.Half)*polygamma(0, x - S.Half)
assert multigamma(x - 1, 1).expand(func=True) == gamma(x)/(x - 1)
assert multigamma(x + 2, 1).expand(func=True, mul=False) == x*(x + 1)*\
gamma(x)
assert multigamma(x - 1, 2).expand(func=True) == sqrt(pi)*gamma(x)*\
gamma(x + S.Half)/(x**3 - 3*x**2 + x*Rational(11, 4) - Rational(3, 4))
assert multigamma(x - 1, 3).expand(func=True) == pi**Rational(3, 2)*gamma(x)**2*\
gamma(x + S.Half)/(x**5 - 6*x**4 + 55*x**3/4 - 15*x**2 + x*Rational(31, 4) - Rational(3, 2))
assert multigamma(n, 1).rewrite(factorial) == factorial(n - 1)
assert multigamma(n, 2).rewrite(factorial) == sqrt(pi)*\
factorial(n - Rational(3, 2))*factorial(n - 1)
assert multigamma(n, 3).rewrite(factorial) == pi**Rational(3, 2)*\
factorial(n - 2)*factorial(n - Rational(3, 2))*factorial(n - 1)
assert multigamma(Rational(-1, 2), 3, evaluate=False).is_real == False
assert multigamma(S.Half, 3, evaluate=False).is_real == False
assert multigamma(0, 1, evaluate=False).is_real == False
assert multigamma(1, 3, evaluate=False).is_real == False
assert multigamma(-1.0, 3, evaluate=False).is_real == False
assert multigamma(0.7, 3, evaluate=False).is_real == True
assert multigamma(3, 3, evaluate=False).is_real == True
def test_gamma_as_leading_term():
assert gamma(x).as_leading_term(x) == 1/x
assert gamma(2 + x).as_leading_term(x) == S(1)
assert gamma(cos(x)).as_leading_term(x) == S(1)
assert gamma(sin(x)).as_leading_term(x) == 1/x
|
377cd915c1105c1697ddc0f5c5b72e95c793ea127689474fb8593425d8c24c27 | r"""
This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper
functions that it uses.
:py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations.
See the docstring on the various functions for their uses. Note that partial
differential equations support is in ``pde.py``. Note that hint functions
have docstrings describing their various methods, but they are intended for
internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a
specific hint. See also the docstring on
:py:meth:`~sympy.solvers.ode.dsolve`.
**Functions in this module**
These are the user functions in this module:
- :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs.
- :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into
possible hints for :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the
solution to an ODE.
- :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the
homogeneous order of an expression.
- :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals
of the Lie group of point transformations of an ODE, such that it is
invariant.
- :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals
are the actual infinitesimals of a first order ODE.
These are the non-solver helper functions that are for internal use. The
user should use the various options to
:py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided
by these functions:
- :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE
simplification.
- :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for
comparing solutions by simplicity.
- :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated
Integrals.
See also the docstrings of these functions.
**Currently implemented solver methods**
The following methods are implemented for solving ordinary differential
equations. See the docstrings of the various hint functions for more
information on each (run ``help(ode)``):
- 1st order separable differential equations.
- 1st order differential equations whose coefficients or `dx` and `dy` are
functions homogeneous of the same order.
- 1st order exact differential equations.
- 1st order linear differential equations.
- 1st order Bernoulli differential equations.
- Power series solutions for first order differential equations.
- Lie Group method of solving first order differential equations.
- 2nd order Liouville differential equations.
- Power series solutions for second order differential equations
at ordinary and regular singular points.
- `n`\th order differential equation that can be solved with algebraic
rearrangement and integration.
- `n`\th order linear homogeneous differential equation with constant
coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of undetermined coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of variation of parameters.
**Philosophy behind this module**
This module is designed to make it easy to add new ODE solving methods without
having to mess with the solving code for other methods. The idea is that
there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in
an ODE and tells you what hints, if any, will solve the ODE. It does this
without attempting to solve the ODE, so it is fast. Each solving method is a
hint, and it has its own function, named ``ode_<hint>``. That function takes
in the ODE and any match expression gathered by
:py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If
this result has any integrals in it, the hint function will return an
unevaluated :py:class:`~sympy.integrals.integrals.Integral` class.
:py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function
around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on
the result, which, among other things, will attempt to solve the equation for
the dependent variable (the function we are solving for), simplify the
arbitrary constants in the expression, and evaluate any integrals, if the hint
allows it.
**How to add new solution methods**
If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be
able to solve, try to avoid adding special case code here. Instead, try
finding a general method that will solve your ODE, as well as others. This
way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and
unhindered by special case hacks. WolphramAlpha and Maple's
DETools[odeadvisor] function are two resources you can use to classify a
specific ODE. It is also better for a method to work with an `n`\th order ODE
instead of only with specific orders, if possible.
To add a new method, there are a few things that you need to do. First, you
need a hint name for your method. Try to name your hint so that it is
unambiguous with all other methods, including ones that may not be implemented
yet. If your method uses integrals, also include a ``hint_Integral`` hint.
If there is more than one way to solve ODEs with your method, include a hint
for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()``
function should choose the best using min with ``ode_sol_simplicity`` as the
key argument. See
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`, for example.
The function that uses your method will be called ``ode_<hint>()``, so the
hint must only use characters that are allowed in a Python function name
(alphanumeric characters and the underscore '``_``' character). Include a
function for every hint, except for ``_Integral`` hints
(:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically).
Hint names should be all lowercase, unless a word is commonly capitalized
(such as Integral or Bernoulli). If you have a hint that you do not want to
run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such
as a best hint that would defeat the purpose of ``all_Integral``), you will
need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
guidelines on writing a hint name.
Determine *in general* how the solutions returned by your method compare with
other methods that can potentially solve the same ODEs. Then, put your hints
in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they
should be called. The ordering of this tuple determines which hints are
default. Note that exceptions are ok, because it is easy for the user to
choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In
general, ``_Integral`` variants should go at the end of the list, and
``_best`` variants should go before the various hints they apply to. For
example, the ``undetermined_coefficients`` hint comes before the
``variation_of_parameters`` hint because, even though variation of parameters
is more general than undetermined coefficients, undetermined coefficients
generally returns cleaner results for the ODEs that it can solve than
variation of parameters does, and it does not require integration, so it is
much faster.
Next, you need to have a match expression or a function that matches the type
of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode`
(if the match function is more than just a few lines, like
:py:meth:`~sympy.solvers.ode.ode._undetermined_coefficients_match`, it should go
outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the
ODE without solving for it as much as possible, so that
:py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by
bugs in solving code. Be sure to consider corner cases. For example, if your
solution method involves dividing by something, make sure you exclude the case
where that division will be 0.
In most cases, the matching of the ODE will also give you the various parts
that you need to solve it. You should put that in a dictionary (``.match()``
will do this for you), and add that as ``matching_hints['hint'] = matchdict``
in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`.
:py:meth:`~sympy.solvers.ode.classify_ode` will then send this to
:py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as
the ``match`` argument. Your function should be named ``ode_<hint>(eq, func,
order, match)`. If you need to send more information, put it in the ``match``
dictionary. For example, if you had to substitute in a dummy variable in
:py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to
pass it to your function using the `match` dict to access it. You can access
the independent variable using ``func.args[0]``, and the dependent variable
(the function you are trying to solve for) as ``func.func``. If, while trying
to solve the ODE, you find that you cannot, raise ``NotImplementedError``.
:py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all``
meta-hint, rather than causing the whole routine to fail.
Add a docstring to your function that describes the method employed. Like
with anything else in SymPy, you will need to add a doctest to the docstring,
in addition to real tests in ``test_ode.py``. Try to maintain consistency
with the other hint functions' docstrings. Add your method to the list at the
top of this docstring. Also, add your method to ``ode.rst`` in the
``docs/src`` directory, so that the Sphinx docs will pull its docstring into
the main SymPy documentation. Be sure to make the Sphinx documentation by
running ``make html`` from within the doc directory to verify that the
docstring formats correctly.
If your solution method involves integrating, use :py:obj:`~.Integral` instead of
:py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass
hard/slow integration by using the ``_Integral`` variant of your hint. In
most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your
solution. If this is not the case, you will need to write special code in
:py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be
symbols named ``C1``, ``C2``, and so on. All solution methods should return
an equality instance. If you need an arbitrary number of arbitrary constants,
you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``.
If it is possible to solve for the dependent function in a general way, do so.
Otherwise, do as best as you can, but do not call solve in your
``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt
to solve the solution for you, so you do not need to do that. Lastly, if your
ODE has a common simplification that can be applied to your solutions, you can
add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For
example, solutions returned from the ``1st_homogeneous_coeff`` hints often
have many :obj:`~sympy.functions.elementary.exponential.log` terms, so
:py:meth:`~sympy.solvers.ode.ode.odesimp` calls
:py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write
the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also
consider common ways that you can rearrange your solution to have
:py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is
better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in
your method, because it can then be turned off with the simplify flag in
:py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous
simplification in your function, be sure to only run it using ``if
match.get('simplify', True):``, especially if it can be slow or if it can
reduce the domain of the solution.
Finally, as with every contribution to SymPy, your method will need to be
tested. Add a test for each method in ``test_ode.py``. Follow the
conventions there, i.e., test the solver using ``dsolve(eq, f(x),
hint=your_hint)``, and also test the solution using
:py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate
tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your
hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test
won't be broken simply by the introduction of another matching hint. If your
method works for higher order (>1) ODEs, you will need to run ``sol =
constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is
the order of the ODE. This is because ``constant_renumber`` renumbers the
arbitrary constants by printing order, which is platform dependent. Try to
test every corner case of your solver, including a range of orders if it is a
`n`\th order solver, but if your solver is slow, such as if it involves hard
integration, try to keep the test run time down.
Feel free to refactor existing hints to avoid duplicating code or creating
inconsistencies. If you can show that your method exactly duplicates an
existing method, including in the simplicity and speed of obtaining the
solutions, then you can remove the old, less general method. The existing
code is tested extensively in ``test_ode.py``, so if anything is broken, one
of those tests will surely fail.
"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import islice
from sympy.functions import hyper
from sympy.core import Add, S, Mul, Pow, oo, Rational
from sympy.core.compatibility import ordered, iterable
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.function import (Function, Derivative, AppliedUndef, diff,
expand, expand_mul, Subs, _mexpand)
from sympy.core.multidimensional import vectorize
from sympy.core.numbers import NaN, zoo, Number
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, Dummy, symbols
from sympy.core.sympify import sympify
from sympy.logic.boolalg import (BooleanAtom, BooleanTrue,
BooleanFalse)
from sympy.functions import cos, cosh, exp, im, log, re, sin, sinh, sqrt, \
atan2, conjugate, cbrt, besselj, bessely, airyai, airybi
from sympy.functions.combinatorial.factorials import factorial
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import wronskian
from sympy.polys import (Poly, RootOf, rootof, terms_gcd,
PolynomialError, lcm, roots, gcd)
from sympy.polys.polytools import cancel, degree, div
from sympy.series import Order
from sympy.series.series import series
from sympy.simplify import (collect, logcombine, powsimp, # type: ignore
separatevars, simplify, trigsimp, posify, cse)
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import collect_const
from sympy.solvers import checksol, solve
from sympy.solvers.pde import pdsolve
from sympy.utilities import numbered_symbols, default_sort_key, sift
from sympy.utilities.iterables import uniq
from sympy.solvers.deutils import _preprocess, ode_order, _desolve
from .subscheck import sub_func_doit
#: This is a list of hints in the order that they should be preferred by
#: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the
#: list should produce simpler solutions than those later in the list (for
#: ODEs that fit both). For now, the order of this list is based on empirical
#: observations by the developers of SymPy.
#:
#: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE
#: can be overridden (see the docstring).
#:
#: In general, ``_Integral`` hints are grouped at the end of the list, unless
#: there is a method that returns an unevaluable integral most of the time
#: (which go near the end of the list anyway). ``default``, ``all``,
#: ``best``, and ``all_Integral`` meta-hints should not be included in this
#: list, but ``_best`` and ``_Integral`` hints should be included.
allhints = (
"factorable",
"nth_algebraic",
"separable",
"1st_exact",
"1st_linear",
"Bernoulli",
"Riccati_special_minus2",
"1st_homogeneous_coeff_best",
"1st_homogeneous_coeff_subs_indep_div_dep",
"1st_homogeneous_coeff_subs_dep_div_indep",
"almost_linear",
"linear_coefficients",
"separable_reduced",
"1st_power_series",
"lie_group",
"nth_linear_constant_coeff_homogeneous",
"nth_linear_euler_eq_homogeneous",
"nth_linear_constant_coeff_undetermined_coefficients",
"nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients",
"nth_linear_constant_coeff_variation_of_parameters",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters",
"Liouville",
"2nd_linear_airy",
"2nd_linear_bessel",
"2nd_hypergeometric",
"2nd_hypergeometric_Integral",
"nth_order_reducible",
"2nd_power_series_ordinary",
"2nd_power_series_regular",
"nth_algebraic_Integral",
"separable_Integral",
"1st_exact_Integral",
"1st_linear_Integral",
"Bernoulli_Integral",
"1st_homogeneous_coeff_subs_indep_div_dep_Integral",
"1st_homogeneous_coeff_subs_dep_div_indep_Integral",
"almost_linear_Integral",
"linear_coefficients_Integral",
"separable_reduced_Integral",
"nth_linear_constant_coeff_variation_of_parameters_Integral",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral",
"Liouville_Integral",
)
lie_heuristics = (
"abaco1_simple",
"abaco1_product",
"abaco2_similar",
"abaco2_unique_unknown",
"abaco2_unique_general",
"linear",
"function_sum",
"bivariate",
"chi"
)
def get_numbered_constants(eq, num=1, start=1, prefix='C'):
"""
Returns a list of constants that do not occur
in eq already.
"""
ncs = iter_numbered_constants(eq, start, prefix)
Cs = [next(ncs) for i in range(num)]
return (Cs[0] if num == 1 else tuple(Cs))
def iter_numbered_constants(eq, start=1, prefix='C'):
"""
Returns an iterator of constants that do not occur
in eq already.
"""
if isinstance(eq, (Expr, Eq)):
eq = [eq]
elif not iterable(eq):
raise ValueError("Expected Expr or iterable but got %s" % eq)
atom_set = set().union(*[i.free_symbols for i in eq])
func_set = set().union(*[i.atoms(Function) for i in eq])
if func_set:
atom_set |= {Symbol(str(f.func)) for f in func_set}
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)
def dsolve(eq, func=None, hint="default", simplify=True,
ics= None, xi=None, eta=None, x0=0, n=6, **kwargs):
r"""
Solves any (supported) kind of ordinary differential equation and
system of ordinary differential equations.
For single ordinary differential equation
=========================================
It is classified under this when number of equation in ``eq`` is one.
**Usage**
``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation
``eq`` for function ``f(x)``, using method ``hint``.
**Details**
``eq`` can be any supported ordinary differential equation (see the
:py:mod:`~sympy.solvers.ode` docstring for supported methods).
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``f(x)`` is a function of one variable whose derivatives in that
variable make up the ordinary differential equation ``eq``. In
many cases it is not necessary to provide this; it will be
autodetected (and an error raised if it couldn't be detected).
``hint`` is the solving method that you want dsolve to use. Use
``classify_ode(eq, f(x))`` to get all of the possible hints for an
ODE. The default hint, ``default``, will use whatever hint is
returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See
Hints below for more options that you can use for hint.
``simplify`` enables simplification by
:py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more
information. Turn this off, for example, to disable solving of
solutions for ``func`` or simplification of arbitrary constants.
It will still integrate with this hint. Note that the solution may
contain more arbitrary constants than the order of the ODE with
this option enabled.
``xi`` and ``eta`` are the infinitesimal functions of an ordinary
differential equation. They are the infinitesimals of the Lie group
of point transformations for which the differential equation is
invariant. The user can specify values for the infinitesimals. If
nothing is specified, ``xi`` and ``eta`` are calculated using
:py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various
heuristics.
``ics`` is the set of initial/boundary conditions for the differential equation.
It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2):
x3}`` and so on. For power series solutions, if no initial
conditions are specified ``f(0)`` is assumed to be ``C0`` and the power
series solution is calculated about 0.
``x0`` is the point about which the power series solution of a differential
equation is to be evaluated.
``n`` gives the exponent of the dependent variable up to which the power series
solution of a differential equation is to be evaluated.
**Hints**
Aside from the various solving methods, there are also some meta-hints
that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`:
``default``:
This uses whatever hint is returned first by
:py:meth:`~sympy.solvers.ode.classify_ode`. This is the
default argument to :py:meth:`~sympy.solvers.ode.dsolve`.
``all``:
To make :py:meth:`~sympy.solvers.ode.dsolve` apply all
relevant classification hints, use ``dsolve(ODE, func,
hint="all")``. This will return a dictionary of
``hint:solution`` terms. If a hint causes dsolve to raise the
``NotImplementedError``, value of that hint's key will be the
exception object raised. The dictionary will also include
some special keys:
- ``order``: The order of the ODE. See also
:py:meth:`~sympy.solvers.deutils.ode_order` in
``deutils.py``.
- ``best``: The simplest hint; what would be returned by
``best`` below.
- ``best_hint``: The hint that would produce the solution
given by ``best``. If more than one hint produces the best
solution, the first one in the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode` is chosen.
- ``default``: The solution that would be returned by default.
This is the one produced by the hint that appears first in
the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode`.
``all_Integral``:
This is the same as ``all``, except if a hint also has a
corresponding ``_Integral`` hint, it only returns the
``_Integral`` hint. This is useful if ``all`` causes
:py:meth:`~sympy.solvers.ode.dsolve` to hang because of a
difficult or impossible integral. This meta-hint will also be
much faster than ``all``, because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive
routine.
``best``:
To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods
and return the simplest one. This takes into account whether
the solution is solvable in the function, whether it contains
any Integral classes (i.e. unevaluatable integrals), and
which one is the shortest in size.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for
a list of all supported hints.
**Tips**
- You can declare the derivative of an unknown function this way:
>>> from sympy import Function, Derivative
>>> from sympy.abc import x # x is the independent variable
>>> f = Function("f")(x) # f is a function of x
>>> # f_ will be the derivative of f with respect to x
>>> f_ = Derivative(f, x)
- See ``test_ode.py`` for many tests, which serves also as a set of
examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.dsolve` always returns an
:py:class:`~sympy.core.relational.Equality` class (except for the
case when the hint is ``all`` or ``all_Integral``). If possible, it
solves the solution explicitly for the function being solved for.
Otherwise, it returns an implicit solution.
- Arbitrary constants are symbols named ``C1``, ``C2``, and so on.
- Because all solutions should be mathematically equivalent, some
hints may return the exact same result for an ODE. Often, though,
two different hints will return the same solution formatted
differently. The two should be equivalent. Also note that sometimes
the values of the arbitrary constants in two different solutions may
not be the same, because one constant may have "absorbed" other
constants into it.
- Do ``help(ode.ode_<hintname>)`` to get help more information on a
specific hint, where ``<hintname>`` is the name of a hint without
``_Integral``.
For system of ordinary differential equations
=============================================
**Usage**
``dsolve(eq, func)`` -> Solve a system of ordinary differential
equations ``eq`` for ``func`` being list of functions including
`x(t)`, `y(t)`, `z(t)` where number of functions in the list depends
upon the number of equations provided in ``eq``.
**Details**
``eq`` can be any supported system of ordinary differential equations
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which
together with some of their derivatives make up the system of ordinary
differential equation ``eq``. It is not necessary to provide this; it
will be autodetected (and an error raised if it couldn't be detected).
**Hints**
The hints are formed by parameters returned by classify_sysode, combining
them give hints name used later for forming method name.
Examples
========
>>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x))
Eq(f(x), C1*sin(3*x) + C2*cos(3*x))
>>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
>>> dsolve(eq, hint='1st_exact')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> dsolve(eq, hint='almost_linear')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t)))
>>> dsolve(eq)
[Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)),
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) +
exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))]
>>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t)))
>>> dsolve(eq)
{Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))}
"""
if iterable(eq):
from sympy.solvers.ode.systems import dsolve_system
# This may have to be changed in future
# when we have weakly and strongly
# connected components. This have to
# changed to show the systems that haven't
# been solved.
try:
sol = dsolve_system(eq, funcs=func, ics=ics)
return sol[0] if len(sol) == 1 else sol
except NotImplementedError:
pass
match = classify_sysode(eq, func)
eq = match['eq']
order = match['order']
func = match['func']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
# keep highest order term coefficient positive
for i in range(len(eq)):
for func_ in func:
if isinstance(func_, list):
pass
else:
if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative:
eq[i] = -eq[i]
match['eq'] = eq
if len(set(order.values()))!=1:
raise ValueError("It solves only those systems of equations whose orders are equal")
match['order'] = list(order.values())[0]
def recur_len(l):
return sum(recur_len(item) if isinstance(item,list) else 1 for item in l)
if recur_len(func) != len(eq):
raise ValueError("dsolve() and classify_sysode() work with "
"number of functions being equal to number of equations")
if match['type_of_equation'] is None:
raise NotImplementedError
else:
if match['is_linear'] == True:
solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match]
else:
solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match]
sols = solvefunc(match)
if ics:
constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols
solved_constants = solve_ics(sols, func, constants, ics)
return [sol.subs(solved_constants) for sol in sols]
return sols
else:
given_hint = hint # hint given by the user
# See the docstring of _desolve for more details.
hints = _desolve(eq, func=func,
hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics,
x0=x0, n=n, **kwargs)
eq = hints.pop('eq', eq)
all_ = hints.pop('all', False)
if all_:
retdict = {}
failed_hints = {}
gethints = classify_ode(eq, dict=True)
orderedhints = gethints['ordered_hints']
for hint in hints:
try:
rv = _helper_simplify(eq, hint, hints[hint], simplify)
except NotImplementedError as detail:
failed_hints[hint] = detail
else:
retdict[hint] = rv
func = hints[hint]['func']
retdict['best'] = min(list(retdict.values()), key=lambda x:
ode_sol_simplicity(x, func, trysolving=not simplify))
if given_hint == 'best':
return retdict['best']
for i in orderedhints:
if retdict['best'] == retdict.get(i, None):
retdict['best_hint'] = i
break
retdict['default'] = gethints['default']
retdict['order'] = gethints['order']
retdict.update(failed_hints)
return retdict
else:
# The key 'hint' stores the hint needed to be solved for.
hint = hints['hint']
return _helper_simplify(eq, hint, hints, simplify, ics=ics)
def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs):
r"""
Helper function of dsolve that calls the respective
:py:mod:`~sympy.solvers.ode` functions to solve for the ordinary
differential equations. This minimizes the computation in calling
:py:meth:`~sympy.solvers.deutils._desolve` multiple times.
"""
r = match
func = r['func']
order = r['order']
match = r[hint]
if isinstance(match, SingleODESolver):
solvefunc = match
elif hint.endswith('_Integral'):
solvefunc = globals()['ode_' + hint[:-len('_Integral')]]
else:
solvefunc = globals()['ode_' + hint]
free = eq.free_symbols
cons = lambda s: s.free_symbols.difference(free)
if simplify:
# odesimp() will attempt to integrate, if necessary, apply constantsimp(),
# attempt to solve for func, and apply any other hint specific
# simplifications
if isinstance(solvefunc, SingleODESolver):
sols = solvefunc.get_general_solution()
else:
sols = solvefunc(eq, func, order, match)
if iterable(sols):
rv = [odesimp(eq, s, func, hint) for s in sols]
else:
rv = odesimp(eq, sols, func, hint)
else:
# We still want to integrate (you can disable it separately with the hint)
if isinstance(solvefunc, SingleODESolver):
exprs = solvefunc.get_general_solution(simplify=False)
else:
match['simplify'] = False # Some hints can take advantage of this option
exprs = solvefunc(eq, func, order, match)
if isinstance(exprs, list):
rv = [_handle_Integral(expr, func, hint) for expr in exprs]
else:
rv = _handle_Integral(exprs, func, hint)
if isinstance(rv, list):
rv = _remove_redundant_solutions(eq, rv, order, func.args[0])
if len(rv) == 1:
rv = rv[0]
if ics and not 'power_series' in hint:
if isinstance(rv, (Expr, Eq)):
solved_constants = solve_ics([rv], [r['func']], cons(rv), ics)
rv = rv.subs(solved_constants)
else:
rv1 = []
for s in rv:
try:
solved_constants = solve_ics([s], [r['func']], cons(s), ics)
except ValueError:
continue
rv1.append(s.subs(solved_constants))
if len(rv1) == 1:
return rv1[0]
rv = rv1
return rv
def solve_ics(sols, funcs, constants, ics):
"""
Solve for the constants given initial conditions
``sols`` is a list of solutions.
``funcs`` is a list of functions.
``constants`` is a list of constants.
``ics`` is the set of initial/boundary conditions for the differential
equation. It should be given in the form of ``{f(x0): x1,
f(x).diff(x).subs(x, x2): x3}`` and so on.
Returns a dictionary mapping constants to values.
``solution.subs(constants)`` will replace the constants in ``solution``.
Example
=======
>>> # From dsolve(f(x).diff(x) - f(x), f(x))
>>> from sympy import symbols, Eq, exp, Function
>>> from sympy.solvers.ode.ode import solve_ics
>>> f = Function('f')
>>> x, C1 = symbols('x C1')
>>> sols = [Eq(f(x), C1*exp(x))]
>>> funcs = [f(x)]
>>> constants = [C1]
>>> ics = {f(0): 2}
>>> solved_constants = solve_ics(sols, funcs, constants, ics)
>>> solved_constants
{C1: 2}
>>> sols[0].subs(solved_constants)
Eq(f(x), 2*exp(x))
"""
# Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x,
# x0)): value (currently checked by classify_ode). To solve, replace x
# with x0, f(x0) with value, then solve for constants. For f^(n)(x0),
# differentiate the solution n times, so that f^(n)(x) appears.
x = funcs[0].args[0]
diff_sols = []
subs_sols = []
diff_variables = set()
for funcarg, value in ics.items():
if isinstance(funcarg, AppliedUndef):
x0 = funcarg.args[0]
matching_func = [f for f in funcs if f.func == funcarg.func][0]
S = sols
elif isinstance(funcarg, (Subs, Derivative)):
if isinstance(funcarg, Subs):
# Make sure it stays a subs. Otherwise subs below will produce
# a different looking term.
funcarg = funcarg.doit()
if isinstance(funcarg, Subs):
deriv = funcarg.expr
x0 = funcarg.point[0]
variables = funcarg.expr.variables
matching_func = deriv
elif isinstance(funcarg, Derivative):
deriv = funcarg
x0 = funcarg.variables[0]
variables = (x,)*len(funcarg.variables)
matching_func = deriv.subs(x0, x)
if variables not in diff_variables:
for sol in sols:
if sol.has(deriv.expr.func):
diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables)))
diff_variables.add(variables)
S = diff_sols
else:
raise NotImplementedError("Unrecognized initial condition")
for sol in S:
if sol.has(matching_func):
sol2 = sol
sol2 = sol2.subs(x, x0)
sol2 = sol2.subs(funcarg, value)
# This check is necessary because of issue #15724
if not isinstance(sol2, BooleanAtom) or not subs_sols:
subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)]
subs_sols.append(sol2)
# TODO: Use solveset here
try:
solved_constants = solve(subs_sols, constants, dict=True)
except NotImplementedError:
solved_constants = []
# XXX: We can't differentiate between the solution not existing because of
# invalid initial conditions, and not existing because solve is not smart
# enough. If we could use solveset, this might be improvable, but for now,
# we use NotImplementedError in this case.
if not solved_constants:
raise ValueError("Couldn't solve for initial conditions")
if solved_constants == True:
raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.")
if len(solved_constants) > 1:
raise NotImplementedError("Initial conditions produced too many solutions for constants")
return solved_constants[0]
def classify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs):
r"""
Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve`
classifications for an ODE.
The tuple is ordered so that first item is the classification that
:py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In
general, classifications at the near the beginning of the list will
produce better solutions faster than those near the end, thought there are
always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a
different classification, use ``dsolve(ODE, func,
hint=<classification>)``. See also the
:py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints
you can use.
If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will
return a dictionary of ``hint:match`` expression terms. This is intended
for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that
because dictionaries are ordered arbitrarily, this will most likely not be
in the same order as the tuple.
You can get help on different hints by executing
``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint
without ``_Integral``.
See :py:data:`~sympy.solvers.ode.allhints` or the
:py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints
that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`.
Notes
=====
These are remarks on hint names.
``_Integral``
If a classification has ``_Integral`` at the end, it will return the
expression with an unevaluated :py:class:`~.Integral`
class in it. Note that a hint may do this anyway if
:py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral,
though just using an ``_Integral`` will do so much faster. Indeed, an
``_Integral`` hint will always be faster than its corresponding hint
without ``_Integral`` because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine.
If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because
:py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or
impossible integral. Try using an ``_Integral`` hint or
``all_Integral`` to get it return something.
Note that some hints do not have ``_Integral`` counterparts. This is
because :py:func:`~sympy.integrals.integrals.integrate` is not used in
solving the ODE for those method. For example, `n`\th order linear
homogeneous ODEs with constant coefficients do not require integration
to solve, so there is no
``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can
easily evaluate any unevaluated
:py:class:`~sympy.integrals.integrals.Integral`\s in an expression by
doing ``expr.doit()``.
Ordinals
Some hints contain an ordinal such as ``1st_linear``. This is to help
differentiate them from other hints, as well as from other methods
that may not be implemented yet. If a hint has ``nth`` in it, such as
the ``nth_linear`` hints, this means that the method used to applies
to ODEs of any order.
``indep`` and ``dep``
Some hints contain the words ``indep`` or ``dep``. These reference
the independent variable and the dependent function, respectively. For
example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to
`x` and ``dep`` will refer to `f`.
``subs``
If a hints has the word ``subs`` in it, it means the the ODE is solved
by substituting the expression given after the word ``subs`` for a
single dummy variable. This is usually in terms of ``indep`` and
``dep`` as above. The substituted expression will be written only in
characters allowed for names of Python objects, meaning operators will
be spelled out. For example, ``indep``/``dep`` will be written as
``indep_div_dep``.
``coeff``
The word ``coeff`` in a hint refers to the coefficients of something
in the ODE, usually of the derivative terms. See the docstring for
the individual methods for more info (``help(ode)``). This is
contrast to ``coefficients``, as in ``undetermined_coefficients``,
which refers to the common name of a method.
``_best``
Methods that have more than one fundamental way to solve will have a
hint for each sub-method and a ``_best`` meta-classification. This
will evaluate all hints and return the best, using the same
considerations as the normal ``best`` meta-hint.
Examples
========
>>> from sympy import Function, classify_ode, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> classify_ode(Eq(f(x).diff(x), 0), f(x))
('nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral', 'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
>>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4)
('nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
"""
ics = sympify(ics)
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_ode() only "
"work with functions of one variable, not %s" % func)
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
# Some methods want the unprocessed equation
eq_orig = eq
if prep or func is None:
eq, func_ = _preprocess(eq, func)
if func is None:
func = func_
x = func.args[0]
f = func.func
y = Dummy('y')
terms = n
order = ode_order(eq, f(x))
# hint:matchdict or hint:(tuple of matchdicts)
# Also will contain "default":<default hint> and "order":order items.
matching_hints = {"order": order}
df = f(x).diff(x)
a = Wild('a', exclude=[f(x)])
d = Wild('d', exclude=[df, f(x).diff(x, 2)])
e = Wild('e', exclude=[df])
k = Wild('k', exclude=[df])
n = Wild('n', exclude=[x, f(x), df])
c1 = Wild('c1', exclude=[x])
a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)])
b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)])
c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)])
r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint
boundary = {} # Used to extract initial conditions
C1 = Symbol("C1")
# Preprocessing to get the initial conditions out
if ics is not None:
for funcarg in ics:
# Separating derivatives
if isinstance(funcarg, (Subs, Derivative)):
# f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x,
# y) is a Derivative
if isinstance(funcarg, Subs):
deriv = funcarg.expr
old = funcarg.variables[0]
new = funcarg.point[0]
elif isinstance(funcarg, Derivative):
deriv = funcarg
# No information on this. Just assume it was x
old = x
new = funcarg.variables[0]
if (isinstance(deriv, Derivative) and isinstance(deriv.args[0],
AppliedUndef) and deriv.args[0].func == f and
len(deriv.args[0].args) == 1 and old == x and not
new.has(x) and all(i == deriv.variables[0] for i in
deriv.variables) and not ics[funcarg].has(f)):
dorder = ode_order(deriv, x)
temp = 'f' + str(dorder)
boundary.update({temp: new, temp + 'val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Derivatives")
# Separating functions
elif isinstance(funcarg, AppliedUndef):
if (funcarg.func == f and len(funcarg.args) == 1 and
not funcarg.args[0].has(x) and not ics[funcarg].has(f)):
boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Function")
else:
raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}")
# Any ODE that can be solved with a combination of algebra and
# integrals e.g.:
# d^3/dx^3(x y) = F(x)
ode = SingleODEProblem(eq_orig, func, x, prep=prep)
solvers = {
NthAlgebraic: ('nth_algebraic',),
FirstLinear: ('1st_linear',),
AlmostLinear: ('almost_linear',),
Bernoulli: ('Bernoulli',),
Factorable: ('factorable',),
RiccatiSpecial: ('Riccati_special_minus2',),
}
for solvercls in solvers:
solver = solvercls(ode)
if solver.matches():
for hints in solvers[solvercls]:
matching_hints[hints] = solver
if solvercls.has_integral:
matching_hints[hints + "_Integral"] = solver
eq = expand(eq)
# Precondition to try remove f(x) from highest order derivative
reduced_eq = None
if eq.is_Add:
deriv_coef = eq.coeff(f(x).diff(x, order))
if deriv_coef not in (1, 0):
r = deriv_coef.match(a*f(x)**c1)
if r and r[c1]:
den = f(x)**r[c1]
reduced_eq = Add(*[arg/den for arg in eq.args])
if not reduced_eq:
reduced_eq = eq
if order == 1:
# NON-REDUCED FORM OF EQUATION matches
r = collect(eq, df, exact=True).match(d + e * df)
if r:
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = r[d].subs(f(x), y)
r[e] = r[e].subs(f(x), y)
# FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS
# TODO: Hint first order series should match only if d/e is analytic.
# For now, only d/e and (d/e).diff(arg) is checked for existence at
# at a given point.
# This is currently done internally in ode_1st_power_series.
point = boundary.get('f0', 0)
value = boundary.get('f0val', C1)
check = cancel(r[d]/r[e])
check1 = check.subs({x: point, y: value})
if not check1.has(oo) and not check1.has(zoo) and \
not check1.has(NaN) and not check1.has(-oo):
check2 = (check1.diff(x)).subs({x: point, y: value})
if not check2.has(oo) and not check2.has(zoo) and \
not check2.has(NaN) and not check2.has(-oo):
rseries = r.copy()
rseries.update({'terms': terms, 'f0': point, 'f0val': value})
matching_hints["1st_power_series"] = rseries
r3.update(r)
## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where
# dP/dy == dQ/dx
try:
if r[d] != 0:
numerator = simplify(r[d].diff(y) - r[e].diff(x))
# The following few conditions try to convert a non-exact
# differential equation into an exact one.
# References : Differential equations with applications
# and historical notes - George E. Simmons
if numerator:
# If (dP/dy - dQ/dx) / Q = f(x)
# then exp(integral(f(x))*equation becomes exact
factor = simplify(numerator/r[e])
variables = factor.free_symbols
if len(variables) == 1 and x == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
# If (dP/dy - dQ/dx) / -P = f(y)
# then exp(integral(f(y))*equation becomes exact
factor = simplify(-numerator/r[d])
variables = factor.free_symbols
if len(variables) == 1 and y == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
except NotImplementedError:
# Differentiating the coefficients might fail because of things
# like f(2*x).diff(x). See issue 4624 and issue 4719.
pass
# Any first order ODE can be ideally solved by the Lie Group
# method
matching_hints["lie_group"] = r3
# This match is used for several cases below; we now collect on
# f(x) so the matching works.
r = collect(reduced_eq, df, exact=True).match(d + e*df)
if r:
# Using r[d] and r[e] without any modification for hints
# linear-coefficients and separable-reduced.
num, den = r[d], r[e] # ODE = d/e + df
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = num.subs(f(x), y)
r[e] = den.subs(f(x), y)
## Separable Case: y' == P(y)*Q(x)
r[d] = separatevars(r[d])
r[e] = separatevars(r[e])
# m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
m1 = separatevars(r[d], dict=True, symbols=(x, y))
m2 = separatevars(r[e], dict=True, symbols=(x, y))
if m1 and m2:
r1 = {'m1': m1, 'm2': m2, 'y': y}
matching_hints["separable"] = r1
matching_hints["separable_Integral"] = r1
## First order equation with homogeneous coefficients:
# dy/dx == F(y/x) or dy/dx == F(x/y)
ordera = homogeneous_order(r[d], x, y)
if ordera is not None:
orderb = homogeneous_order(r[e], x, y)
if ordera == orderb:
# u1=y/x and u2=x/y
u1 = Dummy('u1')
u2 = Dummy('u2')
s = "1st_homogeneous_coeff_subs"
s1 = s + "_dep_div_indep"
s2 = s + "_indep_div_dep"
if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0:
matching_hints[s1] = r
matching_hints[s1 + "_Integral"] = r
if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0:
matching_hints[s2] = r
matching_hints[s2 + "_Integral"] = r
if s1 in matching_hints and s2 in matching_hints:
matching_hints["1st_homogeneous_coeff_best"] = r
## Linear coefficients of the form
# y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0
# that can be reduced to homogeneous form.
F = num/den
params = _linear_coeff_match(F, func)
if params:
xarg, yarg = params
u = Dummy('u')
t = Dummy('t')
# Dummy substitution for df and f(x).
dummy_eq = reduced_eq.subs(((df, t), (f(x), u)))
reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x)))
dummy_eq = simplify(dummy_eq.subs(reps))
# get the re-cast values for e and d
r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d)
if r2:
orderd = homogeneous_order(r2[d], x, f(x))
if orderd is not None:
ordere = homogeneous_order(r2[e], x, f(x))
if orderd == ordere:
# Match arguments are passed in such a way that it
# is coherent with the already existing homogeneous
# functions.
r2[d] = r2[d].subs(f(x), y)
r2[e] = r2[e].subs(f(x), y)
r2.update({'xarg': xarg, 'yarg': yarg,
'd': d, 'e': e, 'y': y})
matching_hints["linear_coefficients"] = r2
matching_hints["linear_coefficients_Integral"] = r2
## Equation of the form y' + (y/x)*H(x^n*y) = 0
# that can be reduced to separable form
factor = simplify(x/f(x)*num/den)
# Try representing factor in terms of x^n*y
# where n is lowest power of x in factor;
# first remove terms like sqrt(2)*3 from factor.atoms(Mul)
num, dem = factor.as_numer_denom()
num = expand(num)
dem = expand(dem)
def _degree(expr, x):
# Made this function to calculate the degree of
# x in an expression. If expr will be of form
# x**p*y, (wheare p can be variables/rationals) then it
# will return p.
for val in expr:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
return (val.as_base_exp()[1])
elif val == x:
return (val.as_base_exp()[1])
else:
return _degree(val.args, x)
return 0
def _powers(expr):
# this function will return all the different relative power of x w.r.t f(x).
# expr = x**p * f(x)**q then it will return {p/q}.
pows = set()
if isinstance(expr, Add):
exprs = expr.atoms(Add)
elif isinstance(expr, Mul):
exprs = expr.atoms(Mul)
elif isinstance(expr, Pow):
exprs = expr.atoms(Pow)
else:
exprs = {expr}
for arg in exprs:
if arg.has(x):
_, u = arg.as_independent(x, f(x))
pow = _degree((u.subs(f(x), y), ), x)/_degree((u.subs(f(x), y), ), y)
pows.add(pow)
return pows
pows = _powers(num)
pows.update(_powers(dem))
pows = list(pows)
if(len(pows)==1) and pows[0]!=zoo:
t = Dummy('t')
r2 = {'t': t}
num = num.subs(x**pows[0]*f(x), t)
dem = dem.subs(x**pows[0]*f(x), t)
test = num/dem
free = test.free_symbols
if len(free) == 1 and free.pop() == t:
r2.update({'power' : pows[0], 'u' : test})
matching_hints['separable_reduced'] = r2
matching_hints["separable_reduced_Integral"] = r2
elif order == 2:
# Liouville ODE in the form
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98
s = d*f(x).diff(x, 2) + e*df**2 + k*df
r = reduced_eq.match(s)
if r and r[d] != 0:
y = Dummy('y')
g = simplify(r[e]/r[d]).subs(f(x), y)
h = simplify(r[k]/r[d]).subs(f(x), y)
if y in h.free_symbols or x in g.free_symbols:
pass
else:
r = {'g': g, 'h': h, 'y': y}
matching_hints["Liouville"] = r
matching_hints["Liouville_Integral"] = r
# Homogeneous second order differential equation of the form
# a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3
# It has a definite power series solution at point x0 if, b3/a3 and c3/a3
# are analytic at x0.
deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
ordinary = False
if r:
if not all([r[key].is_polynomial() for key in r]):
n, d = reduced_eq.as_numer_denom()
reduced_eq = expand(n)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
if r and r[a3] != 0:
p = cancel(r[b3]/r[a3]) # Used below
q = cancel(r[c3]/r[a3]) # Used below
point = kwargs.get('x0', 0)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
ordinary = True
r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms})
matching_hints["2nd_power_series_ordinary"] = r
# Checking if the differential equation has a regular singular point
# at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0)
# and (c3/a3)*((x - x0)**2) are analytic at x0.
if not ordinary:
p = cancel((x - point)*p)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
q = cancel(((x - point)**2)*q)
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms}
matching_hints["2nd_power_series_regular"] = coeff_dict
# For Hypergeometric solutions.
_r = {}
_r.update(r)
rn = match_2nd_hypergeometric(_r, func)
if rn:
matching_hints["2nd_hypergeometric"] = rn
matching_hints["2nd_hypergeometric_Integral"] = rn
# If the ODE has regular singular point at x0 and is of the form
# Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) +
# (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation
rn = match_2nd_linear_bessel(r, f(x))
if rn:
matching_hints["2nd_linear_bessel"] = rn
# If the ODE is ordinary and is of the form of Airy's Equation
# Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x))
if p.is_zero:
a4 = Wild('a4', exclude=[x,f(x),df])
b4 = Wild('b4', exclude=[x,f(x),df])
rn = q.match(a4+b4*x)
if rn and rn[b4] != 0:
rn = {'b':rn[a4],'m':rn[b4]}
matching_hints["2nd_linear_airy"] = rn
if order > 0:
# Any ODE that can be solved with a substitution and
# repeated integration e.g.:
# `d^2/dx^2(y) + x*d/dx(y) = constant
#f'(x) must be finite for this to work
r = _nth_order_reducible_match(reduced_eq, func)
if r:
matching_hints['nth_order_reducible'] = r
# nth order linear ODE
# a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b
r = _nth_linear_match(reduced_eq, func, order)
# Constant coefficient case (a_i is constant for all i)
if r and not any(r[i].has(x) for i in r if i >= 0):
# Inhomogeneous case: F(x) is not identically 0
if r[-1]:
eq_homogeneous = Add(eq,-r[-1])
undetcoeff = _undetermined_coefficients_match(r[-1], x, func, eq_homogeneous)
s = "nth_linear_constant_coeff_variation_of_parameters"
matching_hints[s] = r
matching_hints[s + "_Integral"] = r
if undetcoeff['test']:
r['trialset'] = undetcoeff['trialset']
matching_hints[
"nth_linear_constant_coeff_undetermined_coefficients"
] = r
# Homogeneous case: F(x) is identically 0
else:
matching_hints["nth_linear_constant_coeff_homogeneous"] = r
# nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x)
#In case of Homogeneous euler equation F(x) = 0
def _test_term(coeff, order):
r"""
Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x),
where K is independent of x and y(x), order>= 0.
So we need to check that for each term, coeff == K*x**order from
some K. We have a few cases, since coeff may have several
different types.
"""
if order < 0:
raise ValueError("order should be greater than 0")
if coeff == 0:
return True
if order == 0:
if x in coeff.free_symbols:
return False
return True
if coeff.is_Mul:
if coeff.has(f(x)):
return False
return x**order in coeff.args
elif coeff.is_Pow:
return coeff.as_base_exp() == (x, order)
elif order == 1:
return x == coeff
return False
# Find coefficient for highest derivative, multiply coefficients to
# bring the equation into Euler form if possible
r_rescaled = None
if r is not None:
coeff = r[order]
factor = x**order / coeff
r_rescaled = {i: factor*r[i] for i in r if i != 'trialset'}
# XXX: Mixing up the trialset with the coefficients is error-prone.
# These should be separated as something like r['coeffs'] and
# r['trialset']
if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in
r_rescaled if i != 'trialset' and i >= 0):
if not r_rescaled[-1]:
matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled
else:
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled
e, re = posify(r_rescaled[-1].subs(x, exp(x)))
undetcoeff = _undetermined_coefficients_match(e.subs(re), x)
if undetcoeff['test']:
r_rescaled['trialset'] = undetcoeff['trialset']
matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled
# Order keys based on allhints.
retlist = [i for i in allhints if i in matching_hints]
if dict:
# Dictionaries are ordered arbitrarily, so make note of which
# hint would come first for dsolve(). Use an ordered dict in Py 3.
matching_hints["default"] = retlist[0] if retlist else None
matching_hints["ordered_hints"] = tuple(retlist)
return matching_hints
else:
return tuple(retlist)
def equivalence(max_num_pow, dem_pow):
# this function is made for checking the equivalence with 2F1 type of equation.
# max_num_pow is the value of maximum power of x in numerator
# and dem_pow is list of powers of different factor of form (a*x b).
# reference from table 1 in paper - "Non-Liouvillian solutions for second order
# linear ODEs" by L. Chan, E.S. Cheb-Terrab.
# We can extend it for 1F1 and 0F1 type also.
if max_num_pow == 2:
if dem_pow in [[2, 2], [2, 2, 2]]:
return "2F1"
elif max_num_pow == 1:
if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]:
return "2F1"
elif max_num_pow == 0:
if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]:
return "2F1"
return None
def equivalence_hypergeometric(A, B, func):
from sympy import factor
# This method for finding the equivalence is only for 2F1 type.
# We can extend it for 1F1 and 0F1 type also.
x = func.args[0]
# making given equation in normal form
I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B))
# computing shifted invariant(J1) of the equation
J1 = factor(cancel(x**2*I1 + S(1)/4))
num, dem = J1.as_numer_denom()
num = powdenest(expand(num))
dem = powdenest(expand(dem))
pow_num = set()
pow_dem = set()
# this function will compute the different powers of variable(x) in J1.
# then it will help in finding value of k. k is power of x such that we can express
# J1 = x**k * J0(x**k) then all the powers in J0 become integers.
def _power_counting(num):
_pow = {0}
for val in num:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
_pow.add(val.as_base_exp()[1])
elif val == x:
_pow.add(val.as_base_exp()[1])
else:
_pow.update(_power_counting(val.args))
return _pow
pow_num = _power_counting((num, ))
pow_dem = _power_counting((dem, ))
pow_dem.update(pow_num)
_pow = pow_dem
k = gcd(_pow)
# computing I0 of the given equation
I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True)
I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True)))
num, dem = I0.as_numer_denom()
max_num_pow = max(_power_counting((num, )))
dem_args = dem.args
sing_point = []
dem_pow = []
# calculating singular point of I0.
for arg in dem_args:
if arg.has(x):
if isinstance(arg, Pow):
# (x-a)**n
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0])
else:
# (x-a) type
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg, x).keys())[0])
dem_pow.sort()
# checking if equivalence is exists or not.
if equivalence(max_num_pow, dem_pow) == "2F1":
return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"}
else:
return None
def ode_2nd_hypergeometric(eq, func, order, match):
from sympy.simplify.hyperexpand import hyperexpand
from sympy import factor
x = func.args[0]
C0, C1 = get_numbered_constants(eq, num=2)
a = match['a']
b = match['b']
c = match['c']
A = match['A']
# B = match['B']
sol = None
if match['type'] == "2F1":
if c.is_integer == False:
sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c)
elif c == 1:
y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x)
sol = C0*hyper([a, b], [c], x) + C1*y2
elif (c-a-b).is_integer == False:
sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b)
if sol is None:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the hypergeometric method")
# applying transformation in the solution
subs = match['mobius']
dtdx = simplify(1/(subs.diff(x)))
_B = ((a + b + 1)*x - c).subs(x, subs)*dtdx
_B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx))
_A = factor((x**2 - x).subs(x, subs)*(dtdx**2))
e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True))
sol = sol.subs(x, match['mobius'])
sol = sol.subs(x, x**match['k'])
e = e.subs(x, x**match['k'])
if not A.is_zero:
e1 = Integral(A/2, x)
e1 = exp(logcombine(e1, force=True))
sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
sol = cancel((e)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
def match_2nd_2F1_hypergeometric(I, k, sing_point, func):
from sympy import factor
x = func.args[0]
a = Wild("a")
b = Wild("b")
c = Wild("c")
t = Wild("t")
s = Wild("s")
r = Wild("r")
alpha = Wild("alpha")
beta = Wild("beta")
gamma = Wild("gamma")
delta = Wild("delta")
rn = {'type':None}
# I0 of the standerd 2F1 equation.
I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2)
if sing_point != [0, 1]:
# If singular point is [0, 1] then we have standerd equation.
eqs = []
sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)]
# making equations for the finding the mobius transformation
for i in range(3):
if i<len(sing_point):
eqs.append(Eq(sing_eqs[i], sing_point[i]))
else:
eqs.append(Eq(1/sing_eqs[i], 0))
# solving above equations for the mobius transformation
_beta = -alpha*sing_point[0]
_delta = -gamma*sing_point[1]
_gamma = alpha
if len(sing_point) == 3:
_gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1])
mob = (alpha*x + beta)/(gamma*x + delta)
mob = mob.subs(beta, _beta)
mob = mob.subs(delta, _delta)
mob = mob.subs(gamma, _gamma)
mob = cancel(mob)
t = (beta - delta*x)/(gamma*x - alpha)
t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma))
else:
mob = x
t = x
# applying mobius transformation in I to make it into I0.
I = I.subs(x, t)
I = I*(t.diff(x))**2
I = factor(I)
dict_I = {x**2:0, x:0, 1:0}
I0_num, I0_dem = I0.as_numer_denom()
# collecting coeff of (x**2, x), of the standerd equation.
# substituting (a-b) = s, (a+b) = r
dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)}
# collecting coeff of (x**2, x) from I0 of the given equation.
dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False))
eqs = []
# We are comparing the coeff of powers of different x, for finding the values of
# parameters of standerd equation.
for key in [x**2, x, 1]:
eqs.append(Eq(dict_I[key], dict_I0[key]))
# We can have many possible roots for the equation.
# I am selecting the root on the basis that when we have
# standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x)
# then root should be a, b, c.
_c = 1 - factor(sqrt(1+eqs[2].lhs))
if not _c.has(Symbol):
_c = min(list(roots(eqs[2], c)))
_s = factor(sqrt(eqs[0].lhs + 1))
_r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c))
_a = (_r + _s)/2
_b = (_r - _s)/2
rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"}
return rn
def match_2nd_hypergeometric(r, func):
x = func.args[0]
a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)])
b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)])
c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)])
A = cancel(r[b3]/r[a3])
B = cancel(r[c3]/r[a3])
d = equivalence_hypergeometric(A, B, func)
rn = None
if d:
if d['type'] == "2F1":
rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func)
if rn is not None:
rn.update({'A':A, 'B':B})
# We can extend it for 1F1 and 0F1 type also.
return rn
def match_2nd_linear_bessel(r, func):
from sympy.polys.polytools import factor
# eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x)
f = func
x = func.args[0]
df = f.diff(x)
a = Wild('a', exclude=[f,df])
b = Wild('b', exclude=[x, f,df])
a4 = Wild('a4', exclude=[x,f,df])
b4 = Wild('b4', exclude=[x,f,df])
c4 = Wild('c4', exclude=[x,f,df])
d4 = Wild('d4', exclude=[x,f,df])
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)])
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)])
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)])
# leading coeff of f(x).diff(x, 2)
coeff = factor(r[a3]).match(a4*(x-b)**b4)
if coeff:
# if coeff[b4] = 0 means constant coefficient
if coeff[b4] == 0:
return None
point = coeff[b]
else:
return None
if point:
r[a3] = simplify(r[a3].subs(x, x+point))
r[b3] = simplify(r[b3].subs(x, x+point))
r[c3] = simplify(r[c3].subs(x, x+point))
# making a3 in the form of x**2
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4])))
# checking if b3 is of form c*(x-b)
coeff1 = factor(r[b3]).match(a4*(x))
if coeff1 is None:
return None
# c3 maybe of very complex form so I am simply checking (a - b) form
# if yes later I will match with the standerd form of bessel in a and b
# a, b are wild variable defined above.
_coeff2 = r[c3].match(a - b)
if _coeff2 is None:
return None
# matching with standerd form for c3
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4))
if coeff2 is None:
return None
if _coeff2[b] == 0:
coeff2[d4] = 0
else:
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4]
rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]}
rn['c4'] = coeff1[a4]
rn['b4'] = point
return rn
def classify_sysode(eq, funcs=None, **kwargs):
r"""
Returns a dictionary of parameter names and values that define the system
of ordinary differential equations in ``eq``.
The parameters are further used in
:py:meth:`~sympy.solvers.ode.dsolve` for solving that system.
Some parameter names and values are:
'is_linear' (boolean), which tells whether the given system is linear.
Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are
nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators.
'func' (list) contains the :py:class:`~sympy.core.function.Function`s that
appear with a derivative in the ODE, i.e. those that we are trying to solve
the ODE for.
'order' (dict) with the maximum derivative for each element of the 'func'
parameter.
'func_coeff' (dict or Matrix) with the coefficient for each triple ``(equation number,
function, order)```. The coefficients are those subexpressions that do not
appear in 'func', and hence can be considered constant for purposes of ODE
solving. The value of this parameter can also be a Matrix if the system of ODEs are
linear first order of the form X' = AX where X is the vector of dependent variables.
Here, this function returns the coefficient matrix A.
'eq' (list) with the equations from ``eq``, sympified and transformed into
expressions (we are solving for these expressions to be zero).
'no_of_equations' (int) is the number of equations (same as ``len(eq)``).
'type_of_equation' (string) is an internal classification of the type of
ODE.
'is_constant' (boolean), which tells if the system of ODEs is constant coefficient
or not. This key is temporary addition for now and is in the match dict only when
the system of ODEs is linear first order constant coefficient homogeneous. So, this
key's value is True for now if it is available else it doesn't exist.
'is_homogeneous' (boolean), which tells if the system of ODEs is homogeneous. Like the
key 'is_constant', this key is a temporary addition and it is True since this key value
is available only when the system is linear first order constant coefficient homogeneous.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm
-A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists
Examples
========
>>> from sympy import Function, Eq, symbols, diff
>>> from sympy.solvers.ode.ode import classify_sysode
>>> from sympy.abc import t
>>> f, x, y = symbols('f, x, y', cls=Function)
>>> k, l, m, n = symbols('k, l, m, n', Integer=True)
>>> x1 = diff(x(t), t) ; y1 = diff(y(t), t)
>>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t)
>>> eq = (Eq(x1, 12*x(t) - 6*y(t)), Eq(y1, 11*x(t) + 3*y(t)))
>>> classify_sysode(eq)
{'eq': [-12*x(t) + 6*y(t) + Derivative(x(t), t), -11*x(t) - 3*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)],
'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 1, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None}
>>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t) + 2), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
>>> classify_sysode(eq)
{'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t) - 2, t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)],
'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0,
(1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2,
'order': {x(t): 1, y(t): 1}, 'type_of_equation': None}
"""
# Sympify equations and convert iterables of equations into
# a list of equations
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eq, funcs = (_sympify(w) for w in [eq, funcs])
for i, fi in enumerate(eq):
if isinstance(fi, Equality):
eq[i] = fi.lhs - fi.rhs
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
matching_hints = {"no_of_equation":i+1}
matching_hints['eq'] = eq
if i==0:
raise ValueError("classify_sysode() works for systems of ODEs. "
"For scalar ODEs, classify_ode should be used")
# find all the functions if not given
order = dict()
if funcs==[None]:
funcs = _extract_funcs(eq)
funcs = list(set(funcs))
if len(funcs) != len(eq):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# This logic of list of lists in funcs to
# be replaced later.
func_dict = dict()
for func in funcs:
if not order.get(func, False):
max_order = 0
for i, eqs_ in enumerate(eq):
order_ = ode_order(eqs_,func)
if max_order < order_:
max_order = order_
eq_no = i
if eq_no in func_dict:
func_dict[eq_no] = [func_dict[eq_no], func]
else:
func_dict[eq_no] = func
order[func] = max_order
funcs = [func_dict[i] for i in range(len(func_dict))]
matching_hints['func'] = funcs
for func in funcs:
if isinstance(func, list):
for func_elem in func:
if len(func_elem.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
else:
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# find the order of all equation in system of odes
matching_hints["order"] = order
# find coefficients of terms f(t), diff(f(t),t) and higher derivatives
# and similarly for other functions g(t), diff(g(t),t) in all equations.
# Here j denotes the equation number, funcs[l] denotes the function about
# which we are talking about and k denotes the order of function funcs[l]
# whose coefficient we are calculating.
def linearity_check(eqs, j, func, is_linear_):
for k in range(order[func] + 1):
func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k))
if is_linear_ == True:
if func_coef[j, func, k] == 0:
if k == 0:
coef = eqs.as_independent(func, as_Add=True)[1]
for xr in range(1, ode_order(eqs,func) + 1):
coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1]
if coef != 0:
is_linear_ = False
else:
if eqs.as_independent(diff(func, t, k), as_Add=True)[1]:
is_linear_ = False
else:
for func_ in funcs:
if isinstance(func_, list):
for elem_func_ in func_:
dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
else:
dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
return is_linear_
func_coef = {}
is_linear = True
for j, eqs in enumerate(eq):
for func in funcs:
if isinstance(func, list):
for func_elem in func:
is_linear = linearity_check(eqs, j, func_elem, is_linear)
else:
is_linear = linearity_check(eqs, j, func, is_linear)
matching_hints['func_coeff'] = func_coef
matching_hints['is_linear'] = is_linear
if len(set(order.values())) == 1:
order_eq = list(matching_hints['order'].values())[0]
if matching_hints['is_linear'] == True:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
# If the equation doesn't match up with any of the
# general case solvers in systems.py and the number
# of equations is greater than 2, then NotImplementedError
# should be raised.
else:
type_of_equation = None
else:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
elif matching_hints['no_of_equation'] == 3:
if order_eq == 1:
type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
else:
type_of_equation = None
else:
type_of_equation = None
matching_hints['type_of_equation'] = type_of_equation
return matching_hints
def check_linear_2eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
r = dict()
# for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1)
# and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2)
r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1]
r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
# We can handle homogeneous case and simple constant forcings
r['d1'] = forcing[0]
r['d2'] = forcing[1]
else:
# Issue #9244: nonhomogeneous linear systems are not supported
return None
# Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and
# Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t))
p = 0
q = 0
p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0]))
p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0]))
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q and n==0:
if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j:
p = 1
elif q and n==1:
if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j:
p = 2
# End of condition for type 6
if r['d1']!=0 or r['d2']!=0:
return None
else:
if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()):
return None
else:
r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2']
r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2']
if p:
return "type6"
else:
# Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t))
return "type7"
def check_nonlinear_2eq_order1(eq, func, func_coef):
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
f = Wild('f')
g = Wild('g')
u, v = symbols('u, v', cls=Dummy)
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \
or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)):
return 'type5'
else:
return None
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
eq_type = check_type(x, y)
if not eq_type:
eq_type = check_type(y, x)
return eq_type
x = func[0].func
y = func[1].func
fc = func_coef
n = Wild('n', exclude=[x(t),y(t)])
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type1'
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type2'
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \
r2[g].subs(x(t),u).subs(y(t),v).has(t)):
return 'type3'
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
# phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
if R1 and R2:
return 'type4'
return None
def check_nonlinear_2eq_order2(eq, func, func_coef):
return None
def check_nonlinear_3eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
z = func[2].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
u, v, w = symbols('u, v, w', cls=Dummy)
a = Wild('a', exclude=[x(t), y(t), z(t), t])
b = Wild('b', exclude=[x(t), y(t), z(t), t])
c = Wild('c', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
F1 = Wild('F1')
F2 = Wild('F2')
F3 = Wild('F3')
for i in range(3):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t))
r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t))
r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type1'
r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f)
if r:
r1 = collect_const(r[f]).match(a*f)
r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t))
r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type2'
r = eq[0].match(diff(x(t),t) - (F2-F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1)
if r2:
r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2])
if r1 and r2 and r3:
return 'type3'
r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1)
if r2:
r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2])
if r1 and r2 and r3:
return 'type4'
r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1))
if r2:
r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2]))
if r1 and r2 and r3:
return 'type5'
return None
def check_nonlinear_3eq_order2(eq, func, func_coef):
return None
@vectorize(0)
def odesimp(ode, eq, func, hint):
r"""
Simplifies solutions of ODEs, including trying to solve for ``func`` and
running :py:meth:`~sympy.solvers.ode.constantsimp`.
