hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
c8d0f7473f3ccb377320e5e2a0f956e8a5ef6d048d1eb746b7d18d52df8fa99e | from sympy import (
adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE,
Integral, integrate, Interval, KroneckerDelta, lambdify, log, Max, Min,
oo, Or, pi, Piecewise, piecewise_fold, Rational, solve, symbols, transpose,
cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Sum, Tuple, zoo, Float,
DiracDelta, Heaviside, Add, Mul, factorial, Ge, Contains)
from sympy.core.expr import unchanged
from sympy.functions.elementary.piecewise import Undefined, ExprCondPair
from sympy.printing import srepr
from sympy.testing.pytest import raises, slow
a, b, c, d, x, y = symbols('a:d, x, y')
z = symbols('z', nonzero=True)
def test_piecewise1():
# Test canonicalization
assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1),
ExprCondPair(0, True))
assert Piecewise((x, x < 1), (0, True), (1, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
Piecewise((x, x < 1))
assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
Piecewise((x, Or(x < 1, x < 2)), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
assert Piecewise((x, True)) == x
# Explicitly constructed empty Piecewise not accepted
raises(TypeError, lambda: Piecewise())
# False condition is never retained
assert Piecewise((2*x, x < 0), (x, False)) == \
Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
Piecewise((2*x, x < 0))
assert Piecewise((x, False)) == Undefined
raises(TypeError, lambda: Piecewise(x))
assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False
raises(TypeError, lambda: Piecewise((x, 2)))
raises(TypeError, lambda: Piecewise((x, x**2)))
raises(TypeError, lambda: Piecewise(([1], True)))
assert Piecewise(((1, 2), True)) == Tuple(1, 2)
cond = (Piecewise((1, x < 0), (2, True)) < y)
assert Piecewise((1, cond)
) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))
assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
) == Piecewise((1, x > 0), (2, x > -1))
# test for supporting Contains in Piecewise
pwise = Piecewise(
(1, And(x <= 6, x > 1, Contains(x, S.Integers))),
(0, True))
assert pwise.subs(x, pi) == 0
assert pwise.subs(x, 2) == 1
assert pwise.subs(x, 7) == 0
# Test subs
p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
assert p.subs(x, x**2) == p_x2
assert p.subs(x, -5) == -1
assert p.subs(x, -1) == 1
assert p.subs(x, 1) == log(1)
# More subs tests
p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
assert p2.subs(x, 2) == 1
assert p2.subs(x, 4) == -1
assert p2.subs(x, 10) == 0
assert p3.subs(x, 0.0) == 1
assert p4.subs(x, 0.0) == 1
f, g, h = symbols('f,g,h', cls=Function)
pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
assert pg.subs(g, f) == pf
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
Piecewise((1, Eq(exp(z), cos(z))), (0, True))
p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))
assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1
p6 = Piecewise((x, x > 0))
n = symbols('n', negative=True)
assert p6.subs(x, n) == Undefined
# Test evalf
assert p.evalf() == p
assert p.evalf(subs={x: -2}) == -1
assert p.evalf(subs={x: -1}) == 1
assert p.evalf(subs={x: 1}) == log(1)
assert p6.evalf(subs={x: -5}) == Undefined
# Test doit
f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
assert f_int.doit() == Piecewise( (S.Half, x < 1) )
# Test differentiation
f = x
fp = x*p
dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
fp_dx = x*dp + p
assert diff(p, x) == dp
assert diff(f*p, x) == fp_dx
# Test simple arithmetic
assert x*p == fp
assert x*p + p == p + x*p
assert p + f == f + p
assert p + dp == dp + p
assert p - dp == -(dp - p)
# Test power
dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
assert dp**2 == dp2
# Test _eval_interval
f1 = x*y + 2
f2 = x*y**2 + 3
peval = Piecewise((f1, x < 0), (f2, x > 0))
peval_interval = f1.subs(
x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
assert peval._eval_interval(x, 0, 0) == 0
assert peval._eval_interval(x, -1, 1) == peval_interval
peval2 = Piecewise((f1, x < 0), (f2, True))
assert peval2._eval_interval(x, 0, 0) == 0
assert peval2._eval_interval(x, 1, -1) == -peval_interval
assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
assert peval2._eval_interval(x, -1, 1) == peval_interval
assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)
# Test integration
assert p.integrate() == Piecewise(
(-x, x < -1),
(x**3/3 + Rational(4, 3), x < 0),
(x*log(x) - x + Rational(4, 3), True))
p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
assert integrate(p, (x, -2, 2)) == Rational(5, 6)
assert integrate(p, (x, 2, -2)) == Rational(-5, 6)
p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
assert integrate(p, (x, -oo, oo)) == 2
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert integrate(p, (x, -2, 2)) == Undefined
# Test commutativity
assert isinstance(p, Piecewise) and p.is_commutative is True
def test_piecewise_free_symbols():
f = Piecewise((x, a < 0), (y, True))
assert f.free_symbols == {x, y, a}
def test_piecewise_integrate1():
x, y = symbols('x y', real=True, finite=True)
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert integrate(f, (x, -2, 2)) == Rational(14, 3)
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == Rational(43, 6)
assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == Rational(-701, 6)
assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True))
g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True))
assert integrate(g, (x, -2, 2)) == Rational(28, 3)
assert integrate(g, (x, -2, 5)) == Rational(-673, 6)
def test_piecewise_integrate1b():
g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0))
assert integrate(g, (x, -1, 1)) == 0
g = Piecewise((1, x - y < 0), (0, True))
assert integrate(g, (y, -oo, 0)) == -Min(0, x)
assert g.subs(x, -3).integrate((y, -oo, 0)) == 3
assert integrate(g, (y, 0, -oo)) == Min(0, x)
assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo
assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42
assert integrate(g, (y, -oo, oo)) == -x + oo
g = Piecewise((0, x < 0), (x, x <= 1), (1, True))
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
for yy in (-1, S.Half, 2):
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
assert gy1 == Piecewise(
(-Min(1, Max(0, y))**2/2 + S.Half, y < 1),
(-y + 1, True))
assert g1y == Piecewise(
(Min(1, Max(0, y))**2/2 - S.Half, y < 1),
(y - 1, True))
@slow
def test_piecewise_integrate1ca():
y = symbols('y', real=True)
g = Piecewise(
(1 - x, Interval(0, 1).contains(x)),
(1 + x, Interval(-1, 0).contains(x)),
(0, True)
)
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
# XXX Make test pass without simplify
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2).simplify()
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2).simplify()
assert piecewise_fold(gy1.rewrite(Piecewise)) == \
Piecewise(
(1, y <= -1),
(-y**2/2 - y + S.Half, y <= 0),
(y**2/2 - y + S.Half, y < 1),
(0, True))
assert piecewise_fold(g1y.rewrite(Piecewise)) == \
Piecewise(
(-1, y <= -1),
(y**2/2 + y - S.Half, y <= 0),
(-y**2/2 + y - S.Half, y < 1),
(0, True))
# g1y and gy1 should simplify if the condition that y < 1
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
# XXX Make test pass without simplify
assert gy1.simplify() == Piecewise(
(
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
Min(1, Max(0, y))**2 + S.Half, y < 1),
(0, True)
)
assert g1y.simplify() == Piecewise(
(
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
Min(1, Max(0, y))**2 - S.Half, y < 1),
(0, True))
@slow
def test_piecewise_integrate1cb():
y = symbols('y', real=True)
g = Piecewise(
(0, Or(x <= -1, x >= 1)),
(1 - x, x > 0),
(1 + x, True)
)
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
assert piecewise_fold(gy1.rewrite(Piecewise)) == \
Piecewise(
(1, y <= -1),
(-y**2/2 - y + S.Half, y <= 0),
(y**2/2 - y + S.Half, y < 1),
(0, True))
assert piecewise_fold(g1y.rewrite(Piecewise)) == \
Piecewise(
(-1, y <= -1),
(y**2/2 + y - S.Half, y <= 0),
(-y**2/2 + y - S.Half, y < 1),
(0, True))
# g1y and gy1 should simplify if the condition that y < 1
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
assert gy1 == Piecewise(
(
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
Min(1, Max(0, y))**2 + S.Half, y < 1),
(0, True)
)
assert g1y == Piecewise(
(
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
Min(1, Max(0, y))**2 - S.Half, y < 1),
(0, True))
def test_piecewise_integrate2():
from itertools import permutations
lim = Tuple(x, c, d)
p = Piecewise((1, x < a), (2, x > b), (3, True))
q = p.integrate(lim)
assert q == Piecewise(
(-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d),
(-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True))
for v in permutations((1, 2, 3, 4)):
r = dict(zip((a, b, c, d), v))
assert p.subs(r).integrate(lim.subs(r)) == q.subs(r)
def test_meijer_bypass():
# totally bypass meijerg machinery when dealing
# with Piecewise in integrate
assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3
def test_piecewise_integrate3_inequality_conditions():
from sympy.utilities.iterables import cartes
lim = (x, 0, 5)
# set below includes two pts below range, 2 pts in range,
# 2 pts above range, and the boundaries
N = (-2, -1, 0, 1, 2, 5, 6, 7)
p = Piecewise((1, x > a), (2, x > b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1
p = Piecewise((1, x > a), (2, x < b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
# delete old tests that involved c1 and c2 since those
# reduce to the above except that a value of 0 was used
# for two expressions whereas the above uses 3 different
# values
@slow
def test_piecewise_integrate4_symbolic_conditions():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, x < a), (0, x > b), (1, True))
p2 = Piecewise((0, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0, True))
p4 = Piecewise((0, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
lim = Tuple(x, y, oo)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a:3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
ans = Piecewise(
(0, x <= Min(a, b)),
(x - Min(a, b), x <= b),
(b - Min(a, b), True))
for i in (p0, p1, p2, p4):
assert i.integrate(x) == ans
assert p3.integrate(x) == Piecewise(
(0, x < a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
assert p5.integrate(x) == Piecewise(
(0, x <= a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
p1 = Piecewise((0, x < a), (0.5, x > b), (1, True))
p2 = Piecewise((0.5, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0.5, True))
p4 = Piecewise((0.5, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
def test_piecewise_integrate5_independent_conditions():
p = Piecewise((0, Eq(y, 0)), (x*y, True))
assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True))
def test_piecewise_simplify():
p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)),
((-1)**x*(-1), True))
assert p.simplify() == \
Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True))
# simplify when there are Eq in conditions
assert Piecewise(
(a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify(
) == Piecewise(
(0, And(Eq(a, 0), Eq(b, 0))), (1, True))
assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)),
Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y
+ a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify(
) == Piecewise(
(2*x, And(Eq(a, 0), Eq(y, 0))),
(2, And(Eq(a, 1), Eq(y, 0))),
(0, True))
args = (2, And(Eq(x, 2), Ge(y ,0))), (x, True)
assert Piecewise(*args).simplify() == Piecewise(*args)
args = (1, Eq(x, 0)), (sin(x)/x, True)
assert Piecewise(*args).simplify() == Piecewise(*args)
assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True)
).simplify() == x
# check that x or f(x) are recognized as being Symbol-like for lhs
args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True))
ans = x + sin(x) + 1
f = Function('f')
assert Piecewise(*args).simplify() == ans
assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x))
# issue 18634
d = Symbol("d", integer=True)
n = Symbol("n", integer=True)
t = Symbol("t", real=True, positive=True)
expr = Piecewise((-d + 2*n, Eq(1/t, 1)), (t**(1 - 4*n)*t**(4*n - 1)*(-d + 2*n), True))
assert expr.simplify() == -d + 2*n
def test_piecewise_solve():
abs2 = Piecewise((-x, x <= 0), (x, x > 0))
f = abs2.subs(x, x - 2)
assert solve(f, x) == [2]
assert solve(f - 1, x) == [1, 3]
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert solve(f, x) == [2]
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2),
(-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0))
assert solve(g, x) == [5]
# if no symbol is given the piecewise detection must still work
assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5]
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
raises(NotImplementedError, lambda: solve(f, x))
def nona(ans):
return list(filter(lambda x: x is not S.NaN, ans))
p = Piecewise((x**2 - 4, x < y), (x - 2, True))
ans = solve(p, x)
assert nona([i.subs(y, -2) for i in ans]) == [2]
assert nona([i.subs(y, 2) for i in ans]) == [-2, 2]
assert nona([i.subs(y, 3) for i in ans]) == [-2, 2]
assert ans == [
Piecewise((-2, y > -2), (S.NaN, True)),
Piecewise((2, y <= 2), (S.NaN, True)),
Piecewise((2, y > 2), (S.NaN, True))]
# issue 6060
absxm3 = Piecewise(
(x - 3, 0 <= x - 3),
(3 - x, 0 > x - 3)
)
assert solve(absxm3 - y, x) == [
Piecewise((-y + 3, -y < 0), (S.NaN, True)),
Piecewise((y + 3, y >= 0), (S.NaN, True))]
p = Symbol('p', positive=True)
assert solve(absxm3 - p, x) == [-p + 3, p + 3]
# issue 6989
f = Function('f')
assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \
[Piecewise((-1, x > 0), (0, True))]
# issue 8587
f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True))
assert solve(f - 1) == [1/sqrt(2)]
def test_piecewise_fold():
p = Piecewise((x, x < 1), (1, 1 <= x))
assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x))
assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x))
assert piecewise_fold(Piecewise((1, x < 0), (2, True))
+ Piecewise((10, x < 0), (-10, True))) == \
Piecewise((11, x < 0), (-8, True))
p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True))
p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True))
p = 4*p1 + 2*p2
assert integrate(
piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1))
assert piecewise_fold(
Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True)
)) == Piecewise((1, y <= 0), (-2, y >= 0))
assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1)))
) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1))))
a, b = (Piecewise((2, Eq(x, 0)), (0, True)),
Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True)))
assert piecewise_fold(Mul(a, b, evaluate=False)
) == piecewise_fold(Mul(b, a, evaluate=False))
def test_piecewise_fold_piecewise_in_cond():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
assert p2.subs(x, -pi/2) == 0
assert p2.subs(x, 1) == 0
assert p2.subs(x, -pi/4) == 1
p4 = Piecewise((0, Eq(p1, 0)), (1,True))
ans = piecewise_fold(p4)
for i in range(-1, 1):
assert ans.subs(x, i) == p4.subs(x, i)
r1 = 1 < Piecewise((1, x < 1), (3, True))
ans = piecewise_fold(r1)
for i in range(2):
assert ans.subs(x, i) == r1.subs(x, i)
p5 = Piecewise((1, x < 0), (3, True))
p6 = Piecewise((1, x < 1), (3, True))
p7 = Piecewise((1, p5 < p6), (0, True))
ans = piecewise_fold(p7)
for i in range(-1, 2):
assert ans.subs(x, i) == p7.subs(x, i)
def test_piecewise_fold_piecewise_in_cond_2():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True))
p3 = Piecewise(
(0, (x >= 0) | Eq(cos(x), 0)),
(1/cos(x), x < 0),
(zoo, True)) # redundant b/c all x are already covered
assert(piecewise_fold(p2) == p3)
def test_piecewise_fold_expand():
p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True))
p2 = piecewise_fold(expand((1 - x)*p1))
assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True))
assert p2 == expand(piecewise_fold((1 - x)*p1))
def test_piecewise_duplicate():
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert p == Piecewise(*p.args)
def test_doit():
p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x))
assert p2.doit() == p1
assert p2.doit(deep=False) == p2
# issue 17165
p1 = Sum(y**x, (x, -1, oo)).doit()
assert p1.doit() == p1
def test_piecewise_interval():
p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True))
assert p1.subs(x, -0.5) == 0
assert p1.subs(x, 0.5) == 0.5
assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True))
assert integrate(p1, x) == Piecewise(
(0, x <= 0),
(x**2/2, x <= 1),
(S.Half, True))
def test_piecewise_collapse():
assert Piecewise((x, True)) == x
a = x < 1
assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a))
assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a))
b = x < 5
def canonical(i):
if isinstance(i, Piecewise):
return Piecewise(*i.args)
return i
for args in [
((1, a), (Piecewise((2, a), (3, b)), b)),
((1, a), (Piecewise((2, a), (3, b.reversed)), b)),
((1, a), (Piecewise((2, a), (3, b)), b), (4, True)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]:
for i in (0, 2, 10):
assert canonical(
Piecewise(*args, evaluate=False).subs(x, i)
) == canonical(Piecewise(*args).subs(x, i))
r1, r2, r3, r4 = symbols('r1:5')
a = x < r1
b = x < r2
c = x < r3
d = x < r4
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, a), (3, b), (5, c))
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c), (6, True)), c), (5, d)
) == Piecewise((1, a), (Piecewise(
(3, b), (4, c)), c), (5, d))
assert Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b)), b), (5, c))
assert Piecewise((1, c), (2, ~c), (3, S.true)
) == Piecewise((1, c), (2, S.true))
assert Piecewise((1, c), (2, And(~c, b)), (3,True)
) == Piecewise((1, c), (2, b), (3, True))
assert Piecewise((1, c), (2, Or(~c, b)), (3,True)
).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2
assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True))
def test_piecewise_lambdify():
p = Piecewise(
(x**2, x < 0),
(x, Interval(0, 1, False, True).contains(x)),
(2 - x, x >= 1),
(0, True)
)
f = lambdify(x, p)
assert f(-2.0) == 4.0
assert f(0.0) == 0.0
assert f(0.5) == 0.5
assert f(2.0) == 0.0
def test_piecewise_series():
from sympy import sin, cos, O
p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0))
p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0))
assert p1.nseries(x, n=2) == p2
def test_piecewise_as_leading_term():
p1 = Piecewise((1/x, x > 1), (0, True))
p2 = Piecewise((x, x > 1), (0, True))
p3 = Piecewise((1/x, x > 1), (x, True))
p4 = Piecewise((x, x > 1), (1/x, True))
p5 = Piecewise((1/x, x > 1), (x, True))
p6 = Piecewise((1/x, x < 1), (x, True))
p7 = Piecewise((x, x < 1), (1/x, True))
p8 = Piecewise((x, x > 1), (1/x, True))
assert p1.as_leading_term(x) == 0
assert p2.as_leading_term(x) == 0
assert p3.as_leading_term(x) == x
assert p4.as_leading_term(x) == 1/x
assert p5.as_leading_term(x) == x
assert p6.as_leading_term(x) == 1/x
assert p7.as_leading_term(x) == x
assert p8.as_leading_term(x) == 1/x
def test_piecewise_complex():
p1 = Piecewise((2, x < 0), (1, 0 <= x))
p2 = Piecewise((2*I, x < 0), (I, 0 <= x))
p3 = Piecewise((I*x, x > 1), (1 + I, True))
p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True))
assert conjugate(p1) == p1
assert conjugate(p2) == piecewise_fold(-p2)
assert conjugate(p3) == p4
assert p1.is_imaginary is False
assert p1.is_real is True
assert p2.is_imaginary is True
assert p2.is_real is False
assert p3.is_imaginary is None
assert p3.is_real is None
assert p1.as_real_imag() == (p1, 0)
assert p2.as_real_imag() == (0, -I*p2)
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Piecewise((A*B**2, x > 0), (A**2*B, True))
assert p.adjoint() == \
Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
assert p.conjugate() == \
Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
assert p.transpose() == \
Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
def test_piecewise_evaluate():
assert Piecewise((x, True)) == x
assert Piecewise((x, True), evaluate=True) == x
p = Piecewise((x, True), evaluate=False)
assert p != x
assert p.is_Piecewise
assert all(isinstance(i, Basic) for i in p.args)
assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),)
assert Piecewise((1, Eq(1, x)), evaluate=False).args == (
(1, Eq(1, x)),)
def test_as_expr_set_pairs():
assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \
[(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))]
assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \
[((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))]
def test_S_srepr_is_identity():
p = Piecewise((10, Eq(x, 0)), (12, True))
q = S(srepr(p))
assert p == q
def test_issue_12587():
# sort holes into intervals
p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True))
assert p.integrate((x, -5, 5)) == 23
p = Piecewise((1, x > 1), (2, x < y), (3, True))
lim = x, -3, 3
ans = p.integrate(lim)
for i in range(-1, 3):
assert ans.subs(y, i) == p.subs(y, i).integrate(lim)
def test_issue_11045():
assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3
# handle And with Or arguments
assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# hidden false
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# targetcond is Eq
assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True)
).integrate((x, 0, 4)) == 6
# And has Relational needing to be solved
assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# Or has Relational needing to be solved
assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True)
).integrate((x, 0, 3)) == 2
# ignore hidden false (handled in canonicalization)
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# watch for hidden True Piecewise
assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True)
).integrate((x, 0, 3)) == 6
# overlapping conditions of targetcond are recognized and ignored;
# the condition x > 3 will be pre-empted by the first condition
assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True)
).integrate((x, 0, 4)) == 6
# convert Ne to Or
assert Piecewise((1, Ne(x, 0)), (2, True)
).integrate((x, -1, 1)) == 2
# no default but well defined
assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))
).integrate((x, 1, 4)) == 5
p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)))
nan = Undefined
i = p.integrate((x, 1, y))
assert i == Piecewise(
(y - 1, y < 1),
(Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half,
y <= Min(4, y)),
(nan, True))
assert p.integrate((x, 1, -1)) == i.subs(y, -1)
assert p.integrate((x, 1, 4)) == 5
assert p.integrate((x, 1, 5)) is nan
# handle Not
p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True))
assert p.integrate((x, 0, 3)) == 4
# handle updating of int_expr when there is overlap
p = Piecewise(
(1, And(5 > x, x > 1)),
(2, Or(x < 3, x > 7)),
(4, x < 8))
assert p.integrate((x, 0, 10)) == 20
# And with Eq arg handling
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1))
).integrate((x, 0, 3)) is S.NaN
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True)
).integrate((x, 0, 3)) == 7
assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True)
).integrate((x, -1, 1)) == 4
# middle condition doesn't matter: it's a zero width interval
assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True)
).integrate((x, 0, 3)) == 7
def test_holes():
nan = Undefined
assert Piecewise((1, x < 2)).integrate(x) == Piecewise(
(x, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise(
(nan, x < 1), (x - 1, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan
assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2
# this also tests that the integrate method is used on non-Piecwise
# arguments in _eval_integral
A, B = symbols("A B")
a, b = symbols('a b', real=True)
assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2))
).integrate(x) == Piecewise(
(B*x, (a > 2)),
(Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1),
(Piecewise((B*x, x < 1), (nan, True)), True))
def test_issue_11922():
def f(x):
return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True))
autocorr = lambda k: (
f(x) * f(x + k)).integrate((x, -1, 1))
assert autocorr(1.9) > 0
k = symbols('k')
good_autocorr = lambda k: (
(1 - x**2) * f(x + k)).integrate((x, -1, 1))
a = good_autocorr(k)
assert a.subs(k, 3) == 0
k = symbols('k', positive=True)
a = good_autocorr(k)
assert a.subs(k, 3) == 0
assert Piecewise((0, x < 1), (10, (x >= 1))
).integrate() == Piecewise((0, x < 1), (10*x - 10, True))
def test_issue_5227():
f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539),
(-0.0160799238820171*x + 1.33215984776403, x < 2),
(Piecewise((0.3, x > 123), (0.7, True)) +
Piecewise((0.4, x > 2), (0.6, True)), x <=
123), (-0.00817409766454352*x + 2.10541401273885, x <
380.571428571429), (0, True))
i = integrate(f, (x, -oo, oo))
assert i == Integral(f, (x, -oo, oo)).doit()
assert str(i) == '1.00195081676351'
assert Piecewise((1, x - y < 0), (0, True)
).integrate(y) == Piecewise((0, y <= x), (-x + y, True))
def test_issue_10137():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, Or(a > x, b < x)), (1, True))
assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo))
p3 = Piecewise((1, And(0 < x, x < a)), (0, True))
p4 = Piecewise((1, And(a > x, x > 0)), (0, True))
ip3 = integrate(p3, x)
assert ip3 == Piecewise(
(0, x <= 0),
(x, x <= Max(0, a)),
(Max(0, a), True))
ip4 = integrate(p4, x)
assert ip4 == ip3
assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
def test_stackoverflow_43852159():
f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True))
Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo))
cx = Conv(x)
assert cx.subs(x, -1.5) == cx.subs(x, 1.5)
assert cx.subs(x, 3) == 0
assert piecewise_fold(f(x - y)*f(y)) == Piecewise(
(1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)),
(0, True))
def test_issue_12557():
'''
# 3200 seconds to compute the fourier part of issue
import sympy as sym
x,y,z,t = sym.symbols('x y z t')
k = sym.symbols("k", integer=True)
fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2),
(x, -sym.pi, sym.pi))
assert fourier == FourierSeries(
sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2,
Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi),
SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n,
0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n,
-k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) |
(Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n,
-k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2
- pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 -
2*pi*_n**2*k**2 + pi*k**4) +
(-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4),
True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo))))
'''
x = symbols("x", real=True)
k = symbols('k', integer=True, finite=True)
abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0))
assert integrate(abs2(x), (x, -pi, pi)) == pi**2
func = cos(k*x)*sqrt(x**2)
assert integrate(func, (x, -pi, pi)) == Piecewise(
(2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True))
def test_issue_6900():
from itertools import permutations
t0, t1, T, t = symbols('t0, t1 T t')
f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1))
g = f.integrate(t)
assert g == Piecewise(
(0, t <= t0),
(t*x - t0*x, t <= Max(t0, t1)),
(-t0*x + x*Max(t0, t1), True))
for i in permutations(range(2)):
reps = dict(zip((t0,t1), i))
for tt in range(-1,3):
assert (g.xreplace(reps).subs(t,tt) ==
f.xreplace(reps).integrate(t).subs(t,tt))
lim = Tuple(t, t0, T)
g = f.integrate(lim)
ans = Piecewise(
(-t0*x + x*Min(T, Max(t0, t1)), T > t0),
(0, True))
for i in permutations(range(3)):
reps = dict(zip((t0,t1,T), i))
tru = f.xreplace(reps).integrate(lim.xreplace(reps))
assert tru == ans.xreplace(reps)
assert g == ans
def test_issue_10122():
assert solve(abs(x) + abs(x - 1) - 1 > 0, x
) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo))
def test_issue_4313():
u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True))
e = (u - u.subs(x, y))**2/(x - y)**2
M = Max(0, a)
assert integrate(e, x).expand() == Piecewise(
(Piecewise(
(0, x <= 0),
(-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 +
2*y*log(x - y)/a**2 - y/a**2, x <= M),
(-y**2/(-a**2*y + a**2*M) + 1/(-y + M) -
1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y +
M)/a**2 - y/a**2 + M/a**2, True)),
((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))),
(Piecewise(
(-1/(x - y), x <= 0),
(-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) -
y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a +
2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 -
y/a**2, x <= M),
(-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y +
a**2*M) - y**2/(-a**2*y + a**2*M) +
2*log(-y)/a - 2*log(-y + M)/a + 2/a -
2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 -
y/a**2 + M/a**2, True)),
a <= y),
(Piecewise(
(-y**2/(a**2*x - a**2*y), x <= 0),
(x/a**2 + y/a**2, x <= M),
(a**2/(-a**2*y + a**2*M) -
a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) +
2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) -
y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)),
True))
def test__intervals():
assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == []
assert Piecewise(
(1, x > x + 1),
(Piecewise((1, x < x + 1)), 2*x < 2*x + 1),
(1, True))._intervals(x) == [(-oo, oo, 1, 1)]
assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [
(-oo, oo, 1, 0)]
assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True)
)._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)]
# the following tests that duplicates are removed and that non-Eq
# generated zero-width intervals are removed
assert Piecewise((1, Abs(x**(-2)) > 1), (0, True)
)._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)]
def test_containment():
a, b, c, d, e = [1, 2, 3, 4, 5]
p = (Piecewise((d, x > 1), (e, True))*
Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True)))
assert p.integrate(x).diff(x) == Piecewise(
(c*e, x <= 0),
(a*e, x <= 1),
(a*d, x < 2), # this is what we want to get right
(b*d, x < 4),
(c*d, True))
def test_piecewise_with_DiracDelta():
d1 = DiracDelta(x - 1)
assert integrate(d1, (x, -oo, oo)) == 1
assert integrate(d1, (x, 0, 2)) == 1
assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0
assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise(
(Heaviside(x - 1), x < 2), (1, True))
# TODO raise error if function is discontinuous at limit of
# integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise(
# (d1, Eq(x ,1)
def test_issue_10258():
assert Piecewise((0, x < 1), (1, True)).is_zero is None
assert Piecewise((-1, x < 1), (1, True)).is_zero is False
a = Symbol('a', zero=True)
assert Piecewise((0, x < 1), (a, True)).is_zero
assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None
a = Symbol('a')
assert Piecewise((0, x < 1), (a, True)).is_zero is None
assert Piecewise((0, x < 1), (1, True)).is_nonzero is None
assert Piecewise((1, x < 1), (2, True)).is_nonzero
assert Piecewise((0, x < 1), (oo, True)).is_finite is None
assert Piecewise((0, x < 1), (1, True)).is_finite
b = Basic()
assert Piecewise((b, x < 1)).is_finite is None
# 10258
c = Piecewise((1, x < 0), (2, True)) < 3
assert c != True
assert piecewise_fold(c) == True
def test_issue_10087():
a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True))
m = a*b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
m = a + b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
def test_issue_8919():
c = symbols('c:5')
x = symbols("x")
f1 = Piecewise((c[1], x < 1), (c[2], True))
f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True))
assert integrate(f1*f2, (x, 0, 2)
) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4]
f1 = Piecewise((0, x < 1), (2, True))
f2 = Piecewise((3, x < 2), (0, True))
assert integrate(f1*f2, (x, 0, 3)) == 6
y = symbols("y", positive=True)
a, b, c, x, z = symbols("a,b,c,x,z", real=True)
I = Integral(Piecewise(
(0, (x >= y) | (x < 0) | (b > c)),
(a, True)), (x, 0, z))
ans = I.doit()
assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True))
for cond in (True, False):
for yy in range(1, 3):
for zz in range(-yy, 0, yy):
reps = [(b > c, cond), (y, yy), (z, zz)]
assert ans.subs(reps) == I.subs(reps).doit()
def test_unevaluated_integrals():
f = Function('f')
p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True))
assert p.integrate(x) == Integral(p, x)
assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5))
# test it by replacing f(x) with x%2 which will not
# affect the answer: the integrand is essentially 2 over
# the domain of integration
assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10
# this is a test of using _solve_inequality when
# solve_univariate_inequality fails
assert p.integrate(y) == Piecewise(
(y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))),
(2*y, (x >= -oo) & (x < 10)), (0, True))
def test_conditions_as_alternate_booleans():
a, b, c = symbols('a:c')
assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True)))
) == Piecewise((x, ITE(x > 0, y < 1, y > 1)))
def test_Piecewise_rewrite_as_ITE():
a, b, c, d = symbols('a:d')
def _ITE(*args):
return Piecewise(*args).rewrite(ITE)
assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < 2), (c, True)
) == ITE(x < 1, a, ITE(x < 2, b, c))
assert _ITE((a, x < 1), (b, y < 2), (c, True)
) == ITE(x < 1, a, ITE(y < 2, b, c))
assert _ITE((a, x < 1), (b, x < oo), (c, y < 1)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True)
) == ITE(x < 1, a, ITE(y < 1, c, b))
assert _ITE((a, x < 0), (b, Or(x < oo, y < 1))
) == ITE(x < 0, a, b)
raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True)))
# if `a` in the following were replaced with y then the coverage
# is complete but something other than as_set would need to be
# used to detect this
raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a)))
raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3)))
def test_issue_14052():
assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4
def test_issue_14240():
assert piecewise_fold(
Piecewise((1, a), (2, b), (4, True)) +
Piecewise((8, a), (16, True))
) == Piecewise((9, a), (18, b), (20, True))
assert piecewise_fold(
Piecewise((2, a), (3, b), (5, True)) *
Piecewise((7, a), (11, True))
) == Piecewise((14, a), (33, b), (55, True))
# these will hang if naive folding is used
assert piecewise_fold(Add(*[
Piecewise((i, a), (0, True)) for i in range(40)])
) == Piecewise((780, a), (0, True))
assert piecewise_fold(Mul(*[
Piecewise((i, a), (0, True)) for i in range(1, 41)])
) == Piecewise((factorial(40), a), (0, True))
def test_issue_14787():
x = Symbol('x')
f = Piecewise((x, x < 1), ((S(58) / 7), True))
assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))"
def test_issue_8458():
x, y = symbols('x y')
# Original issue
p1 = Piecewise((0, Eq(x, 0)), (sin(x), True))
assert p1.simplify() == sin(x)
# Slightly larger variant
p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
assert p2.simplify() == sin(x)
# Test for problem highlighted during review
p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True))
def test_issue_16417():
from sympy import im, re, Gt
z = Symbol('z')
assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True))
x = Symbol('x')
assert unchanged(Piecewise, (S.Pi, re(x) < 0),
(0, Or(re(x) > 0, Ne(im(x), 0))),
(S.NaN, True))
r = Symbol('r', real=True)
p = Piecewise((S.Pi, re(r) < 0),
(0, Or(re(r) > 0, Ne(im(r), 0))),
(S.NaN, True))
assert p == Piecewise((S.Pi, r < 0),
(0, r > 0),
(S.NaN, True), evaluate=False)