It may use knowledge of the type of solution that the hint returns to
apply additional simplifications.
It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s
in the expression, if the hint is not an ``_Integral`` hint.
This function should have no effect on expressions returned by
:py:meth:`~sympy.solvers.ode.dsolve`, as
:py:meth:`~sympy.solvers.ode.dsolve` already calls
:py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions
do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the
:py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this
function is designed for mainly internal use.
Examples
========
>>> from sympy import sin, symbols, dsolve, pprint, Function
>>> from sympy.solvers.ode.ode import odesimp
>>> x , u2, C1= symbols('x,u2,C1')
>>> f = Function('f')
>>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral',
... simplify=False)
>>> pprint(eq, wrap_line=False)
x
----
f(x)
/
|
| / 1 \
| -|u2 + -------|
| | /1 \|
| | sin|--||
| \ \u2//
log(f(x)) = log(C1) + | ---------------- d(u2)
| 2
| u2
|
/
>>> pprint(odesimp(eq, f(x), 1, {C1},
... hint='1st_homogeneous_coeff_subs_indep_div_dep'
... )) #doctest: +SKIP
x
--------- = C1
/f(x)\
tan|----|
\2*x /
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
constants = eq.free_symbols - ode.free_symbols
# First, integrate if the hint allows it.
eq = _handle_Integral(eq, func, hint)
if hint.startswith("nth_linear_euler_eq_nonhomogeneous"):
eq = simplify(eq)
if not isinstance(eq, Equality):
raise TypeError("eq should be an instance of Equality")
# Second, clean up the arbitrary constants.
# Right now, nth linear hints can put as many as 2*order constants in an
# expression. If that number grows with another hint, the third argument
# here should be raised accordingly, or constantsimp() rewritten to handle
# an arbitrary number of constants.
eq = constantsimp(eq, constants)
# Lastly, now that we have cleaned up the expression, try solving for func.
# When CRootOf is implemented in solve(), we will want to return a CRootOf
# every time instead of an Equality.
# Get the f(x) on the left if possible.
if eq.rhs == func and not eq.lhs.has(func):
eq = [Eq(eq.rhs, eq.lhs)]
# make sure we are working with lists of solutions in simplified form.
if eq.lhs == func and not eq.rhs.has(func):
# The solution is already solved
eq = [eq]
# special simplification of the rhs
if hint.startswith("nth_linear_constant_coeff"):
# Collect terms to make the solution look nice.
# This is also necessary for constantsimp to remove unnecessary
# terms from the particular solution from variation of parameters
#
# Collect is not behaving reliably here. The results for
# some linear constant-coefficient equations with repeated
# roots do not properly simplify all constants sometimes.
# 'collectterms' gives different orders sometimes, and results
# differ in collect based on that order. The
# sort-reverse trick fixes things, but may fail in the
# future. In addition, collect is splitting exponentials with
# rational powers for no reason. We have to do a match
# to fix this using Wilds.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms.sort(key=default_sort_key)
collectterms.reverse()
assert len(eq) == 1 and eq[0].lhs == f(x)
sol = eq[0].rhs
sol = expand_mul(sol)
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x))
del collectterms
# Collect is splitting exponentials with rational powers for
# no reason. We call powsimp to fix.
sol = powsimp(sol)
eq[0] = Eq(f(x), sol)
else:
# The solution is not solved, so try to solve it
try:
floats = any(i.is_Float for i in eq.atoms(Number))
eqsol = solve(eq, func, force=True, rational=False if floats else None)
if not eqsol:
raise NotImplementedError
except (NotImplementedError, PolynomialError):
eq = [eq]
else:
def _expand(expr):
numer, denom = expr.as_numer_denom()
if denom.is_Add:
return expr
else:
return powsimp(expr.expand(), combine='exp', deep=True)
# XXX: the rest of odesimp() expects each ``t`` to be in a
# specific normal form: rational expression with numerator
# expanded, but with combined exponential functions (at
# least in this setup all tests pass).
eq = [Eq(f(x), _expand(t)) for t in eqsol]
# special simplification of the lhs.
if hint.startswith("1st_homogeneous_coeff"):
for j, eqi in enumerate(eq):
newi = logcombine(eqi, force=True)
if isinstance(newi.lhs, log) and newi.rhs == 0:
newi = Eq(newi.lhs.args[0]/C1, C1)
eq[j] = newi
# We cleaned up the constants before solving to help the solve engine with
# a simpler expression, but the solved expression could have introduced
# things like -C1, so rerun constantsimp() one last time before returning.
for i, eqi in enumerate(eq):
eq[i] = constantsimp(eqi, constants)
eq[i] = constant_renumber(eq[i], ode.free_symbols)
# If there is only 1 solution, return it;
# otherwise return the list of solutions.
if len(eq) == 1:
eq = eq[0]
return eq
def ode_sol_simplicity(sol, func, trysolving=True):
r"""
Returns an extended integer representing how simple a solution to an ODE
is.
The following things are considered, in order from most simple to least:
- ``sol`` is solved for ``func``.
- ``sol`` is not solved for ``func``, but can be if passed to solve (e.g.,
a solution returned by ``dsolve(ode, func, simplify=False``).
- If ``sol`` is not solved for ``func``, then base the result on the
length of ``sol``, as computed by ``len(str(sol))``.
- If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s,
this will automatically be considered less simple than any of the above.
This function returns an integer such that if solution A is simpler than
solution B by above metric, then ``ode_sol_simplicity(sola, func) <
ode_sol_simplicity(solb, func)``.
Currently, the following are the numbers returned, but if the heuristic is
ever improved, this may change. Only the ordering is guaranteed.
+----------------------------------------------+-------------------+
| Simplicity | Return |
+==============================================+===================+
| ``sol`` solved for ``func`` | ``-2`` |
+----------------------------------------------+-------------------+
| ``sol`` not solved for ``func`` but can be | ``-1`` |
+----------------------------------------------+-------------------+
| ``sol`` is not solved nor solvable for | ``len(str(sol))`` |
| ``func`` | |
+----------------------------------------------+-------------------+
| ``sol`` contains an | ``oo`` |
| :obj:`~sympy.integrals.integrals.Integral` | |
+----------------------------------------------+-------------------+
``oo`` here means the SymPy infinity, which should compare greater than
any integer.
If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve
``sol``, you can use ``trysolving=False`` to skip that step, which is the
only potentially slow step. For example,
:py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag
should do this.
If ``sol`` is a list of solutions, if the worst solution in the list
returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``,
that is, the length of the string representation of the whole list.
Examples
========
This function is designed to be passed to ``min`` as the key argument,
such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i,
f(x)))``.
>>> from sympy import symbols, Function, Eq, tan, Integral
>>> from sympy.solvers.ode.ode import ode_sol_simplicity
>>> x, C1, C2 = symbols('x, C1, C2')
>>> f = Function('f')
>>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
-2
>>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
-1
>>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
oo
>>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1)
>>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2)
>>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]]
[28, 35]
>>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
Eq(f(x)/tan(f(x)/(2*x)), C1)
"""
# TODO: if two solutions are solved for f(x), we still want to be
# able to get the simpler of the two
# See the docstring for the coercion rules. We check easier (faster)
# things here first, to save time.
if iterable(sol):
# See if there are Integrals
for i in sol:
if ode_sol_simplicity(i, func, trysolving=trysolving) == oo:
return oo
return len(str(sol))
if sol.has(Integral):
return oo
# Next, try to solve for func. This code will change slightly when CRootOf
# is implemented in solve(). Probably a CRootOf solution should fall
# somewhere between a normal solution and an unsolvable expression.
# First, see if they are already solved
if sol.lhs == func and not sol.rhs.has(func) or \
sol.rhs == func and not sol.lhs.has(func):
return -2
# We are not so lucky, try solving manually
if trysolving:
try:
sols = solve(sol, func)
if not sols:
raise NotImplementedError
except NotImplementedError:
pass
else:
return -1
# Finally, a naive computation based on the length of the string version
# of the expression. This may favor combined fractions because they
# will not have duplicate denominators, and may slightly favor expressions
# with fewer additions and subtractions, as those are separated by spaces
# by the printer.
# Additional ideas for simplicity heuristics are welcome, like maybe
# checking if a equation has a larger domain, or if constantsimp has
# introduced arbitrary constants numbered higher than the order of a
# given ODE that sol is a solution of.
return len(str(sol))
def _extract_funcs(eqs):
from sympy.core.basic import preorder_traversal
funcs = []
for eq in eqs:
derivs = [node for node in preorder_traversal(eq) if isinstance(node, Derivative)]
func = []
for d in derivs:
func += list(d.atoms(AppliedUndef))
for func_ in func:
funcs.append(func_)
funcs = list(uniq(funcs))
return funcs
def _get_constant_subexpressions(expr, Cs):
Cs = set(Cs)
Ces = []
def _recursive_walk(expr):
expr_syms = expr.free_symbols
if expr_syms and expr_syms.issubset(Cs):
Ces.append(expr)
else:
if expr.func == exp:
expr = expr.expand(mul=True)
if expr.func in (Add, Mul):
d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs))
if len(d[True]) > 1:
x = expr.func(*d[True])
if not x.is_number:
Ces.append(x)
elif isinstance(expr, Integral):
if expr.free_symbols.issubset(Cs) and \
all(len(x) == 3 for x in expr.limits):
Ces.append(expr)
for i in expr.args:
_recursive_walk(i)
return
_recursive_walk(expr)
return Ces
def __remove_linear_redundancies(expr, Cs):
cnts = {i: expr.count(i) for i in Cs}
Cs = [i for i in Cs if cnts[i] > 0]
def _linear(expr):
if isinstance(expr, Add):
xs = [i for i in Cs if expr.count(i)==cnts[i] \
and 0 == expr.diff(i, 2)]
d = {}
for x in xs:
y = expr.diff(x)
if y not in d:
d[y]=[]
d[y].append(x)
for y in d:
if len(d[y]) > 1:
d[y].sort(key=str)
for x in d[y][1:]:
expr = expr.subs(x, 0)
return expr
def _recursive_walk(expr):
if len(expr.args) != 0:
expr = expr.func(*[_recursive_walk(i) for i in expr.args])
expr = _linear(expr)
return expr
if isinstance(expr, Equality):
lhs, rhs = [_recursive_walk(i) for i in expr.args]
f = lambda i: isinstance(i, Number) or i in Cs
if isinstance(lhs, Symbol) and lhs in Cs:
rhs, lhs = lhs, rhs
if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f)
for i in [True, False]:
for hs in [dlhs, drhs]:
if i not in hs:
hs[i] = [0]
# this calculation can be simplified
lhs = Add(*dlhs[False]) - Add(*drhs[False])
rhs = Add(*drhs[True]) - Add(*dlhs[True])
elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
if True in dlhs:
if False not in dlhs:
dlhs[False] = [1]
lhs = Mul(*dlhs[False])
rhs = rhs/Mul(*dlhs[True])
return Eq(lhs, rhs)
else:
return _recursive_walk(expr)
@vectorize(0)
def constantsimp(expr, constants):
r"""
Simplifies an expression with arbitrary constants in it.
This function is written specifically to work with
:py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use.
Simplification is done by "absorbing" the arbitrary constants into other
arbitrary constants, numbers, and symbols that they are not independent
of.
The symbols must all have the same name with numbers after it, for
example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be
'``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3.
If the arbitrary constants are independent of the variable ``x``, then the
independent symbol would be ``x``. There is no need to specify the
dependent function, such as ``f(x)``, because it already has the
independent symbol, ``x``, in it.
Because terms are "absorbed" into arbitrary constants and because
constants are renumbered after simplifying, the arbitrary constants in
expr are not necessarily equal to the ones of the same name in the
returned result.
If two or more arbitrary constants are added, multiplied, or raised to the
power of each other, they are first absorbed together into a single
arbitrary constant. Then the new constant is combined into other terms if
necessary.
Absorption of constants is done with limited assistance:
1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join
constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x
C_1 \cos(x)`;
2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are
expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`.
Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants
after simplification or else arbitrary numbers on constants may appear,
e.g. `C_1 + C_3 x`.
In rare cases, a single constant can be "simplified" into two constants.
Every differential equation solution should have as many arbitrary
constants as the order of the differential equation. The result here will
be technically correct, but it may, for example, have `C_1` and `C_2` in
an expression, when `C_1` is actually equal to `C_2`. Use your discretion
in such situations, and also take advantage of the ability to use hints in
:py:meth:`~sympy.solvers.ode.dsolve`.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constantsimp
>>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y')
>>> constantsimp(2*C1*x, {C1, C2, C3})
C1*x
>>> constantsimp(C1 + 2 + x, {C1, C2, C3})
C1 + x
>>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3})
C1 + C3*x
"""
# This function works recursively. The idea is that, for Mul,
# Add, Pow, and Function, if the class has a constant in it, then
# we can simplify it, which we do by recursing down and
# simplifying up. Otherwise, we can skip that part of the
# expression.
Cs = constants
orig_expr = expr
constant_subexprs = _get_constant_subexpressions(expr, Cs)
for xe in constant_subexprs:
xes = list(xe.free_symbols)
if not xes:
continue
if all([expr.count(c) == xe.count(c) for c in xes]):
xes.sort(key=str)
expr = expr.subs(xe, xes[0])
# try to perform common sub-expression elimination of constant terms
try:
commons, rexpr = cse(expr)
commons.reverse()
rexpr = rexpr[0]
for s in commons:
cs = list(s[1].atoms(Symbol))
if len(cs) == 1 and cs[0] in Cs and \
cs[0] not in rexpr.atoms(Symbol) and \
not any(cs[0] in ex for ex in commons if ex != s):
rexpr = rexpr.subs(s[0], cs[0])
else:
rexpr = rexpr.subs(*s)
expr = rexpr
except IndexError:
pass
expr = __remove_linear_redundancies(expr, Cs)
def _conditional_term_factoring(expr):
new_expr = terms_gcd(expr, clear=False, deep=True, expand=False)
# we do not want to factor exponentials, so handle this separately
if new_expr.is_Mul:
infac = False
asfac = False
for m in new_expr.args:
if isinstance(m, exp):
asfac = True
elif m.is_Add:
infac = any(isinstance(fi, exp) for t in m.args
for fi in Mul.make_args(t))
if asfac and infac:
new_expr = expr
break
return new_expr
expr = _conditional_term_factoring(expr)
# call recursively if more simplification is possible
if orig_expr != expr:
return constantsimp(expr, Cs)
return expr
def constant_renumber(expr, variables=None, newconstants=None):
r"""
Renumber arbitrary constants in ``expr`` to use the symbol names as given
in ``newconstants``. In the process, this reorders expression terms in a
standard way.
If ``newconstants`` is not provided then the new constant names will be
``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable
giving the new symbols to use for the constants in order.
The ``variables`` argument is a list of non-constant symbols. All other
free symbols found in ``expr`` are assumed to be constants and will be
renumbered. If ``variables`` is not given then any numbered symbol
beginning with ``C`` (e.g. ``C1``) is assumed to be a constant.
Symbols are renumbered based on ``.sort_key()``, so they should be
numbered roughly in the order that they appear in the final, printed
expression. Note that this ordering is based in part on hashes, so it can
produce different results on different machines.
The structure of this function is very similar to that of
:py:meth:`~sympy.solvers.ode.constantsimp`.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constant_renumber
>>> x, C1, C2, C3 = symbols('x,C1:4')
>>> expr = C3 + C2*x + C1*x**2
>>> expr
C1*x**2 + C2*x + C3
>>> constant_renumber(expr)
C1 + C2*x + C3*x**2
The ``variables`` argument specifies which are constants so that the
other symbols will not be renumbered:
>>> constant_renumber(expr, [C1, x])
C1*x**2 + C2 + C3*x
The ``newconstants`` argument is used to specify what symbols to use when
replacing the constants:
>>> constant_renumber(expr, [x], newconstants=symbols('E1:4'))
E1 + E2*x + E3*x**2
"""
# System of expressions
if isinstance(expr, (set, list, tuple)):
return type(expr)(constant_renumber(Tuple(*expr),
variables=variables, newconstants=newconstants))
# Symbols in solution but not ODE are constants
if variables is not None:
variables = set(variables)
free_symbols = expr.free_symbols
constantsymbols = list(free_symbols - variables)
# Any Cn is a constant...
else:
variables = set()
isconstant = lambda s: s.startswith('C') and s[1:].isdigit()
constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)]
# Find new constants checking that they aren't already in the ODE
if newconstants is None:
iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables)
else:
iter_constants = (sym for sym in newconstants if sym not in variables)
constants_found = []
# make a mapping to send all constantsymbols to S.One and use
# that to make sure that term ordering is not dependent on
# the indexed value of C
C_1 = [(ci, S.One) for ci in constantsymbols]
sort_key=lambda arg: default_sort_key(arg.subs(C_1))
def _constant_renumber(expr):
r"""
We need to have an internal recursive function
"""
# For system of expressions
if isinstance(expr, Tuple):
renumbered = [_constant_renumber(e) for e in expr]
return Tuple(*renumbered)
if isinstance(expr, Equality):
return Eq(
_constant_renumber(expr.lhs),
_constant_renumber(expr.rhs))
if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \
not expr.has(*constantsymbols):
# Base case, as above. Hope there aren't constants inside
# of some other class, because they won't be renumbered.
return expr
elif expr.is_Piecewise:
return expr
elif expr in constantsymbols:
if expr not in constants_found:
constants_found.append(expr)
return expr
elif expr.is_Function or expr.is_Pow:
return expr.func(
*[_constant_renumber(x) for x in expr.args])
else:
sortedargs = list(expr.args)
sortedargs.sort(key=sort_key)
return expr.func(*[_constant_renumber(x) for x in sortedargs])
expr = _constant_renumber(expr)
# Don't renumber symbols present in the ODE.
constants_found = [c for c in constants_found if c not in variables]
# Renumbering happens here
subs_dict = {var: cons for var, cons in zip(constants_found, iter_constants)}
expr = expr.subs(subs_dict, simultaneous=True)
return expr
def _handle_Integral(expr, func, hint):
r"""
Converts a solution with Integrals in it into an actual solution.
For most hints, this simply runs ``expr.doit()``.
"""
# XXX: This global y hack should be removed
global y
x = func.args[0]
f = func.func
if hint == "1st_exact":
sol = (expr.doit()).subs(y, f(x))
del y
elif hint == "1st_exact_Integral":
sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs)
del y
elif hint == "nth_linear_constant_coeff_homogeneous":
sol = expr
elif not hint.endswith("_Integral"):
sol = expr.doit()
else:
sol = expr
return sol
# FIXME: replace the general solution in the docstring with
# dsolve(equation, hint='1st_exact_Integral'). You will need to be able
# to have assumptions on P and Q that dP/dy = dQ/dx.
def ode_1st_exact(eq, func, order, match):
r"""
Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total
differential of a function. That is, the differential equation
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0
is exact if there is some function `F(x, y)` such that `P(x, y) =
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can
be shown that a necessary and sufficient condition for a first order ODE
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`.
Then, the solution will be as given below::
>>> from sympy import Function, Eq, Integral, symbols, pprint
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
>>> P, Q, F= map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
... Integral(Q(x0, t), (t, y0, y))), C1))
x y
/ /
| |
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1
| |
/ /
x0 y0
Where the first partials of `P` and `Q` exist and are continuous in a
simply connected region.
A note: SymPy currently has no way to represent inert substitution on an
expression, so the hint ``1st_exact_Integral`` will return an integral
with `dy`. This is supposed to represent the function that you are
solving for.
Examples
========
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
References
==========
- https://en.wikipedia.org/wiki/Exact_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 73
# indirect doctest
"""
x = func.args[0]
r = match # d+e*diff(f(x),x)
e = r[r['e']]
d = r[r['d']]
# XXX: This global y hack should be removed
global y # This is the only way to pass dummy y to _handle_Integral
y = r['y']
C1 = get_numbered_constants(eq, num=1)
# Refer Joel Moses, "Symbolic Integration - The Stormy Decade",
# Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558
# which gives the method to solve an exact differential equation.
sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y)
return Eq(sol, C1)
def ode_1st_homogeneous_coeff_best(eq, func, order, match):
r"""
Returns the best solution to an ODE from the two hints
``1st_homogeneous_coeff_subs_dep_div_indep`` and
``1st_homogeneous_coeff_subs_indep_div_dep``.
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
docstrings for more information on these hints. Note that there is no
``ode_1st_homogeneous_coeff_best_Integral`` hint.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_best', simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
# There are two substitutions that solve the equation, u1=y/x and u2=x/y
# They produce different integrals, so try them both and see which
# one is easier.
sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq,
func, order, match)
sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq,
func, order, match)
simplify = match.get('simplify', True)
if simplify:
# why is odesimp called here? Should it be at the usual spot?
sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep")
sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep")
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func,
trysolving=not simplify))
def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_1 = \frac{\text{<dependent
variable>}}{\text{<independent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential
equation into an equation separable in the variables `x` and `u`. If
`h(u_1)` is the function that results from making the substitution `u_1 =
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is::
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform)
/f(x)\ /f(x)\ d
g|----| + h|----|*--(f(x))
\ x / \ x / dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
f(x)
----
x
/
|
| -h(u1)
log(x) = C1 + | ---------------- d(u1)
| u1*h(u1) + g(u1)
|
/
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`.
Examples
========
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))
/ 3 \
|3*f(x) f (x)|
log|------ + -----|
| x 3 |
\ x /
log(x) = log(C1) - -------------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u1 = Dummy('u1') # u1 == f(x)/x
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0)
yarg = match.get('yarg', 0)
int = Integral(
(-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}),
(u1, None, f(x)/x))
sol = logcombine(Eq(log(x), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_2 = \frac{\text{<independent
variable>}}{\text{<dependent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential
equation into an equation separable in the variables `y` and `u_2`. If
`h(u_2)` is the function that results from making the substitution `u_2 =
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform)
/ x \ / x \ d
g|----| + h|----|*--(f(x))
\f(x)/ \f(x)/ dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
x
----
f(x)
/
|
| -g(u2)
| ---------------- d(u2)
| u2*g(u2) + h(u2)
|
/
<BLANKLINE>
f(x) = C1*e
Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`.
Examples
========
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u2 = Dummy('u2') # u2 == x/f(x)
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0) # If xarg present take xarg, else zero
yarg = match.get('yarg', 0) # If yarg present take yarg, else zero
int = Integral(
simplify(
(-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})),
(u2, None, x/f(x)))
sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
# XXX: Should this function maybe go somewhere else?
def homogeneous_order(eq, *symbols):
r"""
Returns the order `n` if `g` is homogeneous and ``None`` if it is not
homogeneous.
Determines if a function is homogeneous and if so of what order. A
function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y,
\cdots) = t^n f(x, y, \cdots)`.
If the function is of two variables, `F(x, y)`, then `f` being homogeneous
of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)`
or `H(y/x)`. This fact is used to solve 1st order ordinary differential
equations whose coefficients are homogeneous of the same order (see the
docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`).
Symbols can be functions, but every argument of the function must be a
symbol, and the arguments of the function that appear in the expression
must match those given in the list of symbols. If a declared function
appears with different arguments than given in the list of symbols,
``None`` is returned.
Examples
========
>>> from sympy import Function, homogeneous_order, sqrt
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> homogeneous_order(f(x), f(x)) is None
True
>>> homogeneous_order(f(x,y), f(y, x), x, y) is None
True
>>> homogeneous_order(f(x), f(x), x)
1
>>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
2
>>> homogeneous_order(x**2+f(x), x, f(x)) is None
True
"""
if not symbols:
raise ValueError("homogeneous_order: no symbols were given.")
symset = set(symbols)
eq = sympify(eq)
# The following are not supported
if eq.has(Order, Derivative):
return None
# These are all constants
if (eq.is_Number or
eq.is_NumberSymbol or
eq.is_number
):
return S.Zero
# Replace all functions with dummy variables
dum = numbered_symbols(prefix='d', cls=Dummy)
newsyms = set()
for i in [j for j in symset if getattr(j, 'is_Function')]:
iargs = set(i.args)
if iargs.difference(symset):
return None
else:
dummyvar = next(dum)
eq = eq.subs(i, dummyvar)
symset.remove(i)
newsyms.add(dummyvar)
symset.update(newsyms)
if not eq.free_symbols & symset:
return None
# assuming order of a nested function can only be equal to zero
if isinstance(eq, Function):
return None if homogeneous_order(
eq.args[0], *tuple(symset)) != 0 else S.Zero
# make the replacement of x with x*t and see if t can be factored out
t = Dummy('t', positive=True) # It is sufficient that t > 0
eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t]
if eqs is S.One:
return S.Zero # there was no term with only t
i, d = eqs.as_independent(t, as_Add=False)
b, e = d.as_base_exp()
if b == t:
return e
def ode_Liouville(eq, func, order, match):
r"""
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\!
\frac{dy}{dx}\!\right)^2 + h(x)
\frac{dy}{dx}\text{.}
The general solution is:
>>> from sympy import Function, dsolve, Eq, pprint, diff
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
... h(x)*diff(f(x),x), 0)
>>> pprint(genform)
2 2
/d \ d d
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0
\dx / dx 2
dx
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
f(x)
/ /
| |
| / | /
| | | |
| - | h(x) dx | | g(y) dy
| | | |
| / | /
C1 + C2* | e dx + | e dy = 0
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
... diff(f(x), x)/x, f(x), hint='Liouville'))
________________ ________________
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ]
References
==========
- Goldstein and Braun, "Advanced Methods for the Solution of Differential
Equations", pp. 98
- http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville
# indirect doctest
"""
# Liouville ODE:
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98, as well as
# http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville
x = func.args[0]
f = func.func
r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x)
y = r['y']
C1, C2 = get_numbered_constants(eq, num=2)
int = Integral(exp(Integral(r['g'], y)), (y, None, f(x)))
sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0)
return sol
def ode_2nd_power_series_ordinary(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at an ordinary point. A homogeneous
differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials,
it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at
`x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`,
in the differential equation, and equating the nth term. Using this relation
various terms can be generated.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) + f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_ordinary'))
/ 4 2 \ / 2\
|x x | | x | / 6\
f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x /
\24 2 / \ 6 /
References
==========
- http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = Dummy("n", integer=True)
s = Wild("s")
k = Wild("k", exclude=[x])
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match[match['a3']]
q = match[match['b3']]
r = match[match['c3']]
seriesdict = {}
recurr = Function("r")
# Generating the recurrence relation which works this way:
# for the second order term the summation begins at n = 2. The coefficients
# p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that
# the exponent of x becomes n.
# For example, if p is x, then the second degree recurrence term is
# an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to
# an+1*n*(n - 1)*x**n.
# A similar process is done with the first order and zeroth order term.
coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)]
for index, coeff in enumerate(coefflist):
if coeff[1]:
f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0)))
if f2.is_Add:
addargs = f2.args
else:
addargs = [f2]
for arg in addargs:
powm = arg.match(s*x**k)
term = coeff[0]*powm[s]
if not powm[k].is_Symbol:
term = term.subs(n, n - powm[k].as_independent(n)[0])
startind = powm[k].subs(n, index)
# Seeing if the startterm can be reduced further.
# If it vanishes for n lesser than startind, it is
# equal to summation from n.
if startind:
for i in reversed(range(startind)):
if not term.subs(n, i):
seriesdict[term] = i
else:
seriesdict[term] = i + 1
break
else:
seriesdict[term] = S.Zero
# Stripping of terms so that the sum starts with the same number.
teq = S.Zero
suminit = seriesdict.values()
rkeys = seriesdict.keys()
req = Add(*rkeys)
if any(suminit):
maxval = max(suminit)
for term in seriesdict:
val = seriesdict[term]
if val != maxval:
for i in range(val, maxval):
teq += term.subs(n, val)
finaldict = {}
if teq:
fargs = teq.atoms(AppliedUndef)
if len(fargs) == 1:
finaldict[fargs.pop()] = 0
else:
maxf = max(fargs, key = lambda x: x.args[0])
sol = solve(teq, maxf)
if isinstance(sol, list):
sol = sol[0]
finaldict[maxf] = sol
# Finding the recurrence relation in terms of the largest term.
fargs = req.atoms(AppliedUndef)
maxf = max(fargs, key = lambda x: x.args[0])
minf = min(fargs, key = lambda x: x.args[0])
if minf.args[0].is_Symbol:
startiter = 0
else:
startiter = -minf.args[0].as_independent(n)[0]
lhs = maxf
rhs = solve(req, maxf)
if isinstance(rhs, list):
rhs = rhs[0]
# Checking how many values are already present
tcounter = len([t for t in finaldict.values() if t])
for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary
check = rhs.subs(n, startiter)
nlhs = lhs.subs(n, startiter)
nrhs = check.subs(finaldict)
finaldict[nlhs] = nrhs
startiter += 1
# Post processing
series = C0 + C1*(x - x0)
for term in finaldict:
if finaldict[term]:
fact = term.args[0]
series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*(
x - x0)**fact)
series = collect(expand_mul(series), [C0, C1]) + Order(x**terms)
return Eq(f(x), series)
def ode_2nd_linear_airy(eq, func, order, match):
r"""
Gives solution of the Airy differential equation
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0
in terms of Airy special functions airyai and airybi.
Examples
========
>>> from sympy import dsolve, Function
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) - x*f(x)
>>> dsolve(eq)
Eq(f(x), C1*airyai(x) + C2*airybi(x))
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
b = match['b']
m = match['m']
if m.is_positive:
arg = - b/cbrt(m)**2 - cbrt(m)*x
elif m.is_negative:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
else:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
return Eq(f(x), C0*airyai(arg) + C1*airybi(arg))
def ode_2nd_power_series_regular(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at a regular point. A second order
homogeneous differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}`
and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity
`P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for
finding the power series solutions is:
1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series
solutions about x0. Find `p0` and `q0` which are the constants of the
power series expansions.
2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the
roots `m1` and `m2` of the indicial equation.
3. If `m1 - m2` is a non integer there exists two series solutions. If
`m1 = m2`, there exists only one solution. If `m1 - m2` is an integer,
then the existence of one solution is confirmed. The other solution may
or may not exist.
The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The
coefficients are determined by the following recurrence relation.
`a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case
in which `m1 - m2` is an integer, it can be seen from the recurrence relation
that for the lower root `m`, when `n` equals the difference of both the
roots, the denominator becomes zero. So if the numerator is not equal to zero,
a second series solution exists.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_regular'))
/ 6 4 2 \
| x x x |
/ 4 2 \ C1*|- --- + -- - -- + 1|
| x x | \ 720 24 2 / / 6\
f(x) = C2*|--- - -- + 1| + ------------------------ + O\x /
\120 6 / x
References
==========
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
m = Dummy("m") # for solving the indicial equation
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match['p']
q = match['q']
# Generating the indicial equation
indicial = []
for term in [p, q]:
if not term.has(x):
indicial.append(term)
else:
term = series(term, n=1, x0=x0)
if isinstance(term, Order):
indicial.append(S.Zero)
else:
for arg in term.args:
if not arg.has(x):
indicial.append(arg)
break
p0, q0 = indicial
sollist = solve(m*(m - 1) + m*p0 + q0, m)
if sollist and isinstance(sollist, list) and all(
[sol.is_real for sol in sollist]):
serdict1 = {}
serdict2 = {}
if len(sollist) == 1:
# Only one series solution exists in this case.
m1 = m2 = sollist.pop()
if terms-m1-1 <= 0:
return Eq(f(x), Order(terms))
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
else:
m1 = sollist[0]
m2 = sollist[1]
if m1 < m2:
m1, m2 = m2, m1
# Irrespective of whether m1 - m2 is an integer or not, one
# Frobenius series solution exists.
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
if not (m1 - m2).is_integer:
# Second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1)
else:
# Check if second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1)
if serdict1:
finalseries1 = C0
for key in serdict1:
power = int(key.name[1:])
finalseries1 += serdict1[key]*(x - x0)**power
finalseries1 = (x - x0)**m1*finalseries1
finalseries2 = S.Zero
if serdict2:
for key in serdict2:
power = int(key.name[1:])
finalseries2 += serdict2[key]*(x - x0)**power
finalseries2 += C1
finalseries2 = (x - x0)**m2*finalseries2
return Eq(f(x), collect(finalseries1 + finalseries2,
[C0, C1]) + Order(x**terms))
def ode_2nd_linear_bessel(eq, func, order, match):
r"""
Gives solution of the Bessel differential equation
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x)
if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)) as both the solutions are linearly independent else if
n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)).
Examples
========
>>> from sympy.abc import x
>>> from sympy import Symbol
>>> v = Symbol('v', positive=True)
>>> from sympy.solvers.ode import dsolve
>>> from sympy import Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
>>> dsolve(genform)
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))
References
==========
https://www.math24.net/bessel-differential-equation/
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = match['n']
a4 = match['a4']
c4 = match['c4']
d4 = match['d4']
b4 = match['b4']
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2)
return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4)
+ C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))
def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None):
r"""
Returns a dict with keys as coefficients and values as their values in terms of C0
"""
n = int(n)
# In cases where m1 - m2 is not an integer
m2 = check
d = Dummy("d")
numsyms = numbered_symbols("C", start=0)
numsyms = [next(numsyms) for i in range(n + 1)]
serlist = []
for ser in [p, q]:
# Order term not present
if ser.is_polynomial(x) and Poly(ser, x).degree() <= n:
if x0:
ser = ser.subs(x, x + x0)
dict_ = Poly(ser, x).as_dict()
# Order term present
else:
tseries = series(ser, x=x0, n=n+1)
# Removing order
dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict()
# Fill in with zeros, if coefficients are zero.
for i in range(n + 1):
if (i,) not in dict_:
dict_[(i,)] = S.Zero
serlist.append(dict_)
pseries = serlist[0]
qseries = serlist[1]
indicial = d*(d - 1) + d*p0 + q0
frobdict = {}
for i in range(1, n + 1):
num = c*(m*pseries[(i,)] + qseries[(i,)])
for j in range(1, i):
sym = Symbol("C" + str(j))
num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)])
# Checking for cases when m1 - m2 is an integer. If num equals zero
# then a second Frobenius series solution cannot be found. If num is not zero
# then set constant as zero and proceed.
if m2 is not None and i == m2 - m:
if num:
return False
else:
frobdict[numsyms[i]] = S.Zero
else:
frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i))
return frobdict
def _nth_order_reducible_match(eq, func):
r"""
Matches any differential equation that can be rewritten with a smaller
order. Only derivatives of ``func`` alone, wrt a single variable,
are considered, and only in them should ``func`` appear.
"""
# ODE only handles functions of 1 variable so this affirms that state
assert len(func.args) == 1
x = func.args[0]
vc = [d.variable_count[0] for d in eq.atoms(Derivative)
if d.expr == func and len(d.variable_count) == 1]
ords = [c for v, c in vc if v == x]
if len(ords) < 2:
return
smallest = min(ords)
# make sure func does not appear outside of derivatives
D = Dummy()
if eq.subs(func.diff(x, smallest), D).has(func):
return
return {'n': smallest}
def ode_nth_order_reducible(eq, func, order, match):
r"""
Solves ODEs that only involve derivatives of the dependent variable using
a substitution of the form `f^n(x) = g(x)`.
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If
that gives an explicit solution for `g` then `f` is found simply by
integration.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0)
>>> dsolve(eq, f(x), hint='nth_order_reducible')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
"""
x = func.args[0]
f = func.func
n = match['n']
# get a unique function name for g
names = [a.name for a in eq.atoms(AppliedUndef)]
while True:
name = Dummy().name
if name not in names:
g = Function(name)
break
w = f(x).diff(x, n)
geq = eq.subs(w, g(x))
gsol = dsolve(geq, g(x))
if not isinstance(gsol, list):
gsol = [gsol]
# Might be multiple solutions to the reduced ODE:
fsol = []
for gsoli in gsol:
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times
fsol.append(fsoli)
if len(fsol) == 1:
fsol = fsol[0]
return fsol
def _remove_redundant_solutions(eq, solns, order, var):
r"""
Remove redundant solutions from the set of solutions.
This function is needed because otherwise dsolve can return
redundant solutions. As an example consider:
eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0)
There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0
leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0
leading to the solution f(x) = C1. In this particular case we then see
that the second solution is a special case of the first and we don't
want to return it.
This does not always happen. If we have
eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0)
then we get the algebraic solution f(x) = [-2, 2] and the integral solution
f(x) = x + C1 and in this case the two solutions are not equivalent wrt
initial conditions so both should be returned.
"""
def is_special_case_of(soln1, soln2):
return _is_special_case_of(soln1, soln2, eq, order, var)
unique_solns = []
for soln1 in solns:
for soln2 in unique_solns[:]:
if is_special_case_of(soln1, soln2):
break
elif is_special_case_of(soln2, soln1):
unique_solns.remove(soln2)
else:
unique_solns.append(soln1)
return unique_solns
def _is_special_case_of(soln1, soln2, eq, order, var):
r"""
True if soln1 is found to be a special case of soln2 wrt some value of the
constants that appear in soln2. False otherwise.
"""
# The solutions returned by dsolve may be given explicitly or implicitly.
# We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs)
# of the two solutions.
#
# Since this is supposed to hold for all x it also holds for derivatives.
# For an order n ode we should be able to differentiate
# each solution n times to get n+1 equations.
#
# We then try to solve those n+1 equations for the integrations constants
# in sol2. If we can find a solution that doesn't depend on x then it
# means that some value of the constants in sol1 is a special case of
# sol2 corresponding to a particular choice of the integration constants.
# In case the solution is in implicit form we subtract the sides
soln1 = soln1.rhs - soln1.lhs
soln2 = soln2.rhs - soln2.lhs
# Work for the series solution
if soln1.has(Order) and soln2.has(Order):
if soln1.getO() == soln2.getO():
soln1 = soln1.removeO()
soln2 = soln2.removeO()
else:
return False
elif soln1.has(Order) or soln2.has(Order):
return False
constants1 = soln1.free_symbols.difference(eq.free_symbols)
constants2 = soln2.free_symbols.difference(eq.free_symbols)
constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1))
if len(constants1) == 1:
constants1_new = {constants1_new}
for c_old, c_new in zip(constants1, constants1_new):
soln1 = soln1.subs(c_old, c_new)
# n equations for sol1 = sol2, sol1'=sol2', ...
lhs = soln1
rhs = soln2
eqns = [Eq(lhs, rhs)]
for n in range(1, order):
lhs = lhs.diff(var)
rhs = rhs.diff(var)
eq = Eq(lhs, rhs)
eqns.append(eq)
# BooleanTrue/False awkwardly show up for trivial equations
if any(isinstance(eq, BooleanFalse) for eq in eqns):
return False
eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)]
try:
constant_solns = solve(eqns, constants2)
except NotImplementedError:
return False
# Sometimes returns a dict and sometimes a list of dicts
if isinstance(constant_solns, dict):
constant_solns = [constant_solns]
# after solving the issue 17418, maybe we don't need the following checksol code.
for constant_soln in constant_solns:
for eq in eqns:
eq=eq.rhs-eq.lhs
if checksol(eq, constant_soln) is not True:
return False
# If any solution gives all constants as expressions that don't depend on
# x then there exists constants for soln2 that give soln1
for constant_soln in constant_solns:
if not any(c.has(var) for c in constant_soln.values()):
return True
return False
def _nth_linear_match(eq, func, order):
r"""
Matches a differential equation to the linear form:
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0
Returns a dict of order:coeff terms, where order is the order of the
derivative on each term, and coeff is the coefficient of that derivative.
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is
not linear. This function assumes that ``func`` has already been checked
to be good.
Examples
========
>>> from sympy import Function, cos, sin
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _nth_linear_match
>>> f = Function('f')
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(x), f(x), 3)
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(f(x)), f(x), 3) == None
True
"""
x = func.args[0]
one_x = {x}
terms = {i: S.Zero for i in range(-1, order + 1)}
for i in Add.make_args(eq):
if not i.has(func):
terms[-1] += i
else:
c, f = i.as_independent(func)
if (isinstance(f, Derivative)
and set(f.variables) == one_x
and f.args[0] == func):
terms[f.derivative_count] += c
elif f == func:
terms[len(f.args[1:])] += c
else:
return None
return terms
def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear homogeneous variable-coefficient
Cauchy-Euler equidimensional ordinary differential equation.
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `f(x) = x^r`, and deriving a characteristic equation
for `r`. When there are repeated roots, we include extra terms of the
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration
constant, `r` is a root of the characteristic equation, and `k` ranges
over the multiplicity of `r`. In the cases where the roots are complex,
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))`
are returned, based on expansions with Euler's formula. The general
solution is the sum of the terms found. If SymPy cannot find exact roots
to the characteristic equation, a
:py:obj:`~.ComplexRootOf` instance will be returned
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
... hint='nth_linear_euler_eq_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), sqrt(x)*(C1 + C2*log(x)))
Note that because this method does not involve integration, there is no
``nth_linear_euler_eq_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
corresponding to the fundamental solution set, for use with non
homogeneous solution methods like variation of parameters and
undetermined coefficients. Note that, though the solutions should be
linearly independent, this function does not explicitly check that. You
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear
independence. Also, ``assert len(sollist) == order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
>>> pprint(dsolve(eq, f(x),
... hint='nth_linear_euler_eq_homogeneous'))
2
f(x) = x *(C1 + C2*x)
References
==========
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and
Engineers", Springer 1999, pp. 12
# indirect doctest
"""
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
chareq = Poly(chareq, symbol)
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
constants.reverse()
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
gsol = S.Zero
# We need keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
ln = log
for root, multiplicity in charroots.items():
for i in range(multiplicity):
if isinstance(root, RootOf):
gsol += (x**root) * constants.pop()
if multiplicity != 1:
raise ValueError("Value should be 1")
collectterms = [(0, root, 0)] + collectterms
elif root.is_real:
gsol += ln(x)**i*(x**root) * constants.pop()
collectterms = [(i, root, 0)] + collectterms
else:
reroot = re(root)
imroot = im(root)
gsol += ln(x)**i * (x**reroot) * (
constants.pop() * sin(abs(imroot)*ln(x))
+ constants.pop() * cos(imroot*ln(x)))
# Preserve ordering (multiplicity, real part, imaginary part)
# It will be assumed implicitly when constructing
# fundamental solution sets.
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'sol':
return Eq(f(x), gsol)
elif returns in ('list' 'both'):
# HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through)
# Create a list of (hopefully) linearly independent solutions
gensols = []
# Keep track of when to use sin or cos for nonzero imroot
for i, reroot, imroot in collectterms:
if imroot == 0:
gensols.append(ln(x)**i*x**reroot)
else:
sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x))
if sin_form in gensols:
cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x))
gensols.append(cos_form)
else:
gensols.append(sin_form)
if returns == 'list':
return gensols
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using undetermined coefficients.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `x = exp(t)`, and deriving a characteristic equation
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can
be then solved by nth_linear_constant_coeff_undetermined_coefficients if
g(exp(t)) has finite number of linearly independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
After replacement of x by exp(t), this method works by creating a trial function
from the expression and all of its linear independent derivatives and
substituting them into the original ODE. The coefficients for each term
will be a system of linear equations, which are be solved for and
substituted, giving the solution. If any of the trial functions are linearly
dependent on the solution to the homogeneous equation, they are multiplied
by sufficient `x` to make them linearly independent.
Examples
========
>>> from sympy import dsolve, Function, Derivative, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)
"""
x = func.args[0]
f = func.func
r = match
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
for i in range(1,degree(Poly(chareq, symbol))+1):
eq += chareq.coeff(symbol**i)*diff(f(x), x, i)
if chareq.as_coeff_add(symbol)[0]:
eq += chareq.as_coeff_add(symbol)[0]*f(x)
e, re = posify(r[-1].subs(x, exp(x)))
eq += e.subs(re)
match = _nth_linear_match(eq, f(x), ode_order(eq, f(x)))
eq_homogeneous = Add(eq,-match[-1])
match['trialset'] = _undetermined_coefficients_match(match[-1], x, func, eq_homogeneous)['trialset']
return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand()
def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using variation of parameters.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by multiplying eq given below with `a_n x^{n}`
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation, but sometimes SymPy cannot simplify the
Wronskian well enough to integrate it. If this method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, Derivative
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
Eq(f(x), C1*x + C2*x**2 + x**4/6)
"""
x = func.args[0]
f = func.func
r = match
gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both')
match.update(gensol)
r[-1] = r[-1]/r[ode_order(eq, f(x))]
sol = _solve_variation_of_parameters(eq, func, order, match)
return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))])
def _linear_coeff_match(expr, func):
r"""
Helper function to match hint ``linear_coefficients``.
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2
f(x) + c_2)` where the following conditions hold:
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals;
2. `c_1` or `c_2` are not equal to zero;
3. `a_2 b_1 - a_1 b_2` is not equal to zero.
Return ``xarg``, ``yarg`` where
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)`
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)`
Examples
========
>>> from sympy import Function
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _linear_coeff_match
>>> from sympy.functions.elementary.trigonometric import sin
>>> f = Function('f')
>>> _linear_coeff_match((
... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x))
(1/9, 22/9)
>>> _linear_coeff_match(
... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x))
(19/27, 2/27)
>>> _linear_coeff_match(sin(f(x)/x), f(x))
"""
f = func.func
x = func.args[0]
def abc(eq):
r'''
Internal function of _linear_coeff_match
that returns Rationals a, b, c
if eq is a*x + b*f(x) + c, else None.
'''
eq = _mexpand(eq)
c = eq.as_independent(x, f(x), as_Add=True)[0]
if not c.is_Rational:
return
a = eq.coeff(x)
if not a.is_Rational:
return
b = eq.coeff(f(x))
if not b.is_Rational:
return
if eq == a*x + b*f(x) + c:
return a, b, c
def match(arg):
r'''
Internal function of _linear_coeff_match that returns Rationals a1,
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x)
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is
non-zero, else None.
'''
n, d = arg.together().as_numer_denom()
m = abc(n)
if m is not None:
a1, b1, c1 = m
m = abc(d)
if m is not None:
a2, b2, c2 = m
d = a2*b1 - a1*b2
if (c1 or c2) and d:
return a1, b1, c1, a2, b2, c2, d
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr}
m1 = match(m.pop())
if m1 and all(match(mi) == m1 for mi in m):
a1, b1, c1, a2, b2, c2, denom = m1
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom
def ode_linear_coefficients(eq, func, order, match):
r"""
Solves a differential equation with linear coefficients.
The general form of a differential equation with linear coefficients is
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y +
c_2}\!\right) = 0\text{,}
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2
- a_2 b_1 \ne 0`.
This can be solved by substituting:
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2}
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1
b_2}\text{.}
This substitution reduces the equation to a homogeneous differential
equation.
See Also
========
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
Examples
========
>>> from sympy import Function, pprint
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> df = f(x).diff(x)
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
>>> dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
>>> pprint(dsolve(eq, hint='linear_coefficients'))
___________ ___________
/ 2 / 2
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
return ode_1st_homogeneous_coeff_best(eq, func, order, match)
def ode_separable_reduced(eq, func, order, match):
r"""
Solves a differential equation that can be reduced to the separable form.
The general form of this equation is
.. math:: y' + (y/x) H(x^n y) = 0\text{}.
This can be solved by substituting `u(y) = x^n y`. The equation then
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} -
\frac{1}{x} = 0`.
The general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x, n
>>> f, g = map(Function, ['f', 'g'])
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
>>> pprint(genform)
/ n \
d f(x)*g\x *f(x)/
--(f(x)) + ---------------
dx x
>>> pprint(dsolve(genform, hint='separable_reduced'))
n
x *f(x)
/
|
| 1
| ------------ dy = C1 + log(x)
| y*(n - g(y))
|
/
See Also
========
:meth:`sympy.solvers.ode.ode.ode_separable`
Examples
========
>>> from sympy import Function, pprint
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = (x - x**2*f(x))*d - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'))
___________ ___________
/ 2 / 2
1 - \/ C1*x + 1 \/ C1*x + 1 + 1
[f(x) = ------------------, f(x) = ------------------]
x x
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
# Arguments are passed in a way so that they are coherent with the
# ode_separable function
x = func.args[0]
f = func.func
y = Dummy('y')
u = match['u'].subs(match['t'], y)
ycoeff = 1/(y*(match['power'] - u))
m1 = {y: 1, x: -1/x, 'coeff': 1}
m2 = {y: ycoeff, x: 1, 'coeff': 1}
r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)}
return ode_separable(eq, func, order, r)
def ode_1st_power_series(eq, func, order, match):
r"""
The power series solution is a method which gives the Taylor series expansion
to the solution of a differential equation.
For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power
series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`.
The solution is given by
.. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!},
where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`.
To compute the values of the `F_{n}(x_{0},b)` the following algorithm is
followed, until the required number of terms are generated.
1. `F_1 = h(x_{0}, b)`
2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}`
Examples
========
>>> from sympy import Function, pprint, exp
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = exp(x)*(f(x).diff(x)) - f(x)
>>> pprint(dsolve(eq, hint='1st_power_series'))
3 4 5
C1*x C1*x C1*x / 6\
f(x) = C1 + C1*x - ----- + ----- + ----- + O\x /
6 24 60
References
==========
- Travis W. Walker, Analytic power series technique for solving first-order
differential equations, p.p 17, 18
"""
x = func.args[0]
y = match['y']
f = func.func
h = -match[match['d']]/match[match['e']]
point = match.get('f0')
value = match.get('f0val')
terms = match.get('terms')
# First term
F = h
if not h:
return Eq(f(x), value)
# Initialization
series = value
if terms > 1:
hc = h.subs({x: point, y: value})
if hc.has(oo) or hc.has(NaN) or hc.has(zoo):
# Derivative does not exist, not analytic
return Eq(f(x), oo)
elif hc:
series += hc*(x - point)
for factcount in range(2, terms):
Fnew = F.diff(x) + F.diff(y)*h
Fnewc = Fnew.subs({x: point, y: value})
# Same logic as above
if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo):
return Eq(f(x), oo)
series += Fnewc*((x - point)**factcount)/factorial(factcount)
F = Fnew
series += Order(x**terms)
return Eq(f(x), series)
def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='sol'):
r"""
Solves an `n`\th order linear homogeneous differential equation with
constant coefficients.
This is an equation of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = 0\text{.}
These equations can be solved in a general manner, by taking the roots of
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m +
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms,
for each where `C_n` is an arbitrary constant, `r` is a root of the
characteristic equation and `i` is one of each from 0 to the multiplicity
of the root - 1 (for example, a root 3 of multiplicity 2 would create the
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`.
Complex roots always come in conjugate pairs in polynomials with real
coefficients, so the two roots will be represented (after simplifying the
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`.
If SymPy cannot find exact roots to the characteristic equation, a
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1)))
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1)))
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3)))
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3))))
Note that because this method does not involve integration, there is no
``nth_linear_constant_coeff_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
for use with non homogeneous solution methods like variation of
parameters and undetermined coefficients. Note that, though the
solutions should be linearly independent, this function does not
explicitly check that. You can do ``assert simplify(wronskian(sollist))
!= 0`` to check for linear independence. Also, ``assert len(sollist) ==
order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous'))
x -2*x
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation section:
Nonhomogeneous_equation_with_constant_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 211
# indirect doctest
"""
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if type(i) == str or i < 0:
pass
else:
chareq += r[i]*symbol**i
chareq = Poly(chareq, symbol)
# Can't just call roots because it doesn't return rootof for unsolveable
# polynomials.
chareqroots = roots(chareq, multiple=True)
if len(chareqroots) != order:
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()])
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
# We need to keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
gensols = []
conjugate_roots = [] # used to prevent double-use of conjugate roots
# Loop over roots in theorder provided by roots/rootof...
for root in chareqroots:
# but don't repoeat multiple roots.
if root not in charroots:
continue
multiplicity = charroots.pop(root)
for i in range(multiplicity):
if chareq_is_complex:
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
continue
reroot = re(root)
imroot = im(root)
if imroot.has(atan2) and reroot.has(atan2):
# Remove this condition when re and im stop returning
# circular atan2 usages.
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
else:
if root in conjugate_roots:
collectterms = [(i, reroot, imroot)] + collectterms
continue
if imroot == 0:
gensols.append(x**i*exp(reroot*x))
collectterms = [(i, reroot, 0)] + collectterms
continue
conjugate_roots.append(conjugate(root))
gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x))
gensols.append(x**i*exp(reroot*x) * cos( imroot * x))
# This ordering is important
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'list':
return gensols
elif returns in ('sol' 'both'):
gsol = Add(*[i*j for (i, j) in zip(constants, gensols)])
if returns == 'sol':
return Eq(f(x), gsol)
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of undetermined coefficients.
This method works on differential equations of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = P(x)\text{,}
where `P(x)` is a function that has a finite number of linearly
independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
This method works by creating a trial function from the expression and all
of its linear independent derivatives and substituting them into the
original ODE. The coefficients for each term will be a system of linear
equations, which are be solved for and substituted, giving the solution.
If any of the trial functions are linearly dependent on the solution to
the homogeneous equation, they are multiplied by sufficient `x` to make
them linearly independent.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
... 4*exp(-x)*x**2 + cos(2*x), f(x),
... hint='nth_linear_constant_coeff_undetermined_coefficients'))
/ / 3\\
| | x || -x 4*sin(2*x) 3*cos(2*x)
f(x) = |C1 + x*|C2 + --||*e - ---------- + ----------
\ \ 3 // 25 25
References
==========
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 221
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_undetermined_coefficients(eq, func, order, match)
def _solve_undetermined_coefficients(eq, func, order, match):
r"""
Helper function for the method of undetermined coefficients.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_undetermined_coefficients`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
``trialset``
The set of trial functions as returned by
``_undetermined_coefficients_match()['trialset']``.
"""
x = func.args[0]
f = func.func
r = match
coeffs = numbered_symbols('a', cls=Dummy)
coefflist = []
gensols = r['list']
gsol = r['sol']
trialset = r['trialset']
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply" +
" undetermined coefficients to " + str(eq) +
" (number of terms != order)")
trialfunc = 0
for i in trialset:
c = next(coeffs)
coefflist.append(c)
trialfunc += c*i
eqs = sub_func_doit(eq, f(x), trialfunc)
coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1))))
eqs = _mexpand(eqs)
for i in Add.make_args(eqs):
s = separatevars(i, dict=True, symbols=[x])
if coeffsdict.get(s[x]):
coeffsdict[s[x]] += s['coeff']
else:
coeffsdict[s[x]] = s['coeff']
coeffvals = solve(list(coeffsdict.values()), coefflist)
if not coeffvals:
raise NotImplementedError(
"Could not solve `%s` using the "
"method of undetermined coefficients "
"(unable to solve for coefficients)." % eq)
psol = trialfunc.subs(coeffvals)
return Eq(f(x), gsol.rhs + psol)
def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero):
r"""
Returns a trial function match if undetermined coefficients can be applied
to ``expr``, and ``None`` otherwise.
A trial expression can be found for an expression for use with the method
of undetermined coefficients if the expression is an
additive/multiplicative combination of constants, polynomials in `x` (the
independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and
`e^{a x}` terms (in other words, it has a finite number of linearly
independent derivatives).
Note that you may still need to multiply each term returned here by
sufficient `x` to make it linearly independent with the solutions to the
homogeneous equation.
This is intended for internal use by ``undetermined_coefficients`` hints.
SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of
only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So,
for example, you will need to manually convert `\sin^2(x)` into `[1 +
\cos(2 x)]/2` to properly apply the method of undetermined coefficients on
it.
Examples
========
>>> from sympy import log, exp
>>> from sympy.solvers.ode.ode import _undetermined_coefficients_match
>>> from sympy.abc import x
>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
{'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}}
>>> _undetermined_coefficients_match(log(x), x)
{'test': False}
"""
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
retdict = {}
def _test_term(expr, x):
r"""
Test if ``expr`` fits the proper form for undetermined coefficients.
"""
if not expr.has(x):
return True
elif expr.is_Add:
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Mul:
if expr.has(sin, cos):
foundtrig = False
# Make sure that there is only one trig function in the args.
# See the docstring.
for i in expr.args:
if i.has(sin, cos):
if foundtrig:
return False
else:
foundtrig = True
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Function:
if expr.func in (sin, cos, exp, sinh, cosh):
if expr.args[0].match(a*x + b):
return True
else:
return False
else:
return False
elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
expr.exp >= 0:
return True
elif expr.is_Pow and expr.base.is_number:
if expr.exp.match(a*x + b):
return True
else:
return False
elif expr.is_Symbol or expr.is_number:
return True
else:
return False
def _get_trial_set(expr, x, exprs=set([])):
r"""
Returns a set of trial terms for undetermined coefficients.
The idea behind undetermined coefficients is that the terms expression
repeat themselves after a finite number of derivatives, except for the
coefficients (they are linearly dependent). So if we collect these,
we should have the terms of our trial function.
"""
def _remove_coefficient(expr, x):
r"""
Returns the expression without a coefficient.
Similar to expr.as_independent(x)[1], except it only works
multiplicatively.
"""
term = S.One
if expr.is_Mul:
for i in expr.args:
if i.has(x):
term *= i
elif expr.has(x):
term = expr
return term
expr = expand_mul(expr)
if expr.is_Add:
for term in expr.args:
if _remove_coefficient(term, x) in exprs:
pass
else:
exprs.add(_remove_coefficient(term, x))
exprs = exprs.union(_get_trial_set(term, x, exprs))
else:
term = _remove_coefficient(expr, x)
tmpset = exprs.union({term})
oldset = set([])
while tmpset != oldset:
# If you get stuck in this loop, then _test_term is probably
# broken
oldset = tmpset.copy()
expr = expr.diff(x)
term = _remove_coefficient(expr, x)
if term.is_Add:
tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
else:
tmpset.add(term)
exprs = tmpset
return exprs
def is_homogeneous_solution(term):
r""" This function checks whether the given trialset contains any root
of homogenous equation"""
return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero
retdict['test'] = _test_term(expr, x)
if retdict['test']:
# Try to generate a list of trial solutions that will have the
# undetermined coefficients. Note that if any of these are not linearly
# independent with any of the solutions to the homogeneous equation,
# then they will need to be multiplied by sufficient x to make them so.
# This function DOES NOT do that (it doesn't even look at the
# homogeneous equation).
temp_set = set([])
for i in Add.make_args(expr):
act = _get_trial_set(i,x)
if eq_homogeneous is not S.Zero:
while any(is_homogeneous_solution(ts) for ts in act):
act = {x*ts for ts in act}
temp_set = temp_set.union(act)
retdict['trialset'] = temp_set
return retdict
def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of variation of parameters.
This method works on any differential equations of the form
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0
f(x) = P(x)\text{.}
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, P(x)]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation with constant coefficients, but sometimes
SymPy cannot simplify the Wronskian well enough to integrate it. If this
method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
... hint='nth_linear_constant_coeff_variation_of_parameters'))
/ / / x*log(x) 11*x\\\ x
f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e
\ \ \ 6 36 ///
References
==========
- https://en.wikipedia.org/wiki/Variation_of_parameters
- http://planetmath.org/VariationOfParameters
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 233
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_variation_of_parameters(eq, func, order, match)
def _solve_variation_of_parameters(eq, func, order, match):
r"""
Helper function for the method of variation of parameters and nonhomogeneous euler eq.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_variation_of_parameters`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
"""
x = func.args[0]
f = func.func
r = match
psol = 0
gensols = r['list']
gsol = r['sol']
wr = wronskian(gensols, x)
if r.get('simplify', True):
wr = simplify(wr) # We need much better simplification for
# some ODEs. See issue 4662, for example.
# To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1
wr = trigsimp(wr, deep=True, recursive=True)
if not wr:
# The wronskian will be 0 iff the solutions are not linearly
# independent.
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " + str(eq) + " (Wronskian == 0)")
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " +
str(eq) + " (number of terms != order)")
negoneterm = (-1)**(order)
for i in gensols:
psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order]
negoneterm *= -1
if r.get('simplify', True):
psol = simplify(psol)
psol = trigsimp(psol, deep=True)
return Eq(f(x), gsol.rhs + psol)
def ode_separable(eq, func, order, match):
r"""
Solves separable 1st order differential equations.
This is any differential equation that can be written as `P(y)
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`.
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back
end, so if a separable equation is not caught by this solver, it is most
likely the fault of that function.
:py:meth:`~sympy.simplify.simplify.separatevars` is
smart enough to do most expansion and factoring necessary to convert a
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The
general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform)
d
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
dx
>>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
f(x)
/ /
| |
| b(y) | c(x)
| ---- dy = C1 + | ---- dx
| d(y) | a(x)
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
... hint='separable', simplify=False))
/ 2 \ 2
log\3*f (x) - 1/ x
---------------- = C1 + --
6 2
References
==========
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 52
# indirect doctest
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
r = match # {'m1':m1, 'm2':m2, 'y':y}
u = r.get('hint', f(x)) # get u from separable_reduced else get f(x)
return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']],
(r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/
r['m2'][x], x) + C1)
def checkinfsol(eq, infinitesimals, func=None, order=None):
r"""
This function is used to check if the given infinitesimals are the
actual infinitesimals of the given first order differential equation.
This method is specific to the Lie Group Solver of ODEs.
As of now, it simply checks, by substituting the infinitesimals in the
partial differential equation.
.. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x}\right)*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0
where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}`
The infinitesimals should be given in the form of a list of dicts
``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the
output of the function infinitesimals. It returns a list
of values of the form ``[(True/False, sol)]`` where ``sol`` is the value
obtained after substituting the infinitesimals in the PDE. If it
is ``True``, then ``sol`` would be 0.
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Lie groups solver has been implemented "
"only for first order differential equations")
else:
df = func.diff(x)
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy('y')
h = h.subs(func, y)
xi = Function('xi')(x, y)
eta = Function('eta')(x, y)
dxi = Function('xi')(x, func)
deta = Function('eta')(x, func)
pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h -
(xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)))
soltup = []
for sol in infinitesimals:
tsol = {xi: S(sol[dxi]).subs(func, y),
eta: S(sol[deta]).subs(func, y)}
sol = simplify(pde.subs(tsol).doit())
if sol:
soltup.append((False, sol.subs(y, func)))
else:
soltup.append((True, 0))
return soltup
def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf):
xi = Function("xi")
eta = Function("eta")
f = func.func
x = func.args[0]
y = match['y']
h = match['h']
tempsol = []
if not inf:
try:
inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match)
except ValueError:
return None
for infsim in inf:
xiinf = (infsim[xi(x, func)]).subs(func, y)
etainf = (infsim[eta(x, func)]).subs(func, y)
# This condition creates recursion while using pdsolve.
# Since the first step while solving a PDE of form
# a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0
# is to solve the ODE dy/dx = b/a
if simplify(etainf/xiinf) == h:
continue
rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf
r = pdsolve(rpde, func=f(x, y)).rhs
s = pdsolve(rpde - 1, func=f(x, y)).rhs
newcoord = [_lie_group_remove(coord) for coord in [r, s]]
r = Dummy("r")
s = Dummy("s")
C1 = Symbol("C1")
rcoord = newcoord[0]
scoord = newcoord[-1]
try:
sol = solve([r - rcoord, s - scoord], x, y, dict=True)
if sol == []:
continue
except NotImplementedError:
continue
else:
sol = sol[0]
xsub = sol[x]
ysub = sol[y]
num = simplify(scoord.diff(x) + scoord.diff(y)*h)
denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h)
if num and denom:
diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)]))
sep = separatevars(diffeq, symbols=[r, s], dict=True)
if sep:
# Trying to separate, r and s coordinates
deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r)
# Substituting and reverting back to original coordinates
deq = deq.subs([(r, rcoord), (s, scoord)])
try:
sdeq = solve(deq, y)
except NotImplementedError:
tempsol.append(deq)
else:
return [Eq(f(x), sol) for sol in sdeq]
elif denom: # (ds/dr) is zero which means s is constant
return [Eq(f(x), solve(scoord - C1, y)[0])]
elif num: # (dr/ds) is zero which means r is constant
return [Eq(f(x), solve(rcoord - C1, y)[0])]
# If nothing works, return solution as it is, without solving for y
if tempsol:
return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol]
return None
def _ode_lie_group( s, func, order, match):
heuristics = lie_heuristics
inf = {}
f = func.func
x = func.args[0]
df = func.diff(x)
xi = Function("xi")
eta = Function("eta")
xis = match['xi']
etas = match['eta']
y = match.pop('y', None)
if y:
h = -simplify(match[match['d']]/match[match['e']])
y = y
else:
y = Dummy("y")
h = s.subs(func, y)
if xis is not None and etas is not None:
inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}]
if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]:
heuristics = ["user_defined"] + list(heuristics)
match = {'h': h, 'y': y}
# This is done so that if any heuristic raises a ValueError
# another heuristic can be used.
sol = None
for heuristic in heuristics:
sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf)
if sol:
return sol
return sol
def ode_lie_group(eq, func, order, match):
r"""
This hint implements the Lie group method of solving first order differential
equations. The aim is to convert the given differential equation from the
given coordinate system into another coordinate system where it becomes
invariant under the one-parameter Lie group of translations. The converted
ODE can be easily solved by quadrature. It makes use of the
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the
infinitesimals of the transformation.
The coordinates `r` and `s` can be found by solving the following Partial
Differential Equations.
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y}
= 0
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y}
= 1
The differential equation becomes separable in the new coordinate system
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} +
h(x, y)\frac{\partial s}{\partial y}}{
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}}
After finding the solution by integration, it is then converted back to the original
coordinate system by substituting `r` and `s` in terms of `x` and `y` again.
Examples
========
>>> from sympy import Function, dsolve, exp, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
... hint='lie_group'))
/ 2\ 2
| x | -x
f(x) = |C1 + --|*e
\ 2 /
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
x = func.args[0]
df = func.diff(x)
try:
eqsol = solve(eq, df)
except NotImplementedError:
eqsol = []
desols = []
for s in eqsol:
sol = _ode_lie_group(s, func, order, match=match)
if sol:
desols.extend(sol)
if desols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the lie group method")
return desols
def _lie_group_remove(coords):
r"""
This function is strictly meant for internal use by the Lie group ODE solving
method. It replaces arbitrary functions returned by pdsolve as follows:
1] If coords is an arbitrary function, then its argument is returned.
2] An arbitrary function in an Add object is replaced by zero.
3] An arbitrary function in a Mul object is replaced by one.
4] If there is no arbitrary function coords is returned unchanged.
Examples
========
>>> from sympy.solvers.ode.ode import _lie_group_remove
>>> from sympy import Function
>>> from sympy.abc import x, y
>>> F = Function("F")
>>> eq = x**2*y
>>> _lie_group_remove(eq)
x**2*y
>>> eq = F(x**2*y)
>>> _lie_group_remove(eq)
x**2*y
>>> eq = x*y**2 + F(x**3)
>>> _lie_group_remove(eq)
x*y**2
>>> eq = (F(x**3) + y)*x**4
>>> _lie_group_remove(eq)
x**4*y
"""
if isinstance(coords, AppliedUndef):
return coords.args[0]
elif coords.is_Add:
subfunc = coords.atoms(AppliedUndef)
if subfunc:
for func in subfunc:
coords = coords.subs(func, 0)
return coords
elif coords.is_Pow:
base, expr = coords.as_base_exp()
base = _lie_group_remove(base)
expr = _lie_group_remove(expr)
return base**expr
elif coords.is_Mul:
mulargs = []
coordargs = coords.args
for arg in coordargs:
if not isinstance(coords, AppliedUndef):
mulargs.append(_lie_group_remove(arg))
return Mul(*mulargs)
return coords
def infinitesimals(eq, func=None, order=None, hint='default', match=None):
r"""
The infinitesimal functions of an ordinary differential equation, `\xi(x,y)`
and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations
for which the differential equation is invariant. So, the ODE `y'=f(x,y)`
would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`,
`y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`.
A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group
becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`.
They are tangents to the coordinate curves of the new system.
Consider the transformation `(x, y) \to (X, Y)` such that the
differential equation remains invariant. `\xi` and `\eta` are the tangents to
the transformed coordinates `X` and `Y`, at `\varepsilon=0`.
.. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \xi,
\left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \eta,
The infinitesimals can be found by solving the following PDE:
>>> from sympy import Function, Eq, pprint
>>> from sympy.abc import x, y
>>> xi, eta, h = map(Function, ['xi', 'eta', 'h'])
>>> h = h(x, y) # dy/dx = h
>>> eta = eta(x, y)
>>> xi = xi(x, y)
>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h
... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
>>> pprint(genform)
/d d \ d 2 d
|--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x
\dy dx / dy dy
<BLANKLINE>
d d
i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0
dx dx
Solving the above mentioned PDE is not trivial, and can be solved only by
making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an
infinitesimal is found, the attempt to find more heuristics stops. This is done to
optimise the speed of solving the differential equation. If a list of all the
infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives
the complete list of infinitesimals. If the infinitesimals for a particular
heuristic needs to be found, it can be passed as a flag to ``hint``.
Examples
========
>>> from sympy import Function
>>> from sympy.solvers.ode.ode import infinitesimals
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x) - x**2*f(x)
>>> infinitesimals(eq)
[{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}]
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Infinitesimals for only "
"first order ODE's have been implemented")
else:
df = func.diff(x)
# Matching differential equation of the form a*df + b
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
if match: # Used by lie_group hint
h = match['h']
y = match['y']
else:
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy("y")
h = h.subs(func, y)
u = Dummy("u")
hx = h.diff(x)
hy = h.diff(y)
hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE
match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv}
if hint == 'all':
xieta = []
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
inflist = function(match, comp=True)
if inflist:
xieta.extend([inf for inf in inflist if inf not in xieta])
if xieta:
return xieta
else:
raise NotImplementedError("Infinitesimals could not be found for "
"the given ODE")
elif hint == 'default':
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
xieta = function(match, comp=False)
if xieta:
return xieta
raise NotImplementedError("Infinitesimals could not be found for"
" the given ODE")
elif hint not in lie_heuristics:
raise ValueError("Heuristic not recognized: " + hint)
else:
function = globals()['lie_heuristic_' + hint]
xieta = function(match, comp=True)
if xieta:
return xieta
else:
raise ValueError("Infinitesimals could not be found using the"
" given heuristic")
def lie_heuristic_abaco1_simple(match, comp=False):
r"""
The first heuristic uses the following four sets of
assumptions on `\xi` and `\eta`
.. math:: \xi = 0, \eta = f(x)
.. math:: \xi = 0, \eta = f(y)
.. math:: \xi = f(x), \eta = 0
.. math:: \xi = f(y), \eta = 0
The success of this heuristic is determined by algebraic factorisation.
For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE
.. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x})*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0
reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0`
If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually
be integrated easily. A similar idea is applied to the other 3 assumptions as well.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
xieta = []
y = match['y']
h = match['h']
func = match['func']
x = func.args[0]
hx = match['hx']
hy = match['hy']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
hysym = hy.free_symbols
if y not in hysym:
try:
fx = exp(integrate(hy, x))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fx}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = hy/h
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fy.subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/h
facsym = factor.free_symbols
if y not in facsym:
try:
fx = exp(integrate(factor, x))
except NotImplementedError:
pass
else:
inf = {xi: fx, eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/(h**2)
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: fy.subs(y, func), eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco1_product(match, comp=False):
r"""
The second heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x)*g(y)
.. math:: \eta = f(x)*g(y), \xi = 0
The first assumption of this heuristic holds good if
`\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is
separable in `x` and `y`, then the separated factors containing `x`
is `f(x)`, and `g(y)` is obtained by
.. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy}
provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function
of `y` only.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again
interchanged, to get `\eta` as `f(x)*g(y)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
y = match['y']
h = match['h']
hinv = match['hinv']
func = match['func']
x = func.args[0]
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*h)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
u1 = Dummy("u1")
inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*hinv)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
etaval = fx*gy
etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y)
inf = {eta: etaval.subs(y, func), xi: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_bivariate(match, comp=False):
r"""
The third heuristic assumes the infinitesimals `\xi` and `\eta`
to be bi-variate polynomials in `x` and `y`. The assumption made here
for the logic below is that `h` is a rational function in `x` and `y`
though that may not be necessary for the infinitesimals to be
bivariate polynomials. The coefficients of the infinitesimals
are found out by substituting them in the PDE and grouping similar terms
that are polynomials and since they form a linear system, solve and check
for non trivial solutions. The degree of the assumed bivariates
are increased till a certain maximum value.
References
==========
- Lie Groups and Differential Equations
pp. 327 - pp. 329
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
# The maximum degree that the infinitesimals can take is
# calculated by this technique.
etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid")
ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy
num, denom = cancel(ipde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
deta = Function('deta')(x, y)
dxi = Function('dxi')(x, y)
ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2
- dxi*hx - deta*hy)
xieq = Symbol("xi0")
etaeq = Symbol("eta0")
for i in range(deg + 1):
if i:
xieq += Add(*[
Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
etaeq += Add(*[
Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom()
pden = expand(pden)
# If the individual terms are monomials, the coefficients
# are grouped
if pden.is_polynomial(x, y) and pden.is_Add:
polyy = Poly(pden, x, y).as_dict()
if polyy:
symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y}
soldict = solve(polyy.values(), *symset)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
xired = xieq.subs(soldict)
etared = etaeq.subs(soldict)
# Scaling is done by substituting one for the parameters
# This can be any number except zero.
dict_ = dict((sym, 1) for sym in symset)
inf = {eta: etared.subs(dict_).subs(y, func),
xi: xired.subs(dict_).subs(y, func)}
return [inf]
def lie_heuristic_chi(match, comp=False):
r"""
The aim of the fourth heuristic is to find the function `\chi(x, y)`
that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx}
- \frac{\partial h}{\partial y}\chi = 0`.
This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition,
`h` should be a rational function in `x` and `y`. The method used here is
to substitute a general binomial for `\chi` up to a certain maximum degree
is reached. The coefficients of the polynomials, are calculated by by collecting
terms of the same order in `x` and `y`.
After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to
determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h`
which would give `-\xi` as the quotient and `\eta` as the remainder.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
h = match['h']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
schi, schix, schiy = symbols("schi, schix, schiy")
cpde = schix + h*schiy - hy*schi
num, denom = cancel(cpde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
chi = Function('chi')(x, y)
chix = chi.diff(x)
chiy = chi.diff(y)
cpde = chix + h*chiy - hy*chi
chieq = Symbol("chi")
for i in range(1, deg + 1):
chieq += Add(*[
Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom()
cnum = expand(cnum)
if cnum.is_polynomial(x, y) and cnum.is_Add:
cpoly = Poly(cnum, x, y).as_dict()
if cpoly:
solsyms = chieq.free_symbols - {x, y}
soldict = solve(cpoly.values(), *solsyms)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
chieq = chieq.subs(soldict)
dict_ = dict((sym, 1) for sym in solsyms)
chieq = chieq.subs(dict_)
# After finding chi, the main aim is to find out
# eta, xi by the equation eta = xi*h + chi
# One method to set xi, would be rearranging it to
# (eta/h) - xi = (chi/h). This would mean dividing
# chi by h would give -xi as the quotient and eta
# as the remainder. Thanks to Sean Vig for suggesting
# this method.
xic, etac = div(chieq, h)
inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)}
return [inf]
def lie_heuristic_function_sum(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x) + g(y)
.. math:: \eta = f(x) + g(y), \xi = 0
The first assumption of this heuristic holds good if
.. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{
\partial x^{2}}(h^{-1}))^{-1}]
is separable in `x` and `y`,
1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`.
From this `g(y)` can be determined.
2. The separated factors containing `x` is `f''(x)`.
3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals
`\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first
assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates
are again interchanged, to get `\eta` as `f(x) + g(y)`.
For both assumptions, the constant factors are separated among `g(y)`
and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that
obtained from 2]. If not possible, then this heuristic fails.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
h = match['h']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
for odefac in [h, hinv]:
factor = odefac*((1/odefac).diff(x, 2))
sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y])
if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y):
k = Dummy("k")
try:
gy = k*integrate(sep[y], y)
except NotImplementedError:
pass
else:
fdd = 1/(k*sep[x]*sep['coeff'])
fx = simplify(fdd/factor - gy)
check = simplify(fx.diff(x, 2) - fdd)
if fx:
if not check:
fx = fx.subs(k, 1)
gy = (gy/k)
else:
sol = solve(check, k)
if sol:
sol = sol[0]
fx = fx.subs(k, sol)
gy = (gy/k)*sol
else:
continue
if odefac == hinv: # Inverse ODE
fx = fx.subs(x, y)
gy = gy.subs(y, x)
etaval = factor_terms(fx + gy)
if etaval.is_Mul:
etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)])
if odefac == hinv: # Inverse ODE
inf = {eta: etaval.subs(y, func), xi : S.Zero}
else:
inf = {xi: etaval.subs(y, func), eta : S.Zero}
if not comp:
return [inf]
else:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco2_similar(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = g(x), \xi = f(x)
.. math:: \eta = f(y), \xi = g(y)
For the first assumption,
1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{
\partial yy}}` is calculated. Let us say this value is A
2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{
\frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)`
and `A(x)*f(x)` gives `g(x)`
3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{
\partial Y}} = \gamma` is calculated. If
a] `\gamma` is a function of `x` alone
b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{
\partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone.
then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)`
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again
interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
factor = cancel(h.diff(y)/h.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{xi: tau, eta: gx}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{xi: tau, eta: gx}]
factor = cancel(hinv.diff(y)/hinv.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/(
hinv + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
def lie_heuristic_abaco2_unique_unknown(match, comp=False):
r"""
This heuristic assumes the presence of unknown functions or known functions
with non-integer powers.
1. A list of all functions and non-integer powers containing x and y
2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{
\frac{\partial f}{\partial x}} = R`
If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then
a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return
`\xi` and `\eta`
b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE.
If yes, then return `\xi` and `\eta`
If not, then check if
a] :math:`\xi = -R,\eta = 1`
b] :math:`\xi = 1, \eta = -\frac{1}{R}`
are solutions.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
funclist = []
for atom in h.atoms(Pow):
base, exp = atom.as_base_exp()
if base.has(x) and base.has(y):
if not exp.is_Integer:
funclist.append(atom)
for function in h.atoms(AppliedUndef):
syms = function.free_symbols
if x in syms and y in syms:
funclist.append(function)
for f in funclist:
frac = cancel(f.diff(y)/f.diff(x))
sep = separatevars(frac, dict=True, symbols=[x, y])
if sep and sep['coeff']:
xitry1 = sep[x]
etatry1 = -1/(sep[y]*sep['coeff'])
pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy
if not simplify(pde1):
return [{xi: xitry1, eta: etatry1.subs(y, func)}]
xitry2 = 1/etatry1
etatry2 = 1/xitry1
pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy
if not simplify(expand(pde2)):
return [{xi: xitry2.subs(y, func), eta: etatry2}]
else:
etatry = -1/frac
pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy
if not simplify(pde):
return [{xi: S.One, eta: etatry.subs(y, func)}]
xitry = -frac
pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy
if not simplify(expand(pde)):
return [{xi: xitry.subs(y, func), eta: S.One}]
def lie_heuristic_abaco2_unique_general(match, comp=False):
r"""
This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)`
without making any assumptions on `h`.
The complete sequence of steps is given in the paper mentioned below.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
A = hx.diff(y)
B = hy.diff(y) + hy**2
C = hx.diff(x) - hx**2
if not (A and B and C):
return
Ax = A.diff(x)
Ay = A.diff(y)
Axy = Ax.diff(y)
Axx = Ax.diff(x)
Ayy = Ay.diff(y)
D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay
if not D:
E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A)
if E1:
E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if not E2:
E3 = simplify(
E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4)
if not E3:
etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -4*A**3*etaval/E1
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
else:
E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if E1:
E2 = simplify(
4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2))
if not E2:
E3 = simplify(
-(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D +
(A*hx - 3*Ax)*E1)*E1)
if not E3:
etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -E1*etaval/D
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
def lie_heuristic_linear(match, comp=False):
r"""
This heuristic assumes
1. `\xi = ax + by + c` and
2. `\eta = fx + gy + h`
After substituting the following assumptions in the determining PDE, it
reduces to
.. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x}
- (fx + gy + c)\frac{\partial h}{\partial y}
Solving the reduced PDE obtained, using the method of characteristics, becomes
impractical. The method followed is grouping similar terms and solving the system
of linear equations obtained. The difference between the bivariate heuristic is that
`h` need not be a rational function in this case.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
coeffdict = {}
symbols = numbered_symbols("c", cls=Dummy)
symlist = [next(symbols) for _ in islice(symbols, 6)]
C0, C1, C2, C3, C4, C5 = symlist
pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2
pde, denom = pde.as_numer_denom()
pde = powsimp(expand(pde))
if pde.is_Add:
terms = pde.args
for term in terms:
if term.is_Mul:
rem = Mul(*[m for m in term.args if not m.has(x, y)])
xypart = term/rem
if xypart not in coeffdict:
coeffdict[xypart] = rem
else:
coeffdict[xypart] += rem
else:
if term not in coeffdict:
coeffdict[term] = S.One
else:
coeffdict[term] += S.One
sollist = coeffdict.values()
soldict = solve(sollist, symlist)
if soldict:
if isinstance(soldict, list):
soldict = soldict[0]
subval = soldict.values()
if any(t for t in subval):
onedict = dict(zip(symlist, [1]*6))
xival = C0*x + C1*func + C2
etaval = C3*x + C4*func + C5
xival = xival.subs(soldict)
etaval = etaval.subs(soldict)
xival = xival.subs(onedict)
etaval = etaval.subs(onedict)
return [{xi: xival, eta: etaval}]
def sysode_linear_2eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
func = match_['func']
fc = match_['func_coeff']
eq = match_['eq']
r = dict()
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
# for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1)
# and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2)
r['a'] = -fc[0,x(t),0]/fc[0,x(t),1]
r['c'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['b'] = -fc[0,y(t),0]/fc[0,x(t),1]
r['d'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
r['k1'] = forcing[0]
r['k2'] = forcing[1]
else:
raise NotImplementedError("Only homogeneous problems are supported" +
" (and constant inhomogeneity)")
if match_['type_of_equation'] == 'type6':
sol = _linear_2eq_order1_type6(x, y, t, r, eq)
if match_['type_of_equation'] == 'type7':
sol = _linear_2eq_order1_type7(x, y, t, r, eq)
return sol
def _linear_2eq_order1_type6(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y
This is solved by first multiplying the first equation by `-a` and adding
it to the second equation to obtain
.. math:: y' - a x' = -a h(t) (y - a x)
Setting `U = y - ax` and integrating the equation we arrive at
.. math:: y - ax = C_1 e^{-a \int h(t) \,dt}
and on substituting the value of y in first equation give rise to first order ODEs. After solving for
`x`, we can obtain `y` by substituting the value of `x` in second equation.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
p = 0
q = 0
p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0])
p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0])
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q!=0 and n==0:
if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j:
p = 1
s = j
break
if q!=0 and n==1:
if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j:
p = 2
s = j
break
if p == 1:
equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t)))
hint1 = classify_ode(equ)[1]
sol1 = dsolve(equ, hint=hint1+'_Integral').rhs
sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t))
elif p ==2:
equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
hint1 = classify_ode(equ)[1]
sol2 = dsolve(equ, hint=hint1+'_Integral').rhs
sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type7(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = h(t) x + p(t) y
Differentiating the first equation and substituting the value of `y`
from second equation will give a second-order linear equation
.. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0
This above equation can be easily integrated if following conditions are satisfied.
1. `fgp - g^{2} h + f g' - f' g = 0`
2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg`
If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes
a constant coefficient differential equation which is also solved by current solver.
Otherwise if the above condition fails then,
a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)`
Then the general solution is expressed as
.. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt
.. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt]
where C1 and C2 are arbitrary constants and
.. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b']
e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t)
m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t)
m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t)
if e1 == 0:
sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif e2 == 0:
sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t):
sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t):
sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
else:
x0 = Function('x0')(t) # x0 and y0 being particular solutions
y0 = Function('y0')(t)
F = exp(Integral(r['a'],t))
P = exp(Integral(r['d'],t))
sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t)
sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def sysode_nonlinear_2eq_order1(match_):
func = match_['func']
eq = match_['eq']
fc = match_['func_coeff']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_2eq_order1_type5(func, t, eq)
return sol
x = func[0].func
y = func[1].func
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_2eq_order1_type1(x, y, t, eq)
elif match_['type_of_equation'] == 'type2':
sol = _nonlinear_2eq_order1_type2(x, y, t, eq)
elif match_['type_of_equation'] == 'type3':
sol = _nonlinear_2eq_order1_type3(x, y, t, eq)
elif match_['type_of_equation'] == 'type4':
sol = _nonlinear_2eq_order1_type4(x, y, t, eq)
return sol
def _nonlinear_2eq_order1_type1(x, y, t, eq):
r"""
Equations:
.. math:: x' = x^n F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `n \neq 1`
.. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}}
if `n = 1`
.. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy}
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n!=1:
phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n))
else:
phi = C1*exp(Integral(1/g, v))
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type2(x, y, t, eq):
r"""
Equations:
.. math:: x' = e^{\lambda x} F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `\lambda \neq 0`
.. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy)
if `\lambda = 0`
.. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n:
phi = -1/n*log(C1 - n*Integral(1/g, v))
else:
phi = C1 + Integral(1/g, v)
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type3(x, y, t, eq):
r"""
Autonomous system of general form
.. math:: x' = F(x,y)
.. math:: y' = G(x,y)
Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general
solution of the first-order equation
.. math:: F(x,y) y'_x = G(x,y)
Then the general solution of the original system of equations has the form
.. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
v = Function('v')
u = Symbol('u')
f = Wild('f')
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
F = r1[f].subs(x(t), u).subs(y(t), v(u))
G = r2[g].subs(x(t), u).subs(y(t), v(u))
sol2r = dsolve(Eq(diff(v(u), u), G/F))
if isinstance(sol2r, Expr):
sol2r = [sol2r]
for sol2s in sol2r:
sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u)
sol = []
for sols in sol1:
sol.append(Eq(x(t), sols))
sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols)))
return sol
def _nonlinear_2eq_order1_type4(x, y, t, eq):
r"""
Equation:
.. math:: x' = f_1(x) g_1(y) \phi(x,y,t)
.. math:: y' = f_2(x) g_2(y) \phi(x,y,t)
First integral:
.. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C
where `C` is an arbitrary constant.
On solving the first integral for `x` (resp., `y` ) and on substituting the
resulting expression into either equation of the original solution, one
arrives at a first-order equation for determining `y` (resp., `x` ).
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v = symbols('u, v')
U, V = symbols('U, V', cls=Function)
f = Wild('f')
g = Wild('g')
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
F1 = R1[f1]; F2 = R2[f2]
G1 = R1[g1]; G2 = R2[g2]
sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u)
sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v)
sol = []
for sols in sol1r:
sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs))
for sols in sol2r:
sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs))
return set(sol)
def _nonlinear_2eq_order1_type5(func, t, eq):
r"""
Clairaut system of ODEs
.. math:: x = t x' + F(x',y')
.. math:: y = t y' + G(x',y')
The following are solutions of the system
`(i)` straight lines:
.. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2)
where `C_1` and `C_2` are arbitrary constants;
`(ii)` envelopes of the above lines;
`(iii)` continuously differentiable lines made up from segments of the lines
`(i)` and `(ii)`.
"""
C1, C2 = get_numbered_constants(eq, num=2)
f = Wild('f')
g = Wild('g')
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
return [r1, r2]
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
[r1, r2] = check_type(x, y)
if not (r1 and r2):
[r1, r2] = check_type(y, x)
x, y = y, x
x1 = diff(x(t),t); y1 = diff(y(t),t)
return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))}
def sysode_nonlinear_3eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
z = match_['func'][2].func
eq = match_['eq']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq)
if match_['type_of_equation'] == 'type2':
sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq)
if match_['type_of_equation'] == 'type3':
sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq)
if match_['type_of_equation'] == 'type4':
sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq)
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq)
return sol
def _nonlinear_3eq_order1_type1(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a separable first-order equation on `x`. Similarly doing that
for other two equations, we will arrive at first order equation on `y` and `z` too.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t))
r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t)))
r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
b = vals[0].subs(w, c)
a = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x)
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y)
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z)
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type2(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z f(x, y, z, t)
.. math:: b y' = (c - a) z x f(x, y, z, t)
.. math:: c z' = (a - b) x y f(x, y, z, t)
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a first-order differential equations on `x`. Similarly doing
that for other two equations we will arrive at first order equation on `y` and `z`.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f)
r = collect_const(r1[f]).match(p*f)
r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t)))
r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
a = vals[0].subs(w, c)
b = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f])
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f])
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f])
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type3(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2
where `F_n = F_n(x, y, z, t)`.
1. First Integral:
.. math:: a x + b y + c z = C_1,
where C is an arbitrary constant.
2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)`
Then, on eliminating `t` and `z` from the first two equation of the system, one
arrives at the first-order equation
.. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) -
b F_3 (x, y, z)}
where `z = \frac{1}{c} (C_1 - a x - b y)`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = (diff(x(t), t) - eq[0]).match(F2-F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w)
z_xy = (C1-a*u-b*v)/c
y_zx = (C1-a*u-c*w)/b
x_yz = (C1-b*v-c*w)/a
y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs
z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs
z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs
x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs
y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs
x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs
sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs
sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs
sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type4(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2
where `F_n = F_n (x, y, z, t)`
1. First integral:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
where `C` is an arbitrary constant.
2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on
eliminating `t` and `z` from the first two equations of the system, one arrives at
the first-order equation
.. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)}
{c z F_2 (x, y, z) - b y F_3 (x, y, z)}
where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w)
x_yz = sqrt((C1 - b*v**2 - c*w**2)/a)
y_zx = sqrt((C1 - c*w**2 - a*u**2)/b)
z_xy = sqrt((C1 - a*u**2 - b*v**2)/c)
y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs
z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs
z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs
x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs
y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs
x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs
sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs
sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs
sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type5(x, y, z, t, eq):
r"""
.. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2)
where `F_n = F_n (x, y, z, t)` and are arbitrary functions.
First Integral:
.. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1
where `C` is an arbitrary constant. If the function `F_n` is independent of `t`,
then, by eliminating `t` and `z` from the first two equations of the system, one
arrives at a first-order equation.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1)))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w)
x_yz = (C1*v**-b*w**-c)**-a
y_zx = (C1*w**-c*u**-a)**-b
z_xy = (C1*u**-a*v**-b)**-c
y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs
z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs
z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs
x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs
y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs
x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs
sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs
sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs
sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs
return [sol1, sol2, sol3]
#This import is written at the bottom to avoid circular imports.
from .single import (NthAlgebraic, Factorable, FirstLinear, AlmostLinear,
Bernoulli, SingleODEProblem, SingleODESolver, RiccatiSpecial)
|
fe0db25e8d3ecdf242cc0086fc19f2699286ed5aa5539daa67958a8b1d617e70 | from sympy.core import Add, Mul
from sympy.core.containers import Tuple
from sympy.core.compatibility import iterable
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import I
from sympy.core.relational import Eq, Equality
from sympy.core.symbol import Dummy, Symbol
from sympy.core.function import (expand_mul, expand, Derivative,
AppliedUndef, Function, Subs)
from sympy.functions import (exp, im, cos, sin, re, Piecewise,
piecewise_fold, sqrt, log)
from sympy.functions.combinatorial.factorials import factorial
from sympy.matrices import zeros, Matrix, NonSquareMatrixError, MatrixBase, eye
from sympy.polys import Poly
from sympy.simplify import simplify, collect, powsimp, ratsimp
from sympy.simplify.powsimp import powdenest
from sympy.sets.sets import FiniteSet
from sympy.solvers.deutils import ode_order
from sympy.solvers.solveset import NonlinearError, solveset
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import ordered
from sympy.utilities.misc import filldedent
from sympy.integrals.integrals import Integral, integrate
def _get_func_order(eqs, funcs):
return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs}
class ODEOrderError(ValueError):
"""Raised by linear_ode_to_matrix if the system has the wrong order"""
pass
class ODENonlinearError(NonlinearError):
"""Raised by linear_ode_to_matrix if the system is nonlinear"""
pass
def _simpsol(soleq):
lhs = soleq.lhs
sol = soleq.rhs
sol = powsimp(sol)
gens = list(sol.atoms(exp))
p = Poly(sol, *gens, expand=False)
gens = [factor_terms(g) for g in gens]
if not gens:
gens = p.gens
syms = [Symbol('C1'), Symbol('C2')]
terms = []
for coeff, monom in zip(p.coeffs(), p.monoms()):
coeff = piecewise_fold(coeff)
if type(coeff) is Piecewise:
coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
else:
coeff = ratsimp(coeff).collect(syms)
monom = Mul(*(g ** i for g, i in zip(gens, monom)))
terms.append(coeff * monom)
return Eq(lhs, Add(*terms))
def _solsimp(e, t):
no_t, has_t = powsimp(expand_mul(e)).as_independent(t)
no_t = ratsimp(no_t)
has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))
return no_t + has_t
def linodesolve_type(A, t, b=None):
r"""
Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`
Explanation
===========
This function takes in the coefficient matrix and/or the non-homogeneous term
and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.
If the system is constant coefficient homogeneous, then "type1" is returned
If the system is constant coefficient non-homogeneous, then "type2" is returned
If the system is non-constant coefficient homogeneous, then "type3" is returned
If the system is non-constant coefficient non-homogeneous, then "type4" is returned
If the system has a non-constant coefficient matrix which can be factorized into constant
coefficient matrix, then "type5" or "type6" is returned for when the system is homogeneous or
non-homogeneous respectively.
Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
the commutative antiderivative of the coefficient matrix is also returned.
If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
NotImplementedError is raised.
Parameters
==========
A : Matrix
Coefficient matrix of the system of ODEs
b : Matrix or None
Non-homogeneous term of the system. The default value is None.
If this argument is None, then the system is assumed to be homogeneous.
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import linodesolve_type
>>> t = symbols("t")
>>> A = Matrix([[1, 1], [2, 3]])
>>> b = Matrix([t, 1])
>>> linodesolve_type(A, t)
{'antiderivative': None, 'type_of_equation': 'type1'}
>>> linodesolve_type(A, t, b=b)
{'antiderivative': None, 'type_of_equation': 'type2'}
>>> A_t = Matrix([[1, t], [-t, 1]])
>>> linodesolve_type(A_t, t)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type3'}
>>> linodesolve_type(A_t, t, b=b)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type4'}
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
>>> linodesolve_type(A_non_commutative, t)
Traceback (most recent call last):
...
NotImplementedError:
The system doesn't have a commutative antiderivative, it can't be
solved by linodesolve.
Returns
=======
Dict
Raises
======
NotImplementedError
When the coefficient matrix doesn't have a commutative antiderivative
See Also
========
linodesolve: Function for which linodesolve_type gets the information
"""
match = {}
is_non_constant = not _matrix_is_constant(A, t)
is_non_homogeneous = not (b is None or b.is_zero_matrix)
type = "type{}".format(int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) + 1)
B = None
match.update({"type_of_equation": type, "antiderivative": B})
if is_non_constant:
B, is_commuting = _is_commutative_anti_derivative(A, t)
if not is_commuting:
raise NotImplementedError(filldedent('''
The system doesn't have a commutative antiderivative, it can't be solved
by linodesolve.
'''))
match['antiderivative'] = B
match.update(_first_order_type5_6_subs(A, t, b=b))
return match
def _first_order_type5_6_subs(A, t, b=None):
match = {}
factor_terms = _factor_matrix(A, t)
is_homogeneous = b is None or b.is_zero_matrix
if factor_terms is not None:
t_ = Symbol("{}_".format(t))
F_t = integrate(factor_terms[0], t)
inverse = solveset(Eq(t_, F_t), t)
# Note: A simple way to check if a function is invertible
# or not.
if isinstance(inverse, FiniteSet) and not inverse.has(Piecewise)\
and len(inverse) == 1:
A = factor_terms[1]
if not is_homogeneous:
b = b / factor_terms[0]
b = b.subs(t, list(inverse)[0])
type = "type{}".format(5 + (not is_homogeneous))
match.update({'func_coeff': A, 'tau': F_t,
't_': t_, 'type_of_equation': type, 'rhs': b})
return match
def linear_ode_to_matrix(eqs, funcs, t, order):
r"""
Convert a linear system of ODEs to matrix form
Explanation
===========
Express a system of linear ordinary differential equations as a single
matrix differential equation [1]. For example the system $x' = x + y + 1$
and $y' = x - y$ can be represented as
.. math:: A_1 X' = A0 X + b
where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are
$2 \times 1$ matrices with $X = [x, y]^T$.
Higher-order systems are represented with additional matrices e.g. a
second-order system would look like
.. math:: A_2 X'' = A_1 X' + A_0 X + b
Examples
========
>>> from sympy import (Function, Symbol, Matrix, Eq)
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
>>> t = Symbol('t')
>>> x = Function('x')
>>> y = Function('y')
We can create a system of linear ODEs like
>>> eqs = [
... Eq(x(t).diff(t), x(t) + y(t) + 1),
... Eq(y(t).diff(t), x(t) - y(t)),
... ]
>>> funcs = [x(t), y(t)]
>>> order = 1 # 1st order system
Now ``linear_ode_to_matrix`` can represent this as a matrix
differential equation.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
>>> A1
Matrix([
[1, 0],
[0, 1]])
>>> A0
Matrix([
[1, 1],
[1, -1]])
>>> b
Matrix([
[1],
[0]])
The original equations can be recovered from these matrices:
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
>>> X = Matrix(funcs)
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
True
If the system of equations has a maximum order greater than the
order of the system specified, a ODEOrderError exception is raised.
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODEOrderError: Cannot represent system in 1-order form
If the system of equations is nonlinear, then ODENonlinearError is
raised.
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODENonlinearError: The system of ODEs is nonlinear.
Parameters
==========
eqs : list of sympy expressions or equalities
The equations as expressions (assumed equal to zero).
funcs : list of applied functions
The dependent variables of the system of ODEs.
t : symbol
The independent variable.
order : int
The order of the system of ODEs.
Returns
=======
The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the
the matrix representing the rhs of the matrix equation.
Raises
======
ODEOrderError
When the system of ODEs have an order greater than what was specified
ODENonlinearError
When the system of ODEs is nonlinear
See Also
========
linear_eq_to_matrix: for systems of linear algebraic equations.
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation
"""
from sympy.solvers.solveset import linear_eq_to_matrix
if any(ode_order(eq, func) > order for eq in eqs for func in funcs):
msg = "Cannot represent system in {}-order form"
raise ODEOrderError(msg.format(order))
As = []
for o in range(order, -1, -1):
# Work from the highest derivative down
funcs_deriv = [func.diff(t, o) for func in funcs]
# linear_eq_to_matrix expects a proper symbol so substitute e.g.
# Derivative(x(t), t) for a Dummy.
rep = {func_deriv: Dummy() for func_deriv in funcs_deriv}
eqs = [eq.subs(rep) for eq in eqs]
syms = [rep[func_deriv] for func_deriv in funcs_deriv]
# Ai is the matrix for X(t).diff(t, o)
# eqs is minus the remainder of the equations.
try:
Ai, b = linear_eq_to_matrix(eqs, syms)
except NonlinearError:
raise ODENonlinearError("The system of ODEs is nonlinear.")
Ai = Ai.applyfunc(expand_mul)
As.append(Ai if o == order else -Ai)
if o:
eqs = [-eq for eq in b]
else:
rhs = b
return As, rhs
def matrix_exp(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``.
Explanation
===========
This functions returns the $\exp(A*t)$ by doing a simple
matrix multiplication:
.. math:: \exp(A*t) = P * expJ * P^{-1}
where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal
form of $A$ and $P$ is matrix such that:
.. math:: A = P * J * P^{-1}
The matrix exponential $\exp(A*t)$ appears in the solution of linear
differential equations. For example if $x$ is a vector and $A$ is a matrix
then the initial value problem
.. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0
has the unique solution
.. math:: x(t) = \exp(A t) x0
Examples
========
>>> from sympy import Symbol, Matrix, pprint
>>> from sympy.solvers.ode.systems import matrix_exp
>>> t = Symbol('t')
We will consider a 2x2 matrix for comupting the exponential
>>> A = Matrix([[2, -5], [2, -4]])
>>> pprint(A)
[2 -5]
[ ]
[2 -4]
Now, exp(A*t) is given as follows:
>>> pprint(matrix_exp(A, t))
[ -t -t -t ]
[3*e *sin(t) + e *cos(t) -5*e *sin(t) ]
[ ]
[ -t -t -t ]
[ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)]
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
See Also
========
matrix_exp_jordan_form: For exponential of Jordan normal form
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_normal_form
.. [2] https://en.wikipedia.org/wiki/Matrix_exponential
"""
P, expJ = matrix_exp_jordan_form(A, t)
return P * expJ * P.inv()
def matrix_exp_jordan_form(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*.
Explanation
===========
Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that:
.. math::
\exp(A*t) = P * expJ * P^{-1}
Examples
========
>>> from sympy import Matrix, Symbol
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
>>> t = Symbol('t')
We will consider a 2x2 defective matrix. This shows that our method
works even for defective matrices.
>>> A = Matrix([[1, 1], [0, 1]])
It can be observed that this function gives us the Jordan normal form
and the required invertible matrix P.
>>> P, expJ = matrix_exp_jordan_form(A, t)
Here, it is shown that P and expJ returned by this function is correct
as they satisfy the formula: P * expJ * P_inverse = exp(A*t).
>>> P * expJ * P.inv() == matrix_exp(A, t)
True
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
References
==========
.. [1] https://en.wikipedia.org/wiki/Defective_matrix
.. [2] https://en.wikipedia.org/wiki/Jordan_matrix
.. [3] https://en.wikipedia.org/wiki/Jordan_normal_form
"""
N, M = A.shape
if N != M:
raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M))
elif A.has(t):
raise ValueError('Matrix A should not depend on t')
def jordan_chains(A):
'''Chains from Jordan normal form analogous to M.eigenvects().
Returns a dict with eignevalues as keys like:
{e1: [[v111,v112,...], [v121, v122,...]], e2:...}
where vijk is the kth vector in the jth chain for eigenvalue i.
'''
P, blocks = A.jordan_cells()
basis = [P[:,i] for i in range(P.shape[1])]
n = 0
chains = {}
for b in blocks:
eigval = b[0, 0]
size = b.shape[0]
if eigval not in chains:
chains[eigval] = []
chains[eigval].append(basis[n:n+size])
n += size
return chains
eigenchains = jordan_chains(A)
# Needed for consistency across Python versions
eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key)
isreal = not A.has(I)
blocks = []
vectors = []
seen_conjugate = set()
for e, chains in eigenchains_iter:
for chain in chains:
n = len(chain)
if isreal and e != e.conjugate() and e.conjugate() in eigenchains:
if e in seen_conjugate:
continue
seen_conjugate.add(e.conjugate())
exprt = exp(re(e) * t)
imrt = im(e) * t
imblock = Matrix([[cos(imrt), sin(imrt)],
[-sin(imrt), cos(imrt)]])
expJblock2 = Matrix(n, n, lambda i,j:
imblock * t**(j-i) / factorial(j-i) if j >= i
else zeros(2, 2))
expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2])
blocks.append(exprt * expJblock)
for i in range(n):
vectors.append(re(chain[i]))
vectors.append(im(chain[i]))
else:
vectors.extend(chain)
fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0
expJblock = Matrix(n, n, fun)
blocks.append(exp(e * t) * expJblock)
expJ = Matrix.diag(*blocks)
P = Matrix(N, N, lambda i,j: vectors[j][i])
return P, expJ
# Note: To add a docstring example with tau
def linodesolve(A, t, b=None, B=None, type="auto", doit=False,
tau=None):
r"""
System of n equations linear first-order differential equations
Explanation
===========
This solver solves the system of ODEs of the follwing form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
$b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$
Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
differently.
When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
the system is "type1". The solution is:
.. math::
X(t) = \exp(A t) C
Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.
When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
the system is "type2". The solution is:
.. math::
X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)
When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
$b(t)$ is a zero vector i.e. system is homogeneous, the system is "type3". The solution is:
.. math::
X(t) = \exp(B(t)) C
When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
non-homogeneous, the system is "type4". The solution is:
.. math::
X(t) = e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)
When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant
coefficient matrix:
.. math::
A(t) = f(t) * A
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix,
then we can do the following substitutions:
.. math::
tau = \int f(t) dt, X(t) = Y(tau), b(t) = b(f^{-1}(tau))
Here, the substitution for the non-homogeneous term is done only when its non-zero.
Using these substitutions, our original system becomes:
.. math::
Y'(tau) = A * Y(tau) + b(tau)/f(tau)
The above system can be easily solved using the solution for "type1" or "type2" depending
on the homogeneity of the system. After we get the solution for $Y(tau)$, we substitute the
solution for $tau$ as $t$ to get back $X(t)$
.. math::
X(t) = Y(tau)
Systems of "type5" and "type6" have a commutative antiderivative but we use this solution
because its faster to compute.
The final solution is the general solution for all the four equations since a constant coefficient
matrix is always commutative with its antidervative.
An additional feature of this function is, if someone wants to substitute for value of the independent
variable, they can pass the substitution `tau` and the solution will have the independent variable
substituted with the passed expression(`tau`).
Parameters
==========
A : Matrix
Coefficient matrix of the system of linear first order ODEs.
t : Symbol
Independent variable in the system of ODEs.
b : Matrix or None
Non-homogeneous term in the system of ODEs. If None is passed,
a homogeneous system of ODEs is assumed.
B : Matrix or None
Antiderivative of the coefficient matrix. If the antiderivative
is not passed and the solution requires the term, then the solver
would compute it internally.
type : String
Type of the system of ODEs passed. Depending on the type, the
solution is evaluated. The type values allowed and the corresponding
system it solves are: "type1" for constant coefficient homogeneous
"type2" for constant coefficient non-homogeneous, "type3" for non-constant
coefficient homogeneous, "type4" for non-constant coefficient non-homogeneous,
"type5" and "type6" for non-constant coefficient homogeneous and non-homogeneous
systems respectively where the coefficient matrix can be factorized to a constant
coefficient matrix.
The default value is "auto" which will let the solver decide the correct type of
the system passed.
doit : Boolean
Evaluate the solution if True, default value is False
tau: Expression
Used to substitute for the value of `t` after we get the solution of the system.
Examples
========
To solve the system of ODEs using this function directly, several things must be
done in the right order. Wrong inputs to the function will lead to incorrect results.
>>> from sympy import symbols, Function, Eq
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
>>> from sympy.solvers.ode.subscheck import checkodesol
>>> f, g = symbols("f, g", cls=Function)
>>> x, a = symbols("x, a")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]
Here, it is important to note that before we derive the coefficient matrix, it is
important to get the system of ODEs into the desired form. For that we will use
:obj:`sympy.solvers.ode.systems.canonical_odes()`.
>>> eqs = canonical_odes(eqs, funcs, x)
>>> eqs
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]]
Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
non-homogeneous term if it is there.
>>> eqs = eqs[0]
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
:obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
to finally pass it to the solver.
>>> system_info = linodesolve_type(A, x, b=b)
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.checkodesol()`
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
We can also use the doit method to evaluate the solutions passed by the function.
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
Now, we will look at a system of ODEs which is non-constant.
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
The system defined above is already in the desired form, so we don't have to convert it.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs.
Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
If it does have a commutative antiderivative, then the function just returns the information about the system.
>>> system_info = linodesolve_type(A, x, b=b)
Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
passed, then the solver will compute the required arguments internally.
>>> sol_vector = linodesolve(A, x, b=b)
Once again, we can verify the solution obtained.
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
Returns
=======
List
Raises
======
ValueError
This error is raised when the coefficient matrix, non-homogeneous term
or the antiderivative, if passed, aren't a matrix or
don't have correct dimensions
NonSquareMatrixError
When the coefficient matrix or its antiderivative, if passed isn't a square
matrix
NotImplementedError
If the coefficient matrix doesn't have a commutative antiderivative
See Also
========
linear_ode_to_matrix: Coefficient matrix computation function
canonical_odes: System of ODEs representation change
linodesolve_type: Getting information about systems of ODEs to pass in this solver
"""
if not isinstance(A, MatrixBase):
raise ValueError(filldedent('''\
The coefficients of the system of ODEs should be of type Matrix
'''))
if not A.is_square:
raise NonSquareMatrixError(filldedent('''\
The coefficient matrix must be a square
'''))
if b is not None:
if not isinstance(b, MatrixBase):
raise ValueError(filldedent('''\
The non-homogeneous terms of the system of ODEs should be of type Matrix
'''))
if A.rows != b.rows:
raise ValueError(filldedent('''\
The system of ODEs should have the same number of non-homogeneous terms and the number of
equations
'''))
if B is not None:
if not isinstance(B, MatrixBase):
raise ValueError(filldedent('''\
The antiderivative of coefficients of the system of ODEs should be of type Matrix
'''))
if not B.is_square:
raise NonSquareMatrixError(filldedent('''\
The antiderivative of the coefficient matrix must be a square
'''))
if A.rows != B.rows:
raise ValueError(filldedent('''\
The coefficient matrix and its antiderivative should have same dimensions
'''))
if not any(type == "type{}".format(i) for i in range(1, 7)) and not type == "auto":
raise ValueError(filldedent('''\
The input type should be a valid one
'''))
n = A.rows
# constants = numbered_symbols(prefix='C', cls=Dummy, start=const_idx+1)
Cvect = Matrix(list(Dummy() for _ in range(n)))
if any(type == typ for typ in ["type2", "type4", "type6"]) and b is None:
b = zeros(n, 1)
is_transformed = tau is not None
passed_type = type
if type == "auto":
system_info = linodesolve_type(A, t, b=b)
type = system_info["type_of_equation"]
B = system_info["antiderivative"]
if type == "type5" or type == "type6":
is_transformed = True
if passed_type != "auto":
if tau is None:
system_info = _first_order_type5_6_subs(A, t, b=b)
if not system_info:
raise ValueError(filldedent('''
The system passed isn't {}.
'''.format(type)))
tau = system_info['tau']
t = system_info['t_']
A = system_info['A']
b = system_info['b']
if type in ["type1", "type2", "type5", "type6"]:
P, J = matrix_exp_jordan_form(A, t)
P = simplify(P)
if type == "type1" or type == "type5":
sol_vector = P * (J * Cvect)
else:
sol_vector = P * J * ((J.inv() * P.inv() * b).applyfunc(lambda x: Integral(x, t)) + Cvect)
else:
if B is None:
B, _ = _is_commutative_anti_derivative(A, t)
if type == "type3":
sol_vector = B.exp() * Cvect
else:
sol_vector = B.exp() * (((-B).exp() * b).applyfunc(lambda x: Integral(x, t)) + Cvect)
if is_transformed:
sol_vector = sol_vector.subs(t, tau)
gens = sol_vector.atoms(exp)
if type != "type1":
sol_vector = [expand_mul(s) for s in sol_vector]
sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]
if doit:
sol_vector = [s.doit() for s in sol_vector]
return sol_vector
def _matrix_is_constant(M, t):
"""Checks if the matrix M is independent of t or not."""
return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M)
def canonical_odes(eqs, funcs, t):
r"""
Function that solves for highest order derivatives in a system
Explanation
===========
This function inputs a system of ODEs and based on the system,
the dependent variables and their highest order, returns the system
in the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $X(t)$ is the vector of dependent variables of lower order, $A(t)$ is
the coefficient matrix, $b(t)$ is the non-homogeneous term and $X'(t)$ is the
vector of dependent variables in their respective highest order. We use the term
canonical form to imply the system of ODEs which is of the above form.
If the system passed has a non-linear term with multiple solutions, then a list of
systems is returned in its canonical form.
Parameters
==========
eqs : List
List of the ODEs
funcs : List
List of dependent variables
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Function, Eq, Derivative
>>> from sympy.solvers.ode.systems import canonical_odes
>>> f, g = symbols("f g", cls=Function)
>>> x, y = symbols("x y")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), 20*f(x))]
>>> canonical_eqs = canonical_odes(eqs, funcs, x)
>>> canonical_eqs
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), 20*f(x) - g(x))]]
>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]
>>> canonical_system = canonical_odes(system, funcs, x)
>>> canonical_system
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], [Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
Returns
=======
List
"""
from sympy.solvers.solvers import solve
order = _get_func_order(eqs, funcs)
canon_eqs = solve(eqs, *[func.diff(t, order[func]) for func in funcs], dict=True)
systems = []
for eq in canon_eqs:
system = [Eq(func.diff(t, order[func]), eq[func.diff(t, order[func])]) for func in funcs]
systems.append(system)
return systems
def _is_commutative_anti_derivative(A, t):
r"""
Helper function for determining if the Matrix passed is commutative with its antiderivative
Explanation
===========
This function checks if the Matrix $A$ passed is commutative with its antiderivative with respect
to the independent variable $t$.
.. math::
B(t) = \int A(t) dt
The function outputs two values, first one being the antiderivative $B(t)$, second one being a
boolean value, if True, then the matrix $A(t)$ passed is commutative with $B(t)$, else the matrix
passed isn't commutative with $B(t)$.
Parameters
==========
A : Matrix
The matrix which has to be checked
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import _is_commutative_anti_derivative
>>> t = symbols("t")
>>> A = Matrix([[1, t], [-t, 1]])
>>> B, is_commuting = _is_commutative_anti_derivative(A, t)
>>> is_commuting
True
Returns
=======
Matrix, Boolean
"""
B = integrate(A, t)
is_commuting = (B*A - A*B).applyfunc(expand).applyfunc(factor_terms).is_zero_matrix
is_commuting = False if is_commuting is None else is_commuting
return B, is_commuting
def _factor_matrix(A, t):
term = None
for element in A:
temp_term = element.as_independent(t)[1]
if temp_term.has(t):
term = temp_term
break
if term is not None:
A_factored = (A/term).applyfunc(ratsimp)
can_factor = _matrix_is_constant(A_factored, t)
term = (term, A_factored) if can_factor else None
return term
def _is_second_order_type2(A, t):
term = _factor_matrix(A, t)
is_type2 = False
if term is not None:
term = 1/term[0]
is_type2 = term.is_polynomial()
if is_type2:
poly = Poly(term.expand(), t)
monoms = poly.monoms()
if monoms[0][0] == 4 or monoms[0][0] == 2:
cs = _get_poly_coeffs(poly, 4)
a, b, c, d, e = cs
a1 = powdenest(sqrt(a), force=True)
c1 = powdenest(sqrt(e), force=True)
b1 = powdenest(sqrt(c - 2*a1*c1), force=True)
is_type2 = (b == 2*a1*b1) and (d == 2*b1*c1)
term = a1*t**2 + b1*t + c1
else:
is_type2 = False
return is_type2, term
def _get_poly_coeffs(poly, order):
cs = [0 for _ in range(order+1)]
for c, m in zip(poly.coeffs(), poly.monoms()):
cs[-1-m[0]] = c
return cs
def _match_second_order_type(A1, A0, t, b=None):
r"""
Works only for second order system in its canonical form.
Type 0: Constant coefficient matrix, can be simply solved by
introducing dummy variables.
Type 1: When the substitution: $U = t*X' - X$ works for reducing
the second order system to first order system.
Type 2: When the system is of the form: $poly * X'' = A*X$ where
$poly$ is square of a quadratic polynomial with respect to
*t* and $A$ is a constant coefficient matrix.
"""
match = {"type_of_equation": "type0"}
n = A1.shape[0]
if _matrix_is_constant(A1, t) and _matrix_is_constant(A0, t):
return match
if (A1 + A0*t).applyfunc(expand_mul).is_zero_matrix:
match.update({"type_of_equation": "type1", "A1": A1})
elif A1.is_zero_matrix and (b is None or b.is_zero_matrix):
is_type2, term = _is_second_order_type2(A0, t)
if is_type2:
a, b, c = _get_poly_coeffs(Poly(term, t), 2)
A = (A0*(term**2).expand()).applyfunc(ratsimp) + (b**2/4 - a*c)*eye(n, n)
tau = integrate(1/term, t)
t_ = Symbol("{}_".format(t))
match.update({"type_of_equation": "type2", "A0": A,
"g(t)": sqrt(term), "tau": tau, "is_transformed": True,
"t_": t_})
return match
def _second_order_subs_type1(A, b, funcs, t):
r"""
For a linear, second order system of ODEs, a particular substitution.
A system of the below form can be reduced to a linear first order system of
ODEs:
.. math::
X'' = A(t) * (t*X' - X) + b(t)
By substituting:
.. math:: U = t*X' - X
To get the system:
.. math:: U' = t*(A(t)*U + b(t))
Where $U$ is the vector of dependent variables, $X$ is the vector of dependent
variables in `funcs` and $X'$ is the first order derivative of $X$ with respect to
$t$. It may or may not reduce the system into linear first order system of ODEs.
Then a check is made to determine if the system passed can be reduced or not, if
this substitution works, then the system is reduced and its solved for the new
substitution. After we get the solution for $U$:
.. math:: U = a(t)
We substitute and return the reduced system:
.. math::
a(t) = t*X' - X
Parameters
==========
A: Matrix
Coefficient matrix($A(t)*t$) of the second order system of this form.
b: Matrix
Non-homogeneous term($b(t)$) of the system of ODEs.
funcs: List
List of dependent variables
t: Symbol
Independent variable of the system of ODEs.
Returns
=======
List
"""
U = Matrix([t*func.diff(t) - func for func in funcs])
sol = linodesolve(A, t, t*b)
reduced_eqs = [Eq(u, s) for s, u in zip(sol, U)]
reduced_eqs = canonical_odes(reduced_eqs, funcs, t)[0]
return reduced_eqs
def _second_order_subs_type2(A, funcs, t_):
r"""
Returns a second order system based on the coefficient matrix passed.
Explanation
===========
This function returns a system of second order ODE of the following form:
.. math::
X'' = A * X
Here, $X$ is the vector of dependent variables, but a bit modified, $A$ is the
coefficient matrix passed.
Along with returning the second order system, this function also returns the new
dependent variables with the new independent variable `t_` passed.
Parameters
==========
A: Matrix
Coefficient matrix of the system
funcs: List
List of old dependent variables
t_: Symbol
New independent variable
Returns
=======
List, List
"""
func_names = [func.func.__name__ for func in funcs]
new_funcs = [Function(Dummy("{}_".format(name)))(t_) for name in func_names]
rhss = A * Matrix(new_funcs)
new_eqs = [Eq(func.diff(t_, 2), rhs) for func, rhs in zip(new_funcs, rhss)]
return new_eqs, new_funcs
def _is_euler_system(As, t):
return all(_matrix_is_constant((A*t**i).applyfunc(ratsimp), t) for i, A in enumerate(As))
def _classify_linear_system(eqs, funcs, t, is_canon=False):
r"""
Returns a dictionary with details of the eqs if the system passed is linear
and can be classified by this function else returns None
Explanation
===========
This function takes the eqs, converts it into a form Ax = b where x is a vector of terms
containing dependent variables and their derivatives till their maximum order. If it is
possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise
they are non-linear.
To check if the equations are constant coefficient, we need to check if all the terms in
A obtained above are constant or not.
To check if the equations are homogeneous or not, we need to check if b is a zero matrix
or not.
Parameters
==========
eqs: List
List of ODEs
funcs: List
List of dependent variables
t: Symbol
Independent variable of the equations in eqs
is_canon: Boolean
If True, then this function won't try to get the
system in canonical form. Default value is False
Returns
=======
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_constant': is_constant,
'is_homogeneous': is_homogeneous,
}
Dict or list of Dicts or None
Dict with values for keys:
1. no_of_equation: Number of equations
2. eq: The set of equations
3. func: List of dependent variables
4. order: A dictionary that gives the order of the
dependent variable in eqs
5. is_linear: Boolean value indicating if the set of
equations are linear or not.
6. is_constant: Boolean value indicating if the set of
equations have constant coefficients or not.
7. is_homogeneous: Boolean value indicating if the set of
equations are homogeneous or not.
8. commutative_antiderivative: Antiderivative of the coefficient
matrix if the coefficient matrix is non-constant
and commutative with its antiderivative. This key
may or may not exist.
9. is_general: Boolean value indicating if the system of ODEs is
solvable using one of the general case solvers or not.
10. rhs: rhs of the non-homogeneous system of ODEs in Matrix form. This
key may or may not exist.
11. is_higher_order: True if the system passed has an order greater than 1.
This key may or may not exist.
12. is_second_order: True if the system passed is a second order ODE. This
key may or may not exist.
This Dict is the answer returned if the eqs are linear and constant
coefficient. Otherwise, None is returned.