# Does not work since imaginary != 0...
#i = Symbol('i', imaginary=True)
#p = Piecewise((S.Pi, re(i) < 0),
# (0, Or(re(i) > 0, Ne(im(i), 0))),
# (S.NaN, True))
#assert p == Piecewise((0, Ne(im(i), 0)),
# (S.NaN, True), evaluate=False)
i = I*r
p = Piecewise((S.Pi, re(i) < 0),
(0, Or(re(i) > 0, Ne(im(i), 0))),
(S.NaN, True))
assert p == Piecewise((0, Ne(im(i), 0)),
(S.NaN, True), evaluate=False)
assert p == Piecewise((0, Ne(r, 0)),
(S.NaN, True), evaluate=False)
def test_eval_rewrite_as_KroneckerDelta():
x, y, z, n, t, m = symbols('x y z n t m')
K = KroneckerDelta
f = lambda p: expand(p.rewrite(K))
p1 = Piecewise((0, Eq(x, y)), (1, True))
assert f(p1) == 1 - K(x, y)
p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True))
assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \
x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t)
p3 = Piecewise((1, Ne(x, y)), (0, True))
assert f(p3) == 1 - K(x, y)
p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True))
assert f(p4) == 4 - 3*K(3, x)
p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True))
assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3
p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True))
assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y)
p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True))
assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1
p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True))
assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1
p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True))
assert f(p9) == 5 * K(1, y) * K(4, x) + 1
p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True))
assert f(p10) == -3 * K(-4, x) * K(1, y) + 4
p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True))
assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1
p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True))
assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1
p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True))
assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1
p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True))
assert f(p14) == 2 * K(0, x) * K(1, y) + 1
p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True))
assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \
2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2
p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\
*Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True))
assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))),
(1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True))
assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True))
assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4
p19 = Piecewise((0, x > 2), (1, True))
assert f(p19) == p19
p20 = Piecewise((0, And(x < 2, x > -5)), (1, True))
assert f(p20) == p20
p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True))
assert f(p21) == p21
p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True))
assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1
@slow
def test_identical_conds_issue():
from sympy.stats import Uniform, density
u1 = Uniform('u1', 0, 1)
u2 = Uniform('u2', 0, 1)
# Result is quite big, so not really important here (and should ideally be
# simpler). Should not give an exception though.
density(u1 + u2)
def test_issue_7370():
f = Piecewise((1, x <= 2400))
v = integrate(f, (x, 0, Float("252.4", 30)))
assert str(v) == '252.400000000000000000000000000'
def test_issue_16715():
raises(NotImplementedError, lambda: Piecewise((x, x<0), (0, y>1)).as_expr_set_pairs())
|
d29b4637b09796c6cafb856a56b0f02e49b158afe5d076251b1307b6373e5b13 | import itertools as it
from sympy.core.expr import unchanged
from sympy.core.function import Function
from sympy.core.numbers import I, oo, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.external import import_module
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
Max, real_root)
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.delta_functions import Heaviside
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import raises, skip, ignore_warnings
def test_Min():
from sympy.abc import x, y, z
n = Symbol('n', negative=True)
n_ = Symbol('n_', negative=True)
nn = Symbol('nn', nonnegative=True)
nn_ = Symbol('nn_', nonnegative=True)
p = Symbol('p', positive=True)
p_ = Symbol('p_', positive=True)
np = Symbol('np', nonpositive=True)
np_ = Symbol('np_', nonpositive=True)
r = Symbol('r', real=True)
assert Min(5, 4) == 4
assert Min(-oo, -oo) is -oo
assert Min(-oo, n) is -oo
assert Min(n, -oo) is -oo
assert Min(-oo, np) is -oo
assert Min(np, -oo) is -oo
assert Min(-oo, 0) is -oo
assert Min(0, -oo) is -oo
assert Min(-oo, nn) is -oo
assert Min(nn, -oo) is -oo
assert Min(-oo, p) is -oo
assert Min(p, -oo) is -oo
assert Min(-oo, oo) is -oo
assert Min(oo, -oo) is -oo
assert Min(n, n) == n
assert unchanged(Min, n, np)
assert Min(np, n) == Min(n, np)
assert Min(n, 0) == n
assert Min(0, n) == n
assert Min(n, nn) == n
assert Min(nn, n) == n
assert Min(n, p) == n
assert Min(p, n) == n
assert Min(n, oo) == n
assert Min(oo, n) == n
assert Min(np, np) == np
assert Min(np, 0) == np
assert Min(0, np) == np
assert Min(np, nn) == np
assert Min(nn, np) == np
assert Min(np, p) == np
assert Min(p, np) == np
assert Min(np, oo) == np
assert Min(oo, np) == np
assert Min(0, 0) == 0
assert Min(0, nn) == 0
assert Min(nn, 0) == 0
assert Min(0, p) == 0
assert Min(p, 0) == 0
assert Min(0, oo) == 0
assert Min(oo, 0) == 0
assert Min(nn, nn) == nn
assert unchanged(Min, nn, p)
assert Min(p, nn) == Min(nn, p)
assert Min(nn, oo) == nn
assert Min(oo, nn) == nn
assert Min(p, p) == p
assert Min(p, oo) == p
assert Min(oo, p) == p
assert Min(oo, oo) is oo
assert Min(n, n_).func is Min
assert Min(nn, nn_).func is Min
assert Min(np, np_).func is Min
assert Min(p, p_).func is Min
# lists
assert Min() is S.Infinity
assert Min(x) == x
assert Min(x, y) == Min(y, x)
assert Min(x, y, z) == Min(z, y, x)
assert Min(x, Min(y, z)) == Min(z, y, x)
assert Min(x, Max(y, -oo)) == Min(x, y)
assert Min(p, oo, n, p, p, p_) == n
assert Min(p_, n_, p) == n_
assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
assert Min(0, x, 1, y) == Min(0, x, y)
assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
assert unchanged(Min, sin(x), cos(x))
assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
raises(ValueError, lambda: Min(I))
raises(ValueError, lambda: Min(I, x))
raises(ValueError, lambda: Min(S.ComplexInfinity, x))
assert Min(1, x).diff(x) == Heaviside(1 - x)
assert Min(x, 1).diff(x) == Heaviside(1 - x)
assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
- 2*Heaviside(2*x + Min(0, -x) - 1)
# issue 7619
f = Function('f')
assert Min(1, 2*Min(f(1), 2)) # doesn't fail
# issue 7233
e = Min(0, x)
assert e.n().args == (0, x)
# issue 8643
m = Min(n, p_, n_, r)
assert m.is_positive is False
assert m.is_nonnegative is False
assert m.is_negative is True
m = Min(p, p_)
assert m.is_positive is True
assert m.is_nonnegative is True
assert m.is_negative is False
m = Min(p, nn_, p_)
assert m.is_positive is None
assert m.is_nonnegative is True
assert m.is_negative is False
m = Min(nn, p, r)
assert m.is_positive is None
assert m.is_nonnegative is None
assert m.is_negative is None
def test_Max():
from sympy.abc import x, y, z
n = Symbol('n', negative=True)
n_ = Symbol('n_', negative=True)
nn = Symbol('nn', nonnegative=True)
p = Symbol('p', positive=True)
p_ = Symbol('p_', positive=True)
r = Symbol('r', real=True)
assert Max(5, 4) == 5
# lists
assert Max() is S.NegativeInfinity
assert Max(x) == x
assert Max(x, y) == Max(y, x)
assert Max(x, y, z) == Max(z, y, x)
assert Max(x, Max(y, z)) == Max(z, y, x)
assert Max(x, Min(y, oo)) == Max(x, y)
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
assert Max(n, -oo, n_, p) == p
assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
assert Max(0, x, 1, y) == Max(1, x, y)
assert Max(r, r + 1, r - 1) == 1 + r
assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half)
raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
raises(ValueError, lambda: Max(I))
raises(ValueError, lambda: Max(I, x))
raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
assert Max(n, -oo, n_, p, 1000) == Max(p, 1000)
assert Max(1, x).diff(x) == Heaviside(x - 1)
assert Max(x, 1).diff(x) == Heaviside(x - 1)
assert Max(x**2, 1 + x, 1).diff(x) == \
2*x*Heaviside(x**2 - Max(1, x + 1)) \
+ Heaviside(x - Max(1, x**2) + 1)
e = Max(0, x)
assert e.n().args == (0, x)
# issue 8643
m = Max(p, p_, n, r)
assert m.is_positive is True
assert m.is_nonnegative is True
assert m.is_negative is False
m = Max(n, n_)
assert m.is_positive is False
assert m.is_nonnegative is False
assert m.is_negative is True
m = Max(n, n_, r)
assert m.is_positive is None
assert m.is_nonnegative is None
assert m.is_negative is None
m = Max(n, nn, r)
assert m.is_positive is None
assert m.is_nonnegative is True
assert m.is_negative is False
def test_minmax_assumptions():
r = Symbol('r', real=True)
a = Symbol('a', real=True, algebraic=True)
t = Symbol('t', real=True, transcendental=True)
q = Symbol('q', rational=True)
p = Symbol('p', irrational=True)
n = Symbol('n', rational=True, integer=False)
i = Symbol('i', integer=True)
o = Symbol('o', odd=True)
e = Symbol('e', even=True)
k = Symbol('k', prime=True)
reals = [r, a, t, q, p, n, i, o, e, k]
for ext in (Max, Min):
for x, y in it.product(reals, repeat=2):
# Must be real
assert ext(x, y).is_real
# Algebraic?
if x.is_algebraic and y.is_algebraic:
assert ext(x, y).is_algebraic
elif x.is_transcendental and y.is_transcendental:
assert ext(x, y).is_transcendental
else:
assert ext(x, y).is_algebraic is None
# Rational?
if x.is_rational and y.is_rational:
assert ext(x, y).is_rational
elif x.is_irrational and y.is_irrational:
assert ext(x, y).is_irrational
else:
assert ext(x, y).is_rational is None
# Integer?
if x.is_integer and y.is_integer:
assert ext(x, y).is_integer
elif x.is_noninteger and y.is_noninteger:
assert ext(x, y).is_noninteger
else:
assert ext(x, y).is_integer is None
# Odd?
if x.is_odd and y.is_odd:
assert ext(x, y).is_odd
elif x.is_odd is False and y.is_odd is False:
assert ext(x, y).is_odd is False
else:
assert ext(x, y).is_odd is None
# Even?
if x.is_even and y.is_even:
assert ext(x, y).is_even
elif x.is_even is False and y.is_even is False:
assert ext(x, y).is_even is False
else:
assert ext(x, y).is_even is None
# Prime?
if x.is_prime and y.is_prime:
assert ext(x, y).is_prime
elif x.is_prime is False and y.is_prime is False:
assert ext(x, y).is_prime is False
else:
assert ext(x, y).is_prime is None
def test_issue_8413():
x = Symbol('x', real=True)
# we can't evaluate in general because non-reals are not
# comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
assert Min(floor(x), x) == floor(x)
assert Min(ceiling(x), x) == x
assert Max(floor(x), x) == x
assert Max(ceiling(x), x) == ceiling(x)
def test_root():
from sympy.abc import x
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
assert root(2, 2) == sqrt(2)
assert root(2, 1) == 2
assert root(2, 3) == 2**Rational(1, 3)
assert root(2, 3) == cbrt(2)
assert root(2, -5) == 2**Rational(4, 5)/2
assert root(-2, 1) == -2
assert root(-2, 2) == sqrt(2)*I
assert root(-2, 1) == -2
assert root(x, 2) == sqrt(x)
assert root(x, 1) == x
assert root(x, 3) == x**Rational(1, 3)
assert root(x, 3) == cbrt(x)
assert root(x, -5) == x**Rational(-1, 5)
assert root(x, n) == x**(1/n)
assert root(x, -n) == x**(-1/n)
assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)
def test_real_root():
assert real_root(-8, 3) == -2
assert real_root(-16, 4) == root(-16, 4)
r = root(-7, 4)
assert real_root(r) == r
r1 = root(-1, 3)
r2 = r1**2
r3 = root(-1, 4)
assert real_root(r1 + r2 + r3) == -1 + r2 + r3
assert real_root(root(-2, 3)) == -root(2, 3)
assert real_root(-8., 3) == -2
x = Symbol('x')
n = Symbol('n')
g = real_root(x, n)
assert g.subs(dict(x=-8, n=3)) == -2
assert g.subs(dict(x=8, n=3)) == 2
# give principle root if there is no real root -- if this is not desired
# then maybe a Root class is needed to raise an error instead
assert g.subs(dict(x=I, n=3)) == cbrt(I)
assert g.subs(dict(x=-8, n=2)) == sqrt(-8)
assert g.subs(dict(x=I, n=2)) == sqrt(I)
def test_issue_11463():
numpy = import_module('numpy')
if not numpy:
skip("numpy not installed.")
x = Symbol('x')
f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
# numpy.select evaluates all options before considering conditions,
# so it raises a warning about root of negative number which does
# not affect the outcome. This warning is suppressed here
with ignore_warnings(RuntimeWarning):
assert f(numpy.array(-1)) < -1
def test_rewrite_MaxMin_as_Heaviside():
from sympy.abc import x
assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
3*Heaviside(-x + 3)
assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
2*x*Heaviside(2*x)*Heaviside(x - 2) + \
(x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)
assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
3*Heaviside(x - 3)
assert Min(x, -x, -2).rewrite(Heaviside) == \
x*Heaviside(-2*x)*Heaviside(-x - 2) - \
x*Heaviside(2*x)*Heaviside(x - 2) \
- 2*Heaviside(-x + 2)*Heaviside(x + 2)
def test_rewrite_MaxMin_as_Piecewise():
from sympy import symbols, Piecewise
x, y, z, a, b = symbols('x y z a b', real=True)
vx, vy, va = symbols('vx vy va')
assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
(b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
(b, (b <= x) & (b <= y)), (x, x <= y), (y, True))
# Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments
assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True))
assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True))
def test_issue_11099():
from sympy.abc import x, y
# some fixed value tests
fixed_test_data = {x: -2, y: 3}
assert Min(x, y).evalf(subs=fixed_test_data) == \
Min(x, y).subs(fixed_test_data).evalf()
assert Max(x, y).evalf(subs=fixed_test_data) == \
Max(x, y).subs(fixed_test_data).evalf()
# randomly generate some test data
from random import randint
for i in range(20):
random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
assert Min(x, y).evalf(subs=random_test_data) == \
Min(x, y).subs(random_test_data).evalf()
assert Max(x, y).evalf(subs=random_test_data) == \
Max(x, y).subs(random_test_data).evalf()
def test_issue_12638():
from sympy.abc import a, b, c
assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
assert Min(a, b, Max(a, b, c)) == Min(a, b)
assert Min(a, b, Max(a, c)) == Min(a, b)
def test_instantiation_evaluation():
from sympy.abc import v, w, x, y, z
assert Min(1, Max(2, x)) == 1
assert Max(3, Min(2, x)) == 3
assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
assert set(Min(Max(w, x), Max(y, z)).args) == set(
[Max(w, x), Max(y, z)])
assert Min(Max(x, y), Max(x, z), w) == Min(
w, Max(x, Min(y, z)))
A, B = Min, Max
for i in range(2):
assert A(x, B(x, y)) == x
assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
A, B = B, A
assert Min(w, Max(x, y), Max(v, x, z)) == Min(
w, Max(x, Min(y, Max(v, z))))
def test_rewrite_as_Abs():
from itertools import permutations
from sympy.functions.elementary.complexes import Abs
from sympy.abc import x, y, z, w
def test(e):
free = e.free_symbols
a = e.rewrite(Abs)
assert not a.has(Min, Max)
for i in permutations(range(len(free))):
reps = dict(zip(free, i))
assert a.xreplace(reps) == e.xreplace(reps)
test(Min(x, y))
test(Max(x, y))
test(Min(x, y, z))
test(Min(Max(w, x), Max(y, z)))
def test_issue_14000():
assert isinstance(sqrt(4, evaluate=False), Pow) == True
assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
assert isinstance(root(16, 4, evaluate=False), Pow) == True
assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)
assert root(16, 4, 2, evaluate=False).has(Pow) == True
assert real_root(-8, 3, evaluate=False).has(Pow) == True
|
d8363852a8d74e0cf6f86ea3ca706b2ac17fd3571d3754d58375484fcee1bb76 | from sympy import (symbols, Symbol, sinh, nan, oo, zoo, pi, asinh, acosh, log,
sqrt, coth, I, cot, E, tanh, tan, cosh, cos, S, sin, Rational, atanh, acoth,
Integer, O, exp, sech, sec, csch, asech, acsch, acos, asin, expand_mul,
AccumBounds, im, re)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
def test_sinh():
x, y = symbols('x,y')
k = Symbol('k', integer=True)
assert sinh(nan) is nan
assert sinh(zoo) is nan
assert sinh(oo) is oo
assert sinh(-oo) is -oo
assert sinh(0) == 0
assert unchanged(sinh, 1)
assert sinh(-1) == -sinh(1)
assert unchanged(sinh, x)
assert sinh(-x) == -sinh(x)
assert unchanged(sinh, pi)
assert sinh(-pi) == -sinh(pi)
assert unchanged(sinh, 2**1024 * E)
assert sinh(-2**1024 * E) == -sinh(2**1024 * E)
assert sinh(pi*I) == 0
assert sinh(-pi*I) == 0
assert sinh(2*pi*I) == 0
assert sinh(-2*pi*I) == 0
assert sinh(-3*10**73*pi*I) == 0
assert sinh(7*10**103*pi*I) == 0
assert sinh(pi*I/2) == I
assert sinh(-pi*I/2) == -I
assert sinh(pi*I*Rational(5, 2)) == I
assert sinh(pi*I*Rational(7, 2)) == -I
assert sinh(pi*I/3) == S.Half*sqrt(3)*I
assert sinh(pi*I*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)*I
assert sinh(pi*I/4) == S.Half*sqrt(2)*I
assert sinh(-pi*I/4) == Rational(-1, 2)*sqrt(2)*I
assert sinh(pi*I*Rational(17, 4)) == S.Half*sqrt(2)*I
assert sinh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)*I
assert sinh(pi*I/6) == S.Half*I
assert sinh(-pi*I/6) == Rational(-1, 2)*I
assert sinh(pi*I*Rational(7, 6)) == Rational(-1, 2)*I
assert sinh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*I
assert sinh(pi*I/105) == sin(pi/105)*I
assert sinh(-pi*I/105) == -sin(pi/105)*I
assert unchanged(sinh, 2 + 3*I)
assert sinh(x*I) == sin(x)*I
assert sinh(k*pi*I) == 0
assert sinh(17*k*pi*I) == 0
assert sinh(k*pi*I/2) == sin(k*pi/2)*I
assert sinh(x).as_real_imag(deep=False) == (cos(im(x))*sinh(re(x)),
sin(im(x))*cosh(re(x)))
x = Symbol('x', extended_real=True)
assert sinh(x).as_real_imag(deep=False) == (sinh(x), 0)
x = Symbol('x', real=True)
assert sinh(I*x).is_finite is True
assert sinh(x).is_real is True
assert sinh(I).is_real is False
def test_sinh_series():
x = Symbol('x')
assert sinh(x).series(x, 0, 10) == \
x + x**3/6 + x**5/120 + x**7/5040 + x**9/362880 + O(x**10)
def test_sinh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: sinh(x).fdiff(2))
def test_cosh():
x, y = symbols('x,y')
k = Symbol('k', integer=True)
assert cosh(nan) is nan
assert cosh(zoo) is nan
assert cosh(oo) is oo
assert cosh(-oo) is oo
assert cosh(0) == 1
assert unchanged(cosh, 1)
assert cosh(-1) == cosh(1)
assert unchanged(cosh, x)
assert cosh(-x) == cosh(x)
assert cosh(pi*I) == cos(pi)
assert cosh(-pi*I) == cos(pi)
assert unchanged(cosh, 2**1024 * E)
assert cosh(-2**1024 * E) == cosh(2**1024 * E)
assert cosh(pi*I/2) == 0
assert cosh(-pi*I/2) == 0
assert cosh((-3*10**73 + 1)*pi*I/2) == 0
assert cosh((7*10**103 + 1)*pi*I/2) == 0
assert cosh(pi*I) == -1
assert cosh(-pi*I) == -1
assert cosh(5*pi*I) == -1
assert cosh(8*pi*I) == 1
assert cosh(pi*I/3) == S.Half
assert cosh(pi*I*Rational(-2, 3)) == Rational(-1, 2)
assert cosh(pi*I/4) == S.Half*sqrt(2)
assert cosh(-pi*I/4) == S.Half*sqrt(2)
assert cosh(pi*I*Rational(11, 4)) == Rational(-1, 2)*sqrt(2)
assert cosh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
assert cosh(pi*I/6) == S.Half*sqrt(3)
assert cosh(-pi*I/6) == S.Half*sqrt(3)
assert cosh(pi*I*Rational(7, 6)) == Rational(-1, 2)*sqrt(3)
assert cosh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3)
assert cosh(pi*I/105) == cos(pi/105)
assert cosh(-pi*I/105) == cos(pi/105)
assert unchanged(cosh, 2 + 3*I)
assert cosh(x*I) == cos(x)
assert cosh(k*pi*I) == cos(k*pi)
assert cosh(17*k*pi*I) == cos(17*k*pi)
assert unchanged(cosh, k*pi)
assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)),
sin(im(x))*sinh(re(x)))
x = Symbol('x', extended_real=True)
assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0)
x = Symbol('x', real=True)
assert cosh(I*x).is_finite is True
assert cosh(I*x).is_real is True
assert cosh(I*2 + 1).is_real is False
def test_cosh_series():
x = Symbol('x')
assert cosh(x).series(x, 0, 10) == \
1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320 + O(x**10)
def test_cosh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: cosh(x).fdiff(2))
def test_tanh():
x, y = symbols('x,y')
k = Symbol('k', integer=True)
assert tanh(nan) is nan
assert tanh(zoo) is nan
assert tanh(oo) == 1
assert tanh(-oo) == -1
assert tanh(0) == 0
assert unchanged(tanh, 1)
assert tanh(-1) == -tanh(1)
assert unchanged(tanh, x)
assert tanh(-x) == -tanh(x)
assert unchanged(tanh, pi)
assert tanh(-pi) == -tanh(pi)
assert unchanged(tanh, 2**1024 * E)
assert tanh(-2**1024 * E) == -tanh(2**1024 * E)
assert tanh(pi*I) == 0
assert tanh(-pi*I) == 0
assert tanh(2*pi*I) == 0
assert tanh(-2*pi*I) == 0
assert tanh(-3*10**73*pi*I) == 0
assert tanh(7*10**103*pi*I) == 0
assert tanh(pi*I/2) is zoo
assert tanh(-pi*I/2) is zoo
assert tanh(pi*I*Rational(5, 2)) is zoo
assert tanh(pi*I*Rational(7, 2)) is zoo
assert tanh(pi*I/3) == sqrt(3)*I
assert tanh(pi*I*Rational(-2, 3)) == sqrt(3)*I
assert tanh(pi*I/4) == I
assert tanh(-pi*I/4) == -I
assert tanh(pi*I*Rational(17, 4)) == I
assert tanh(pi*I*Rational(-3, 4)) == I
assert tanh(pi*I/6) == I/sqrt(3)
assert tanh(-pi*I/6) == -I/sqrt(3)
assert tanh(pi*I*Rational(7, 6)) == I/sqrt(3)
assert tanh(pi*I*Rational(-5, 6)) == I/sqrt(3)
assert tanh(pi*I/105) == tan(pi/105)*I
assert tanh(-pi*I/105) == -tan(pi/105)*I
assert unchanged(tanh, 2 + 3*I)
assert tanh(x*I) == tan(x)*I
assert tanh(k*pi*I) == 0
assert tanh(17*k*pi*I) == 0
assert tanh(k*pi*I/2) == tan(k*pi/2)*I
assert tanh(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(cos(im(x))**2
+ sinh(re(x))**2),
sin(im(x))*cos(im(x))/(cos(im(x))**2 + sinh(re(x))**2))
x = Symbol('x', extended_real=True)
assert tanh(x).as_real_imag(deep=False) == (tanh(x), 0)
assert tanh(I*pi/3 + 1).is_real is False
assert tanh(x).is_real is True
assert tanh(I*pi*x/2).is_real is None
def test_tanh_series():
x = Symbol('x')
assert tanh(x).series(x, 0, 10) == \
x - x**3/3 + 2*x**5/15 - 17*x**7/315 + 62*x**9/2835 + O(x**10)
def test_tanh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: tanh(x).fdiff(2))
def test_coth():
x, y = symbols('x,y')
k = Symbol('k', integer=True)
assert coth(nan) is nan
assert coth(zoo) is nan
assert coth(oo) == 1
assert coth(-oo) == -1
assert coth(0) is zoo
assert unchanged(coth, 1)
assert coth(-1) == -coth(1)
assert unchanged(coth, x)
assert coth(-x) == -coth(x)
assert coth(pi*I) == -I*cot(pi)
assert coth(-pi*I) == cot(pi)*I
assert unchanged(coth, 2**1024 * E)
assert coth(-2**1024 * E) == -coth(2**1024 * E)
assert coth(pi*I) == -I*cot(pi)
assert coth(-pi*I) == I*cot(pi)
assert coth(2*pi*I) == -I*cot(2*pi)
assert coth(-2*pi*I) == I*cot(2*pi)
assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi)
assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi)
assert coth(pi*I/2) == 0
assert coth(-pi*I/2) == 0
assert coth(pi*I*Rational(5, 2)) == 0
assert coth(pi*I*Rational(7, 2)) == 0
assert coth(pi*I/3) == -I/sqrt(3)
assert coth(pi*I*Rational(-2, 3)) == -I/sqrt(3)
assert coth(pi*I/4) == -I
assert coth(-pi*I/4) == I
assert coth(pi*I*Rational(17, 4)) == -I
assert coth(pi*I*Rational(-3, 4)) == -I
assert coth(pi*I/6) == -sqrt(3)*I
assert coth(-pi*I/6) == sqrt(3)*I
assert coth(pi*I*Rational(7, 6)) == -sqrt(3)*I
assert coth(pi*I*Rational(-5, 6)) == -sqrt(3)*I
assert coth(pi*I/105) == -cot(pi/105)*I
assert coth(-pi*I/105) == cot(pi/105)*I
assert unchanged(coth, 2 + 3*I)
assert coth(x*I) == -cot(x)*I
assert coth(k*pi*I) == -cot(k*pi)*I
assert coth(17*k*pi*I) == -cot(17*k*pi)*I
assert coth(k*pi*I) == -cot(k*pi)*I
assert coth(log(tan(2))) == coth(log(-tan(2)))
assert coth(1 + I*pi/2) == tanh(1)
assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2
+ sinh(re(x))**2),
-sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2))
x = Symbol('x', extended_real=True)
assert coth(x).as_real_imag(deep=False) == (coth(x), 0)
def test_coth_series():
x = Symbol('x')
assert coth(x).series(x, 0, 8) == \
1/x + x/3 - x**3/45 + 2*x**5/945 - x**7/4725 + O(x**8)
def test_coth_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: coth(x).fdiff(2))
def test_csch():
x, y = symbols('x,y')
k = Symbol('k', integer=True)
n = Symbol('n', positive=True)
assert csch(nan) is nan
assert csch(zoo) is nan
assert csch(oo) == 0
assert csch(-oo) == 0
assert csch(0) is zoo
assert csch(-1) == -csch(1)
assert csch(-x) == -csch(x)
assert csch(-pi) == -csch(pi)
assert csch(-2**1024 * E) == -csch(2**1024 * E)
assert csch(pi*I) is zoo
assert csch(-pi*I) is zoo
assert csch(2*pi*I) is zoo
assert csch(-2*pi*I) is zoo
assert csch(-3*10**73*pi*I) is zoo
assert csch(7*10**103*pi*I) is zoo
assert csch(pi*I/2) == -I
assert csch(-pi*I/2) == I
assert csch(pi*I*Rational(5, 2)) == -I
assert csch(pi*I*Rational(7, 2)) == I
assert csch(pi*I/3) == -2/sqrt(3)*I
assert csch(pi*I*Rational(-2, 3)) == 2/sqrt(3)*I
assert csch(pi*I/4) == -sqrt(2)*I
assert csch(-pi*I/4) == sqrt(2)*I
assert csch(pi*I*Rational(7, 4)) == sqrt(2)*I
assert csch(pi*I*Rational(-3, 4)) == sqrt(2)*I
assert csch(pi*I/6) == -2*I
assert csch(-pi*I/6) == 2*I
assert csch(pi*I*Rational(7, 6)) == 2*I
assert csch(pi*I*Rational(-7, 6)) == -2*I
assert csch(pi*I*Rational(-5, 6)) == 2*I
assert csch(pi*I/105) == -1/sin(pi/105)*I
assert csch(-pi*I/105) == 1/sin(pi/105)*I
assert csch(x*I) == -1/sin(x)*I
assert csch(k*pi*I) is zoo
assert csch(17*k*pi*I) is zoo
assert csch(k*pi*I/2) == -1/sin(k*pi/2)*I
assert csch(n).is_real is True
def test_csch_series():
x = Symbol('x')
assert csch(x).series(x, 0, 10) == \
1/ x - x/6 + 7*x**3/360 - 31*x**5/15120 + 127*x**7/604800 \
- 73*x**9/3421440 + O(x**10)
def test_csch_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: csch(x).fdiff(2))
def test_sech():
x, y = symbols('x, y')
k = Symbol('k', integer=True)
n = Symbol('n', positive=True)
assert sech(nan) is nan
assert sech(zoo) is nan
assert sech(oo) == 0
assert sech(-oo) == 0
assert sech(0) == 1
assert sech(-1) == sech(1)
assert sech(-x) == sech(x)
assert sech(pi*I) == sec(pi)
assert sech(-pi*I) == sec(pi)
assert sech(-2**1024 * E) == sech(2**1024 * E)
assert sech(pi*I/2) is zoo
assert sech(-pi*I/2) is zoo
assert sech((-3*10**73 + 1)*pi*I/2) is zoo
assert sech((7*10**103 + 1)*pi*I/2) is zoo
assert sech(pi*I) == -1
assert sech(-pi*I) == -1
assert sech(5*pi*I) == -1
assert sech(8*pi*I) == 1
assert sech(pi*I/3) == 2
assert sech(pi*I*Rational(-2, 3)) == -2
assert sech(pi*I/4) == sqrt(2)
assert sech(-pi*I/4) == sqrt(2)
assert sech(pi*I*Rational(5, 4)) == -sqrt(2)
assert sech(pi*I*Rational(-5, 4)) == -sqrt(2)
assert sech(pi*I/6) == 2/sqrt(3)
assert sech(-pi*I/6) == 2/sqrt(3)
assert sech(pi*I*Rational(7, 6)) == -2/sqrt(3)
assert sech(pi*I*Rational(-5, 6)) == -2/sqrt(3)
assert sech(pi*I/105) == 1/cos(pi/105)
assert sech(-pi*I/105) == 1/cos(pi/105)
assert sech(x*I) == 1/cos(x)
assert sech(k*pi*I) == 1/cos(k*pi)
assert sech(17*k*pi*I) == 1/cos(17*k*pi)
assert sech(n).is_real is True
def test_sech_series():
x = Symbol('x')
assert sech(x).series(x, 0, 10) == \
1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10)
def test_sech_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: sech(x).fdiff(2))
def test_asinh():
x, y = symbols('x,y')
assert unchanged(asinh, x)
assert asinh(-x) == -asinh(x)
#at specific points
assert asinh(nan) is nan
assert asinh( 0) == 0
assert asinh(+1) == log(sqrt(2) + 1)
assert asinh(-1) == log(sqrt(2) - 1)
assert asinh(I) == pi*I/2
assert asinh(-I) == -pi*I/2
assert asinh(I/2) == pi*I/6
assert asinh(-I/2) == -pi*I/6
# at infinites
assert asinh(oo) is oo
assert asinh(-oo) is -oo
assert asinh(I*oo) is oo
assert asinh(-I *oo) is -oo
assert asinh(zoo) is zoo
#properties
assert asinh(I *(sqrt(3) - 1)/(2**Rational(3, 2))) == pi*I/12
assert asinh(-I *(sqrt(3) - 1)/(2**Rational(3, 2))) == -pi*I/12
assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10
assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10
assert asinh(I*(sqrt(5) + 1)/4) == pi*I*Rational(3, 10)
assert asinh(-I*(sqrt(5) + 1)/4) == pi*I*Rational(-3, 10)
# Symmetry
assert asinh(Rational(-1, 2)) == -asinh(S.Half)
# inverse composition
assert unchanged(asinh, sinh(Symbol('v1')))
assert asinh(sinh(0, evaluate=False)) == 0
assert asinh(sinh(-3, evaluate=False)) == -3
assert asinh(sinh(2, evaluate=False)) == 2
assert asinh(sinh(I, evaluate=False)) == I
assert asinh(sinh(-I, evaluate=False)) == -I
assert asinh(sinh(5*I, evaluate=False)) == -2*I*pi + 5*I
assert asinh(sinh(15 + 11*I)) == 15 - 4*I*pi + 11*I
assert asinh(sinh(-73 + 97*I)) == 73 - 97*I + 31*I*pi
assert asinh(sinh(-7 - 23*I)) == 7 - 7*I*pi + 23*I
assert asinh(sinh(13 - 3*I)) == -13 - I*pi + 3*I
def test_asinh_rewrite():
x = Symbol('x')
assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1))
def test_asinh_series():
x = Symbol('x')
assert asinh(x).series(x, 0, 8) == \
x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8)
t5 = asinh(x).taylor_term(5, x)
assert t5 == 3*x**5/40
assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112
def test_asinh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: asinh(x).fdiff(2))
def test_acosh():
x = Symbol('x')
assert unchanged(acosh, -x)
#at specific points
assert acosh(1) == 0
assert acosh(-1) == pi*I
assert acosh(0) == I*pi/2
assert acosh(S.Half) == I*pi/3
assert acosh(Rational(-1, 2)) == pi*I*Rational(2, 3)
assert acosh(nan) is nan
# at infinites
assert acosh(oo) is oo
assert acosh(-oo) is oo
assert acosh(I*oo) == oo + I*pi/2
assert acosh(-I*oo) == oo - I*pi/2
assert acosh(zoo) is zoo
assert acosh(I) == log(I*(1 + sqrt(2)))
assert acosh(-I) == log(-I*(1 + sqrt(2)))
assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(5, 12)
assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(7, 12)
assert acosh(sqrt(2)/2) == I*pi/4
assert acosh(-sqrt(2)/2) == I*pi*Rational(3, 4)
assert acosh(sqrt(3)/2) == I*pi/6
assert acosh(-sqrt(3)/2) == I*pi*Rational(5, 6)
assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8
assert acosh(-sqrt(2 + sqrt(2))/2) == I*pi*Rational(7, 8)
assert acosh(sqrt(2 - sqrt(2))/2) == I*pi*Rational(3, 8)
assert acosh(-sqrt(2 - sqrt(2))/2) == I*pi*Rational(5, 8)
assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12
assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == I*pi*Rational(11, 12)
assert acosh((sqrt(5) + 1)/4) == I*pi/5
assert acosh(-(sqrt(5) + 1)/4) == I*pi*Rational(4, 5)
assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I'
assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I'
# inverse composition
assert unchanged(acosh, Symbol('v1'))
assert acosh(cosh(-3, evaluate=False)) == 3
assert acosh(cosh(3, evaluate=False)) == 3
assert acosh(cosh(0, evaluate=False)) == 0
assert acosh(cosh(I, evaluate=False)) == I
assert acosh(cosh(-I, evaluate=False)) == I
assert acosh(cosh(7*I, evaluate=False)) == -2*I*pi + 7*I
assert acosh(cosh(1 + I)) == 1 + I
assert acosh(cosh(3 - 3*I)) == 3 - 3*I
assert acosh(cosh(-3 + 2*I)) == 3 - 2*I
assert acosh(cosh(-5 - 17*I)) == 5 - 6*I*pi + 17*I
assert acosh(cosh(-21 + 11*I)) == 21 - 11*I + 4*I*pi
assert acosh(cosh(cosh(1) + I)) == cosh(1) + I
def test_acosh_rewrite():
x = Symbol('x')
assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1))
def test_acosh_series():
x = Symbol('x')
assert acosh(x).series(x, 0, 8) == \
-I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8)
t5 = acosh(x).taylor_term(5, x)
assert t5 == - 3*I*x**5/40
assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112
def test_acosh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: acosh(x).fdiff(2))
def test_asech():
x = Symbol('x')
assert unchanged(asech, -x)
# values at fixed points
assert asech(1) == 0
assert asech(-1) == pi*I
assert asech(0) is oo
assert asech(2) == I*pi/3
assert asech(-2) == 2*I*pi / 3
assert asech(nan) is nan
# at infinites
assert asech(oo) == I*pi/2
assert asech(-oo) == I*pi/2
assert asech(zoo) == I*AccumBounds(-pi/2, pi/2)
assert asech(I) == log(1 + sqrt(2)) - I*pi/2
assert asech(-I) == log(1 + sqrt(2)) + I*pi/2
assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12
assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10
assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10
assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8
assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8
assert asech(sqrt(5) - 1) == I*pi / 5
assert asech(1 - sqrt(5)) == 4*I*pi / 5
assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8
# properties
# asech(x) == acosh(1/x)
assert asech(sqrt(2)) == acosh(1/sqrt(2))
assert asech(2/sqrt(3)) == acosh(sqrt(3)/2)
assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2)
assert asech(2) == acosh(S.Half)
# asech(x) == I*acos(1/x)
# (Note: the exact formula is asech(x) == +/- I*acos(1/x))
assert asech(-sqrt(2)) == I*acos(-1/sqrt(2))
assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2)
assert asech(-S(2)) == I*acos(Rational(-1, 2))
assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2)
# sech(asech(x)) / x == 1
assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1
assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1
assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1
assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1
assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1
assert expand_mul(sech(asech((1 + sqrt(5)))) / ((1 + sqrt(5)))) == 1
assert expand_mul(sech(asech((-1 - sqrt(5)))) / ((-1 - sqrt(5)))) == 1
assert expand_mul(sech(asech((-sqrt(6) - sqrt(2)))) / ((-sqrt(6) - sqrt(2)))) == 1
# numerical evaluation
assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I'
assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I'
def test_asech_series():
x = Symbol('x')
t6 = asech(x).expansion_term(6, x)
assert t6 == -5*x**6/96
assert asech(x).expansion_term(8, x, t6, 0) == -35*x**8/1024
def test_asech_rewrite():
x = Symbol('x')
assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1))
def test_asech_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: asech(x).fdiff(2))
def test_acsch():
x = Symbol('x')
assert unchanged(acsch, x)
assert acsch(-x) == -acsch(x)
# values at fixed points
assert acsch(1) == log(1 + sqrt(2))
assert acsch(-1) == - log(1 + sqrt(2))
assert acsch(0) is zoo
assert acsch(2) == log((1+sqrt(5))/2)
assert acsch(-2) == - log((1+sqrt(5))/2)
assert acsch(I) == - I*pi/2
assert acsch(-I) == I*pi/2
assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12
assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12
assert acsch(-I*(1 + sqrt(5))) == I*pi / 10
assert acsch(I*(1 + sqrt(5))) == -I*pi / 10
assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8
assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8
assert acsch(-I*2) == I*pi / 6
assert acsch(I*2) == -I*pi / 6
assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5
assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5
assert acsch(-I*sqrt(2)) == I*pi / 4
assert acsch(I*sqrt(2)) == -I*pi / 4
assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10
assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10
assert acsch(-I*2 / sqrt(3)) == I*pi / 3
assert acsch(I*2 / sqrt(3)) == -I*pi / 3
assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8
assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8
assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5
assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5
assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12
assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12
assert acsch(nan) is nan