"""
# Error for i == 0 can be added but isn't for now
# Check for len(funcs) == len(eqs)
if len(funcs) != len(eqs):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# ValueError when functions have more than one arguments
for func in funcs:
if len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# Getting the func_dict and order using the helper
# function
order = _get_func_order(eqs, funcs)
system_order = max(order[func] for func in funcs)
is_higher_order = system_order > 1
is_second_order = system_order == 2 and all(order[func] == 2 for func in funcs)
# Not adding the check if the len(func.args) for
# every func in funcs is 1
# Linearity check
try:
canon_eqs = canonical_odes(eqs, funcs, t) if not is_canon else [eqs]
if len(canon_eqs) == 1:
As, b = linear_ode_to_matrix(canon_eqs[0], funcs, t, system_order)
else:
match = {
'is_implicit': True,
'canon_eqs': canon_eqs
}
return match
# When the system of ODEs is non-linear, an ODENonlinearError is raised.
# This function catches the error and None is returned.
except ODENonlinearError:
return None
is_linear = True
# Homogeneous check
is_homogeneous = True if b.is_zero_matrix else False
# Is general key is used to identify if the system of ODEs can be solved by
# one of the general case solvers or not.
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_homogeneous': is_homogeneous,
'is_general': True
}
if not is_homogeneous:
match['rhs'] = b
is_constant = all(_matrix_is_constant(A_, t) for A_ in As)
# The match['is_linear'] check will be added in the future when this
# function becomes ready to deal with non-linear systems of ODEs
if not is_higher_order:
A = As[1]
match['func_coeff'] = A
# Constant coefficient check
is_constant = _matrix_is_constant(A, t)
match['is_constant'] = is_constant
try:
system_info = linodesolve_type(A, t, b=b)
except NotImplementedError:
return None
match.update(system_info)
antiderivative = match.pop("antiderivative")
if not is_constant:
match['commutative_antiderivative'] = antiderivative
return match
if is_higher_order:
match['type_of_equation'] = "type0"
if is_second_order:
A1, A0 = As[1:]
match_second_order = _match_second_order_type(A1, A0, t)
match.update(match_second_order)
match['is_second_order'] = True
# If system is constant, then no need to check if its in euler
# form or not. It will be easier and faster to directly proceed
# to solve it.
if match['type_of_equation'] == "type0" and not is_constant:
is_euler = _is_euler_system(As, t)
if is_euler:
t_ = Symbol('{}_'.format(t))
match.update({'is_transformed': True, 'type_of_equation': 'type1',
't_': t_})
else:
is_jordan = lambda M: M == Matrix.jordan_block(M.shape[0], M[0, 0])
terms = _factor_matrix(As[-1], t)
if all(A.is_zero_matrix for A in As[1:-1]) and terms is not None and not is_jordan(terms[1]):
P, J = terms[1].jordan_form()
match.update({'type_of_equation': 'type2', 'J': J,
'f(t)': terms[0], 'P': P, 'is_transformed': True})
if match['type_of_equation'] != 'type0' and is_second_order:
match.pop('is_second_order', None)
match['is_higher_order'] = is_higher_order
return match
return None
def _preprocess_eqs(eqs):
processed_eqs = []
for eq in eqs:
processed_eqs.append(eq if isinstance(eq, Equality) else Eq(eq, 0))
return processed_eqs
def _eqs2dict(eqs, funcs):
eqsorig = {}
eqsmap = {}
funcset = set(funcs)
for eq in eqs:
f1, = eq.lhs.atoms(AppliedUndef)
f2s = (eq.rhs.atoms(AppliedUndef) - {f1}) & funcset
eqsmap[f1] = f2s
eqsorig[f1] = eq
return eqsmap, eqsorig
def _dict2graph(d):
nodes = list(d)
edges = [(f1, f2) for f1, f2s in d.items() for f2 in f2s]
G = (nodes, edges)
return G
def _is_type1(scc, t):
eqs, funcs = scc
try:
(A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 1)
except (ODENonlinearError, ODEOrderError):
return False
if _matrix_is_constant(A0, t) and b.is_zero_matrix:
return True
return False
def _combine_type1_subsystems(subsystem, funcs, t):
indices = [i for i, sys in enumerate(zip(subsystem, funcs)) if _is_type1(sys, t)]
remove = set()
for ip, i in enumerate(indices):
for j in indices[ip+1:]:
if any(eq2.has(funcs[i]) for eq2 in subsystem[j]):
subsystem[j] = subsystem[i] + subsystem[j]
remove.add(i)
subsystem = [sys for i, sys in enumerate(subsystem) if i not in remove]
return subsystem
def _component_division(eqs, funcs, t):
from sympy.utilities.iterables import connected_components, strongly_connected_components
# Assuming that each eq in eqs is in canonical form,
# that is, [f(x).diff(x) = .., g(x).diff(x) = .., etc]
# and that the system passed is in its first order
eqsmap, eqsorig = _eqs2dict(eqs, funcs)
subsystems = []
for cc in connected_components(_dict2graph(eqsmap)):
eqsmap_c = {f: eqsmap[f] for f in cc}
sccs = strongly_connected_components(_dict2graph(eqsmap_c))
subsystem = [[eqsorig[f] for f in scc] for scc in sccs]
subsystem = _combine_type1_subsystems(subsystem, sccs, t)
subsystems.append(subsystem)
return subsystems
# Returns: List of equations
def _linear_ode_solver(match):
t = match['t']
funcs = match['func']
rhs = match.get('rhs', None)
tau = match.get('tau', None)
t = match['t_'] if 't_' in match else t
A = match['func_coeff']
# Note: To make B None when the matrix has constant
# coefficient
B = match.get('commutative_antiderivative', None)
type = match['type_of_equation']
sol_vector = linodesolve(A, t, b=rhs, B=B,
type=type, tau=tau)
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
def _select_equations(eqs, funcs, key=lambda x: x):
eq_dict = {e.lhs: e.rhs for e in eqs}
return [Eq(f, eq_dict[key(f)]) for f in funcs]
def _higher_order_ode_solver(match):
eqs = match["eq"]
funcs = match["func"]
t = match["t"]
sysorder = match['order']
type = match.get('type_of_equation', "type0")
is_second_order = match.get('is_second_order', False)
is_transformed = match.get('is_transformed', False)
is_euler = is_transformed and type == "type1"
is_higher_order_type2 = is_transformed and type == "type2" and 'P' in match
if is_second_order:
new_eqs, new_funcs = _second_order_to_first_order(eqs, funcs, t,
A1=match.get("A1", None), A0=match.get("A0", None),
b=match.get("rhs", None), type=type,
t_=match.get("t_", None))
else:
new_eqs, new_funcs = _higher_order_to_first_order(eqs, sysorder, t, funcs=funcs,
type=type, J=match.get('J', None),
f_t=match.get('f(t)', None))
if is_transformed:
t = match.get('t_', t)
if not is_higher_order_type2:
new_eqs = _select_equations(new_eqs, [f.diff(t) for f in new_funcs])
sol = None
# NotImplementedError may be raised when the system may be actually
# solvable if it can be just divided into sub-systems
try:
if not is_higher_order_type2:
sol = _strong_component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
# Dividing the system only when it becomes essential
if sol is None:
try:
sol = _component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
if sol is None:
return sol
is_second_order_type2 = is_second_order and type == "type2"
underscores = '__' if is_transformed else '_'
sol = _select_equations(sol, funcs,
key=lambda x: Function(Dummy('{}{}0'.format(x.func.__name__, underscores)))(t))
if match.get("is_transformed", False):
if is_second_order_type2:
g_t = match["g(t)"]
tau = match["tau"]
sol = [Eq(s.lhs, s.rhs.subs(t, tau) * g_t) for s in sol]
elif is_euler:
t = match['t']
tau = match['t_']
sol = [s.subs(tau, log(t)) for s in sol]
elif is_higher_order_type2:
P = match['P']
sol_vector = P * Matrix([s.rhs for s in sol])
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
# Returns: List of equations or None
# If None is returned by this solver, then the system
# of ODEs cannot be solved directly by dsolve_system.
def _strong_component_solver(eqs, funcs, t):
from sympy.solvers.ode.ode import dsolve, constant_renumber
match = _classify_linear_system(eqs, funcs, t, is_canon=True)
sol = None
# Assuming that we can't get an implicit system
# since we are already canonical equations from
# dsolve_system
if match:
match['t'] = t
if match.get('is_higher_order', False):
sol = _higher_order_ode_solver(match)
elif match.get('is_linear', False):
sol = _linear_ode_solver(match)
# Note: For now, only linear systems are handled by this function
# hence, the match condition is added. This can be removed later.
if sol is None and len(eqs) == 1:
sol = dsolve(eqs[0], func=funcs[0])
variables = Tuple(eqs[0]).free_symbols
new_constants = [Dummy() for _ in range(ode_order(eqs[0], funcs[0]))]
sol = constant_renumber(sol, variables=variables, newconstants=new_constants)
sol = [sol]
# To add non-linear case here in future
return sol
def _get_funcs_from_canon(eqs):
return [eq.lhs.args[0] for eq in eqs]
# Returns: List of Equations(a solution)
def _weak_component_solver(wcc, t):
# We will divide the systems into sccs
# only when the wcc cannot be solved as
# a whole
eqs = []
for scc in wcc:
eqs += scc
funcs = _get_funcs_from_canon(eqs)
sol = _strong_component_solver(eqs, funcs, t)
if sol:
return sol
sol = []
for j, scc in enumerate(wcc):
eqs = scc
funcs = _get_funcs_from_canon(eqs)
# Substituting solutions for the dependent
# variables solved in previous SCC, if any solved.
comp_eqs = [eq.subs({s.lhs: s.rhs for s in sol}) for eq in eqs]
scc_sol = _strong_component_solver(comp_eqs, funcs, t)
if scc_sol is None:
raise NotImplementedError(filldedent('''
The system of ODEs passed cannot be solved by dsolve_system.
'''))
# scc_sol: List of equations
# scc_sol is a solution
sol += scc_sol
return sol
# Returns: List of Equations(a solution)
def _component_solver(eqs, funcs, t):
components = _component_division(eqs, funcs, t)
sol = []
for wcc in components:
# wcc_sol: List of Equations
sol += _weak_component_solver(wcc, t)
# sol: List of Equations
return sol
def _second_order_to_first_order(eqs, funcs, t, type="auto", A1=None,
A0=None, b=None, t_=None):
r"""
Expects the system to be in second order and in canonical form
Explanation
===========
Reduces a second order system into a first order one depending on the type of second
order system.
1. "type0": If this is passed, then the system will be reduced to first order by
introducing dummy variables.
2. "type1": If this is passed, then a particular substitution will be used to reduce the
the system into first order.
3. "type2": If this is passed, then the system will be transformed with new dependent
variables and independent variables. This transformation is a part of solving
the corresponding system of ODEs.
`A1` and `A0` are the coefficient matrices from the system and it is assumed that the
second order system has the form given below:
.. math::
A2 * X'' = A1 * X' + A0 * X + b
Here, $A2$ is the coefficient matrix for the vector $X''$ and $b$ is the non-homogeneous
term.
Default value for `b` is None but if `A1` and `A0` are passed and `b` isn't passed, then the
system will be assumed homogeneous.
"""
is_a1 = A1 is None
is_a0 = A0 is None
if (type == "type1" and is_a1) or (type == "type2" and is_a0)\
or (type == "auto" and (is_a1 or is_a0)):
(A2, A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 2)
if not A2.is_Identity:
raise ValueError(filldedent('''
The system must be in its canonical form.
'''))
if type == "auto":
match = _match_second_order_type(A1, A0, t)
type = match["type_of_equation"]
A1 = match.get("A1", None)
A0 = match.get("A0", None)
sys_order = {func: 2 for func in funcs}
if type == "type1":
if b is None:
b = zeros(len(eqs))
eqs = _second_order_subs_type1(A1, b, funcs, t)
sys_order = {func: 1 for func in funcs}
if type == "type2":
if t_ is None:
t_ = Symbol("{}_".format(t))
t = t_
eqs, funcs = _second_order_subs_type2(A0, funcs, t_)
sys_order = {func: 2 for func in funcs}
return _higher_order_to_first_order(eqs, sys_order, t, funcs=funcs)
def _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order):
# Note: To add a test for this ValueError
if J is None or f_t is None or not _matrix_is_constant(J, t):
raise ValueError(filldedent('''
Correctly input for args 'A' and 'f_t' for Linear, Higher Order,
Type 2
'''))
new_funcs = Matrix([Function(Dummy('{}__0'.format(f.func.__name__)))(t) for f in funcs])
new_eqs = new_funcs.diff(t, max_order) - f_t * J * new_funcs
new_eqs = canonical_odes(new_eqs, new_funcs, t)[0]
return new_eqs, new_funcs
def _higher_order_to_first_order(eqs, sys_order, t, funcs=None, type="type0", **kwargs):
if funcs is None:
funcs = sys_order.keys()
# Standard Cauchy Euler system
if type == "type1":
t_ = Symbol('{}_'.format(t))
new_funcs = [Function(Dummy('{}_'.format(f.func.__name__)))(t_) for f in funcs]
max_order = max(sys_order[func] for func in funcs)
subs_dict = {func: new_func for func, new_func in zip(funcs, new_funcs)}
subs_dict[t] = exp(t_)
free_function = Function(Dummy())
def _get_coeffs_from_subs_expression(expr):
if isinstance(expr, Subs):
free_symbol = expr.args[1][0]
term = expr.args[0]
return {ode_order(term, free_symbol): 1}
if isinstance(expr, Mul):
coeff = expr.args[0]
order = list(_get_coeffs_from_subs_expression(expr.args[1]).keys())[0]
return {order: coeff}
if isinstance(expr, Add):
coeffs = {}
for arg in expr.args:
if isinstance(arg, Mul):
coeffs.update(_get_coeffs_from_subs_expression(arg))
else:
order = list(_get_coeffs_from_subs_expression(arg).keys())[0]
coeffs[order] = 1
return coeffs
for o in range(1, max_order + 1):
expr = free_function(log(t_)).diff(t_, o)*t_**o
coeff_dict = _get_coeffs_from_subs_expression(expr)
coeffs = [coeff_dict[order] if order in coeff_dict else 0 for order in range(o + 1)]
expr_to_subs = sum(free_function(t_).diff(t_, i) * c for i, c in
enumerate(coeffs)) / t**o
subs_dict.update({f.diff(t, o): expr_to_subs.subs(free_function(t_), nf)
for f, nf in zip(funcs, new_funcs)})
new_eqs = [eq.subs(subs_dict) for eq in eqs]
new_sys_order = {nf: sys_order[f] for f, nf in zip(funcs, new_funcs)}
new_eqs = canonical_odes(new_eqs, new_funcs, t_)[0]
return _higher_order_to_first_order(new_eqs, new_sys_order, t_, funcs=new_funcs)
# Systems of the form: X(n)(t) = f(t)*A*X + b
# where X(n)(t) is the nth derivative of the vector of dependent variables
# with respect to the independent variable and A is a constant matrix.
if type == "type2":
J = kwargs.get('J', None)
f_t = kwargs.get('f_t', None)
max_order = max(sys_order[func] for func in funcs)
return _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order)
# Note: To be changed to this after doit option is disabled for default cases
# new_sysorder = _get_func_order(new_eqs, new_funcs)
#
# return _higher_order_to_first_order(new_eqs, new_sysorder, t, funcs=new_funcs)
new_funcs = []
for prev_func in funcs:
func_name = prev_func.func.__name__
func = Function(Dummy('{}_0'.format(func_name)))(t)
new_funcs.append(func)
subs_dict = {prev_func: func}
new_eqs = []
for i in range(1, sys_order[prev_func]):
new_func = Function(Dummy('{}_{}'.format(func_name, i)))(t)
subs_dict[prev_func.diff(t, i)] = new_func
new_funcs.append(new_func)
prev_f = subs_dict[prev_func.diff(t, i-1)]
new_eq = Eq(prev_f.diff(t), new_func)
new_eqs.append(new_eq)
eqs = [eq.subs(subs_dict) for eq in eqs] + new_eqs
return eqs, new_funcs
def dsolve_system(eqs, funcs=None, t=None, ics=None, doit=False):
r"""
Solves any(supported) system of Ordinary Differential Equations
Explanation
===========
This function takes a system of ODEs as an input, determines if the
it is solvable by this function, and returns the solution if found any.
This function can handle:
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.
The types of systems described above aren't limited by the number of equations, i.e. this
function can solve the above types irrespective of the number of equations in the system passed.
But, the bigger the system, the more time it will take to solve the system.
This function returns a list of solutions. Each solution is a list of equations where LHS is
the dependent variable and RHS is an expression in terms of the independent variable.
Among the non constant coefficient types, not all the systems are solvable by this function. Only
those which have either a coefficient matrix with a commutative antiderivative or those systems which
may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.
Parameters
==========
eqs : List
system of ODEs to be solved
funcs : List or None
List of dependent variables that make up the system of ODEs
t : Symbol or None
Independent variable in the system of ODEs
ics : Dict or None
Set of initial boundary/conditions for the system of ODEs
doit : Boolean
Evaluate the solutions if True. Default value is False
Examples
========
>>> from sympy import symbols, Eq, Function
>>> from sympy.solvers.ode.systems import dsolve_system
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
You can also pass the initial conditions for the system of ODEs:
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
Optionally, you can pass the dependent variables and the independent
variable for which the system is to be solved:
>>> funcs = [f(x), g(x)]
>>> dsolve_system(eqs, funcs=funcs, t=x)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
Lets look at an implicit system of ODEs:
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 + C2*exp(x)), Eq(g(x), C2*exp(x))]]
Returns
=======
List of List of Equations
Raises
======
NotImplementedError
When the system of ODEs is not solvable by this function.
ValueError
When the parameters passed aren't in the required form.
"""
from sympy.solvers.ode.ode import solve_ics, _extract_funcs, constant_renumber
if not iterable(eqs):
raise ValueError(filldedent('''
List of equations should be passed. The input is not valid.
'''))
eqs = _preprocess_eqs(eqs)
if funcs is not None and not isinstance(funcs, list):
raise ValueError(filldedent('''
Input to the funcs should be a list of functions.
'''))
if funcs is None:
funcs = _extract_funcs(eqs)
if any(len(func.args) != 1 for func in funcs):
raise ValueError(filldedent('''
dsolve_system can solve a system of ODEs with only one independent
variable.
'''))
if len(eqs) != len(funcs):
raise ValueError(filldedent('''
Number of equations and number of functions don't match
'''))
if t is not None and not isinstance(t, Symbol):
raise ValueError(filldedent('''
The indepedent variable must be of type Symbol
'''))
if t is None:
t = list(list(eqs[0].atoms(Derivative))[0].atoms(Symbol))[0]
sols = []
canon_eqs = canonical_odes(eqs, funcs, t)
for canon_eq in canon_eqs:
try:
sol = _strong_component_solver(canon_eq, funcs, t)
except NotImplementedError:
sol = None
if sol is None:
sol = _component_solver(canon_eq, funcs, t)
sols.append(sol)
if sols:
final_sols = []
variables = Tuple(*eqs).free_symbols
for sol in sols:
sol = _select_equations(sol, funcs)
sol = constant_renumber(sol, variables=variables)
if ics:
constants = Tuple(*sol).free_symbols - variables
solved_constants = solve_ics(sol, funcs, constants, ics)
sol = [s.subs(solved_constants) for s in sol]
if doit:
sol = [s.doit() for s in sol]
final_sols.append(sol)
sols = final_sols
return sols
|
cf3335a02283ba6dde8d6a23a41c345c1eab60a5fa7bffc4b7a38527653131e8 | from sympy.core import S, Pow
from sympy.core.compatibility import iterable, is_sequence
from sympy.core.function import (Derivative, AppliedUndef, diff)
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.functions import exp
from sympy.series import Order
from sympy.simplify import (simplify, trigsimp, posify,
besselsimp, sqrtdenest) # type: ignore
from sympy.solvers import solve
from sympy.solvers.deutils import _preprocess, ode_order
def sub_func_doit(eq, func, new):
r"""
When replacing the func with something else, we usually want the
derivative evaluated, so this function helps in making that happen.
Examples
========
>>> from sympy import Derivative, symbols, Function
>>> from sympy.solvers.ode.ode import sub_func_doit
>>> x, z = symbols('x, z')
>>> y = Function('y')
>>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x)
2
>>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x),
... 1/(x*(z + 1/x)))
x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x))
...- 1/(x**2*(z + 1/x)**2)
"""
reps= {func: new}
for d in eq.atoms(Derivative):
if d.expr == func:
reps[d] = new.diff(*d.variable_count)
else:
reps[d] = d.xreplace({func: new}).doit(deep=False)
return eq.xreplace(reps)
def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True):
r"""
Substitutes ``sol`` into ``ode`` and checks that the result is ``0``.
This works when ``func`` is one function, like `f(x)` or a list of
functions like `[f(x), g(x)]` when `ode` is a system of ODEs. ``sol`` can
be a single solution or a list of solutions. Each solution may be an
:py:class:`~sympy.core.relational.Equality` that the solution satisfies,
e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an
:py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it
will not be necessary to explicitly identify the function, but if the
function cannot be inferred from the original equation it can be supplied
through the ``func`` argument.
If a sequence of solutions is passed, the same sort of container will be
used to return the result for each solution.
It tries the following methods, in order, until it finds zero equivalence:
1. Substitute the solution for `f` in the original equation. This only
works if ``ode`` is solved for `f`. It will attempt to solve it first
unless ``solve_for_func == False``.
2. Take `n` derivatives of the solution, where `n` is the order of
``ode``, and check to see if that is equal to the solution. This only
works on exact ODEs.
3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time
solving for the derivative of `f` of that order (this will always be
possible because `f` is a linear operator). Then back substitute each
derivative into ``ode`` in reverse order.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results in ``0``, and ``False`` otherwise. The second
item in the tuple is what the substitution results in. It should always
be ``0`` if the first item is ``True``. Sometimes this function will
return ``False`` even when an expression is identically equal to ``0``.
This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not
reduce the expression to ``0``. If an expression returned by this
function vanishes identically, then ``sol`` really is a solution to
the ``ode``.
If this function seems to hang, it is probably because of a hard
simplification.
To use this function to test, test the first item of the tuple.
Examples
========
>>> from sympy import (Eq, Function, checkodesol, symbols,
... Derivative, exp)
>>> x, C1, C2 = symbols('x,C1,C2')
>>> f, g = symbols('f g', cls=Function)
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
(True, 0)
>>> assert checkodesol(f(x).diff(x), C1)[0]
>>> assert not checkodesol(f(x).diff(x), x)[0]
>>> checkodesol(f(x).diff(x, 2), x**2)
(False, 2)
>>> eqs = [Eq(Derivative(f(x), x), f(x)), Eq(Derivative(g(x), x), g(x))]
>>> sol = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
>>> checkodesol(eqs, sol)
(True, [0, 0])
"""
if iterable(ode):
return checksysodesol(ode, sol, func=func)
if not isinstance(ode, Equality):
ode = Eq(ode, 0)
if func is None:
try:
_, func = _preprocess(ode.lhs)
except ValueError:
funcs = [s.atoms(AppliedUndef) for s in (
sol if is_sequence(sol, set) else [sol])]
funcs = set().union(*funcs)
if len(funcs) != 1:
raise ValueError(
'must pass func arg to checkodesol for this case.')
func = funcs.pop()
if not isinstance(func, AppliedUndef) or len(func.args) != 1:
raise ValueError(
"func must be a function of one variable, not %s" % func)
if is_sequence(sol, set):
return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol])
if not isinstance(sol, Equality):
sol = Eq(func, sol)
elif sol.rhs == func:
sol = sol.reversed
if order == 'auto':
order = ode_order(ode, func)
solved = sol.lhs == func and not sol.rhs.has(func)
if solve_for_func and not solved:
rhs = solve(sol, func)
if rhs:
eqs = [Eq(func, t) for t in rhs]
if len(rhs) == 1:
eqs = eqs[0]
return checkodesol(ode, eqs, order=order,
solve_for_func=False)
x = func.args[0]
# Handle series solutions here
if sol.has(Order):
assert sol.lhs == func
Oterm = sol.rhs.getO()
solrhs = sol.rhs.removeO()
Oexpr = Oterm.expr
assert isinstance(Oexpr, Pow)
sorder = Oexpr.exp
assert Oterm == Order(x**sorder)
odesubs = (ode.lhs-ode.rhs).subs(func, solrhs).doit().expand()
neworder = Order(x**(sorder - order))
odesubs = odesubs + neworder
assert odesubs.getO() == neworder
residual = odesubs.removeO()
return (residual == 0, residual)
s = True
testnum = 0
while s:
if testnum == 0:
# First pass, try substituting a solved solution directly into the
# ODE. This has the highest chance of succeeding.
ode_diff = ode.lhs - ode.rhs
if sol.lhs == func:
s = sub_func_doit(ode_diff, func, sol.rhs)
s = besselsimp(s)
else:
testnum += 1
continue
ss = simplify(s.rewrite(exp))
if ss:
# with the new numer_denom in power.py, if we do a simple
# expansion then testnum == 0 verifies all solutions.
s = ss.expand(force=True)
else:
s = 0
testnum += 1
elif testnum == 1:
# Second pass. If we cannot substitute f, try seeing if the nth
# derivative is equal, this will only work for odes that are exact,
# by definition.
s = simplify(
trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) -
trigsimp(ode.lhs) + trigsimp(ode.rhs))
# s2 = simplify(
# diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \
# ode.lhs + ode.rhs)
testnum += 1
elif testnum == 2:
# Third pass. Try solving for df/dx and substituting that into the
# ODE. Thanks to Chris Smith for suggesting this method. Many of
# the comments below are his, too.
# The method:
# - Take each of 1..n derivatives of the solution.
# - Solve each nth derivative for d^(n)f/dx^(n)
# (the differential of that order)
# - Back substitute into the ODE in decreasing order
# (i.e., n, n-1, ...)
# - Check the result for zero equivalence
if sol.lhs == func and not sol.rhs.has(func):
diffsols = {0: sol.rhs}
elif sol.rhs == func and not sol.lhs.has(func):
diffsols = {0: sol.lhs}
else:
diffsols = {}
sol = sol.lhs - sol.rhs
for i in range(1, order + 1):
# Differentiation is a linear operator, so there should always
# be 1 solution. Nonetheless, we test just to make sure.
# We only need to solve once. After that, we automatically
# have the solution to the differential in the order we want.
if i == 1:
ds = sol.diff(x)
try:
sdf = solve(ds, func.diff(x, i))
if not sdf:
raise NotImplementedError
except NotImplementedError:
testnum += 1
break
else:
diffsols[i] = sdf[0]
else:
# This is what the solution says df/dx should be.
diffsols[i] = diffsols[i - 1].diff(x)
# Make sure the above didn't fail.
if testnum > 2:
continue
else:
# Substitute it into ODE to check for self consistency.
lhs, rhs = ode.lhs, ode.rhs
for i in range(order, -1, -1):
if i == 0 and 0 not in diffsols:
# We can only substitute f(x) if the solution was
# solved for f(x).
break
lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i])
rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i])
ode_or_bool = Eq(lhs, rhs)
ode_or_bool = simplify(ode_or_bool)
if isinstance(ode_or_bool, (bool, BooleanAtom)):
if ode_or_bool:
lhs = rhs = S.Zero
else:
lhs = ode_or_bool.lhs
rhs = ode_or_bool.rhs
# No sense in overworking simplify -- just prove that the
# numerator goes to zero
num = trigsimp((lhs - rhs).as_numer_denom()[0])
# since solutions are obtained using force=True we test
# using the same level of assumptions
## replace function with dummy so assumptions will work
_func = Dummy('func')
num = num.subs(func, _func)
## posify the expression
num, reps = posify(num)
s = simplify(num).xreplace(reps).xreplace({_func: func})
testnum += 1
else:
break
if not s:
return (True, s)
elif s is True: # The code above never was able to change s
raise NotImplementedError("Unable to test if " + str(sol) +
" is a solution to " + str(ode) + ".")
else:
return (False, s)
def checksysodesol(eqs, sols, func=None):
r"""
Substitutes corresponding ``sols`` for each functions into each ``eqs`` and
checks that the result of substitutions for each equation is ``0``. The
equations and solutions passed can be any iterable.
This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`.
For each function, ``sols`` can have a single solution or a list of solutions.
In most cases it will not be necessary to explicitly identify the function,
but if the function cannot be inferred from the original equation it
can be supplied through the ``func`` argument.
When a sequence of equations is passed, the same sequence is used to return
the result for each equation with each function substituted with corresponding
solutions.
It tries the following method to find zero equivalence for each equation:
Substitute the solutions for functions, like `x(t)` and `y(t)` into the
original equations containing those functions.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results for each equation is ``0``, and ``False`` otherwise.
The second item in the tuple is what the substitution results in. Each element
of the ``list`` should always be ``0`` corresponding to each equation if the
first item is ``True``. Note that sometimes this function may return ``False``,
but with an expression that is identically equal to ``0``, instead of returning
``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot
reduce the expression to ``0``. If an expression returned by each function
vanishes identically, then ``sols`` really is a solution to ``eqs``.
If this function seems to hang, it is probably because of a difficult simplification.
Examples
========
>>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function
>>> from sympy.solvers.ode.subscheck import checksysodesol
>>> C1, C2 = symbols('C1:3')
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12))
>>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3),
... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
>>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3))
>>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2),
... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
"""
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eqs = _sympify(eqs)
for i in range(len(eqs)):
if isinstance(eqs[i], Equality):
eqs[i] = eqs[i].lhs - eqs[i].rhs
if func is None:
funcs = []
for eq in eqs:
derivs = eq.atoms(Derivative)
func = set().union(*[d.atoms(AppliedUndef) for d in derivs])
for func_ in func:
funcs.append(func_)
funcs = list(set(funcs))
if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\
and len({func.args for func in funcs})!=1:
raise ValueError("func must be a function of one variable, not %s" % func)
for sol in sols:
if len(sol.atoms(AppliedUndef)) != 1:
raise ValueError("solutions should have one function only")
if len(funcs) != len({sol.lhs for sol in sols}):
raise ValueError("number of solutions provided does not match the number of equations")
dictsol = dict()
for sol in sols:
func = list(sol.atoms(AppliedUndef))[0]
if sol.rhs == func:
sol = sol.reversed
solved = sol.lhs == func and not sol.rhs.has(func)
if not solved:
rhs = solve(sol, func)
if not rhs:
raise NotImplementedError
else:
rhs = sol.rhs
dictsol[func] = rhs
checkeq = []
for eq in eqs:
for func in funcs:
eq = sub_func_doit(eq, func, dictsol[func])
ss = simplify(eq)
if ss != 0:
eq = ss.expand(force=True)
if eq != 0:
eq = sqrtdenest(eq).simplify()
else:
eq = 0
checkeq.append(eq)
if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0:
return (True, checkeq)
else:
return (False, checkeq)
|
9dedeb6f0d11ed8b397fc837582d350501ff6ef007a5e636673c81c29c64a6a0 | from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat, diff)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt,
Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
sinh, tanh, cosh, sech, coth)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (Complement, EmptySet, FiniteSet,
Intersection, Interval, Union, imageset, ProductSet)
from sympy.simplify import simplify
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP)
from sympy.testing.randtest import verify_numerically as tn
from sympy.physics.units import cm
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic,
_solve_logarithm, _term_factors, _is_modular, NonlinearError)
from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r,
t, w, x, y, z)
def dumeq(i, j):
if type(i) in (list, tuple):
return all(dumeq(i, j) for i, j in zip(i, j))
return i == j or i.dummy_eq(j)
def test_invert_real():
x = Symbol('x', real=True)
def ireal(x, s=S.Reals):
return Intersection(s, x)
# issue 14223
assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet)
assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert dumeq(invert_real(sin(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)))
assert dumeq(invert_real(sin(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(csc(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)))
assert dumeq(invert_real(csc(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(cos(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))))
assert dumeq(invert_real(cos(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers))))
assert dumeq(invert_real(sec(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))))
assert dumeq(invert_real(sec(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers))))
assert dumeq(invert_real(tan(x), y, x),
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
assert dumeq(invert_real(tan(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers)))
assert dumeq(invert_real(cot(x), y, x),
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers)))
assert dumeq(invert_real(cot(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers)))
assert dumeq(invert_real(tan(tan(x)), y, x),
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert dumeq(invert_complex(exp(x), y, x),
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_issue_17479():
from sympy.solvers.solveset import nonlinsolve
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = f.diff(x)
fy = f.diff(y)
fz = f.diff(z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
assert len(sol) >= 4 and len(sol) <= 20
# nonlinsolve has been giving a varying number of solutions
# (originally 18, then 20, now 19) due to various internal changes.
# Unfortunately not all the solutions are actually valid and some are
# redundant. Since the original issue was that an exception was raised,
# this first test only checks that nonlinsolve returns a "plausible"
# solution set. The next test checks the result for correctness.
@XFAIL
def test_issue_18449():
x, y, z = symbols("x, y, z")
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = diff(f, x)
fy = diff(f, y)
fz = diff(f, z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
for (xs, ys, zs) in sol:
d = {x: xs, y: ys, z: zs}
assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0)
# After simplification and removal of duplicate elements, there should
# only be 4 parametric solutions left:
# simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z),
# (-sqrt(1 - z**2), z, z),
# (sqrt(1 - z**2), -z, z),
# (-sqrt(1 - z**2), -z, z))
# TODO: Is the above solution set definitely complete?
def test_is_function_class_equation():
from sympy.abc import x, a
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([y], y))
x = Symbol('x', real=True)
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
Union({log(3)}, Intersection({-b/a}, S.Reals))
anz = Symbol('anz', nonzero=True)
bb = Symbol('bb', real=True)
assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \
FiniteSet(-bb/anz, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) == EmptySet()
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.Half, x) == \
FiniteSet(erfinv(S.Half))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One)
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** S.Half,
S(4),
-2 - 3 ** S.Half)
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6)
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
def test_solveset_sqrt_2():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3))
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')
rb = Rational(4, 5)
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
set([i.n(chop=True) for i in ans]) == \
set([i.n(chop=True) for i in (ra, rb)])
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \
FiniteSet(Rational(-295244, 59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(Rational(1, 3))
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)]
cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
Rational(5, 3) +
I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S.Zero, S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) == EmptySet()
def test_no_sol():
assert solveset(1 - oo*x) == EmptySet()
assert solveset(oo*x, x) == EmptySet()
assert solveset(oo*x - oo, x) == EmptySet()
assert solveset_real(4, x) == EmptySet()
assert solveset_real(exp(x), x) == EmptySet()
assert solveset_real(x**2 + 1, x) == EmptySet()
assert solveset_real(-3*a/sqrt(x), x) == EmptySet()
assert solveset_real(1/x, x) == EmptySet()
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
EmptySet()
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S.One / 3) - 3), x) == \
FiniteSet(S.Zero, S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(Rational(-3, 2), S.Half)
def test_solve_abs():
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals).dummy_eq(
ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}))
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for si in sol.subs(reps):
assert not eqab.subs(x, si)
assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers))))
def test_issue_9824():
assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers))
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
assert solveset_real(eq, x) == Union(
Interval.open(0, 1), Interval.open(1, 2))
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, 0 <= x - 3),
(3 - x, 0 > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
# issue 19718
g = Piecewise((1, x > 10), (0, True))
assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo)
from sympy.logic.boolalg import BooleanTrue
f = BooleanTrue()
assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10)
def test_solveset_complex_polynomial():
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) == S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
from sympy.abc import x, n
assert dumeq(solveset_complex(exp(x) - 1, x),
imageset(Lambda(n, I*2*n*pi), S.Integers))
assert dumeq(solveset_complex(exp(x) - I, x),
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers))
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert dumeq(solveset_complex(sinh(x).rewrite(exp), x),
imageset(Lambda(n, n*pi*I), S.Integers))
def test_solveset_real_exp():
from sympy.abc import x, y
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S.Zero, 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers))
def test_solve_trig():
from sympy.abc import n
assert dumeq(solveset_real(sin(x), x),
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers)))
assert dumeq(solveset_real(sin(x) - 1, x),
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x), x),
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)))
assert dumeq(solveset_real(sin(x) + cos(x), x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
assert dumeq(solveset_complex(cos(x) - S.Half, x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)))
assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals),
Union(ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(ImageSet(Lambda(n, -I*(I*(
2*n*pi + arg(-exp(-2*I*y))) +
2*im(y))), S.Integers), S.Reals)))
assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x),
ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers))
assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers)))
assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x),
ImageSet(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 20*n*pi + 10*atan(3*sqrt(7)/7) + 10*pi), S.Integers),
ImageSet(Lambda(n, 20*n*pi - 10*atan(3*sqrt(7)/7) + 20*pi), S.Integers)))
assert dumeq(solveset(cos(x/15) + cos(x/5)), Union(
ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers)))
assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union(
ImageSet(Lambda(n, 4*n + 1), S.Integers),
ImageSet(Lambda(n, 4*n + 3), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers)))
assert dumeq(solveset(cos(9*x)), Union(
ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers),
ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers)))
assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union(
ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers)))
# This is the only remaining solveset test that actually ends up being solved
# by _solve_trig2(). All others are handled by the improved _solve_trig1.
assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x),
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) +
2*pi), S.Integers)))
# issue #16870
assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union(
ImageSet(Lambda(n, 360*n + 150), S.Integers),
ImageSet(Lambda(n, 360*n + 30), S.Integers)))
def test_solve_hyperbolic():
# actual solver: _solve_trig1
n = Dummy('n')
assert solveset(sinh(x) + cosh(x), x) == S.EmptySet
assert solveset(sinh(x) + cos(x), x) == ConditionSet(x,
Eq(cos(x) + sinh(x), 0), S.Complexes)
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
log(sqrt(sqrt(5) - 2)))
assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet(
-log(3)/2, log(3)/2)
assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet(
log((2 + sqrt(5))*exp(3)))
assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet(
log(-2 + sqrt(5)), log(1 + sqrt(2)))
assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet(
log(S.Half + sqrt(5)/2), log(1 + sqrt(2)))
assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet(
log(4 + sqrt(17))/2)
assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet(
log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2))))
assert dumeq(solveset_complex(sinh(x) - I/2, x), Union(
ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers)))
assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers)))
assert dumeq(solveset(sinh(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 10*I*(2*n*pi + pi) + 10*log(2)), S.Integers),
ImageSet(Lambda(n, 20*n*I*pi - 10*log(2)), S.Integers)))
assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union(
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers)))
assert dumeq(solveset(sech(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union(
ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers),
ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers)))
assert dumeq(solveset(cosh(9*x)), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi/2)/9), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2)/9), S.Integers)))
# issues #9606 / #9531:
assert solveset(sinh(x), x, S.Reals) == FiniteSet(0)
assert dumeq(solveset(sinh(x), x, S.Complexes), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi), S.Integers)))
# issues #11218 / #18427
assert dumeq(solveset(sin(pi*x), x, S.Reals), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
assert dumeq(solveset(sin(pi*x), x), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
# issue #17543
assert dumeq(simplify(solveset(I*cot(8*x - 8*E), x)), Union(
ImageSet(Lambda(n, n*pi/4 - 13*pi/16 + E), S.Integers),
ImageSet(Lambda(n, n*pi/4 - 11*pi/16 + E), S.Integers)))
# issues #18490 / #19489
assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals
).dummy_eq(ConditionSet(x,
Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals))
assert solveset(sinh(8*x) + coth(12*x)).dummy_eq(
ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes))
def test_solve_trig_hyp_symbolic():
# actual solver: _solve_trig1
assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers),
ImageSet(Lambda(n, 2*n*pi/a), S.Integers))))
assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, I*a*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, I*a*(2*n*pi - pi/2)), S.Integers))))
assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x)
+ cos(4*sqrt(3)/3*a**2/(b*pi)*x), x),
ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union(
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers))))
assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union(
ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers),
ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers)))
assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x),
ConditionSet(x, Ne(a**2 + 1, 0), Union(
ImageSet(Lambda(n, (2*n*I*pi + log(3 - 2*sqrt(2)))/(a**2 + 1)), S.Integers),
ImageSet(Lambda(n, (2*n*I*pi + log(2*sqrt(2) + 3))/(a**2 + 1)), S.Integers))))
ar = Symbol('ar', real=True)
assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet(
log(sqrt(3) + 2)/(ar**2 + 1), log(2 - sqrt(3))/(ar**2 + 1))
def test_issue_9616():
assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers)))
f1 = (sinh(x)).rewrite(exp)
f2 = (tanh(x)).rewrite(exp)
assert dumeq(solveset(f1 + f2 - 1, x), Union(
Complement(ImageSet(
Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers))))
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
from sympy.abc import n
assert dumeq(solveset_real(sin(x), x),
imageset(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset_real(cos(x), x),
imageset(Lambda(n, n*pi + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x) + sin(x), x),
imageset(Lambda(n, n*pi - pi/4), S.Integers))
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(Rational(-5, 3) +
LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = Rational(6, 5)
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
def test_solveset():
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers))
assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n),
S.Integers))
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
# issue 19977
assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo)
def test__solveset_multi():
from sympy.solvers.solveset import _solveset_multi
from sympy import Reals
# Basic univariate case:
from sympy.abc import x
assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,))
# Linear systems of two equations
from sympy.abc import x, y
assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1))
assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1))
assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2))
assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2))
# assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals))
assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))))
assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet
# Systems of three equations:
from sympy.abc import x, y, z
assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals,
Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half))
# Nonlinear systems:
from sympy.abc import r, theta, z, x, y
assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1))
assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0))
#assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
# ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals))
assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r],
[Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0))
#assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
# [Interval(0, 1), Interval(0, pi)]) == ?
assert dumeq(_solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]), Union(
ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))),
ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi)))))
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals
) is S.Reals
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals))
assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert solveset(x + sin(x) > 1, x, domain=S.Reals
).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals))
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals))
assert solveset(y**x-z, x, S.Reals
).dummy_eq(ConditionSet(x, Eq(y**x - z, 0), S.Reals))
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution.dummy_eq(unsolved_object)
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
def test_issue_9522():
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
def test_solvify():
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2,
S.Half + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)]
assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
def test_abs_invert_solvify():
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise ValueError if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) there are non-symbols
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y]))
# 4) a nonlinear term is detected in the original expression
raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x]))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_issue_16577():
assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))
def test_linsolve():
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, B = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, B, x1, x2))
#raise ValueError if equations are non-linear in given variables
raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [g]])
system2 = (A, B)
sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
B = Matrix([0, 0, 1])
assert linsolve((A, B), (x, y, z)) == EmptySet()
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
#raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
kN = kilo*newton
Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {
(kilo*newton*Rational(-28, 3), kN*Rational(4, 3))}
# linsolve fully expands expressions, so removable singularities
# and other nonlinearity does not raise an error
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)}
def test_linsolve_large_sparse():
#
# This is mainly a performance test
#
def _mk_eqs_sol(n):
xs = symbols('x:{}'.format(n))
ys = symbols('y:{}'.format(n))
syms = xs + ys
eqs = []
sol = (-S.Half,) * n + (S.Half,) * n
for xi, yi in zip(xs, ys):
eqs.extend([xi + yi, xi - yi + 1])
return eqs, syms, FiniteSet(sol)
n = 500
eqs, syms, sol = _mk_eqs_sol(n)
assert linsolve(eqs, syms) == sol
def test_linsolve_immutable():
A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]])
B = ImmutableDenseMatrix([2, 1, -1])
assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1))
A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]])
assert linsolve(A) == FiniteSet((5, 2))
def test_solve_decomposition():
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert dumeq(solve_decomposition(f2, x, S.Reals), s3)
assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3))
assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5))
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln)))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
def test_nonlinsolve_abs():
soln = FiniteSet((x, Abs(x)))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y)))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln)
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditionset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi)), S.Integers)
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert dumeq(nonlinsolve(sys, [x, y]), soln)
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers))
assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y)))
def test_nonlinsolve_positive_dimensional():
x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real=True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real=True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
n = Dummy('n')
assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), {
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))})
system = [exp(x) - sin(y), 1/exp(y) - 3]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi)
+ log(sin(log(3)))), S.Integers), -log(3)),
(ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
+ log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))})
system = [exp(x) - sin(y), y**2 - 4]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)})
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y, z = symbols('x, y, z', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert dumeq(nonlinsolve(eqs, [y, z]), soln)
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert dumeq(nonlinsolve(eqs, [x, z]), soln)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a,b,c,d = symbols('a, b, c, d', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114_solveset():
# slow testcase
from sympy.abc import d, e, f, g, h, i, j, k, l, o, p, q, r
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - pi*Rational(3, 2)
intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0)
symbols = Tuple(x, y)
soln = ConditionSet(
symbols,
intermediate_system,
S.Complexes**2)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
set([x + 1]), [y, x]) == S.EmptySet
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2))
soln = soln_real + soln_complex
assert dumeq(substitution(eqs, [y, z]), soln)
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
# end of tests for nonlinsolve
def test_issue_9556():
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
def test_issue_9611():
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**Rational(1, 3)*sign(y))
def test_issue_10214():
assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**Rational(2, 3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/
(3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3))
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals)
# So that ap - bn is not zero:
ap = Symbol('ap', positive=True)
bn = Symbol('bn', negative=True)
eq = x + (ap - bn)/(-2*ap + 2*bn)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq(
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals))
assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq(
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals))
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
x = Symbol('x', real=True)
y = Symbol('y', real=True)
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet()
def test_issue_14223():
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
def test_issue_10158():
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert dumeq(solveset(f, x),
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers))
def test_issue_14454():
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x, S.Reals))
assert invert_real(x**2, number, x, S.Reals) # no error
def test_issue_17882():
assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \
FiniteSet(sqrt(3), -sqrt(3))
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == set([
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)])
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
# exponential tests
def test_exponential_real():
from sympy.abc import x, y, z
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5))
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p).dummy_eq(
ConditionSet(x, Eq((1 + 1/x)**(x + 1), 0), S.Reals))
@XFAIL
def test_exponential_complex():
from sympy.abc import x
from sympy import Dummy
n = Dummy('n')
assert dumeq(solveset_complex(2**x + 4**x, x),imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers))
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers))
assert dumeq(solveset(2**x + 32, x), imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers))
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers)
assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2))
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert dumeq(res, ans)
def test_expo_conditionset():
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals))
assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals))
assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals))
assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals))
assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals))
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals)
sol2 = Intersection({log(2)/log(x/y)}, S.Reals)
assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals)
assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals)
assert solveset(x**x, x, Interval.Lopen(0,oo)).dummy_eq(
ConditionSet(w, Eq(w**w, 0), Interval.open(0, oo)))
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet(
(x - z)/log(2)) - FiniteSet(0)
assert solveset(a**x - b**x, x).dummy_eq(ConditionSet(
w, Ne(a, 0) & Ne(b, 0), FiniteSet(0)))
def test_ignore_assumptions():
# make sure assumptions are ignored
xpos = symbols('x', positive=True)
x = symbols('x')
assert solveset_complex(xpos**2 - 4, xpos
) == solveset_complex(x**2 - 4, x)
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) == EmptySet()
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) == EmptySet()
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
assert linear_coeffs(1.0, x, y) == [0, 0, 1.0]
# modular tests
def test_is_modular():
assert _is_modular(y, x) is False
assert _is_modular(Mod(x, 3) - 1, x) is True
assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True
assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True
assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True
assert _is_modular(Mod(x, 3) - 1, y) is False
assert _is_modular(Mod(x, 3)**2 - 5, x) is False
assert _is_modular(Mod(x, 3)**2 - y, x) is False
assert _is_modular(exp(Mod(x, 3)) - 1, x) is False
assert _is_modular(Mod(3, y) - 1, y) is False
def test_invert_modular():
n = Dummy('n', integer=True)
from sympy.solvers.solveset import _invert_modular as invert_modular
# non invertible cases
assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5)
assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5)
assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5)
# a is symbol
assert dumeq(invert_modular(Mod(x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 5), S.Integers)))
# a.is_Add
assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \
(Mod(x**2 + x, 7), 5)
# a.is_Mul
assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \
(Mod((x + 1)*(x + 2), 7), 5)
# a.is_Pow
assert invert_modular(Mod(x**4, 7), S(5), n, x) == \
(x, EmptySet())
assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x),
(x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)))
assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x),
(x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)))
assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, EmptySet())
def test_solve_modular():
n = Dummy('n', integer=True)
# if rhs has symbol (need to be implemented in future).
assert solveset(Mod(x, 4) - x, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(-x + Mod(x, 4), 0),
S.Integers))
# when _invert_modular fails to invert
assert solveset(3 - Mod(sin(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(log(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(exp(x), 7), x, S.Integers
).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0),
S.Integers))
# EmptySet solution definitely
assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet()
assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet()
# Negative m
assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers),
ImageSet(Lambda(n, -3*n - 2), S.Integers))
assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet()
# linear expression in Mod
assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers),
ImageSet(Lambda(n, 5*n + 3), S.Integers))
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 5), S.Integers))
assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 2), S.Integers))
# higher degree expression in Mod
assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers),
Union(ImageSet(Lambda(n, 160*n + 3), S.Integers),
ImageSet(Lambda(n, 160*n + 13), S.Integers),
ImageSet(Lambda(n, 160*n + 67), S.Integers),
ImageSet(Lambda(n, 160*n + 77), S.Integers),
ImageSet(Lambda(n, 160*n + 83), S.Integers),
ImageSet(Lambda(n, 160*n + 93), S.Integers),
ImageSet(Lambda(n, 160*n + 147), S.Integers),
ImageSet(Lambda(n, 160*n + 157), S.Integers)))
assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet()
assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers),
Union(ImageSet(Lambda(n, 17*n + 3), S.Integers),
ImageSet(Lambda(n, 17*n + 5), S.Integers),
ImageSet(Lambda(n, 17*n + 12), S.Integers),
ImageSet(Lambda(n, 17*n + 14), S.Integers)))
# a.is_Pow tests
assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers),
ImageSet(Lambda(n, 40*n + 3), S.Naturals0))
assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers),
ImageSet(Lambda(n, 6*n + 2), S.Naturals0))
assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers),
ImageSet(Lambda(n, 2*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers),
ImageSet(Lambda(n, 3*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers),
Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)},
S.Integers)), S.Naturals0), S.Integers))
# Implemented for m without primitive root
assert solveset(Mod(x**3, 7) - 2, x, S.Integers) == EmptySet()
assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers),
ImageSet(Lambda(n, 8*n + 1), S.Integers))
assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers),
Union(ImageSet(Lambda(n, 9*n + 4), S.Integers),
ImageSet(Lambda(n, 9*n + 5), S.Integers)))
# domain intersection
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0),
Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0))
# Complex args
assert solveset(Mod(x, 3) - I, x, S.Integers) == \
EmptySet()
assert solveset(Mod(I*x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers))
assert solveset(Mod(I + x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers))
# issue 17373 (https://github.com/sympy/sympy/issues/17373)
assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers),
Union(ImageSet(Lambda(n, 14*n + 3), S.Integers),
ImageSet(Lambda(n, 14*n + 11), S.Integers)))
assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers),
ImageSet(Lambda(n, 74*n + 31), S.Integers))
# issue 13178
n = symbols('n', integer=True)
a = 742938285
b = 1898888478
m = 2**31 - 1
c = 20170816
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers),
ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0))
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0),
Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0),
S.Naturals0))
assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0),
S.Integers))
assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) == EmptySet()
assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0),
S.Integers))
# end of modular tests
def test_issue_17276():
assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \
FiniteSet((5**(S(1)/5), 25*5**(S(3)/10)))
@XFAIL
def test_substitution_with_infeasible_solution():
a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols(
'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11'
)
solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3]
system = [
-l0 * c00 - l1 * c01 + m0 + c00 + c01,
-l0 * c10 - l1 * c11 + m1,
-l2 * c00 - l3 * c01 + c00 + c01,
-l2 * c10 - l3 * c11 + m3,
-l0 * p00 - l2 * p10 + p00 + p10,
-l1 * p00 - l3 * p10 + p00 + p10,
-l0 * p01 - l2 * p11,
-l1 * p01 - l3 * p11,
-a00 + c00 * p00 + c10 * p01,
-a01 + c01 * p00 + c11 * p01,
-a10 + c00 * p10 + c10 * p11,
-a11 + c01 * p10 + c11 * p11,
-m0 * p00,
-m1 * p01,
-m2 * p10,
-m3 * p11,
-m4 * c00,
-m5 * c01,
-m6 * c10,
-m7 * c11,
m2,
m4,
m5,
m6,
m7
]
sol = FiniteSet(
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3),
(p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3),
)
assert sol != nonlinsolve(system, solvefor)
|
27d609caea82366c98af540fd0b9f09cd01fceb117f277da0241f84b467182a2 | """Tests for tools for solving inequalities and systems of inequalities. """
from sympy import (And, Eq, FiniteSet, Ge, Gt, Interval, Le, Lt, Ne, oo, I,
Or, S, sin, cos, tan, sqrt, Symbol, Union, Integral, Sum,
Function, Poly, PurePoly, pi, root, log, exp, Dummy, Abs,
Piecewise, Rational)
from sympy.solvers.inequalities import (reduce_inequalities,
solve_poly_inequality as psolve,
reduce_rational_inequalities,
solve_univariate_inequality as isolve,
reduce_abs_inequality,
_solve_inequality)
from sympy.polys.rootoftools import rootof
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.abc import x, y
from sympy.testing.pytest import raises, XFAIL
inf = oo.evalf()
def test_solve_poly_inequality():
assert psolve(Poly(0, x), '==') == [S.Reals]
assert psolve(Poly(1, x), '==') == [S.EmptySet]
assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
def test_reduce_poly_inequalities_real_interval():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=False) == \
S.Reals if x.is_real else Interval(-oo, oo)
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
assert reduce_rational_inequalities(
[[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1)]], x, relational=False) == \
Union(Interval(-oo, -1), Interval(1, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 1)]], x, relational=False) == \
Interval(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 1)]], x, relational=False) == \
FiniteSet(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities([[Eq(
x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
assert reduce_rational_inequalities(
[[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
assert reduce_rational_inequalities([[Lt(
x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0), Interval(1.0, inf))
assert reduce_rational_inequalities(
[[Gt(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0, right_open=True),
Interval(1.0, inf, left_open=True))
assert reduce_rational_inequalities([[Ne(
x**2, 1.0)]], x, relational=False) == \
FiniteSet(-1.0, 1.0).complement(S.Reals)
s = sqrt(2)
assert reduce_rational_inequalities([[Lt(
x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
Interval(1, s, True, True))
assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
def test_reduce_poly_inequalities_complex_relational():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=True) == False
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
for one in (S.One, S(1.0)):
inf = one*oo
assert reduce_rational_inequalities(
[[Eq(x**2, one)]], x, relational=True) == \
Or(Eq(x, -one), Eq(x, one))
assert reduce_rational_inequalities(
[[Le(x**2, one)]], x, relational=True) == \
And(And(Le(-one, x), Le(x, one)))
assert reduce_rational_inequalities(
[[Lt(x**2, one)]], x, relational=True) == \
And(And(Lt(-one, x), Lt(x, one)))
assert reduce_rational_inequalities(
[[Ge(x**2, one)]], x, relational=True) == \
And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
assert reduce_rational_inequalities(
[[Gt(x**2, one)]], x, relational=True) == \
And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
assert reduce_rational_inequalities(
[[Ne(x**2, one)]], x, relational=True) == \
Or(And(Lt(-inf, x), Lt(x, -one)),
And(Lt(-one, x), Lt(x, one)),
And(Lt(one, x), Lt(x, inf)))
def test_reduce_rational_inequalities_real_relational():
assert reduce_rational_inequalities([], x) == False
assert reduce_rational_inequalities(
[[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
assert reduce_rational_inequalities(
[[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
relational=False) == \
Union(Interval.open(-5, 2), Interval.open(2, 3))
assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
relational=False) == \
Interval.Ropen(-1, 5)
assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
relational=False) == \
Union(Interval.open(-3, -1), Interval.open(1, oo))
assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
relational=False) == \
Union(Interval.open(-4, 1), Interval.open(1, 4))
assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
relational=False) == \
Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))
assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
relational=False) == \
Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
# issue sympy/sympy#10237
assert reduce_rational_inequalities(
[[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
def test_reduce_abs_inequalities():
e = abs(x - 5) < 3
ans = And(Lt(2, x), Lt(x, 8))
assert reduce_inequalities(e) == ans
assert reduce_inequalities(e, x) == ans
assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
assert reduce_inequalities(
abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
assert reduce_inequalities(abs(x - 4) + abs(
3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))
nr = Symbol('nr', extended_real=False)
raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
def test_reduce_inequalities_general():
assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)
def test_reduce_inequalities_boolean():
assert reduce_inequalities(
[Eq(x**2, 0), True]) == Eq(x, 0)
assert reduce_inequalities([Eq(x**2, 0), False]) == False
assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
def test_reduce_inequalities_multivariate():
assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
def test_reduce_inequalities_errors():
raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
def test__solve_inequalities():
assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
def test_issue_6343():
eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
assert reduce_inequalities(eq) == \
And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)
def test_issue_8235():
assert reduce_inequalities(x**2 - 1 < 0) == \
And(S.NegativeOne < x, x < 1)
assert reduce_inequalities(x**2 - 1 <= 0) == \
And(S.NegativeOne <= x, x <= 1)
assert reduce_inequalities(x**2 - 1 > 0) == \
Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
assert reduce_inequalities(x**2 - 1 >= 0) == \
Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))
eq = x**8 + x - 9 # we want CRootOf solns here
sol = solve(eq >= 0)
tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
assert sol == tru
# recast vanilla as real
assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)
def test_issue_5526():
assert reduce_inequalities(0 <=
x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
(x >= -Integral(y**2, (y, 1, 3)) + 1)
f = Function('f')
e = Sum(f(x), (x, 1, 3))
assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
(x >= -y**2 - Sum(f(x), (x, 1, 3)))
def test_solve_univariate_inequality():
assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
Interval(2, oo))
assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
Lt(-oo, x)))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
Union(Interval(1, 2), Interval(3, oo))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
Or(Eq(x, 0), Eq(x, 3))
# issue 2785:
assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
Interval(S.Half + sqrt(5)/2, oo, True, True))
# issue 2794:
assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
Interval(1, oo, True)
#issue 13105
assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
# numerical testing in valid() is needed
assert isolve(x**7 - x - 2 > 0, x) == \
And(rootof(x**7 - x - 2, 0) < x, x < oo)
# handle numerator and denominator; although these would be handled as
# rational inequalities, these test confirm that the right thing is done
# when the domain is EX (e.g. when 2 is replaced with sqrt(2))
assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
den = ((x - 1)*(x - 2)).expand()
assert isolve((x - 1)/den <= 0, x) == \
Or(And(-oo < x, x < 1), And(S.One < x, x < 2))
n = Dummy('n')
raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
c1 = Dummy("c1", positive=True)
raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
n = Dummy('n', negative=True)
assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
assert isolve(n/c1 < 0, c1) == True
assert isolve(n/c1 > 0, c1) == False
zero = cos(1)**2 + sin(1)**2 - 1
raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
raises(NotImplementedError, lambda: isolve(
x**2 < zero*I, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
raises(TypeError, lambda: isolve(x - I < 0, x))
zero = x**2 + x - x*(x + 1)
assert isolve(zero < 0, x, relational=False) is S.EmptySet
assert isolve(zero <= 0, x, relational=False) is S.Reals
# make sure iter_solutions gets a default value
raises(NotImplementedError, lambda: isolve(
Eq(cos(x)**2 + sin(x)**2, 1), x))
def test_trig_inequalities():
# all the inequalities are solved in a periodic interval.
assert isolve(sin(x) < S.Half, x, relational=False) == \
Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
assert isolve(sin(x) > S.Half, x, relational=False) == \
Interval(pi/6, pi*Rational(5, 6), True, True)
assert isolve(cos(x) < S.Zero, x, relational=False) == \
Interval(pi/2, pi*Rational(3, 2), True, True)
assert isolve(cos(x) >= S.Zero, x, relational=False) == \
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
assert isolve(tan(x) < S.One, x, relational=False) == \
Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))
assert isolve(sin(x) <= S.Zero, x, relational=False) == \
Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))
assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
def test_issue_9954():
assert isolve(x**2 >= 0, x, relational=False) == S.Reals
assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
@XFAIL
def test_slow_general_univariate():
r = rootof(x**5 - x**2 + 1, 0)
assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))
def test_issue_8545():
eq = 1 - x - abs(1 - x)
ans = And(Lt(1, x), Lt(x, oo))
assert reduce_abs_inequality(eq, '<', x) == ans
eq = 1 - x - sqrt((1 - x)**2)
assert reduce_inequalities(eq < 0) == ans
def test_issue_8974():
assert isolve(-oo < x, x) == And(-oo < x, x < oo)
assert isolve(oo > x, x) == And(-oo < x, x < oo)
def test_issue_10198():
assert reduce_inequalities(
-1 + 1/abs(1/x - 1) < 0) == Or(
And(-oo < x, x < 0), And(S.Zero < x, x < S.Half)
)
assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
Or(And(-oo < x, x < 0),
And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
1 - 1/sqrt(x)), '<', x))
def test_issue_10047():
# issue 10047: this must remain an inequality, not True, since if x
# is not real the inequality is invalid
# assert solve(sin(x) < 2) == (x <= oo)
# with PR 16956, (x <= oo) autoevaluates when x is extended_real
# which is assumed in the current implementation of inequality solvers
assert solve(sin(x) < 2) == True
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
def test_issue_10268():
assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))
@XFAIL
def test_isolve_Sets():
n = Dummy('n')
assert isolve(Abs(x) <= n, x, relational=False) == \
Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
def test_issue_10671_12466():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
Interval.Lopen(6, 7)
def test__solve_inequality():
for op in (Gt, Lt, Le, Ge, Eq, Ne):
assert _solve_inequality(op(x, 1), x).lhs == x
assert _solve_inequality(op(S.One, x), x).lhs == x
# don't get tricked by symbol on right: solve it
assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
ie = Eq(S.One, y)
assert _solve_inequality(ie, x) == ie
for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
for c in (0, 1):
e = 2*fx - c > 0
assert _solve_inequality(e, x, linear=True) == (
fx > c/S(2))
assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
x*(x + 1) < S.Half)
assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
nz = Symbol('nz', nonzero=True)
assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
a = Symbol('a', positive=True)
assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
# make sure to include conditions under which solution is valid
e = Eq(1 - x, x*(1/x - 1))
assert _solve_inequality(e, x) == Ne(x, 0)
assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
def test__pt():
from sympy.solvers.inequalities import _pt
assert _pt(-oo, oo) == 0
assert _pt(S.One, S(3)) == 2
assert _pt(S.One, oo) == _pt(oo, S.One) == 2
assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
assert _pt(x, oo) == _pt(oo, x) == x + 1
assert _pt(x, -oo) == _pt(-oo, x) == x - 1
raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))
|
50fd4b5dd492b42117a4d4d332c4aafbe3c8b69227fc3ed77f87e36bcb98f19f | from sympy import (Eq, Matrix, pi, sin, sqrt, Symbol, Integral, Piecewise,
symbols, Float, I, Rational)
from mpmath import mnorm, mpf
from sympy.solvers import nsolve
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import raises, XFAIL
from sympy.utilities.decorator import conserve_mpmath_dps
@XFAIL
def test_nsolve_fail():
x = symbols('x')
# Sometimes it is better to use the numerator (issue 4829)
# but sometimes it is not (issue 11768) so leave this to
# the discretion of the user
ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0)
assert ans > 0.46 and ans < 0.47
def test_nsolve_denominator():
x = symbols('x')
# Test that nsolve uses the full expression (numerator and denominator).
ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1)
# The root -2 was divided out, so make sure we don't find it.
assert ans == -1.0
def test_nsolve():
# onedimensional
x = Symbol('x')
assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
# Testing checks on number of inputs
raises(TypeError, lambda: nsolve(Eq(2*x, 2)))
raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2))
# multidimensional
x1 = Symbol('x1')
x2 = Symbol('x2')
f1 = 3 * x1**2 - 2 * x2**2 - 1
f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
f = Matrix((f1, f2)).T
F = lambdify((x1, x2), f.T, modules='mpmath')
for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
x = nsolve(f, (x1, x2), x0, tol=1.e-8)
assert mnorm(F(*x), 1) <= 1.e-10
# The Chinese mathematician Zhu Shijie was the very first to solve this
# nonlinear system 700 years ago (z was added to make it 3-dimensional)
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
f1 = -x + 2*y
f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
f3 = sqrt(x**2 + y**2)*z
f = Matrix((f1, f2, f3)).T
F = lambdify((x, y, z), f.T, modules='mpmath')
def getroot(x0):
root = nsolve(f, (x, y, z), x0)
assert mnorm(F(*root), 1) <= 1.e-8
return root
assert list(map(round, getroot((1, 1, 1)))) == [2.0, 1.0, 0.0]
assert nsolve([Eq(
f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z], (1, 1, 1)) # just see that it works
a = Symbol('a')
assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) -
mpf('0.31883011387318591')) < 1e-15
def test_issue_6408():
x = Symbol('x')
assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0.0
def test_issue_6408_integral():
x, y = symbols('x y')
assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0.0
@conserve_mpmath_dps
def test_increased_dps():
# Issue 8564
import mpmath
mpmath.mp.dps = 128
x = Symbol('x')
e1 = x**2 - pi
q = nsolve(e1, x, 3.0)
assert abs(sqrt(pi).evalf(128) - q) < 1e-128
def test_nsolve_precision():
x, y = symbols('x y')
sol = nsolve(x**2 - pi, x, 3, prec=128)
assert abs(sqrt(pi).evalf(128) - sol) < 1e-128
assert isinstance(sol, Float)
sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128)
assert isinstance(sols, Matrix)
assert sols.shape == (2, 1)
assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128
assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128
assert all(isinstance(i, Float) for i in sols)
def test_nsolve_complex():
x, y = symbols('x y')
assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I
assert nsolve(x**2 + 2, I) == sqrt(2.)*I
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
def test_nsolve_dict_kwarg():
x, y = symbols('x y')
# one variable
assert nsolve(x**2 - 2, 1, dict = True) == \
[{x: sqrt(2.)}]
# one variable with complex solution
assert nsolve(x**2 + 2, I, dict = True) == \
[{x: sqrt(2.)*I}]
# two variables
assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \
[{x: sqrt(2.), y: sqrt(3.)}]
def test_nsolve_rational():
x = symbols('x')
assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100)
def test_issue_14950():
x = Matrix(symbols('t s'))
x0 = Matrix([17, 23])
eqn = x + x0
assert nsolve(eqn, x, x0) == -x0
assert nsolve(eqn.T, x.T, x0.T) == -x0
|
284ced8763fe7786984fee899ca96e72eaba5f8cccac4363c9fe3b0923cbf5e0 | from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff,
Dummy, Eq, Ne, exp, Function, I, Integral, LambertW, log, O, pi,
Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh,
Piecewise, symbols, Poly, sec, re, im, atan2, collect, hyper, integrate)
from sympy.solvers.ode import (classify_ode,
homogeneous_order, infinitesimals, checkinfsol,
dsolve)
from sympy.solvers.ode.subscheck import checkodesol, checksysodesol
from sympy.solvers.ode.ode import (_linear_coeff_match,
_undetermined_coefficients_match, classify_sysode,
constant_renumber, constantsimp, get_numbered_constants, solve_ics)
from sympy.functions import airyai, airybi, besselj, bessely
from sympy.solvers.deutils import ode_order
from sympy.testing.pytest import XFAIL, skip, raises, slow, ON_TRAVIS, SKIP
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
# Note: the tests below may fail (but still be correct) if ODE solver,
# the integral engine, solve(), or even simplify() changes. Also, in
# differently formatted solutions, the arbitrary constants might not be
# equal. Using specific hints in tests can help to avoid this.
# Tests of order higher than 1 should run the solutions through
# constant_renumber because it will normalize it (constant_renumber causes
# dsolve() to return different results on different machines)
def test_get_numbered_constants():
with raises(ValueError):
get_numbered_constants(None)
def test_dsolve_all_hint():
eq = f(x).diff(x)
output = dsolve(eq, hint='all')
# Match the Dummy variables:
sol1 = output['separable_Integral']
_y = sol1.lhs.args[1][0]
sol1 = output['1st_homogeneous_coeff_subs_dep_div_indep_Integral']
_u1 = sol1.rhs.args[1].args[1][0]
expected = {'Bernoulli_Integral': Eq(f(x), C1 + Integral(0, x)),
'1st_homogeneous_coeff_best': Eq(f(x), C1),
'Bernoulli': Eq(f(x), C1),
'nth_algebraic': Eq(f(x), C1),
'nth_linear_euler_eq_homogeneous': Eq(f(x), C1),
'nth_linear_constant_coeff_homogeneous': Eq(f(x), C1),
'separable': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_indep_div_dep': Eq(f(x), C1),
'nth_algebraic_Integral': Eq(f(x), C1),
'1st_linear': Eq(f(x), C1),
'1st_linear_Integral': Eq(f(x), C1 + Integral(0, x)),
'lie_group': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep_Integral': Eq(log(x), C1 + Integral(-1/_u1, (_u1, f(x)/x))),
'1st_power_series': Eq(f(x), C1),
'separable_Integral': Eq(Integral(1, (_y, f(x))), C1 + Integral(0, x)),
'1st_homogeneous_coeff_subs_indep_div_dep_Integral': Eq(f(x), C1),
'best': Eq(f(x), C1),
'best_hint': 'nth_algebraic',
'default': 'nth_algebraic',
'order': 1}
assert output == expected
assert dsolve(eq, hint='best') == Eq(f(x), C1)
def test_dsolve_ics():
# Maybe this should just use one of the solutions instead of raising...
with raises(NotImplementedError):
dsolve(f(x).diff(x) - sqrt(f(x)), ics={f(1):1})
@slow
@XFAIL
def test_nonlinear_3eq_order1_type1():
if ON_TRAVIS:
skip("Too slow for travis.")