# properties
# acsch(x) == asinh(1/x)
assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2))
assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2)
# acsch(x) == -I*asin(I/x)
assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2))
assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2)
# csch(acsch(x)) / x == 1
assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1
assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / ((I*(1 + sqrt(5))))) == 1
assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1
assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1
# numerical evaluation
assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I'
assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I'
def test_acsch_infinities():
assert acsch(oo) == 0
assert acsch(-oo) == 0
assert acsch(zoo) == 0
def test_acsch_rewrite():
x = Symbol('x')
assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1))
def test_acsch_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: acsch(x).fdiff(2))
def test_atanh():
x = Symbol('x')
#at specific points
assert atanh(0) == 0
assert atanh(I) == I*pi/4
assert atanh(-I) == -I*pi/4
assert atanh(1) is oo
assert atanh(-1) is -oo
assert atanh(nan) is nan
# at infinites
assert atanh(oo) == -I*pi/2
assert atanh(-oo) == I*pi/2
assert atanh(I*oo) == I*pi/2
assert atanh(-I*oo) == -I*pi/2
assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2)
#properties
assert atanh(-x) == -atanh(x)
assert atanh(I/sqrt(3)) == I*pi/6
assert atanh(-I/sqrt(3)) == -I*pi/6
assert atanh(I*sqrt(3)) == I*pi/3
assert atanh(-I*sqrt(3)) == -I*pi/3
assert atanh(I*(1 + sqrt(2))) == pi*I*Rational(3, 8)
assert atanh(I*(sqrt(2) - 1)) == pi*I/8
assert atanh(I*(1 - sqrt(2))) == -pi*I/8
assert atanh(-I*(1 + sqrt(2))) == pi*I*Rational(-3, 8)
assert atanh(I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(2, 5)
assert atanh(-I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(-2, 5)
assert atanh(I*(2 - sqrt(3))) == pi*I/12
assert atanh(I*(sqrt(3) - 2)) == -pi*I/12
assert atanh(oo) == -I*pi/2
# Symmetry
assert atanh(Rational(-1, 2)) == -atanh(S.Half)
# inverse composition
assert unchanged(atanh, tanh(Symbol('v1')))
assert atanh(tanh(-5, evaluate=False)) == -5
assert atanh(tanh(0, evaluate=False)) == 0
assert atanh(tanh(7, evaluate=False)) == 7
assert atanh(tanh(I, evaluate=False)) == I
assert atanh(tanh(-I, evaluate=False)) == -I
assert atanh(tanh(-11*I, evaluate=False)) == -11*I + 4*I*pi
assert atanh(tanh(3 + I)) == 3 + I
assert atanh(tanh(4 + 5*I)) == 4 - 2*I*pi + 5*I
assert atanh(tanh(pi/2)) == pi/2
assert atanh(tanh(pi)) == pi
assert atanh(tanh(-3 + 7*I)) == -3 - 2*I*pi + 7*I
assert atanh(tanh(9 - I*Rational(2, 3))) == 9 - I*Rational(2, 3)
assert atanh(tanh(-32 - 123*I)) == -32 - 123*I + 39*I*pi
def test_atanh_rewrite():
x = Symbol('x')
assert atanh(x).rewrite(log) == (log(1 + x) - log(1 - x)) / 2
def test_atanh_series():
x = Symbol('x')
assert atanh(x).series(x, 0, 10) == \
x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10)
def test_atanh_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: atanh(x).fdiff(2))
def test_acoth():
x = Symbol('x')
#at specific points
assert acoth(0) == I*pi/2
assert acoth(I) == -I*pi/4
assert acoth(-I) == I*pi/4
assert acoth(1) is oo
assert acoth(-1) is -oo
assert acoth(nan) is nan
# at infinites
assert acoth(oo) == 0
assert acoth(-oo) == 0
assert acoth(I*oo) == 0
assert acoth(-I*oo) == 0
assert acoth(zoo) == 0
#properties
assert acoth(-x) == -acoth(x)
assert acoth(I/sqrt(3)) == -I*pi/3
assert acoth(-I/sqrt(3)) == I*pi/3
assert acoth(I*sqrt(3)) == -I*pi/6
assert acoth(-I*sqrt(3)) == I*pi/6
assert acoth(I*(1 + sqrt(2))) == -pi*I/8
assert acoth(-I*(sqrt(2) + 1)) == pi*I/8
assert acoth(I*(1 - sqrt(2))) == pi*I*Rational(3, 8)
assert acoth(I*(sqrt(2) - 1)) == pi*I*Rational(-3, 8)
assert acoth(I*sqrt(5 + 2*sqrt(5))) == -I*pi/10
assert acoth(-I*sqrt(5 + 2*sqrt(5))) == I*pi/10
assert acoth(I*(2 + sqrt(3))) == -pi*I/12
assert acoth(-I*(2 + sqrt(3))) == pi*I/12
assert acoth(I*(2 - sqrt(3))) == pi*I*Rational(-5, 12)
assert acoth(I*(sqrt(3) - 2)) == pi*I*Rational(5, 12)
# Symmetry
assert acoth(Rational(-1, 2)) == -acoth(S.Half)
def test_acoth_rewrite():
x = Symbol('x')
assert acoth(x).rewrite(log) == (log(1 + 1/x) - log(1 - 1/x)) / 2
def test_acoth_series():
x = Symbol('x')
assert acoth(x).series(x, 0, 10) == \
I*pi/2 + x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10)
def test_acoth_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: acoth(x).fdiff(2))
def test_inverses():
x = Symbol('x')
assert sinh(x).inverse() == asinh
raises(AttributeError, lambda: cosh(x).inverse())
assert tanh(x).inverse() == atanh
assert coth(x).inverse() == acoth
assert asinh(x).inverse() == sinh
assert acosh(x).inverse() == cosh
assert atanh(x).inverse() == tanh
assert acoth(x).inverse() == coth
assert asech(x).inverse() == sech
assert acsch(x).inverse() == csch
def test_leading_term():
x = Symbol('x')
assert cosh(x).as_leading_term(x) == 1
assert coth(x).as_leading_term(x) == 1/x
assert acosh(x).as_leading_term(x) == I*pi/2
assert acoth(x).as_leading_term(x) == I*pi/2
for func in [sinh, tanh, asinh, atanh]:
assert func(x).as_leading_term(x) == x
for func in [sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth]:
for arg in (1/x, S.Half):
eq = func(arg)
assert eq.as_leading_term(x) == eq
for func in [csch, sech]:
eq = func(S.Half)
assert eq.as_leading_term(x) == eq
def test_complex():
a, b = symbols('a,b', real=True)
z = a + b*I
for func in [sinh, cosh, tanh, coth, sech, csch]:
assert func(z).conjugate() == func(a - b*I)
for deep in [True, False]:
assert sinh(z).expand(
complex=True, deep=deep) == sinh(a)*cos(b) + I*cosh(a)*sin(b)
assert cosh(z).expand(
complex=True, deep=deep) == cosh(a)*cos(b) + I*sinh(a)*sin(b)
assert tanh(z).expand(complex=True, deep=deep) == sinh(a)*cosh(
a)/(cos(b)**2 + sinh(a)**2) + I*sin(b)*cos(b)/(cos(b)**2 + sinh(a)**2)
assert coth(z).expand(complex=True, deep=deep) == sinh(a)*cosh(
a)/(sin(b)**2 + sinh(a)**2) - I*sin(b)*cos(b)/(sin(b)**2 + sinh(a)**2)
assert csch(z).expand(complex=True, deep=deep) == cos(b) * sinh(a) / (sin(b)**2\
*cosh(a)**2 + cos(b)**2 * sinh(a)**2) - I*sin(b) * cosh(a) / (sin(b)**2\
*cosh(a)**2 + cos(b)**2 * sinh(a)**2)
assert sech(z).expand(complex=True, deep=deep) == cos(b) * cosh(a) / (sin(b)**2\
*sinh(a)**2 + cos(b)**2 * cosh(a)**2) - I*sin(b) * sinh(a) / (sin(b)**2\
*sinh(a)**2 + cos(b)**2 * cosh(a)**2)
def test_complex_2899():
a, b = symbols('a,b', real=True)
for deep in [True, False]:
for func in [sinh, cosh, tanh, coth]:
assert func(a).expand(complex=True, deep=deep) == func(a)
def test_simplifications():
x = Symbol('x')
assert sinh(asinh(x)) == x
assert sinh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1)
assert sinh(atanh(x)) == x/sqrt(1 - x**2)
assert sinh(acoth(x)) == 1/(sqrt(x - 1) * sqrt(x + 1))
assert cosh(asinh(x)) == sqrt(1 + x**2)
assert cosh(acosh(x)) == x
assert cosh(atanh(x)) == 1/sqrt(1 - x**2)
assert cosh(acoth(x)) == x/(sqrt(x - 1) * sqrt(x + 1))
assert tanh(asinh(x)) == x/sqrt(1 + x**2)
assert tanh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) / x
assert tanh(atanh(x)) == x
assert tanh(acoth(x)) == 1/x
assert coth(asinh(x)) == sqrt(1 + x**2)/x
assert coth(acosh(x)) == x/(sqrt(x - 1) * sqrt(x + 1))
assert coth(atanh(x)) == 1/x
assert coth(acoth(x)) == x
assert csch(asinh(x)) == 1/x
assert csch(acosh(x)) == 1/(sqrt(x - 1) * sqrt(x + 1))
assert csch(atanh(x)) == sqrt(1 - x**2)/x
assert csch(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)
assert sech(asinh(x)) == 1/sqrt(1 + x**2)
assert sech(acosh(x)) == 1/x
assert sech(atanh(x)) == sqrt(1 - x**2)
assert sech(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)/x
def test_issue_4136():
assert cosh(asinh(Integer(3)/2)) == sqrt(Integer(13)/4)
def test_sinh_rewrite():
x = Symbol('x')
assert sinh(x).rewrite(exp) == (exp(x) - exp(-x))/2 \
== sinh(x).rewrite('tractable')
assert sinh(x).rewrite(cosh) == -I*cosh(x + I*pi/2)
tanh_half = tanh(S.Half*x)
assert sinh(x).rewrite(tanh) == 2*tanh_half/(1 - tanh_half**2)
coth_half = coth(S.Half*x)
assert sinh(x).rewrite(coth) == 2*coth_half/(coth_half**2 - 1)
def test_cosh_rewrite():
x = Symbol('x')
assert cosh(x).rewrite(exp) == (exp(x) + exp(-x))/2 \
== cosh(x).rewrite('tractable')
assert cosh(x).rewrite(sinh) == -I*sinh(x + I*pi/2)
tanh_half = tanh(S.Half*x)**2
assert cosh(x).rewrite(tanh) == (1 + tanh_half)/(1 - tanh_half)
coth_half = coth(S.Half*x)**2
assert cosh(x).rewrite(coth) == (coth_half + 1)/(coth_half - 1)
def test_tanh_rewrite():
x = Symbol('x')
assert tanh(x).rewrite(exp) == (exp(x) - exp(-x))/(exp(x) + exp(-x)) \
== tanh(x).rewrite('tractable')
assert tanh(x).rewrite(sinh) == I*sinh(x)/sinh(I*pi/2 - x)
assert tanh(x).rewrite(cosh) == I*cosh(I*pi/2 - x)/cosh(x)
assert tanh(x).rewrite(coth) == 1/coth(x)
def test_coth_rewrite():
x = Symbol('x')
assert coth(x).rewrite(exp) == (exp(x) + exp(-x))/(exp(x) - exp(-x)) \
== coth(x).rewrite('tractable')
assert coth(x).rewrite(sinh) == -I*sinh(I*pi/2 - x)/sinh(x)
assert coth(x).rewrite(cosh) == -I*cosh(x)/cosh(I*pi/2 - x)
assert coth(x).rewrite(tanh) == 1/tanh(x)
def test_csch_rewrite():
x = Symbol('x')
assert csch(x).rewrite(exp) == 1 / (exp(x)/2 - exp(-x)/2) \
== csch(x).rewrite('tractable')
assert csch(x).rewrite(cosh) == I/cosh(x + I*pi/2)
tanh_half = tanh(S.Half*x)
assert csch(x).rewrite(tanh) == (1 - tanh_half**2)/(2*tanh_half)
coth_half = coth(S.Half*x)
assert csch(x).rewrite(coth) == (coth_half**2 - 1)/(2*coth_half)
def test_sech_rewrite():
x = Symbol('x')
assert sech(x).rewrite(exp) == 1 / (exp(x)/2 + exp(-x)/2) \
== sech(x).rewrite('tractable')
assert sech(x).rewrite(sinh) == I/sinh(x + I*pi/2)
tanh_half = tanh(S.Half*x)**2
assert sech(x).rewrite(tanh) == (1 - tanh_half)/(1 + tanh_half)
coth_half = coth(S.Half*x)**2
assert sech(x).rewrite(coth) == (coth_half - 1)/(coth_half + 1)
def test_derivs():
x = Symbol('x')
assert coth(x).diff(x) == -sinh(x)**(-2)
assert sinh(x).diff(x) == cosh(x)
assert cosh(x).diff(x) == sinh(x)
assert tanh(x).diff(x) == -tanh(x)**2 + 1
assert csch(x).diff(x) == -coth(x)*csch(x)
assert sech(x).diff(x) == -tanh(x)*sech(x)
assert acoth(x).diff(x) == 1/(-x**2 + 1)
assert asinh(x).diff(x) == 1/sqrt(x**2 + 1)
assert acosh(x).diff(x) == 1/sqrt(x**2 - 1)
assert atanh(x).diff(x) == 1/(-x**2 + 1)
assert asech(x).diff(x) == -1/(x*sqrt(1 - x**2))
assert acsch(x).diff(x) == -1/(x**2*sqrt(1 + x**(-2)))
def test_sinh_expansion():
x, y = symbols('x,y')
assert sinh(x+y).expand(trig=True) == sinh(x)*cosh(y) + cosh(x)*sinh(y)
assert sinh(2*x).expand(trig=True) == 2*sinh(x)*cosh(x)
assert sinh(3*x).expand(trig=True).expand() == \
sinh(x)**3 + 3*sinh(x)*cosh(x)**2
def test_cosh_expansion():
x, y = symbols('x,y')
assert cosh(x+y).expand(trig=True) == cosh(x)*cosh(y) + sinh(x)*sinh(y)
assert cosh(2*x).expand(trig=True) == cosh(x)**2 + sinh(x)**2
assert cosh(3*x).expand(trig=True).expand() == \
3*sinh(x)**2*cosh(x) + cosh(x)**3
def test_cosh_positive():
# See issue 11721
# cosh(x) is positive for real values of x
k = symbols('k', real=True)
n = symbols('n', integer=True)
assert cosh(k, evaluate=False).is_positive is True
assert cosh(k + 2*n*pi*I, evaluate=False).is_positive is True
assert cosh(I*pi/4, evaluate=False).is_positive is True
assert cosh(3*I*pi/4, evaluate=False).is_positive is False
def test_cosh_nonnegative():
k = symbols('k', real=True)
n = symbols('n', integer=True)
assert cosh(k, evaluate=False).is_nonnegative is True
assert cosh(k + 2*n*pi*I, evaluate=False).is_nonnegative is True
assert cosh(I*pi/4, evaluate=False).is_nonnegative is True
assert cosh(3*I*pi/4, evaluate=False).is_nonnegative is False
assert cosh(S.Zero, evaluate=False).is_nonnegative is True
def test_real_assumptions():
z = Symbol('z', real=False)
assert sinh(z).is_real is None
assert cosh(z).is_real is None
assert tanh(z).is_real is None
assert sech(z).is_real is None
assert csch(z).is_real is None
assert coth(z).is_real is None
def test_sign_assumptions():
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
assert sinh(n).is_negative is True
assert sinh(p).is_positive is True
assert cosh(n).is_positive is True
assert cosh(p).is_positive is True
assert tanh(n).is_negative is True
assert tanh(p).is_positive is True
assert csch(n).is_negative is True
assert csch(p).is_positive is True
assert sech(n).is_positive is True
assert sech(p).is_positive is True
assert coth(n).is_negative is True
assert coth(p).is_positive is True
|
863434ac70f330cefe545fb050029af1588824591a7a62f0c121a589422a79ac | from sympy import (
adjoint, conjugate, Dummy, Eijk, KroneckerDelta, LeviCivita, Symbol,
symbols, transpose, Piecewise, Ne
)
from sympy.physics.secondquant import evaluate_deltas, F
x, y = symbols('x y')
def test_levicivita():
assert Eijk(1, 2, 3) == LeviCivita(1, 2, 3)
assert LeviCivita(1, 2, 3) == 1
assert LeviCivita(int(1), int(2), int(3)) == 1
assert LeviCivita(1, 3, 2) == -1
assert LeviCivita(1, 2, 2) == 0
i, j, k = symbols('i j k')
assert LeviCivita(i, j, k) == LeviCivita(i, j, k, evaluate=False)
assert LeviCivita(i, j, i) == 0
assert LeviCivita(1, i, i) == 0
assert LeviCivita(i, j, k).doit() == (j - i)*(k - i)*(k - j)/2
assert LeviCivita(1, 2, 3, 1) == 0
assert LeviCivita(4, 5, 1, 2, 3) == 1
assert LeviCivita(4, 5, 2, 1, 3) == -1
assert LeviCivita(i, j, k).is_integer is True
assert adjoint(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
assert conjugate(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
assert transpose(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
def test_kronecker_delta():
i, j = symbols('i j')
k = Symbol('k', nonzero=True)
assert KroneckerDelta(1, 1) == 1
assert KroneckerDelta(1, 2) == 0
assert KroneckerDelta(k, 0) == 0
assert KroneckerDelta(x, x) == 1
assert KroneckerDelta(x**2 - y**2, x**2 - y**2) == 1
assert KroneckerDelta(i, i) == 1
assert KroneckerDelta(i, i + 1) == 0
assert KroneckerDelta(0, 0) == 1
assert KroneckerDelta(0, 1) == 0
assert KroneckerDelta(i + k, i) == 0
assert KroneckerDelta(i + k, i + k) == 1
assert KroneckerDelta(i + k, i + 1 + k) == 0
assert KroneckerDelta(i, j).subs(dict(i=1, j=0)) == 0
assert KroneckerDelta(i, j).subs(dict(i=3, j=3)) == 1
assert KroneckerDelta(i, j)**0 == 1
for n in range(1, 10):
assert KroneckerDelta(i, j)**n == KroneckerDelta(i, j)
assert KroneckerDelta(i, j)**-n == 1/KroneckerDelta(i, j)
assert KroneckerDelta(i, j).is_integer is True
assert adjoint(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
assert conjugate(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
assert transpose(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
# to test if canonical
assert (KroneckerDelta(i, j) == KroneckerDelta(j, i)) == True
assert KroneckerDelta(i, j).rewrite(Piecewise) == Piecewise((0, Ne(i, j)), (1, True))
# Tests with range:
assert KroneckerDelta(i, j, (0, i)).args == (i, j, (0, i))
assert KroneckerDelta(i, j, (-j, i)).delta_range == (-j, i)
# If index is out of range, return zero:
assert KroneckerDelta(i, j, (0, i-1)) == 0
assert KroneckerDelta(-1, j, (0, i-1)) == 0
assert KroneckerDelta(j, -1, (0, i-1)) == 0
assert KroneckerDelta(j, i, (0, i-1)) == 0
def test_kronecker_delta_secondquant():
"""secondquant-specific methods"""
D = KroneckerDelta
i, j, v, w = symbols('i j v w', below_fermi=True, cls=Dummy)
a, b, t, u = symbols('a b t u', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert D(i, a) == 0
assert D(i, t) == 0
assert D(i, j).is_above_fermi is False
assert D(a, b).is_above_fermi is True
assert D(p, q).is_above_fermi is True
assert D(i, q).is_above_fermi is False
assert D(q, i).is_above_fermi is False
assert D(q, v).is_above_fermi is False
assert D(a, q).is_above_fermi is True
assert D(i, j).is_below_fermi is True
assert D(a, b).is_below_fermi is False
assert D(p, q).is_below_fermi is True
assert D(p, j).is_below_fermi is True
assert D(q, b).is_below_fermi is False
assert D(i, j).is_only_above_fermi is False
assert D(a, b).is_only_above_fermi is True
assert D(p, q).is_only_above_fermi is False
assert D(i, q).is_only_above_fermi is False
assert D(q, i).is_only_above_fermi is False
assert D(a, q).is_only_above_fermi is True
assert D(i, j).is_only_below_fermi is True
assert D(a, b).is_only_below_fermi is False
assert D(p, q).is_only_below_fermi is False
assert D(p, j).is_only_below_fermi is True
assert D(q, b).is_only_below_fermi is False
assert not D(i, q).indices_contain_equal_information
assert not D(a, q).indices_contain_equal_information
assert D(p, q).indices_contain_equal_information
assert D(a, b).indices_contain_equal_information
assert D(i, j).indices_contain_equal_information
assert D(q, b).preferred_index == b
assert D(q, b).killable_index == q
assert D(q, t).preferred_index == t
assert D(q, t).killable_index == q
assert D(q, i).preferred_index == i
assert D(q, i).killable_index == q
assert D(q, v).preferred_index == v
assert D(q, v).killable_index == q
assert D(q, p).preferred_index == p
assert D(q, p).killable_index == q
EV = evaluate_deltas
assert EV(D(a, q)*F(q)) == F(a)
assert EV(D(i, q)*F(q)) == F(i)
assert EV(D(a, q)*F(a)) == D(a, q)*F(a)
assert EV(D(i, q)*F(i)) == D(i, q)*F(i)
assert EV(D(a, b)*F(a)) == F(b)
assert EV(D(a, b)*F(b)) == F(a)
assert EV(D(i, j)*F(i)) == F(j)
assert EV(D(i, j)*F(j)) == F(i)
assert EV(D(p, q)*F(q)) == F(p)
assert EV(D(p, q)*F(p)) == F(q)
assert EV(D(p, j)*D(p, i)*F(i)) == F(j)
assert EV(D(p, j)*D(p, i)*F(j)) == F(i)
assert EV(D(p, q)*D(p, i))*F(i) == D(q, i)*F(i)
|
81cb0a3c9cd6a54a832e2c5cb4ee314e9f8dcfe014200c6c7f6d0d707c7979f1 | from sympy.functions import bspline_basis_set, interpolating_spline
from sympy import Piecewise, Interval, And
from sympy import symbols, Rational, S
from sympy.testing.pytest import slow
x, y = symbols('x,y')
def test_basic_degree_0():
d = 0
knots = range(5)
splines = bspline_basis_set(d, knots, x)
for i in range(len(splines)):
assert splines[i] == Piecewise((1, Interval(i, i + 1).contains(x)),
(0, True))
def test_basic_degree_1():
d = 1
knots = range(5)
splines = bspline_basis_set(d, knots, x)
assert splines[0] == Piecewise((x, Interval(0, 1).contains(x)),
(2 - x, Interval(1, 2).contains(x)),
(0, True))
assert splines[1] == Piecewise((-1 + x, Interval(1, 2).contains(x)),
(3 - x, Interval(2, 3).contains(x)),
(0, True))
assert splines[2] == Piecewise((-2 + x, Interval(2, 3).contains(x)),
(4 - x, Interval(3, 4).contains(x)),
(0, True))
def test_basic_degree_2():
d = 2
knots = range(5)
splines = bspline_basis_set(d, knots, x)
b0 = Piecewise((x**2/2, Interval(0, 1).contains(x)),
(Rational(-3, 2) + 3*x - x**2, Interval(1, 2).contains(x)),
(Rational(9, 2) - 3*x + x**2/2, Interval(2, 3).contains(x)),
(0, True))
b1 = Piecewise((S.Half - x + x**2/2, Interval(1, 2).contains(x)),
(Rational(-11, 2) + 5*x - x**2, Interval(2, 3).contains(x)),
(8 - 4*x + x**2/2, Interval(3, 4).contains(x)),
(0, True))
assert splines[0] == b0
assert splines[1] == b1
def test_basic_degree_3():
d = 3
knots = range(5)
splines = bspline_basis_set(d, knots, x)
b0 = Piecewise(
(x**3/6, Interval(0, 1).contains(x)),
(Rational(2, 3) - 2*x + 2*x**2 - x**3/2, Interval(1, 2).contains(x)),
(Rational(-22, 3) + 10*x - 4*x**2 + x**3/2, Interval(2, 3).contains(x)),
(Rational(32, 3) - 8*x + 2*x**2 - x**3/6, Interval(3, 4).contains(x)),
(0, True)
)
assert splines[0] == b0
def test_repeated_degree_1():
d = 1
knots = [0, 0, 1, 2, 2, 3, 4, 4]
splines = bspline_basis_set(d, knots, x)
assert splines[0] == Piecewise((1 - x, Interval(0, 1).contains(x)),
(0, True))
assert splines[1] == Piecewise((x, Interval(0, 1).contains(x)),
(2 - x, Interval(1, 2).contains(x)),
(0, True))
assert splines[2] == Piecewise((-1 + x, Interval(1, 2).contains(x)),
(0, True))
assert splines[3] == Piecewise((3 - x, Interval(2, 3).contains(x)),
(0, True))
assert splines[4] == Piecewise((-2 + x, Interval(2, 3).contains(x)),
(4 - x, Interval(3, 4).contains(x)),
(0, True))
assert splines[5] == Piecewise((-3 + x, Interval(3, 4).contains(x)),
(0, True))
def test_repeated_degree_2():
d = 2
knots = [0, 0, 1, 2, 2, 3, 4, 4]
splines = bspline_basis_set(d, knots, x)
assert splines[0] == Piecewise(((-3*x**2/2 + 2*x), And(x <= 1, x >= 0)),
(x**2/2 - 2*x + 2, And(x <= 2, x >= 1)),
(0, True))
assert splines[1] == Piecewise((x**2/2, And(x <= 1, x >= 0)),
(-3*x**2/2 + 4*x - 2, And(x <= 2, x >= 1)),
(0, True))
assert splines[2] == Piecewise((x**2 - 2*x + 1, And(x <= 2, x >= 1)),
(x**2 - 6*x + 9, And(x <= 3, x >= 2)),
(0, True))
assert splines[3] == Piecewise((-3*x**2/2 + 8*x - 10, And(x <= 3, x >= 2)),
(x**2/2 - 4*x + 8, And(x <= 4, x >= 3)),
(0, True))
assert splines[4] == Piecewise((x**2/2 - 2*x + 2, And(x <= 3, x >= 2)),
(-3*x**2/2 + 10*x - 16, And(x <= 4, x >= 3)),
(0, True))
# Tests for interpolating_spline
def test_10_points_degree_1():
d = 1
X = [-5, 2, 3, 4, 7, 9, 10, 30, 31, 34]
Y = [-10, -2, 2, 4, 7, 6, 20, 45, 19, 25]
spline = interpolating_spline(d, x, X, Y)
assert spline == Piecewise((x*Rational(8, 7) - Rational(30, 7), (x >= -5) & (x <= 2)), (4*x - 10, (x >= 2) & (x <= 3)),
(2*x - 4, (x >= 3) & (x <= 4)), (x, (x >= 4) & (x <= 7)),
(-x/2 + Rational(21, 2), (x >= 7) & (x <= 9)), (14*x - 120, (x >= 9) & (x <= 10)),
(x*Rational(5, 4) + Rational(15, 2), (x >= 10) & (x <= 30)), (-26*x + 825, (x >= 30) & (x <= 31)),
(2*x - 43, (x >= 31) & (x <= 34)))
def test_3_points_degree_2():
d = 2
X = [-3, 10, 19]
Y = [3, -4, 30]
spline = interpolating_spline(d, x, X, Y)
assert spline == Piecewise((505*x**2/2574 - x*Rational(4921, 2574) - Rational(1931, 429), (x >= -3) & (x <= 19)))
def test_5_points_degree_2():
d = 2
X = [-3, 2, 4, 5, 10]
Y = [-1, 2, 5, 10, 14]
spline = interpolating_spline(d, x, X, Y)
assert spline == Piecewise((4*x**2/329 + x*Rational(1007, 1645) + Rational(1196, 1645), (x >= -3) & (x <= 3)),
(2701*x**2/1645 - x*Rational(15079, 1645) + Rational(5065, 329), (x >= 3) & (x <= Rational(9, 2))),
(-1319*x**2/1645 + x*Rational(21101, 1645) - Rational(11216, 329), (x >= Rational(9, 2)) & (x <= 10)))
@slow
def test_6_points_degree_3():
d = 3
X = [-1, 0, 2, 3, 9, 12]
Y = [-4, 3, 3, 7, 9, 20]
spline = interpolating_spline(d, x, X, Y)
assert spline == Piecewise((6058*x**3/5301 - 18427*x**2/5301 + x*Rational(12622, 5301) + 3, (x >= -1) & (x <= 2)),
(-8327*x**3/5301 + 67883*x**2/5301 - x*Rational(159998, 5301) + Rational(43661, 1767), (x >= 2) & (x <= 3)),
(5414*x**3/47709 - 1386*x**2/589 + x*Rational(4267, 279) - Rational(12232, 589), (x >= 3) & (x <= 12)))
|
1fdec0b6010d59489d9fecb7f7821d42823ae930de6bee58435c85350f05e18f | from sympy import (hyper, meijerg, S, Tuple, pi, I, exp, log, Rational,
cos, sqrt, symbols, oo, Derivative, gamma, O, appellf1)
from sympy.abc import x, z, k
from sympy.series.limits import limit
from sympy.testing.pytest import raises, slow
from sympy.testing.randtest import (
random_complex_number as randcplx,
verify_numerically as tn,
test_derivative_numerically as td)
def test_TupleParametersBase():
# test that our implementation of the chain rule works
p = hyper((), (), z**2)
assert p.diff(z) == p*2*z
def test_hyper():
raises(TypeError, lambda: hyper(1, 2, z))
assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z)
h = hyper((1, 2), (3, 4, 5), z)
assert h.ap == Tuple(1, 2)
assert h.bq == Tuple(3, 4, 5)
assert h.argument == z
assert h.is_commutative is True
# just a few checks to make sure that all arguments go where they should
assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)
# differentiation
h = hyper(
(randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
assert td(h, z)
a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z)
# differentiation wrt parameters is not supported
assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z)
# hyper is unbranched wrt parameters
from sympy import polar_lift
assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \
hyper([z], [k], polar_lift(x))
# hyper does not automatically evaluate anyway, but the test is to make
# sure that the evaluate keyword is accepted
assert hyper((1, 2), (1,), z, evaluate=False).func is hyper
def test_expand_func():
# evaluation at 1 of Gauss' hypergeometric function:
from sympy.abc import a, b, c
from sympy import gamma, expand_func
a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
assert expand_func(hyper([a, b], [c], 1)) == \
gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
assert abs(expand_func(hyper([a1, b1], [c1], 1)).n()
- hyper([a1, b1], [c1], 1).n()) < 1e-10
# hyperexpand wrapper for hyper:
assert expand_func(hyper([], [], z)) == exp(z)
assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
meijerg([[1, 1], []], [[], []], z)
def replace_dummy(expr, sym):
from sympy import Dummy
dum = expr.atoms(Dummy)
if not dum:
return expr
assert len(dum) == 1
return expr.xreplace({dum.pop(): sym})
def test_hyper_rewrite_sum():
from sympy import RisingFactorial, factorial, Dummy, Sum
_k = Dummy("k")
assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \
Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) /
RisingFactorial(3, _k), (_k, 0, oo))
assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \
hyper((1, 2, 3), (-1, 3), z)
def test_radius_of_convergence():
assert hyper((1, 2), [3], z).radius_of_convergence == 1
assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo
assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0
assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo
assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0
assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo
assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0
assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1
assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo
assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0
assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo
assert hyper([1, 1], [3], 1).convergence_statement == True
assert hyper([1, 1], [2], 1).convergence_statement == False
assert hyper([1, 1], [2], -1).convergence_statement == True
assert hyper([1, 1], [1], -1).convergence_statement == False
def test_meijer():
raises(TypeError, lambda: meijerg(1, z))
raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z))
assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \
meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z)
g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z)
assert g.an == Tuple(1, 2)
assert g.ap == Tuple(1, 2, 3, 4, 5)
assert g.aother == Tuple(3, 4, 5)
assert g.bm == Tuple(6, 7, 8, 9)
assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14)
assert g.bother == Tuple(10, 11, 12, 13, 14)
assert g.argument == z
assert g.nu == 75
assert g.delta == -1
assert g.is_commutative is True
assert g.is_number is False
#issue 13071
assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True
assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half
# just a few checks to make sure that all arguments go where they should
assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z)
assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(),
Tuple(0), Tuple(S.Half), z**2/4), cos(z), z)
assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z),
log(1 + z), z)
# test exceptions
raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x))
raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x))
# differentiation
g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(),
(randcplx(), randcplx()), z)
assert td(g, z)
g = meijerg(Tuple(), (randcplx(),), Tuple(),
(randcplx(), randcplx()), z)
assert td(g, z)
g = meijerg(Tuple(), Tuple(), Tuple(randcplx()),
Tuple(randcplx(), randcplx()), z)
assert td(g, z)
a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3')
assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \
(meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z)
+ (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z
assert meijerg([z, z], [], [], [], z).diff(z) == \
Derivative(meijerg([z, z], [], [], [], z), z)
# meijerg is unbranched wrt parameters
from sympy import polar_lift as pl
assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \
meijerg([a1], [a2], [b1], [b2], pl(z))
# integrand
from sympy.abc import a, b, c, d, s
assert meijerg([a], [b], [c], [d], z).integrand(s) == \
z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1))
def test_meijerg_derivative():
assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \
log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \
+ 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z)
y = randcplx()
a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats
assert td(meijerg([x], [], [], [], y), x)
assert td(meijerg([x**2], [], [], [], y), x)
assert td(meijerg([], [x], [], [], y), x)
assert td(meijerg([], [], [x], [], y), x)
assert td(meijerg([], [], [], [x], y), x)
assert td(meijerg([x], [a], [a + 1], [], y), x)
assert td(meijerg([x], [a + 1], [a], [], y), x)
assert td(meijerg([x, a], [], [], [a + 1], y), x)
assert td(meijerg([x, a + 1], [], [], [a], y), x)
b = Rational(3, 2)
assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x)
def test_meijerg_period():
assert meijerg([], [1], [0], [], x).get_period() == 2*pi
assert meijerg([1], [], [], [0], x).get_period() == 2*pi
assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x)
assert meijerg(
[], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x))
assert meijerg(
[], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x))
assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x)
def test_hyper_unpolarify():
from sympy import exp_polar
a = exp_polar(2*pi*I)*x
b = x
assert hyper([], [], a).argument == b
assert hyper([0], [], a).argument == a
assert hyper([0], [0], a).argument == b
assert hyper([0, 1], [0], a).argument == a
assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1
@slow
def test_hyperrep():
from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh,
HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
HyperRep_cosasin, HyperRep_sinasin)
# First test the base class works.
from sympy import Piecewise, exp_polar
a, b, c, d, z = symbols('a b c d z')
class myrep(HyperRep):
@classmethod
def _expr_small(cls, x):
return a
@classmethod
def _expr_small_minus(cls, x):
return b
@classmethod
def _expr_big(cls, x, n):
return c*n
@classmethod
def _expr_big_minus(cls, x, n):
return d*n
assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True))
assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \
Piecewise((0, abs(z) > 1), (b, True))
assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \
Piecewise((c, abs(z) > 1), (a, True))
assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \
Piecewise((d, abs(z) > 1), (b, True))
assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \
Piecewise((2*c, abs(z) > 1), (a, True))
assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \
Piecewise((2*d, abs(z) > 1), (b, True))
assert myrep(z).rewrite('nonrepsmall') == a
assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b
def t(func, hyp, z):
""" Test that func is a valid representation of hyp. """
# First test that func agrees with hyp for small z
if not tn(func.rewrite('nonrepsmall'), hyp, z,
a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
return False
# Next check that the two small representations agree.
if not tn(
func.rewrite('nonrepsmall').subs(
z, exp_polar(I*pi)*z).replace(exp_polar, exp),
func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'),
z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
return False
# Next check continuity along exp_polar(I*pi)*t
expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep')
if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10:
return False
# Finally check continuity of the big reps.
def dosubs(func, a, b):
rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep')
return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp)
for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
if not tn(expr1, expr2, z):
return False
expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
if not tn(expr1, expr2, z):
return False
return True
# Now test the various representatives.
a = Rational(1, 3)
assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z)
assert t(HyperRep_power1(a, z), hyper([-a], [], z), z)
assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z)
assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z)
assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z)
assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z)
assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z)
assert t(HyperRep_sqrts2(a, z),
-2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z)
assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z)
assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z)
assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
@slow
def test_meijerg_eval():
from sympy import besseli, exp_polar
from sympy.abc import l
a = randcplx()
arg = x*exp_polar(k*pi*I)
expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
expr2 = besseli(a, arg)
# Test that the two expressions agree for all arguments.
for x_ in [0.5, 1.5]:
for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10
assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10
# Test continuity independently
eps = 1e-13
expr2 = expr1.subs(k, l)
for x_ in [0.5, 1.5]:
for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
assert abs((expr1 - expr2).n(
subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
assert abs((expr1 - expr2).n(
subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10
expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
+ meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
/(2*sqrt(pi))
assert (expr - pi/exp(1)).n(chop=True) == 0
def test_limits():
k, x = symbols('k, x')
assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \
1 + 9*k**2/20 + 81*k**4/1120 + O(k**6) # issue 6350
assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \
meijerg(((), ()), ((1,), (0,)), 0) # issue 6052
def test_appellf1():
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y)
assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y)
assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One
f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False)
assert f.func is appellf1
assert f.doit() is S.One
def test_derivative_appellf1():
from sympy import diff
a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z')
assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c
assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c
assert diff(appellf1(a, b1, b2, c, x, y), z) == 0
assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a)
def test_eval_nseries():
a1, b1, a2, b2 = symbols('a1 b1 a2 b2')
assert hyper((1,2), (1,2,3), x**2)._eval_nseries(x, 7, None) == 1 + x**2/3 + x**4/24 + x**6/360 + O(x**7)
assert exp(x)._eval_nseries(x,7,None) == hyper((a1, b1), (a1, b1), x)._eval_nseries(x, 7, None)
assert hyper((a1, a2), (b1, b2), x)._eval_nseries(z, 7, None) == hyper((a1, a2), (b1, b2), x) + O(z**7)
|
e9a6376d64741e4b56d8720ce2ae784df4e77567a5551c64c4a1f3341f9403be | from sympy import (
adjoint, conjugate, DiracDelta, Heaviside, nan, pi, sign, sqrt,
symbols, transpose, Symbol, Piecewise, I, S, Eq, Ne, oo,
SingularityFunction, signsimp
)
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.core.function import ArgumentIndexError
x, y = symbols('x y')
i = symbols('t', nonzero=True)
j = symbols('j', positive=True)
k = symbols('k', negative=True)
def test_DiracDelta():
assert DiracDelta(1) == 0
assert DiracDelta(5.1) == 0
assert DiracDelta(-pi) == 0
assert DiracDelta(5, 7) == 0
assert DiracDelta(i) == 0
assert DiracDelta(j) == 0
assert DiracDelta(k) == 0
assert DiracDelta(nan) is nan
assert DiracDelta(0).func is DiracDelta
assert DiracDelta(x).func is DiracDelta
# FIXME: this is generally undefined @ x=0
# But then limit(Delta(c)*Heaviside(x),x,-oo)
# need's to be implemented.
# assert 0*DiracDelta(x) == 0
assert adjoint(DiracDelta(x)) == DiracDelta(x)
assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y)
assert conjugate(DiracDelta(x)) == DiracDelta(x)
assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)
assert transpose(DiracDelta(x)) == DiracDelta(x)
assert transpose(DiracDelta(x - y)) == DiracDelta(x - y)
assert DiracDelta(x).diff(x) == DiracDelta(x, 1)
assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2)
assert DiracDelta(x).is_simple(x) is True
assert DiracDelta(3*x).is_simple(x) is True
assert DiracDelta(x**2).is_simple(x) is False
assert DiracDelta(sqrt(x)).is_simple(x) is False
assert DiracDelta(x).is_simple(y) is False
assert DiracDelta(x*y).expand(diracdelta=True, wrt=x) == DiracDelta(x)/abs(y)
assert DiracDelta(x*y).expand(diracdelta=True, wrt=y) == DiracDelta(y)/abs(x)
assert DiracDelta(x**2*y).expand(diracdelta=True, wrt=x) == DiracDelta(x**2*y)
assert DiracDelta(y).expand(diracdelta=True, wrt=x) == DiracDelta(y)
assert DiracDelta((x - 1)*(x - 2)*(x - 3)).expand(diracdelta=True, wrt=x) == (
DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)
assert DiracDelta(2*x) != DiracDelta(x) # scaling property
assert DiracDelta(x) == DiracDelta(-x) # even function
assert DiracDelta(-x, 2) == DiracDelta(x, 2)
assert DiracDelta(-x, 1) == -DiracDelta(x, 1) # odd deriv is odd
assert DiracDelta(-oo*x) == DiracDelta(oo*x)
assert DiracDelta(x - y) != DiracDelta(y - x)
assert signsimp(DiracDelta(x - y) - DiracDelta(y - x)) == 0
with warns_deprecated_sympy():
assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y)
with warns_deprecated_sympy():
assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x)
with warns_deprecated_sympy():
assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y)
with warns_deprecated_sympy():
assert DiracDelta(y).simplify(x) == DiracDelta(y)
with warns_deprecated_sympy():
assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == (
DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)
raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2))
raises(ValueError, lambda: DiracDelta(x, -1))
raises(ValueError, lambda: DiracDelta(I))
raises(ValueError, lambda: DiracDelta(2 + 3*I))
def test_heaviside():
assert Heaviside(0).func == Heaviside
assert Heaviside(-5) == 0
assert Heaviside(1) == 1
assert Heaviside(nan) is nan
assert Heaviside(0, x) == x
assert Heaviside(0, nan) is nan
assert Heaviside(x, None) == Heaviside(x)
assert Heaviside(0, None) == Heaviside(0)
# we do not want None and Heaviside(0) in the args:
assert Heaviside(x, H0=None).args == (x,)
assert Heaviside(x, H0=Heaviside(0)).args == (x,)
assert adjoint(Heaviside(x)) == Heaviside(x)
assert adjoint(Heaviside(x - y)) == Heaviside(x - y)
assert conjugate(Heaviside(x)) == Heaviside(x)
assert conjugate(Heaviside(x - y)) == Heaviside(x - y)
assert transpose(Heaviside(x)) == Heaviside(x)
assert transpose(Heaviside(x - y)) == Heaviside(x - y)
assert Heaviside(x).diff(x) == DiracDelta(x)
assert Heaviside(x + I).is_Function is True
assert Heaviside(I*x).is_Function is True
raises(ArgumentIndexError, lambda: Heaviside(x).fdiff(2))
raises(ValueError, lambda: Heaviside(I))
raises(ValueError, lambda: Heaviside(2 + 3*I))
def test_rewrite():
x, y = Symbol('x', real=True), Symbol('y')
assert Heaviside(x).rewrite(Piecewise) == (
Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)))
assert Heaviside(y).rewrite(Piecewise) == (
Piecewise((0, y < 0), (Heaviside(0), Eq(y, 0)), (1, y > 0)))
assert Heaviside(x, y).rewrite(Piecewise) == (
Piecewise((0, x < 0), (y, Eq(x, 0)), (1, x > 0)))
assert Heaviside(x, 0).rewrite(Piecewise) == (
Piecewise((0, x <= 0), (1, x > 0)))
assert Heaviside(x, 1).rewrite(Piecewise) == (
Piecewise((0, x < 0), (1, x >= 0)))
assert Heaviside(x).rewrite(sign) == \
Heaviside(x, H0=Heaviside(0)).rewrite(sign) == \
Piecewise(
(sign(x)/2 + S(1)/2, Eq(Heaviside(0), S(1)/2)),
(Piecewise(
(sign(x)/2 + S(1)/2, Ne(x, 0)), (Heaviside(0), True)), True)
)
assert Heaviside(y).rewrite(sign) == Heaviside(y)
assert Heaviside(x, S.Half).rewrite(sign) == (sign(x)+1)/2
assert Heaviside(x, y).rewrite(sign) == \
Piecewise(
(sign(x)/2 + S(1)/2, Eq(y, S(1)/2)),
(Piecewise(
(sign(x)/2 + S(1)/2, Ne(x, 0)), (y, True)), True)
)
assert DiracDelta(y).rewrite(Piecewise) == Piecewise((DiracDelta(0), Eq(y, 0)), (0, True))
assert DiracDelta(y, 1).rewrite(Piecewise) == DiracDelta(y, 1)
assert DiracDelta(x - 5).rewrite(Piecewise) == (
Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)))
assert (x*DiracDelta(x - 10)).rewrite(SingularityFunction) == x*SingularityFunction(x, 10, -1)
assert 5*x*y*DiracDelta(y, 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, 0, -2)
assert DiracDelta(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, -1)
assert DiracDelta(0, 1).rewrite(SingularityFunction) == SingularityFunction(0, 0, -2)
assert Heaviside(x).rewrite(SingularityFunction) == SingularityFunction(x, 0, 0)
assert 5*x*y*Heaviside(y + 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, -1, 0)
assert ((x - 3)**3*Heaviside(x - 3)).rewrite(SingularityFunction) == (x - 3)**3*SingularityFunction(x, 3, 0)
assert Heaviside(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, 0)
def test_issue_15923():
x = Symbol('x', real=True)
assert Heaviside(x).rewrite(Piecewise, H0=0) == (
Piecewise((0, x <= 0), (1, True)))
assert Heaviside(x).rewrite(Piecewise, H0=1) == (
Piecewise((0, x < 0), (1, True)))
assert Heaviside(x).rewrite(Piecewise, H0=S.Half) == (
Piecewise((0, x < 0), (S.Half, Eq(x, 0)), (1, x > 0)))
|
4a0f5397f97b8ff282579da9e6ae8cc8a93f411366a6f9de6df9253f4d036b18 | from sympy import (Symbol, gamma, expand_func, beta, diff, conjugate)
from sympy.functions.special.gamma_functions import polygamma
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
def test_beta():
x, y = Symbol('x'), Symbol('y')
assert isinstance(beta(x, y), beta)
assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y)
assert expand_func(beta(x, y) - beta(y, x)) == 0 # Symmetric
assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()
assert diff(beta(x, y), x) == beta(x, y)*(polygamma(0, x) - polygamma(0, x + y))
assert diff(beta(x, y), y) == beta(x, y)*(polygamma(0, y) - polygamma(0, x + y))
assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y))
raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3))
assert beta(x, y).rewrite(gamma) == gamma(x)*gamma(y)/gamma(x + y)
|
77397ee07625f6ae2c8614a3893baff2aa879fa4d077c5fd1affd23d75fce0db | from sympy import (Symbol, zeta, nan, Rational, Float, pi, dirichlet_eta, log,
zoo, expand_func, polylog, lerchphi, S, exp, sqrt, I,
exp_polar, polar_lift, O, stieltjes, Abs, Sum, oo)
from sympy.core.function import ArgumentIndexError
from sympy.functions.combinatorial.numbers import bernoulli, factorial
from sympy.testing.pytest import raises
from sympy.testing.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx, verify_numerically as tn)
x = Symbol('x')
a = Symbol('a')
b = Symbol('b', negative=True)
z = Symbol('z')
s = Symbol('s')
def test_zeta_eval():
assert zeta(nan) is nan
assert zeta(x, nan) is nan
assert zeta(0) == Rational(-1, 2)
assert zeta(0, x) == S.Half - x
assert zeta(0, b) == S.Half - b
assert zeta(1) is zoo
assert zeta(1, 2) is zoo
assert zeta(1, -7) is zoo
assert zeta(1, x) is zoo
assert zeta(2, 1) == pi**2/6
assert zeta(2) == pi**2/6
assert zeta(4) == pi**4/90
assert zeta(6) == pi**6/945
assert zeta(2, 2) == pi**2/6 - 1
assert zeta(4, 3) == pi**4/90 - Rational(17, 16)
assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656)
assert zeta(2, -2) == pi**2/6 + Rational(5, 4)
assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296)
assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984)
assert zeta(oo) == 1
assert zeta(-1) == Rational(-1, 12)
assert zeta(-2) == 0
assert zeta(-3) == Rational(1, 120)
assert zeta(-4) == 0
assert zeta(-5) == Rational(-1, 252)
assert zeta(-1, 3) == Rational(-37, 12)
assert zeta(-1, 7) == Rational(-253, 12)
assert zeta(-1, -4) == Rational(119, 12)
assert zeta(-1, -9) == Rational(539, 12)
assert zeta(-4, 3) == -17
assert zeta(-4, -8) == 8772
assert zeta(0, 1) == Rational(-1, 2)
assert zeta(0, -1) == Rational(3, 2)
assert zeta(0, 2) == Rational(-3, 2)
assert zeta(0, -2) == Rational(5, 2)
assert zeta(
3).evalf(20).epsilon_eq(Float("1.2020569031595942854", 20), 1e-19)
def test_zeta_series():
assert zeta(x, a).series(a, 0, 2) == \
zeta(x, 0) - x*a*zeta(x + 1, 0) + O(a**2)
def test_dirichlet_eta_eval():
assert dirichlet_eta(0) == S.Half
assert dirichlet_eta(-1) == Rational(1, 4)
assert dirichlet_eta(1) == log(2)
assert dirichlet_eta(2) == pi**2/12
assert dirichlet_eta(4) == pi**4*Rational(7, 720)
def test_rewriting():
assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x))*zeta(x)
assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x)/(1 - 2**(1 - x))
assert zeta(x).rewrite(dirichlet_eta, a=2) == zeta(x)
assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x)
assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1)*z
assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
assert z*lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
def test_derivatives():
from sympy import Derivative
assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x)
assert zeta(x, a).diff(a) == -x*zeta(x + 1, a)
assert lerchphi(
z, s, a).diff(z) == (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z
assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s + 1, a)
assert polylog(s, z).diff(z) == polylog(s - 1, z)/z
b = randcplx()
c = randcplx()
assert td(zeta(b, x), x)
assert td(polylog(b, z), z)
assert td(lerchphi(c, b, x), x)
assert td(lerchphi(x, b, c), x)
raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(2))
raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(4))
raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(1))
raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(3))
def myexpand(func, target):
expanded = expand_func(func)
if target is not None:
return expanded == target
if expanded == func: # it didn't expand
return False
# check to see that the expanded and original evaluate to the same value
subs = {}
for a in func.free_symbols:
subs[a] = randcplx()
return abs(func.subs(subs).n()
- expanded.replace(exp_polar, exp).subs(subs).n()) < 1e-10
def test_polylog_expansion():
from sympy import log
assert polylog(s, 0) == 0
assert polylog(s, 1) == zeta(s)
assert polylog(s, -1) == -dirichlet_eta(s)
assert polylog(s, exp_polar(I*pi*Rational(4, 3))) == polylog(s, exp(I*pi*Rational(4, 3)))
assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3)
assert myexpand(polylog(1, z), -log(1 - z))
assert myexpand(polylog(0, z), z/(1 - z))
assert myexpand(polylog(-1, z), z/(1 - z)**2)
assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z)
assert myexpand(polylog(-5, z), None)
def test_issue_8404():
i = Symbol('i', integer=True)
assert Abs(Sum(1/(3*i + 1)**2, (i, 0, S.Infinity)).doit().n(4)
- 1.122) < 0.001
def test_polylog_values():
from sympy.testing.randtest import verify_numerically as tn
assert polylog(2, 2) == pi**2/4 - I*pi*log(2)
assert polylog(2, S.Half) == pi**2/12 - log(2)**2/2
for z in [S.Half, 2, (sqrt(5)-1)/2, -(sqrt(5)-1)/2, -(sqrt(5)+1)/2, (3-sqrt(5))/2]:
assert Abs(polylog(2, z).evalf() - polylog(2, z, evaluate=False).evalf()) < 1e-15
z = Symbol("z")
for s in [-1, 0]:
for _ in range(10):
assert tn(polylog(s, z), polylog(s, z, evaluate=False), z,
a=-3, b=-2, c=S.Half, d=2)
assert tn(polylog(s, z), polylog(s, z, evaluate=False), z,
a=2, b=-2, c=5, d=2)
from sympy import Integral
assert polylog(0, Integral(1, (x, 0, 1))) == -S.Half
def test_lerchphi_expansion():
assert myexpand(lerchphi(1, s, a), zeta(s, a))
assert myexpand(lerchphi(z, s, 1), polylog(s, z)/z)
# direct summation
assert myexpand(lerchphi(z, -1, a), a/(1 - z) + z/(1 - z)**2)
assert myexpand(lerchphi(z, -3, a), None)
# polylog reduction
assert myexpand(lerchphi(z, s, S.Half),
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z)
- polylog(s, polar_lift(-1)*sqrt(z))/sqrt(z)))
assert myexpand(lerchphi(z, s, 2), -1/z + polylog(s, z)/z**2)
assert myexpand(lerchphi(z, s, Rational(3, 2)), None)
assert myexpand(lerchphi(z, s, Rational(7, 3)), None)
assert myexpand(lerchphi(z, s, Rational(-1, 3)), None)
assert myexpand(lerchphi(z, s, Rational(-5, 2)), None)
# hurwitz zeta reduction
assert myexpand(lerchphi(-1, s, a),
2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, (a + 1)/2))
assert myexpand(lerchphi(I, s, a), None)
assert myexpand(lerchphi(-I, s, a), None)
assert myexpand(lerchphi(exp(I*pi*Rational(2, 5)), s, a), None)
def test_stieltjes():
assert isinstance(stieltjes(x), stieltjes)
assert isinstance(stieltjes(x, a), stieltjes)
# Zero'th constant EulerGamma
assert stieltjes(0) == S.EulerGamma
assert stieltjes(0, 1) == S.EulerGamma
# Not defined
assert stieltjes(nan) is nan
assert stieltjes(0, nan) is nan
assert stieltjes(-1) is S.ComplexInfinity
assert stieltjes(1.5) is S.ComplexInfinity
assert stieltjes(z, 0) is S.ComplexInfinity
assert stieltjes(z, -1) is S.ComplexInfinity
def test_stieltjes_evalf():
assert abs(stieltjes(0).evalf() - 0.577215664) < 1E-9
assert abs(stieltjes(0, 0.5).evalf() - 1.963510026) < 1E-9
assert abs(stieltjes(1, 2).evalf() + 0.072815845 ) < 1E-9
def test_issue_10475():
a = Symbol('a', extended_real=True)
b = Symbol('b', extended_positive=True)
s = Symbol('s', zero=False)
assert zeta(2 + I).is_finite
assert zeta(1).is_finite is False
assert zeta(x).is_finite is None
assert zeta(x + I).is_finite is None
assert zeta(a).is_finite is None
assert zeta(b).is_finite is None
assert zeta(-b).is_finite is True
assert zeta(b**2 - 2*b + 1).is_finite is None
assert zeta(a + I).is_finite is True
assert zeta(b + 1).is_finite is True
assert zeta(s + 1).is_finite is True
def test_issue_14177():
n = Symbol('n', positive=True, integer=True)
assert zeta(2*n) == (-1)**(n + 1)*2**(2*n - 1)*pi**(2*n)*bernoulli(2*n)/factorial(2*n)
assert zeta(-n) == (-1)**(-n)*bernoulli(n + 1)/(n + 1)
n = Symbol('n')
assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined
|
79fda134fd6e316a04cab746df9afa0b8f0dc33839c783086f40261c78d38494 | from itertools import product
from sympy import (jn, yn, symbols, Symbol, sin, cos, pi, S, jn_zeros, besselj,
bessely, besseli, besselk, hankel1, hankel2, hn1, hn2,
expand_func, sqrt, sinh, cosh, diff, series, gamma, hyper,
I, O, oo, conjugate, uppergamma, exp, Integral, Sum,
Rational)
from sympy.functions.special.bessel import fn
from sympy.functions.special.bessel import (airyai, airybi,
airyaiprime, airybiprime, marcumq)
from sympy.testing.randtest import (random_complex_number as randcplx,
verify_numerically as tn,
test_derivative_numerically as td,
_randint)
from sympy.testing.pytest import raises
from sympy.abc import z, n, k, x
randint = _randint()
def test_bessel_rand():
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2]:
assert td(f(randcplx(), z), z)
for f in [jn, yn, hn1, hn2]:
assert td(f(randint(-10, 10), z), z)
def test_bessel_twoinputs():
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn]:
raises(TypeError, lambda: f(1))
raises(TypeError, lambda: f(1, 2, 3))
def test_diff():
assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
def test_rewrite():
from sympy import polar_lift, exp, I
assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z)
assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z)
assert besseli(n, z).rewrite(besselj) == \
exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
assert besselj(n, z).rewrite(besseli) == \
exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
nu = randcplx()
assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
# check that a rewrite was triggered, when the order is set to a generic
# symbol 'nu'
assert yn(nu, z) != yn(nu, z).rewrite(jn)
assert hn1(nu, z) != hn1(nu, z).rewrite(jn)
assert hn2(nu, z) != hn2(nu, z).rewrite(jn)
assert jn(nu, z) != jn(nu, z).rewrite(yn)
assert hn1(nu, z) != hn1(nu, z).rewrite(yn)
assert hn2(nu, z) != hn2(nu, z).rewrite(yn)
# rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is
# not allowed if a generic symbol 'nu' is used as the order of the SBFs
# to avoid inconsistencies (the order of bessel[jy] is allowed to be
# complex-valued, whereas SBFs are defined only for integer orders)
order = nu
for f in (besselj, bessely):
assert hn1(order, z) == hn1(order, z).rewrite(f)
assert hn2(order, z) == hn2(order, z).rewrite(f)
assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2
assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2
# for integral orders rewriting SBFs w.r.t bessel[jy] is allowed
N = Symbol('n', integer=True)
ri = randint(-11, 10)
for order in (ri, N):
for f in (besselj, bessely):
assert yn(order, z) != yn(order, z).rewrite(f)
assert jn(order, z) != jn(order, z).rewrite(f)
assert hn1(order, z) != hn1(order, z).rewrite(f)
assert hn2(order, z) != hn2(order, z).rewrite(f)
for func, refunc in product((yn, jn, hn1, hn2),
(jn, yn, besselj, bessely)):
assert tn(func(ri, z), func(ri, z).rewrite(refunc), z)
def test_expand():
from sympy import besselsimp, Symbol, exp, exp_polar, I
assert expand_func(besselj(S.Half, z).rewrite(jn)) == \
sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert expand_func(bessely(S.Half, z).rewrite(yn)) == \
-sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
# XXX: teach sin/cos to work around arguments like
# x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func
assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(Rational(5, 2), z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besselj(Rational(-5, 2), z)) == \
-sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(bessely(S.Half, z)) == \
-(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(Rational(5, 2), z)) == \
sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(bessely(Rational(-5, 2), z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(Rational(-1, 2), z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(Rational(5, 2), z)) == \
sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besseli(Rational(-5, 2), z)) == \
sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))
assert besselsimp(besselk(S.Half, z)) == \
besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
assert besselsimp(besselk(Rational(5, 2), z)) == \
besselsimp(besselk(Rational(-5, 2), z)) == \
sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))
def check(eq, ans):
return tn(eq, ans) and eq == ans
rn = randcplx(a=1, b=0, d=0, c=2)
for besselx in [besselj, bessely, besseli, besselk]:
ri = S(2*randint(-11, 10) + 1) / 2 # half integer in [-21/2, 21/2]
assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))
assert check(expand_func(besseli(rn, x)),
besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
assert check(expand_func(besseli(-rn, x)),
besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)
assert check(expand_func(besselj(rn, x)),
-besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
assert check(expand_func(besselj(-rn, x)),
-besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)
assert check(expand_func(besselk(rn, x)),
besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
assert check(expand_func(besselk(-rn, x)),
besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)
assert check(expand_func(bessely(rn, x)),
-bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
assert check(expand_func(bessely(-rn, x)),
-bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)
n = Symbol('n', integer=True, positive=True)
assert expand_func(besseli(n + 2, z)) == \
besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
assert expand_func(besselj(n + 2, z)) == \
-besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
assert expand_func(besselk(n + 2, z)) == \
besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
assert expand_func(bessely(n + 2, z)) == \
-bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z
assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \
(sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) *
exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \
sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i = Symbol('i', integer=True)
for besselx in [besselj, bessely, besseli, besselk]:
assert besselx(i, p).is_extended_real is True
assert besselx(i, x).is_extended_real is None
assert besselx(x, z).is_extended_real is None
for besselx in [besselj, besseli]:
assert besselx(i, r).is_extended_real is True
for besselx in [bessely, besselk]:
assert besselx(i, r).is_extended_real is None
def test_fn():
x, z = symbols("x z")
assert fn(1, z) == 1/z**2
assert fn(2, z) == -1/z + 3/z**3
assert fn(3, z) == -6/z**2 + 15/z**4
assert fn(4, z) == 1/z - 45/z**3 + 105/z**5
def mjn(n, z):
return expand_func(jn(n, z))
def myn(n, z):
return expand_func(yn(n, z))
def test_jn():
z = symbols("z")
assert jn(0, 0) == 1
assert jn(1, 0) == 0
assert jn(-1, 0) == S.ComplexInfinity
assert jn(z, 0) == jn(z, 0, evaluate=False)
assert jn(0, oo) == 0
assert jn(0, -oo) == 0
assert mjn(0, z) == sin(z)/z
assert mjn(1, z) == sin(z)/z**2 - cos(z)/z
assert mjn(2, z) == (3/z**3 - 1/z)*sin(z) - (3/z**2) * cos(z)
assert mjn(3, z) == (15/z**4 - 6/z**2)*sin(z) + (1/z - 15/z**3)*cos(z)
assert mjn(4, z) == (1/z + 105/z**5 - 45/z**3)*sin(z) + \
(-105/z**4 + 10/z**2)*cos(z)
assert mjn(5, z) == (945/z**6 - 420/z**4 + 15/z**2)*sin(z) + \
(-1/z - 945/z**5 + 105/z**3)*cos(z)
assert mjn(6, z) == (-1/z + 10395/z**7 - 4725/z**5 + 210/z**3)*sin(z) + \
(-10395/z**6 + 1260/z**4 - 21/z**2)*cos(z)
assert expand_func(jn(n, z)) == jn(n, z)
# SBFs not defined for complex-valued orders
assert jn(2+3j, 5.2+0.3j).evalf() == jn(2+3j, 5.2+0.3j)
assert eq([jn(2, 5.2+0.3j).evalf(10)],
[0.09941975672 - 0.05452508024*I])
def test_yn():
z = symbols("z")
assert myn(0, z) == -cos(z)/z
assert myn(1, z) == -cos(z)/z**2 - sin(z)/z
assert myn(2, z) == -((3/z**3 - 1/z)*cos(z) + (3/z**2)*sin(z))
assert expand_func(yn(n, z)) == yn(n, z)
# SBFs not defined for complex-valued orders
assert yn(2+3j, 5.2+0.3j).evalf() == yn(2+3j, 5.2+0.3j)
assert eq([yn(2, 5.2+0.3j).evalf(10)],
[0.185250342 + 0.01489557397*I])
def test_sympify_yn():
assert S(15) in myn(3, pi).atoms()
assert myn(3, pi) == 15/pi**4 - 6/pi**2
def eq(a, b, tol=1e-6):
for u, v in zip(a, b):
if not (abs(u - v) < tol):
return False
return True
def test_jn_zeros():
assert eq(jn_zeros(0, 4), [3.141592, 6.283185, 9.424777, 12.566370])
assert eq(jn_zeros(1, 4), [4.493409, 7.725251, 10.904121, 14.066193])
assert eq(jn_zeros(2, 4), [5.763459, 9.095011, 12.322940, 15.514603])
assert eq(jn_zeros(3, 4), [6.987932, 10.417118, 13.698023, 16.923621])
assert eq(jn_zeros(4, 4), [8.182561, 11.704907, 15.039664, 18.301255])
def test_bessel_eval():
from sympy import I, Symbol
n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)
for f in [besselj, besseli]:
assert f(0, 0) is S.One
assert f(2.1, 0) is S.Zero
assert f(-3, 0) is S.Zero
assert f(-10.2, 0) is S.ComplexInfinity
assert f(1 + 3*I, 0) is S.Zero
assert f(-3 + I, 0) is S.ComplexInfinity
assert f(-2*I, 0) is S.NaN
assert f(n, 0) != S.One and f(n, 0) != S.Zero
assert f(m, 0) != S.One and f(m, 0) != S.Zero
assert f(k, 0) is S.Zero
assert bessely(0, 0) is S.NegativeInfinity
assert besselk(0, 0) is S.Infinity
for f in [bessely, besselk]:
assert f(1 + I, 0) is S.ComplexInfinity
assert f(I, 0) is S.NaN
for f in [besselj, bessely]:
assert f(m, S.Infinity) is S.Zero
assert f(m, S.NegativeInfinity) is S.Zero
for f in [besseli, besselk]:
assert f(m, I*S.Infinity) is S.Zero
assert f(m, I*S.NegativeInfinity) is S.Zero
for f in [besseli, besselk]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == f(3, z)
assert f(-n, z) == f(n, z)
assert f(-m, z) != f(m, z)
for f in [besselj, bessely]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == -f(3, z)
assert f(-n, z) == (-1)**n*f(n, z)
assert f(-m, z) != (-1)**m*f(m, z)
for f in [besselj, besseli]:
assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)
assert besseli(2, -z) == besseli(2, z)
assert besseli(3, -z) == -besseli(3, z)
assert besselj(0, -z) == besselj(0, z)
assert besselj(1, -z) == -besselj(1, z)
assert besseli(0, I*z) == besselj(0, z)
assert besseli(1, I*z) == I*besselj(1, z)
assert besselj(3, I*z) == -I*besseli(3, z)
def test_bessel_nan():
# FIXME: could have these return NaN; for now just fix infinite recursion
for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, yn, jn]:
assert f(1, S.NaN) == f(1, S.NaN, evaluate=False)
def test_conjugate():
from sympy import conjugate, I, Symbol
n = Symbol('n')
z = Symbol('z', extended_real=False)
x = Symbol('x', extended_real=True)
y = Symbol('y', real=True, positive=True)
t = Symbol('t', negative=True)
for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]:
assert f(n, -1).conjugate() != f(conjugate(n), -1)
assert f(n, x).conjugate() != f(conjugate(n), x)
assert f(n, t).conjugate() != f(conjugate(n), t)
rz = randcplx(b=0.5)
for f in [besseli, besselj, besselk, bessely]:
assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I)
assert f(n, 0).conjugate() == f(conjugate(n), 0)
assert f(n, 1).conjugate() == f(conjugate(n), 1)
assert f(n, z).conjugate() == f(conjugate(n), conjugate(z))
assert f(n, y).conjugate() == f(conjugate(n), y)
assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz)))
assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I)
assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0)
assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1)
assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y)
assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z))
assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz)))
assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I)
assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0)
assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1)
assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y)
assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z))
assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz)))
def test_branching():
from sympy import exp_polar, polar_lift, Symbol, I, exp
assert besselj(polar_lift(k), x) == besselj(k, x)
assert besseli(polar_lift(k), x) == besseli(k, x)
n = Symbol('n', integer=True)
assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
assert besselj(n, polar_lift(x)) == besselj(n, x)
assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
assert besseli(n, polar_lift(x)) == besseli(n, x)
def tn(func, s):
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
nu = Symbol('nu')
assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
assert tn(besselj, 2)
assert tn(besselj, pi)
assert tn(besselj, I)
assert tn(besseli, 2)
assert tn(besseli, pi)
assert tn(besseli, I)
def test_airy_base():
z = Symbol('z')
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert conjugate(airyai(z)) == airyai(conjugate(z))
assert airyai(x).is_extended_real
assert airyai(x+I*y).as_real_imag() == (
airyai(x - I*y)/2 + airyai(x + I*y)/2,
I*(airyai(x - I*y) - airyai(x + I*y))/2)
def test_airyai():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airyai(z), airyai)
assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3)))
assert airyai(oo) == 0
assert airyai(-oo) == 0
assert diff(airyai(z), z) == airyaiprime(z)
assert series(airyai(z), z, 0, 3) == (
3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))
assert airyai(z).rewrite(hyper) == (
-3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))
assert isinstance(airyai(z).rewrite(besselj), airyai)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airyai(z).rewrite(besseli) == (
-z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) +
(z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
assert airyai(p).rewrite(besseli) == (
sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) -
besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == (
-sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
(1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airybi():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airybi(z), airybi)
assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3)))
assert airybi(oo) is oo
assert airybi(-oo) == 0
assert diff(airybi(z), z) == airybiprime(z)
assert series(airybi(z), z, 0, 3) == (
3**Rational(1, 3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))
assert airybi(z).rewrite(hyper) == (
3**Rational(1, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) +