a, b, c = symbols('a b c')
eqs = [
a * f(x).diff(x) - (b - c) * g(x) * h(x),
b * g(x).diff(x) - (c - a) * h(x) * f(x),
c * h(x).diff(x) - (a - b) * f(x) * g(x),
]
assert dsolve(eqs) # NotImplementedError
def test_dsolve_euler_rootof():
eq = x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x)
sol = Eq(f(x),
C1*x
+ C2*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 0)
+ C3*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 1)
+ C4*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 2)
+ C5*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 3)
+ C6*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 4)
)
assert dsolve(eq) == sol
def test_nth_euler_imroot():
eq = x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x
sol = Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x))
dsolve_sol = dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters')
assert dsolve_sol == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_constant_coeff_circular_atan2():
eq = f(x).diff(x, x) + y*f(x)
sol = Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y)))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
@XFAIL
def test_nonlinear_3eq_order1_type4():
eqs = [
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
]
dsolve(eqs) # KeyError when matching
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type3():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs = [
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
Eq(g(x).diff(x), (4 - 2*h(x) )),
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
]
dsolve(eqs) # Not sure if this finishes...
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type5():
eqs = [
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
]
dsolve(eqs) # KeyError
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq6)
assert s == sol6 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = Rational(2, 3)
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))])
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
@slow
def test_dsolve_options():
eq = x*f(x).diff(x) + f(x)
a = dsolve(eq, hint='all')
b = dsolve(eq, hint='all', simplify=False)
c = dsolve(eq, hint='all_Integral')
keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear',
'1st_linear_Integral', 'Bernoulli', 'Bernoulli_Integral',
'almost_linear', 'almost_linear_Integral', 'best', 'best_hint',
'default', 'lie_group',
'nth_linear_euler_eq_homogeneous', 'order',
'separable', 'separable_Integral']
Integral_keys = ['1st_exact_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral',
'Bernoulli_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default',
'nth_linear_euler_eq_homogeneous',
'order', 'separable_Integral']
assert sorted(a.keys()) == keys
assert a['order'] == ode_order(eq, f(x))
assert a['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best') == Eq(f(x), C1/x)
assert a['default'] == 'separable'
assert a['best_hint'] == 'separable'
assert not a['1st_exact'].has(Integral)
assert not a['separable'].has(Integral)
assert not a['1st_homogeneous_coeff_best'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not a['1st_linear'].has(Integral)
assert a['1st_linear_Integral'].has(Integral)
assert a['1st_exact_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert a['separable_Integral'].has(Integral)
assert sorted(b.keys()) == keys
assert b['order'] == ode_order(eq, f(x))
assert b['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x)
assert b['default'] == 'separable'
assert b['best_hint'] == '1st_linear'
assert a['separable'] != b['separable']
assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \
b['1st_homogeneous_coeff_subs_dep_div_indep']
assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \
b['1st_homogeneous_coeff_subs_indep_div_dep']
assert not b['1st_exact'].has(Integral)
assert not b['separable'].has(Integral)
assert not b['1st_homogeneous_coeff_best'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not b['1st_linear'].has(Integral)
assert b['1st_linear_Integral'].has(Integral)
assert b['1st_exact_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert b['separable_Integral'].has(Integral)
assert sorted(c.keys()) == Integral_keys
raises(ValueError, lambda: dsolve(eq, hint='notarealhint'))
raises(ValueError, lambda: dsolve(eq, hint='Liouville'))
assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \
dsolve(f(x).diff(x) - 1/f(x)**2, hint='best')
assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x),
hint="1st_linear_Integral") == \
Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)*
exp(Integral(1, x)), x))*exp(-Integral(1, x)))
def test_classify_ode():
assert classify_ode(f(x).diff(x, 2), f(x)) == \
(
'nth_algebraic',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'Liouville',
'2nd_power_series_ordinary',
'nth_algebraic_Integral',
'Liouville_Integral',
)
assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral')
assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == (
'nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
assert classify_ode(f(x).diff(x)**2, f(x)) == ('factorable',
'nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
# issue 4749: f(x) should be cleared from highest derivative before classifying
a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x))
b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x))
c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x))
assert a == ('1st_linear',
'Bernoulli',
'almost_linear',
'1st_power_series', "lie_group",
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert b == ('factorable',
'1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert c == ('1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert classify_ode(
2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x)
) == ('Bernoulli', 'almost_linear', 'lie_group',
'Bernoulli_Integral', 'almost_linear_Integral')
assert 'Riccati_special_minus2' in \
classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x))
raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff(
y), f(x, y)))
# issue 5176
k = Symbol('k')
assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) +
k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \
('separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral', 'Bernoulli_Integral')
# preprocessing
ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_algebraic_Integral',
'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral')
# w/o f(x) given
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans
# w/ f(x) and prep=True
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x),
prep=True) == ans
assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_linear',
'Bernoulli', '1st_power_series',
'lie_group', 'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral', 'Bernoulli_Integral')
assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli',
'1st_power_series', 'lie_group', 'nth_algebraic_Integral',
'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral')
# test issue 13864
assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \
('1st_power_series', 'lie_group')
assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict)
def test_classify_ode_ics():
# Dummy
eq = f(x).diff(x, x) - f(x)
# Not f(0) or f'(0)
ics = {x: 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
############################
# f(0) type (AppliedUndef) #
############################
# Wrong function
ics = {g(0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(0, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(0): f(1)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(0): 1}
classify_ode(eq, f(x), ics=ics)
#####################
# f'(0) type (Subs) #
#####################
# Wrong function
ics = {g(x).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Wrong variable
ics = {f(y).diff(y).subs(y, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, y).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, 0): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, 0): 1}
classify_ode(eq, f(x), ics=ics)
###########################
# f'(y) type (Derivative) #
###########################
# Wrong function
ics = {g(x).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, z).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, y): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, y): 1}
classify_ode(eq, f(x), ics=ics)
def test_classify_sysode():
# Here x is assumed to be x(t) and y as y(t) for simplicity.
# Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively.
k, l, m, n = symbols('k, l, m, n', Integer=True)
k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True)
P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function)
P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function)
x, y, z = symbols('x, y, z', cls=Function)
t = symbols('t')
x1 = diff(x(t),t) ; y1 = diff(y(t),t) ;
eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t))))
sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \
[x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \
y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq6) == sol6
eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t)))
sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \
'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \
Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq7) == sol7
eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)))
sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \
[-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \
Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \
(1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2}
assert classify_sysode(eq8) == sol8
eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5))
sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \
'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \
-y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq11) == sol11
eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2))
sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \
'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \
Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq13) == sol13
def test_solve_ics():
# Basic tests that things work from dsolve.
assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \
Eq(f(x), sqrt(2 * x + 2))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1,
f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x))
assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)],
[f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))]
# Test cases where dsolve returns two solutions.
eq = (x**2*f(x)**2 - x).diff(x)
assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x),
-sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)]
assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x),
-sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)]
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \
{C2: 1}
# Some more complicated tests Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)}
K, r, f0 = symbols('K r f0')
sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1)))
assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol
#Order dependent issues Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
# XXX: Ought to be ValueError
raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1}))
# Degenerate case. f'(0) is identically 0.
raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0}))
EI, q, L = symbols('EI q L')
# eq = Eq(EI*diff(f(x), x, 4), q)
sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))]
funcs = [f(x)]
constants = [C1, C2, C3, C4]
# Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)),
# and Subs
ics1 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
f(L).diff(L, 2): 0,
f(L).diff(L, 3): 0}
ics2 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
Subs(f(x).diff(x, 2), x, L): 0,
Subs(f(x).diff(x, 3), x, L): 0}
solved_constants1 = solve_ics(sols, funcs, constants, ics1)
solved_constants2 = solve_ics(sols, funcs, constants, ics2)
assert solved_constants1 == solved_constants2 == {
C1: 0,
C2: 0,
C3: L**2*q/(4*EI),
C4: -L*q/(6*EI)}
def test_ode_order():
f = Function('f')
g = Function('g')
x = Symbol('x')
assert ode_order(3*x*exp(f(x)), f(x)) == 0
assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1
assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2
assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3
assert ode_order(diff(f(x), x, x), g(x)) == 0
assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2
assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0
# issue 5835: ode_order has to also work for unevaluated derivatives
# (ie, without using doit()).
assert ode_order(Derivative(x*f(x), x), f(x)) == 1
assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2
assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0
assert ode_order(Derivative(f(x), x, x), g(x)) == 0
assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1
assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3
assert ode_order(
x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3
# In all tests below, checkodesol has the order option set to prevent
# superfluous calls to ode_order(), and the solve_for_func flag set to False
# because dsolve() already tries to solve for the function, unless the
# simplify=False option is set.
def test_old_ode_tests():
# These are simple tests from the old ode module
eq1 = Eq(f(x).diff(x), 0)
eq2 = Eq(3*f(x).diff(x) - 5, 0)
eq3 = Eq(3*f(x).diff(x), 5)
eq4 = Eq(9*f(x).diff(x, x) + f(x), 0)
eq5 = Eq(9*f(x).diff(x, x), f(x))
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0)
eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0)
# Type: 2nd order, constant coefficients (two real different roots)
eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0)
# Type: 2nd order, constant coefficients (two real equal roots)
eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0)
# Type: 2nd order, constant coefficients (two complex roots)
eq10 = Eq(3*f(x).diff(x) - 1, 0)
eq11 = Eq(x*f(x).diff(x) - 1, 0)
sol1 = Eq(f(x), C1)
sol2 = Eq(f(x), C1 + x*Rational(5, 3))
sol3 = Eq(f(x), C1 + x*Rational(5, 3))
sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3))
sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))
sol6 = Eq(f(x), (C1 - cos(x))/x**3)
sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x))
sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))
sol10 = Eq(f(x), C1 + x/3)
sol11 = Eq(f(x), C1 + log(x))
assert dsolve(eq1) == sol1
assert dsolve(eq1.lhs) == sol1
assert dsolve(eq2) == sol2
assert dsolve(eq3) == sol3
assert dsolve(eq4) == sol4
assert dsolve(eq5) == sol5
assert dsolve(eq6) == sol6
assert dsolve(eq7) == sol7
assert dsolve(eq8) == sol8
assert dsolve(eq9) == sol9
assert dsolve(eq10) == sol10
assert dsolve(eq11) == sol11
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
@slow
def test_1st_exact1():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x)
eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x)
eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x)
sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))
sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1)
sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)
sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1)
sol5 = Eq(x**2*f(x) + f(x)**3/3, C1)
assert dsolve(eq1, f(x), hint='1st_exact') == sol1
assert dsolve(eq2, f(x), hint='1st_exact') == sol2
assert dsolve(eq3, f(x), hint='1st_exact') == sol3
assert dsolve(eq4, hint='1st_exact') == sol4
assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
# issue 5080 blocks the testing of this solution
# FIXME: assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
@slow
@XFAIL
def test_1st_exact2_broken():
"""
This is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
"""
if ON_TRAVIS:
skip("Too slow for travis.")
eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) -
sqrt(x**2 + f(x)**2)))*f(x).diff(x))
sol = Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))
assert dsolve(eq) == sol # Slow
# FIXME: Checked in test_1st_exact2_broken_check below
@slow
def test_1st_exact2_broken_check():
# See test_1st_exact2_broken above
eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) -
sqrt(x**2 + f(x)**2)))*f(x).diff(x))
sol = Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_homogeneous_order():
assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0
assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None
assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1
assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/
(pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6)
assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0
assert homogeneous_order(f(x), x, f(x)) == 1
assert homogeneous_order(f(x)**2, x, f(x)) == 2
assert homogeneous_order(x*y*z, x, y) == 2
assert homogeneous_order(x*y*z, x, y, z) == 3
assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2
assert homogeneous_order(f(x, y)**2, x, f(x), y) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None
assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None
assert homogeneous_order(f(y), f(x), x) is None
assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0
assert homogeneous_order(log(1/y) + log(x**2), x, y) is None
assert homogeneous_order(log(1/y) + log(x), x, y) == 0
assert homogeneous_order(log(x/y), x, y) == 0
assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0
a = Symbol('a')
assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0
assert homogeneous_order(f(x).diff(x), x, y) is None
assert homogeneous_order(-f(x).diff(x) + x, x, y) is None
assert homogeneous_order(O(x), x, y) is None
assert homogeneous_order(x + O(x**2), x, y) is None
assert homogeneous_order(x**pi, x) == pi
assert homogeneous_order(x**x, x) is None
raises(ValueError, lambda: homogeneous_order(x*y))
@slow
def test_1st_homogeneous_coeff_ode():
# Type: First order homogeneous, y'=f(y/x)
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))
sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))
sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x)))
sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)
sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))
# indep_div_dep actually has a simpler solution for eq2,
# but it runs too slow
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3
assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4
assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5
assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6
assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7
assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8
# FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?)
# previous code was testing with these other solutions:
sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1)
sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check2():
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
sol2 = Eq(x/tan(f(x)/(2*x)), C1)
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check3():
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
# This solution is correct:
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1)))
assert dsolve(eq3) == sol3
# FIXME: Checked in test_1st_homogeneous_coeff_ode_check3_check below
# Alternate form:
sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x)))
assert checkodesol(eq3, sol3a, solve_for_func=True)[0]
@XFAIL
def test_1st_homogeneous_coeff_ode_check3_check():
# See test_1st_homogeneous_coeff_ode_check3 above
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1)))
assert checkodesol(eq3, sol3) == (True, 0) # XFAIL
def test_1st_homogeneous_coeff_ode_check7():
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
assert dsolve(eq7) == sol7
assert checkodesol(eq7, sol7, order=1, solve_for_func=False) == (True, 0)
def test_1st_homogeneous_coeff_ode2():
eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x)
eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x)
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))]
sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1))
sol3 = Eq(f(x), log((1/(C1 - log(x)))**x))
# specific hints are applied for speed reasons
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3
# FIXME: sol3 doesn't work with checkodesol (because of **x?)
# previous code was testing with this other solution:
sol3b = Eq(f(x), log(log(C1/x)**(-x)))
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check9():
_u2 = Dummy('u2')
__a = Dummy('a')
eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a,
x/f(x))) + log(C1*f(x)), 0)
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode3():
# The standard integration engine cannot handle one of the integrals
# involved (see issue 4551). meijerg code comes up with an answer, but in
# unconventional form.
# checkodesol fails for this equation, so its test is in
# test_1st_homogeneous_coeff_ode_check9 above. It has to compare string
# expressions because u2 is a dummy variable.
eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol = Eq(log(f(x)), C1 + Piecewise(
(acosh(f(x)/x), abs(f(x)**2)/x**2 > 1),
(-I*asin(f(x)/x), True)))
assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol
def test_1st_homogeneous_coeff_corner_case():
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
@slow
def test_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
eq1 = f(x).diff(x, 2) + 2*f(x).diff(x)
eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x)
eq3 = f(x).diff(x, 2) - f(x)
eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x)
eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0)
eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x)
eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x)
eq10 = f(x).diff(x, 4) - a**2*f(x)
eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x)
eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x)
eq13 = f(x).diff(x, 4)
eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x)
eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x)
eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x)
eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x)
eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x)
eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x)
eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x)
eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x)
eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x)
eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x)
eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x)
eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x)
eq28 = f(x).diff(x, 3) + 8*f(x)
eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x)
eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x)
sol1 = Eq(f(x), C1 + C2*exp(-2*x))
sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x))
sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))
sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))
sol7 = Eq(f(x), C3*exp(3*x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))
sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sol9 = Eq(f(x), C3*exp(-x) + C4*exp(x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))
sol10 = Eq(f(x),
C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) +
C4*exp(-x*sqrt(a)))
sol11 = Eq(f(x),
C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))
sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))
sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)
sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x))
sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))
sol16 = Eq(f(x), (C1 + x*(C2 + C3*x))*exp(2*x))
sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x))
sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))
sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(x*Rational(5, 6)))
sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))
sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))
sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))
sol25 = Eq(f(x),
C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) +
C4*cos(x*sqrt(2)))
sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))
sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))
sol28 = Eq(f(x),
(C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))
sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x))
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x)))
sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
sol28s = constant_renumber(sol28)
sol29s = constant_renumber(sol29)
sol30s = constant_renumber(sol30)
assert dsolve(eq1) in (sol1, sol1s)
assert dsolve(eq2) in (sol2, sol2s)
assert dsolve(eq3) in (sol3, sol3s)
assert dsolve(eq4) in (sol4, sol4s)
assert dsolve(eq5) in (sol5, sol5s)
assert dsolve(eq6) in (sol6, sol6s)
got = dsolve(eq7)
assert got in (sol7, sol7s), got
assert dsolve(eq8) in (sol8, sol8s)
got = dsolve(eq9)
assert got in (sol9, sol9s), got
assert dsolve(eq10) in (sol10, sol10s)
assert dsolve(eq11) in (sol11, sol11s)
assert dsolve(eq12) in (sol12, sol12s)
assert dsolve(eq13) in (sol13, sol13s)
assert dsolve(eq14) in (sol14, sol14s)
assert dsolve(eq15) in (sol15, sol15s)
got = dsolve(eq16)
assert got in (sol16, sol16s), got
assert dsolve(eq17) in (sol17, sol17s)
assert dsolve(eq18) in (sol18, sol18s)
assert dsolve(eq19) in (sol19, sol19s)
assert dsolve(eq20) in (sol20, sol20s)
assert dsolve(eq21) in (sol21, sol21s)
assert dsolve(eq22) in (sol22, sol22s)
assert dsolve(eq23) in (sol23, sol23s)
assert dsolve(eq24) in (sol24, sol24s)
assert dsolve(eq25) in (sol25, sol25s)
assert dsolve(eq26) in (sol26, sol26s)
assert dsolve(eq27) in (sol27, sol27s)
assert dsolve(eq28) in (sol28, sol28s)
assert dsolve(eq29) in (sol29, sol29s)
assert dsolve(eq30) in (sol30, sol30s)
assert dsolve(eq31) in (sol31,)
assert dsolve(eq32) in (sol32,)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0]
assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0]
assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0]
assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0]
assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0]
# Issue #15237
eqn = Derivative(x*f(x), x, x, x)
hint = 'nth_linear_constant_coeff_homogeneous'
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True))
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False))
def test_nth_linear_constant_coeff_homogeneous_rootof():
# One real root, two complex conjugate pairs
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(r1*x)
+ exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x))
+ exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Three real roots, one complex conjugate pair
eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)]
sol = Eq(f(x),
C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x)
+ exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five distinct real roots
eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)]
sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x))
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Rational root and unsolvable quintic
eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x)
r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(5*x)
+ C6*exp(x*r2)
+ exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x))
+ exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five double roots (this is (x**5 - x + 1)**2)
eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)]
sol = Eq(f(x), (C1 + C2*x)*exp(x*r1) + (C10*sin(x*im(r4)) + C7*x*sin(x*im(r4)) + (
C8 + C9*x)*cos(x*im(r4)))*exp(x*re(r4)) + (C3*x*sin(x*im(r2)) + C6*sin(x*im(r2)
) + (C4 + C5*x)*cos(x*im(r2)))*exp(x*re(r2)))
got = dsolve(eq)
assert sol == got, got
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
def test_nth_linear_constant_coeff_homogeneous_irrational():
our_hint='nth_linear_constant_coeff_homogeneous'
eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
E = exp(1)
eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
@XFAIL
@slow
def test_nth_linear_constant_coeff_homogeneous_rootof_sol():
# See https://github.com/sympy/sympy/issues/15753
if ON_TRAVIS:
skip("Too slow for travis.")
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert checkodesol(eq, sol, order=5, solve_for_func=False)[0]
@XFAIL
def test_noncircularized_real_imaginary_parts():
# If this passes, lines numbered 3878-3882 (at the time of this commit)
# of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous
# should be removed.
y = sqrt(1+x)
i, r = im(y), re(y)
assert not (i.has(atan2) and r.has(atan2))
def test_collect_respecting_exponentials():
# If this test passes, lines 1306-1311 (at the time of this commit)
# of sympy/solvers/ode.py should be removed.
sol = 1 + exp(x/2)
assert sol == collect( sol, exp(x/3))
def test_undetermined_coefficients_match():
assert _undetermined_coefficients_match(g(x), x) == {'test': False}
assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \
{'test': True, 'trialset':
set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])}
assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \
{'test': False}
s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)])
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
exp(2*x)*sin(x)*(x**2 + x + 1), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x),
cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x),
x*exp(2*x)*sin(x)])}
assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False}
assert _undetermined_coefficients_match(log(x), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])}
assert _undetermined_coefficients_match(x**y, x) == {'test': False}
assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \
{'test': True, 'trialset': set([exp(1 + 3*x)])}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x),
x**2*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \
{'test': False}
assert _undetermined_coefficients_match(
x**2*sin(x)*exp(x) + x*sin(x) + x, x
) == {
'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S.One,
exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x),
x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])}
assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == {
'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]),
'test': True,
}
assert _undetermined_coefficients_match(2**x*x, x) == \
{'test': True, 'trialset': set([2**x, x*2**x])}
assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \
{'test': True, 'trialset': set([2**x*exp(2*x)])}
assert _undetermined_coefficients_match(exp(-x)/x, x) == \
{'test': False}
# Below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
assert _undetermined_coefficients_match(S(4), x) == \
{'test': True, 'trialset': set([S.One])}
assert _undetermined_coefficients_match(12*exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
assert _undetermined_coefficients_match(exp(I*x), x) == \
{'test': True, 'trialset': set([exp(I*x)])}
assert _undetermined_coefficients_match(sin(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(cos(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \
{'test': True, 'trialset': set([S.One, cos(x), sin(x), exp(x)])}
assert _undetermined_coefficients_match(x**2, x) == \
{'test': True, 'trialset': set([S.One, x, x**2])}
assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \
{'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])}
assert _undetermined_coefficients_match(x - sin(x), x) == \
{'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])}
assert _undetermined_coefficients_match(x**2 + 2*x, x) == \
{'test': True, 'trialset': set([S.One, x, x**2])}
assert _undetermined_coefficients_match(4*x*sin(x), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(x*sin(2*x), x) == \
{'test': True, 'trialset':
set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])}
assert _undetermined_coefficients_match(x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \
{'test': True, 'trialset': set([S.One, x, x**2, exp(-2*x)])}
assert _undetermined_coefficients_match(x*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(x + exp(2*x), x) == \
{'test': True, 'trialset': set([S.One, x, exp(2*x)])}
assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])}
assert _undetermined_coefficients_match(exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
# converted from sin(x)**2
assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \
{'test': True, 'trialset': set([S.One, cos(2*x), sin(2*x)])}
# converted from exp(2*x)*sin(x)**2
assert _undetermined_coefficients_match(
exp(2*x)*(S.Half + cos(2*x)/2), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x),
exp(2*x)])}
assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \
{'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])}
# converted from sin(2*x)*sin(x)
assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \
{'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])}
assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False}
def test_issue_12623():
t = symbols("t")
u = symbols("u",cls=Function)
R, L, C, E_0, alpha = symbols("R L C E_0 alpha",positive=True)
omega = Symbol('omega')
eqRLC_1 = Eq( u(t).diff(t,t) + R /L*u(t).diff(t) + 1/(L*C)*u(t), alpha)
sol_1 = Eq(u(t), C*L*alpha + C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)))
assert dsolve(eqRLC_1) == sol_1
assert checkodesol(eqRLC_1, sol_1) == (True, 0)
eqRLC_2 = Eq( L*C*u(t).diff(t,t) + R*C*u(t).diff(t) + u(t), E_0*exp(I*omega*t) )
sol_2 = Eq(u(t),
C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ E_0*exp(I*omega*t)/(-C*L*omega**2 + I*C*R*omega + 1))
assert dsolve(eqRLC_2) == sol_2
assert checkodesol(eqRLC_2, sol_2) == (True, 0)
#issue-https://github.com/sympy/sympy/issues/12623
def test_issue_5787():
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S.Half - I)
our_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert our_hint in classify_ode(eq)
def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp():
# Equivalent to eq26 in
# test_nth_linear_constant_coeff_undetermined_coefficients above. This
# previously failed because the algorithm for undetermined coefficients
# didn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol26 = Eq(f(x), C1 + x**2*(I*exp(I*x)/8 + 1) + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
assert dsolve(eq26a, hint=hint) == sol26
assert checkodesol(eq26a, sol26) == (True, 0)
@slow
def test_nth_linear_constant_coeff_variation_of_parameters():
hint = 'nth_linear_constant_coeff_variation_of_parameters'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
eq3 = f(x).diff(x) - 1
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x
eq11 = f2 + f(x) - 1/sin(x)*1/cos(x)
eq12 = f(x).diff(x, 4) - 1/x
sol1 = Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)
sol2 = Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)
sol3 = Eq(f(x), C1 + x)
sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol7 = Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))
sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol9 = Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))
sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))
sol11 = Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2
)*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))
sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2)
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
got = dsolve(eq1, hint=hint)
assert got in (sol1, sol1s), got
got = dsolve(eq2, hint=hint)
assert got in (sol2, sol2s), got
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
got = dsolve(eq7, hint=hint)
assert got in (sol7, sol7s), got
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
got = dsolve(eq9, hint=hint)
assert got in (sol9, sol9s), got
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint + '_Integral').doit() in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral'
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True)
sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False)
assert sol_simp != sol_nsimp
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
def test_unexpanded_Liouville_ODE():
# This is the same as eq1 from test_Liouville_ODE() above.
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq2 = eq1*exp(-f(x))/exp(f(x))
sol2 = Eq(f(x), C1 + log(x) - log(C2 + x))
sol2s = constant_renumber(sol2)
assert dsolve(eq2) in (sol2, sol2s)
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
def test_issue_4785():
from sympy.abc import A
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral', 'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
# issue 4864
eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x)
assert classify_ode(eq, f(x)) == ('1st_exact',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group', '1st_exact_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
def test_issue_4825():
raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x)))
assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
# See also issue 3793, test Z13.
raises(ValueError, lambda: dsolve(f(x).diff(x), f(y)))
assert classify_ode(f(x).diff(x), f(y), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
def test_constant_renumber_order_issue_5308():
from sympy.utilities.iterables import variations
assert constant_renumber(C1*x + C2*y) == \
constant_renumber(C1*y + C2*x) == \
C1*x + C2*y
e = C1*(C2 + x)*(C3 + y)
for a, b, c in variations([C1, C2, C3], 3):
assert constant_renumber(a*(b + x)*(c + y)) == e
def test_constant_renumber():
e1, e2, x, y = symbols("e1:3 x y")
exprs = [e2*x, e1*x + e2*y]
assert constant_renumber(exprs[0]) == e2*x
assert constant_renumber(exprs[0], variables=[x]) == C1*x
assert constant_renumber(exprs[0], variables=[x], newconstants=[C2]) == C2*x
assert constant_renumber(exprs, variables=[x, y]) == [C1*x, C1*y + C2*x]
assert constant_renumber(exprs, variables=[x, y], newconstants=symbols("C3:5")) == [C3*x, C3*y + C4*x]
def test_issue_5770():
k = Symbol("k", real=True)
t = Symbol('t')
w = Function('w')
sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t))
assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6
assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \
C1*cos(x)*exp(x)
assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \
C1*cos(x) + C3*sin(x)
assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x)
assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x
assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x
def test_issue_5112_5430():
assert homogeneous_order(-log(x) + acosh(x), x) is None
assert homogeneous_order(y - log(x), x, y) is None
def test_issue_5095():
f = Function('f')
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf'))
def test_exact_enhancement():
f = Function('f')(x)
df = Derivative(f, x)
eq = f/x**2 + ((f*x - 1)/x)*df
sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x*f - 1) + df*(x**2 - x*f)
sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))),
Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x + 2)*sin(f) + df*x*cos(f)
sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi),
Eq(f, asin(C1*exp(-x)/x**2))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
@slow
def test_separable_reduced():
f = Function('f')
x = Symbol('x')
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
eq = x* df + f(x)* (1 / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6
assert sol.rhs == C1 + log(x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced')
# FIXME: This one hangs
#assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4
assert len(sol) == 4
eq = x*df + f(x)*(x**2*f(x))
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = Eq(f(x).diff(x) + f(x)/x * (1 + (x**(S(2)/3)*f(x))**2), 0)
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(-3*log(x**(S(2)/3)*f(x)) + 3*log(3*x**(S(4)/3)*f(x)**2 + 1)/2, C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
eq = Eq(f(x).diff(x) + f(x)/x * (1 + (x*f(x))**2), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x)),\
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x))]
assert checkodesol(eq, sol) == [(True, 0)]*2
eq = Eq(f(x).diff(x) + (x**4*f(x)**2 + x**2*f(x))*f(x)/(x*(x**6*f(x)**3 + x**4*f(x)**2)), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == Eq(f(x), C1 + 1/(2*x**2))
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)**2)*f(x)/(x), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/2),\
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/2)]
assert checkodesol(eq, sol) == [(True, 0), (True, 0)]
eq = Eq(f(x).diff(x) + (f(x)+3)*f(x)/(x*(f(x)+2)), 0)
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(-log(f(x) + 3)/3 - 2*log(f(x))/3, C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)+3)*f(x)/x, 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == Eq(f(x), 3/(C1*x**3 - 1))
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)**2+f(x))*f(x)/(x), 0)
sol = dsolve(eq, hint='separable_reduced', simplify=False)
assert sol == Eq(-log(f(x) + 1) + log(f(x)) + 1/f(x), C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
def test_homogeneous_function():
f = Function('f')
eq1 = tan(x + f(x))
eq2 = sin((3*x)/(4*f(x)))
eq3 = cos(x*f(x)*Rational(3, 4))
eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x))
eq5 = exp((2*x**2)/(3*f(x)**2))
eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2)))
eq7 = sin((3*x)/(5*f(x) + x**2))
assert homogeneous_order(eq1, x, f(x)) == None
assert homogeneous_order(eq2, x, f(x)) == 0
assert homogeneous_order(eq3, x, f(x)) == None
assert homogeneous_order(eq4, x, f(x)) == 0
assert homogeneous_order(eq5, x, f(x)) == 0
assert homogeneous_order(eq6, x, f(x)) == 0
assert homogeneous_order(eq7, x, f(x)) == None
def test_linear_coeff_match():
n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11)
rat = n/d
eq1 = sin(rat) + cos(rat.expand())
eq2 = rat
eq3 = log(sin(rat))
ans = (4, Rational(-13, 3))
assert _linear_coeff_match(eq1, f(x)) == ans
assert _linear_coeff_match(eq2, f(x)) == ans
assert _linear_coeff_match(eq3, f(x)) == ans
# no c
eq4 = (3*x)/f(x)
# not x and f(x)
eq5 = (3*x + 2)/x
# denom will be zero
eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5)
# not rational coefficient
eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5)
assert _linear_coeff_match(eq4, f(x)) is None
assert _linear_coeff_match(eq5, f(x)) is None
assert _linear_coeff_match(eq6, f(x)) is None
assert _linear_coeff_match(eq7, f(x)) is None
def test_linear_coefficients():
f = Function('f')
sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2))
eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3)
assert dsolve(eq, hint='linear_coefficients') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_constantsimp_take_problem():
c = exp(C1) + 2
assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2
def test_issue_6879():
f = Function('f')
eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x))
sol = (C1 + C2*x)*exp(x) + cos(x)/2
assert dsolve(eq).rhs == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_issue_6989():
f = Function('f')
k = Symbol('k')
eq = f(x).diff(x) - x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = -f(x).diff(x) + x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_heuristic1():
y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0")
f = Function('f')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
eq = Eq(df, x**2*f(x))
eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2)
eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
i = infinitesimals(eq, hint='abaco1_simple')
assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
{eta(x, f(x)): f(x), xi(x, f(x)): 0},
{eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
i1 = infinitesimals(eq1, hint='abaco1_simple')
assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
i2 = infinitesimals(eq2, hint='abaco1_simple')
assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
i3 = infinitesimals(eq3, hint='abaco1_simple')
assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
{eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
i4 = infinitesimals(eq4, hint='abaco1_simple')
assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
{eta(x, f(x)): 0,
xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
i5 = infinitesimals(eq5, hint='abaco1_simple')
assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
ilist = [i, i1, i2, i3, i4, i5]
for eq, i in (zip(eqlist, ilist)):
check = checkinfsol(eq, i)
assert check[0]
def test_issue_6247():
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = Eq(f(x), 2*C1/(C1*x**2 - 1))
assert dsolve(eq, hint = 'separable_reduced') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x, x) + 4*f(x)
sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=1)[0]
def test_heuristic2():
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
# This ODE can be solved by the Lie Group method, when there are
# better assumptions
eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
i = infinitesimals(eq, hint='abaco1_product')
assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
@slow
def test_heuristic3():
xi = Function('xi')
eta = Function('eta')
a, b = symbols("a b")
df = f(x).diff(x)
eq = x**2*df + x*f(x) + f(x)**2 + x**2
i = infinitesimals(eq, hint='bivariate')
assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
assert checkinfsol(eq, i)[0]
eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
i = infinitesimals(eq, hint='bivariate')
assert checkinfsol(eq, i)[0]
def test_heuristic_4():
y, a = symbols("y a")
eq = x*(f(x).diff(x)) + 1 - f(x)**2
i = infinitesimals(eq, hint='chi')
assert checkinfsol(eq, i)[0]
def test_heuristic_function_sum():
xi = Function('xi')
eta = Function('eta')
eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
(1 - 3*f(x))*(x/f(x)**2))
i = infinitesimals(eq, hint='function_sum')
assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_similar():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
eq = f(x).diff(x) - F(a*x + b*f(x))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_unique_unknown():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
x = Symbol("x", positive=True)
eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
assert checkinfsol(eq, i)[0]
eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert checkinfsol(eq, i)[0]
def test_heuristic_linear():
a, b, m, n = symbols("a b m n")
eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
i = infinitesimals(eq, hint='linear')
assert checkinfsol(eq, i)[0]
@XFAIL
def test_kamke():
a, b, alpha, c = symbols("a b alpha c")
eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
i = infinitesimals(eq, hint='sum_function') # XFAIL
assert checkinfsol(eq, i)[0]
def test_series():
C1 = Symbol("C1")
eq = f(x).diff(x) - f(x)
sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 +
C1*x**5/120 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - x*f(x)
sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - sin(x*f(x))
sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3))
assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol
# FIXME: The solution here should be O((x-2)**3) so is incorrect
#assert checkodesol(eq, sol, order=1)[0]
@XFAIL
@SKIP
def test_lie_group_issue17322_1():
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq, f(x)) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
@SKIP
def test_lie_group_issue17322_2():
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
@SKIP
def test_lie_group_issue17322_3():
eq=Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0)
sol = dsolve(eq) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
def test_lie_group_issue17322_4():
eq=f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x)
sol = dsolve(eq) # NotImplementedError
assert checkodesol(eq, sol) == (True, 0)
@slow
def test_lie_group():
C1 = Symbol("C1")
x = Symbol("x") # assuming x is real generates an error!
a, b, c = symbols("a b c")
eq = f(x).diff(x)**2
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x), x**2*f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), C1*exp(x**3)**Rational(1, 3))
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + a*f(x) - c*exp(b*x)
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
sol = dsolve(eq, f(x), hint='lie_group')
actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), log(C1/(2*x + 1) + 2))
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x))
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), 2/(C1 + x**2))
assert checkodesol(eq, sol) == (True, 0)
eq=diff(f(x),x) + 2*x*f(x) - x*exp(-x**2)
sol = Eq(f(x), exp(-x**2)*(C1 + x**2/2))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - exp(2*x)
sol = Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2
sol = Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) + f(x) - x*sin(x)
sol = Eq(f(x), (C1 - x*cos(x) + sin(x))/x)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) - f(x) - x/log(x)
sol = Eq(f(x), x*(C1 + log(log(x))))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
eq = f(x).diff(x) * (f(x).diff(x) - f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1)]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
@XFAIL
def test_lie_group_issue15219():
eqn = exp(f(x).diff(x)-f(x))
assert 'lie_group' not in classify_ode(eqn, f(x))
def test_user_infinitesimals():
x = Symbol("x") # assuming x is real generates an error
eq = x*(f(x).diff(x)) + 1 - f(x)**2
sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0}
assert dsolve(eq, hint='lie_group', **infinitesimals) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_issue_7081():
eq = x*(f(x).diff(x)) + 1 - f(x)**2
s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))
assert dsolve(eq) == s
assert checkodesol(eq, s) == (True, 0)
@slow
def test_2nd_power_series_ordinary():
C1, C2 = symbols("C1 C2")
eq = f(x).diff(x, 2) - x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary') == sol
assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1)
+ C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2))
+ O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol
# FIXME: Solution should be O((x+2)**6)
# assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*x + C1 + O(x**2))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1)
+ C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_Airy_equation():
eq = f(x).diff(x, 2) - x*f(x)
sol = Eq(f(x), C1*airyai(x) + C2*airybi(x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
eq = f(x).diff(x, 2) + 2*x*f(x)
sol = Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
def test_2nd_power_series_regular():
C1, C2 = symbols("C1 C2")
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 +
1)*f(x)
sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + (
x**2 - 2)*f(x)
sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x +
C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x)
sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) +
C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
def test_2nd_linear_bessel_equation():
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x)
sol = Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x)
sol = Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x)
sol = Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x)
sol = Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x)
sol = Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_7093():
x = Symbol("x") # assuming x is real leads to an error
sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5),
Eq(f(x), C1 + 2*x*sqrt(x**3)/5)]
eq = Derivative(f(x), x)**2 - x**3
assert set(dsolve(eq)) == set(sol)
assert checkodesol(eq, sol) == [(True, 0)] * 2
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_issue_15056():
t = Symbol('t')
C3 = Symbol('C3')
assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3
def test_issue_10379():
t,y = symbols('t,y')
eq = f(t).diff(t)-(1-51.05*y*f(t))
sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y)
dsolve_sol = dsolve(eq, rational=False)
assert str(dsolve_sol) == str(sol)
assert checkodesol(eq, dsolve_sol)[0]
def test_issue_10867():
x = Symbol('x')
eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3)
sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)
assert dsolve(eq, g(x)) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_11290():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact')
assert sol_1.dummy_eq(Eq(Subs(
Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) +
Integral(cos(u), x), u, f(x)), C1))
assert sol_1.doit() == sol_0
assert checkodesol(eq, sol_0, order=1, solve_for_func=False)
assert checkodesol(eq, sol_1, order=1, solve_for_func=False)
def test_issue_4838():
# Issue #15999
eq = f(x).diff(x) - C1*f(x)
sol = Eq(f(x), C2*exp(C1*x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
# Issue #13691
eq = f(x).diff(x) - C1*g(x).diff(x)
sol = Eq(f(x), C2 + C1*g(x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0)
# Issue #4838
eq = f(x).diff(x) - 3*C1 - 3*x**2
sol = Eq(f(x), C2 + 3*C1*x + x**3)
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
@slow
def test_issue_14395():
eq = Derivative(f(x), x, x) + 9*f(x) - sec(x)
sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))
assert dsolve(eq, f(x)) == sol
# FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
# Needs to be a way to know how to combine derivatives in the expression
def test_factoring_ode():
from sympy import Mul
eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x)
# 2-arg Mul!
soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False))
assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x))
def test_issue_11542():
m = 96
g = 9.8
k = .2
f1 = g * m
t = Symbol('t')
v = Function('v')
v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0)
assert str(v_equation) == \
'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))'
def test_issue_15913():
eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x)
sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x)
assert checkodesol(eq, sol) == (True, 0)
sol = C1 + C2*exp(-x*y)
eq = Derivative(y*f(x), x) + f(x).diff(x, 2)
assert checkodesol(eq, sol, f(x)) == (True, 0)
def test_issue_16146():
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)]))
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)]))
def test_dsolve_remove_redundant_solutions():
eq = (f(x)-2)*f(x).diff(x)
sol = Eq(f(x), C1)
assert dsolve(eq) == sol
eq = (f(x)-sin(x))*(f(x).diff(x, 2))
sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))}
assert set(dsolve(eq)) == sol
eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3)
sol = Eq(f(x), C1 + C2*x + C3*x**2)
assert dsolve(eq) == sol
def test_issue_17322():
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
eq = f(x).diff(x)*(f(x).diff(x)+f(x))
sol = [Eq(f(x), C1), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
def test_2nd_2F1_hypergeometric():
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x)
sol = Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) +
C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) +
C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 -
x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x -
1), x)/4)*hyper((S(1)/2, -1), (1,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral')
assert checkodesol(eq, sol) == (True, 0)
eq = -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) +
x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2))
sol = Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) +
C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
# assert checkodesol(eq, sol) == (True, 0) #issue-https://github.com/sympy/sympy/issues/17702
def test_issue_5096():
eq = f(x).diff(x, x) + f(x) - x*sin(x - 2)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + f(x) - x**4*sin(x-1)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) - f(x) - exp(x - 1)
sol = Eq(f(x), C2*exp(-x) + (C1 + x*exp(-1)/2)*exp(x))
got = dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert sol == got, got
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2)+f(x)-(sin(x-2)+1)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2)
sol = Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2)
sol = Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
def test_issue_15996():
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol = Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + x*(C5 + I*x/8 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2) + 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))
got = dsolve(eq, hint='nth_linear_constant_coeff_variation_of_parameters')
assert sol == got, got
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x)
sol = Eq(f(x), C1 + (C2 + x*(C3 - x/8) + 5*exp(2*I*x)/16)*sin(x) + (C4 + x*(C5 + I*x/8) + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))
got = dsolve(eq, hint='nth_linear_constant_coeff_variation_of_parameters')
assert sol == got, got
assert checkodesol(eq, sol) == (True, 0)
def test_issue_18408():
eq = f(x).diff(x, 3) - f(x).diff(x) - sinh(x)
sol = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) - 49*f(x) - sinh(3*x)
sol = Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x)
sol = Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
def test_issue_9446():
f = Function('f')
assert dsolve(Eq(f(2 * x), sin(Derivative(f(x)))), f(x)) == \
[Eq(f(x), C1 + pi*x - Integral(asin(f(2*x)), x)), Eq(f(x), C1 + Integral(asin(f(2*x)), x))]
assert integrate(-asin(f(2*x)+pi), x) == -Integral(asin(pi + f(2*x)), x)
|
4c5d2ff00b561923c39c43a9d337190f99a826699330b65183f3f6d88c0d9e56 | from sympy import (symbols, Symbol, diff, Function, Derivative, Matrix, Rational, S,
I, Eq, sqrt)
from sympy.core.containers import Tuple
from sympy.functions import exp, cos, sin, log
from sympy.matrices import dotprodsimp, NonSquareMatrixError
from sympy.solvers.ode import dsolve
from sympy.solvers.ode.ode import constant_renumber
from sympy.solvers.ode.subscheck import checksysodesol
from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix,
ODEOrderError, ODENonlinearError, _simpsol, _solsimp,
_is_commutative_anti_derivative, linodesolve,
canonical_odes, dsolve_system, _component_division,
_eqs2dict, _dict2graph)
from sympy.functions import airyai, airybi
from sympy.integrals.integrals import Integral
from sympy.testing.pytest import ON_TRAVIS, raises, slow, skip, XFAIL
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
def test_linear_ode_to_matrix():
f, g, h = symbols("f, g, h", cls=Function)
t = Symbol("t")
funcs = [f(t), g(t), h(t)]
f1 = f(t).diff(t)
g1 = g(t).diff(t)
h1 = h(t).diff(t)
f2 = f(t).diff(t, 2)
g2 = g(t).diff(t, 2)
h2 = h(t).diff(t, 2)
eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))]
sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]]))
assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1
eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))]
sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2
eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))]
sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3
eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)]
sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]),
Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]]))
assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4
eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))]
raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1))
eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))]
raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1))
def test__classify_linear_system():
x, y, z, w = symbols('x, y, z, w', cls=Function)
t, k, l = symbols('t k l')
x1 = diff(x(t), t)
y1 = diff(y(t), t)
z1 = diff(z(t), t)
w1 = diff(w(t), t)
x2 = diff(x(t), t, t)
y2 = diff(y(t), t, t)
funcs = [x(t), y(t)]
funcs_2 = funcs + [z(t), w(t)]
eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
assert _classify_linear_system(eqs_1, funcs, t) is None
eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
sol2 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)],
[Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]}
assert _classify_linear_system(eqs_2, funcs, t) == sol2
eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_1, funcs, t) is None
eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_2, funcs, t) is None
eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t)))
answer_3 = {'no_of_equation': 4,
'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t),
z(t) + 5*Derivative(w(t), t),
w(t) + Derivative(z(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, 1],
[0, 0, Rational(1, 5), 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3
eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t)))
answer_4 = {'no_of_equation': 4,
'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t),
-11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t),
-w(t) + Derivative(z(t), t),
-z(t) + Derivative(w(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, -1],
[0, 0, -1, 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4
eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t)))
answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t),
t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear':
True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True}
assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5
eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, -3, 11],
[ 3, 0, -7],
[-11, 7, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6
eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t)))
answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -1],
[-1, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_7, funcs, t) == answer_7
eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t)))
answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[ -5, -7, -9]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8
eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t)))
answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)),
Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ -4, -5, -2],
[ -1, -13, -9],
[-32, -41, -11]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9
eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t))))
answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10
eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11
eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t)))
sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[0, -1],
[-1, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12
eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol13 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)),
Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13
eq14 = (
Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)),
Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t)))
sol14 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)),
Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-4, -5, -2],
[-1, -13, -9],
[-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14
eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t)))
sol15 = {'no_of_equation': 3, 'eq': (
Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)),
Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15
# Constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9),
Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)],
'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True,
'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([
[5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient non-homogeneous ODEs
eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))]
sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t),
t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t],
[-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs':
Matrix([ [t], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t),
t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff':
Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4',
'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))]
sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)),
Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))],
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant':
False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t,
-t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation':
'type4'}
assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3
eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)]
sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t),
t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t),
y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t,
-1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2,
t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4
sum_terms = t*(x(t) + y(t) + z(t) + w(t))
eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)]
sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))),
Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) +
y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t),
z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t,
-t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq5, funcs_2, t) == sol5
# Second Order
t_ = symbols("t_")
eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)),
Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) +
3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) +
8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([
[11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t)))
sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True,
'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t
+ 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33,
'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)),
t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2)))
sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) -
y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t),
t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2},
'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1':
Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq3, funcs, t) == sol3
eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)),
Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t):
2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation':
'type0', 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq4, funcs, t) == sol4
# Multiple matchs
f, g = symbols("f g", cls=Function)
y, t_ = symbols("y t_")
funcs = [f(t), g(t)]
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol1 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))],
[Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]}
assert _classify_linear_system(eq1, funcs, t) == sol1
raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t))
eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2,
1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant':
False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq3, funcs, t) == sol3
def test_matrix_exp():
from sympy.matrices.dense import Matrix, eye, zeros
from sympy.solvers.ode.systems import matrix_exp
t = Symbol('t')
for n in range(1, 6+1):
assert matrix_exp(zeros(n), t) == eye(n)
for n in range(1, 6+1):
A = eye(n)
expAt = exp(t) * eye(n)
assert matrix_exp(A, t) == expAt
for n in range(1, 6+1):
A = Matrix(n, n, lambda i,j: i+1 if i==j else 0)
expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0)
assert matrix_exp(A, t) == expAt
A = Matrix([[0, 1], [-1, 0]])
expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([[2, -5], [2, -4]])
expAt = Matrix([
[3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)],
[2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]])
# TO update this.
# expAt = Matrix([
# [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4,
# (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4,
# (exp(12*t) - 1)*exp(4*t)/2],
# [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4,
# (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4,
# (-exp(12*t) + 1)*exp(4*t)/2],
# [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]])
expAt = Matrix([
[2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2],
[ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2],
[ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, -S(1)/8],
[0, 0, S(1)/2, S(1)/2]])
expAt = Matrix([
[exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t),
-2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)],
[0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)],
[0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8],
[0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 0, 0],
[-1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), 0, 0],
[-sin(t), cos(t), 0, 0],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 1, 0],
[-1, 0, 0, 1],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), t*cos(t), t*sin(t)],
[-sin(t), cos(t), -t*sin(t), t*cos(t)],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