3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))
assert isinstance(airybi(z).rewrite(besselj), airybi)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airybi(z).rewrite(besseli) == (
sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(1, 3) +
(z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3))/3)
assert airybi(p).rewrite(besseli) == (
sqrt(3)*sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) +
besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airybi(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(1 - (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
(1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airyaiprime():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airyaiprime(z), airyaiprime)
assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3)))
assert airyaiprime(oo) == 0
assert diff(airyaiprime(z), z) == z*airyai(z)
assert series(airyaiprime(z), z, 0, 3) == (
-3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))
assert airyaiprime(z).rewrite(hyper) == (
3**Rational(1, 3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) -
3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3))))
assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airyaiprime(z).rewrite(besseli) == (
z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) -
(z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
assert airyaiprime(p).rewrite(besseli) == (
p*(-besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airyaiprime(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
(z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_airybiprime():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airybiprime(z), airybiprime)
assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3))
assert airybiprime(oo) is oo
assert airybiprime(-oo) == 0
assert diff(airybiprime(z), z) == z*airybi(z)
assert series(airybiprime(z), z, 0, 3) == (
3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))
assert airybiprime(z).rewrite(hyper) == (
3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) +
3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3)))
assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
assert airybiprime(z).rewrite(besseli) == (
sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) +
(z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3)
assert airybiprime(p).rewrite(besseli) == (
sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == (
sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
(z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
def test_marcumq():
m = Symbol('m')
a = Symbol('a')
b = Symbol('b')
assert marcumq(0, 0, 0) == 0
assert marcumq(m, 0, b) == uppergamma(m, b**2/2)/gamma(m)
assert marcumq(2, 0, 5) == 27*exp(Rational(-25, 2))/2
assert marcumq(0, a, 0) == 1 - exp(-a**2/2)
assert marcumq(0, pi, 0) == 1 - exp(-pi**2/2)
assert marcumq(1, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(2, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
assert diff(marcumq(1, a, 3), a) == a*(-marcumq(1, a, 3) + marcumq(2, a, 3))
assert diff(marcumq(2, 3, b), b) == -b**2*exp(-b**2/2 - Rational(9, 2))*besseli(1, 3*b)/3
x = Symbol('x')
assert marcumq(2, 3, 4).rewrite(Integral, x=x) == \
Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3
assert eq([marcumq(5, -2, 3).rewrite(Integral).evalf(10)],
[0.7905769565])
k = Symbol('k')
assert marcumq(-3, -5, -7).rewrite(Sum, k=k) == \
exp(-37)*Sum((Rational(5, 7))**k*besseli(k, 35), (k, 4, oo))
assert eq([marcumq(1, 3, 1).rewrite(Sum).evalf(10)],
[0.9891705502])
assert marcumq(1, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(2, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + \
exp(-a**2)*besseli(1, a**2)
assert marcumq(3, a, a).rewrite(besseli) == (besseli(1, a**2) + besseli(2, a**2))*exp(-a**2) + \
S.Half + exp(-a**2)*besseli(0, a**2)/2
assert marcumq(5, 8, 8).rewrite(besseli) == exp(-64)*besseli(0, 64)/2 + \
(besseli(4, 64) + besseli(3, 64) + besseli(2, 64) + besseli(1, 64))*exp(-64) + S.Half
assert marcumq(m, a, a).rewrite(besseli) == marcumq(m, a, a)
x = Symbol('x', integer=True)
assert marcumq(x, a, a).rewrite(besseli) == marcumq(x, a, a)
|
d7dfe81f86cd312707b2292bb3a0084696eb82a985935a1fc87937539e234264 | from sympy import (
nan, pi, symbols, DiracDelta, Symbol, diff,
Piecewise, I, Eq, Derivative, oo, SingularityFunction, Heaviside,
Float
)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
x, y, a, n = symbols('x y a n')
def test_fdiff():
assert SingularityFunction(x, 4, 5).fdiff() == 5*SingularityFunction(x, 4, 4)
assert SingularityFunction(x, 4, -1).fdiff() == SingularityFunction(x, 4, -2)
assert SingularityFunction(x, 4, 0).fdiff() == SingularityFunction(x, 4, -1)
assert SingularityFunction(y, 6, 2).diff(y) == 2*SingularityFunction(y, 6, 1)
assert SingularityFunction(y, -4, -1).diff(y) == SingularityFunction(y, -4, -2)
assert SingularityFunction(y, 4, 0).diff(y) == SingularityFunction(y, 4, -1)
assert SingularityFunction(y, 4, 0).diff(y, 2) == SingularityFunction(y, 4, -2)
n = Symbol('n', positive=True)
assert SingularityFunction(x, a, n).fdiff() == n*SingularityFunction(x, a, n - 1)
assert SingularityFunction(y, a, n).diff(y) == n*SingularityFunction(y, a, n - 1)
expr_in = 4*SingularityFunction(x, a, n) + 3*SingularityFunction(x, a, -1) + -10*SingularityFunction(x, a, 0)
expr_out = n*4*SingularityFunction(x, a, n - 1) + 3*SingularityFunction(x, a, -2) - 10*SingularityFunction(x, a, -1)
assert diff(expr_in, x) == expr_out
assert SingularityFunction(x, -10, 5).diff(evaluate=False) == (
Derivative(SingularityFunction(x, -10, 5), x))
raises(ArgumentIndexError, lambda: SingularityFunction(x, 4, 5).fdiff(2))
def test_eval():
assert SingularityFunction(x, a, n).func == SingularityFunction
assert unchanged(SingularityFunction, x, 5, n)
assert SingularityFunction(5, 3, 2) == 4
assert SingularityFunction(3, 5, 1) == 0
assert SingularityFunction(3, 3, 0) == 1
assert SingularityFunction(4, 4, -1) is oo
assert SingularityFunction(4, 2, -1) == 0
assert SingularityFunction(4, 7, -1) == 0
assert SingularityFunction(5, 6, -2) == 0
assert SingularityFunction(4, 2, -2) == 0
assert SingularityFunction(4, 4, -2) is oo
assert (SingularityFunction(6.1, 4, 5)).evalf(5) == Float('40.841', '5')
assert SingularityFunction(6.1, pi, 2) == (-pi + 6.1)**2
assert SingularityFunction(x, a, nan) is nan
assert SingularityFunction(x, nan, 1) is nan
assert SingularityFunction(nan, a, n) is nan
raises(ValueError, lambda: SingularityFunction(x, a, I))
raises(ValueError, lambda: SingularityFunction(2*I, I, n))
raises(ValueError, lambda: SingularityFunction(x, a, -3))
def test_rewrite():
assert SingularityFunction(x, 4, 5).rewrite(Piecewise) == (
Piecewise(((x - 4)**5, x - 4 > 0), (0, True)))
assert SingularityFunction(x, -10, 0).rewrite(Piecewise) == (
Piecewise((1, x + 10 > 0), (0, True)))
assert SingularityFunction(x, 2, -1).rewrite(Piecewise) == (
Piecewise((oo, Eq(x - 2, 0)), (0, True)))
assert SingularityFunction(x, 0, -2).rewrite(Piecewise) == (
Piecewise((oo, Eq(x, 0)), (0, True)))
n = Symbol('n', nonnegative=True)
assert SingularityFunction(x, a, n).rewrite(Piecewise) == (
Piecewise(((x - a)**n, x - a > 0), (0, True)))
expr_in = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2)
expr_out = (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
assert expr_in.rewrite(Heaviside) == expr_out
assert expr_in.rewrite(DiracDelta) == expr_out
assert expr_in.rewrite('HeavisideDiracDelta') == expr_out
expr_in = SingularityFunction(x, a, n) + SingularityFunction(x, a, -1) - SingularityFunction(x, a, -2)
expr_out = (x - a)**n*Heaviside(x - a) + DiracDelta(x - a) + DiracDelta(a - x, 1)
assert expr_in.rewrite(Heaviside) == expr_out
assert expr_in.rewrite(DiracDelta) == expr_out
assert expr_in.rewrite('HeavisideDiracDelta') == expr_out
|
249fd9e5260d59de9f9b26d60e11ac9f621441c7d16c00cc09a8b61c331825ff | from sympy import (S, Symbol, pi, I, oo, zoo, sin, sqrt, tan, gamma,
atanh, hyper, meijerg, O, Dummy, Integral, Rational)
from sympy.functions.special.elliptic_integrals import (elliptic_k as K,
elliptic_f as F, elliptic_e as E, elliptic_pi as P)
from sympy.testing.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx,
verify_numerically as tn)
from sympy.abc import z, m, n
i = Symbol('i', integer=True)
j = Symbol('k', integer=True, positive=True)
t = Dummy('t')
def test_K():
assert K(0) == pi/2
assert K(S.Half) == 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2
assert K(1) is zoo
assert K(-1) == gamma(Rational(1, 4))**2/(4*sqrt(2*pi))
assert K(oo) == 0
assert K(-oo) == 0
assert K(I*oo) == 0
assert K(-I*oo) == 0
assert K(zoo) == 0
assert K(z).diff(z) == (E(z) - (1 - z)*K(z))/(2*z*(1 - z))
assert td(K(z), z)
zi = Symbol('z', real=False)
assert K(zi).conjugate() == K(zi.conjugate())
zr = Symbol('z', real=True, negative=True)
assert K(zr).conjugate() == K(zr)
assert K(z).rewrite(hyper) == \
(pi/2)*hyper((S.Half, S.Half), (S.One,), z)
assert tn(K(z), (pi/2)*hyper((S.Half, S.Half), (S.One,), z))
assert K(z).rewrite(meijerg) == \
meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2
assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2)
assert K(z).series(z) == pi/2 + pi*z/8 + 9*pi*z**2/128 + \
25*pi*z**3/512 + 1225*pi*z**4/32768 + 3969*pi*z**5/131072 + O(z**6)
assert K(m).rewrite(Integral).dummy_eq(
Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)))
def test_F():
assert F(z, 0) == z
assert F(0, m) == 0
assert F(pi*i/2, m) == i*K(m)
assert F(z, oo) == 0
assert F(z, -oo) == 0
assert F(-z, m) == -F(z, m)
assert F(z, m).diff(z) == 1/sqrt(1 - m*sin(z)**2)
assert F(z, m).diff(m) == E(z, m)/(2*m*(1 - m)) - F(z, m)/(2*m) - \
sin(2*z)/(4*(1 - m)*sqrt(1 - m*sin(z)**2))
r = randcplx()
assert td(F(z, r), z)
assert td(F(r, m), m)
mi = Symbol('m', real=False)
assert F(z, mi).conjugate() == F(z.conjugate(), mi.conjugate())
mr = Symbol('m', real=True, negative=True)
assert F(z, mr).conjugate() == F(z.conjugate(), mr)
assert F(z, m).series(z) == \
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6)
assert F(z, m).rewrite(Integral).dummy_eq(
Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, z)))
def test_E():
assert E(z, 0) == z
assert E(0, m) == 0
assert E(i*pi/2, m) == i*E(m)
assert E(z, oo) is zoo
assert E(z, -oo) is zoo
assert E(0) == pi/2
assert E(1) == 1
assert E(oo) == I*oo
assert E(-oo) is oo
assert E(zoo) is zoo
assert E(-z, m) == -E(z, m)
assert E(z, m).diff(z) == sqrt(1 - m*sin(z)**2)
assert E(z, m).diff(m) == (E(z, m) - F(z, m))/(2*m)
assert E(z).diff(z) == (E(z) - K(z))/(2*z)
r = randcplx()
assert td(E(r, m), m)
assert td(E(z, r), z)
assert td(E(z), z)
mi = Symbol('m', real=False)
assert E(z, mi).conjugate() == E(z.conjugate(), mi.conjugate())
assert E(mi).conjugate() == E(mi.conjugate())
mr = Symbol('m', real=True, negative=True)
assert E(z, mr).conjugate() == E(z.conjugate(), mr)
assert E(mr).conjugate() == E(mr)
assert E(z).rewrite(hyper) == (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z)
assert tn(E(z), (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z))
assert E(z).rewrite(meijerg) == \
-meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4
assert tn(E(z), -meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4)
assert E(z, m).series(z) == \
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
assert E(z).series(z) == pi/2 - pi*z/8 - 3*pi*z**2/128 - \
5*pi*z**3/512 - 175*pi*z**4/32768 - 441*pi*z**5/131072 + O(z**6)
assert E(z, m).rewrite(Integral).dummy_eq(
Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)))
assert E(m).rewrite(Integral).dummy_eq(
Integral(sqrt(1 - m*sin(t)**2), (t, 0, pi/2)))
def test_P():
assert P(0, z, m) == F(z, m)
assert P(1, z, m) == F(z, m) + \
(sqrt(1 - m*sin(z)**2)*tan(z) - E(z, m))/(1 - m)
assert P(n, i*pi/2, m) == i*P(n, m)
assert P(n, z, 0) == atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1)
assert P(n, z, n) == F(z, n) - P(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)
assert P(oo, z, m) == 0
assert P(-oo, z, m) == 0
assert P(n, z, oo) == 0
assert P(n, z, -oo) == 0
assert P(0, m) == K(m)
assert P(1, m) is zoo
assert P(n, 0) == pi/(2*sqrt(1 - n))
assert P(2, 1) is -oo
assert P(-1, 1) is oo
assert P(n, n) == E(n)/(1 - n)
assert P(n, -z, m) == -P(n, z, m)
ni, mi = Symbol('n', real=False), Symbol('m', real=False)
assert P(ni, z, mi).conjugate() == \
P(ni.conjugate(), z.conjugate(), mi.conjugate())
nr, mr = Symbol('n', real=True, negative=True), \
Symbol('m', real=True, negative=True)
assert P(nr, z, mr).conjugate() == P(nr, z.conjugate(), mr)
assert P(n, m).conjugate() == P(n.conjugate(), m.conjugate())
assert P(n, z, m).diff(n) == (E(z, m) + (m - n)*F(z, m)/n +
(n**2 - m)*P(n, z, m)/n - n*sqrt(1 -
m*sin(z)**2)*sin(2*z)/(2*(1 - n*sin(z)**2)))/(2*(m - n)*(n - 1))
assert P(n, z, m).diff(z) == 1/(sqrt(1 - m*sin(z)**2)*(1 - n*sin(z)**2))
assert P(n, z, m).diff(m) == (E(z, m)/(m - 1) + P(n, z, m) -
m*sin(2*z)/(2*(m - 1)*sqrt(1 - m*sin(z)**2)))/(2*(n - m))
assert P(n, m).diff(n) == (E(m) + (m - n)*K(m)/n +
(n**2 - m)*P(n, m)/n)/(2*(m - n)*(n - 1))
assert P(n, m).diff(m) == (E(m)/(m - 1) + P(n, m))/(2*(n - m))
rx, ry = randcplx(), randcplx()
assert td(P(n, rx, ry), n)
assert td(P(rx, z, ry), z)
assert td(P(rx, ry, m), m)
assert P(n, z, m).series(z) == z + z**3*(m/6 + n/3) + \
z**5*(3*m**2/40 + m*n/10 - m/30 + n**2/5 - n/15) + O(z**6)
assert P(n, z, m).rewrite(Integral).dummy_eq(
Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z)))
assert P(n, m).rewrite(Integral).dummy_eq(
Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, pi/2)))
|
8fdd1cf22fefb6392223c461a58ae39fbff3b19da45d851d07bb8c10fd815752 | from sympy import (
Symbol, Dummy, diff, Derivative, Rational, roots, S, sqrt, hyper,
cos, gamma, conjugate, factorial, pi, oo, zoo, binomial, RisingFactorial,
legendre, assoc_legendre, chebyshevu, chebyshevt, chebyshevt_root,
chebyshevu_root, laguerre, assoc_laguerre, laguerre_poly, hermite,
gegenbauer, jacobi, jacobi_normalized, Sum, floor, exp)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
x = Symbol('x')
def test_jacobi():
n = Symbol("n")
a = Symbol("a")
b = Symbol("b")
assert jacobi(0, a, b, x) == 1
assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)
assert jacobi(n, a, a, x) == RisingFactorial(
a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n)
assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
gamma(-b + n + 1)/gamma(n + 1))
assert jacobi(n, 0, 0, x) == legendre(n, x)
assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(
Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1)
assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial(
S.Half, n)*chebyshevt(n, x)/factorial(n)
X = jacobi(n, a, b, x)
assert isinstance(X, jacobi)
assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper(
(-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)
m = Symbol("m", positive=True)
assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)
assert unchanged(jacobi, n, a, b, oo)
assert conjugate(jacobi(m, a, b, x)) == \
jacobi(m, conjugate(a), conjugate(b), conjugate(x))
_k = Dummy('k')
assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) +
(2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a,
b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a
+ b + n + 1), (_k, 0, n - 1)))
assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k +
a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/
((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a,
b, x))/(_k + a + b + n + 1), (_k, 0, n - 1)))
assert diff(jacobi(n, a, b, x), x) == \
(a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x)
assert jacobi_normalized(n, a, b, x) == \
(jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))
raises(ValueError, lambda: jacobi(-2.1, a, b, x))
raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2)
**_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)*
RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n))
raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
def test_gegenbauer():
n = Symbol("n")
a = Symbol("a")
assert gegenbauer(0, a, x) == 1
assert gegenbauer(1, a, x) == 2*a*x
assert gegenbauer(2, a, x) == -a + x**2*(2*a**2 + 2*a)
assert gegenbauer(3, a, x) == \
x**3*(4*a**3/3 + 4*a**2 + a*Rational(8, 3)) + x*(-2*a**2 - 2*a)
assert gegenbauer(-1, a, x) == 0
assert gegenbauer(n, S.Half, x) == legendre(n, x)
assert gegenbauer(n, 1, x) == chebyshevu(n, x)
assert gegenbauer(n, -1, x) == 0
X = gegenbauer(n, a, x)
assert isinstance(X, gegenbauer)
assert gegenbauer(n, a, -x) == (-1)**n*gegenbauer(n, a, x)
assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S.Half)*gamma(n + 1))
assert gegenbauer(n, a, 1) == gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
assert gegenbauer(n, Rational(3, 4), -1) is zoo
assert gegenbauer(n, Rational(1, 4), -1) == (sqrt(2)*cos(pi*(n + S.One/4))*
gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
m = Symbol("m", positive=True)
assert gegenbauer(m, a, oo) == oo*RisingFactorial(a, m)
assert unchanged(gegenbauer, n, a, oo)
assert conjugate(gegenbauer(n, a, x)) == gegenbauer(n, conjugate(a), conjugate(x))
_k = Dummy('k')
assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
assert diff(gegenbauer(n, a, x), a).dummy_eq(Sum((2*(-1)**(-_k + n) + 2)*
(_k + a)*gegenbauer(_k, a, x)/((-_k + n)*(_k + 2*a + n)) + ((2*_k +
2)/((_k + 2*a)*(2*_k + 2*a + 1)) + 2/(_k + 2*a + n))*gegenbauer(n, a
, x), (_k, 0, n - 1)))
assert diff(gegenbauer(n, a, x), x) == 2*a*gegenbauer(n - 1, a + 1, x)
assert gegenbauer(n, a, x).rewrite('polynomial').dummy_eq(
Sum((-1)**_k*(2*x)**(-2*_k + n)*RisingFactorial(a, -_k + n)
/(factorial(_k)*factorial(-2*_k + n)), (_k, 0, floor(n/2))))
raises(ArgumentIndexError, lambda: gegenbauer(n, a, x).fdiff(4))
def test_legendre():
assert legendre(0, x) == 1
assert legendre(1, x) == x
assert legendre(2, x) == ((3*x**2 - 1)/2).expand()
assert legendre(3, x) == ((5*x**3 - 3*x)/2).expand()
assert legendre(4, x) == ((35*x**4 - 30*x**2 + 3)/8).expand()
assert legendre(5, x) == ((63*x**5 - 70*x**3 + 15*x)/8).expand()
assert legendre(6, x) == ((231*x**6 - 315*x**4 + 105*x**2 - 5)/16).expand()
assert legendre(10, -1) == 1
assert legendre(11, -1) == -1
assert legendre(10, 1) == 1
assert legendre(11, 1) == 1
assert legendre(10, 0) != 0
assert legendre(11, 0) == 0
assert legendre(-1, x) == 1
k = Symbol('k')
assert legendre(5 - k, x).subs(k, 2) == ((5*x**3 - 3*x)/2).expand()
assert roots(legendre(4, x), x) == {
sqrt(Rational(3, 7) - Rational(2, 35)*sqrt(30)): 1,
-sqrt(Rational(3, 7) - Rational(2, 35)*sqrt(30)): 1,
sqrt(Rational(3, 7) + Rational(2, 35)*sqrt(30)): 1,
-sqrt(Rational(3, 7) + Rational(2, 35)*sqrt(30)): 1,
}
n = Symbol("n")
X = legendre(n, x)
assert isinstance(X, legendre)
assert unchanged(legendre, n, x)
assert legendre(n, 0) == sqrt(pi)/(gamma(S.Half - n/2)*gamma(n/2 + 1))
assert legendre(n, 1) == 1
assert legendre(n, oo) is oo
assert legendre(-n, x) == legendre(n - 1, x)
assert legendre(n, -x) == (-1)**n*legendre(n, x)
assert unchanged(legendre, -n + k, x)
assert conjugate(legendre(n, x)) == legendre(n, conjugate(x))
assert diff(legendre(n, x), x) == \
n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
assert diff(legendre(n, x), n) == Derivative(legendre(n, x), n)
_k = Dummy('k')
assert legendre(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(S.Half -
x/2)**_k*(x/2 + S.Half)**(-_k + n)*binomial(n, _k)**2, (_k, 0, n)))
raises(ArgumentIndexError, lambda: legendre(n, x).fdiff(1))
raises(ArgumentIndexError, lambda: legendre(n, x).fdiff(3))
def test_assoc_legendre():
Plm = assoc_legendre
Q = sqrt(1 - x**2)
assert Plm(0, 0, x) == 1
assert Plm(1, 0, x) == x
assert Plm(1, 1, x) == -Q
assert Plm(2, 0, x) == (3*x**2 - 1)/2
assert Plm(2, 1, x) == -3*x*Q
assert Plm(2, 2, x) == 3*Q**2
assert Plm(3, 0, x) == (5*x**3 - 3*x)/2
assert Plm(3, 1, x).expand() == (( 3*(1 - 5*x**2)/2 ).expand() * Q).expand()
assert Plm(3, 2, x) == 15*x * Q**2
assert Plm(3, 3, x) == -15 * Q**3
# negative m
assert Plm(1, -1, x) == -Plm(1, 1, x)/2
assert Plm(2, -2, x) == Plm(2, 2, x)/24
assert Plm(2, -1, x) == -Plm(2, 1, x)/6
assert Plm(3, -3, x) == -Plm(3, 3, x)/720
assert Plm(3, -2, x) == Plm(3, 2, x)/120
assert Plm(3, -1, x) == -Plm(3, 1, x)/12
n = Symbol("n")
m = Symbol("m")
X = Plm(n, m, x)
assert isinstance(X, assoc_legendre)
assert Plm(n, 0, x) == legendre(n, x)
assert Plm(n, m, 0) == 2**m*sqrt(pi)/(gamma(-m/2 - n/2 +
S.Half)*gamma(-m/2 + n/2 + 1))
assert diff(Plm(m, n, x), x) == (m*x*assoc_legendre(m, n, x) -
(m + n)*assoc_legendre(m - 1, n, x))/(x**2 - 1)
_k = Dummy('k')
assert Plm(m, n, x).rewrite("polynomial").dummy_eq(
(1 - x**2)**(n/2)*Sum((-1)**_k*2**(-m)*x**(-2*_k + m - n)*factorial
(-2*_k + 2*m)/(factorial(_k)*factorial(-_k + m)*factorial(-2*_k + m
- n)), (_k, 0, floor(m/2 - n/2))))
assert conjugate(assoc_legendre(n, m, x)) == \
assoc_legendre(n, conjugate(m), conjugate(x))
raises(ValueError, lambda: Plm(0, 1, x))
raises(ValueError, lambda: Plm(-1, 1, x))
raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(1))
raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(2))
raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(4))
def test_chebyshev():
assert chebyshevt(0, x) == 1
assert chebyshevt(1, x) == x
assert chebyshevt(2, x) == 2*x**2 - 1
assert chebyshevt(3, x) == 4*x**3 - 3*x
for n in range(1, 4):
for k in range(n):
z = chebyshevt_root(n, k)
assert chebyshevt(n, z) == 0
raises(ValueError, lambda: chebyshevt_root(n, n))
for n in range(1, 4):
for k in range(n):
z = chebyshevu_root(n, k)
assert chebyshevu(n, z) == 0
raises(ValueError, lambda: chebyshevu_root(n, n))
n = Symbol("n")
X = chebyshevt(n, x)
assert isinstance(X, chebyshevt)
assert unchanged(chebyshevt, n, x)
assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x)
assert chebyshevt(-n, x) == chebyshevt(n, x)
assert chebyshevt(n, 0) == cos(pi*n/2)
assert chebyshevt(n, 1) == 1
assert chebyshevt(n, oo) is oo
assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))
assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x)
X = chebyshevu(n, x)
assert isinstance(X, chebyshevu)
y = Symbol('y')
assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x)
assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
assert unchanged(chebyshevu, -n + y, x)
assert chebyshevu(n, 0) == cos(pi*n/2)
assert chebyshevu(n, 1) == n + 1
assert chebyshevu(n, oo) is oo
assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))
assert diff(chebyshevu(n, x), x) == \
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
_k = Dummy('k')
assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(Sum(x**(-2*_k + n)
*(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2))))
assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(2*x)
**(-2*_k + n)*factorial(-_k + n)/(factorial(_k)*
factorial(-2*_k + n)), (_k, 0, floor(n/2))))
raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1))
raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3))
raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1))
raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
def test_hermite():
assert hermite(0, x) == 1
assert hermite(1, x) == 2*x
assert hermite(2, x) == 4*x**2 - 2
assert hermite(3, x) == 8*x**3 - 12*x
assert hermite(4, x) == 16*x**4 - 48*x**2 + 12
assert hermite(6, x) == 64*x**6 - 480*x**4 + 720*x**2 - 120
n = Symbol("n")
assert unchanged(hermite, n, x)
assert hermite(n, -x) == (-1)**n*hermite(n, x)
assert unchanged(hermite, -n, x)
assert hermite(n, 0) == 2**n*sqrt(pi)/gamma(S.Half - n/2)
assert hermite(n, oo) is oo
assert conjugate(hermite(n, x)) == hermite(n, conjugate(x))
_k = Dummy('k')
assert hermite(n, x).rewrite("polynomial").dummy_eq(factorial(n)*Sum((-1)
**_k*(2*x)**(-2*_k + n)/(factorial(_k)*factorial(-2*_k + n)), (_k,
0, floor(n/2))))
assert diff(hermite(n, x), x) == 2*n*hermite(n - 1, x)
assert diff(hermite(n, x), n) == Derivative(hermite(n, x), n)
raises(ArgumentIndexError, lambda: hermite(n, x).fdiff(3))
def test_laguerre():
n = Symbol("n")
m = Symbol("m", negative=True)
# Laguerre polynomials:
assert laguerre(0, x) == 1
assert laguerre(1, x) == -x + 1
assert laguerre(2, x) == x**2/2 - 2*x + 1
assert laguerre(3, x) == -x**3/6 + 3*x**2/2 - 3*x + 1
assert laguerre(-2, x) == (x + 1)*exp(x)
X = laguerre(n, x)
assert isinstance(X, laguerre)
assert laguerre(n, 0) == 1
assert laguerre(n, oo) == (-1)**n*oo
assert laguerre(n, -oo) is oo
assert conjugate(laguerre(n, x)) == laguerre(n, conjugate(x))
_k = Dummy('k')
assert laguerre(n, x).rewrite("polynomial").dummy_eq(
Sum(x**_k*RisingFactorial(-n, _k)/factorial(_k)**2, (_k, 0, n)))
assert laguerre(m, x).rewrite("polynomial").dummy_eq(
exp(x)*Sum((-x)**_k*RisingFactorial(m + 1, _k)/factorial(_k)**2,
(_k, 0, -m - 1)))
assert diff(laguerre(n, x), x) == -assoc_laguerre(n - 1, 1, x)
k = Symbol('k')
assert laguerre(-n, x) == exp(x)*laguerre(n - 1, -x)
assert laguerre(-3, x) == exp(x)*laguerre(2, -x)
assert unchanged(laguerre, -n + k, x)
raises(ValueError, lambda: laguerre(-2.1, x))
raises(ValueError, lambda: laguerre(Rational(5, 2), x))
raises(ArgumentIndexError, lambda: laguerre(n, x).fdiff(1))
raises(ArgumentIndexError, lambda: laguerre(n, x).fdiff(3))
def test_assoc_laguerre():
n = Symbol("n")
m = Symbol("m")
alpha = Symbol("alpha")
# generalized Laguerre polynomials:
assert assoc_laguerre(0, alpha, x) == 1
assert assoc_laguerre(1, alpha, x) == -x + alpha + 1
assert assoc_laguerre(2, alpha, x).expand() == \
(x**2/2 - (alpha + 2)*x + (alpha + 2)*(alpha + 1)/2).expand()
assert assoc_laguerre(3, alpha, x).expand() == \
(-x**3/6 + (alpha + 3)*x**2/2 - (alpha + 2)*(alpha + 3)*x/2 +
(alpha + 1)*(alpha + 2)*(alpha + 3)/6).expand()
# Test the lowest 10 polynomials with laguerre_poly, to make sure it works:
for i in range(10):
assert assoc_laguerre(i, 0, x).expand() == laguerre_poly(i, x)
X = assoc_laguerre(n, m, x)
assert isinstance(X, assoc_laguerre)
assert assoc_laguerre(n, 0, x) == laguerre(n, x)
assert assoc_laguerre(n, alpha, 0) == binomial(alpha + n, alpha)
p = Symbol("p", positive=True)
assert assoc_laguerre(p, alpha, oo) == (-1)**p*oo
assert assoc_laguerre(p, alpha, -oo) is oo
assert diff(assoc_laguerre(n, alpha, x), x) == \
-assoc_laguerre(n - 1, alpha + 1, x)
_k = Dummy('k')
assert diff(assoc_laguerre(n, alpha, x), alpha).dummy_eq(
Sum(assoc_laguerre(_k, alpha, x)/(-alpha + n), (_k, 0, n - 1)))
assert conjugate(assoc_laguerre(n, alpha, x)) == \
assoc_laguerre(n, conjugate(alpha), conjugate(x))
assert assoc_laguerre(n, alpha, x).rewrite('polynomial').dummy_eq(
gamma(alpha + n + 1)*Sum(x**_k*RisingFactorial(-n, _k)/
(factorial(_k)*gamma(_k + alpha + 1)), (_k, 0, n))/factorial(n))
raises(ValueError, lambda: assoc_laguerre(-2.1, alpha, x))
raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(1))
raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(4))
|
f63c38f8988320853c109c05af1183efdd416b87e935ee02b597f0d9c96ac70d | from sympy import (
Symbol, Dummy, gamma, I, oo, nan, zoo, factorial, sqrt, Rational,
multigamma, log, polygamma, digamma, trigamma, EulerGamma, pi, uppergamma, S, expand_func,
loggamma, sin, cos, O, lowergamma, exp, erf, erfc, exp_polar, harmonic,
zeta, conjugate, Ei, im, re, tanh, Abs)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises
from sympy.testing.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx,
verify_numerically as tn)
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', integer=True)
w = Symbol('w', real=True)
def test_gamma():
assert gamma(nan) is nan
assert gamma(oo) is oo
assert gamma(-100) is zoo
assert gamma(0) is zoo
assert gamma(-100.0) is zoo
assert gamma(1) == 1
assert gamma(2) == 1
assert gamma(3) == 2
assert gamma(102) == factorial(101)
assert gamma(S.Half) == sqrt(pi)
assert gamma(Rational(3, 2)) == sqrt(pi)*S.Half
assert gamma(Rational(5, 2)) == sqrt(pi)*Rational(3, 4)
assert gamma(Rational(7, 2)) == sqrt(pi)*Rational(15, 8)
assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
assert gamma(Rational(-3, 2)) == sqrt(pi)*Rational(4, 3)
assert gamma(Rational(-5, 2)) == sqrt(pi)*Rational(-8, 15)
assert gamma(Rational(-15, 2)) == sqrt(pi)*Rational(256, 2027025)
assert gamma(Rational(
-11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
assert gamma(Rational(
-10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
assert gamma(Rational(
14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
assert gamma(Rational(
17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
assert gamma(Rational(
19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))
assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)
assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)
assert conjugate(gamma(x)) == gamma(conjugate(x))
assert expand_func(gamma(x + Rational(3, 2))) == \
(x + S.Half)*gamma(x + S.Half)
assert expand_func(gamma(x - S.Half)) == \
gamma(S.Half + x)/(x - S.Half)
# Test a bug:
assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))
# XXX: Not sure about these tests. I can fix them by defining e.g.
# exp_polar.is_integer but I'm not sure if that makes sense.
assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
assert gamma(3*exp_polar(I*pi)/4).is_extended_nonpositive is True
y = Symbol('y', nonpositive=True, integer=True)
assert gamma(y).is_real == False
y = Symbol('y', positive=True, noninteger=True)
assert gamma(y).is_real == True
assert gamma(-1.0, evaluate=False).is_real == False
assert gamma(0, evaluate=False).is_real == False
assert gamma(-2, evaluate=False).is_real == False
def test_gamma_rewrite():
assert gamma(n).rewrite(factorial) == factorial(n - 1)
def test_gamma_series():
assert gamma(x + 1).series(x, 0, 3) == \
1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3)
assert gamma(x).series(x, -1, 3) == \
-1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \
EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \
polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1))
def tn_branch(s, func):
from sympy import I, pi, exp_polar
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_lowergamma():
from sympy import meijerg, exp_polar, I, expint
assert lowergamma(x, 0) == 0
assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
assert td(lowergamma(randcplx(), y), y)
assert td(lowergamma(x, randcplx()), x)
assert lowergamma(x, y).diff(x) == \
gamma(x)*digamma(x) - uppergamma(x, y)*log(y) \
- meijerg([], [1, 1], [0, 0, x], [], y)
assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
assert not lowergamma(S.Half - 3, x).has(lowergamma)
assert not lowergamma(S.Half + 3, x).has(lowergamma)
assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
assert tn(lowergamma(S.Half + 3, x, evaluate=False),
lowergamma(S.Half + 3, x), x)
assert tn(lowergamma(S.Half - 3, x, evaluate=False),
lowergamma(S.Half - 3, x), x)
assert tn_branch(-3, lowergamma)
assert tn_branch(-4, lowergamma)
assert tn_branch(Rational(1, 3), lowergamma)
assert tn_branch(pi, lowergamma)
assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
assert lowergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I
assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
assert conjugate(lowergamma(x, 0)) == 0
assert unchanged(conjugate, lowergamma(x, -oo))
assert lowergamma(
x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
k = Symbol('k', integer=True)
assert lowergamma(
k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
k = Symbol('k', integer=True, positive=False)
assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_uppergamma():
from sympy import meijerg, exp_polar, I, expint
assert uppergamma(4, 0) == 6
assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
assert td(uppergamma(randcplx(), y), y)
assert uppergamma(x, y).diff(x) == \
uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
assert td(uppergamma(x, randcplx()), x)
p = Symbol('p', positive=True)
assert uppergamma(0, p) == -Ei(-p)
assert uppergamma(p, 0) == gamma(p)
assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
assert not uppergamma(S.Half - 3, x).has(uppergamma)
assert not uppergamma(S.Half + 3, x).has(uppergamma)
assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
assert tn(uppergamma(S.Half + 3, x, evaluate=False),
uppergamma(S.Half + 3, x), x)
assert tn(uppergamma(S.Half - 3, x, evaluate=False),
uppergamma(S.Half - 3, x), x)
assert unchanged(uppergamma, x, -oo)
assert unchanged(uppergamma, x, 0)
assert tn_branch(-3, uppergamma)
assert tn_branch(-4, uppergamma)
assert tn_branch(Rational(1, 3), uppergamma)
assert tn_branch(pi, uppergamma)
assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
assert uppergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
gamma(y)*(1 - exp(4*pi*I*y))
assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I
assert uppergamma(-2, x) == expint(3, x)/x**2
assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
assert unchanged(conjugate, uppergamma(x, -oo))
assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)
assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_polygamma():
from sympy import I
assert polygamma(n, nan) is nan
assert polygamma(0, oo) is oo
assert polygamma(0, -oo) is oo
assert polygamma(0, I*oo) is oo
assert polygamma(0, -I*oo) is oo
assert polygamma(1, oo) == 0
assert polygamma(5, oo) == 0
assert polygamma(0, -9) is zoo
assert polygamma(0, -9) is zoo
assert polygamma(0, -1) is zoo
assert polygamma(0, 0) is zoo
assert polygamma(0, 1) == -EulerGamma
assert polygamma(0, 7) == Rational(49, 20) - EulerGamma
assert polygamma(1, 1) == pi**2/6
assert polygamma(1, 2) == pi**2/6 - 1
assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
assert polygamma(3, 1) == pi**4 / 15
assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
assert polygamma(5, 1) == 8 * pi**6 / 63
assert polygamma(1, S.Half) == pi**2 / 2
assert polygamma(2, S.Half) == -14*zeta(3)
assert polygamma(11, S.Half) == 176896*pi**12
def t(m, n):
x = S(m)/n
r = polygamma(0, x)
if r.has(polygamma):
return False
return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)
assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2)
n1 = Symbol('n1')
n2 = Symbol('n2', real=True)
n3 = Symbol('n3', integer=True)
n4 = Symbol('n4', positive=True)
n5 = Symbol('n5', positive=True, integer=True)
assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x)
assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x)
assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x)
assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x)
assert polygamma(n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x)
assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)
assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
ni = Symbol("n", integer=True)
assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
+ zeta(ni + 1))*factorial(ni)
# Polygamma of non-negative integer order is unbranched:
from sympy import exp_polar
k = Symbol('n', integer=True, nonnegative=True)
assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)
# but negative integers are branched!
k = Symbol('n', integer=True)
assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)
# Polygamma of order -1 is loggamma:
assert polygamma(-1, x) == loggamma(x)
# But smaller orders are iterated integrals and don't have a special name
assert polygamma(-2, x).func is polygamma
# Test a bug
assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
assert polygamma(2, 2.5).is_positive == False
assert polygamma(2, -2.5).is_positive == False
assert polygamma(3, 2.5).is_positive == True
assert polygamma(3, -2.5).is_positive is True
assert polygamma(-2, -2.5).is_positive is None
assert polygamma(-3, -2.5).is_positive is None
assert polygamma(2, 2.5).is_negative == True
assert polygamma(3, 2.5).is_negative == False
assert polygamma(3, -2.5).is_negative == False
assert polygamma(2, -2.5).is_negative is True
assert polygamma(-2, -2.5).is_negative is None
assert polygamma(-3, -2.5).is_negative is None
assert polygamma(I, 2).is_positive is None
assert polygamma(I, 3).is_negative is None
# issue 17350
assert polygamma(pi, 3).evalf() == polygamma(pi, 3)
assert (I*polygamma(I, pi)).as_real_imag() == \
(-im(polygamma(I, pi)), re(polygamma(I, pi)))
assert (tanh(polygamma(I, 1))).rewrite(exp) == \
(exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1)))
assert (I / polygamma(I, 4)).rewrite(exp) == \
I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\
/((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4)))
assert unchanged(polygamma, 2.3, 1.0)
# issue 12569
assert unchanged(im, polygamma(0, I))
assert polygamma(Symbol('a', positive=True), Symbol('b', positive=True)).is_real is True
assert polygamma(0, I).is_real is None
def test_polygamma_expand_func():
assert polygamma(0, x).expand(func=True) == polygamma(0, x)
assert polygamma(0, 2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, S.Half + x)/2 + log(2)
assert polygamma(1, 2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, S.Half + x)/4
assert polygamma(2, x).expand(func=True) == \
polygamma(2, x)
assert polygamma(0, -1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert polygamma(0, 1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert polygamma(0, 2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert polygamma(0, 3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert polygamma(0, 4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert polygamma(1, 1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert polygamma(0, x + y).expand(func=True) == \
polygamma(0, x + y)
assert polygamma(1, x + y).expand(func=True) == \
polygamma(1, x + y)
assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \
6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4
assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4
e = polygamma(3, 4*x + y + Rational(3, 2))
assert e.expand(func=True) == e
e = polygamma(3, x + y + Rational(3, 4))
assert e.expand(func=True, basic=False) == e
def test_digamma():
from sympy import I
assert digamma(nan) == nan
assert digamma(oo) == oo
assert digamma(-oo) == oo
assert digamma(I*oo) == oo
assert digamma(-I*oo) == oo
assert digamma(-9) == zoo
assert digamma(-9) == zoo
assert digamma(-1) == zoo
assert digamma(0) == zoo
assert digamma(1) == -EulerGamma
assert digamma(7) == Rational(49, 20) - EulerGamma
def t(m, n):
x = S(m)/n
r = digamma(x)
if r.has(digamma):
return False
return abs(digamma(x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert digamma(x).rewrite(zeta) == polygamma(0, x)
assert digamma(x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert digamma(I).is_real is None
assert digamma(x,evaluate=False).fdiff() == polygamma(1, x)
assert digamma(x,evaluate=False).is_real is None
assert digamma(x,evaluate=False).is_positive is None
assert digamma(x,evaluate=False).is_negative is None
assert digamma(x,evaluate=False).rewrite(polygamma) == polygamma(0, x)
def test_digamma_expand_func():
assert digamma(x).expand(func=True) == polygamma(0, x)
assert digamma(2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2)
assert digamma(-1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert digamma(1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert digamma(2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert digamma(3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert digamma(4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert digamma(x + y).expand(func=True) == \
polygamma(0, x + y)
def test_trigamma():
assert trigamma(nan) == nan
assert trigamma(oo) == 0
assert trigamma(1) == pi**2/6
assert trigamma(2) == pi**2/6 - 1
assert trigamma(3) == pi**2/6 - Rational(5, 4)
assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x)
assert trigamma(x, evaluate=False).rewrite(harmonic) == \
trigamma(x).rewrite(polygamma).rewrite(harmonic)
assert trigamma(x,evaluate=False).fdiff() == polygamma(2, x)
assert trigamma(x,evaluate=False).is_real is None
assert trigamma(x,evaluate=False).is_positive is None
assert trigamma(x,evaluate=False).is_negative is None
assert trigamma(x,evaluate=False).rewrite(polygamma) == polygamma(1, x)
def test_trigamma_expand_func():
assert trigamma(2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4
assert trigamma(1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert trigamma(2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert trigamma(3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert trigamma(4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert trigamma(x + y).expand(func=True) == \
polygamma(1, x + y)
assert trigamma(3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
def test_loggamma():
raises(TypeError, lambda: loggamma(2, 3))
raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))
assert loggamma(-1) is oo
assert loggamma(-2) is oo
assert loggamma(0) is oo
assert loggamma(1) == 0
assert loggamma(2) == 0
assert loggamma(3) == log(2)
assert loggamma(4) == log(6)
n = Symbol("n", integer=True, positive=True)
assert loggamma(n) == log(gamma(n))
assert loggamma(-n) is oo
assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half))
from sympy import I
assert loggamma(oo) is oo
assert loggamma(-oo) is zoo
assert loggamma(I*oo) is zoo
assert loggamma(-I*oo) is zoo
assert loggamma(zoo) is zoo
assert loggamma(nan) is nan
L = loggamma(Rational(16, 3))
E = -5*log(3) + loggamma(Rational(1, 3)) + log(4) + log(7) + log(10) + log(13)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(19, 4))
E = -4*log(4) + loggamma(Rational(3, 4)) + log(3) + log(7) + log(11) + log(15)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(23, 7))
E = -3*log(7) + log(2) + loggamma(Rational(2, 7)) + log(9) + log(16)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(19, 4) - 7)
E = -log(9) - log(5) + loggamma(Rational(3, 4)) + 3*log(4) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(Rational(23, 7) - 6)
E = -log(19) - log(12) - log(5) + loggamma(Rational(2, 7)) + 3*log(7) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
assert loggamma(x).diff(x) == polygamma(0, x)
s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4)
s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
log(x)*x**2/2
assert (s1 - s2).expand(force=True).removeO() == 0
s1 = loggamma(1/x).series(x)
s2 = (1/x - S.Half)*log(1/x) - 1/x + log(2*pi)/2 + \
x/12 - x**3/360 + x**5/1260 + O(x**7)
assert ((s1 - s2).expand(force=True)).removeO() == 0
assert loggamma(x).rewrite('intractable') == log(gamma(x))
s1 = loggamma(x).series(x)
assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
assert s1 == loggamma(x).rewrite('intractable').series(x)
assert conjugate(loggamma(x)) == loggamma(conjugate(x))
assert conjugate(loggamma(0)) is oo
assert conjugate(loggamma(1)) == loggamma(conjugate(1))
assert conjugate(loggamma(-oo)) == conjugate(zoo)
assert loggamma(Symbol('v', positive=True)).is_real is True
assert loggamma(Symbol('v', zero=True)).is_real is False
assert loggamma(Symbol('v', negative=True)).is_real is False
assert loggamma(Symbol('v', nonpositive=True)).is_real is False
assert loggamma(Symbol('v', nonnegative=True)).is_real is None
assert loggamma(Symbol('v', imaginary=True)).is_real is None
assert loggamma(Symbol('v', real=True)).is_real is None
assert loggamma(Symbol('v')).is_real is None
assert loggamma(S.Half).is_real is True
assert loggamma(0).is_real is False
assert loggamma(Rational(-1, 2)).is_real is False
assert loggamma(I).is_real is None
assert loggamma(2 + 3*I).is_real is None
def tN(N, M):
assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M
tN(0, 0)
tN(1, 1)
tN(2, 3)
tN(3, 3)
tN(4, 5)
tN(5, 5)
def test_polygamma_expansion():
# A. & S., pa. 259 and 260
assert polygamma(0, 1/x).nseries(x, n=3) == \
-log(x) - x/2 - x**2/12 + O(x**4)
assert polygamma(1, 1/x).series(x, n=5) == \
x + x**2/2 + x**3/6 + O(x**5)
assert polygamma(3, 1/x).nseries(x, n=11) == \
2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11)
def test_issue_8657():
n = Symbol('n', negative=True, integer=True)
m = Symbol('m', integer=True)
o = Symbol('o', positive=True)
p = Symbol('p', negative=True, integer=False)
assert gamma(n).is_real is False
assert gamma(m).is_real is None
assert gamma(o).is_real is True
assert gamma(p).is_real is True
assert gamma(w).is_real is None
def test_issue_8524():
x = Symbol('x', positive=True)
y = Symbol('y', negative=True)
z = Symbol('z', positive=False)
p = Symbol('p', negative=False)
q = Symbol('q', integer=True)
r = Symbol('r', integer=False)
e = Symbol('e', even=True, negative=True)
assert gamma(x).is_positive is True
assert gamma(y).is_positive is None
assert gamma(z).is_positive is None
assert gamma(p).is_positive is None
assert gamma(q).is_positive is None
assert gamma(r).is_positive is None
assert gamma(e + S.Half).is_positive is True
assert gamma(e - S.Half).is_positive is False
def test_issue_14450():
assert uppergamma(Rational(3, 8), x).evalf() == uppergamma(Rational(3, 8), x)
assert lowergamma(x, Rational(3, 8)).evalf() == lowergamma(x, Rational(3, 8))
# some values from Wolfram Alpha for comparison
assert abs(uppergamma(Rational(3, 8), 2).evalf() - 0.07105675881) < 1e-9
assert abs(lowergamma(Rational(3, 8), 2).evalf() - 2.2993794256) < 1e-9
def test_issue_14528():
k = Symbol('k', integer=True, nonpositive=True)
assert isinstance(gamma(k), gamma)
def test_multigamma():
from sympy import Product
p = Symbol('p')
_k = Dummy('_k')
assert multigamma(x, p).dummy_eq(pi**(p*(p - 1)/4)*\
Product(gamma(x + (1 - _k)/2), (_k, 1, p)))
assert conjugate(multigamma(x, p)).dummy_eq(pi**((conjugate(p) - 1)*\
conjugate(p)/4)*Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert conjugate(multigamma(x, 1)) == gamma(conjugate(x))
p = Symbol('p', positive=True)
assert conjugate(multigamma(x, p)).dummy_eq(pi**((p - 1)*p/4)*\
Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert multigamma(nan, 1) is nan
assert multigamma(oo, 1).doit() is oo
assert multigamma(1, 1) == 1
assert multigamma(2, 1) == 1
assert multigamma(3, 1) == 2
assert multigamma(102, 1) == factorial(101)
assert multigamma(S.Half, 1) == sqrt(pi)
assert multigamma(1, 2) == pi
assert multigamma(2, 2) == pi/2
assert multigamma(1, 3) is zoo
assert multigamma(2, 3) == pi**2/2
assert multigamma(3, 3) == 3*pi**2/2
assert multigamma(x, 1).diff(x) == gamma(x)*polygamma(0, x)
assert multigamma(x, 2).diff(x) == sqrt(pi)*gamma(x)*gamma(x - S.Half)*\
polygamma(0, x) + sqrt(pi)*gamma(x)*gamma(x - S.Half)*polygamma(0, x - S.Half)
assert multigamma(x - 1, 1).expand(func=True) == gamma(x)/(x - 1)
assert multigamma(x + 2, 1).expand(func=True, mul=False) == x*(x + 1)*\
gamma(x)
assert multigamma(x - 1, 2).expand(func=True) == sqrt(pi)*gamma(x)*\
gamma(x + S.Half)/(x**3 - 3*x**2 + x*Rational(11, 4) - Rational(3, 4))
assert multigamma(x - 1, 3).expand(func=True) == pi**Rational(3, 2)*gamma(x)**2*\
gamma(x + S.Half)/(x**5 - 6*x**4 + 55*x**3/4 - 15*x**2 + x*Rational(31, 4) - Rational(3, 2))
assert multigamma(n, 1).rewrite(factorial) == factorial(n - 1)
assert multigamma(n, 2).rewrite(factorial) == sqrt(pi)*\
factorial(n - Rational(3, 2))*factorial(n - 1)
assert multigamma(n, 3).rewrite(factorial) == pi**Rational(3, 2)*\
factorial(n - 2)*factorial(n - Rational(3, 2))*factorial(n - 1)
assert multigamma(Rational(-1, 2), 3, evaluate=False).is_real == False
assert multigamma(S.Half, 3, evaluate=False).is_real == False
assert multigamma(0, 1, evaluate=False).is_real == False
assert multigamma(1, 3, evaluate=False).is_real == False
assert multigamma(-1.0, 3, evaluate=False).is_real == False
assert multigamma(0.7, 3, evaluate=False).is_real == True
assert multigamma(3, 3, evaluate=False).is_real == True
def test_gamma_as_leading_term():
assert gamma(x).as_leading_term(x) == 1/x
assert gamma(2 + x).as_leading_term(x) == S(1)
assert gamma(cos(x)).as_leading_term(x) == S(1)
assert gamma(sin(x)).as_leading_term(x) == 1/x
|
27349dfb7527b0625db9bd22b8ccbb29b0923f95b9c9d7833f8a710c85b9b0cb | from sympy import (
symbols, expand, expand_func, nan, oo, Float, conjugate, diff,
re, im, O, exp_polar, polar_lift, gruntz, limit,
Symbol, I, integrate, Integral, S,
sqrt, sin, cos, sinc, sinh, cosh, exp, log, pi, EulerGamma,
erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv,
gamma, uppergamma,
Ei, expint, E1, li, Li, Si, Ci, Shi, Chi,
fresnels, fresnelc,
hyper, meijerg, E, Rational)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.functions.special.error_functions import _erfs, _eis
from sympy.testing.pytest import raises, slow
x, y, z = symbols('x,y,z')
w = Symbol("w", real=True)
n = Symbol("n", integer=True)
def test_erf():
assert erf(nan) is nan
assert erf(oo) == 1
assert erf(-oo) == -1
assert erf(0) == 0
assert erf(I*oo) == oo*I
assert erf(-I*oo) == -oo*I
assert erf(-2) == -erf(2)
assert erf(-x*y) == -erf(x*y)
assert erf(-x - y) == -erf(x + y)
assert erf(erfinv(x)) == x
assert erf(erfcinv(x)) == 1 - x
assert erf(erf2inv(0, x)) == x
assert erf(erf2inv(0, x, evaluate=False)) == x # To cover code in erf
assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x
assert erf(I).is_real is False
assert erf(0).is_real is True
assert conjugate(erf(z)) == erf(conjugate(z))
assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
assert erf(1/x).as_leading_term(x) == erf(1/x)
assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erf(z).rewrite('erfc') == S.One - erfc(z)
assert erf(z).rewrite('erfi') == -I*erfi(I*z)
assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)
assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
2/sqrt(pi)
assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1
assert erf(x).as_real_imag() == \
(erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
-I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)
assert erf(x).as_real_imag(deep=False) == \
(erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
-I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)
assert erf(w).as_real_imag() == (erf(w), 0)
assert erf(w).as_real_imag(deep=False) == (erf(w), 0)
# issue 13575
assert erf(I).as_real_imag() == (0, -I*erf(I))
raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
assert erf(x).inverse() == erfinv
def test_erf_series():
assert erf(x).series(x, 0, 7) == 2*x/sqrt(pi) - \
2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)
def test_erf_evalf():
assert abs( erf(Float(2.0)) - 0.995322265 ) < 1E-8 # XXX
def test__erfs():
assert _erfs(z).diff(z) == -2/sqrt(S.Pi) + 2*z*_erfs(z)
assert _erfs(1/z).series(z) == \
z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6)
assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== erf(z).diff(z)
assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
raises(ArgumentIndexError, lambda: _erfs(z).fdiff(2))
def test_erfc():
assert erfc(nan) is nan
assert erfc(oo) == 0
assert erfc(-oo) == 2
assert erfc(0) == 1
assert erfc(I*oo) == -oo*I
assert erfc(-I*oo) == oo*I
assert erfc(-x) == S(2) - erfc(x)
assert erfc(erfcinv(x)) == x
assert erfc(I).is_real is False
assert erfc(0).is_real is True
assert erfc(erfinv(x)) == 1 - x
assert conjugate(erfc(z)) == erfc(conjugate(z))
assert erfc(x).as_leading_term(x) is S.One
assert erfc(1/x).as_leading_term(x) == erfc(1/x)
assert erfc(z).rewrite('erf') == 1 - erf(z)
assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi)
assert erfc(z).rewrite('tractable') == _erfs(z)*exp(-z**2)
assert expand_func(erf(x) + erfc(x)) is S.One
assert erfc(x).as_real_imag() == \
(erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2,
-I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2)
assert erfc(x).as_real_imag(deep=False) == \
(erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2,
-I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2)
assert erfc(w).as_real_imag() == (erfc(w), 0)
assert erfc(w).as_real_imag(deep=False) == (erfc(w), 0)
raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
assert erfc(x).inverse() == erfcinv
def test_erfc_series():
assert erfc(x).series(x, 0, 7) == 1 - 2*x/sqrt(pi) + \
2*x**3/3/sqrt(pi) - x**5/5/sqrt(pi) + O(x**7)
def test_erfc_evalf():
assert abs( erfc(Float(2.0)) - 0.00467773 ) < 1E-8 # XXX
def test_erfi():
assert erfi(nan) is nan
assert erfi(oo) is S.Infinity
assert erfi(-oo) is S.NegativeInfinity
assert erfi(0) is S.Zero
assert erfi(I*oo) == I
assert erfi(-I*oo) == -I
assert erfi(-x) == -erfi(x)
assert erfi(I*erfinv(x)) == I*x
assert erfi(I*erfcinv(x)) == I*(1 - x)
assert erfi(I*erf2inv(0, x)) == I*x
assert erfi(I*erf2inv(0, x, evaluate=False)) == I*x # To cover code in erfi
assert erfi(I).is_real is False
assert erfi(0).is_real is True
assert conjugate(erfi(z)) == erfi(conjugate(z))
assert erfi(z).rewrite('erf') == -I*erf(I*z)
assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi)
assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi)
assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half,
-z**2)/sqrt(S.Pi) - S.One))
assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi)
assert erfi(z).rewrite('tractable') == -I*(-_erfs(I*z)*exp(z**2) + 1)
assert expand_func(erfi(I*z)) == I*erf(z)
assert erfi(x).as_real_imag() == \
(erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2,
-I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2)
assert erfi(x).as_real_imag(deep=False) == \
(erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2,
-I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2)
assert erfi(w).as_real_imag() == (erfi(w), 0)
assert erfi(w).as_real_imag(deep=False) == (erfi(w), 0)
raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_erfi_series():
assert erfi(x).series(x, 0, 7) == 2*x/sqrt(pi) + \
2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)
def test_erfi_evalf():
assert abs( erfi(Float(2.0)) - 18.5648024145756 ) < 1E-13 # XXX
def test_erf2():
assert erf2(0, 0) is S.Zero
assert erf2(x, x) is S.Zero
assert erf2(nan, 0) is nan
assert erf2(-oo, y) == erf(y) + 1
assert erf2( oo, y) == erf(y) - 1
assert erf2( x, oo) == 1 - erf(x)
assert erf2( x,-oo) == -1 - erf(x)
assert erf2(x, erf2inv(x, y)) == y
assert erf2(-x, -y) == -erf2(x,y)
assert erf2(-x, y) == erf(y) + erf(x)
assert erf2( x, -y) == -erf(y) - erf(x)
assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels)
assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc)
assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper)
assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg)
assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma)
assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint)
assert erf2(I, 0).is_real is False
assert erf2(0, 0).is_real is True
assert expand_func(erf(x) + erf2(x, y)) == erf(y)
assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y))
assert erf2(x, y).rewrite('erf') == erf(y) - erf(x)
assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y)
assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y))
assert erf2(x, y).diff(x) == erf2(x, y).fdiff(1)
assert erf2(x, y).diff(y) == erf2(x, y).fdiff(2)
assert erf2(x, y).diff(x) == -2*exp(-x**2)/sqrt(pi)
assert erf2(x, y).diff(y) == 2*exp(-y**2)/sqrt(pi)
raises(ArgumentIndexError, lambda: erf2(x, y).fdiff(3))
assert erf2(x, y).is_extended_real is None
xr, yr = symbols('xr yr', extended_real=True)
assert erf2(xr, yr).is_extended_real is True
def test_erfinv():
assert erfinv(0) == 0
assert erfinv(1) is S.Infinity
assert erfinv(nan) is S.NaN
assert erfinv(-1) is S.NegativeInfinity
assert erfinv(erf(w)) == w
assert erfinv(erf(-w)) == -w
assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2
raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2))
assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z)
assert erfinv(z).inverse() == erf
def test_erfinv_evalf():
assert abs( erfinv(Float(0.2)) - 0.179143454621292 ) < 1E-13
def test_erfcinv():
assert erfcinv(1) == 0
assert erfcinv(0) is S.Infinity
assert erfcinv(nan) is S.NaN
assert erfcinv(x).diff() == -sqrt(pi)*exp(erfcinv(x)**2)/2
raises(ArgumentIndexError, lambda: erfcinv(x).fdiff(2))
assert erfcinv(z).rewrite('erfinv') == erfinv(1-z)
assert erfcinv(z).inverse() == erfc
def test_erf2inv():
assert erf2inv(0, 0) is S.Zero
assert erf2inv(0, 1) is S.Infinity
assert erf2inv(1, 0) is S.One
assert erf2inv(0, y) == erfinv(y)
assert erf2inv(oo, y) == erfcinv(-y)
assert erf2inv(x, 0) == x
assert erf2inv(x, oo) == erfinv(x)
assert erf2inv(nan, 0) is nan
assert erf2inv(0, nan) is nan
assert erf2inv(x, y).diff(x) == exp(-x**2 + erf2inv(x, y)**2)
assert erf2inv(x, y).diff(y) == sqrt(pi)*exp(erf2inv(x, y)**2)/2
raises(ArgumentIndexError, lambda: erf2inv(x, y).fdiff(3))
# NOTE we multiply by exp_polar(I*pi) and need this to be on the principal
# branch, hence take x in the lower half plane (d=0).
def mytn(expr1, expr2, expr3, x, d=0):
from sympy.testing.randtest import verify_numerically, random_complex_number
subs = {}
for a in expr1.free_symbols:
if a != x:
subs[a] = random_complex_number()
return expr2 == expr3 and verify_numerically(expr1.subs(subs),
expr2.subs(subs), x, d=d)
def mytd(expr1, expr2, x):
from sympy.testing.randtest import test_derivative_numerically, \
random_complex_number
subs = {}
for a in expr1.free_symbols:
if a != x:
subs[a] = random_complex_number()
return expr1.diff(x) == expr2 and test_derivative_numerically(expr1.subs(subs), x)
def tn_branch(func, s=None):
from sympy import I, pi, exp_polar
from random import uniform
def fn(x):
if s is None:
return func(x)
return func(s, x)
c = uniform(1, 5)
expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi))
eps = 1e-15
expr2 = fn(-c + eps*I) - fn(-c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_ei():
assert Ei(0) is S.NegativeInfinity
assert Ei(oo) is S.Infinity
assert Ei(-oo) is S.Zero
assert tn_branch(Ei)
assert mytd(Ei(x), exp(x)/x, x)
assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
-uppergamma(0, x*polar_lift(-1)) - I*pi, x)
assert mytn(Ei(x), Ei(x).rewrite(expint),
-expint(1, x*polar_lift(-1)) - I*pi, x)
assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi
assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
Ci(x) + I*Si(x) + I*pi/2, x)
assert Ei(log(x)).rewrite(li) == li(x)
assert Ei(2*log(x)).rewrite(li) == li(x**2)
assert gruntz(Ei(x+exp(-x))*exp(-x)*x, x, oo) == 1
assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
x**3/18 + x**4/96 + x**5/600 + O(x**6)
assert Ei(x).series(x, 1, 3) == Ei(1) + E*(x - 1) + O((x - 1)**3, (x, 1))
assert str(Ei(cos(2)).evalf(n=10)) == '-0.6760647401'
raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_expint():
assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
y**(x - 1)*uppergamma(1 - x, y), x)
assert mytd(
expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
assert mytd(expint(x, y), -expint(x - 1, y), y)
assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
-Ei(x*polar_lift(-1)) + I*pi, x)
assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
+ 24*exp(-x)/x**4 + 24*exp(-x)/x**5
assert expint(Rational(-3, 2), x) == \
exp(-x)/x + 3*exp(-x)/(2*x**2) + 3*sqrt(pi)*erfc(sqrt(x))/(4*x**S('5/2'))
assert tn_branch(expint, 1)
assert tn_branch(expint, 2)
assert tn_branch(expint, 3)
assert tn_branch(expint, 1.7)
assert tn_branch(expint, pi)
assert expint(y, x*exp_polar(2*I*pi)) == \
x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
assert expint(y, x*exp_polar(-2*I*pi)) == \
x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
assert expint(x, y).rewrite(Ei) == expint(x, y)
assert expint(x, y).rewrite(Ci) == expint(x, y)
assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
-Ci(x) + I*Si(x) - I*pi/2, x)
assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
-x*E1(x) + exp(-x), x)
assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)
assert expint(Rational(3, 2), z).nseries(z) == \
2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
2*sqrt(pi)*sqrt(z) + O(z**6)
assert E1(z).series(z) == -EulerGamma - log(z) + z - \
z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)
assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6 - I*pi/6) - z**4/24 + \
z**5/240 + O(z**6)
assert expint(z, y).series(z, 0, 2) == exp(-y)/y - z*meijerg(((), (1, 1)),
((0, 0, 1), ()), y)/y + O(z**2)
raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
neg = Symbol('neg', negative=True)
assert Ei(neg).rewrite(Si) == Shi(neg) + Chi(neg) - I*pi
def test__eis():
assert _eis(z).diff(z) == -_eis(z) + 1/z
assert _eis(1/z).series(z) == \
z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)
assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
assert li(z).rewrite('tractable') == z*_eis(log(z))
assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)
assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== li(z).diff(z)
assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== Ei(z).diff(z)
assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
EulerGamma + 1) + z**2*(log(z)/2 - Rational(3, 4) + EulerGamma/2) + O(z**3*log(z))
raises(ArgumentIndexError, lambda: _eis(z).fdiff(2))
def tn_arg(func):
def test(arg, e1, e2):
from random import uniform
v = uniform(1, 5)
v1 = func(arg*x).subs(x, v).n()
v2 = func(e1*v + e2*1e-15).n()
return abs(v1 - v2).n() < 1e-10
return test(exp_polar(I*pi/2), I, 1) and \
test(exp_polar(-I*pi/2), -I, 1) and \
test(exp_polar(I*pi), -1, I) and \
test(exp_polar(-I*pi), -1, -I)
def test_li():
z = Symbol("z")
zr = Symbol("z", real=True)
zp = Symbol("z", positive=True)
zn = Symbol("z", negative=True)
assert li(0) == 0
assert li(1) is -oo
assert li(oo) is oo
assert isinstance(li(z), li)
assert unchanged(li, -zp)
assert unchanged(li, zn)
assert diff(li(z), z) == 1/log(z)
assert conjugate(li(z)) == li(conjugate(z))
assert conjugate(li(-zr)) == li(-zr)
assert unchanged(conjugate, li(-zp))
assert unchanged(conjugate, li(zn))
assert li(z).rewrite(Li) == Li(z) + li(2)
assert li(z).rewrite(Ei) == Ei(log(z))
assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
log(log(z))/2 - expint(1, -log(z)))
assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
Chi(log(z)) - Shi(log(z)))
assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
Chi(log(z)) - Shi(log(z)))
assert li(z).rewrite(hyper) ==(log(z)*hyper((1, 1), (2, 2), log(z)) -
log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
meijerg(((), (1,)), ((0, 0), ()), -log(z)))
assert gruntz(1/li(z), z, oo) == 0
raises(ArgumentIndexError, lambda: li(z).fdiff(2))
def test_Li():
assert Li(2) == 0
assert Li(oo) is oo
assert isinstance(Li(z), Li)
assert diff(Li(z), z) == 1/log(z)
assert gruntz(1/Li(z), z, oo) == 0
assert Li(z).rewrite(li) == li(z) - li(2)
raises(ArgumentIndexError, lambda: Li(z).fdiff(2))
def test_si():
assert Si(I*x) == I*Shi(x)
assert Shi(I*x) == I*Si(x)
assert Si(-I*x) == -I*Shi(x)
assert Shi(-I*x) == -I*Si(x)
assert Si(-x) == -Si(x)
assert Shi(-x) == -Shi(x)
assert Si(exp_polar(2*pi*I)*x) == Si(x)
assert Si(exp_polar(-2*pi*I)*x) == Si(x)
assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)
assert Si(oo) == pi/2
assert Si(-oo) == -pi/2
assert Shi(oo) is oo
assert Shi(-oo) is -oo
assert mytd(Si(x), sin(x)/x, x)
assert mytd(Shi(x), sinh(x)/x, x)
assert mytn(Si(x), Si(x).rewrite(Ei),
-I*(-Ei(x*exp_polar(-I*pi/2))/2
+ Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
assert mytn(Si(x), Si(x).rewrite(expint),
-I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
assert mytn(Shi(x), Shi(x).rewrite(Ei),
Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
assert mytn(Shi(x), Shi(x).rewrite(expint),
expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)
assert tn_arg(Si)
assert tn_arg(Shi)
assert Si(x).nseries(x, n=8) == \
x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
assert Shi(x).nseries(x, n=8) == \
x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**6)
assert Si(x).nseries(x, 1, n=3) == \
Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))
t = Symbol('t', Dummy=True)
assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x))
def test_ci():
m1 = exp_polar(I*pi)
m1_ = exp_polar(-I*pi)
pI = exp_polar(I*pi/2)
mI = exp_polar(-I*pi/2)
assert Ci(m1*x) == Ci(x) + I*pi
assert Ci(m1_*x) == Ci(x) - I*pi
assert Ci(pI*x) == Chi(x) + I*pi/2
assert Ci(mI*x) == Chi(x) - I*pi/2
assert Chi(m1*x) == Chi(x) + I*pi
assert Chi(m1_*x) == Chi(x) - I*pi
assert Chi(pI*x) == Ci(x) + I*pi/2
assert Chi(mI*x) == Ci(x) - I*pi/2
assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi
assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi
assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi
assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi
assert Ci(oo) == 0
assert Ci(-oo) == I*pi
assert Chi(oo) is oo
assert Chi(-oo) is oo
assert mytd(Ci(x), cos(x)/x, x)
assert mytd(Chi(x), cosh(x)/x, x)
assert mytn(Ci(x), Ci(x).rewrite(Ei),
Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x)
assert mytn(Chi(x), Chi(x).rewrite(Ei),
Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x)
assert tn_arg(Ci)
assert tn_arg(Chi)
from sympy import O, EulerGamma, log, limit
assert Ci(x).nseries(x, n=4) == \
EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**5)
assert Chi(x).nseries(x, n=4) == \
EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**5)
assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma
assert Ci(x).rewrite(uppergamma) == -expint(1, x*exp_polar(-I*pi/2))/2 -\
expint(1, x*exp_polar(I*pi/2))/2
assert Ci(x).rewrite(expint) == -expint(1, x*exp_polar(-I*pi/2))/2 -\
expint(1, x*exp_polar(I*pi/2))/2
raises(ArgumentIndexError, lambda: Ci(x).fdiff(2))
def test_fresnel():
assert fresnels(0) == 0
assert fresnels(oo) == S.Half
assert fresnels(-oo) == Rational(-1, 2)
assert fresnels(I*oo) == -I*S.Half
assert unchanged(fresnels, z)
assert fresnels(-z) == -fresnels(z)
assert fresnels(I*z) == -I*fresnels(z)
assert fresnels(-I*z) == I*fresnels(z)
assert conjugate(fresnels(z)) == fresnels(conjugate(z))
assert fresnels(z).diff(z) == sin(pi*z**2/2)
assert fresnels(z).rewrite(erf) == (S.One + I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnels(z).rewrite(hyper) == \
pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)
assert fresnels(z).series(z, n=15) == \
pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)
assert fresnels(w).is_extended_real is True
assert fresnels(w).is_finite is True
assert fresnels(z).is_extended_real is None
assert fresnels(z).is_finite is None
assert fresnels(z).as_real_imag() == (fresnels(re(z) - I*im(z))/2 +
fresnels(re(z) + I*im(z))/2,
-I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2)
assert fresnels(z).as_real_imag(deep=False) == (fresnels(re(z) - I*im(z))/2 +
fresnels(re(z) + I*im(z))/2,
-I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2)
assert fresnels(w).as_real_imag() == (fresnels(w), 0)
assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0)
assert fresnels(2 + 3*I).as_real_imag() == (
fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2,
-I*(fresnels(2 + 3*I) - fresnels(2 - 3*I))/2
)
assert expand_func(integrate(fresnels(z), z)) == \
z*fresnels(z) + cos(pi*z**2/2)/pi
assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \
meijerg(((), (1,)), ((Rational(3, 4),),
(Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4))
assert fresnelc(0) == 0
assert fresnelc(oo) == S.Half
assert fresnelc(-oo) == Rational(-1, 2)
assert fresnelc(I*oo) == I*S.Half
assert unchanged(fresnelc, z)
assert fresnelc(-z) == -fresnelc(z)
assert fresnelc(I*z) == I*fresnelc(z)
assert fresnelc(-I*z) == -I*fresnelc(z)
assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))
assert fresnelc(z).diff(z) == cos(pi*z**2/2)
assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnelc(z).rewrite(hyper) == \
z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)
assert fresnelc(w).is_extended_real is True
assert fresnelc(z).as_real_imag() == \
(fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
-I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)
assert fresnelc(z).as_real_imag(deep=False) == \
(fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
-I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)
assert fresnelc(2 + 3*I).as_real_imag() == (
fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2,
-I*(fresnelc(2 + 3*I) - fresnelc(2 - 3*I))/2
)
assert expand_func(integrate(fresnelc(z), z)) == \
z*fresnelc(z) - sin(pi*z**2/2)/pi
assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \
meijerg(((), (1,)), ((Rational(1, 4),),
(Rational(3, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(1, 4)*(z**2)**Rational(1, 4))
from sympy.testing.randtest import verify_numerically
verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)
verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2))
raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2))
assert fresnels(x).taylor_term(-1, x) is S.Zero
assert fresnelc(x).taylor_term(-1, x) is S.Zero
assert fresnelc(x).taylor_term(1, x) == -pi**2*x**5/40
@slow
def test_fresnel_series():
assert fresnelc(z).series(z, n=15) == \
z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)
# issues 6510, 10102
fs = (S.Half - sin(pi*z**2/2)/(pi**2*z**3)
+ (-1/(pi*z) + 3/(pi**3*z**5))*cos(pi*z**2/2))
fc = (S.Half - cos(pi*z**2/2)/(pi**2*z**3)
+ (1/(pi*z) - 3/(pi**3*z**5))*sin(pi*z**2/2))
assert fresnels(z).series(z, oo) == fs + O(z**(-6), (z, oo))
assert fresnelc(z).series(z, oo) == fc + O(z**(-6), (z, oo))
assert (fresnels(z).series(z, -oo) + fs.subs(z, -z)).expand().is_Order
assert (fresnelc(z).series(z, -oo) + fc.subs(z, -z)).expand().is_Order
assert (fresnels(1/z).series(z) - fs.subs(z, 1/z)).expand().is_Order
assert (fresnelc(1/z).series(z) - fc.subs(z, 1/z)).expand().is_Order
assert ((2*fresnels(3*z)).series(z, oo) - 2*fs.subs(z, 3*z)).expand().is_Order
assert ((3*fresnelc(2*z)).series(z, oo) - 3*fc.subs(z, 2*z)).expand().is_Order
|
6d29da93ae00a3db1ac8fa899f42ae256610bfd831cad2a3dcfef1189bfcff93 | from __future__ import print_function, division
from sympy import zeros, eye, Symbol, solve_linear_system
N = 8
M = zeros(N, N + 1)
M[:, :N] = eye(N)
S = [Symbol('A%i' % i) for i in range(N)]
def timeit_linsolve_trivial():
solve_linear_system(M, *S)
|
0d74975b455e3f90cf72c9cc2d41e4f33f2a33cd77d2ab2f6d8a8058f6df02a6 | from .diophantine import diophantine, classify_diop
__all__ = [
'diophantine', 'classify_diop'
]
|
3041ff056148a8e9f7e941b825f252df4755b6769757172a18759c1f55594410 | from __future__ import print_function, division
from sympy.core.add import Add
from sympy.core.compatibility import as_int, is_sequence
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.numbers import igcdex, ilcm, igcd
from sympy.core.power import integer_nthroot, isqrt
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.ntheory.factor_ import (
divisors, factorint, multiplicity, perfect_power)
from sympy.ntheory.generate import nextprime
from sympy.ntheory.primetest import is_square, isprime
from sympy.ntheory.residue_ntheory import sqrt_mod
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polytools import Poly, factor_list
from sympy.simplify.simplify import signsimp
from sympy.solvers.solvers import check_assumptions
from sympy.solvers.solveset import solveset_real
from sympy.utilities import default_sort_key, numbered_symbols
from sympy.utilities.misc import filldedent
# these are imported with 'from sympy.solvers.diophantine import *
__all__ = ['diophantine', 'classify_diop']
# these types are known (but not necessarily handled)
diop_known = {
"binary_quadratic",
"cubic_thue",
"general_pythagorean",
"general_sum_of_even_powers",
"general_sum_of_squares",
"homogeneous_general_quadratic",
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal",
"inhomogeneous_general_quadratic",
"inhomogeneous_ternary_quadratic",
"linear",
"univariate"}
def _is_int(i):
try:
as_int(i)
return True
except ValueError:
pass
def _sorted_tuple(*i):
return tuple(sorted(i))
def _remove_gcd(*x):
try:
g = igcd(*x)
except ValueError:
fx = list(filter(None, x))
if len(fx) < 2:
return x
g = igcd(*[i.as_content_primitive()[0] for i in fx])
except TypeError:
raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)')
if g == 1:
return x
return tuple([i//g for i in x])
def _rational_pq(a, b):
# return `(numer, denom)` for a/b; sign in numer and gcd removed
return _remove_gcd(sign(b)*a, abs(b))
def _nint_or_floor(p, q):
# return nearest int to p/q; in case of tie return floor(p/q)
w, r = divmod(p, q)
if abs(r) <= abs(q)//2:
return w
return w + 1
def _odd(i):
return i % 2 != 0
def _even(i):
return i % 2 == 0
def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (3*t_0 - 4, -t_0)}
See Also
========
diop_solve()
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
from sympy.utilities.iterables import (
subsets, permute_signs, signed_permutations)
eq = _sympify(eq)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
try:
var = list(eq.expand(force=True).free_symbols)
var.sort(key=default_sort_key)
if syms:
if not is_sequence(syms):
raise TypeError(
'syms should be given as a sequence, e.g. a list')
syms = [i for i in syms if i in var]
if syms != var:
dict_sym_index = dict(zip(syms, range(len(syms))))
return {tuple([t[dict_sym_index[i]] for i in var])
for t in diophantine(eq, param, permute=permute)}
n, d = eq.as_numer_denom()
if n.is_number:
return set()
if not d.is_number:
dsol = diophantine(d)
good = diophantine(n) - dsol
return {s for s in good if _mexpand(d.subs(zip(var, s)))}
else:
eq = n
eq = factor_terms(eq)
assert not eq.is_number
eq = eq.as_independent(*var, as_Add=False)[1]
p = Poly(eq)
assert not any(g.is_number for g in p.gens)
eq = p.as_expr()
assert eq.is_polynomial()
except (GeneratorsNeeded, AssertionError):
raise TypeError(filldedent('''
Equation should be a polynomial with Rational coefficients.'''))