# This case is unacceptably slow right now but should be solvable...
#a, b, c, d, e, f = symbols('a b c d e f')
#A = Matrix([
#[-a, b, c, d],
#[ a, -b, e, 0],
#[ 0, 0, -c - e - f, 0],
#[ 0, 0, f, -d]])
A = Matrix([[0, I], [I, 0]])
expAt = Matrix([
[exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2],
[exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
assert matrix_exp(A, t) == expAt
# Testing Errors
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]])
M1 = Matrix([[t, 1], [1, 1]])
raises(ValueError, lambda: matrix_exp(M[:, :2], t))
raises(ValueError, lambda: matrix_exp(M[:2, :], t))
raises(ValueError, lambda: matrix_exp(M1, t))
raises(ValueError, lambda: matrix_exp(M1[:1, :1], t))
def test_canonical_odes():
f, g, h = symbols('f g h', cls=Function)
x = symbols('x')
funcs = [f(x), g(x), h(x)]
eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))]
sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]]
assert canonical_odes(eqs1, funcs[:2], x) == sol1
eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))]
sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))],
[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]]
assert canonical_odes(eqs2, funcs, x) == sol2
def test_sysode_linear_neq_order1_type1():
f, g, x, y, h = symbols('f g x y h', cls=Function)
a, b, c, t = symbols('a b c t')
eq1 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t))]
sol1 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = [Eq(x(t).diff(t), 2*x(t)), Eq(y(t).diff(t), 3*y(t))]
#sol2 = [Eq(x(t), C1*exp(2*t)), Eq(y(t), C2*exp(3*t))]
sol2 = [Eq(x(t), C1*exp(2*t)), Eq(y(t), C2*exp(3*t))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = [Eq(x(t).diff(t), a*x(t)), Eq(y(t).diff(t), a*y(t))]
sol3 = [Eq(x(t), C1*exp(a*t)), Eq(y(t), C2*exp(a*t))]
assert dsolve(eq3) == sol3
assert checksysodesol(eq3, sol3) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eq4 = [Eq(x(t).diff(t), a*x(t)), Eq(y(t).diff(t), b*y(t))]
sol4 = [Eq(x(t), C1*exp(a*t)), Eq(y(t), C2*exp(b*t))]
assert dsolve(eq4) == sol4
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = [Eq(x(t).diff(t), -y(t)), Eq(y(t).diff(t), x(t))]
sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)), Eq(y(t), C1*cos(t) - C2*sin(t))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = [Eq(x(t).diff(t), -2*y(t)), Eq(y(t).diff(t), 2*x(t))]
sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)), Eq(y(t), C1*cos(2*t) - C2*sin(2*t))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = [Eq(x(t).diff(t), I*y(t)), Eq(y(t).diff(t), I*x(t))]
sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = [Eq(x(t).diff(t), -a*y(t)), Eq(y(t).diff(t), a*x(t))]
sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)), Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))]
assert dsolve(eq8) == sol8
assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq9 = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), x(t) - y(t))]
sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)),
Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0])
eq10 = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), x(t) + y(t))]
sol10 = [Eq(x(t), -C1 + C2*exp(2*t)), Eq(y(t), C1 + C2*exp(2*t))]
assert dsolve(eq10) == sol10
assert checksysodesol(eq10, sol10) == (True, [0, 0])
eq11 = [Eq(x(t).diff(t), 2*x(t) + y(t)), Eq(y(t).diff(t), -x(t) + 2*y(t))]
sol11 = [Eq(x(t), (C1*sin(t) + C2*cos(t))*exp(2*t)),
Eq(y(t), (C1*cos(t) - C2*sin(t))*exp(2*t))]
assert dsolve(eq11) == sol11
assert checksysodesol(eq11, sol11) == (True, [0, 0])
eq12 = [Eq(x(t).diff(t), x(t) + 2*y(t)), Eq(y(t).diff(t), 2*x(t) + y(t))]
sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)), Eq(y(t), C1*exp(-t) + C2*exp(3*t))]
assert dsolve(eq12) == sol12
assert checksysodesol(eq12, sol12) == (True, [0, 0])
eq13 = [Eq(x(t).diff(t), 4*x(t) + y(t)), Eq(y(t).diff(t), -x(t) + 2*y(t))]
sol13 = [Eq(x(t), (C1 + C2*t + C2)*exp(3*t)), Eq(y(t), (-C1 - C2*t)*exp(3*t))]
assert dsolve(eq13) == sol13
assert checksysodesol(eq13, sol13) == (True, [0, 0])
eq14 = [Eq(x(t).diff(t), a*y(t)), Eq(y(t).diff(t), a*x(t))]
sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)), Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))]
assert dsolve(eq14) == sol14
assert checksysodesol(eq14, sol14) == (True, [0, 0])
eq15 = [Eq(x(t).diff(t), a*y(t)), Eq(y(t).diff(t), b*x(t))]
sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)),
Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))]
assert dsolve(eq15) == sol15
assert checksysodesol(eq15, sol15) == (True, [0, 0])
eq16 = [Eq(x(t).diff(t), a*x(t) + b*y(t)), Eq(y(t).diff(t), c*x(t))]
sol16 = [Eq(x(t), -2*C1*b*exp(t*(a/2 + sqrt(a**2 + 4*b*c)/2))/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a/2 - sqrt(a**2 + 4*b*c)/2))/(a + sqrt(a**2 + 4*b*c))),
Eq(y(t), C1*exp(t*(a/2 + sqrt(a**2 + 4*b*c)/2)) + C2*exp(t*(a/2 - sqrt(a**2 + 4*b*c)/2)))]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0, 0])
# Regression test case for issue #18562
# https://github.com/sympy/sympy/issues/18562
eq17 = [Eq(x(t).diff(t), x(t) + a*y(t)), Eq(y(t).diff(t), x(t)*a - y(t))]
sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) + 1)),
Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))]
assert dsolve(eq17) == sol17
assert checksysodesol(eq17, sol17) == (True, [0, 0])
eq18 = [Eq(x(t).diff(t), 0), Eq(y(t).diff(t), 0)]
sol18 = [Eq(x(t), C1), Eq(y(t), C2)]
assert dsolve(eq18) == sol18
assert checksysodesol(eq18, sol18) == (True, [0, 0])
eq19 = [Eq(x(t).diff(t), 2*x(t) - y(t)), Eq(y(t).diff(t), x(t))]
sol19 = [Eq(x(t), (C1 + C2*t + C2)*exp(t)), Eq(y(t), (C1 + C2*t)*exp(t))]
assert dsolve(eq19) == sol19
assert checksysodesol(eq19, sol19) == (True, [0, 0])
eq20 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), x(t) + y(t))]
sol20 = [Eq(x(t), C1*exp(t)), Eq(y(t), (C1*t + C2)*exp(t))]
assert dsolve(eq20) == sol20
assert checksysodesol(eq20, sol20) == (True, [0, 0])
eq21 = [Eq(Derivative(x(t), t), 3*x(t)), Eq(Derivative(y(t), t), x(t) + y(t))]
sol21 = [Eq(x(t), 2*C1*exp(3*t)), Eq(y(t), C1*exp(3*t) + C2*exp(t))]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21, sol21) == (True, [0, 0])
eq22 = [Eq(Derivative(x(t), t), 3*x(t)), Eq(Derivative(y(t), t), y(t))]
sol22 = [Eq(x(t), C1*exp(3*t)), Eq(y(t), C2*exp(t))]
assert dsolve(eq22) == sol22
assert checksysodesol(eq22, sol22) == (True, [0, 0])
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eq1 = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)),
Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)),
Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t)))
sol1 = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) + C3*(k10*k20 + k10*k21 - k10*k30 -
k20**2 - k20*k21 - k20*k23 + k20*k30 + k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 -
k23)) - C4*exp(t*(-k01 - k10))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(k01*k20 + k01*k21 - k01*k30 - k20*k21 - k21**2 -
k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23)) + C4*exp(t*(-k01 - k10))),
Eq(Z2(t), C3*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C3*exp(t*(-k20 - k21 - k23)))]
assert dsolve(eq1, simplify=False) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0, 0, 0])
x, y, z, u, v, w = symbols('x y z u v w', cls=Function)
k2, k3 = symbols('k2 k3')
a_b, a_c = symbols('a_b a_c', real=True)
eq2 = (
Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))
)
sol2 = [Eq(z(t), C1 - C2*k2*exp(t*(-k2 - k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(t*(-k2 - k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(t*(-k2 - k3)))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
eq3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t),
2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t),
5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)]
sol3 = [Eq(u(t), C1*cos(sqrt(3)*t)/2 - C2*sin(sqrt(3)*t)/2 + C3*exp(-2*t) + sqrt(3)*(C1*sin(sqrt(3)*t) + C2*cos(sqrt(3)*t))/6),
Eq(v(t), C1*cos(sqrt(3)*t)/2 - C2*sin(sqrt(3)*t)/2 + sqrt(3)*(C1*sin(sqrt(3)*t) + C2*cos(sqrt(3)*t))/6),
Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))]
assert dsolve(eq3) == sol3
assert checksysodesol(eq3, sol3) == (True, [0, 0, 0])
tw = Rational(2, 9)
eq4 = [Eq(x(t).diff(t), 2*x(t) + y(t) - tw*4*z(t) - tw*w(t)),
Eq(y(t).diff(t), 2*y(t) + 8*tw*z(t) + 2*tw*w(t)),
Eq(z(t).diff(t), Rational(37, 9)*z(t) - tw*w(t)),
Eq(w(t).diff(t), 22*tw*w(t) - 2*tw*z(t))]
sol4 = [Eq(x(t), (C1 + C2*t)*exp(2*t)),
Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)),
Eq(z(t), 2*C3*exp(4*t) - C4*exp(5*t)/4),
Eq(w(t), C3*exp(4*t) + C4*exp(5*t))]
assert dsolve(eq4) == sol4
assert checksysodesol(eq4, sol4) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))]
sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0])
eq6 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), y(t) + z(t)),
Eq(Derivative(z(t), t), -w(t)/8 + z(t)),
Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)]
sol6 = [Eq(x(t), (C1 + C2*t)*exp(t) + (4*C3 + 4*C4*t + 48*C4)*exp(3*t/4)),
Eq(y(t), C2*exp(t) + (-C3 - C4*t - 8*C4)*exp(3*t/4)),
Eq(z(t), (C3/4 + C4*t/4 + C4)*exp(3*t/4)),
Eq(w(t), (C3/2 + C4*t/2)*exp(3*t/4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)),
Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))]
sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)),
Eq(u(t), C5*exp(t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0])
eq8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)), Eq(Derivative(y(t), t), 2*y(t)),
Eq(Derivative(z(t), t), 4*z(t)),
Eq(Derivative(w(t), t), u(t) + 5*w(t)), Eq(Derivative(u(t), t), 5*u(t))]
sol8 = [Eq(x(t), (C1 + C2*t)*exp(2*t)), Eq(y(t), C2*exp(2*t)), Eq(z(t), C3*exp(4*t)),
Eq(w(t), (C4 + C5*t)*exp(5*t)),
Eq(u(t), C5*exp(5*t))]
assert dsolve(eq8) == sol8
assert checksysodesol(eq8, sol8) == (True, [0, 0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))]
sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #15407
# https://github.com/sympy/sympy/issues/15407
eq10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)), Eq(Derivative(y(t), t), a_b*y(t)), Eq(Derivative(z(t), t),
a_c*x(t))]
sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(t*(-a_b - a_c))/a_c),
Eq(y(t), C2*exp(a_b*t)),
Eq(z(t), C1*exp(t*(-a_b - a_c)) + C3)]
assert dsolve(eq10) == sol10
assert checksysodesol(eq10, sol10) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eq11 = (Eq(Derivative(x(t), t), k3*y(t)), Eq(Derivative(y(t), t), (-k2 - k3)*y(t)), Eq(Derivative(z(t), t), k2*y(t)))
sol11 = [Eq(x(t), C1 + C2*k3*exp(t*(-k2 - k3))/k2),
Eq(y(t), -C2*(k2 + k3)*exp(t*(-k2 - k3))/k2),
Eq(z(t), C2*exp(t*(-k2 - k3)) + C3)]
assert dsolve(eq11) == sol11
assert checksysodesol(eq11, sol11) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eq12 = (Eq(Derivative(z(t), t), k2*y(t)), Eq(Derivative(x(t), t), k3*y(t)), Eq(Derivative(y(t), t), (-k2 - k3)*y(t)))
sol12 = [Eq(z(t), C1 - C2*k2*exp(t*(-k2 - k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(t*(-k2 - k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(t*(-k2 - k3)))]
assert dsolve(eq12) == sol12
assert checksysodesol(eq12, sol12) == (True, [0, 0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eq13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)), Eq(Derivative(g(t), t), a*f(t))]
sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(t*(1 - sqrt(a + 1)))/(sqrt(a + 1) + 1)),
Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(t*(1 - sqrt(a + 1))))]
assert dsolve(eq13) == sol13
assert checksysodesol(eq13, sol13) == (True, [0, 0])
eq14 = [Eq(f(t).diff(t), 2*g(t) - 3*h(t)),
Eq(g(t).diff(t), 4*h(t) - 2*f(t)),
Eq(h(t).diff(t), 3*f(t) - 4*g(t))]
sol14 = [Eq(f(t), 2*C1 - 8*C2*cos(sqrt(29)*t)/25 + 8*C3*sin(sqrt(29)*t)/25 - 3*sqrt(29)*(C2*sin(sqrt(29)*t)
+ C3*cos(sqrt(29)*t))/25),
Eq(g(t), 3*C1/2 - 6*C2*cos(sqrt(29)*t)/25 + 6*C3*sin(sqrt(29)*t)/25
+ 4*sqrt(29)*(C2*sin(sqrt(29)*t) + C3*cos(sqrt(29)*t))/25),
Eq(h(t), C1 + C2*cos(sqrt(29)*t)
- C3*sin(sqrt(29)*t))]
assert dsolve(eq14) == sol14
assert checksysodesol(eq14, sol14) == (True, [0, 0, 0])
eq15 = [Eq(2*f(t).diff(t), 3*4*(g(t) - h(t))),
Eq(3*g(t).diff(t), 2*4*(h(t) - f(t))),
Eq(4*h(t).diff(t), 2*3*(f(t) - g(t)))]
sol15 = [Eq(f(t), C1 - 16*C2*cos(sqrt(29)*t)/13 + 16*C3*sin(sqrt(29)*t)/13 - 6*sqrt(29)*(
C2*sin(sqrt(29)*t) + C3*cos(sqrt(29)*t))/13),
Eq(g(t), C1 - 16*C2*cos(sqrt(29)*t)/13 + 16*C3*sin(sqrt(29)*t)/13 + 8*sqrt(29)*(C2*sin(sqrt(29)*t) +
C3*cos(sqrt(29)*t))/39),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eq15) == sol15
assert checksysodesol(eq15, sol15) == (True, [0, 0, 0])
eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)),
Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol16 = [Eq(x(t), 216*C1*exp(21*t)/209),
Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7),
Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0, 0, 0])
eq17 = (Eq(diff(x(t), t), 3*y(t) - 11*z(t)), Eq(diff(y(t), t), 7*z(t) - 3*x(t)), Eq(diff(z(t), t), 11*x(t) - 7*y(t)))
sol17 = [Eq(x(t), 7*C1/3 - 21*C2*cos(sqrt(179)*t)/170 + 21*C3*sin(sqrt(179)*t)/170 - 11*sqrt(179)*(
C2*sin(sqrt(179)*t) + C3*cos(sqrt(179)*t))/170),
Eq(y(t), 11*C1/3 - 33*C2*cos(sqrt(179)*t)/170 + 33*C3*sin(sqrt(179)*t)/170 + 7*sqrt(179)*(
C2*sin(sqrt(179)*t) + C3*cos(sqrt(179)*t))/170),
Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))]
assert dsolve(eq17) == sol17
assert checksysodesol(eq17, sol17) == (True, [0, 0, 0])
eq18 = (Eq(3*diff(x(t), t), 4*5*(y(t) - z(t))), Eq(4*diff(y(t), t), 3*5*(z(t) - x(t))),
Eq(5*diff(z(t), t), 3*4*(x(t) - y(t))))
sol18 = [Eq(x(t), C1 - C2*cos(5*sqrt(2)*t) + C3*sin(5*sqrt(2)*t) - 4*sqrt(2)*(C2*sin(5*sqrt(2)*t) + C3*cos(5*sqrt(2)*t))/3),
Eq(y(t), C1 - C2*cos(5*sqrt(2)*t) + C3*sin(5*sqrt(2)*t) + 3*sqrt(2)*(C2*sin(5*sqrt(2)*t) + C3*cos(5*sqrt(2)*t))/4),
Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))]
assert dsolve(eq18) == sol18
assert checksysodesol(eq18, sol18) == (True, [0, 0, 0])
eq19 = (Eq(diff(x(t), t), 4*x(t) - z(t)), Eq(diff(y(t), t), 2*x(t) + 2*y(t) - z(t)), Eq(diff(z(t), t), 3*x(t) + y(t)))
sol19 = [Eq(x(t), (C1 + C2*t**2/2 + 2*C2*t + C2 + C3*t + 2*C3)*exp(2*t)),
Eq(y(t), (C1 + C2*t**2/2 + 2*C2*t + C3*t + 2*C3)*exp(2*t)),
Eq(z(t), (2*C1 + C2*t**2 + 3*C2*t + 2*C3*t + 3*C3)*exp(2*t))]
assert dsolve(eq19) == sol19
assert checksysodesol(eq19, sol19) == (True, [0, 0, 0])
eq20 = (Eq(diff(x(t), t), 4*x(t) - y(t) - 2*z(t)), Eq(diff(y(t), t), 2*x(t) + y(t) - 2*z(t)),
Eq(diff(z(t), t), 5*x(t) - 3*z(t)))
sol20 = [Eq(x(t), C1*exp(2*t) - 3*C2*sin(t)/5 - C2*cos(t)/5 - C3*sin(t)/5 + 3*C3*cos(t)/5),
Eq(y(t), -3*C2*sin(t)/5 - C2*cos(t)/5 - C3*sin(t)/5 + 3*C3*cos(t)/5),
Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))]
assert dsolve(eq20) == sol20
assert checksysodesol(eq20, sol20) == (True, [0, 0, 0])
eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t)))
sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2),
Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21, sol21) == (True, [0, 0])
eq22 = (Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)), Eq(Derivative(y(t), t), 12*x(t) + 41*y(t)))
sol22 = [Eq(x(t), C1*(-Rational(13, 8) + sqrt(1713)/24)*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + C2*(
- sqrt(1713)/24 - Rational(13, 8))*exp(t*(Rational(43, 2) - sqrt(1713)/2))),
Eq(y(t), C1*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + C2*exp(t*(Rational(43, 2) - sqrt(1713)/2)))]
assert dsolve(eq22) == sol22
assert checksysodesol(eq22, sol22) == (True, [0, 0])
eq23 = (Eq(Derivative(x(t), t), x(t) + y(t)), Eq(Derivative(y(t), t), -2*x(t) + 2*y(t)))
sol23 = [
Eq(x(t), (C1*cos(sqrt(7)*t/2)/4 - C2*sin(sqrt(7)*t/2)/4 + sqrt(7)*(C1*sin(sqrt(7)*t/2) + C2*cos(
sqrt(7)*t/2))/4)*exp(3*t/2)),
Eq(y(t), (C1*cos(sqrt(7)*t/2) - C2*sin(sqrt(7)*t/2))*exp(3*t/2))
]
assert dsolve(eq23) == sol23
assert checksysodesol(eq23, sol23) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
a = Symbol("a", real=True)
eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)]
sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24, sol24) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eq25 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), 1/(c*b)*(-2*g(t) + x(t) + f(t))),
Eq(Derivative(x(t), t), 1/(c*b)*(-2*x(t) + g(t) + y(t))),
Eq(Derivative(y(t), t), 1/(c*b)*(-2*y(t) + x(t) + h(t))),
Eq(Derivative(h(t), t), 0)]
sol25 = [Eq(f(t), -3*C1 + 4*C2),
Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(t*(-2 - sqrt(2))/(b*c)) +
C5*exp(t*(-2 + sqrt(2))/(b*c))),
Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(t*(-2 - sqrt(2))/(b*c)) + sqrt(2)*C5*exp(t*(-2 + sqrt(2))/(b*c))),
Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(t*(-2 - sqrt(2))/(b*c)) + C5*exp(
t*(-2 + sqrt(2))/(b*c))),
Eq(h(t), C1)]
assert dsolve(eq25) == sol25
assert checksysodesol(eq25, sol25) == (True, [0, 0, 0, 0, 0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))]
sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26, sol26) == (True, [0, 0])
eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))]
assert dsolve(eq27) == sol27
assert checksysodesol(eq27, sol27) == (True, [0, 0])
eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))]
assert dsolve(eq28) == sol28
assert checksysodesol(eq28, sol28) == (True, [0, 0])
eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)]
sol29 = [Eq(f(t), C1), Eq(g(t), C2)]
assert dsolve(eq29) == sol29
assert checksysodesol(eq29, sol29) == (True, [0, 0])
eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)]
sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)]
assert dsolve(eq30) == sol30
assert checksysodesol(eq30, sol30) == (True, [0, 0])
eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)]
sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)]
assert dsolve(eq31) == sol31
assert checksysodesol(eq31, sol31) == (True, [0, 0])
eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))]
sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)]
assert dsolve(eq32) == sol32
assert checksysodesol(eq32, sol32) == (True, [0, 0])
eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))]
sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))]
assert dsolve(eq33) == sol33
assert checksysodesol(eq33, sol33) == (True, [0, 0])
eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))]
sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))]
assert dsolve(eq34) == sol34
assert checksysodesol(eq34, sol34) == (True, [0, 0])
eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))]
sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))]
assert dsolve(eq35) == sol35
assert checksysodesol(eq35, sol35) == (True, [0, 0])
eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)]
sol36 = [Eq(f(t), I*(C1 + C2*t)), Eq(g(t), C2)]
assert dsolve(eq36) == sol36
assert checksysodesol(eq36, sol36) == (True, [0, 0])
eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))]
sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eq37) == sol37
assert checksysodesol(eq37, sol37) == (True, [0, 0])
# Multiple systems
eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)]
sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)),
Eq(g(t), C1*cos(t) - C2*sin(t))],
[Eq(f(t), -C1*exp(-t) + C2*exp(t)),
Eq(g(t), C1*exp(-t) + C2*exp(t))]]
assert dsolve(eq1) == sol1
for sol in sol1:
assert checksysodesol(eq1, sol) == (True, [0, 0])
def test_sysode_linear_neq_order1_type2():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a, b, c, d, y = symbols('x t a b c d y')
eq1 = [Eq(diff(f(x), x), f(x) + g(x) + 5),
Eq(diff(g(x), x), -f(x) - g(x) + 7)]
sol1 = [Eq(f(x), C1 + C2*x + C2 + x*Integral(12, x) + Integral(12, x) + Integral(-12*x - 7, x)),
Eq(g(x), -C1 - C2*x - x*Integral(12, x) - Integral(-12*x - 7, x))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = [Eq(diff(f(x), x), f(x) + g(x) + 5),
Eq(diff(g(x), x), f(x) + g(x) + 7)]
sol2 = [Eq(f(x), -C1 + C2*exp(2*x) + exp(2*x)*Integral(6*exp(-2*x), x) - Integral(1, x)),
Eq(g(x), C1 + C2*exp(2*x) + exp(2*x)*Integral(6*exp(-2*x), x) + Integral(1, x))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = [Eq(diff(f(x), x), f(x) + 5), Eq(diff(g(x), x), f(x) + 7)]
sol3 = [Eq(f(x), C1*exp(x) + exp(x)*Integral(5*exp(-x), x)),
Eq(g(x), C1*exp(x) + C2 + exp(x)*Integral(5*exp(-x), x) + Integral(2, x))]
assert dsolve(eq3) == sol3
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = [Eq(diff(f(x), x), f(x) + exp(x)), Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))]
sol4 = [Eq(f(x), (C1 + Integral(1, x))*exp(x)), Eq(g(x), (C1*x + C2 + x*Integral(1, x) + Integral(0, x))*exp(x))]
assert dsolve(eq4) == sol4
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = [Eq(diff(f(x), x), f(x) + g(x) + 5*x), Eq(diff(g(x), x), f(x) - g(x))]
sol5 = [Eq(f(x), C1*exp(sqrt(2)*x) + sqrt(2)*C1*exp(sqrt(2)*x) + (-sqrt(2)*C2 + C2 - sqrt(2)*Integral(
-5*sqrt(2)*x*exp(sqrt(2)*x)/4, x) + Integral(-5*sqrt(2)*x*exp(sqrt(2)*x)/4, x))*exp(-sqrt(2)*x) +
exp(sqrt(2)*x)*Integral(5*sqrt(2)*x*exp(-sqrt(2)*x)/4, x) + sqrt(2)*exp(sqrt(2)*x)*Integral(
5*sqrt(2)*x*exp(-sqrt(2)*x)/4, x)),
Eq(g(x), C1*exp(sqrt(2)*x) + (C2 + Integral(-5*sqrt(2)*x*exp(sqrt(2)*x)/4, x))*exp(-sqrt(2)*x) + exp(
sqrt(2)*x)*Integral(5*sqrt(2)*x*exp(-sqrt(2)*x)/4, x))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*g(x)),
Eq(diff(h(x), x), h(x) + exp(x))]
sol6 = [Eq(f(x), (-4*C1/5 - 4*Integral(0, x)/5)*exp(-4*x) + (C2 + Integral(0, x))*exp(-9*x)),
Eq(g(x), (C1 + Integral(0, x))*exp(-4*x)), Eq(h(x), (C3 + Integral(1, x))*exp(x))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0, 0])
# Regression test case for issue #8859
# https://github.com/sympy/sympy/issues/8859
eq7 = [Eq(diff(f(t), t), f(t) + 3*t), Eq(diff(g(t), t), g(t))]
sol7 = [Eq(f(t), C1*exp(t) + exp(t)*Integral(3*t*exp(-t), t)), Eq(g(t), C2*exp(t) + exp(t)*Integral(0, t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0])
# Regression test case for issue #8567
# https://github.com/sympy/sympy/issues/8567
eq8 = [Eq(f(t).diff(t), f(t) + 2*g(t)), Eq(g(t).diff(t), -2*f(t) + g(t) + 2*exp(t))]
sol8 = [Eq(f(t), (C1*sin(2*t) + C2*cos(2*t) + sin(2*t)*Integral(-2*sin(2*t)**2/cos(2*t) + 2/cos(2*t), t) +
cos(2*t)*Integral(-2*sin(2*t), t))*exp(t)),
Eq(g(t), (C1*cos(2*t) - C2*sin(2*t) - sin(2*t)*Integral(-2*sin(2*t), t) +
cos(2*t)*Integral(-2*sin(2*t)**2/cos(2*t) + 2/cos(2*t), t))*exp(t))]
assert dsolve(eq8) == sol8
assert checksysodesol(eq8, sol8) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eq9 = [Eq(Derivative(f(t), t), 1/(a*b)*(-2*f(t) + g(t) + c)),
Eq(Derivative(g(t), t), 1/(a*b)*(-2*g(t) + f(t) + h(t))),
Eq(Derivative(h(t), t), 1/(a*b)*(-2*h(t) + g(t) + d))]
sol9 = [Eq(f(t), (-C1 + C2*exp(-sqrt(2)*t/(a*b)) + C3*exp(sqrt(2)*t/(a*b)) + exp(sqrt(2)*t/(a*b))*Integral(
c*exp(-sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) + d*exp(-sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b), t) - Integral(
-c*exp(2*t/(a*b))/(2*a*b) + d*exp(2*t/(a*b))/(2*a*b), t) + exp(-sqrt(2)*t/(a*b))*Integral(
c*exp(sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) + d*exp(sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b), t))*exp(
-2*t/(a*b))),
Eq(g(t), (-sqrt(2)*C2*exp(-sqrt(2)*t/(a*b)) + sqrt(2)*C3*exp(sqrt(2)*t/(a*b)) +
sqrt(2)*exp(sqrt(2)*t/(a*b))*Integral(c*exp(-sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) + d*exp(-sqrt(2)*t/(a*b) +
2*t/(a*b))/(4*a*b), t) - sqrt(2)*exp(-sqrt(2)*t/(a*b))*Integral(c*exp(sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) +
d*exp(sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b), t))*exp(-2*t/(a*b))),
Eq(h(t), (C1 + C2*exp(-sqrt(2)*t/(a*b)) +
C3*exp(sqrt(2)*t/(a*b)) + exp(sqrt(2)*t/(a*b))*Integral(c*exp(-sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) +
d*exp(-sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b), t) + Integral(-c*exp(2*t/(a*b))/(2*a*b) + d*exp(2*t/(a*b))/(
2*a*b), t) + exp(-sqrt(2)*t/(a*b))*Integral(c*exp(sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b) + d*exp(
sqrt(2)*t/(a*b) + 2*t/(a*b))/(4*a*b), t))*exp(-2*t/(a*b)))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
# Simpsol and Solsimp testing
# Note: To remove these dependencies
_x1 = sqrt(2)
_x2 = exp(2*_x1*t/(a*b))
_x3 = 4*C3*_x2*a*b
_x4 = exp(2*t/(a*b))
_x5 = exp(_x1*t/(a*b))
_x6 = Integral(_x4*_x5, t)
_x7 = exp(-2*t/(a*b))
_x8 = exp(-_x1*t/(a*b))
_x9 = Integral(_x4*_x8, t)
_x10 = _x2*_x9*d
_x11 = 4*C2*a*b
sol9_simpsol = [
Eq(f(t), _x7*_x8*(-4*C1*_x5*a*b + _x10 + _x11 + _x2*_x9*c + _x3 + 2*_x5*c*Integral(_x4,
t) - 2*_x5*d*Integral(
_x4, t) + _x6*c + _x6*d)/(4*a*b)),
Eq(g(t), _x7*_x8*(
-4*C2*_x1*a*b + 4*C3*_x1*_x2*a*b + _x1*_x2*_x9*c + _x1*_x2*_x9*d - _x1*_x6*c - _x1*_x6*d)/(
4*a*b)),
Eq(h(t), _x7*_x8*(4*C1*_x5*a*b + _x10 + _x11 + _x2*_x9*c + _x3 - 2*_x5*c*Integral(_x4,
t) + 2*_x5*d*Integral(
_x4, t) + _x6*c + _x6*d)/(4*a*b)),
]
assert [_simpsol(s) for s in sol9] == sol9_simpsol
_x1 = sqrt(2)
_x2 = 1/b
_x3 = exp(_x2*t*(2 - _x1)/a)
_x4 = exp(_x2*t*(_x1 + 2)/a)
_x5 = exp(-2*_x2*t/a)
_x6 = exp(2*_x2*t/a)
_x7 = Integral(-_x2*_x6*c/(2*a) + _x2*_x6*d/(2*a), t)
_x8 = exp(_x2*t*(_x1 - 2)/a)
_x9 = exp(-_x2*t*(_x1 + 2)/a)
_x10 = Integral(_x2*_x3*c/(4*a) + _x2*_x3*d/(4*a), t)
_x11 = Integral(_x2*_x4*c/(4*a) + _x2*_x4*d/(4*a), t)
sol9_solsimp = [
Eq(f(t), -C1*_x5 + C2*_x9 + C3*_x8 + _x10*_x8 + _x11*_x9 - _x5*_x7),
Eq(g(t), -C2*_x1*_x9 + C3*_x1*_x8 + _x1*_x10*_x8 - _x1*_x11*_x9),
Eq(h(t), C1*_x5 + C2*_x9 + C3*_x8 + _x10*_x8 + _x11*_x9 + _x5*_x7),
]
assert [Eq(s.lhs, _solsimp(s.rhs, t)) for s in sol9] == sol9_solsimp
# Regression test case for issue #16635
# https://github.com/sympy/sympy/issues/16635
eq10 = [Eq(f(t).diff(t), f(t) - g(t) + 15*t - 10), Eq(g(t).diff(t), f(t) - g(t) - 15*t - 5)]
sol10 = [Eq(f(t), C1 + C2*t + C2 + t*Integral(30*t - 5, t) + Integral(30*t - 5, t) + Integral(-30*t**2 - 10*t - 5, t)),
Eq(g(t), C1 + C2*t + t*Integral(30*t - 5, t) + Integral(-30*t**2 - 10*t - 5, t))]
assert dsolve(eq10) == sol10
assert checksysodesol(eq10, sol10) == (True, [0, 0])
# Multiple equations
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol1 = [[Eq(f(t), C1 + Integral(-1, t)),
Eq(g(t), C1*t*y + C2*y + t*y*Integral(-1, t) + y*Integral(t, t))],
[Eq(f(t), C1 + Integral(3, t)),
Eq(g(t), C1*t*y + C2*y + t*y*Integral(3, t) + y*Integral(-3*t, t))]]
assert dsolve(eq1) == sol1
for sol in sol1:
assert checksysodesol(eq1, sol) == (True, [0, 0])
# test case for issue #19831
# https://github.com/sympy/sympy/issues/19831
n = symbols('n', positive=True)
x0 = symbols('x_0')
t0 = symbols('t_0')
x_0 = symbols('x_0')
t_0 = symbols('t_0')
t = symbols('t')
x = Function('x')
y = Function('y')
T = symbols('T')
eq8 = (Eq(Derivative(y(t), t), x(t)),
Eq(Derivative(x(t), t), n*( y(t) + 1)))
sol = [
Eq(y(t),
(-((-T*sqrt(n)*exp(sqrt(n)*t_0)/2 - n*Integral(exp(sqrt(n)*t_0), t_0)/2 +
x_0*exp(sqrt(n)*t_0)/2)/sqrt(n) + Integral(n*exp(sqrt(n)*t)/2, t)/sqrt(n)))
*exp(-sqrt(n)*t) + (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 - n*Integral(exp(-sqrt(n)*t_0)
, t_0)/2 + x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t)/sqrt(n)
+ exp(sqrt(n)*t)*Integral(n*exp(-sqrt(n)*t)/2, t)/sqrt(n)
),
Eq(x(t),
(T*sqrt(n)*exp(-sqrt(n)*t_0)/2 - n*Integral(exp(-sqrt(n)*t_0), t_0)/2 +
x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t) + (-T*sqrt(n)*exp(sqrt(n)*t_0)/2 -
n*Integral(exp(sqrt(n)*t_0), t_0)/2 + x_0*exp(sqrt(n)*t_0)/2 +
Integral(n*exp(sqrt(n)*t)/2, t))*exp(-sqrt(n)*t)+ exp(sqrt(n)*t)
*Integral(n*exp(-sqrt(n)*t)/2, t)
),
]
assert dsolve(eq8, ics={y(t0): T, x(t0): x0}) == sol
assert checksysodesol(eq8, sol) == (True, [0, 0])
def test_sysode_linear_neq_order1_type3():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r)),
Eq(diff(g(r), r),-r*f(r) + g(r))]
sol1 = [Eq(f(r), (C1*sin(r**2/2) + C2*cos(r**2/2))*exp(r)), Eq(g(r), (C1*cos(r**2/2) - C2*sin(r**2/2))*exp(r))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(diff(f(x), x), x*f(x) + x**2*g(x)),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x))]
sol2 = [Eq(f(x), (3*C1/17 + 4*C2/17 + (8*C1 - 12*C2)/(51 + 17*sqrt(17)))*exp(x**2*(3*x + sqrt(17)*x + 3)/6) + (13*C1/51 +
2*C2/17 + (16*C1 - 24*C2)/(-663 + 153*sqrt(17)))*exp(x**2*(-sqrt(17)*x + 3*x + 3)/6)),
Eq(g(x), (4*C1/17 - 6*C2/17 + (12*C1 + 16*C2)/(-51 + 17*sqrt(17)))*exp(x**2*(3*x + sqrt(17)*x + 3)/6) + (
13*C1/17 + 6*C2/17 + (-12*C1 - 16*C2)/(-51 + 17*sqrt(17)))*exp(x**2*(-sqrt(17)*x + 3*x + 3)/6))]
assert [_simpsol(s) for s in dsolve(eqs2)] == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)), Eq(g(x).diff(x), -f(x) + x*g(x))]
sol3 = [Eq(f(x), (C1/2 - I*C2/2)*exp(x**2/2 + I*x) + (C1/2 + I*C2/2)*exp(x**2/2 - I*x)),
Eq(g(x), (-I*C1/2 + C2/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2)*exp(x**2/2 + I*x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))]
sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))]
sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))]
sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
y = symbols("y", real=True)
eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)), Eq(Derivative(g(y), y), y*g(y) - f(y))]
sol7 = [Eq(f(y), (C1*sin(y) + C2*cos(y))*exp(y**2/2)), Eq(g(y), (C1*cos(y) - C2*sin(y))*exp(y**2/2))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
def test_sysode_linear_neq_order1_type4():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) +
r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) -
r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))]
sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) +
exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(
r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) -
exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(
r**2/2), r))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
_x1 = exp(-3*x**2/2)
_x2 = exp(3*x**2/2)
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
_x4 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
sol3 = [
Eq(f(x),
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + 2*_x2*_x3/3 + _x2*_x4/3 + _x3/3 - _x4/3),
Eq(g(x),
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + 2*_x2*_x3/3 + _x2*_x4/3 + _x3/3 - _x4/3),
Eq(h(x),
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + 2*_x2*_x3/3 + _x2*_x4/3 - 2*_x3/3 + 2*_x4/3),
]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + sin(x)), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + sin(x))]
sol4 = [Eq(f(x), C1*exp(3*x**2/2)/3 - C1/3 + C2*exp(3*x**2/2)/3 - C2/3 + C3*exp(3*x**2/2)/3 + 2*C3/3 +
exp(3*x**2/2)*Integral(exp(-3*x**2/2)*sin(x), x)),
Eq(g(x), C1*exp(3*x**2/2)/3 + 2*C1/3 + C2*exp(3*x**2/2)/3 - C2/3 +
C3*exp(3*x**2/2)/3 - C3/3 + exp(3*x**2/2)*Integral(exp(-3*x**2/2)*sin(x), x)),
Eq(h(x), C1*exp(3*x**2/2)/3 - C1/3 + C2*exp(3*x**2/2)/3 + 2*C2/3 + C3*exp(3*x**2/2)/3 - C3/3 + exp(
3*x**2/2)*Integral(exp(-3*x**2/2)*sin(x), x))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(g(x), x), x*(f(x) + g(x)
+ h(x) + k(x) + 1)), Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(k(x),
x), x*(f(x) + g(x) + h(x) + k(x) + 1))]
sol5 = [Eq(f(x), C1*exp(2*x**2)/4 - C1/4 + C2*exp(2*x**2)/4 - C2/4 + C3*exp(2*x**2)/4 - C3/4 + C4*exp(2*x**2)/4 + 3*C4/4 +
exp(2*x**2)*Integral(x*exp(-2*x**2), x)),
Eq(g(x), C1*exp(2*x**2)/4 + 3*C1/4 + C2*exp(2*x**2)/4 - C2/4 +
C3*exp(2*x**2)/4 - C3/4 + C4*exp(2*x**2)/4 - C4/4 + exp(2*x**2)*Integral(x*exp(-2*x**2), x)),
Eq(h(x), C1*exp(2*x**2)/4 - C1/4 + C2*exp(2*x**2)/4 + 3*C2/4 + C3*exp(2*x**2)/4 - C3/4 + C4*exp(2*x**2)/4 - C4/4 +
exp(2*x**2)*Integral(x*exp(-2*x**2), x)),
Eq(k(x), C1*exp(2*x**2)/4 - C1/4 + C2*exp(2*x**2)/4 - C2/4 + C3*exp(2*x**2)/4
+ 3*C3/4 + C4*exp(2*x**2)/4 - C4/4 + exp(2*x**2)*Integral(x*exp(-2*x**2), x))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(g(x), x), x**2*(f(x) +
g(x) + h(x) + k(x) + 1)), Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))]
sol6 = [Eq(f(x), C1*exp(4*x**3/3)/4 - C1/4 + C2*exp(4*x**3/3)/4 - C2/4 + C3*exp(4*x**3/3)/4 - C3/4 + C4*exp(4*x**3/3)/4 +
3*C4/4 + exp(4*x**3/3)*Integral(x**2*exp(-4*x**3/3), x)),
Eq(g(x), C1*exp(4*x**3/3)/4 + 3*C1/4 + C2*exp(4*x**3/3)/4 - C2/4 + C3*exp(4*x**3/3)/4 - C3/4 + C4*exp(
4*x**3/3)/4 - C4/4 + exp(4*x**3/3)*Integral(x**2*exp(-4*x**3/3), x)),
Eq(h(x), C1*exp(4*x**3/3)/4 - C1/4 + C2*exp(4*x**3/3)/4 + 3*C2/4 + C3*exp(4*x**3/3)/4 - C3/4 + C4*exp(
4*x**3/3)/4 - C4/4 + exp(4*x**3/3)*Integral(x**2*exp(-4*x**3/3), x)),
Eq(k(x), C1*exp(4*x**3/3)/4 - C1/4 + C2*exp(4*x**3/3)/4 - C2/4 +
C3*exp(4*x**3/3)/4 + 3*C3/4 + C4*exp(4*x**3/3)/4 - C4/4 + exp(4*x**3/3)*Integral(x**2*exp(-4*x**3/3), x))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x)
+ h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))]
sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3 + Integral(exp(-3*x*log(x) + 3*x)*sin(x), x))*exp(3*x*log(x) -
3*x)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3 + Integral(exp(-3*x*log(x) + 3*x)*sin(x), x))*exp(3*x*log(x)
- 3*x)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3 + Integral(exp(-3*x*log(x) + 3*x)*sin(x),
x))*exp(3*x*log(x) - 3*x))]
with dotprodsimp(True):
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0])
eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x)
+ g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) +
sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))]
sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4 + Integral(exp(-4*x*log(x) + 4*x)*sin(x),
x))*exp(4*x*log(x) - 4*x)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4 + Integral(exp(-4*x*log(x)
+ 4*x)*sin(x), x))*exp(4*x*log(x) - 4*x)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4 +
Integral(exp(-4*x*log(x) + 4*x)*sin(x), x))*exp(4*x*log(x) - 4*x)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4
+ C3/4 + C4/4 + Integral(exp(-4*x*log(x) + 4*x)*sin(x), x))*exp(4*x*log(x) - 4*x))]
with dotprodsimp(True):
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0])
def test_sysode_linear_neq_order1_type5_type6():
f, g = symbols("f g", cls=Function)
x, x_ = symbols("x x_")
# Type 5
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)]
sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
# Type 6
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x), Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)]
ot = Rational(1, 2)
sol1 = [Eq(f(x), -C1*x + C2*x**3 + x**3*Integral(exp(-2*x_)/2 + exp(-3*x_)/2, (x_, log(x))) -
x*Integral(ot - exp(-x_)/2, (x_, log(x)))),
Eq(g(x), C1*x + C2*x**3 + x**3*Integral(exp(-2*x_)/2 + exp(-3*x_)/2, (x_, log(x))) + x*Integral(ot -
exp(-x_)/2, (x_, log(x))))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
def test_higher_order_to_first_order():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs1 = [Eq(f(x).diff(x, 2), 2*f(x) + g(x)), Eq(g(x).diff(x, 2), -f(x))]
sol1 = [Eq(f(x), C3*x*exp(x) + C3*exp(x) + C4*exp(x) + (-C1 - C2*x + C2)*exp(-x)),
Eq(g(x), -C3*x*exp(x) + C3*exp(x) - C4*exp(x) + (C1 + C2*x + C2)*exp(-x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))]
sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x, 2), 2*f(x)), Eq(g(x).diff(x, 2), -f(x) + 2*g(x))]
sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)),
Eq(g(x), C2*exp(sqrt(2)*x) + (C1 + sqrt(2)*(C1*x + C4))*exp(-sqrt(2)*x) - sqrt(2)*(C2*x*exp(sqrt(2)*x) +
C3*exp(sqrt(2)*x)))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(f(x).diff(x, 2), 2*f(x) + g(x)), Eq(g(x).diff(x, 2), + 2*g(x))]
sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 - sqrt(2)*C1*exp(sqrt(2)*x)/8 + C4*exp(sqrt(2)*x)/4 + (C2/4 + C3*x/4 +
sqrt(2)*C3/8)*exp(-sqrt(2)*x)),
Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 - sqrt(2)*C3*exp(-sqrt(2)*x)/2)]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))]
sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(f(x).diff(x, 2), f(x) + g(x)), Eq(g(x).diff(x, 2), -f(x) - g(x))]
sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C3*x + C4*x**3/6 + C4*x), Eq(g(x), -C1 - C2*x**2/2 - C3*x - C4*x**3/6)]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(f(x).diff(x, 2), f(x) + g(x) + 1), Eq(g(x).diff(x, 2), f(x) + g(x) + 1)]
sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 - x*Integral(0, x) + (-sqrt(2)*C4/2 -
sqrt(2)*Integral(exp(sqrt(2)*x)/2, x)/2)*exp(-sqrt(2)*x) + sqrt(2)*exp(sqrt(2)*x)*
Integral(exp(-sqrt(2)*x)/2, x)/2 - Integral(0, x)),
Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + x*Integral(0, x) + (-sqrt(2)*C4/2 - sqrt(2)*
Integral(exp(sqrt(2)*x)/2, x)/2)*exp(-sqrt(2)*x) + sqrt(2)*exp(sqrt(2)*x)*Integral(
exp(-sqrt(2)*x)/2, x)/2 + Integral(0, x))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(f(x).diff(x, 2), f(x) + g(x) + 1), Eq(g(x).diff(x, 2), -f(x) - g(x) + 1)]
sol8 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C3*x + C4*x**3/6 + C4*x + x**3*Integral(2, x)/6 +
x**2*Integral(-2*x, x)/2 + x*Integral(2, x) + x*Integral(x**2 - 1, x) + Integral(-2*x, x) +
Integral(-x**3/3 + x, x)),
Eq(g(x), -C1 - C2*x**2/2 - C3*x - C4*x**3/6 - x**3*Integral(2, x)/6 -
x**2*Integral(-2*x, x)/2 - x*Integral(x**2 - 1, x) - Integral(-x**3/3 + x, x))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) + g(x) - 2*exp(I*x),
g(x).diff(x, 2) + 2*g(x).diff(x) + f(x) + g(x) - 2*exp(I*x)]
sol9 = [Eq(f(x), -C1 + (C2/2 + Integral(0, x)/2)*exp(-2*x) + (C3*sin(x)/2 - C3*cos(x)/2 + C4*sin(x)/2 + C4*cos(x)/2 +
sin(x)*Integral(-2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)*cos(x), x)/2 + sin(x)*Integral(-2*exp(x)*
exp(I*x)*sin(x)**2/cos(x) + 2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)/cos(x), x)/2 + cos(x)*
Integral(-2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)*cos(x), x)/2 - cos(x)*Integral(-2*exp(x)*exp(I*x)*
sin(x)**2/cos(x) + 2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)/cos(x), x)/2)*exp(-x) - Integral(0, x)),
Eq(g(x), C1 + (-C2/2 - Integral(0, x)/2)*exp(-2*x) + (C3*sin(x)/2 - C3*cos(x)/2 + C4*sin(x)/2 + C4*cos(x)/2 +
sin(x)*Integral(-2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)*cos(x), x)/2 + sin(x)*Integral(-2*exp(x)*
exp(I*x)*sin(x)**2/cos(x) + 2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)/cos(x), x)/2 + cos(x)*
Integral(-2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)*cos(x), x)/2 - cos(x)*Integral(-2*exp(x)*exp(I*x)*
sin(x)**2/cos(x) + 2*exp(x)*exp(I*x)*sin(x) + 2*exp(x)*exp(I*x)/cos(x), x)/2)*exp(-x) + Integral(0, x))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
sol1 = [Eq(x(t), 43*C1*exp(-t*sqrt(7 - sqrt(47)))/((-2 + sqrt(47))*sqrt(7 - sqrt(47))) + 43*C2*exp(t*sqrt(7
- sqrt(47)))/((2 - sqrt(47))*sqrt(7 - sqrt(47))) - 43*C3*exp(-t*sqrt(sqrt(47) + 7))/((2 +
sqrt(47))*sqrt(sqrt(47) + 7)) + 43*C4*exp(t*sqrt(sqrt(47) + 7))/((2 + sqrt(47))*sqrt(sqrt(47) + 7))),
Eq(y(t), -C1*exp(-t*sqrt(7 - sqrt(47)))/sqrt(7 - sqrt(47)) + C2*exp(t*sqrt(7 - sqrt(47)))/sqrt(7 -
sqrt(47)) - C3*exp(-t*sqrt(sqrt(47) + 7))/sqrt(sqrt(47) + 7) + C4*exp(t*sqrt(sqrt(47) +
7))/sqrt(sqrt(47) + 7))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol2 = [Eq(y(t), (-Rational(9, 14) + sqrt(109)/14)*(-C1*sin(t*sqrt(9*sqrt(109)/2 + Rational(95, 2))) + C2*cos(t*sqrt(9*sqrt(109)/2 +
Rational(95, 2)))) + (-sqrt(109)/14 - Rational(9, 14))*(-C3*sin(t*sqrt(Rational(95, 2) - 9*sqrt(109)/2)) +
C4*cos(t*sqrt(Rational(95, 2) - 9*sqrt(109)/2)))),
Eq(x(t), sqrt(2)*(C1*cos(t*sqrt(9*sqrt(109)/2 + Rational(95, 2))) + C2*sin(t*sqrt(9*sqrt(109)/2 + Rational(95, 2))))/
sqrt(9*sqrt(109) + 95) + sqrt(2)*(C3*cos(t*sqrt(Rational(95, 2) - 9*sqrt(109)/2)) + C4*sin(t*sqrt(
Rational(95, 2) - 9*sqrt(109)/2)))/sqrt(95 - 9*sqrt(109)))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eqs4 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0), Eq(4*y(t) - 8*Derivative(x(t), t) +
Derivative(y(t), (t, 2)), 0)]
sol4 = [Eq(y(t), (1 - sqrt(5)/2)*(-C1*sin(2*t*sqrt(4*sqrt(5) + 9)) + C2*cos(2*t*sqrt(4*sqrt(5) + 9))) + (1
+ sqrt(5)/2)*(-C3*sin(2*t*sqrt(9 - 4*sqrt(5))) + C4*cos(2*t*sqrt(9 - 4*sqrt(5))))),
Eq(x(t), (C1*cos(2*t*sqrt(4*sqrt(5) + 9)) + C2*sin(2*t*sqrt(4*sqrt(5) + 9)))/(2*sqrt(4*sqrt(5) + 9)) +
(C3*cos(2*t*sqrt(9 - 4*sqrt(5))) + C4*sin(2*t*sqrt(9 - 4*sqrt(5))))/(2*sqrt(9 - 4*sqrt(5))))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
# Euler Systems
# Note: To add examples of euler systems solver with non-homogeneous term.
ot = Rational(1, 2)
eqs1 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2),
Eq(Derivative(g(t), (t, 2)), g(t)/t**2)]
sol1 = [Eq(f(t), C1*t**(ot - sqrt(5)/2)*(-3*ot - sqrt(5)/2) + C2*t**(ot + sqrt(5)/2)*(-3*ot + sqrt(5)/2) +
C3*t**(1 - sqrt(2))*(-sqrt(2) - 1) + C4*t**(1 + sqrt(2))*(-1 + sqrt(2))),
Eq(g(t), C1*t**(ot - sqrt(5)/2)*(-sqrt(5)/2 - ot) + C2*t**(ot +
sqrt(5)/2)*(-ot + sqrt(5)/2))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
# Solving systems using dsolve separately
eqs1 = [Eq(Derivative(f(t), (t, 2)), t*f(t)), Eq(Derivative(g(t), (t, 2)), t*g(t))]
sol1 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)), Eq(g(t), C3*airyai(t) + C4*airybi(t))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = (Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))),
Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t))))
sol2 = [Eq(x(t), C1 + Integral(4*C2*exp(5*t**2)/11 - 4*C2*exp(-6*t**2)/11 + 8*C3*exp(5*t**2)/11 +
3*C3*exp(-6*t**2)/11, t)),
Eq(y(t), C4 + Integral(3*C2*exp(5*t**2)/11 + 8*C2*exp(-6*t**2)/11 + 6*C3*exp(5*t**2)/11 -
6*C3*exp(-6*t**2)/11, t))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
def test_second_order_to_first_order():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
# Type 1
eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
sol1 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*sin(2*exp(x_)) + C3*exp(-x_)*cos(2*exp(x_)), (x_, log(x)))),
Eq(g(x), C4*x + x*Integral(C2*exp(-x_)*cos(2*exp(x_)) - C3*exp(-x_)*sin(2*exp(x_)), (x_, log(x))))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 -
I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))),
Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 +
C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t)))
sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 -
3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)*
exp(2*t_)/2)/2, (t_, log(t))))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)),
Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))]
sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 +
C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
# Regression Test case for sympy#19238
# https://github.com/sympy/sympy/issues/19238
# Note: When the doit method is removed, these particular types of systems
# can be divided first so that we have lesser number of big matrices.
eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m), Eq(Derivative(f(t), (t, 2)), 0)]
sol5 = [Eq(g(t), C1 + C2*t + t*Integral(a*m, t) + Integral(-a*m*t, t)),
Eq(f(t), C3 + C4*t + t*Integral(0, t) + Integral(0, t))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
# Type 2
eqs1 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4), Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)]
sol1 = [Eq(f(t), (C1*exp(-1/t) - C2*exp(1/t))*sqrt(t**2)),
Eq(g(t), (C3*exp(-sqrt(d)/t)/sqrt(d) - C4*exp(sqrt(d)/t)/sqrt(d))*sqrt(t**2))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
def test_component_division():
f, g, h, k = symbols('f g h k', cls=Function)
x = symbols("x")
funcs = [f(x), g(x), h(x), k(x)]
eqs1 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), h(x)**4 + k(x))]
sol1 = [Eq(f(x), 2*C1*exp(2*x)),
Eq(g(x), C1*exp(2*x) + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), (C4 + Integral(C3**4*exp(3*x), x))*exp(x))]
components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)),
((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))}
eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))})
graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}]
assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1
assert _eqs2dict(eqs1, funcs) == eqsdict1
assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
eqs2 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol2 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C2 + Integral(C1*exp(2*x), x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), (C4 + Integral(C1**4*exp(7*x), x))*exp(x))]
components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),)])}
eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2
assert _eqs2dict(eqs2, funcs) == eqsdict2
assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0])
eqs3 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x) + x),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol3 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C2 + Integral(C1*exp(2*x) + x, x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), (C4 + Integral(C1**4*exp(7*x), x))*exp(x))]
components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), x + f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),),])}
eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3
assert _eqs2dict(eqs3, funcs) == eqsdict3
assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0])
# Note: To be uncommented when the default option to call dsolve first for
# single ODE system can be rearranged. This can be done after the doit
# option in dsolve is made False by default.
eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), f(x) + x*g(x) + x),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2
- sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2
- sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\
sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 +
x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 -
sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 -
sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +
sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))]
components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + x + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4
assert _eqs2dict(eqs4, funcs) == eqsdict4
assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))]
components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5
assert _eqs2dict(eqs5, funcs) == eqsdict5
assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
def test_linodesolve():
t, x, a = symbols("t x a")
f, g, h = symbols("f g h", cls=Function)
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t))
raises(ValueError, lambda: linodesolve(a, t))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))*
exp(t*(-sqrt(5)/2 - Rational(1, 2))),
C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7, t, b=t**2))
raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t)))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
b1 = Matrix([t, 1, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
b2 = Matrix([t, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1]))
# DOIT check
A1 = Matrix([[1, -1], [1, -1]])
b1 = Matrix([15*t - 10, -15*t - 5])
sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t,
C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t]
assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True),
variables=[t]) == sol1
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 +
sqrt(5)*t/2)*Integral(sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/5, t)/2 + sqrt(5)*exp(-t/2 +
sqrt(5)*t/2)*Integral(sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/5, t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 -
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 -
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) +
C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 + sqrt(5)*t/2)*Integral(sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/5,
t) + exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)]
assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol
# non-homogeneous term assumed to be 0
sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 +
sqrt(5)*exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2
- exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2)
+ exp(-t/2 + sqrt(5)*t/2)*Integral(0, t) + exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)]
assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t))
raises(ValueError, lambda: linodesolve(a*t, t))
A1 = Matrix([[1, t], [-t, 1]])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1))
raises(ValueError, lambda: linodesolve(A1, t, B=1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :]))
raises(ValueError, lambda: linodesolve(A2, t, B=2))
raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31"))
raises(ValueError, lambda: linodesolve(A1, t, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, B=B1))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t),
(-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t))
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7*t, t, b=t**2))
raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t)))
A1 = Matrix([[1, t], [-t, 1]])
b1 = Matrix([t, t ** 2])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
b2 = Matrix([t, 1, t**2])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2))
raises(ValueError, lambda: linodesolve(A1, t, b=b2))
raises(ValueError, lambda: linodesolve(A2, t, b=b1))
raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1))
# Testing auto functionality
func = [f(x), g(x), h(x)]
eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
ceq = canonical_odes(eq, func, x)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1)
A = A0
_x1 = exp(-3*x**2/2)
_x2 = exp(3*x**2/2)
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
_x4 = 2*_x2*_x3/3
_x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
sol = [
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3,
]
assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, x, b=b, type="type4"),
variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1))
# non-homogeneous term not passed
sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2),
-C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)]
assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1
@slow
def test_linear_3eq_order1_type4_slow():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)),
Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y(
t) + (-3 * f + g) * z(t)))
with dotprodsimp(True):
dsolve(eq1)
@slow
def test_linear_neq_order1_type2_slow1():
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
eq = [eq1, eq2]
_x1 = sqrt(
c1**2*r1**2 + 2*c1**2*r1*r2 + c1**2*r2**2 - 2*c1*c2*r1*r2 + 2*c1*c2*r2**2 + c2**2*r2**2)
_x2 = -_x1*t/(2*c1*c2*r1*r2)
_x3 = 1/(_x1 - c1*r1 - c1*r2 + c2*r2)
_x4 = 1/(_x1 + c1*r1 + c1*r2 - c2*r2)
_x5 = 1/(2*_x3*c1*c2*r2 + 2*_x4*c1*c2*r2)
_x6 = Integral(_x5*i*exp(_x2 + t/(2*c2*r2) + t/(2*c2*r1) + t/(2*c1*r1)), t)
_x7 = Integral(
-_x5*i*exp(_x1*t/(2*c1*c2*r1*r2) + t/(2*c2*r2) + t/(2*c2*r1) + t/(2*c1*r1)),
t)
_x8 = exp(_x1*t/(2*c1*c2*r1*r2) - t/(2*c2*r2) - t/(2*c2*r1) - t/(2*c1*r1))
_x9 = exp(_x2 - t/(2*c2*r2) - t/(2*c2*r1) - t/(2*c1*r1))
sol = [
Eq(x1(t),
2*C1*_x3*_x8*c2*r2 - 2*C2*_x4*_x9*c2*r2 + 2*_x3*_x6*_x8*c2*r2 - 2*_x4*_x7*_x9*c2*r2),
Eq(x2(t), C1*_x8 + C2*_x9 + _x6*_x8 + _x7*_x9),
]
assert dsolve(eq) == sol
assert checksysodesol(eq, sol) == (True, [0, 0])
def _de_lorentz_solution():
m = Symbol("m", real=True)
q = Symbol("q", real=True)
t = Symbol("t", real=True)
e1, e2, e3 = symbols("e1:4", real=True)
b1, b2, b3 = symbols("b1:4", real=True)
v1, v2, v3 = symbols("v1:4", cls=Function, real=True)
eqs = [
-e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)),
-e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)),
-e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t))
]
# The code for the solution here is made using
# printsol from https://github.com/sympy/sympy/issues/19574
_x1 = 1/m
_x2 = b1**2
_x3 = b2**2
_x4 = b3**2
_x5 = sqrt(-_x2 - _x3 - _x4)
_x6 = exp(2*_x1*_x5*q*t)
_x7 = exp(_x1*_x5*q*t)
_x8 = 1/(-_x2*_x7*b3 - _x3*_x7*b3)
_x9 = sqrt(_x2 + _x3 + _x4)
_x10 = 1/(_x2*m + _x3*m + _x4*m)
_x11 = Integral(_x10*_x4*e3*q + _x10*b1*b3*e1*q + _x10*b2*b3*e2*q, t)
_x12 = b1**3
_x13 = b2**3
_x14 = 1/(-2*I*_x2*_x7*_x9*m - 2*I*_x3*_x7*_x9*m - 2*I*_x4*_x7*_x9*m)
_x15 = Integral(
_x12*_x14*e2*q - _x13*_x14*e1*q - I*_x14*_x2*_x9*e3*q - _x14*_x2*b2*e1*q - I*_x14*_x3*_x9*e3*q + _x14*_x3*b1*e2*q + _x14*_x4*b1*e2*q - _x14*_x4*b2*e1*q + I*_x14*_x9*b1*b3*e1*q + I*_x14*_x9*b2*b3*e2*q,
t)
_x16 = 1/(
-2*_x12*b3*m - 2*I*_x13*_x9*m - 2*I*_x2*_x9*b2*m - 2*_x3*b1*b3*m - 2*I*_x4*_x9*b2*m - 2*b1*b3**3*m)
_x17 = Integral(
-_x12*_x16*_x7*b2*e2*q - _x12*_x16*_x7*b3*e3*q - I*_x13*_x16*_x7*_x9*e3*q - _x13*_x16*_x7*b1*e2*q + _x16*_x2*_x3*_x7*e1*q + _x16*_x2*_x4*_x7*e1*q - I*_x16*_x2*_x7*_x9*b2*e3*q + I*_x16*_x2*_x7*_x9*b3*e2*q + _x16*_x3*_x4*_x7*e1*q + I*_x16*_x3*_x7*_x9*b3*e2*q - _x16*_x3*_x7*b1*b3*e3*q + _x16*_x7*b2**4*e1*q,
t)
_x18 = 1/(_x2*_x7*b3 + _x3*_x7*b3)
sol = [
Eq(v1(t),
-C1*_x18*_x4*b1 - I*C1*_x18*_x9*b2*b3 + C2*_x12*_x18*_x7 + C2*_x18*_x3*_x7*b1 - C3*_x18*_x4*_x6*b1 + I*C3*_x18*_x6*_x9*b2*b3 + _x11*_x12*_x18*_x7 + _x11*_x18*_x3*_x7*b1 - _x15*_x18*_x4*_x6*b1 + I*_x15*_x18*_x6*_x9*b2*b3 - _x17*_x18*_x4*b1 - I*_x17*_x18*_x9*b2*b3),
Eq(v2(t),
C1*_x4*_x8*b2 - I*C1*_x8*_x9*b1*b3 - C2*_x13*_x7*_x8 - C2*_x2*_x7*_x8*b2 + C3*_x4*_x6*_x8*b2 + I*C3*_x6*_x8*_x9*b1*b3 - _x11*_x13*_x7*_x8 - _x11*_x2*_x7*_x8*b2 + _x15*_x4*_x6*_x8*b2 + I*_x15*_x6*_x8*_x9*b1*b3 + _x17*_x4*_x8*b2 - I*_x17*_x8*_x9*b1*b3),
Eq(v3(t), C2 + C3*_x7 + _x11 + _x15*_x7 + (C1 + _x17)*exp(-_x1*_x5*q*t)),
]
return eqs, sol
# Regression test case for issue #9204
# https://github.com/sympy/sympy/issues/9204
# A very big solution is obtained for this
# test case. To be simplified in future.
@slow
def test_linear_new_order1_type2_de_lorentz():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs, sol = _de_lorentz_solution()
with dotprodsimp(True):
assert dsolve(eqs) == sol
@slow
def test_linear_new_order1_type2_de_lorentz_slow_check():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs, sol = _de_lorentz_solution()
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def _neq_order1_type2_slow():
RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0")
V = Function("V")
I = Function("I")
system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)]
z1 = sqrt(C**2*L**2 - 2*C**2*L*R1*RC + C**2*R1**2*RC**2 - 4*C*L*RC**2)
z2 = 1/(C*L - C*R1*RC - z1)
z3 = 1/(C*L - C*R1*RC + z1)
z4 = exp(-t/(2*RC) - R1*t/(2*L) + t*z1/(2*C*L*RC))
z5 = exp(-t/(2*RC) - R1*t/(2*L) - t*z1/(2*C*L*RC))
z6 = Integral(2*RC*Vs*exp(t/(2*RC) + R1*t/(2*L) +
t*z1/(2*C*L*RC))/(-2*C*L**2*RC*z2 + 2*C*L**2*RC*z3 + 2*C*L*R1*RC**2*z2
- 2*C*L*R1*RC**2*z3 - 2*L*RC*z1*z2 + 2*L*RC*z1*z3), t)
z7 = Integral(-2*RC*Vs*exp(t/(2*RC) + R1*t/(2*L) -
t*z1/(2*C*L*RC))/(-2*C*L**2*RC*z2 + 2*C*L**2*RC*z3 + 2*C*L*R1*RC**2*z2
- 2*C*L*R1*RC**2*z3 + 2*L*RC*z1*z2 - 2*L*RC*z1*z3), t)
sol = [
Eq(V(t), 2*C1*L*RC*z2*z5 + 2*C2*L*RC*z3*z4 + 2*L*RC*z2*z5*z6 + 2*L*RC*z3*z4*z7),
Eq(I(t), C1*z5 + C2*z4 + z4*z7 + z5*z6),
]
return system, sol
# A very big solution is obtained for this
# test case. To be simplified in future.
def test_linear_neq_order1_type2_slow():
system, sol = _neq_order1_type2_slow()
assert dsolve(system) == sol
# Regression test case for issue #14001
# https://github.com/sympy/sympy/issues/14001
@slow
def test_linear_neq_order1_type2_slow_check():
if ON_TRAVIS:
skip("Too slow for travis.")