# permute only sign
do_permute_signs = False
# permute sign and values
do_permute_signs_var = False
# permute few signs
permute_few_signs = False
try:
# if we know that factoring should not be attempted, skip
# the factoring step
v, c, t = classify_diop(eq)
# check for permute sign
if permute:
len_var = len(v)
permute_signs_for = [
'general_sum_of_squares',
'general_sum_of_even_powers']
permute_signs_check = [
'homogeneous_ternary_quadratic',
'homogeneous_ternary_quadratic_normal',
'binary_quadratic']
if t in permute_signs_for:
do_permute_signs_var = True
elif t in permute_signs_check:
# if all the variables in eq have even powers
# then do_permute_sign = True
if len_var == 3:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y), (x, z), (y, z)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul)
# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
# `xy_coeff` => True and do_permute_sign => False.
# Means no permuted solution.
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any([xy_coeff, x_coeff]):
# means only x**2, y**2, z**2, const is present
do_permute_signs = True
elif not x_coeff:
permute_few_signs = True
elif len_var == 2:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul)
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any([xy_coeff, x_coeff]):
# means only x**2, y**2 and const is present
# so we can get more soln by permuting this soln.
do_permute_signs = True
elif not x_coeff:
# when coeff(x), coeff(y) is not present then signs of
# x, y can be permuted such that their sign are same
# as sign of x*y.
# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
permute_few_signs = True
if t == 'general_sum_of_squares':
# trying to factor such expressions will sometimes hang
terms = [(eq, 1)]
else:
raise TypeError
except (TypeError, NotImplementedError):
fl = factor_list(eq)
if fl[0].is_Rational and fl[0] != 1:
return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
terms = fl[1]
sols = set([])
for term in terms:
base, _ = term
var_t, _, eq_type = classify_diop(base, _dict=False)
_, base = signsimp(base, evaluate=False).as_coeff_Mul()
solution = diop_solve(base, param)
if eq_type in [
"linear",
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal",
"general_pythagorean"]:
sols.add(merge_solution(var, var_t, solution))
elif eq_type in [
"binary_quadratic",
"general_sum_of_squares",
"general_sum_of_even_powers",
"univariate"]:
for sol in solution:
sols.add(merge_solution(var, var_t, sol))
else:
raise NotImplementedError('unhandled type: %s' % eq_type)
# remove null merge results
if () in sols:
sols.remove(())
null = tuple([0]*len(var))
# if there is no solution, return trivial solution
if not sols and eq.subs(zip(var, null)).is_zero:
sols.add(null)
final_soln = set([])
for sol in sols:
if all(_is_int(s) for s in sol):
if do_permute_signs:
permuted_sign = set(permute_signs(sol))
final_soln.update(permuted_sign)
elif permute_few_signs:
lst = list(permute_signs(sol))
lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
permuted_sign = set(lst)
final_soln.update(permuted_sign)
elif do_permute_signs_var:
permuted_sign_var = set(signed_permutations(sol))
final_soln.update(permuted_sign_var)
else:
final_soln.add(sol)
else:
final_soln.add(sol)
return final_soln
def merge_solution(var, var_t, solution):
"""
This is used to construct the full solution from the solutions of sub
equations.
For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`,
solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are
found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But
we should introduce a value for z when we output the solution for the
original equation. This function converts `(t, t)` into `(t, t, n_{1})`
where `n_{1}` is an integer parameter.
"""
sol = []
if None in solution:
return ()
solution = iter(solution)
params = numbered_symbols("n", integer=True, start=1)
for v in var:
if v in var_t:
sol.append(next(solution))
else:
sol.append(next(params))
for val, symb in zip(sol, var):
if check_assumptions(val, **symb.assumptions0) is False:
return tuple()
return tuple(sol)
def diop_solve(eq, param=symbols("t", integer=True)):
"""
Solves the diophantine equation ``eq``.
Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses
``classify_diop()`` to determine the type of the equation and calls
the appropriate solver function.
Use of ``diophantine()`` is recommended over other helper functions.
``diop_solve()`` can return either a set or a tuple depending on the
nature of the equation.
Usage
=====
``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t``
as a parameter if needed.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_solve
>>> from sympy.abc import x, y, z, w
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
>>> diop_solve(4*x + 3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x + 3*y - 4*z + w - 6)
(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
>>> diop_solve(x**2 + y**2 - 5)
{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}
See Also
========
diophantine()
"""
var, coeff, eq_type = classify_diop(eq, _dict=False)
if eq_type == "linear":
return _diop_linear(var, coeff, param)
elif eq_type == "binary_quadratic":
return _diop_quadratic(var, coeff, param)
elif eq_type == "homogeneous_ternary_quadratic":
x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff)
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
elif eq_type == "homogeneous_ternary_quadratic_normal":
x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff)
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
elif eq_type == "general_pythagorean":
return _diop_general_pythagorean(var, coeff, param)
elif eq_type == "univariate":
return set([(int(i),) for i in solveset_real(
eq, var[0]).intersect(S.Integers)])
elif eq_type == "general_sum_of_squares":
return _diop_general_sum_of_squares(var, -int(coeff[1]), limit=S.Infinity)
elif eq_type == "general_sum_of_even_powers":
for k in coeff.keys():
if k.is_Pow and coeff[k]:
p = k.exp
return _diop_general_sum_of_even_powers(var, p, -int(coeff[1]), limit=S.Infinity)
if eq_type is not None and eq_type not in diop_known:
raise ValueError(filldedent('''
Alhough this type of equation was identified, it is not yet
handled. It should, however, be listed in `diop_known` at the
top of this file. Developers should see comments at the end of
`classify_diop`.
''')) # pragma: no cover
else:
raise NotImplementedError(
'No solver has been written for %s.' % eq_type)
def classify_diop(eq, _dict=True):
# docstring supplied externally
try:
var = list(eq.free_symbols)
assert var
except (AttributeError, AssertionError):
raise ValueError('equation should have 1 or more free symbols')
var.sort(key=default_sort_key)
eq = eq.expand(force=True)
coeff = eq.as_coefficients_dict()
if not all(_is_int(c) for c in coeff.values()):
raise TypeError("Coefficients should be Integers")
diop_type = None
total_degree = Poly(eq).total_degree()
homogeneous = 1 not in coeff
if total_degree == 1:
diop_type = "linear"
elif len(var) == 1:
diop_type = "univariate"
elif total_degree == 2 and len(var) == 2:
diop_type = "binary_quadratic"
elif total_degree == 2 and len(var) == 3 and homogeneous:
if set(coeff) & set(var):
diop_type = "inhomogeneous_ternary_quadratic"
else:
nonzero = [k for k in coeff if coeff[k]]
if len(nonzero) == 3 and all(i**2 in nonzero for i in var):
diop_type = "homogeneous_ternary_quadratic_normal"
else:
diop_type = "homogeneous_ternary_quadratic"
elif total_degree == 2 and len(var) >= 3:
if set(coeff) & set(var):
diop_type = "inhomogeneous_general_quadratic"
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in coeff): # cross terms
if not homogeneous:
diop_type = "inhomogeneous_general_quadratic"
else:
diop_type = "homogeneous_general_quadratic"
else: # all squares: x**2 + y**2 + ... + constant
if all(coeff[k] == 1 for k in coeff if k != 1):
diop_type = "general_sum_of_squares"
elif all(is_square(abs(coeff[k])) for k in coeff):
if abs(sum(sign(coeff[k]) for k in coeff)) == \
len(var) - 2:
# all but one has the same sign
# e.g. 4*x**2 + y**2 - 4*z**2
diop_type = "general_pythagorean"
elif total_degree == 3 and len(var) == 2:
diop_type = "cubic_thue"
elif (total_degree > 3 and total_degree % 2 == 0 and
all(k.is_Pow and k.exp == total_degree for k in coeff if k != 1)):
if all(coeff[k] == 1 for k in coeff if k != 1):
diop_type = 'general_sum_of_even_powers'
if diop_type is not None:
return var, dict(coeff) if _dict else coeff, diop_type
# new diop type instructions
# --------------------------
# if this error raises and the equation *can* be classified,
# * it should be identified in the if-block above
# * the type should be added to the diop_known
# if a solver can be written for it,
# * a dedicated handler should be written (e.g. diop_linear)
# * it should be passed to that handler in diop_solve
raise NotImplementedError(filldedent('''
This equation is not yet recognized or else has not been
simplified sufficiently to put it in a form recognized by
diop_classify().'''))
classify_diop.func_doc = ( # type: ignore
'''
Helper routine used by diop_solve() to find information about ``eq``.
Returns a tuple containing the type of the diophantine equation
along with the variables (free symbols) and their coefficients.
Variables are returned as a list and coefficients are returned
as a dict with the key being the respective term and the constant
term is keyed to 1. The type is one of the following:
* %s
Usage
=====
``classify_diop(eq)``: Return variables, coefficients and type of the
``eq``.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``_dict`` is for internal use: when True (default) a dict is returned,
otherwise a defaultdict which supplies 0 for missing keys is returned.
Examples
========
>>> from sympy.solvers.diophantine import classify_diop
>>> from sympy.abc import x, y, z, w, t
>>> classify_diop(4*x + 6*y - 4)
([x, y], {1: -4, x: 4, y: 6}, 'linear')
>>> classify_diop(x + 3*y -4*z + 5)
([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
>>> classify_diop(x**2 + y**2 - x*y + x + 5)
([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')
''' % ('\n * '.join(sorted(diop_known))))
def diop_linear(eq, param=symbols("t", integer=True)):
"""
Solves linear diophantine equations.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Usage
=====
``diop_linear(eq)``: Returns a tuple containing solutions to the
diophantine equation ``eq``. Values in the tuple is arranged in the same
order as the sorted variables.
Details
=======
``eq`` is a linear diophantine equation which is assumed to be zero.
``param`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> from sympy.abc import x, y, z, t
>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
(3*t_0 - 5, 2*t_0 - 5)
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> diop_linear(2*x - 3*y - 4*z -3)
(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)
See Also
========
diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(),
diop_general_sum_of_squares()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "linear":
return _diop_linear(var, coeff, param)
def _diop_linear(var, coeff, param):
"""
Solves diophantine equations of the form:
a_0*x_0 + a_1*x_1 + ... + a_n*x_n == c
Note that no solution exists if gcd(a_0, ..., a_n) doesn't divide c.
"""
if 1 in coeff:
# negate coeff[] because input is of the form: ax + by + c == 0
# but is used as: ax + by == -c
c = -coeff[1]
else:
c = 0
# Some solutions will have multiple free variables in their solutions.
if param is None:
params = [symbols('t')]*len(var)
else:
temp = str(param) + "_%i"
params = [symbols(temp % i, integer=True) for i in range(len(var))]
if len(var) == 1:
q, r = divmod(c, coeff[var[0]])
if not r:
return (q,)
else:
return (None,)
'''
base_solution_linear() can solve diophantine equations of the form:
a*x + b*y == c
We break down multivariate linear diophantine equations into a
series of bivariate linear diophantine equations which can then
be solved individually by base_solution_linear().
Consider the following:
a_0*x_0 + a_1*x_1 + a_2*x_2 == c
which can be re-written as:
a_0*x_0 + g_0*y_0 == c
where
g_0 == gcd(a_1, a_2)
and
y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0
This leaves us with two binary linear diophantine equations.
For the first equation:
a == a_0
b == g_0
c == c
For the second:
a == a_1/g_0
b == a_2/g_0
c == the solution we find for y_0 in the first equation.
The arrays A and B are the arrays of integers used for
'a' and 'b' in each of the n-1 bivariate equations we solve.
'''
A = [coeff[v] for v in var]
B = []
if len(var) > 2:
B.append(igcd(A[-2], A[-1]))
A[-2] = A[-2] // B[0]
A[-1] = A[-1] // B[0]
for i in range(len(A) - 3, 0, -1):
gcd = igcd(B[0], A[i])
B[0] = B[0] // gcd
A[i] = A[i] // gcd
B.insert(0, gcd)
B.append(A[-1])
'''
Consider the trivariate linear equation:
4*x_0 + 6*x_1 + 3*x_2 == 2
This can be re-written as:
4*x_0 + 3*y_0 == 2
where
y_0 == 2*x_1 + x_2
(Note that gcd(3, 6) == 3)
The complete integral solution to this equation is:
x_0 == 2 + 3*t_0
y_0 == -2 - 4*t_0
where 't_0' is any integer.
Now that we have a solution for 'x_0', find 'x_1' and 'x_2':
2*x_1 + x_2 == -2 - 4*t_0
We can then solve for '-2' and '-4' independently,
and combine the results:
2*x_1a + x_2a == -2
x_1a == 0 + t_0
x_2a == -2 - 2*t_0
2*x_1b + x_2b == -4*t_0
x_1b == 0*t_0 + t_1
x_2b == -4*t_0 - 2*t_1
==>
x_1 == t_0 + t_1
x_2 == -2 - 6*t_0 - 2*t_1
where 't_0' and 't_1' are any integers.
Note that:
4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2
for any integral values of 't_0', 't_1'; as required.
This method is generalised for many variables, below.
'''
solutions = []
for i in range(len(B)):
tot_x, tot_y = [], []
for j, arg in enumerate(Add.make_args(c)):
if arg.is_Integer:
# example: 5 -> k = 5
k, p = arg, S.One
pnew = params[0]
else: # arg is a Mul or Symbol
# example: 3*t_1 -> k = 3
# example: t_0 -> k = 1
k, p = arg.as_coeff_Mul()
pnew = params[params.index(p) + 1]
sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew)
if p is S.One:
if None in sol:
return tuple([None]*len(var))
else:
# convert a + b*pnew -> a*p + b*pnew
if isinstance(sol_x, Add):
sol_x = sol_x.args[0]*p + sol_x.args[1]
if isinstance(sol_y, Add):
sol_y = sol_y.args[0]*p + sol_y.args[1]
tot_x.append(sol_x)
tot_y.append(sol_y)
solutions.append(Add(*tot_x))
c = Add(*tot_y)
solutions.append(c)
if param is None:
# just keep the additive constant (i.e. replace t with 0)
solutions = [i.as_coeff_Add()[0] for i in solutions]
return tuple(solutions)
def base_solution_linear(c, a, b, t=None):
"""
Return the base solution for the linear equation, `ax + by = c`.
Used by ``diop_linear()`` to find the base solution of a linear
Diophantine equation. If ``t`` is given then the parametrized solution is
returned.
Usage
=====
``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients
in `ax + by = c` and ``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import base_solution_linear
>>> from sympy.abc import t
>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
(0, 0)
>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
(3*t - 5, 5 - 2*t)
>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
(7*t, -5*t)
"""
a, b, c = _remove_gcd(a, b, c)
if c == 0:
if t is not None:
if b < 0:
t = -t
return (b*t , -a*t)
else:
return (0, 0)
else:
x0, y0, d = igcdex(abs(a), abs(b))
x0 *= sign(a)
y0 *= sign(b)
if divisible(c, d):
if t is not None:
if b < 0:
t = -t
return (c*x0 + b*t, c*y0 - a*t)
else:
return (c*x0, c*y0)
else:
return (None, None)
def divisible(a, b):
"""
Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise.
"""
return not a % b
def diop_quadratic(eq, param=symbols("t", integer=True)):
"""
Solves quadratic diophantine equations.
i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a
set containing the tuples `(x, y)` which contains the solutions. If there
are no solutions then `(None, None)` is returned.
Usage
=====
``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine
equation. ``param`` is used to indicate the parameter to be used in the
solution.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``param`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, t
>>> from sympy.solvers.diophantine.diophantine import diop_quadratic
>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: http://www.jpr2718.org/ax2p.pdf
See Also
========
diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(),
diop_general_pythagorean()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "binary_quadratic":
return _diop_quadratic(var, coeff, param)
def _diop_quadratic(var, coeff, t):
x, y = var
A = coeff[x**2]
B = coeff[x*y]
C = coeff[y**2]
D = coeff[x]
E = coeff[y]
F = coeff[S.One]
A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)]
# (1) Simple-Hyperbolic case: A = C = 0, B != 0
# In this case equation can be converted to (Bx + E)(By + D) = DE - BF
# We consider two cases; DE - BF = 0 and DE - BF != 0
# More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb
sol = set([])
discr = B**2 - 4*A*C
if A == 0 and C == 0 and B != 0:
if D*E - B*F == 0:
q, r = divmod(E, B)
if not r:
sol.add((-q, t))
q, r = divmod(D, B)
if not r:
sol.add((t, -q))
else:
div = divisors(D*E - B*F)
div = div + [-term for term in div]
for d in div:
x0, r = divmod(d - E, B)
if not r:
q, r = divmod(D*E - B*F, d)
if not r:
y0, r = divmod(q - D, B)
if not r:
sol.add((x0, y0))
# (2) Parabolic case: B**2 - 4*A*C = 0
# There are two subcases to be considered in this case.
# sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0
# More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol
elif discr == 0:
if A == 0:
s = _diop_quadratic([y, x], coeff, t)
for soln in s:
sol.add((soln[1], soln[0]))
else:
g = sign(A)*igcd(A, C)
a = A // g
c = C // g
e = sign(B/A)
sqa = isqrt(a)
sqc = isqrt(c)
_c = e*sqc*D - sqa*E
if not _c:
z = symbols("z", real=True)
eq = sqa*g*z**2 + D*z + sqa*F
roots = solveset_real(eq, z).intersect(S.Integers)
for root in roots:
ans = diop_solve(sqa*x + e*sqc*y - root)
sol.add((ans[0], ans[1]))
elif _is_int(c):
solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t\
- (e*sqc*g*u**2 + E*u + e*sqc*F) // _c
solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \
+ (sqa*g*u**2 + D*u + sqa*F) // _c
for z0 in range(0, abs(_c)):
# Check if the coefficients of y and x obtained are integers or not
if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and
divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)):
sol.add((solve_x(z0), solve_y(z0)))
# (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper
# by John P. Robertson.
# http://www.jpr2718.org/ax2p.pdf
elif is_square(discr):
if A != 0:
r = sqrt(discr)
u, v = symbols("u, v", integer=True)
eq = _mexpand(
4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) +
2*A*4*A*E*(u - v) + 4*A*r*4*A*F)
solution = diop_solve(eq, t)
for s0, t0 in solution:
num = B*t0 + r*s0 + r*t0 - B*s0
x_0 = S(num)/(4*A*r)
y_0 = S(s0 - t0)/(2*r)
if isinstance(s0, Symbol) or isinstance(t0, Symbol):
if check_param(x_0, y_0, 4*A*r, t) != (None, None):
ans = check_param(x_0, y_0, 4*A*r, t)
sol.add((ans[0], ans[1]))
elif x_0.is_Integer and y_0.is_Integer:
if is_solution_quad(var, coeff, x_0, y_0):
sol.add((x_0, y_0))
else:
s = _diop_quadratic(var[::-1], coeff, t) # Interchange x and y
while s: # |
sol.add(s.pop()[::-1]) # and solution <--------+
# (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0
else:
P, Q = _transformation_to_DN(var, coeff)
D, N = _find_DN(var, coeff)
solns_pell = diop_DN(D, N)
if D < 0:
for x0, y0 in solns_pell:
for x in [-x0, x0]:
for y in [-y0, y0]:
s = P*Matrix([x, y]) + Q
try:
sol.add(tuple([as_int(_) for _ in s]))
except ValueError:
pass
else:
# In this case equation can be transformed into a Pell equation
solns_pell = set(solns_pell)
for X, Y in list(solns_pell):
solns_pell.add((-X, -Y))
a = diop_DN(D, 1)
T = a[0][0]
U = a[0][1]
if all(_is_int(_) for _ in P[:4] + Q[:2]):
for r, s in solns_pell:
_a = (r + s*sqrt(D))*(T + U*sqrt(D))**t
_b = (r - s*sqrt(D))*(T - U*sqrt(D))**t
x_n = _mexpand(S(_a + _b)/2)
y_n = _mexpand(S(_a - _b)/(2*sqrt(D)))
s = P*Matrix([x_n, y_n]) + Q
sol.add(tuple(s))
else:
L = ilcm(*[_.q for _ in P[:4] + Q[:2]])
k = 1
T_k = T
U_k = U
while (T_k - 1) % L != 0 or U_k % L != 0:
T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T
k += 1
for X, Y in solns_pell:
for i in range(k):
if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q):
_a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t
_b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t
Xt = S(_a + _b)/2
Yt = S(_a - _b)/(2*sqrt(D))
s = P*Matrix([Xt, Yt]) + Q
sol.add(tuple(s))
X, Y = X*T + D*U*Y, X*U + Y*T
return sol
def is_solution_quad(var, coeff, u, v):
"""
Check whether `(u, v)` is solution to the quadratic binary diophantine
equation with the variable list ``var`` and coefficient dictionary
``coeff``.
Not intended for use by normal users.
"""
reps = dict(zip(var, (u, v)))
eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()])
return _mexpand(eq) == 0
def diop_DN(D, N, t=symbols("t", integer=True)):
"""
Solves the equation `x^2 - Dy^2 = N`.
Mainly concerned with the case `D > 0, D` is not a perfect square,
which is the same as the generalized Pell equation. The LMM
algorithm [1]_ is used to solve this equation.
Returns one solution tuple, (`x, y)` for each class of the solutions.
Other solutions of the class can be constructed according to the
values of ``D`` and ``N``.
Usage
=====
``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and
``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_DN
>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]
The output can be interpreted as follows: There are three fundamental
solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109)
and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means
that `x = 3` and `y = 1`.
>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]
See Also
========
find_DN(), diop_bf_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Pages 16 - 17. [online], Available:
http://www.jpr2718.org/pell.pdf
"""
if D < 0:
if N == 0:
return [(0, 0)]
elif N < 0:
return []
elif N > 0:
sol = []
for d in divisors(square_factor(N)):
sols = cornacchia(1, -D, N // d**2)
if sols:
for x, y in sols:
sol.append((d*x, d*y))
if D == -1:
sol.append((d*y, d*x))
return sol
elif D == 0:
if N < 0:
return []
if N == 0:
return [(0, t)]
sN, _exact = integer_nthroot(N, 2)
if _exact:
return [(sN, t)]
else:
return []
else: # D > 0
sD, _exact = integer_nthroot(D, 2)
if _exact:
if N == 0:
return [(sD*t, t)]
else:
sol = []
for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1):
try:
sq, _exact = integer_nthroot(D*y**2 + N, 2)
except ValueError:
_exact = False
if _exact:
sol.append((sq, y))
return sol
elif 1 < N**2 < D:
# It is much faster to call `_special_diop_DN`.
return _special_diop_DN(D, N)
else:
if N == 0:
return [(0, 0)]
elif abs(N) == 1:
pqa = PQa(0, 1, D)
j = 0
G = []
B = []
for i in pqa:
a = i[2]
G.append(i[5])
B.append(i[4])
if j != 0 and a == 2*sD:
break
j = j + 1
if _odd(j):
if N == -1:
x = G[j - 1]
y = B[j - 1]
else:
count = j
while count < 2*j - 1:
i = next(pqa)
G.append(i[5])
B.append(i[4])
count += 1
x = G[count]
y = B[count]
else:
if N == 1:
x = G[j - 1]
y = B[j - 1]
else:
return []
return [(x, y)]
else:
fs = []
sol = []
div = divisors(N)
for d in div:
if divisible(N, d**2):
fs.append(d)
for f in fs:
m = N // f**2
zs = sqrt_mod(D, abs(m), all_roots=True)
zs = [i for i in zs if i <= abs(m) // 2 ]
if abs(m) != 2:
zs = zs + [-i for i in zs if i] # omit dupl 0
for z in zs:
pqa = PQa(z, abs(m), D)
j = 0
G = []
B = []
for i in pqa:
G.append(i[5])
B.append(i[4])
if j != 0 and abs(i[1]) == 1:
r = G[j-1]
s = B[j-1]
if r**2 - D*s**2 == m:
sol.append((f*r, f*s))
elif diop_DN(D, -1) != []:
a = diop_DN(D, -1)
sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0])))
break
j = j + 1
if j == length(z, abs(m), D):
break
return sol
def _special_diop_DN(D, N):
"""
Solves the equation `x^2 - Dy^2 = N` for the special case where
`1 < N**2 < D` and `D` is not a perfect square.
It is better to call `diop_DN` rather than this function, as
the former checks the condition `1 < N**2 < D`, and calls the latter only
if appropriate.
Usage
=====
WARNING: Internal method. Do not call directly!
``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import _special_diop_DN
>>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3
[(7, 2), (137, 38)]
The output can be interpreted as follows: There are two fundamental
solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and
(137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means
that `x = 7` and `y = 2`.
>>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20
[(445, 9), (17625560, 356454), (698095554475, 14118073569)]
See Also
========
diop_DN()
References
==========
.. [1] Section 4.4.4 of the following book:
Quadratic Diophantine Equations, T. Andreescu and D. Andrica,
Springer, 2015.
"""
# The following assertion was removed for efficiency, with the understanding
# that this method is not called directly. The parent method, `diop_DN`
# is responsible for performing the appropriate checks.
#
# assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1])
sqrt_D = sqrt(D)
F = [(N, 1)]
f = 2
while True:
f2 = f**2
if f2 > abs(N):
break
n, r = divmod(N, f2)
if r == 0:
F.append((n, f))
f += 1
P = 0
Q = 1
G0, G1 = 0, 1
B0, B1 = 1, 0
solutions = []
i = 0
while True:
a = floor((P + sqrt_D) / Q)
P = a*Q - P
Q = (D - P**2) // Q
G2 = a*G1 + G0
B2 = a*B1 + B0
for n, f in F:
if G2**2 - D*B2**2 == n:
solutions.append((f*G2, f*B2))
i += 1
if Q == 1 and i % 2 == 0:
break
G0, G1 = G1, G2
B0, B1 = B1, B2
return solutions
def cornacchia(a, b, m):
r"""
Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`.
Uses the algorithm due to Cornacchia. The method only finds primitive
solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to
find the solutions of `x^2 + y^2 = 20` since the only solution to former is
`(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the
solutions with `x \leq y` are found. For more details, see the References.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import cornacchia
>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
{(2, 3), (4, 1)}
>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
{(4, 3)}
References
===========
.. [1] A. Nitaj, "L'algorithme de Cornacchia"
.. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's
method, [online], Available:
http://www.numbertheory.org/php/cornacchia.html
See Also
========
sympy.utilities.iterables.signed_permutations
"""
sols = set()
a1 = igcdex(a, m)[0]
v = sqrt_mod(-b*a1, m, all_roots=True)
if not v:
return None
for t in v:
if t < m // 2:
continue
u, r = t, m
while True:
u, r = r, u % r
if a*r**2 < m:
break
m1 = m - a*r**2
if m1 % b == 0:
m1 = m1 // b
s, _exact = integer_nthroot(m1, 2)
if _exact:
if a == b and r < s:
r, s = s, r
sols.add((int(r), int(s)))
return sols
def PQa(P_0, Q_0, D):
r"""
Returns useful information needed to solve the Pell equation.
There are six sequences of integers defined related to the continued
fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`},
{`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns
these values as a 6-tuple in the same order as mentioned above. Refer [1]_
for more detailed information.
Usage
=====
``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding
to `P_{0}`, `Q_{0}` and `D` in the continued fraction
`\\frac{P_{0} + \sqrt{D}}{Q_{0}}`.
Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import PQa
>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)
References
==========
.. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P.
Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf
"""
A_i_2 = B_i_1 = 0
A_i_1 = B_i_2 = 1
G_i_2 = -P_0
G_i_1 = Q_0
P_i = P_0
Q_i = Q_0
while True:
a_i = floor((P_i + sqrt(D))/Q_i)
A_i = a_i*A_i_1 + A_i_2
B_i = a_i*B_i_1 + B_i_2
G_i = a_i*G_i_1 + G_i_2
yield P_i, Q_i, a_i, A_i, B_i, G_i
A_i_1, A_i_2 = A_i, A_i_1
B_i_1, B_i_2 = B_i, B_i_1
G_i_1, G_i_2 = G_i, G_i_1
P_i = a_i*Q_i - P_i
Q_i = (D - P_i**2)/Q_i
def diop_bf_DN(D, N, t=symbols("t", integer=True)):
r"""
Uses brute force to solve the equation, `x^2 - Dy^2 = N`.
Mainly concerned with the generalized Pell equation which is the case when
`D > 0, D` is not a perfect square. For more information on the case refer
[1]_. Let `(t, u)` be the minimal positive solution of the equation
`x^2 - Dy^2 = 1`. Then this method requires
`\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small.
Usage
=====
``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in
`x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
>>> diop_bf_DN(13, -4)
[(3, 1), (-3, 1), (36, 10)]
>>> diop_bf_DN(986, 1)
[(49299, 1570)]
See Also
========
diop_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf
"""
D = as_int(D)
N = as_int(N)
sol = []
a = diop_DN(D, 1)
u = a[0][0]
if abs(N) == 1:
return diop_DN(D, N)
elif N > 1:
L1 = 0
L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1
elif N < -1:
L1, _exact = integer_nthroot(-int(N/D), 2)
if not _exact:
L1 += 1
L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1
else: # N = 0
if D < 0:
return [(0, 0)]
elif D == 0:
return [(0, t)]
else:
sD, _exact = integer_nthroot(D, 2)
if _exact:
return [(sD*t, t), (-sD*t, t)]
else:
return [(0, 0)]
for y in range(L1, L2):
try:
x, _exact = integer_nthroot(N + D*y**2, 2)
except ValueError:
_exact = False
if _exact:
sol.append((x, y))
if not equivalent(x, y, -x, y, D, N):
sol.append((-x, y))
return sol
def equivalent(u, v, r, s, D, N):
"""
Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N`
belongs to the same equivalence class and False otherwise.
Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same
equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by
`N`. See reference [1]_. No test is performed to test whether `(u, v)` and
`(r, s)` are actually solutions to the equation. User should take care of
this.
Usage
=====
``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions
of the equation `x^2 - Dy^2 = N` and all parameters involved are integers.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import equivalent
>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf
"""
return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N)
def length(P, Q, D):
r"""
Returns the (length of aperiodic part + length of periodic part) of
continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`.
It is important to remember that this does NOT return the length of the
periodic part but the sum of the lengths of the two parts as mentioned
above.
Usage
=====
``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to
the continued fraction `\\frac{P + \sqrt{D}}{Q}`.
Details
=======
``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction,
`\\frac{P + \sqrt{D}}{Q}`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import length
>>> length(-2 , 4, 5) # (-2 + sqrt(5))/4
3
>>> length(-5, 4, 17) # (-5 + sqrt(17))/4
4
See Also
========
sympy.ntheory.continued_fraction.continued_fraction_periodic
"""
from sympy.ntheory.continued_fraction import continued_fraction_periodic
v = continued_fraction_periodic(P, Q, D)
if type(v[-1]) is list:
rpt = len(v[-1])
nonrpt = len(v) - 1
else:
rpt = 0
nonrpt = len(v)
return rpt + nonrpt
def transformation_to_DN(eq):
"""
This function transforms general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`
to more easy to deal with `X^2 - DY^2 = N` form.