system, sol = _neq_order1_type2_slow()
assert checksysodesol(system, sol) == (True, [0, 0])
def _linear_3eq_order1_type4_long():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)),
Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y(
t) + (-3*f + g)*z(t)))
dsolve_sol = dsolve(eq1)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16)
x_2 = sqrt(3)
x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2
x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652)
x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t))
x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t))
x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t))
x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2
x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196)
x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4
x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4
sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*(
-424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 -
167*C3/257 + x_8*x_9) + x_7*(C1 - C2))]
assert dsolve_sol1 == sol
assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0])
def _neq_order1_type4_slow1():
f, g = symbols("f, g", cls=Function)
x = Symbol("x")
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)]
_x1 = sqrt(17)
_x2 = 1/(45*_x1 + 187)
_x3 = 1/(161*_x1 + 663)
_x4 = 1/(51*_x1 - 221)
_x5 = 1/(161*_x1 - 663)
_x6 = -x**3/2
_x7 = _x1*x**3/6
_x8 = exp(_x6 + _x7 - x**2/2)
_x9 = -_x1*x**3/6
_x10 = exp(_x6 + _x9 - x**2/2)
_x11 = Integral(
22*_x1*_x10*_x3*x + 39*_x1*_x10*_x3 + 139*_x1*_x3*_x8*x - 39*_x1*_x3*_x8 + 90*_x10*_x3*x + 161*_x10*_x3 + 573*_x3*_x8*x - 161*_x3*_x8,
x)
_x12 = exp(_x9 + x**3/2 + x**2/2)
_x13 = exp(_x7 + x**3/2 + x**2/2)
_x14 = Integral(
22*_x1*_x10*_x2*x + 39*_x1*_x10*_x2 - 22*_x1*_x2*_x8*x + 6*_x1*_x2*_x8 + 90*_x10*_x2*x + 161*_x10*_x2 - 90*_x2*_x8*x + 26*_x2*_x8,
x)
sol = [
Eq(f(x), _x12*(
39*C1*_x1*_x5 - 161*C1*_x5 + 22*C2*_x1*_x5 - 90*C2*_x5 + 22*_x1*_x11*_x5 + 39*_x1*_x14*_x5 - 90*_x11*_x5 - 161*_x14*_x5) + _x13*(
-39*C1*_x1*_x5 + 161*C1*_x5 + 139*C2*_x1*_x5 - 573*C2*_x5 + 139*_x1*_x11*_x5 - 39*_x1*_x14*_x5 - 573*_x11*_x5 + 161*_x14*_x5)),
Eq(g(x), _x12*(
45*C1*_x1*_x4 - 187*C1*_x4 + 26*C2*_x1*_x4 - 102*C2*_x4 + 26*_x1*_x11*_x4 + 45*_x1*_x14*_x4 - 102*_x11*_x4 - 187*_x14*_x4) + _x13*(
6*C1*_x1*_x4 - 34*C1*_x4 - 26*C2*_x1*_x4 + 102*C2*_x4 - 26*_x1*_x11*_x4 + 6*_x1*_x14*_x4 + 102*_x11*_x4 - 34*_x14*_x4)),
]
return eqs, sol
def test_neq_order1_type4_slow1():
eqs, sol = _neq_order1_type4_slow1()
with dotprodsimp(True):
assert dsolve(eqs) == sol
@slow
def test_neq_order1_type4_slow_check1():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs, sol = _neq_order1_type4_slow1()
assert checksysodesol(eqs, sol) == (True, [0, 0])
def _neq_order1_type4_slow2():
f, g, h = symbols("f, g, h", cls=Function)
x = Symbol("x")
eqs = [Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1), Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) +
10), Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x))]
_x1 = -x**2/2
_x2 = Integral(x*exp(_x1 - 2*x)/3 - x*exp(_x1 + x)/3 + 11*exp(_x1 - 2*x)/3 + 19*exp(_x1 + x)/3,
x)
_x3 = Integral(x*exp(_x1 - 2*x)/3 + x*exp(_x1 + x)/6 - x*exp(x**2/2 - x)/2 + 11*exp(
_x1 - 2*x)/3 - 19*exp(_x1 + x)/6 + exp(x**2/2 - x)/2, x)
_x4 = Integral(x*exp(_x1 - 2*x)/3 + x*exp(_x1 + x)/6 + x*exp(x**2/2 - x)/2 + 11*exp(
_x1 - 2*x)/3 - 19*exp(_x1 + x)/6 - exp(x**2/2 - x)/2, x)
_x5 = (C1/3 + C2/3 + C3/3 + _x2/3 + _x3/3 + _x4/3)*exp(x**2/2 + 2*x)
sol = [
Eq(f(x), _x5 + (-C1/2 + C2/2 + _x3/2 - _x4/2)*exp(_x1 + x) + (
C1/6 + C2/6 - C3/3 - _x2/3 + _x3/6 + _x4/6)*exp(x**2/2 - x)),
Eq(g(x), _x5 + (-C1/3 - C2/3 + 2*C3/3 + 2*_x2/3 - _x3/3 - _x4/3)*exp(x**2/2 - x)),
Eq(h(x), _x5 + (C1/2 - C2/2 - _x3/2 + _x4/2)*exp(_x1 + x) + (
C1/6 + C2/6 - C3/3 - _x2/3 + _x3/6 + _x4/6)*exp(x**2/2 - x)),
]
return eqs, sol
def test_neq_order1_type4_slow2():
eqs, sol = _neq_order1_type4_slow2()
with dotprodsimp(True):
assert dsolve(eqs) == sol
@slow
def test_neq_order1_type4_slow_check2():
eqs, sol = _neq_order1_type4_slow2()
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def _neq_order1_type4_slow3():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)), Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x))]
_x1 = exp(x**2/2 + I*x)
_x2 = exp(-x**2/2 + I*x)
_x3 = exp(-x**2/2 - I*x)
_x4 = Integral(_x2*x**2/2 - I*_x2*sin(x)/2 + _x3*x**2/2 + I*_x3*sin(x)/2, x)
_x5 = Integral(I*_x2*x**2/2 + _x2*sin(x)/2 - I*_x3*x**2/2 + _x3*sin(x)/2, x)
sol = [
Eq(f(x),
_x1*(C1/2 - I*C2/2 - I*_x4/2 + _x5/2) + (C1/2 + I*C2/2 + I*_x4/2 + _x5/2)*exp(
x**2/2 - I*x)),
Eq(g(x),
_x1*(I*C1/2 + C2/2 + _x4/2 + I*_x5/2) + (-I*C1/2 + C2/2 + _x4/2 - I*_x5/2)*exp(
x**2/2 - I*x)),
]
return eqs, sol
def test_neq_order1_type4_slow3():
eqs, sol = _neq_order1_type4_slow3()
assert dsolve(eqs) == sol
@slow
def test_neq_order1_type4_slow_check3():
eqs, sol = _neq_order1_type4_slow3()
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
@slow
def test_linear_3eq_order1_type4_long_dsolve_slow_xfail():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
# XXX: Only works with dotprodsimp see
# test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow
with dotprodsimp(True):
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_check():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
def test_dsolve_system():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
funcs = [f(x), g(x)]
sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]]
assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol
raises(ValueError, lambda: dsolve_system(1))
raises(ValueError, lambda: dsolve_system(eqs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x))
eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x)))
raises(NotImplementedError, lambda: dsolve_system(eq) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], []))
def test_dsolve():
f, g = symbols('f g', cls=Function)
x, y = symbols('x y')
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs)
def _higher_order_slow1():
x, y = symbols("x y", cls=Function)
t = symbols("t")
eq = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \
(log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t)))
_x1 = log(t)**2
_x2 = sqrt(22)
_x3 = sqrt(9*_x1 + t**4 + 6*t**2*log(t) - 6*t**2 - 18*log(t) + 9)
_x4 = 1/(-_x2*_x3*t/3 - 4*t**3/3 - 4*t*log(t) + 4*t)
_x5 = 1/(_x2*_x3*t/3 - 4*t**3/3 - 4*t*log(t) + 4*t)
_x6 = 1/(-_x4*t**3 - 3*_x4*t*log(t) + 3*_x4*t + _x5*t**3 + 3*_x5*t*log(t) - 3*_x5*t)
_x7 = exp(-_x2*_x3*t/3 + 5*t**3/3 + 5*t*log(t) - 5*t)
_x8 = exp(_x2*_x3*t/3 + 5*t**3/3 + 5*t*log(t) - 5*t)
_x9 = 1/(18*_x1*_x4*t**5 - 54*_x1*_x4*t**3 - 18*_x1*_x5*t**5 + 54*_x1*_x5*t**3 + 2*_x4*t**9/3 + 6*_x4*t**7*log(t) -
6*_x4*t**7 - 36*_x4*t**5*log(t) + 18*_x4*t**5 + 18*_x4*t**3*log(t)**3 + 54*_x4*t**3*log(t) - 18*_x4*t**3 -
2*_x5*t**9/3 - 6*_x5*t**7*log(t) + 6*_x5*t**7 + 36*_x5*t**5*log(t) - 18*_x5*t**5 - 18*_x5*t**3*log(t)**3 -
54*_x5*t**3*log(t) + 18*_x5*t**3)
_x10 = -12*_x1*_x5*t**2
_x11 = 24*_x5*t**2*log(t)
_x12 = 8*_x4*t**4*log(t)
_x13 = -24*_x4*t**2*log(t)
_x14 = -8*_x5*t**4*log(t)
_x15 = 1/(12*_x1*_x4*t**2 + _x10 + _x11 + _x12 + _x13 + _x14 + _x2*_x3*_x4*t**4/3 + _x2*_x3*_x4*t**2*log(t) -
_x2*_x3*_x4*t**2 - _x2*_x3*_x5*t**4/3 - _x2*_x3*_x5*t**2*log(t) + _x2*_x3*_x5*t**2 + 4*_x4*t**6/3 -
8*_x4*t**4 + 12*_x4*t**2 - 4*_x5*t**6/3 + 8*_x5*t**4 - 12*_x5*t**2)
_x16 = 1/(12*_x1*_x4*t**2 + _x10 + _x11 + _x12 + _x13 + _x14 - _x2*_x3*_x4*t**4/3 - _x2*_x3*_x4*t**2*log(t) +
_x2*_x3*_x4*t**2 + _x2*_x3*_x5*t**4/3 + _x2*_x3*_x5*t**2*log(t) - _x2*_x3*_x5*t**2 + 4*_x4*t**6/3 -
8*_x4*t**4 + 12*_x4*t**2 - 4*_x5*t**6/3 + 8*_x5*t**4 - 12*_x5*t**2)
_x17 = (t**3 + 3*t*log(t) - 3*t)**2
sol = [
Eq(x(t), C1 + Integral(-C2*_x15*_x8*t**3 - 3*C2*_x15*_x8*t*log(t) + 3*C2*_x15*_x8*t + C2*_x16*_x7*t**3 +
3*C2*_x16*_x7*t*log(t) - 3*C2*_x16*_x7*t + C3*_x17*_x7*_x9 - C3*_x17*_x8*_x9, t)),
Eq(y(t), C4 + Integral(-C2*_x6*_x7 + C2*_x6*_x8 - C3*_x15*_x7*t**3 - 3*C3*_x15*_x7*t*log(t) + 3*C3*_x15*_x7*t +
C3*_x16*_x8*t**3 + 3*C3*_x16*_x8*t*log(t) - 3*C3*_x16*_x8*t, t)),
]
return eq, sol
@slow
def test_higher_order_slow1():
eq, sol = _higher_order_slow1()
assert dsolve(eq) == sol
@slow
def test_higher_order1_slow1_check():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _higher_order_slow1()
assert checksysodesol(eq, sol) == (True, [0, 0])
@slow
def test_second_order_type2_slow1():
x, y, z = symbols('x, y, z', cls=Function)
t, l = symbols('t, l')
ot = Rational(1, 3)
eqs = (Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))), Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t))))
sol = [Eq(x(t), I*(C1*airyai(t*(2 - I)**(ot)) + C2*airybi(t*(2 - I)**(ot))) - I*(C3*airyai(t*(2 +
I)**(ot)) + C4*airybi(t*(2 + I)**(ot)))),
Eq(y(t), C1*airyai(t*(2 - I)**(ot)) + C3*airyai(t*(2 + I)**(ot)) + C2*airybi(t*(2 - I)**(ot)) +
C4*airybi(t*(2 + I)**(ot)))]
# Note: dsolve call in dsolve_system makes solving this system slow.
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
|
227588e1bf9d341110fa063b8ea7d66343e3856644ad78387067b32d7c55c686 | from itertools import product
from sympy import S, symbols, Function, exp, diff, Rational
from sympy.calculus.finite_diff import (
apply_finite_diff, differentiate_finite, finite_diff_weights,
as_finite_diff
)
from sympy.testing.pytest import raises, warns_deprecated_sympy, ignore_warnings
from sympy.utilities.exceptions import SymPyDeprecationWarning
def test_apply_finite_diff():
x, h = symbols('x h')
f = Function('f')
assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
(f(x+h)-f(x-h))/(2*h)).simplify() == 0
assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
(Rational(-3, 2)*f(5) + 2*f(6) - S.Half*f(7))).simplify() == 0
raises(ValueError, lambda: apply_finite_diff(1, [x, h], [f(x)]))
def test_finite_diff_weights():
d = finite_diff_weights(1, [5, 6, 7], 5)
assert d[1][2] == [Rational(-3, 2), 2, Rational(-1, 2)]
# Table 1, p. 702 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [0, 1, -1, 2, -2, 3, -3, 4, -4]
# d holds all coefficients
d = finite_diff_weights(4, xl, S.Zero)
# Zeroeth derivative
for i in range(5):
assert d[0][i] == [S.One] + [S.Zero]*8
# First derivative
assert d[1][0] == [S.Zero]*9
assert d[1][2] == [S.Zero, S.Half, Rational(-1, 2)] + [S.Zero]*6
assert d[1][4] == [S.Zero, Rational(2, 3), Rational(-2, 3), Rational(-1, 12), Rational(1, 12)] + [S.Zero]*4
assert d[1][6] == [S.Zero, Rational(3, 4), Rational(-3, 4), Rational(-3, 20), Rational(3, 20),
Rational(1, 60), Rational(-1, 60)] + [S.Zero]*2
assert d[1][8] == [S.Zero, Rational(4, 5), Rational(-4, 5), Rational(-1, 5), Rational(1, 5),
Rational(4, 105), Rational(-4, 105), Rational(-1, 280), Rational(1, 280)]
# Second derivative
for i in range(2):
assert d[2][i] == [S.Zero]*9
assert d[2][2] == [-S(2), S.One, S.One] + [S.Zero]*6
assert d[2][4] == [Rational(-5, 2), Rational(4, 3), Rational(4, 3), Rational(-1, 12), Rational(-1, 12)] + [S.Zero]*4
assert d[2][6] == [Rational(-49, 18), Rational(3, 2), Rational(3, 2), Rational(-3, 20), Rational(-3, 20),
Rational(1, 90), Rational(1, 90)] + [S.Zero]*2
assert d[2][8] == [Rational(-205, 72), Rational(8, 5), Rational(8, 5), Rational(-1, 5), Rational(-1, 5),
Rational(8, 315), Rational(8, 315), Rational(-1, 560), Rational(-1, 560)]
# Third derivative
for i in range(3):
assert d[3][i] == [S.Zero]*9
assert d[3][4] == [S.Zero, -S.One, S.One, S.Half, Rational(-1, 2)] + [S.Zero]*4
assert d[3][6] == [S.Zero, Rational(-13, 8), Rational(13, 8), S.One, -S.One,
Rational(-1, 8), Rational(1, 8)] + [S.Zero]*2
assert d[3][8] == [S.Zero, Rational(-61, 30), Rational(61, 30), Rational(169, 120), Rational(-169, 120),
Rational(-3, 10), Rational(3, 10), Rational(7, 240), Rational(-7, 240)]
# Fourth derivative
for i in range(4):
assert d[4][i] == [S.Zero]*9
assert d[4][4] == [S(6), -S(4), -S(4), S.One, S.One] + [S.Zero]*4
assert d[4][6] == [Rational(28, 3), Rational(-13, 2), Rational(-13, 2), S(2), S(2),
Rational(-1, 6), Rational(-1, 6)] + [S.Zero]*2
assert d[4][8] == [Rational(91, 8), Rational(-122, 15), Rational(-122, 15), Rational(169, 60), Rational(169, 60),
Rational(-2, 5), Rational(-2, 5), Rational(7, 240), Rational(7, 240)]
# Table 2, p. 703 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [[j/S(2) for j in list(range(-i*2+1, 0, 2))+list(range(1, i*2+1, 2))]
for i in range(1, 5)]
# d holds all coefficients
d = [finite_diff_weights({0: 1, 1: 2, 2: 4, 3: 4}[i], xl[i], 0) for
i in range(4)]
# Zeroth derivative
assert d[0][0][1] == [S.Half, S.Half]
assert d[1][0][3] == [Rational(-1, 16), Rational(9, 16), Rational(9, 16), Rational(-1, 16)]
assert d[2][0][5] == [Rational(3, 256), Rational(-25, 256), Rational(75, 128), Rational(75, 128),
Rational(-25, 256), Rational(3, 256)]
assert d[3][0][7] == [Rational(-5, 2048), Rational(49, 2048), Rational(-245, 2048), Rational(1225, 2048),
Rational(1225, 2048), Rational(-245, 2048), Rational(49, 2048), Rational(-5, 2048)]
# First derivative
assert d[0][1][1] == [-S.One, S.One]
assert d[1][1][3] == [Rational(1, 24), Rational(-9, 8), Rational(9, 8), Rational(-1, 24)]
assert d[2][1][5] == [Rational(-3, 640), Rational(25, 384), Rational(-75, 64),
Rational(75, 64), Rational(-25, 384), Rational(3, 640)]
assert d[3][1][7] == [Rational(5, 7168), Rational(-49, 5120),
Rational(245, 3072), Rational(-1225, 1024),
Rational(1225, 1024), Rational(-245, 3072),
Rational(49, 5120), Rational(-5, 7168)]
# Reasonably the rest of the table is also correct... (testing of that
# deemed excessive at the moment)
raises(ValueError, lambda: finite_diff_weights(-1, [1, 2]))
raises(ValueError, lambda: finite_diff_weights(1.2, [1, 2]))
x = symbols('x')
raises(ValueError, lambda: finite_diff_weights(x, [1, 2]))
def test_as_finite_diff():
x = symbols('x')
f = Function('f')
dx = Function('dx')
with warns_deprecated_sympy():
as_finite_diff(f(x).diff(x), [x-2, x-1, x, x+1, x+2])
# Use of undefined functions in ``points``
df_true = -f(x+dx(x)/2-dx(x+dx(x)/2)/2) / dx(x+dx(x)/2) \
+ f(x+dx(x)/2+dx(x+dx(x)/2)/2) / dx(x+dx(x)/2)
df_test = diff(f(x), x).as_finite_difference(points=dx(x), x0=x+dx(x)/2)
assert (df_test - df_true).simplify() == 0
def test_differentiate_finite():
x, y, h = symbols('x y h')
f = Function('f')
with ignore_warnings(SymPyDeprecationWarning):
res0 = differentiate_finite(f(x, y) + exp(42), x, y, evaluate=True)
xm, xp, ym, yp = [v + sign*S.Half for v, sign in product([x, y], [-1, 1])]
ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
assert (res0 - ref0).simplify() == 0
g = Function('g')
with ignore_warnings(SymPyDeprecationWarning):
res1 = differentiate_finite(f(x)*g(x) + 42, x, evaluate=True)
ref1 = (-f(x - S.Half) + f(x + S.Half))*g(x) + \
(-g(x - S.Half) + g(x + S.Half))*f(x)
assert (res1 - ref1).simplify() == 0
res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1])
ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
assert (res2 - ref2).simplify() == 0
raises(TypeError, lambda: differentiate_finite(f(x)*g(x), x,
pints=[x-1, x+1]))
res3 = differentiate_finite(f(x)*g(x).diff(x), x)
ref3 = (-g(x) + g(x + 1))*f(x + S.Half) - (g(x) - g(x - 1))*f(x - S.Half)
assert res3 == ref3
res4 = differentiate_finite(f(x)*g(x).diff(x).diff(x), x)
ref4 = -((g(x - Rational(3, 2)) - 2*g(x - S.Half) + g(x + S.Half))*f(x - S.Half)) \
+ (g(x - S.Half) - 2*g(x + S.Half) + g(x + Rational(3, 2)))*f(x + S.Half)
assert res4 == ref4
res5_expr = f(x).diff(x)*g(x).diff(x)
res5 = differentiate_finite(res5_expr, points=[x-h, x, x+h])
ref5 = (-2*f(x)/h + f(-h + x)/(2*h) + 3*f(h + x)/(2*h))*(-2*g(x)/h + g(-h + x)/(2*h) \
+ 3*g(h + x)/(2*h))/(2*h) - (2*f(x)/h - 3*f(-h + x)/(2*h) - \
f(h + x)/(2*h))*(2*g(x)/h - 3*g(-h + x)/(2*h) - g(h + x)/(2*h))/(2*h)
assert res5 == ref5
res6 = res5.limit(h, 0).doit()
ref6 = diff(res5_expr, x)
assert res6 == ref6
|
06ba9805945a2a972fa2c7fee18faf75789110429a5fa3aa4b6dc2f41383ef76 | from itertools import product
import math
import inspect
import mpmath
from sympy.testing.pytest import raises
from sympy import (
symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational,
Float, Lambda, Piecewise, exp, E, Integral, oo, I, Abs, Function,
true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum,
DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma,
digamma, RisingFactorial, besselj, bessely, besseli, besselk, S, beta,
fresnelc, fresnels)
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, log10, hypot
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1
from sympy.functions.elementary.complexes import re, im, arg
from sympy.functions.special.polynomials import \
chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \
assoc_legendre, assoc_laguerre, jacobi
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import NumPyPrinter
from sympy.utilities.lambdify import implemented_function, lambdastr
from sympy.testing.pytest import skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.external import import_module
from sympy.functions.special.gamma_functions import uppergamma, lowergamma
import sympy
MutableDenseMatrix = Matrix
numpy = import_module('numpy')
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
numexpr = import_module('numexpr')
tensorflow = import_module('tensorflow')
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w, x, y, z = symbols('w,x,y,z')
#================== Test different arguments =======================
def test_no_args():
f = lambdify([], 1)
raises(TypeError, lambda: f(-1))
assert f() == 1
def test_single_arg():
f = lambdify(x, 2*x)
assert f(1) == 2
def test_list_args():
f = lambdify([x, y], x + y)
assert f(1, 2) == 3
def test_nested_args():
f1 = lambdify([[w, x]], [w, x])
assert f1([91, 2]) == [91, 2]
raises(TypeError, lambda: f1(1, 2))
f2 = lambdify([(w, x), (y, z)], [w, x, y, z])
assert f2((18, 12), (73, 4)) == [18, 12, 73, 4]
raises(TypeError, lambda: f2(3, 4))
f3 = lambdify([w, [[[x]], y], z], [w, x, y, z])
assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44]
def test_str_args():
f = lambdify('x,y,z', 'z,y,x')
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_own_namespace_1():
myfunc = lambda x: 1
f = lambdify(x, sin(x), {"sin": myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_namespace_2():
def myfunc(x):
return 1
f = lambdify(x, sin(x), {'sin': myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0) == 0.0
def test_bad_args():
# no vargs given
raises(TypeError, lambda: lambdify(1))
# same with vector exprs
raises(TypeError, lambda: lambdify([1, 2]))
def test_atoms():
# Non-Symbol atoms should not be pulled out from the expression namespace
f = lambdify(x, pi + x, {"pi": 3.14})
assert f(0) == 3.14
f = lambdify(x, I + x, {"I": 1j})
assert f(1) == 1 + 1j
#================== Test different modules =========================
# high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted
@conserve_mpmath_dps
def test_sympy_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "sympy")
assert f(x) == sin(x)
prec = 1e-15
assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec
# arctan is in numpy module and should not be available
# The arctan below gives NameError. What is this supposed to test?
# raises(NameError, lambda: lambdify(x, arctan(x), "sympy"))
@conserve_mpmath_dps
def test_math_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "math")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a python math function
@conserve_mpmath_dps
def test_mpmath_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a mpmath function
@conserve_mpmath_dps
def test_number_precision():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin02, "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(0) - sin02 < prec
@conserve_mpmath_dps
def test_mpmath_precision():
mpmath.mp.dps = 100
assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
#================== Test Translations ==============================
# We can only check if all translated functions are valid. It has to be checked
# by hand if they are complete.
def test_math_transl():
from sympy.utilities.lambdify import MATH_TRANSLATIONS
for sym, mat in MATH_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in math.__dict__
def test_mpmath_transl():
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
for sym, mat in MPMATH_TRANSLATIONS.items():
assert sym in sympy.__dict__ or sym == 'Matrix'
assert mat in mpmath.__dict__
def test_numpy_transl():
if not numpy:
skip("numpy not installed.")
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, nump in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert nump in numpy.__dict__
def test_scipy_transl():
if not scipy:
skip("scipy not installed.")
from sympy.utilities.lambdify import SCIPY_TRANSLATIONS
for sym, scip in SCIPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert scip in scipy.__dict__ or scip in scipy.special.__dict__
def test_numpy_translation_abs():
if not numpy:
skip("numpy not installed.")
f = lambdify(x, Abs(x), "numpy")
assert f(-1) == 1
assert f(1) == 1
def test_numexpr_printer():
if not numexpr:
skip("numexpr not installed.")
# if translation/printing is done incorrectly then evaluating
# a lambdified numexpr expression will throw an exception
from sympy.printing.lambdarepr import NumExprPrinter
blacklist = ('where', 'complex', 'contains')
arg_tuple = (x, y, z) # some functions take more than one argument
for sym in NumExprPrinter._numexpr_functions.keys():
if sym in blacklist:
continue
ssym = S(sym)
if hasattr(ssym, '_nargs'):
nargs = ssym._nargs[0]
else:
nargs = 1
args = arg_tuple[:nargs]
f = lambdify(args, ssym(*args), modules='numexpr')
assert f(*(1, )*nargs) is not None
def test_issue_9334():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
expr = S('b*a - sqrt(a**2)')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)
foo, bar = numpy.random.random((2, 4))
func_numexpr(foo, bar)
def test_issue_12984():
import warnings
if not numexpr:
skip("numexpr not installed.")
func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr)
assert func_numexpr(1, 24, 42) == 24
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
assert str(func_numexpr(-1, 24, 42)) == 'nan'
#================== Test some functions ============================
def test_exponentiation():
f = lambdify(x, x**2)
assert f(-1) == 1
assert f(0) == 0
assert f(1) == 1
assert f(-2) == 4
assert f(2) == 4
assert f(2.5) == 6.25
def test_sqrt():
f = lambdify(x, sqrt(x))
assert f(0) == 0.0
assert f(1) == 1.0
assert f(4) == 2.0
assert abs(f(2) - 1.414) < 0.001
assert f(6.25) == 2.5
def test_trig():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
prec = 1e-11
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
d = f(3.14159)
prec = 1e-5
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
def test_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(y, Integral(f(x), (x, y, oo)))
d = l(-oo)
assert 1.77245385 < d < 1.772453851
def test_double_integral():
# example from http://mpmath.org/doc/current/calculus/integration.html
i = Integral(1/(1 - x**2*y**2), (x, 0, 1), (y, 0, z))
l = lambdify([z], i)
d = l(1)
assert 1.23370055 < d < 1.233700551
#================== Test vectors ===================================
def test_vector_simple():
f = lambdify((x, y, z), (z, y, x))
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_vector_discontinuous():
f = lambdify(x, (-1/x, 1/x))
raises(ZeroDivisionError, lambda: f(0))
assert f(1) == (-1.0, 1.0)
assert f(2) == (-0.5, 0.5)
assert f(-2) == (0.5, -0.5)
def test_trig_symbolic():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_trig_float():
f = lambdify([x], [cos(x), sin(x)])
d = f(3.14159)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_docs():
f = lambdify(x, x**2)
assert f(2) == 4
f = lambdify([x, y, z], [z, y, x])
assert f(1, 2, 3) == [3, 2, 1]
f = lambdify(x, sqrt(x))
assert f(4) == 2.0
f = lambdify((x, y), sin(x*y)**2)
assert f(0, 5) == 0
def test_math():
f = lambdify((x, y), sin(x), modules="math")
assert f(0, 5) == 0
def test_sin():
f = lambdify(x, sin(x)**2)
assert isinstance(f(2), float)
f = lambdify(x, sin(x)**2, modules="math")
assert isinstance(f(2), float)
def test_matrix():
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol = Matrix([[1, 2], [sin(3) + 4, 1]])
f = lambdify((x, y, z), A, modules="sympy")
assert f(1, 2, 3) == sol
f = lambdify((x, y, z), (A, [A]), modules="sympy")
assert f(1, 2, 3) == (sol, [sol])
J = Matrix((x, x + y)).jacobian((x, y))
v = Matrix((x, y))
sol = Matrix([[1, 0], [1, 1]])
assert lambdify(v, J, modules='sympy')(1, 2) == sol
assert lambdify(v.T, J, modules='sympy')(1, 2) == sol
def test_numpy_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
#Lambdify array first, to ensure return to array as default
f = lambdify((x, y, z), A, ['numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
#Check that the types are arrays and matrices
assert isinstance(f(1, 2, 3), numpy.ndarray)
# gh-15071
class dot(Function):
pass
x_dot_mtx = dot(x, Matrix([[2], [1], [0]]))
f_dot1 = lambdify(x, x_dot_mtx)
inp = numpy.zeros((17, 3))
assert numpy.all(f_dot1(inp) == 0)
strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False)
p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw))
f_dot2 = lambdify(x, x_dot_mtx, printer=p2)
assert numpy.all(f_dot2(inp) == 0)
p3 = NumPyPrinter(strict_kw)
# The line below should probably fail upon construction (before calling with "(inp)"):
raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp))
def test_numpy_transpose():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A.T, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]]))
def test_numpy_dotproduct():
if not numpy:
skip("numpy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
numpy.array([14])
def test_numpy_inverse():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A**-1, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]]))
def test_numpy_old_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
assert isinstance(f(1, 2, 3), numpy.matrix)
def test_scipy_sparse_matrix():
if not scipy:
skip("scipy not installed.")
A = SparseMatrix([[x, 0], [0, y]])
f = lambdify((x, y), A, modules="scipy")
B = f(1, 2)
assert isinstance(B, scipy.sparse.coo_matrix)
def test_python_div_zero_issue_11306():
if not numpy:
skip("numpy not installed.")
p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True))
f = lambdify([x, y], p, modules='numpy')
numpy.seterr(divide='ignore')
assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0
assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf'
numpy.seterr(divide='warn')
def test_issue9474():
mods = [None, 'math']
if numpy:
mods.append('numpy')
if mpmath:
mods.append('mpmath')
for mod in mods:
f = lambdify(x, S.One/x, modules=mod)
assert f(2) == 0.5
f = lambdify(x, floor(S.One/x), modules=mod)
assert f(2) == 0
for absfunc, modules in product([Abs, abs], mods):
f = lambdify(x, absfunc(x), modules=modules)
assert f(-1) == 1
assert f(1) == 1
assert f(3+4j) == 5
def test_issue_9871():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
r = sqrt(x**2 + y**2)
expr = diff(1/r, x)
xn = yn = numpy.linspace(1, 10, 16)
# expr(xn, xn) = -xn/(sqrt(2)*xn)^3
fv_exact = -numpy.sqrt(2.)**-3 * xn**-2
fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn)
fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn)
numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10)
numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10)
def test_numpy_piecewise():
if not numpy:
skip("numpy not installed.")
pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True))
f = lambdify(x, pieces, modules="numpy")
numpy.testing.assert_array_equal(f(numpy.arange(10)),
numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81]))
# If we evaluate somewhere all conditions are False, we should get back NaN
nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0)))
numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])),
numpy.array([1, numpy.nan, 1]))
def test_numpy_logical_ops():
if not numpy:
skip("numpy not installed.")
and_func = lambdify((x, y), And(x, y), modules="numpy")
and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy")
or_func = lambdify((x, y), Or(x, y), modules="numpy")
or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy")
not_func = lambdify((x), Not(x), modules="numpy")
arr1 = numpy.array([True, True])
arr2 = numpy.array([False, True])
arr3 = numpy.array([True, False])
numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True]))
numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False]))
numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True]))
numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True]))
numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False]))
def test_numpy_matmul():
if not numpy:
skip("numpy not installed.")
xmat = Matrix([[x, y], [z, 1+z]])
ymat = Matrix([[x**2], [Abs(x)]])
mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
# Multiple matrices chained together in multiplication
f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
[159, 251]]))
def test_numpy_numexpr():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b, c = numpy.random.randn(3, 128, 128)
# ensure that numpy and numexpr return same value for complicated expression
expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \
Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2)
npfunc = lambdify((x, y, z), expr, modules='numpy')
nefunc = lambdify((x, y, z), expr, modules='numexpr')
assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
def test_numexpr_userfunctions():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b = numpy.random.randn(2, 10)
uf = type('uf', (Function, ),
{'eval' : classmethod(lambda x, y : y**2+1)})
func = lambdify(x, 1-uf(x), modules='numexpr')
assert numpy.allclose(func(a), -(a**2))
uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1)
func = lambdify((x, y), uf(x, y), modules='numexpr')
assert numpy.allclose(func(a, b), 2*a*b+1)
def test_tensorflow_basic_math():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.constant(0, dtype=tensorflow.float32)
assert func(a).eval(session=s) == 0.5
def test_tensorflow_placeholders():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_variables():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.Variable(0, dtype=tensorflow.float32)
s.run(a.initializer)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_logical_operations():
if not tensorflow:
skip("tensorflow not installed.")
expr = Not(And(Or(x, y), y))
func = lambdify([x, y], expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(False, True).eval(session=s) == False
def test_tensorflow_piecewise():
if not tensorflow:
skip("tensorflow not installed.")
expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-1).eval(session=s) == -1
assert func(0).eval(session=s) == 0
assert func(1).eval(session=s) == 1
def test_tensorflow_multi_max():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == 4
def test_tensorflow_multi_min():
if not tensorflow:
skip("tensorflow not installed.")
expr = Min(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == -2
def test_tensorflow_relational():
if not tensorflow:
skip("tensorflow not installed.")
expr = x >= 0
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(1).eval(session=s) == True
def test_tensorflow_complexes():
if not tensorflow:
skip("tensorflow not installed")
func1 = lambdify(x, re(x), modules="tensorflow")
func2 = lambdify(x, im(x), modules="tensorflow")
func3 = lambdify(x, Abs(x), modules="tensorflow")
func4 = lambdify(x, arg(x), modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
# For versions before
# https://github.com/tensorflow/tensorflow/issues/30029
# resolved, using python numeric types may not work
a = tensorflow.constant(1+2j)
assert func1(a).eval(session=s) == 1
assert func2(a).eval(session=s) == 2
tensorflow_result = func3(a).eval(session=s)
sympy_result = Abs(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
tensorflow_result = func4(a).eval(session=s)
sympy_result = arg(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
def test_tensorflow_array_arg():
# Test for issue 14655 (tensorflow part)
if not tensorflow:
skip("tensorflow not installed.")
f = lambdify([[x, y]], x*x + y, 'tensorflow')
with tensorflow.compat.v1.Session() as s:
fcall = f(tensorflow.constant([2.0, 1.0]))
assert fcall.eval(session=s) == 5.0
#================== Test symbolic ==================================
def test_sym_single_arg():
f = lambdify(x, x * y)
assert f(z) == z * y
def test_sym_list_args():
f = lambdify([x, y], x + y + z)
assert f(1, 2) == 3 + z
def test_sym_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(y) == Integral(exp(-y**2), (y, -oo, oo))
assert l(y).doit() == sqrt(pi)
def test_namespace_order():
# lambdify had a bug, such that module dictionaries or cached module
# dictionaries would pull earlier namespaces into themselves.
# Because the module dictionaries form the namespace of the
# generated lambda, this meant that the behavior of a previously
# generated lambda function could change as a result of later calls
# to lambdify.
n1 = {'f': lambda x: 'first f'}
n2 = {'f': lambda x: 'second f',
'g': lambda x: 'function g'}
f = sympy.Function('f')
g = sympy.Function('g')
if1 = lambdify(x, f(x), modules=(n1, "sympy"))
assert if1(1) == 'first f'
if2 = lambdify(x, g(x), modules=(n2, "sympy"))
# previously gave 'second f'
assert if1(1) == 'first f'
assert if2(1) == 'function g'
def test_namespace_type():
# lambdify had a bug where it would reject modules of type unicode
# on Python 2.
x = sympy.Symbol('x')
lambdify(x, x, modules='math')
def test_imps():
# Here we check if the default returned functions are anonymous - in
# the sense that we can have more than one function with the same name
f = implemented_function('f', lambda x: 2*x)
g = implemented_function('f', lambda x: math.sqrt(x))
l1 = lambdify(x, f(x))
l2 = lambdify(x, g(x))
assert str(f(x)) == str(g(x))
assert l1(3) == 6
assert l2(3) == math.sqrt(3)
# check that we can pass in a Function as input
func = sympy.Function('myfunc')
assert not hasattr(func, '_imp_')
my_f = implemented_function(func, lambda x: 2*x)
assert hasattr(my_f, '_imp_')
# Error for functions with same name and different implementation
f2 = implemented_function("f", lambda x: x + 101)
raises(ValueError, lambda: lambdify(x, f(f2(x))))
def test_imps_errors():
# Test errors that implemented functions can return, and still be able to
# form expressions.
# See: https://github.com/sympy/sympy/issues/10810
#
# XXX: Removed AttributeError here. This test was added due to issue 10810
# but that issue was about ValueError. It doesn't seem reasonable to
# "support" catching AttributeError in the same context...
for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)):
def myfunc(a):
if a == 0:
raise error_class
return 1
f = implemented_function('f', myfunc)
expr = f(val)
assert expr == f(val)
def test_imps_wrong_args():
raises(ValueError, lambda: implemented_function(sin, lambda x: x))
def test_lambdify_imps():
# Test lambdify with implemented functions
# first test basic (sympy) lambdify
f = sympy.cos
assert lambdify(x, f(x))(0) == 1
assert lambdify(x, 1 + f(x))(0) == 2
assert lambdify((x, y), y + f(x))(0, 1) == 2
# make an implemented function and test
f = implemented_function("f", lambda x: x + 100)
assert lambdify(x, f(x))(0) == 100
assert lambdify(x, 1 + f(x))(0) == 101
assert lambdify((x, y), y + f(x))(0, 1) == 101
# Can also handle tuples, lists, dicts as expressions
lam = lambdify(x, (f(x), x))
assert lam(3) == (103, 3)
lam = lambdify(x, [f(x), x])
assert lam(3) == [103, 3]
lam = lambdify(x, [f(x), (f(x), x)])
assert lam(3) == [103, (103, 3)]
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {x: f(x)})
assert lam(3) == {3: 103}
# Check that imp preferred to other namespaces by default
d = {'f': lambda x: x + 99}
lam = lambdify(x, f(x), d)
assert lam(3) == 103
# Unless flag passed
lam = lambdify(x, f(x), d, use_imps=False)
assert lam(3) == 102
def test_dummification():
t = symbols('t')
F = Function('F')
G = Function('G')
#"\alpha" is not a valid python variable name
#lambdify should sub in a dummy for it, and return
#without a syntax error
alpha = symbols(r'\alpha')
some_expr = 2 * F(t)**2 / G(t)
lam = lambdify((F(t), G(t)), some_expr)
assert lam(3, 9) == 2
lam = lambdify(sin(t), 2 * sin(t)**2)
assert lam(F(t)) == 2 * F(t)**2
#Test that \alpha was properly dummified
lam = lambdify((alpha, t), 2*alpha + t)
assert lam(2, 1) == 5
raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5))
def test_curly_matrix_symbol():
# Issue #15009
curlyv = sympy.MatrixSymbol("{v}", 2, 1)
lam = lambdify(curlyv, curlyv)
assert lam(1)==1
lam = lambdify(curlyv, curlyv, dummify=True)
assert lam(1)==1
def test_python_keywords():
# Test for issue 7452. The automatic dummification should ensure use of
# Python reserved keywords as symbol names will create valid lambda
# functions. This is an additional regression test.
python_if = symbols('if')
expr = python_if / 2
f = lambdify(python_if, expr)
assert f(4.0) == 2.0
def test_lambdify_docstring():
func = lambdify((w, x, y, z), w + x + y + z)
ref = (
"Created with lambdify. Signature:\n\n"
"func(w, x, y, z)\n\n"
"Expression:\n\n"
"w + x + y + z"
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
syms = symbols('a1:26')
func = lambdify(syms, sum(syms))
ref = (
"Created with lambdify. Signature:\n\n"
"func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n"
" a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n"
"Expression:\n\n"
"a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..."
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
#================== Test special printers ==========================
def test_special_printers():
from sympy.polys.numberfields import IntervalPrinter
def intervalrepr(expr):
return IntervalPrinter().doprint(expr)
expr = sqrt(sqrt(2) + sqrt(3)) + S.Half
func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())
mpi = type(mpmath.mpi(1, 2))
assert isinstance(func0(), mpi)
assert isinstance(func1(), mpi)
assert isinstance(func2(), mpi)
# To check Is lambdify loggamma works for mpmath or not
exp1 = lambdify(x, loggamma(x), 'mpmath')(5)
exp2 = lambdify(x, loggamma(x), 'mpmath')(1.8)
exp3 = lambdify(x, loggamma(x), 'mpmath')(15)
exp_ls = [exp1, exp2, exp3]
sol1 = mpmath.loggamma(5)
sol2 = mpmath.loggamma(1.8)
sol3 = mpmath.loggamma(15)
sol_ls = [sol1, sol2, sol3]
assert exp_ls == sol_ls
def test_true_false():
# We want exact is comparison here, not just ==
assert lambdify([], true)() is True
assert lambdify([], false)() is False
def test_issue_2790():
assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3
assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10
assert lambdify(x, x + 1, dummify=False)(1) == 2
def test_issue_12092():
f = implemented_function('f', lambda x: x**2)
assert f(f(2)).evalf() == Float(16)
def test_issue_14911():
class Variable(sympy.Symbol):
def _sympystr(self, printer):
return printer.doprint(self.name)
_lambdacode = _sympystr
_numpycode = _sympystr
x = Variable('x')
y = 2 * x
code = LambdaPrinter().doprint(y)
assert code.replace(' ', '') == '2*x'
def test_ITE():
assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5
assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3
def test_Min_Max():
# see gh-10375
assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1
assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
def test_Indexed():
# Issue #10934
if not numpy:
skip("numpy not installed")
a = IndexedBase('a')
i, j = symbols('i j')
b = numpy.array([[1, 2], [3, 4]])
assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10
def test_issue_12173():
#test for issue 12173
expr1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
expr2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
assert expr1 == uppergamma(1, 2).evalf()
assert expr2 == lowergamma(1, 2).evalf()
def test_issue_13642():
if not numpy:
skip("numpy not installed")
f = lambdify(x, sinc(x))
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_sinc_mpmath():
f = lambdify(x, sinc(x), "mpmath")
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_lambdify_dummy_arg():
d1 = Dummy()
f1 = lambdify(d1, d1 + 1, dummify=False)
assert f1(2) == 3
f1b = lambdify(d1, d1 + 1)
assert f1b(2) == 3
d2 = Dummy('x')
f2 = lambdify(d2, d2 + 1)
assert f2(2) == 3
f3 = lambdify([[d2]], d2 + 1)
assert f3([2]) == 3
def test_lambdify_mixed_symbol_dummy_args():
d = Dummy()
# Contrived example of name clash
dsym = symbols(str(d))
f = lambdify([d, dsym], d - dsym)
assert f(4, 1) == 3
def test_numpy_array_arg():
# Test for issue 14655 (numpy part)
if not numpy:
skip("numpy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
assert f(numpy.array([2.0, 1.0])) == 5
def test_scipy_fns():
if not scipy:
skip("scipy not installed")
single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma]
single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc,
scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln,
scipy.special.psi]
numpy.random.seed(0)
for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns):
f = lambdify(x, sympy_fn(x), modules="scipy")
for i in range(20):
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy thinks that factorial(z) is 0 when re(z) < 0 and
# does not support complex numbers.
# SymPy does not think so.
if sympy_fn == factorial:
tv = numpy.abs(tv)
# SciPy supports gammaln for real arguments only,
# and there is also a branch cut along the negative real axis
if sympy_fn == loggamma:
tv = numpy.abs(tv)
# SymPy's digamma evaluates as polygamma(0, z)
# which SciPy supports for real arguments only
if sympy_fn == digamma:
tv = numpy.real(tv)
sympy_result = sympy_fn(tv).evalf()
assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result))
double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli,
besselk]
double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv,
scipy.special.yv, scipy.special.iv, scipy.special.kv]
for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns):
f = lambdify((x, y), sympy_fn(x, y), modules="scipy")
for i in range(20):
# SciPy supports only real orders of Bessel functions
tv1 = numpy.random.uniform(-10, 10)
tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports poch for real arguments only
if sympy_fn == RisingFactorial:
tv2 = numpy.real(tv2)
sympy_result = sympy_fn(tv1, tv2).evalf()
assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result))
def test_scipy_polys():
if not scipy:
skip("scipy not installed")
numpy.random.seed(0)
params = symbols('n k a b')
# list polynomials with the number of parameters
polys = [
(chebyshevt, 1),
(chebyshevu, 1),
(legendre, 1),
(hermite, 1),
(laguerre, 1),
(gegenbauer, 2),
(assoc_legendre, 2),
(assoc_laguerre, 2),
(jacobi, 3)
]
msg = \
"The random test of the function {func} with the arguments " \
"{args} had failed because the SymPy result {sympy_result} " \
"and SciPy result {scipy_result} had failed to converge " \
"within the tolerance {tol} " \
"(Actual absolute difference : {diff})"
for sympy_fn, num_params in polys:
args = params[:num_params] + (x,)
f = lambdify(args, sympy_fn(*args))
for _ in range(10):
tn = numpy.random.randint(3, 10)
tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1))
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports hermite for real arguments only
if sympy_fn == hermite:
tv = numpy.real(tv)
# assoc_legendre needs x in (-1, 1) and integer param at most n
if sympy_fn == assoc_legendre:
tv = numpy.random.uniform(-1, 1)
tparams = tuple(numpy.random.randint(1, tn, size=1))
vals = (tn,) + tparams + (tv,)
scipy_result = f(*vals)
sympy_result = sympy_fn(*vals).evalf()
atol = 1e-9*(1 + abs(sympy_result))
diff = abs(scipy_result - sympy_result)
try:
assert diff < atol
except TypeError:
raise AssertionError(
msg.format(
func=repr(sympy_fn),
args=repr(vals),
sympy_result=repr(sympy_result),
scipy_result=repr(scipy_result),
diff=diff,
tol=atol)
)
def test_lambdify_inspect():
f = lambdify(x, x**2)
# Test that inspect.getsource works but don't hard-code implementation
# details
assert 'x**2' in inspect.getsource(f)
def test_issue_14941():
x, y = Dummy(), Dummy()
# test dict
f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy')
assert f1(2, 3) == {2: 3, 3: 3}
# test tuple
f2 = lambdify([x, y], (y, x), 'sympy')
assert f2(2, 3) == (3, 2)
# test list
f3 = lambdify([x, y], [y, x], 'sympy')
assert f3(2, 3) == [3, 2]
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
def test_imag_real():
f_re = lambdify([z], sympy.re(z))
val = 3+2j
assert f_re(val) == val.real
f_im = lambdify([z], sympy.im(z)) # see #15400
assert f_im(val) == val.imag
def test_MatrixSymbol_issue_15578():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol('A', 2, 2)
A0 = numpy.array([[1, 2], [3, 4]])
f = lambdify(A, A**(-1))
assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]]))
g = lambdify(A, A**3)
assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]]))
def test_issue_15654():
if not scipy:
skip("scipy not installed")
from sympy.abc import n, l, r, Z
from sympy.physics import hydrogen
nv, lv, rv, Zv = 1, 0, 3, 1
sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf()
f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z))
scipy_value = f(nv, lv, rv, Zv)
assert abs(sympy_value - scipy_value) < 1e-15
def test_issue_15827():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 2, 3)
C = MatrixSymbol("C", 3, 4)
D = MatrixSymbol("D", 4, 5)
k=symbols("k")
f = lambdify(A, (2*k)*A)
g = lambdify(A, (2+k)*A)
h = lambdify(A, 2*A)
i = lambdify((B, C, D), 2*B*C*D)
assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object))
assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \
[k + 2, 2*k + 4, 3*k + 6]], dtype=object))
assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]]))
assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \
numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \
[ 120, 240, 360, 480, 600]]))
def test_issue_16930():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f = lambda x: S.GoldenRatio * x**2
f_ = lambdify(x, f(x), modules='scipy')
assert f_(1) == scipy.constants.golden_ratio
def test_issue_17898():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy')
assert f_(0.1) == mpmath.lambertw(0.1, -1)
def test_single_e():
f = lambdify(x, E)
assert f(23) == exp(1.0)
def test_issue_16536():
if not scipy:
skip("scipy not installed")
a = symbols('a')
f1 = lowergamma(a, x)
F = lambdify((a, x), f1, modules='scipy')
assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10
f2 = uppergamma(a, x)
F = lambdify((a, x), f2, modules='scipy')
assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10
def test_fresnel_integrals_scipy():
if not scipy:
skip("scipy not installed")
f1 = fresnelc(x)
f2 = fresnels(x)
F1 = lambdify(x, f1, modules='scipy')
F2 = lambdify(x, f2, modules='scipy')
assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10
assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10
def test_beta_scipy():
if not scipy:
skip("scipy not installed")
f = beta(x, y)
F = lambdify((x, y), f, modules='scipy')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
def test_beta_math():
f = beta(x, y)
F = lambdify((x, y), f, modules='math')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
def test_numpy_special_math():
if not numpy:
skip("numpy not installed")
funcs = [expm1, log1p, exp2, log2, log10, hypot, logaddexp, logaddexp2]
for func in funcs:
if 2 in func.nargs:
expr = func(x, y)
args = (x, y)
num_args = (0.3, 0.4)
elif 1 in func.nargs:
expr = func(x)
args = (x,)
num_args = (0.3,)
else:
raise NotImplementedError("Need to handle other than unary & binary functions in test")
f = lambdify(args, expr)
result = f(*num_args)
reference = expr.subs(dict(zip(args, num_args))).evalf()
assert numpy.allclose(result, float(reference))
lae2 = lambdify((x, y), logaddexp2(log2(x), log2(y)))
assert abs(2.0**lae2(1e-50, 2.5e-50) - 3.5e-50) < 1e-62 # from NumPy's docstring
def test_scipy_special_math():
if not scipy:
skip("scipy not installed")
cm1 = lambdify((x,), cosm1(x), modules='scipy')
assert abs(cm1(1e-20) + 5e-41) < 1e-200
|
e49f36f3776537875519c59ebff3faa66acd1d2c26c41439ffecf04a980c5ee8 | import itertools
from sympy.core import S
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Number, Rational
from sympy.core.power import Pow
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"perm_cyclic": True
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], str):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
def emptyPrinter(self, expr):
return prettyForm(str(expr))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Rationals = _print_Atom
_print_Complexes = _print_Atom
_print_EmptySequence = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv.expr) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(Cycle(expr))
lower = expr.array_form
upper = list(range(len(lower)))
result = stringPict('')
first = True
for u, l in zip(upper, lower):
s1 = self._print(u)
s2 = self._print(l)
col = prettyForm(*s1.below(s2))
if first:
first = False
else:
col = prettyForm(*col.left(" "))
result = prettyForm(*result.right(col))
return prettyForm(*result.parens())
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def __print_SumProduct_Limits(self, lim):
def print_start(lhs, rhs):
op = prettyForm(' ' + xsym("==") + ' ')
l = self._print(lhs)
r = self._print(rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
prettyUpper = self._print(lim[2])
prettyLower = print_start(lim[0], lim[1])
return prettyLower, prettyUpper
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = "\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
from sympy.matrices import MatrixSymbol
prettyFunc = self._print(m.parent)
if not isinstance(m.parent, MatrixSymbol):
prettyFunc = prettyForm(*prettyFunc.parens())
def ppslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows),
ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm('\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_Identity(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
else:
return prettyForm('I')
def _print_ZeroMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
else:
return prettyForm('0')
def _print_OneMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
else:
return prettyForm('1')
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul, HadamardProduct
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
def _print_HadamardPower(self, expr):
# from sympy import MatAdd, MatMul
if self._use_unicode:
circ = pretty_atom('Ring')
else:
circ = self._print('.')
pretty_base = self._print(expr.base)
pretty_exp = self._print(expr.exp)
if precedence(expr.exp) < PRECEDENCE["Mul"]:
pretty_exp = prettyForm(*pretty_exp.parens())
pretty_circ_exp = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(circ, pretty_exp)
)
return pretty_base**pretty_circ_exp
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TransferFunction(self, expr):
if not expr.num == 1:
num, den = expr.num, expr.den
res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
return self._print_Mul(res)
else:
return self._print(1)/self._print(expr.den)
def _print_Series(self, expr):
args = list(expr.args)
for i, a in enumerate(expr.args):
args[i] = prettyForm(*self._print(a).parens())
return prettyForm.__mul__(*args)
def _print_Parallel(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Parallel, Series
num, tf = expr.num, TransferFunction(1, 1, expr.num.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den]
if isinstance(num, Series) and isinstance(expr.den, Series):
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
elif isinstance(num, Series) and isinstance(expr.den, TransferFunction):
if expr.den == tf:
den = Parallel(tf, Series(*num_arg_list))
else:
den = Parallel(tf, Series(*num_arg_list, expr.den))
elif isinstance(num, TransferFunction) and isinstance(expr.den, Series):
if num == tf:
den = Parallel(tf, Series(*den_arg_list))
else:
den = Parallel(tf, Series(num, *den_arg_list))
else:
if num == tf:
den = Parallel(tf, *den_arg_list)
elif expr.den == tf:
den = Parallel(tf, *num_arg_list)
else:
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
return self._print(num)/self._print(den)
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append("" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append("(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == '\N{right parenthesis extension}':
tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}',
'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}',
'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm('\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if len(deriv.variables) > 1:
pform = pform**self._print(len(deriv.variables))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _print_mathieuc(self, e):
return self._print_Function(e, func_name='C')
def _print_mathieus(self, e):
return self._print_Function(e, func_name='S')
def _print_mathieucprime(self, e):
return self._print_Function(e, func_name="C'")
def _print_mathieusprime(self, e):
return self._print_Function(e, func_name="S'")
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name and hasattr(func, "__name__"):
func_name = func.__name__
if func_name:
prettyFunc = self._print(Symbol(func_name))
else:
prettyFunc = prettyForm(*self._print(func).parens())
if elementwise:
if self._use_unicode:
circ = pretty_atom('Modifier Letter Low Ring')
else:
circ = '.'
circ = self._print(circ)
prettyFunc = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(prettyFunc, circ)
)
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg]
return self._helper_print_function(func, args, delimiter="", elementwise=True)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_dirichlet_eta(self, e):
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
return self._print_Function(e, func_name=func_name)
def _print_Heaviside(self, e):
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
return self._print_Function(e, func_name=func_name)
def _print_fresnels(self, e):
return self._print_Function(e, func_name="S")
def _print_fresnelc(self, e):
return self._print_Function(e, func_name="C")
def _print_airyai(self, e):
return self._print_Function(e, func_name="Ai")
def _print_airybi(self, e):
return self._print_Function(e, func_name="Bi")
def _print_airyaiprime(self, e):
return self._print_Function(e, func_name="Ai'")
def _print_airybiprime(self, e):
return self._print_Function(e, func_name="Bi'")
def _print_LambertW(self, e):
return self._print_Function(e, func_name="W")
def _print_Lambda(self, e):
expr = e.expr
sig = e.signature
if self._use_unicode:
arrow = " \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
var_form = self._print(sig)
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
if coeff == -1:
negterm = Mul(*other, evaluate=False)
else:
negterm = Mul(-coeff, *other, evaluate=False)
pform = self._print(negterm)
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = product.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
strargs = list(map(self._print, args))
# XXX: This is a hack to work around the fact that
# prettyForm.__mul__ absorbs a leading -1 in the args. Probably it
# would be better to fix this in prettyForm.__mul__ instead.
negone = strargs[0] == '-1'
if negone:
strargs[0] = prettyForm('1', 0, 0)
obj = prettyForm.__mul__(*strargs)
if negone:
obj = prettyForm('-' + obj.s, obj.baseline, obj.binding)
return obj
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left('\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) >= 1 and not has_variety(p.sets):
return self._print(p.sets[0]) ** self._print(len(p.sets))
else:
prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
fun = ts.lamda
sets = ts.base_sets
signature = fun.signature
expr = self._print(fun.expr)
bar = self._print("|")
if len(signature) == 1:
return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = "\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print(cond)
cond = prettyForm(*cond.parens())
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = " \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
try:
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
# XXX: Under the tests from #15686 this raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
pform = prettyForm(name)
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_euler(self, e):
return self._print_number_function(e, "E")
def _print_catalan(self, e):
return self._print_number_function(e, "C")
def _print_bernoulli(self, e):
return self._print_number_function(e, "B")
_print_bell = _print_bernoulli
def _print_lucas(self, e):
return self._print_number_function(e, "L")
def _print_fibonacci(self, e):
return self._print_number_function(e, "F")
def _print_tribonacci(self, e):
return self._print_number_function(e, "T")
def _print_stieltjes(self, e):
if self._use_unicode:
return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}')
else:
return self._print_number_function(e, "stieltjes")
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right((prettyForm(','))))
pform = prettyForm(*pform.right((self._print(e.args[1]))))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_Manifold(self, manifold):
return self._print(manifold.name)
def _print_Patch(self, patch):
return self._print(patch.name)
def _print_CoordSystem(self, coords):
return self._print(coords.name)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print("\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Str(self, s):
return self._print(s.name)
@print_function(PrettyPrinter)
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, **kwargs):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, **kwargs))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
6d300291a3a3f14e6bc9579a03a3a9d3c0e4ad0e34971ccd748fe7903ec392d2 | """Symbolic primitives + unicode/ASCII abstraction for pretty.py"""
from __future__ import print_function, division
import sys
import warnings
from string import ascii_lowercase, ascii_uppercase
unicode_warnings = ''
# first, setup unicodedate environment
try:
import unicodedata
def U(name):
"""unicode character by name or None if not found"""
try:
u = unicodedata.lookup(name)
except KeyError:
u = None
global unicode_warnings
unicode_warnings += 'No \'%s\' in unicodedata\n' % name
return u
except ImportError:
unicode_warnings += 'No unicodedata available\n'
U = lambda name: None
from sympy.printing.conventions import split_super_sub
from sympy.core.alphabets import greeks
from sympy.utilities.exceptions import SymPyDeprecationWarning
# prefix conventions when constructing tables
# L - LATIN i
# G - GREEK beta
# D - DIGIT 0
# S - SYMBOL +
__all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol',
'annotated']
_use_unicode = False
def pretty_use_unicode(flag=None):
"""Set whether pretty-printer should use unicode by default"""
global _use_unicode
global unicode_warnings
if flag is None:
return _use_unicode
# we know that some letters are not supported in Python 2.X so
# ignore those warnings. Remove this when 2.X support is dropped.
if unicode_warnings:
known = ['LATIN SUBSCRIPT SMALL LETTER %s' % i for i in 'HKLMNPST']
unicode_warnings = '\n'.join([
l for l in unicode_warnings.splitlines() if not any(
i in l for i in known)])
# ------------ end of 2.X warning filtering
if flag and unicode_warnings:
# print warnings (if any) on first unicode usage
warnings.warn(unicode_warnings)
unicode_warnings = ''
use_unicode_prev = _use_unicode
_use_unicode = flag
return use_unicode_prev
def pretty_try_use_unicode():
"""See if unicode output is available and leverage it if possible"""
try:
symbols = []
# see, if we can represent greek alphabet
symbols.extend(greek_unicode.values())
# and atoms
symbols += atoms_table.values()
for s in symbols:
if s is None:
return # common symbols not present!
encoding = getattr(sys.stdout, 'encoding', None)
# this happens when e.g. stdout is redirected through a pipe, or is
# e.g. a cStringIO.StringO
if encoding is None:
return # sys.stdout has no encoding
# try to encode
s.encode(encoding)
except UnicodeEncodeError:
pass
else:
pretty_use_unicode(True)
def xstr(*args):
SymPyDeprecationWarning(
feature="``xstr`` function",
useinstead="``str``",
deprecated_since_version="1.7").warn()
return str(*args)
# GREEK
g = lambda l: U('GREEK SMALL LETTER %s' % l.upper())
G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper())
greek_letters = list(greeks) # make a copy
# deal with Unicode's funny spelling of lambda
greek_letters[greek_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_unicode = dict((L, g(L)) for L in greek_letters)
greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters)
# aliases
greek_unicode['lambda'] = greek_unicode['lamda']
greek_unicode['Lambda'] = greek_unicode['Lamda']
greek_unicode['varsigma'] = '\N{GREEK SMALL LETTER FINAL SIGMA}'
# BOLD
b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
bold_unicode = dict((l, b(l)) for l in ascii_lowercase)
bold_unicode.update((L, B(L)) for L in ascii_uppercase)
# GREEK BOLD
gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
greek_bold_letters = list(greeks) # make a copy, not strictly required here
# deal with Unicode's funny spelling of lambda
greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_bold_unicode = dict((L, g(L)) for L in greek_bold_letters)
greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters)
greek_bold_unicode['lambda'] = greek_unicode['lamda']
greek_bold_unicode['Lambda'] = greek_unicode['Lamda']
greek_bold_unicode['varsigma'] = '\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}'
digit_2txt = {
'0': 'ZERO',
'1': 'ONE',
'2': 'TWO',
'3': 'THREE',
'4': 'FOUR',
'5': 'FIVE',
'6': 'SIX',
'7': 'SEVEN',
'8': 'EIGHT',
'9': 'NINE',
}
symb_2txt = {
'+': 'PLUS SIGN',
'-': 'MINUS',
'=': 'EQUALS SIGN',
'(': 'LEFT PARENTHESIS',
')': 'RIGHT PARENTHESIS',
'[': 'LEFT SQUARE BRACKET',
']': 'RIGHT SQUARE BRACKET',
'{': 'LEFT CURLY BRACKET',
'}': 'RIGHT CURLY BRACKET',
# non-std
'{}': 'CURLY BRACKET',
'sum': 'SUMMATION',
'int': 'INTEGRAL',
}
# SUBSCRIPT & SUPERSCRIPT
LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper())
GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper())
DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit])
SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb])
LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper())
DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit])
SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb])
sub = {} # symb -> subscript symbol
sup = {} # symb -> superscript symbol
# latin subscripts
for l in 'aeioruvxhklmnpst':
sub[l] = LSUB(l)
for l in 'in':
sup[l] = LSUP(l)
for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']:
sub[gl] = GSUB(gl)
for d in [str(i) for i in range(10)]:
sub[d] = DSUB(d)
sup[d] = DSUP(d)
for s in '+-=()':
sub[s] = SSUB(s)
sup[s] = SSUP(s)
# Variable modifiers
# TODO: Make brackets adjust to height of contents
modifier_dict = {
# Accents
'mathring': lambda s: center_accent(s, '\N{COMBINING RING ABOVE}'),
'ddddot': lambda s: center_accent(s, '\N{COMBINING FOUR DOTS ABOVE}'),
'dddot': lambda s: center_accent(s, '\N{COMBINING THREE DOTS ABOVE}'),
'ddot': lambda s: center_accent(s, '\N{COMBINING DIAERESIS}'),
'dot': lambda s: center_accent(s, '\N{COMBINING DOT ABOVE}'),
'check': lambda s: center_accent(s, '\N{COMBINING CARON}'),
'breve': lambda s: center_accent(s, '\N{COMBINING BREVE}'),
'acute': lambda s: center_accent(s, '\N{COMBINING ACUTE ACCENT}'),
'grave': lambda s: center_accent(s, '\N{COMBINING GRAVE ACCENT}'),
'tilde': lambda s: center_accent(s, '\N{COMBINING TILDE}'),
'hat': lambda s: center_accent(s, '\N{COMBINING CIRCUMFLEX ACCENT}'),
'bar': lambda s: center_accent(s, '\N{COMBINING OVERLINE}'),
'vec': lambda s: center_accent(s, '\N{COMBINING RIGHT ARROW ABOVE}'),
'prime': lambda s: s+'\N{PRIME}',
'prm': lambda s: s+'\N{PRIME}',
# # Faces -- these are here for some compatibility with latex printing
# 'bold': lambda s: s,
# 'bm': lambda s: s,
# 'cal': lambda s: s,
# 'scr': lambda s: s,
# 'frak': lambda s: s,
# Brackets
'norm': lambda s: '\N{DOUBLE VERTICAL LINE}'+s+'\N{DOUBLE VERTICAL LINE}',
'avg': lambda s: '\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+'\N{MATHEMATICAL RIGHT ANGLE BRACKET}',
'abs': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
'mag': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
}
# VERTICAL OBJECTS
HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb])
CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb])
MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb])
EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb])
HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb])
CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb])
TOP = lambda symb: U('%s TOP' % symb_2txt[symb])
BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb])
# {} '(' -> (extension, start, end, middle) 1-character
_xobj_unicode = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( EXT('('), HUP('('), HLO('(') ), '('),
')': (( EXT(')'), HUP(')'), HLO(')') ), ')'),
'[': (( EXT('['), CUP('['), CLO('[') ), '['),
']': (( EXT(']'), CUP(']'), CLO(']') ), ']'),
'{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'),
'}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'),
'|': U('BOX DRAWINGS LIGHT VERTICAL'),
'<': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'),
'>': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'),
'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')),
'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')),
'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')),
'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')),
'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')),
'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')),
# horizontal objects
#'-': '-',
'-': U('BOX DRAWINGS LIGHT HORIZONTAL'),
'_': U('LOW LINE'),
# We used to use this, but LOW LINE looks better for roots, as it's a
# little lower (i.e., it lines up with the / perfectly. But perhaps this
# one would still be wanted for some cases?
# '_': U('HORIZONTAL SCAN LINE-9'),
# diagonal objects '\' & '/' ?
'/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
'\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
}
_xobj_ascii = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( '|', '/', '\\' ), '('),
')': (( '|', '\\', '/' ), ')'),
# XXX this looks ugly
# '[': (( '|', '-', '-' ), '['),
# ']': (( '|', '-', '-' ), ']'),
# XXX not so ugly :(
'[': (( '[', '[', '[' ), '['),
']': (( ']', ']', ']' ), ']'),
'{': (( '|', '/', '\\', '<' ), '{'),
'}': (( '|', '\\', '/', '>' ), '}'),
'|': '|',
'<': (( '|', '/', '\\' ), '<'),
'>': (( '|', '\\', '/' ), '>'),
'int': ( ' | ', ' /', '/ ' ),
# horizontal objects
'-': '-',
'_': '_',
# diagonal objects '\' & '/' ?
'/': '/',
'\\': '\\',
}
def xobj(symb, length):
"""Construct spatial object of given length.
return: [] of equal-length strings
"""
if length <= 0:
raise ValueError("Length should be greater than 0")
# TODO robustify when no unicodedat available
if _use_unicode:
_xobj = _xobj_unicode
else:
_xobj = _xobj_ascii
vinfo = _xobj[symb]
c1 = top = bot = mid = None
if not isinstance(vinfo, tuple): # 1 entry
ext = vinfo
else:
if isinstance(vinfo[0], tuple): # (vlong), c1
vlong = vinfo[0]
c1 = vinfo[1]
else: # (vlong), c1
vlong = vinfo
ext = vlong[0]
try:
top = vlong[1]
bot = vlong[2]
mid = vlong[3]
except IndexError:
pass
if c1 is None:
c1 = ext
if top is None:
top = ext
if bot is None:
bot = ext
if mid is not None:
if (length % 2) == 0:
# even height, but we have to print it somehow anyway...
# XXX is it ok?
length += 1
else:
mid = ext
if length == 1:
return c1
res = []
next = (length - 2)//2
nmid = (length - 2) - next*2
res += [top]
res += [ext]*next
res += [mid]*nmid
res += [ext]*next
res += [bot]
return res
def vobj(symb, height):
"""Construct vertical object of a given height
see: xobj
"""
return '\n'.join( xobj(symb, height) )
def hobj(symb, width):
"""Construct horizontal object of a given width
see: xobj
"""
return ''.join( xobj(symb, width) )
# RADICAL
# n -> symbol
root = {
2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM')
3: U('CUBE ROOT'),
4: U('FOURTH ROOT'),
}
# RATIONAL
VF = lambda txt: U('VULGAR FRACTION %s' % txt)
# (p,q) -> symbol
frac = {
(1, 2): VF('ONE HALF'),
(1, 3): VF('ONE THIRD'),
(2, 3): VF('TWO THIRDS'),
(1, 4): VF('ONE QUARTER'),
(3, 4): VF('THREE QUARTERS'),
(1, 5): VF('ONE FIFTH'),
(2, 5): VF('TWO FIFTHS'),
(3, 5): VF('THREE FIFTHS'),
(4, 5): VF('FOUR FIFTHS'),
(1, 6): VF('ONE SIXTH'),
(5, 6): VF('FIVE SIXTHS'),
(1, 8): VF('ONE EIGHTH'),
(3, 8): VF('THREE EIGHTHS'),
(5, 8): VF('FIVE EIGHTHS'),
(7, 8): VF('SEVEN EIGHTHS'),
}
# atom symbols
_xsym = {
'==': ('=', '='),
'<': ('<', '<'),
'>': ('>', '>'),
'<=': ('<=', U('LESS-THAN OR EQUAL TO')),
'>=': ('>=', U('GREATER-THAN OR EQUAL TO')),
'!=': ('!=', U('NOT EQUAL TO')),
':=': (':=', ':='),
'+=': ('+=', '+='),
'-=': ('-=', '-='),
'*=': ('*=', '*='),
'/=': ('/=', '/='),
'%=': ('%=', '%='),
'*': ('*', U('DOT OPERATOR')),
'-->': ('-->', U('EM DASH') + U('EM DASH') +
U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH')
and U('BLACK RIGHT-POINTING TRIANGLE') else None),
'==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BLACK RIGHT-POINTING TRIANGLE') if
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BLACK RIGHT-POINTING TRIANGLE') else None),
'.': ('*', U('RING OPERATOR')),
}
def xsym(sym):
"""get symbology for a 'character'"""
op = _xsym[sym]
if _use_unicode:
return op[1]
else:
return op[0]
# SYMBOLS
atoms_table = {
# class how-to-display
'Exp1': U('SCRIPT SMALL E'),
'Pi': U('GREEK SMALL LETTER PI'),
'Infinity': U('INFINITY'),
'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here
#'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'),
#'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'),
'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'),
'EmptySet': U('EMPTY SET'),
'Naturals': U('DOUBLE-STRUCK CAPITAL N'),
'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and
(U('DOUBLE-STRUCK CAPITAL N') +
U('SUBSCRIPT ZERO'))),
'Integers': U('DOUBLE-STRUCK CAPITAL Z'),
'Rationals': U('DOUBLE-STRUCK CAPITAL Q'),
'Reals': U('DOUBLE-STRUCK CAPITAL R'),
'Complexes': U('DOUBLE-STRUCK CAPITAL C'),
'Union': U('UNION'),
'SymmetricDifference': U('INCREMENT'),
'Intersection': U('INTERSECTION'),
'Ring': U('RING OPERATOR'),
'Modifier Letter Low Ring':U('Modifier Letter Low Ring'),
'EmptySequence': 'EmptySequence',
}
def pretty_atom(atom_name, default=None, printer=None):
"""return pretty representation of an atom"""
if _use_unicode:
if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j':
return U('DOUBLE-STRUCK ITALIC SMALL J')
else:
return atoms_table[atom_name]
else:
if default is not None:
return default
raise KeyError('only unicode') # send it default printer
def pretty_symbol(symb_name, bold_name=False):
"""return pretty representation of a symbol"""
# let's split symb_name into symbol + index
# UC: beta1
# UC: f_beta
if not _use_unicode:
return symb_name
name, sups, subs = split_super_sub(symb_name)
def translate(s, bold_name) :
if bold_name:
gG = greek_bold_unicode.get(s)
else:
gG = greek_unicode.get(s)
if gG is not None:
return gG
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) :
if s.lower().endswith(key) and len(s)>len(key):
return modifier_dict[key](translate(s[:-len(key)], bold_name))
if bold_name:
return ''.join([bold_unicode[c] for c in s])
return s
name = translate(name, bold_name)
# Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are
# not used at all.
def pretty_list(l, mapping):
result = []
for s in l:
pretty = mapping.get(s)
if pretty is None:
try: # match by separate characters
pretty = ''.join([mapping[c] for c in s])
except (TypeError, KeyError):
return None
result.append(pretty)
return result
pretty_sups = pretty_list(sups, sup)
if pretty_sups is not None:
pretty_subs = pretty_list(subs, sub)
else:
pretty_subs = None
# glue the results into one string
if pretty_subs is None: # nice formatting of sups/subs did not work
if subs:
name += '_'+'_'.join([translate(s, bold_name) for s in subs])
if sups:
name += '__'+'__'.join([translate(s, bold_name) for s in sups])
return name
else:
sups_result = ' '.join(pretty_sups)
subs_result = ' '.join(pretty_subs)
return ''.join([name, sups_result, subs_result])
def annotated(letter):
"""
Return a stylised drawing of the letter ``letter``, together with
information on how to put annotations (super- and subscripts to the
left and to the right) on it.
See pretty.py functions _print_meijerg, _print_hyper on how to use this
information.
"""
ucode_pics = {
'F': (2, 0, 2, 0, '\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
'\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
'\N{BOX DRAWINGS LIGHT UP}'),
'G': (3, 0, 3, 1, '\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n'
'\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n'
'\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}')
}
ascii_pics = {
'F': (3, 0, 3, 0, ' _\n|_\n|\n'),
'G': (3, 0, 3, 1, ' __\n/__\n\\_|')
}
if _use_unicode:
return ucode_pics[letter]
else:
return ascii_pics[letter]
def is_combining(sym):
"""Check whether symbol is a unicode modifier.
See stringPict.width on usage.
"""
return True if ('\N{COMBINING GRAVE ACCENT}' <= sym <=
'\N{COMBINING LATIN SMALL LETTER X}' or
'\N{COMBINING LEFT HARPOON ABOVE}' <= sym <=
'\N{COMBINING ASTERISK ABOVE}') else False
def center_accent(string, accent):
"""
Returns a string with accent inserted on the middle character. Useful to
put combining accents on symbol names, including multi-character names.
Parameters
==========
string : string
The string to place the accent in.
accent : string
The combining accent to insert
References
==========
.. [1] https://en.wikipedia.org/wiki/Combining_character
.. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
"""
# Accent is placed on the previous character, although it may not always look
# like that depending on console
midpoint = len(string) // 2 + 1
firstpart = string[:midpoint]
secondpart = string[midpoint:]
return firstpart + accent + secondpart
|
c5d0a22b8562d900ccbbc36c0a834bb5d12301245fbef9dbe43014510b5938f1 | """Prettyprinter by Jurjen Bos.
(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay).
All objects have a method that create a "stringPict",
that can be used in the str method for pretty printing.
Updates by Jason Gedge (email <my last name> at cs mun ca)
- terminal_string() method
- minor fixes and changes (mostly to prettyForm)
TODO:
- Allow left/center/right alignment options for above/below and
top/center/bottom alignment options for left/right
"""
from __future__ import print_function, division
from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, is_combining
from sympy.utilities.exceptions import SymPyDeprecationWarning
class stringPict(object):
"""An ASCII picture.
The pictures are represented as a list of equal length strings.
"""
#special value for stringPict.below
LINE = 'line'
def __init__(self, s, baseline=0):
"""Initialize from string.
Multiline strings are centered.
"""
self.s = s
#picture is a string that just can be printed
self.picture = stringPict.equalLengths(s.splitlines())
#baseline is the line number of the "base line"
self.baseline = baseline
self.binding = None
@staticmethod
def line_width(line):
"""Unicode combining symbols (modifiers) are not ever displayed as
separate symbols and thus shouldn't be counted
"""
return sum(1 for sym in line if not is_combining(sym))
@staticmethod
def equalLengths(lines):
# empty lines
if not lines:
return ['']
width = max(stringPict.line_width(line) for line in lines)
return [line.center(width) for line in lines]
def height(self):
"""The height of the picture in characters."""
return len(self.picture)
def width(self):
"""The width of the picture in characters."""
return stringPict.line_width(self.picture[0])
@staticmethod
def next(*args):
"""Put a string of stringPicts next to each other.
Returns string, baseline arguments for stringPict.
"""
#convert everything to stringPicts
objects = []
for arg in args:
if isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#make a list of pictures, with equal height and baseline
newBaseline = max(obj.baseline for obj in objects)
newHeightBelowBaseline = max(
obj.height() - obj.baseline
for obj in objects)
newHeight = newBaseline + newHeightBelowBaseline
pictures = []
for obj in objects:
oneEmptyLine = [' '*obj.width()]
basePadding = newBaseline - obj.baseline
totalPadding = newHeight - obj.height()
pictures.append(
oneEmptyLine * basePadding +
obj.picture +
oneEmptyLine * (totalPadding - basePadding))
result = [''.join(lines) for lines in zip(*pictures)]
return '\n'.join(result), newBaseline
def right(self, *args):
r"""Put pictures next to this one.
Returns string, baseline arguments for stringPict.
(Multiline) strings are allowed, and are given a baseline of 0.
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
1
10 + -
2
"""
return stringPict.next(self, *args)
def left(self, *args):
"""Put pictures (left to right) at left.
Returns string, baseline arguments for stringPict.
"""
return stringPict.next(*(args + (self,)))
@staticmethod
def stack(*args):
"""Put pictures on top of each other,
from top to bottom.
Returns string, baseline arguments for stringPict.
The baseline is the baseline of the second picture.
Everything is centered.
Baseline is the baseline of the second picture.
Strings are allowed.
The special value stringPict.LINE is a row of '-' extended to the width.
"""
#convert everything to stringPicts; keep LINE
objects = []
for arg in args:
if arg is not stringPict.LINE and isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#compute new width
newWidth = max(
obj.width()
for obj in objects
if obj is not stringPict.LINE)
lineObj = stringPict(hobj('-', newWidth))
#replace LINE with proper lines
for i, obj in enumerate(objects):
if obj is stringPict.LINE:
objects[i] = lineObj
#stack the pictures, and center the result
newPicture = []
for obj in objects:
newPicture.extend(obj.picture)
newPicture = [line.center(newWidth) for line in newPicture]
newBaseline = objects[0].height() + objects[1].baseline
return '\n'.join(newPicture), newBaseline
def below(self, *args):
"""Put pictures under this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of top picture
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("x+3").below(
... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE
x+3
---
3
"""
s, baseline = stringPict.stack(self, *args)
return s, self.baseline
def above(self, *args):
"""Put pictures above this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of bottom picture.
"""
string, baseline = stringPict.stack(*(args + (self,)))
baseline = len(string.splitlines()) - self.height() + self.baseline
return string, baseline
def parens(self, left='(', right=')', ifascii_nougly=False):
"""Put parentheses around self.
Returns string, baseline arguments for stringPict.
left or right can be None or empty string which means 'no paren from
that side'
"""
h = self.height()
b = self.baseline
# XXX this is a hack -- ascii parens are ugly!
if ifascii_nougly and not pretty_use_unicode():
h = 1
b = 0
res = self
if left:
lparen = stringPict(vobj(left, h), baseline=b)
res = stringPict(*lparen.right(self))
if right:
rparen = stringPict(vobj(right, h), baseline=b)
res = stringPict(*res.right(rparen))
return ('\n'.join(res.picture), res.baseline)
def leftslash(self):
"""Precede object by a slash of the proper size.
"""
# XXX not used anywhere ?
height = max(
self.baseline,
self.height() - 1 - self.baseline)*2 + 1
slash = '\n'.join(
' '*(height - i - 1) + xobj('/', 1) + ' '*i
for i in range(height)
)
return self.left(stringPict(slash, height//2))
def root(self, n=None):
"""Produce a nice root symbol.
Produces ugly results for big n inserts.
"""
# XXX not used anywhere
# XXX duplicate of root drawing in pretty.py
#put line over expression
result = self.above('_'*self.width())
#construct right half of root symbol
height = self.height()
slash = '\n'.join(
' ' * (height - i - 1) + '/' + ' ' * i
for i in range(height)
)
slash = stringPict(slash, height - 1)
#left half of root symbol
if height > 2:
downline = stringPict('\\ \n \\', 1)
else:
downline = stringPict('\\')
#put n on top, as low as possible
if n is not None and n.width() > downline.width():
downline = downline.left(' '*(n.width() - downline.width()))
downline = downline.above(n)
#build root symbol
root = downline.right(slash)
#glue it on at the proper height
#normally, the root symbel is as high as self
#which is one less than result
#this moves the root symbol one down
#if the root became higher, the baseline has to grow too
root.baseline = result.baseline - result.height() + root.height()
return result.left(root)
def render(self, * args, **kwargs):
"""Return the string form of self.
Unless the argument line_break is set to False, it will
break the expression in a form that can be printed
on the terminal without being broken up.
"""
if kwargs["wrap_line"] is False:
return "\n".join(self.picture)
if kwargs["num_columns"] is not None:
# Read the argument num_columns if it is not None
ncols = kwargs["num_columns"]
else:
# Attempt to get a terminal width
ncols = self.terminal_width()
ncols -= 2
if ncols <= 0:
ncols = 78
# If smaller than the terminal width, no need to correct
if self.width() <= ncols:
return type(self.picture[0])(self)
# for one-line pictures we don't need v-spacers. on the other hand, for
# multiline-pictures, we need v-spacers between blocks, compare:
#
# 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323
# 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795
# | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b |
# 3 4 4 | | *d*f |
# 4*y*x + x + y | + b*c*f + b*d*e + b | |
# | | |
# | *d*f
i = 0
svals = []
do_vspacers = (self.height() > 1)
while i < self.width():
svals.extend([ sval[i:i + ncols] for sval in self.picture ])
if do_vspacers:
svals.append("") # a vertical spacer
i += ncols
if svals[-1] == '':
del svals[-1] # Get rid of the last spacer
return "\n".join(svals)
def terminal_width(self):
"""Return the terminal width if possible, otherwise return 0.
"""
ncols = 0
try:
import curses
import io
try:
curses.setupterm()
ncols = curses.tigetnum('cols')
except AttributeError:
# windows curses doesn't implement setupterm or tigetnum
# code below from
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/440694
from ctypes import windll, create_string_buffer
# stdin handle is -10
# stdout handle is -11
# stderr handle is -12
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(bufx, bufy, curx, cury, wattr,
left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw)
ncols = right - left + 1
except curses.error:
pass
except io.UnsupportedOperation:
pass
except (ImportError, TypeError):
pass
return ncols
def __eq__(self, o):
if isinstance(o, str):
return '\n'.join(self.picture) == o
elif isinstance(o, stringPict):
return o.picture == self.picture
return False
def __hash__(self):
return super(stringPict, self).__hash__()
def __str__(self):
return '\n'.join(self.picture)
def __repr__(self):
return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline)
def __getitem__(self, index):
return self.picture[index]
def __len__(self):
return len(self.s)
class prettyForm(stringPict):
"""
Extension of the stringPict class that knows about basic math applications,
optimizing double minus signs.
"Binding" is interpreted as follows::
ATOM this is an atom: never needs to be parenthesized
FUNC this is a function application: parenthesize if added (?)
DIV this is a division: make wider division if divided
POW this is a power: only parenthesize if exponent
MUL this is a multiplication: parenthesize if powered
ADD this is an addition: parenthesize if multiplied or powered
NEG this is a negative number: optimize if added, parenthesize if
multiplied or powered
OPEN this is an open object: parenthesize if added, multiplied, or
powered (example: Piecewise)
"""
ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8)
def __init__(self, s, baseline=0, binding=0, unicode=None):
"""Initialize from stringPict and binding power."""
stringPict.__init__(self, s, baseline)
self.binding = binding
if unicode is not None:
SymPyDeprecationWarning(
feature="``unicode`` argument to ``prettyForm``",
useinstead="the ``s`` argument",
deprecated_since_version="1.7").warn()
self._unicode = unicode or s
@property
def unicode(self):
SymPyDeprecationWarning(
feature="``prettyForm.unicode`` attribute",
useinstead="``stringPrict.s`` attribute",
deprecated_since_version="1.7").warn()
return self._unicode
# Note: code to handle subtraction is in _print_Add
def __add__(self, *others):
"""Make a pretty addition.
Addition of negative numbers is simplified.
"""
arg = self
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
result = [arg]
for arg in others:
#add parentheses for weak binders
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
#use existing minus sign if available
if arg.binding != prettyForm.NEG:
result.append(' + ')
result.append(arg)
return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result))
def __truediv__(self, den, slashed=False):
"""Make a pretty division; stacked or slashed.
"""
if slashed:
raise NotImplementedError("Can't do slashed fraction yet")
num = self
if num.binding == prettyForm.DIV:
num = stringPict(*num.parens())
if den.binding == prettyForm.DIV:
den = stringPict(*den.parens())
if num.binding==prettyForm.NEG:
num = num.right(" ")[0]
return prettyForm(binding=prettyForm.DIV, *stringPict.stack(
num,
stringPict.LINE,
den))
def __mul__(self, *others):
"""Make a pretty multiplication.
Parentheses are needed around +, - and neg.
"""
quantity = {
'degree': "\N{DEGREE SIGN}"
}
if len(others) == 0:
return self # We aren't actually multiplying... So nothing to do here.
args = self
if args.binding > prettyForm.MUL:
arg = stringPict(*args.parens())
result = [args]
for arg in others:
if arg.picture[0] not in quantity.values():
result.append(xsym('*'))
#add parentheses for weak binders
if arg.binding > prettyForm.MUL:
arg = stringPict(*arg.parens())
result.append(arg)
len_res = len(result)
for i in range(len_res):
if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'):
# substitute -1 by -, like in -1*x -> -x
result.pop(i)
result.pop(i)
result.insert(i, '-')
if result[0][0] == '-':
# if there is a - sign in front of all
# This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative
bin = prettyForm.NEG
if result[0] == '-':
right = result[1]
if right.picture[right.baseline][0] == '-':
result[0] = '- '
else:
bin = prettyForm.MUL
return prettyForm(binding=bin, *stringPict.next(*result))
def __repr__(self):
return "prettyForm(%r,%d,%d)" % (
'\n'.join(self.picture),
self.baseline,
self.binding)
def __pow__(self, b):
"""Make a pretty power.
"""
a = self
use_inline_func_form = False
if b.binding == prettyForm.POW:
b = stringPict(*b.parens())
if a.binding > prettyForm.FUNC:
a = stringPict(*a.parens())
elif a.binding == prettyForm.FUNC:
# heuristic for when to use inline power
if b.height() > 1:
a = stringPict(*a.parens())
else:
use_inline_func_form = True
if use_inline_func_form:
# 2
# sin + + (x)
b.baseline = a.prettyFunc.baseline + b.height()
func = stringPict(*a.prettyFunc.right(b))
return prettyForm(*func.right(a.prettyArgs))
else:
# 2 <-- top
# (x+y) <-- bot
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.above(top))
simpleFunctions = ["sin", "cos", "tan"]
@staticmethod
def apply(function, *args):
"""Functions of one or more variables.
"""
if function in prettyForm.simpleFunctions:
#simple function: use only space if possible
assert len(
args) == 1, "Simple function %s must have 1 argument" % function
arg = args[0].__pretty__()
if arg.binding <= prettyForm.DIV:
#optimization: no parentheses necessary
return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' '))
argumentList = []
for arg in args:
argumentList.append(',')
argumentList.append(arg.__pretty__())
argumentList = stringPict(*stringPict.next(*argumentList[1:]))
argumentList = stringPict(*argumentList.parens())
return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
|
7d6d9f7b033b285e3df2f09cb4f7656a70fd3b1af253d9e8543351444c6d57ae | from typing import Any, Dict
from sympy.testing.pytest import raises
from sympy import (symbols, sympify, Function, Integer, Matrix, Abs,
Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones,
sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild, MatrixSymbol)
from sympy.combinatorics import Cycle, Permutation
from sympy.core.compatibility import exec_
from sympy.core.symbol import Str
from sympy.geometry import Point, Ellipse
from sympy.printing import srepr
from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly
from sympy.polys.polyclasses import DMP
from sympy.polys.agca.extensions import FiniteExtension
x, y = symbols('x,y')
# eval(srepr(expr)) == expr has to succeed in the right environment. The right
# environment is the scope of "from sympy import *" for most cases.
ENV = {"Str": Str} # type: Dict[str, Any]
exec_("from sympy import *", ENV)
def sT(expr, string, import_stmt=None):
"""
sT := sreprTest
Tests that srepr delivers the expected string and that
the condition eval(srepr(expr))==expr holds.
"""
if import_stmt is None:
ENV2 = ENV
else:
ENV2 = ENV.copy()
exec_(import_stmt, ENV2)
assert srepr(expr) == string
assert eval(string, ENV2) == expr
def test_printmethod():
class R(Abs):
def _sympyrepr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert srepr(R(x)) == "foo(Symbol('x'))"
def test_Add():
sT(x + y, "Add(Symbol('x'), Symbol('y'))")
assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))"
assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))"
assert srepr(sympify('x + 3 - 2', evaluate=False), order='none') == "Add(Symbol('x'), Integer(3), Mul(Integer(-1), Integer(2)))"
def test_more_than_255_args_issue_10259():
from sympy import Add, Mul
for op in (Add, Mul):
expr = op(*symbols('x:256'))
assert eval(srepr(expr)) == expr
def test_Function():
sT(Function("f")(x), "Function('f')(Symbol('x'))")
# test unapplied Function
sT(Function('f'), "Function('f')")
sT(sin(x), "sin(Symbol('x'))")
sT(sin, "sin")
def test_Geometry():
sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
sT(Ellipse(Point(0, 0), 5, 1),
"Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
# TODO more tests
def test_Singletons():
sT(S.Catalan, 'Catalan')
sT(S.ComplexInfinity, 'zoo')
sT(S.EulerGamma, 'EulerGamma')
sT(S.Exp1, 'E')
sT(S.GoldenRatio, 'GoldenRatio')
sT(S.TribonacciConstant, 'TribonacciConstant')
sT(S.Half, 'Rational(1, 2)')
sT(S.ImaginaryUnit, 'I')
sT(S.Infinity, 'oo')
sT(S.NaN, 'nan')
sT(S.NegativeInfinity, '-oo')
sT(S.NegativeOne, 'Integer(-1)')
sT(S.One, 'Integer(1)')
sT(S.Pi, 'pi')
sT(S.Zero, 'Integer(0)')
def test_Integer():
sT(Integer(4), "Integer(4)")
def test_list():
sT([x, Integer(4)], "[Symbol('x'), Integer(4)]")
def test_Matrix():
for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]:
sT(cls([[x**+1, 1], [y, x + y]]),
"%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
sT(cls(), "%s([])" % name)
sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
def test_empty_Matrix():
sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])")
sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])")
sT(ones(0, 0), "MutableDenseMatrix([])")
def test_Rational():
sT(Rational(1, 3), "Rational(1, 3)")
sT(Rational(-1, 3), "Rational(-1, 3)")
def test_Float():
sT(Float('1.23', dps=3), "Float('1.22998', precision=13)")
sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', dps=19),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', dps=15),
"Float('0.60038617995049726', precision=53)")
sT(Float('1.23', precision=13), "Float('1.22998', precision=13)")
sT(Float('1.23456789', precision=33),
"Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', precision=66),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', precision=53),
"Float('0.60038617995049726', precision=53)")
sT(Float('0.60038617995049726', 15),
"Float('0.60038617995049726', precision=53)")
def test_Symbol():
sT(x, "Symbol('x')")
sT(y, "Symbol('y')")
sT(Symbol('x', negative=True), "Symbol('x', negative=True)")
def test_Symbol_two_assumptions():
x = Symbol('x', negative=0, integer=1)
# order could vary
s1 = "Symbol('x', integer=True, negative=False)"
s2 = "Symbol('x', negative=False, integer=True)"
assert srepr(x) in (s1, s2)
assert eval(srepr(x), ENV) == x
def test_Symbol_no_special_commutative_treatment():
sT(Symbol('x'), "Symbol('x')")
sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)")
sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)")
def test_Wild():
sT(Wild('x', even=True), "Wild('x', even=True)")
def test_Dummy():
d = Dummy('d')
sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index))
def test_Dummy_assumption():
d = Dummy('d', nonzero=True)
assert d == eval(srepr(d))
s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index)
s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index)
assert srepr(d) in (s1, s2)
def test_Dummy_from_Symbol():
# should not get the full dictionary of assumptions
n = Symbol('n', integer=True)
d = n.as_dummy()
assert srepr(d
) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index)
def test_tuple():
sT((x,), "(Symbol('x'),)")
sT((x, y), "(Symbol('x'), Symbol('y'))")
def test_WildFunction():
sT(WildFunction('w'), "WildFunction('w')")
def test_settins():
raises(TypeError, lambda: srepr(x, method="garbage"))
def test_Mul():
sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))")
assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))"
assert srepr(sympify('(x+4)*2*x*7', evaluate=False), order='none') == "Mul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))"
def test_AlgebraicNumber():
a = AlgebraicNumber(sqrt(2))
sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])")
a = AlgebraicNumber(root(-2, 3))
sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])")
def test_PolyRing():
assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)"
assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_FracField():
assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)"
assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_PolyElement():
R, x, y = ring("x,y", ZZ)
assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])"
def test_FracElement():
F, x, y = field("x,y", ZZ)
assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])"
def test_FractionField():
assert srepr(QQ.frac_field(x)) == \
"FractionField(FracField((Symbol('x'),), QQ, lex))"
assert srepr(QQ.frac_field(x, y, order=grlex)) == \
"FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))"
def test_PolynomialRingBase():
assert srepr(ZZ.old_poly_ring(x)) == \
"GlobalPolynomialRing(ZZ, Symbol('x'))"
assert srepr(ZZ[x].old_poly_ring(y)) == \
"GlobalPolynomialRing(ZZ[x], Symbol('y'))"
assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \
"GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
def test_DMP():
assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)'
assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \
"DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
def test_FiniteExtension():
assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \
"FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))"
def test_ExtensionElement():
A = FiniteExtension(Poly(x**2 + 1, x))
assert srepr(A.generator) == \
"ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))"
def test_BooleanAtom():
assert srepr(true) == "true"
assert srepr(false) == "false"
def test_Integers():
sT(S.Integers, "Integers")
def test_Naturals():
sT(S.Naturals, "Naturals")
def test_Naturals0():
sT(S.Naturals0, "Naturals0")
def test_Reals():
sT(S.Reals, "Reals")
def test_matrix_expressions():
n = symbols('n', integer=True)
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
sT(A, "MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))")
sT(A*B, "MatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
sT(A + B, "MatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
def test_Cycle():
# FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2))
# adds keys to the Cycle dict (GH-17661)
#import_stmt = "from sympy.combinatorics import Cycle"
#sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt)
assert srepr(Cycle(1, 2)) == "Cycle(1, 2)"
def test_Permutation():
import_stmt = "from sympy.combinatorics import Permutation"
sT(Permutation(1, 2), "Permutation(1, 2)", import_stmt)
def test_dict():
from sympy import srepr
from sympy.abc import x, y, z
d = {}
assert srepr(d) == "{}"
d = {x: y}
assert srepr(d) == "{Symbol('x'): Symbol('y')}"
d = {x: y, y: z}
assert srepr(d) in (
"{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}",
"{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}",
)
d = {x: {y: z}}
assert srepr(d) == "{Symbol('x'): {Symbol('y'): Symbol('z')}}"
def test_set():
from sympy import srepr
from sympy.abc import x, y
s = set()
assert srepr(s) == "set()"
s = {x, y}
assert srepr(s) in ("{Symbol('x'), Symbol('y')}", "{Symbol('y'), Symbol('x')}")
|
a2e8dfceb3884c04be0cd2e9c17e8bb961a64311e627129cb51a1b005e68aa42 | from __future__ import absolute_import
from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.codegen.cfunctions import expm1, log1p
from sympy.codegen.scipy_nodes import cosm1
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter,
SymPyPrinter
)
from sympy.testing.pytest import raises
from sympy.tensor import IndexedBase
from sympy.testing.pytest import skip
from sympy.external import import_module
from sympy.functions.special.gamma_functions import loggamma
x, y, z = symbols('x y z')
p = IndexedBase("p")
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
assert prntr.module_imports == {'math': {'pi', 'sqrt'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)'
def test_PythonCodePrinter_standard():
import sys
prntr = PythonCodePrinter({'standard':None})
python_version = sys.version_info.major
if python_version == 2:
assert prntr.standard == 'python2'
if python_version == 3:
assert prntr.standard == 'python3'
raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
assert p.doprint(S.Exp1) == 'mpmath.e'
assert p.doprint(S.Pi) == 'mpmath.pi'
assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
assert p.doprint(S.EulerGamma) == 'mpmath.euler'
assert p.doprint(S.NaN) == 'mpmath.nan'
assert p.doprint(S.Infinity) == 'mpmath.inf'
assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)'
def test_NumPyPrinter():
from sympy import (Lambda, ZeroMatrix, OneMatrix, FunctionMatrix,
HadamardProduct, KroneckerProduct, Adjoint, DiagonalOf,
DiagMatrix, DiagonalMatrix)
from sympy.abc import a, b
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
B = MatrixSymbol("B", 2, 2)
C = MatrixSymbol("C", 1, 5)
D = MatrixSymbol("D", 3, 4)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
assert p.doprint(Identity(3)) == "numpy.eye(3)"
u = MatrixSymbol('x', 2, 1)
v = MatrixSymbol('y', 2, 1)
assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
"numpy.fromfunction(lambda a, b: a + b, (4, 5))"
assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"
# Workaround for numpy negative integer power errors
assert p.doprint(x**-1) == 'x**(-1.0)'
assert p.doprint(x**-2) == 'x**(-2.0)'
expr = Pow(2, -1, evaluate=False)
assert p.doprint(expr) == "2**(-1.0)"
assert p.doprint(S.Exp1) == 'numpy.e'
assert p.doprint(S.Pi) == 'numpy.pi'
assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
assert p.doprint(S.NaN) == 'numpy.nan'
assert p.doprint(S.Infinity) == 'numpy.PINF'
assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
def test_issue_18770():
numpy = import_module('numpy')
if not numpy:
skip("numpy not installed.")
from sympy import lambdify, Min, Max
expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1)
func = lambdify(x, expr1, "numpy")
assert (func(numpy.linspace(0, 3, 3)) == [1.0 , 1.75, 2.5 ]).all()
assert func(4) == 3
expr1 = Max(x**2 , x**3)
func = lambdify(x,expr1, "numpy")
assert (func(numpy.linspace(-1 , 2, 4)) == [1, 0, 1, 8] ).all()
assert func(4) == 64
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == \
'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio'
assert p.doprint(S.Pi) == 'scipy.constants.pi'
assert p.doprint(S.Exp1) == 'numpy.e'
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
def test_sqrt():
prntr = PythonCodePrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'
prntr = PythonCodePrinter({'standard' : 'python2'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1./2.)'
prntr = PythonCodePrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'
prntr = MpmathPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == \
"x**(mpmath.mpf(1)/mpmath.mpf(2))"
prntr = NumPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SciPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SymPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
def test_NumPyPrinter_print_seq():
n = NumPyPrinter()
assert n._print_seq(range(2)) == '(0, 1,)'
def test_issue_16535_16536():
from sympy import lowergamma, uppergamma
a = symbols('a')
expr1 = lowergamma(a, x)
expr2 = uppergamma(a, x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # uppergamma\nuppergamma(a, x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # uppergamma\nuppergamma(a, x)'
def test_Integral():
from sympy import Integral, exp
single = Integral(exp(-x), (x, 0, oo))
double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z))
indefinite = Integral(x**2, x)
evaluateat = Integral(x**2, (x, 1))
prntr = SciPyPrinter()
assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.PINF)[0]'
assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]'
raises(NotImplementedError, lambda: prntr.doprint(indefinite))
raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
prntr = MpmathPrinter()
assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))'
assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))'
raises(NotImplementedError, lambda: prntr.doprint(indefinite))
raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
def test_fresnel_integrals():
from sympy import fresnelc, fresnels
expr1 = fresnelc(x)
expr2 = fresnels(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]'
assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # fresnels\nfresnels(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # fresnels\nfresnels(x)'
prntr = MpmathPrinter()
assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)'
assert prntr.doprint(expr2) == 'mpmath.fresnels(x)'
def test_beta():
from sympy import beta
expr = beta(x, y)
prntr = SciPyPrinter()
assert prntr.doprint(expr) == 'scipy.special.beta(x, y)'
prntr = NumPyPrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter({'allow_unknown_functions': True})
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = MpmathPrinter()
assert prntr.doprint(expr) == 'mpmath.beta(x, y)'
def test_airy():
from sympy import airyai, airybi
expr1 = airyai(x)
expr2 = airybi(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]'
assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # airyai\nairyai(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # airybi\nairybi(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # airyai\nairyai(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # airybi\nairybi(x)'
def test_airy_prime():
from sympy import airyaiprime, airybiprime
expr1 = airyaiprime(x)
expr2 = airybiprime(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]'
assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # airyaiprime\nairyaiprime(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # airybiprime\nairybiprime(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # airyaiprime\nairyaiprime(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # airybiprime\nairybiprime(x)'
def test_numerical_accuracy_functions():
prntr = SciPyPrinter()
assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)'
assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)'
assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)'
|
7a73dec4aecdd779368a946b10e03140a36ede8c5f4b280adf85b66444aca133 | from sympy.core import (
S, pi, oo, symbols, Rational, Integer, Float, Mod, GoldenRatio, EulerGamma, Catalan,
Lambda, Dummy, Eq, nan, Mul, Pow
)
from sympy.functions import (
Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf,
erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh,
sqrt, tan, tanh
)
from sympy.sets import Range
from sympy.logic import ITE
from sympy.codegen import For, aug_assign, Assignment
from sympy.testing.pytest import raises, XFAIL
from sympy.printing.c import C89CodePrinter, C99CodePrinter, get_math_macros
from sympy.codegen.ast import (
AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const,
While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return,
real, float32, float64, float80, float128, intc, Comment, CodeBlock
)
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt
from sympy.codegen.cnodes import restrict
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix
from sympy import ccode
x, y, z = symbols('x,y,z')
def test_printmethod():
class fabs(Abs):
def _ccode(self, printer):
return "fabs(%s)" % printer._print(self.args[0])
assert ccode(fabs(x)) == "fabs(x)"
def test_ccode_sqrt():
assert ccode(sqrt(x)) == "sqrt(x)"
assert ccode(x**0.5) == "sqrt(x)"
assert ccode(sqrt(x)) == "sqrt(x)"
def test_ccode_Pow():
assert ccode(x**3) == "pow(x, 3)"
assert ccode(x**(y**3)) == "pow(x, pow(y, 3))"
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)"
assert ccode(x**-1.0) == '1.0/x'
assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)'
assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)'
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
(lambda base, exp: not exp.is_integer, "pow")]
assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)'
assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)'
_cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp),
(lambda base, exp: base != 2, 'pow')]
# Related to gh-11353
assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)'
assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)'
# For issue 14160
assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
def test_ccode_Max():
# Test for gh-11926
assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
def test_ccode_Min_performance():
#Shouldn't take more than a few seconds
big_min = Min(*symbols('a[0:50]'))
for curr_standard in ('c89', 'c99', 'c11'):
output = ccode(big_min, standard=curr_standard)
assert output.count('(') == output.count(')')
def test_ccode_constants_mathh():
assert ccode(exp(1)) == "M_E"
assert ccode(pi) == "M_PI"
assert ccode(oo, standard='c89') == "HUGE_VAL"
assert ccode(-oo, standard='c89') == "-HUGE_VAL"
assert ccode(oo) == "INFINITY"
assert ccode(-oo, standard='c99') == "-INFINITY"
assert ccode(pi, type_aliases={real: float80}) == "M_PIl"
def test_ccode_constants_other():
assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert ccode(
2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_ccode_Rational():
assert ccode(Rational(3, 7)) == "3.0/7.0"
assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(Rational(18, 9)) == "2"
assert ccode(Rational(3, -7)) == "-3.0/7.0"
assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L"
assert ccode(Rational(-3, -7)) == "3.0/7.0"
assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0"
assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L"
assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x"
assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x"
def test_ccode_Integer():
assert ccode(Integer(67)) == "67"
assert ccode(Integer(-1)) == "-1"
def test_ccode_functions():
assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
def test_ccode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert ccode(
g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert ccode(g(A[i]), assign_to=A[i]) == (
"for (int i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_ccode_exceptions():
assert ccode(gamma(x), standard='C99') == "tgamma(x)"
gamma_c89 = ccode(gamma(x), standard='C89')
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=False)
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=True)
assert not 'not supported in c' in gamma_c89.lower()
assert ccode(ceiling(x)) == "ceil(x)"
assert ccode(Abs(x)) == "fabs(x)"
assert ccode(gamma(x)) == "tgamma(x)"
r, s = symbols('r,s', real=True)
assert ccode(Mod(ceiling(r), ceiling(s))) == "((ceil(r)) % (ceil(s)))"
assert ccode(Mod(r, s)) == "fmod(r, s)"
def test_ccode_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "ceil",
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
}
assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)"
assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)"
def test_ccode_boolean():
assert ccode(True) == "true"
assert ccode(S.true) == "true"
assert ccode(False) == "false"
assert ccode(S.false) == "false"
assert ccode(x & y) == "x && y"
assert ccode(x | y) == "x || y"
assert ccode(~x) == "!x"
assert ccode(x & y & z) == "x && y && z"
assert ccode(x | y | z) == "x || y || z"
assert ccode((x & y) | z) == "z || x && y"
assert ccode((x | y) & z) == "z && (x || y)"
def test_ccode_Relational():
from sympy import Eq, Ne, Le, Lt, Gt, Ge
assert ccode(Eq(x, y)) == "x == y"
assert ccode(Ne(x, y)) == "x != y"
assert ccode(Le(x, y)) == "x <= y"
assert ccode(Lt(x, y)) == "x < y"
assert ccode(Gt(x, y)) == "x > y"
assert ccode(Ge(x, y)) == "x >= y"
def test_ccode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": (\n"
" pow(x, 2)\n"
"))")
assert ccode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
assert ccode(expr, assign_to='c') == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else if (x < 2) {\n"
" c = x + 1;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: ccode(expr))
def test_ccode_sinc():
from sympy import sinc
expr = sinc(x)
assert ccode(expr) == (
"((x != 0) ? (\n"
" sin(x)/x\n"
")\n"
": (\n"
" 1\n"
"))")
def test_ccode_Piecewise_deep():
p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
assert p == (
"2*((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
assert ccode(expr) == (
"pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1")
assert ccode(expr, assign_to='c') == (
"c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1;")
def test_ccode_ITE():
expr = ITE(x < 1, y, z)
assert ccode(expr) == (
"((x < 1) ? (\n"
" y\n"
")\n"
": (\n"
" z\n"
"))")
def test_ccode_settings():
raises(TypeError, lambda: ccode(sin(x), method="garbage"))
def test_ccode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
s, n, m, o = symbols('s n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
x = IndexedBase('x')[j]
A = IndexedBase('A')[i, j]
B = IndexedBase('B')[i, j, k]
p = C99CodePrinter()
assert p._print_Indexed(x) == 'x[j]'
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
A = IndexedBase('A', shape=(5,3))[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (3*i + j)
A = IndexedBase('A', shape=(5,3), strides='F')[i, j]
assert ccode(A) == 'A[%s]' % (i + 5*j)
A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j]
assert ccode(A) == 'A[o + s*j + i]'
Abase = IndexedBase('A', strides=(s, m, n), offset=o)
assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]'
assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]'
def test_Element():
assert ccode(Element('x', 'ij')) == 'x[i][j]'
assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]'
assert ccode(Element('x', (3,))) == 'x[3]'
assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]'
def test_ccode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = ccode(e.rhs, assign_to=e.lhs, contract=False)
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
def test_ccode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j], assign_to=y[i]) == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
assert ccode(x[i], assign_to=y[i]) == expected
def test_ccode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s
def test_ccode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s
def test_ccode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s
def test_ccode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (int i=0; i<m; i++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_dereference_printing():
expr = x + y + sin(z) + z
assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert ccode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert ccode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert ccode(m, M) == (
"M[0] = sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_sparse_matrix():
# gh-15791
assert 'Not supported in C' in ccode(SparseMatrix([[1, 2, 3]]))
def test_ccode_reserved_words():
x, y = symbols('x, if')
with raises(ValueError):
ccode(y**2, error_on_reserved=True, standard='C99')
assert ccode(y**2) == 'pow(if_, 2)'
assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x'
assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)'
def test_ccode_sign():
expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
assert ccode(expr1) == ref1
assert ccode(expr1, 'z') == 'z = %s;' % ref1
assert ccode(expr2) == ref2
assert ccode(expr3) == ref3
def test_ccode_Assignment():
assert ccode(Assignment(x, y + z)) == 'x = y + z;'
assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;'
def test_ccode_For():
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n"
" y *= x;\n"
"}")
def test_ccode_Max_Min():
assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)'
assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)'
assert ccode(Min(x, 0, sqrt(x)), standard='c89') == (
'((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))'
)
def test_ccode_standard():
assert ccode(expm1(x), standard='c99') == 'expm1(x)'
assert ccode(nan, standard='c99') == 'NAN'
assert ccode(float('nan'), standard='c99') == 'NAN'
def test_C89CodePrinter():
c89printer = C89CodePrinter()
assert c89printer.language == 'C'
assert c89printer.standard == 'C89'
assert 'void' in c89printer.reserved_words
assert 'template' not in c89printer.reserved_words
def test_C99CodePrinter():
assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)'
assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)'
assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)'
assert C99CodePrinter().doprint(log2(x)) == 'log2(x)'
assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)'
assert C99CodePrinter().doprint(log10(x)) == 'log10(x)'
assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken.
assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)'
assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)'
assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))'
assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)'
c99printer = C99CodePrinter()
assert c99printer.language == 'C'
assert c99printer.standard == 'C99'
assert 'restrict' in c99printer.reserved_words
assert 'using' not in c99printer.reserved_words
@XFAIL
def test_C99CodePrinter__precision_f80():
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)'
def test_C99CodePrinter__precision():
n = symbols('n', integer=True)
f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'
for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
def check(expr, ref):
assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
check(Abs(n), 'abs(n)')
check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
check(exp2(x), 'exp2{s}(x)')
check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
check(Mod(n, 2), '((n) % (2))')
check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
check(log1p(x), 'log1p{s}(x)')
check(2**x, 'pow{s}(2, x)')
check(2.0**x, 'pow{s}(2.0{S}, x)')
check(x**3, 'pow{s}(x, 3)')
check(x**4.0, 'pow{s}(x, 4.0{S})')
check(sqrt(3+x), 'sqrt{s}(x + 3)')
check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
check(hypot(x, y), 'hypot{s}(x, y)')
check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')
check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
check(erf(42.*x), 'erf{s}(42.0{S}*x)')
check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
check(gamma(x), 'tgamma{s}(x)')
check(loggamma(x), 'lgamma{s}(x)')
check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
check(floor(x + 2.), "floor{s}(x + 2.0{S})")
check(fma(x, y, -z), 'fma{s}(x, y, -z)')
check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
def test_get_math_macros():
macros = get_math_macros()
assert macros[exp(1)] == 'M_E'
assert macros[1/Sqrt(2)] == 'M_SQRT1_2'
def test_ccode_Declaration():
i = symbols('i', integer=True)
var1 = Variable(i, type=Type.from_expr(i))
dcl1 = Declaration(var1)
assert ccode(dcl1) == 'int i'
var2 = Variable(x, type=float32, attrs={value_const})
dcl2a = Declaration(var2)
assert ccode(dcl2a) == 'const float x'
dcl2b = var2.as_Declaration(value=pi)
assert ccode(dcl2b) == 'const float x = M_PI'
var3 = Variable(y, type=Type('bool'))
dcl3 = Declaration(var3)
printer = C89CodePrinter()
assert 'stdbool.h' not in printer.headers
assert printer.doprint(dcl3) == 'bool y'
assert 'stdbool.h' in printer.headers
u = symbols('u', real=True)
ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict})
dcl4 = Declaration(ptr4)
assert ccode(dcl4) == 'double * const restrict u'
var5 = Variable(x, Type('__float128'), attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const __float128 x'
var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs)
dcl5b = Declaration(var5b)
assert ccode(dcl5b) == 'const __float128 x = M_PI'
def test_C99CodePrinter_custom_type():
# We will look at __float128 (new in glibc 2.26)
f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp)
p128 = C99CodePrinter(dict(
type_aliases={real: f128},
type_literal_suffixes={f128: 'Q'},
type_func_suffixes={f128: 'f128'},
type_math_macro_suffixes={
real: 'f128',
f128: 'f128'
},
type_macros={
f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',)
}
))
assert p128.doprint(x) == 'x'
assert not p128.headers
assert not p128.libraries
assert not p128.macros
assert p128.doprint(2.0) == '2.0Q'
assert not p128.headers
assert not p128.libraries
assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'}
assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q'
assert p128.doprint(sin(x)) == 'sinf128(x)'
assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)'
assert p128.doprint(x**-1.0) == '1.0Q/x'
var5 = Variable(x, f128, attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const _Float128 x'
var5b = Variable(x, f128, pi, attrs={value_const})
dcl5b = Declaration(var5b)
assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128'
var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const})
dcl5c = Declaration(var5b)
assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig)
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(ccode(A[0, 0]) == "A[0]")
assert(ccode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(ccode(F) == "(A - B)[0]")
def test_ccode_math_macros():
assert ccode(z + exp(1)) == 'z + M_E'
assert ccode(z + log2(exp(1))) == 'z + M_LOG2E'
assert ccode(z + 1/log(2)) == 'z + M_LOG2E'
assert ccode(z + log(2)) == 'z + M_LN2'
assert ccode(z + log(10)) == 'z + M_LN10'
assert ccode(z + pi) == 'z + M_PI'
assert ccode(z + pi/2) == 'z + M_PI_2'
assert ccode(z + pi/4) == 'z + M_PI_4'
assert ccode(z + 1/pi) == 'z + M_1_PI'
assert ccode(z + 2/pi) == 'z + M_2_PI'
assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + Sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2'
assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2'
def test_ccode_Type():
assert ccode(Type('float')) == 'float'
assert ccode(intc) == 'int'
def test_ccode_codegen_ast():
assert ccode(Comment("this is a comment")) == "// this is a comment"
assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == (
'while (fabs(x) > 1) {\n'
' x -= 1;\n'
'}'
)
assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == (
'{\n'
' x += 1;\n'
'}'
)
inp_x = Declaration(Variable(x, type=real))
assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)'
assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == (
'double pwer(double x){\n'
' x = pow(x, 2);\n'
'}'
)
# Elements of CodeBlock are formatted as statements:
block = CodeBlock(
x,
Print([x, y], "%d %d"),
FunctionCall('pwer', [x]),
Return(x),
)
assert ccode(block) == '\n'.join([
'x;',
'printf("%d %d", x, y);',
'pwer(x);',
'return x;',
])
|
6e31393095ac0d6bafbadb73f1b96fcacaa150d537e2bf2ce60c22973192d851 | from sympy.tensor.toperators import PartialDerivative
from sympy import (
Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform, Derivative,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, asinh, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SeqPer, SeqFormula, MatrixSlice,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex,
latex_escape, LatexPrinter)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.testing.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.combinatorics.permutations import \
Cycle, Permutation, AppliedPermutation
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
from sympy.sets.sets import \
Union, Intersection, Complement, SymmetricDifference, ProductSet
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \frac{1}{2}'
assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
r'1 \cdot 1 \frac{1}{2}'
assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
r'1 \cdot 1 \cdot 2 \cdot 3 x'
assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
r'\frac{2}{3} \frac{5}{7}'
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
x_star = Symbol('x^*')
f = Function('f')
assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
assert latex(Permutation(0, 1), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
assert latex(Permutation(), perm_cyclic=False) == \
r"\left( \right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
r"10000.0"
assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
r"9.99990000000000 \cdot 10^{-2}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = set(l.capitalize() for l in greek_letters_set)
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(asinh(x), inv_trig_style="full") == \
r"\operatorname{arcsinh}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# for negative nested Derivative
assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# for negative nested Integral
assert latex(Integral(-Integral(y**2,x),x)) == \
r'\int \left(- \int y^{2}\, dx\right)\, dx'
assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
assert latex(Range(oo, -oo, -1)) == \
r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
a, b, c = symbols('a:c')
assert latex(Range(a, b, c)) == r'Range\left(a, b, c\right)'
assert latex(Range(a, 10, 1)) == r'Range\left(a, 10, 1\right)'
assert latex(Range(0, b, 1)) == r'Range\left(0, b, 1\right)'
assert latex(Range(0, 10, c)) == r'Range\left(0, 10, c\right)'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_set_operators_parenthesis():
a, b, c, d = symbols('a:d')
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(A, B, evaluate=False)
D2 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert latex(Intersection(A, U2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cap ' \
'\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Intersection(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Intersection(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Union(A, I2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cup ' \
'\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Union(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Union(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(A, C2, evaluate=False)) == \
'\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Complement(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\setminus ' \
'\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)'
assert latex(Complement(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\
'\\setminus \\left(\\left\\{c\\right\\} \\times '\
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
'\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\triangle ' \
'\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
# XXX This can be incorrect since cartesian product is not associative
assert latex(ProductSet(A, P2).flatten()) == \
'\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}'
assert latex(ProductSet(U1, U2)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(I1, I2)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(C1, C2)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(ProductSet(D1, D2)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}"
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
assert latex(imgset) == \
r"\left\{x + y\; |\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
assert latex(Lambda(x, x)) == \
r"\left( x \mapsto x \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
assert latex(HadamardPower(X, n+1)) == \
r'X^{\circ \left({n + 1}\right)}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
expr = X.applyfunc(Lambda(x, 1/x))
assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
def test_fancyset_symbols():
assert latex(S.Rationals) == '\\mathbb{Q}'
assert latex(S.Naturals) == '\\mathbb{N}'
assert latex(S.Naturals0) == '\\mathbb{N}_0'
assert latex(S.Integers) == '\\mathbb{Z}'
assert latex(S.Reals) == '\\mathbb{R}'
assert latex(S.Complexes) == '\\mathbb{C}'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.Half, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Series_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert latex(Series(tf1, tf2)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)'
assert latex(Series(tf1, tf2, tf3)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right) \\left(\\frac{t x^{2} - t^{w} x + w}{t - y}\\right)'
assert latex(Series(-tf2, tf1)) == \
'\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)'
def test_TransferFunction_printing():
tf1 = TransferFunction(x - 1, x + 1, x)
assert latex(tf1) == r"\frac{x - 1}{x + 1}"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert latex(tf2) == r"\frac{x + 1}{2 - y}"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
def test_Parallel_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
assert latex(Parallel(tf1, tf2)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)'
assert latex(Parallel(-tf2, tf1)) == \
'\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)'
def test_Feedback_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
assert latex(Feedback(tf1, tf2)) == \
'\\frac{\\frac{p}{p + x}}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}'
assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
'\\frac{\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
K = TensorHead("K", [L, L, L, L])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
expr = PartialDerivative(A(i), A(i))
assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
expr = PartialDerivative(A(-i), A(-j))
assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(
Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in ' \
r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
r'\cos{\left(a x \right)} = 0 \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A_k = MatrixSymbol("A_k", 3, 3)
assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
A = MatrixSymbol(r"\nabla_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
def test_AppliedPermutation():
p = Permutation(0, 1, 2)
x = Symbol('x')
assert latex(AppliedPermutation(p, x)) == \
r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
def test_PermutationMatrix():
p = Permutation(0, 1, 2)
assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
p = Permutation(0, 3)(1, 2)
assert latex(PermutationMatrix(p)) == \
r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_latex_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p, [x, y])
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{x}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,)) == r'\left( 1,\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987')
assert(latex(.3, decimal_separator='comma')== r'0{,}3')
assert(latex(S(.3), decimal_separator='comma')== r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8 \cdot 10^{-7}')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
def test_latex_escape():
assert latex_escape(r"~^\&%$#_{}") == "".join([
r'\textasciitilde',
r'\textasciicircum',
r'\textbackslash',
r'\&',
r'\%',
r'\$',
r'\#',
r'\_',
r'\{',
r'\}',
])
def test_emptyPrinter():
class MyObject:
def __repr__(self):
return "<MyObject with {...}>"
# unknown objects are monospaced
assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
# even if they are nested within other objects
assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
def test_global_settings():
import inspect
# settings should be visible in the signature of `latex`
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i'
assert latex(I) == 'i'
try:
# but changing the defaults...
LatexPrinter.set_global_settings(imaginary_unit='j')
# ... should change the signature
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'j'
assert latex(I) == 'j'
finally:
# there's no public API to undo this, but we need to make sure we do
# so as not to impact other tests
del LatexPrinter._global_settings['imaginary_unit']
# check we really did undo it
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i'
assert latex(I) == 'i'
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.