This is used to solve the general quadratic equation by transforming it to
the latter form. Refer [1]_ for more detailed information on the
transformation. This function returns a tuple (A, B) where A is a 2 X 2
matrix and B is a 2 X 1 matrix such that,
Transpose([x y]) = A * Transpose([X Y]) + B
Usage
=====
``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be
transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
>>> from sympy.solvers.diophantine import classify_diop
>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>>> A
Matrix([
[1/26, 3/26],
[ 0, 1/13]])
>>> B
Matrix([
[-6/13],
[-4/13]])
A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B.
Substituting these values for `x` and `y` and a bit of simplifying work
will give an equation of the form `x^2 - Dy^2 = N`.
>>> from sympy.abc import X, Y
>>> from sympy import Matrix, simplify
>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
>>> v
Y/13 - 4/13
Next we will substitute these formulas for `x` and `y` and do
``simplify()``.
>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
>>> eq
X**2/676 - Y**2/52 + 17/13
By multiplying the denominator appropriately, we can get a Pell equation
in the standard form.
>>> eq * 676
X**2 - 13*Y**2 + 884
If only the final equation is needed, ``find_DN()`` can be used.
See Also
========
find_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "binary_quadratic":
return _transformation_to_DN(var, coeff)
def _transformation_to_DN(var, coeff):
x, y = var
a = coeff[x**2]
b = coeff[x*y]
c = coeff[y**2]
d = coeff[x]
e = coeff[y]
f = coeff[1]
a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)]
X, Y = symbols("X, Y", integer=True)
if b:
B, C = _rational_pq(2*a, b)
A, T = _rational_pq(a, B**2)
# eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B
coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0
else:
if d:
B, C = _rational_pq(2*a, d)
A, T = _rational_pq(a, B**2)
# eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2
coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0])
else:
if e:
B, C = _rational_pq(2*c, e)
A, T = _rational_pq(c, B**2)
# eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2
coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B])
else:
# TODO: pre-simplification: Not necessary but may simplify
# the equation.
return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0])
def find_DN(eq):
"""
This function returns a tuple, `(D, N)` of the simplified form,
`x^2 - Dy^2 = N`, corresponding to the general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`.
Solving the general quadratic is then equivalent to solving the equation
`X^2 - DY^2 = N` and transforming the solutions by using the transformation
matrices returned by ``transformation_to_DN()``.
Usage
=====
``find_DN(eq)``: where ``eq`` is the quadratic to be transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import find_DN
>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -884)
Interpretation of the output is that we get `X^2 -13Y^2 = -884` after
transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned
by ``transformation_to_DN()``.
See Also
========
transformation_to_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "binary_quadratic":
return _find_DN(var, coeff)
def _find_DN(var, coeff):
x, y = var
X, Y = symbols("X, Y", integer=True)
A, B = _transformation_to_DN(var, coeff)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1]
simplified = _mexpand(eq.subs(zip((x, y), (u, v))))
coeff = simplified.as_coefficients_dict()
return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2]
def check_param(x, y, a, t):
"""
If there is a number modulo ``a`` such that ``x`` and ``y`` are both
integers, then return a parametric representation for ``x`` and ``y``
else return (None, None).
Here ``x`` and ``y`` are functions of ``t``.
"""
from sympy.simplify.simplify import clear_coefficients
if x.is_number and not x.is_Integer:
return (None, None)
if y.is_number and not y.is_Integer:
return (None, None)
m, n = symbols("m, n", integer=True)
c, p = (m*x + n*y).as_content_primitive()
if a % c.q:
return (None, None)
# clear_coefficients(mx + b, R)[1] -> (R - b)/m
eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1]
junk, eq = eq.as_content_primitive()
return diop_solve(eq, t)
def diop_ternary_quadratic(eq):
"""
Solves the general quadratic ternary form,
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Returns a tuple `(x, y, z)` which is a base solution for the above
equation. If there are no solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution
to ``eq``.
Details
=======
``eq`` should be an homogeneous expression of degree two in three variables
and it is assumed to be zero.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45, 105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
(9, 1, 5)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
return _diop_ternary_quadratic(var, coeff)
def _diop_ternary_quadratic(_var, coeff):
x, y, z = _var
var = [x, y, z]
# Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the
# coefficients A, B, C are non-zero.
# There are infinitely many solutions for the equation.
# Ex: (0, 0, t), (0, t, 0), (t, 0, 0)
# Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather
# unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by
# using methods for binary quadratic diophantine equations. Let's select the
# solution which minimizes |x| + |z|
if not any(coeff[i**2] for i in var):
if coeff[x*z]:
sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z)
s = sols.pop()
min_sum = abs(s[0]) + abs(s[1])
for r in sols:
m = abs(r[0]) + abs(r[1])
if m < min_sum:
s = r
min_sum = m
x_0, y_0, z_0 = _remove_gcd(s[0], -coeff[x*z], s[1])
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff)
return x_0, y_0, z_0
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff)
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff)
else:
if coeff[x*y] or coeff[x*z]:
# Apply the transformation x --> X - (B*y + C*z)/(2*A)
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = dict()
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
x_0, y_0, z_0 = _diop_ternary_quadratic(var, _coeff)
if x_0 is None:
return (None, None, None)
p, q = _rational_pq(B*y_0 + C*z_0, 2*A)
x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q
elif coeff[z*y] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
A = coeff[x**2]
E = coeff[y*z]
b, a = _rational_pq(-E, A)
x_0, y_0, z_0 = b, a, b
else:
# Ax**2 + E*y*z + F*z**2 = 0
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff)
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff)
else:
# Ax**2 + D*y**2 + F*z**2 = 0, C may be zero
x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff)
return _remove_gcd(x_0, y_0, z_0)
def transformation_to_normal(eq):
"""
Returns the transformation Matrix that converts a general ternary
quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`)
to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is
not used in solving ternary quadratics; it is only implemented for
the sake of completeness.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
return _transformation_to_normal(var, coeff)
def _transformation_to_normal(var, coeff):
_var = list(var) # copy
x, y, z = var
if not any(coeff[i**2] for i in var):
# https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065
a = coeff[x*y]
b = coeff[y*z]
c = coeff[x*z]
swap = False
if not a: # b can't be 0 or else there aren't 3 vars
swap = True
a, b = b, a
T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1)))
if swap:
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
# Apply the transformation x --> X - (B*Y + C*Z)/(2*A)
if coeff[x*y] != 0 or coeff[x*z] != 0:
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = dict()
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
T_0 = _transformation_to_normal(_var, _coeff)
return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0
elif coeff[y*z] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
# Apply transformation y -> Y + Z ans z -> Y - Z
return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1])
else:
# Ax**2 + E*y*z + F*z**2 = 0
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
else:
return Matrix.eye(3)
def parametrize_ternary_quadratic(eq):
"""
Returns the parametrized general solution for the ternary quadratic
equation ``eq`` which has the form
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Examples
========
>>> from sympy import Tuple, ordered
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic
The parametrized solution may be returned with three parameters:
>>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2)
(p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)
There might also be only two parameters:
>>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
(2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)
Notes
=====
Consider ``p`` and ``q`` in the previous 2-parameter
solution and observe that more than one solution can be represented
by a given pair of parameters. If `p` and ``q`` are not coprime, this is
trivially true since the common factor will also be a common factor of the
solution values. But it may also be true even when ``p`` and
``q`` are coprime:
>>> sol = Tuple(*_)
>>> p, q = ordered(sol.free_symbols)
>>> sol.subs([(p, 3), (q, 2)])
(6, 12, 12)
>>> sol.subs([(q, 1), (p, 1)])
(-1, 2, 2)
>>> sol.subs([(q, 0), (p, 1)])
(2, -4, 4)
>>> sol.subs([(q, 1), (p, 0)])
(-3, -6, 6)
Except for sign and a common factor, these are equivalent to
the solution of (1, 2, 2).
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff)
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
def _parametrize_ternary_quadratic(solution, _var, coeff):
# called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0
assert 1 not in coeff
x_0, y_0, z_0 = solution
v = list(_var) # copy
if x_0 is None:
return (None, None, None)
if solution.count(0) >= 2:
# if there are 2 zeros the equation reduces
# to k*X**2 == 0 where X is x, y, or z so X must
# be zero, too. So there is only the trivial
# solution.
return (None, None, None)
if x_0 == 0:
v[0], v[1] = v[1], v[0]
y_p, x_p, z_p = _parametrize_ternary_quadratic(
(y_0, x_0, z_0), v, coeff)
return x_p, y_p, z_p
x, y, z = v
r, p, q = symbols("r, p, q", integer=True)
eq = sum(k*v for k, v in coeff.items())
eq_1 = _mexpand(eq.subs(zip(
(x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q))))
A, B = eq_1.as_independent(r, as_Add=True)
x = A*x_0
y = (A*y_0 - _mexpand(B/r*p))
z = (A*z_0 - _mexpand(B/r*q))
return _remove_gcd(x, y, z)
def diop_ternary_quadratic_normal(eq):
"""
Solves the quadratic ternary diophantine equation,
`ax^2 + by^2 + cz^2 = 0`.
Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the
equation will be a quadratic binary or univariate equation. If solvable,
returns a tuple `(x, y, z)` that satisfies the given equation. If the
equation does not have integer solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form
`ax^2 + by^2 + cz^2 = 0`.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal
>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "homogeneous_ternary_quadratic_normal":
return _diop_ternary_quadratic_normal(var, coeff)
def _diop_ternary_quadratic_normal(var, coeff):
x, y, z = var
a = coeff[x**2]
b = coeff[y**2]
c = coeff[z**2]
try:
assert len([k for k in coeff if coeff[k]]) == 3
assert all(coeff[i**2] for i in var)
except AssertionError:
raise ValueError(filldedent('''
coeff dict is not consistent with assumption of this routine:
coefficients should be those of an expression in the form
a*x**2 + b*y**2 + c*z**2 where a*b*c != 0.'''))
(sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \
sqf_normal(a, b, c, steps=True)
A = -a_2*c_2
B = -b_2*c_2
# If following two conditions are satisfied then there are no solutions
if A < 0 and B < 0:
return (None, None, None)
if (
sqrt_mod(-b_2*c_2, a_2) is None or
sqrt_mod(-c_2*a_2, b_2) is None or
sqrt_mod(-a_2*b_2, c_2) is None):
return (None, None, None)
z_0, x_0, y_0 = descent(A, B)
z_0, q = _rational_pq(z_0, abs(c_2))
x_0 *= q
y_0 *= q
x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0)
# Holzer reduction
if sign(a) == sign(b):
x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2))
elif sign(a) == sign(c):
x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2))
else:
y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2))
x_0 = reconstruct(b_1, c_1, x_0)
y_0 = reconstruct(a_1, c_1, y_0)
z_0 = reconstruct(a_1, b_1, z_0)
sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c)
x_0 = abs(x_0*sq_lcm//sqf_of_a)
y_0 = abs(y_0*sq_lcm//sqf_of_b)
z_0 = abs(z_0*sq_lcm//sqf_of_c)
return _remove_gcd(x_0, y_0, z_0)
def sqf_normal(a, b, c, steps=False):
"""
Return `a', b', c'`, the coefficients of the square-free normal
form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise
prime. If `steps` is True then also return three tuples:
`sq`, `sqf`, and `(a', b', c')` where `sq` contains the square
factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`;
`sqf` contains the values of `a`, `b` and `c` after removing
both the `gcd(a, b, c)` and the square factors.
The solutions for `ax^2 + by^2 + cz^2 = 0` can be
recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sqf_normal
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, 7), (5, 55, 11), (11, 1, 5))
References
==========
.. [1] Legendre's Theorem, Legrange's Descent,
http://public.csusm.edu/aitken_html/notes/legendre.pdf
See Also
========
reconstruct()
"""
ABC = _remove_gcd(a, b, c)
sq = tuple(square_factor(i) for i in ABC)
sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)])
pc = igcd(A, B)
A /= pc
B /= pc
pa = igcd(B, C)
B /= pa
C /= pa
pb = igcd(A, C)
A /= pb
B /= pb
A *= pa
B *= pb
C *= pc
if steps:
return (sq, sqf, (A, B, C))
else:
return A, B, C
def square_factor(a):
r"""
Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square
free. `a` can be given as an integer or a dictionary of factors.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import square_factor
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1}) # -18
3
See Also
========
sympy.ntheory.factor_.core
"""
f = a if isinstance(a, dict) else factorint(a)
return Mul(*[p**(e//2) for p, e in f.items()])
def reconstruct(A, B, z):
"""
Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2`
from the `z` value of a solution of the square-free normal form of the
equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square
free and `gcd(a', b', c') == 1`.
"""
f = factorint(igcd(A, B))
for p, e in f.items():
if e != 1:
raise ValueError('a and b should be square-free')
z *= p
return z
def ldescent(A, B):
"""
Return a non-trivial solution to `w^2 = Ax^2 + By^2` using
Lagrange's method; return None if there is no such solution.
.
Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a
tuple `(w_0, x_0, y_0)` which is a solution to the above equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import ldescent
>>> ldescent(1, 1) # w^2 = x^2 + y^2
(1, 1, 0)
>>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2
(2, -1, 0)
This means that `x = -1, y = 0` and `w = 2` is a solution to the equation
`w^2 = 4x^2 - 7y^2`
>>> ldescent(5, -1) # w^2 = 5x^2 - y^2
(2, 1, -1)
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
[online], Available:
http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf
"""
if abs(A) > abs(B):
w, y, x = ldescent(B, A)
return w, x, y
if A == 1:
return (1, 1, 0)
if B == 1:
return (1, 0, 1)
if B == -1: # and A == -1
return
r = sqrt_mod(A, B)
Q = (r**2 - A) // B
if Q == 0:
B_0 = 1
d = 0
else:
div = divisors(Q)
B_0 = None
for i in div:
sQ, _exact = integer_nthroot(abs(Q) // i, 2)
if _exact:
B_0, d = sign(Q)*i, sQ
break
if B_0 is not None:
W, X, Y = ldescent(A, B_0)
return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d))
def descent(A, B):
"""
Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2`
using Lagrange's descent method with lattice-reduction. `A` and `B`
are assumed to be valid for such a solution to exist.
This is faster than the normal Lagrange's descent algorithm because
the Gaussian reduction is used.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # x**2 = 3*y**2 + z**2
(1, 0, 1)
`(x, y, z) = (1, 0, 1)` is a solution to the above equation.
>>> descent(41, -113)
(-16, -3, 1)
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
if abs(A) > abs(B):
x, y, z = descent(B, A)
return x, z, y
if B == 1:
return (1, 0, 1)
if A == 1:
return (1, 1, 0)
if B == -A:
return (0, 1, 1)
if B == A:
x, z, y = descent(-1, A)
return (A*y, z, x)
w = sqrt_mod(A, B)
x_0, z_0 = gaussian_reduce(w, A, B)
t = (x_0**2 - A*z_0**2) // B
t_2 = square_factor(t)
t_1 = t // t_2**2
x_1, z_1, y_1 = descent(A, t_1)
return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1)
def gaussian_reduce(w, a, b):
r"""
Returns a reduced solution `(x, z)` to the congruence
`X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal.
Details
=======
Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)`
References
==========
.. [1] Gaussian lattice Reduction [online]. Available:
http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
u = (0, 1)
v = (1, 0)
if dot(u, v, w, a, b) < 0:
v = (-v[0], -v[1])
if norm(u, w, a, b) < norm(v, w, a, b):
u, v = v, u
while norm(u, w, a, b) > norm(v, w, a, b):
k = dot(u, v, w, a, b) // dot(v, v, w, a, b)
u, v = v, (u[0]- k*v[0], u[1]- k*v[1])
u, v = v, u
if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b):
c = v
else:
c = (u[0] - v[0], u[1] - v[1])
return c[0]*w + b*c[1], c[0]
def dot(u, v, w, a, b):
r"""
Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and
`v = (v_{1}, v_{2})` which is defined in order to reduce solution of
the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`.
"""
u_1, u_2 = u
v_1, v_2 = v
return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1
def norm(u, w, a, b):
r"""
Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product
defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}`
where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`.
"""
u_1, u_2 = u
return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b))
def holzer(x, y, z, a, b, c):
r"""
Simplify the solution `(x, y, z)` of the equation
`ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to
a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`.
The algorithm is an interpretation of Mordell's reduction as described
on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in
reference [2]_.
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
.. [2] Diophantine Equations, L. J. Mordell, page 48.
"""
if _odd(c):
k = 2*c
else:
k = c//2
small = a*b*c
step = 0
while True:
t1, t2, t3 = a*x**2, b*y**2, c*z**2
# check that it's a solution
if t1 + t2 != t3:
if step == 0:
raise ValueError('bad starting solution')
break
x_0, y_0, z_0 = x, y, z
if max(t1, t2, t3) <= small:
# Holzer condition
break
uv = u, v = base_solution_linear(k, y_0, -x_0)
if None in uv:
break
p, q = -(a*u*x_0 + b*v*y_0), c*z_0
r = Rational(p, q)
if _even(c):
w = _nint_or_floor(p, q)
assert abs(w - r) <= S.Half
else:
w = p//q # floor
if _odd(a*u + b*v + c*w):
w += 1
assert abs(w - r) <= S.One
A = (a*u**2 + b*v**2 + c*w**2)
B = (a*u*x_0 + b*v*y_0 + c*w*z_0)
x = Rational(x_0*A - 2*u*B, k)
y = Rational(y_0*A - 2*v*B, k)
z = Rational(z_0*A - 2*w*B, k)
assert all(i.is_Integer for i in (x, y, z))
step += 1
return tuple([int(i) for i in (x_0, y_0, z_0)])
def diop_general_pythagorean(eq, param=symbols("m", integer=True)):
"""
Solves the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Returns a tuple which contains a parametrized solution to the equation,
sorted in the same order as the input variables.
Usage
=====
``diop_general_pythagorean(eq, param)``: where ``eq`` is a general
pythagorean equation which is assumed to be zero and ``param`` is the base
parameter used to construct other parameters by subscripting.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "general_pythagorean":
return _diop_general_pythagorean(var, coeff, param)
def _diop_general_pythagorean(var, coeff, t):
if sign(coeff[var[0]**2]) + sign(coeff[var[1]**2]) + sign(coeff[var[2]**2]) < 0:
for key in coeff.keys():
coeff[key] = -coeff[key]
n = len(var)
index = 0
for i, v in enumerate(var):
if sign(coeff[v**2]) == -1:
index = i
m = symbols('%s1:%i' % (t, n), integer=True)
ith = sum(m_i**2 for m_i in m)
L = [ith - 2*m[n - 2]**2]
L.extend([2*m[i]*m[n-2] for i in range(n - 2)])
sol = L[:index] + [ith] + L[index:]
lcm = 1
for i, v in enumerate(var):
if i == index or (index > 0 and i == 0) or (index == 0 and i == 1):
lcm = ilcm(lcm, sqrt(abs(coeff[v**2])))
else:
s = sqrt(coeff[v**2])
lcm = ilcm(lcm, s if _odd(s) else s//2)
for i, v in enumerate(var):
sol[i] = (lcm*sol[i]) / sqrt(abs(coeff[v**2]))
return tuple(sol)
def diop_general_sum_of_squares(eq, limit=1):
r"""
Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> from sympy.abc import a, b, c, d, e, f
>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}
Reference
=========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "general_sum_of_squares":
return _diop_general_sum_of_squares(var, -coeff[1], limit)
def _diop_general_sum_of_squares(var, k, limit=1):
# solves Eq(sum(i**2 for i in var), k)
n = len(var)
if n < 3:
raise ValueError('n must be greater than 2')
s = set()
if k < 0 or limit < 1:
return s
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in sum_of_squares(k, n, zeros=True):
if negs:
s.add(tuple([sign[i]*j for i, j in enumerate(t)]))
else:
s.add(t)
took += 1
if took == limit:
break
return s
def diop_general_sum_of_even_powers(eq, limit=1):
"""
Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
>>> from sympy.abc import a, b
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
{(2, 3)}
See Also
========
power_representation
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == "general_sum_of_even_powers":
for k in coeff.keys():
if k.is_Pow and coeff[k]:
p = k.exp
return _diop_general_sum_of_even_powers(var, p, -coeff[1], limit)
def _diop_general_sum_of_even_powers(var, p, n, limit=1):
# solves Eq(sum(i**2 for i in var), n)
k = len(var)
s = set()
if n < 0 or limit < 1:
return s
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in power_representation(n, p, k):
if negs:
s.add(tuple([sign[i]*j for i, j in enumerate(t)]))
else:
s.add(t)
took += 1
if took == limit:
break
return s
## Functions below this comment can be more suitably grouped under
## an Additive number theory module rather than the Diophantine
## equation module.
def partition(n, k=None, zeros=False):
"""
Returns a generator that can be used to generate partitions of an integer
`n`.
A partition of `n` is a set of positive integers which add up to `n`. For
example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned
as a tuple. If ``k`` equals None, then all possible partitions are returned
irrespective of their size, otherwise only the partitions of size ``k`` are
returned. If the ``zero`` parameter is set to True then a suitable
number of zeros are added at the end of every partition of size less than
``k``.
``zero`` parameter is considered only if ``k`` is not None. When the
partitions are over, the last `next()` call throws the ``StopIteration``
exception, so this function should always be used inside a try - except
block.
Details
=======
``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size
of the partition which is also positive integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import partition
>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)
"""
from sympy.utilities.iterables import ordered_partitions
if not zeros or k is None:
for i in ordered_partitions(n, k):
yield tuple(i)
else:
for m in range(1, k + 1):
for i in ordered_partitions(n, m):
i = tuple(i)
yield (0,)*(k - len(i)) + i
def prime_as_sum_of_two_squares(p):
"""
Represent a prime `p` as a unique sum of two squares; this can
only be done if the prime is congruent to 1 mod 4.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
>>> prime_as_sum_of_two_squares(7) # can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)
Reference
=========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if not p % 4 == 1:
return
if p % 8 == 5:
b = 2
else:
b = 3
while pow(b, (p - 1) // 2, p) == 1:
b = nextprime(b)
b = pow(b, (p - 1) // 4, p)
a = p
while b**2 > p:
a, b = b, a % b
return (int(a % b), int(b)) # convert from long
def sum_of_three_squares(n):
r"""
Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and
`a, b, c \geq 0`.
Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See
[1]_ for more details.
Usage
=====
``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
>>> sum_of_three_squares(44542)
(18, 37, 207)
References
==========
.. [1] Representing a number as a sum of three squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0),
85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15),
526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36),
2986: (21, 32, 39), 9634: (56, 57, 57)}
v = 0
if n == 0:
return (0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
return
if n in special.keys():
x, y, z = special[n]
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
s, _exact = integer_nthroot(n, 2)
if _exact:
return (2**v*s, 0, 0)
x = None
if n % 8 == 3:
s = s if _odd(s) else s - 1
for x in range(s, -1, -2):
N = (n - x**2) // 2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z))
return
if n % 8 == 2 or n % 8 == 6:
s = s if _odd(s) else s - 1
else:
s = s - 1 if _odd(s) else s
for x in range(s, -1, -2):
N = n - x**2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
def sum_of_four_squares(n):
r"""
Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`.
Here `a, b, c, d \geq 0`.
Usage
=====
``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)
References
==========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if n == 0:
return (0, 0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
d = 2
n = n - 4
elif n % 8 == 6 or n % 8 == 2:
d = 1
n = n - 1
else:
d = 0
x, y, z = sum_of_three_squares(n)
return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z)
def power_representation(n, p, k, zeros=False):
r"""
Returns a generator for finding k-tuples of integers,
`(n_{1}, n_{2}, . . . n_{k})`, such that
`n = n_{1}^p + n_{2}^p + . . . n_{k}^p`.
Usage
=====
``power_representation(n, p, k, zeros)``: Represent non-negative number
``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the
solutions is allowed to contain zeros.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import power_representation
Represent 1729 as a sum of two cubes:
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
If the flag `zeros` is True, the solution may contain tuples with
zeros; any such solutions will be generated after the solutions
without zeros:
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
For even `p` the `permute_sign` function can be used to get all
signed values:
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
All possible signed permutations can also be obtained:
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
"""
n, p, k = [as_int(i) for i in (n, p, k)]
if n < 0:
if p % 2:
for t in power_representation(-n, p, k, zeros):
yield tuple(-i for i in t)
return
if p < 1 or k < 1:
raise ValueError(filldedent('''
Expecting positive integers for `(p, k)`, but got `(%s, %s)`'''
% (p, k)))
if n == 0:
if zeros:
yield (0,)*k
return
if k == 1:
if p == 1:
yield (n,)
else:
be = perfect_power(n)
if be:
b, e = be
d, r = divmod(e, p)
if not r:
yield (b**d,)
return
if p == 1:
for t in partition(n, k, zeros=zeros):
yield t
return
if p == 2:
feasible = _can_do_sum_of_squares(n, k)
if not feasible:
return
if not zeros and n > 33 and k >= 5 and k <= n and n - k in (
13, 10, 7, 5, 4, 2, 1):
'''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online].
Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf'''
return
if feasible is not True: # it's prime and k == 2
yield prime_as_sum_of_two_squares(n)
return
if k == 2 and p > 2:
be = perfect_power(n)
if be and be[1] % p == 0:
return # Fermat: a**n + b**n = c**n has no solution for n > 2
if n >= k:
a = integer_nthroot(n - (k - 1), p)[0]
for t in pow_rep_recursive(a, k, n, [], p):
yield tuple(reversed(t))
if zeros:
a = integer_nthroot(n, p)[0]
for i in range(1, k):
for t in pow_rep_recursive(a, i, n, [], p):
yield tuple(reversed(t + (0,) * (k - i)))
sum_of_powers = power_representation
def pow_rep_recursive(n_i, k, n_remaining, terms, p):
if k == 0 and n_remaining == 0:
yield tuple(terms)
else:
if n_i >= 1 and k > 0:
for t in pow_rep_recursive(n_i - 1, k, n_remaining, terms, p):
yield t
residual = n_remaining - pow(n_i, p)
if residual >= 0:
for t in pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p):
yield t
def sum_of_squares(n, k, zeros=False):
"""Return a generator that yields the k-tuples of nonnegative
values, the squares of which sum to n. If zeros is False (default)
then the solution will not contain zeros. The nonnegative
elements of a tuple are sorted.
* If k == 1 and n is square, (n,) is returned.
* If k == 2 then n can only be written as a sum of squares if
every prime in the factorization of n that has the form
4*k + 3 has an even multiplicity. If n is prime then
it can only be written as a sum of two squares if it is
in the form 4*k + 1.
* if k == 3 then n can be written as a sum of squares if it does
not have the form 4**m*(8*k + 7).
* all integers can be written as the sum of 4 squares.
* if k > 4 then n can be partitioned and each partition can
be written as a sum of 4 squares; if n is not evenly divisible
by 4 then n can be written as a sum of squares only if the
an additional partition can be written as sum of squares.
For example, if k = 6 then n is partitioned into two parts,
the first being written as a sum of 4 squares and the second
being written as a sum of 2 squares -- which can only be
done if the condition above for k = 2 can be met, so this will
automatically reject certain partitions of n.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_squares
>>> list(sum_of_squares(25, 2))
[(3, 4)]
>>> list(sum_of_squares(25, 2, True))
[(3, 4), (0, 5)]
>>> list(sum_of_squares(25, 4))
[(1, 2, 2, 4)]
See Also
========
sympy.utilities.iterables.signed_permutations
"""
for t in power_representation(n, 2, k, zeros):
yield t
def _can_do_sum_of_squares(n, k):
"""Return True if n can be written as the sum of k squares,
False if it can't, or 1 if k == 2 and n is prime (in which
case it *can* be written as a sum of two squares). A False
is returned only if it can't be written as k-squares, even
if 0s are allowed.
"""
if k < 1:
return False
if n < 0:
return False
if n == 0:
return True
if k == 1:
return is_square(n)
if k == 2:
if n in (1, 2):
return True
if isprime(n):
if n % 4 == 1:
return 1 # signal that it was prime
return False
else:
f = factorint(n)
for p, m in f.items():
# we can proceed iff no prime factor in the form 4*k + 3
# has an odd multiplicity
if (p % 4 == 3) and m % 2:
return False
return True
if k == 3:
if (n//4**multiplicity(4, n)) % 8 == 7:
return False
# every number can be written as a sum of 4 squares; for k > 4 partitions
# can be 0
return True
|
8c090876a2eb58cc6eb545e12888b3837870aada36875565729196c1d62a7935 | r"""
This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper
functions that it uses.
:py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations.
See the docstring on the various functions for their uses. Note that partial
differential equations support is in ``pde.py``. Note that hint functions
have docstrings describing their various methods, but they are intended for
internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a
specific hint. See also the docstring on
:py:meth:`~sympy.solvers.ode.dsolve`.
**Functions in this module**
These are the user functions in this module:
- :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs.
- :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into
possible hints for :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the
solution to an ODE.
- :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the
homogeneous order of an expression.
- :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals
of the Lie group of point transformations of an ODE, such that it is
invariant.
- :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals
are the actual infinitesimals of a first order ODE.
These are the non-solver helper functions that are for internal use. The
user should use the various options to
:py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided
by these functions:
- :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE
simplification.
- :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for
comparing solutions by simplicity.
- :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated
Integrals.
See also the docstrings of these functions.
**Currently implemented solver methods**
The following methods are implemented for solving ordinary differential
equations. See the docstrings of the various hint functions for more
information on each (run ``help(ode)``):
- 1st order separable differential equations.
- 1st order differential equations whose coefficients or `dx` and `dy` are
functions homogeneous of the same order.
- 1st order exact differential equations.
- 1st order linear differential equations.
- 1st order Bernoulli differential equations.
- Power series solutions for first order differential equations.
- Lie Group method of solving first order differential equations.
- 2nd order Liouville differential equations.
- Power series solutions for second order differential equations
at ordinary and regular singular points.
- `n`\th order differential equation that can be solved with algebraic
rearrangement and integration.
- `n`\th order linear homogeneous differential equation with constant
coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of undetermined coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of variation of parameters.
**Philosophy behind this module**
This module is designed to make it easy to add new ODE solving methods without
having to mess with the solving code for other methods. The idea is that
there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in
an ODE and tells you what hints, if any, will solve the ODE. It does this
without attempting to solve the ODE, so it is fast. Each solving method is a
hint, and it has its own function, named ``ode_<hint>``. That function takes
in the ODE and any match expression gathered by
:py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If
this result has any integrals in it, the hint function will return an
unevaluated :py:class:`~sympy.integrals.integrals.Integral` class.
:py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function
around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on
the result, which, among other things, will attempt to solve the equation for
the dependent variable (the function we are solving for), simplify the
arbitrary constants in the expression, and evaluate any integrals, if the hint
allows it.
**How to add new solution methods**
If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be
able to solve, try to avoid adding special case code here. Instead, try
finding a general method that will solve your ODE, as well as others. This
way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and
unhindered by special case hacks. WolphramAlpha and Maple's
DETools[odeadvisor] function are two resources you can use to classify a
specific ODE. It is also better for a method to work with an `n`\th order ODE
instead of only with specific orders, if possible.
To add a new method, there are a few things that you need to do. First, you
need a hint name for your method. Try to name your hint so that it is
unambiguous with all other methods, including ones that may not be implemented
yet. If your method uses integrals, also include a ``hint_Integral`` hint.
If there is more than one way to solve ODEs with your method, include a hint
for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()``
function should choose the best using min with ``ode_sol_simplicity`` as the
key argument. See
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`, for example.
The function that uses your method will be called ``ode_<hint>()``, so the
hint must only use characters that are allowed in a Python function name
(alphanumeric characters and the underscore '``_``' character). Include a
function for every hint, except for ``_Integral`` hints
(:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically).
Hint names should be all lowercase, unless a word is commonly capitalized
(such as Integral or Bernoulli). If you have a hint that you do not want to
run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such
as a best hint that would defeat the purpose of ``all_Integral``), you will
need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
guidelines on writing a hint name.
Determine *in general* how the solutions returned by your method compare with
other methods that can potentially solve the same ODEs. Then, put your hints
in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they
should be called. The ordering of this tuple determines which hints are
default. Note that exceptions are ok, because it is easy for the user to
choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In
general, ``_Integral`` variants should go at the end of the list, and
``_best`` variants should go before the various hints they apply to. For
example, the ``undetermined_coefficients`` hint comes before the
``variation_of_parameters`` hint because, even though variation of parameters
is more general than undetermined coefficients, undetermined coefficients
generally returns cleaner results for the ODEs that it can solve than
variation of parameters does, and it does not require integration, so it is
much faster.
Next, you need to have a match expression or a function that matches the type
of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode`
(if the match function is more than just a few lines, like
:py:meth:`~sympy.solvers.ode.ode._undetermined_coefficients_match`, it should go
outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the
ODE without solving for it as much as possible, so that
:py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by
bugs in solving code. Be sure to consider corner cases. For example, if your
solution method involves dividing by something, make sure you exclude the case
where that division will be 0.
In most cases, the matching of the ODE will also give you the various parts
that you need to solve it. You should put that in a dictionary (``.match()``
will do this for you), and add that as ``matching_hints['hint'] = matchdict``
in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`.
:py:meth:`~sympy.solvers.ode.classify_ode` will then send this to
:py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as
the ``match`` argument. Your function should be named ``ode_<hint>(eq, func,
order, match)`. If you need to send more information, put it in the ``match``
dictionary. For example, if you had to substitute in a dummy variable in
:py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to
pass it to your function using the `match` dict to access it. You can access
the independent variable using ``func.args[0]``, and the dependent variable
(the function you are trying to solve for) as ``func.func``. If, while trying
to solve the ODE, you find that you cannot, raise ``NotImplementedError``.
:py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all``
meta-hint, rather than causing the whole routine to fail.
Add a docstring to your function that describes the method employed. Like
with anything else in SymPy, you will need to add a doctest to the docstring,
in addition to real tests in ``test_ode.py``. Try to maintain consistency
with the other hint functions' docstrings. Add your method to the list at the
top of this docstring. Also, add your method to ``ode.rst`` in the
``docs/src`` directory, so that the Sphinx docs will pull its docstring into
the main SymPy documentation. Be sure to make the Sphinx documentation by
running ``make html`` from within the doc directory to verify that the
docstring formats correctly.
If your solution method involves integrating, use :py:obj:`~.Integral` instead of
:py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass
hard/slow integration by using the ``_Integral`` variant of your hint. In
most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your
solution. If this is not the case, you will need to write special code in
:py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be
symbols named ``C1``, ``C2``, and so on. All solution methods should return
an equality instance. If you need an arbitrary number of arbitrary constants,
you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``.
If it is possible to solve for the dependent function in a general way, do so.
Otherwise, do as best as you can, but do not call solve in your
``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt
to solve the solution for you, so you do not need to do that. Lastly, if your
ODE has a common simplification that can be applied to your solutions, you can
add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For
example, solutions returned from the ``1st_homogeneous_coeff`` hints often
have many :obj:`~sympy.functions.elementary.exponential.log` terms, so
:py:meth:`~sympy.solvers.ode.ode.odesimp` calls
:py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write
the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also
consider common ways that you can rearrange your solution to have
:py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is
better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in
your method, because it can then be turned off with the simplify flag in
:py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous
simplification in your function, be sure to only run it using ``if
match.get('simplify', True):``, especially if it can be slow or if it can
reduce the domain of the solution.
Finally, as with every contribution to SymPy, your method will need to be
tested. Add a test for each method in ``test_ode.py``. Follow the
conventions there, i.e., test the solver using ``dsolve(eq, f(x),
hint=your_hint)``, and also test the solution using
:py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate
tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your
hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test
won't be broken simply by the introduction of another matching hint. If your
method works for higher order (>1) ODEs, you will need to run ``sol =
constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is
the order of the ODE. This is because ``constant_renumber`` renumbers the
arbitrary constants by printing order, which is platform dependent. Try to
test every corner case of your solver, including a range of orders if it is a
`n`\th order solver, but if your solver is slow, such as if it involves hard
integration, try to keep the test run time down.
Feel free to refactor existing hints to avoid duplicating code or creating
inconsistencies. If you can show that your method exactly duplicates an
existing method, including in the simplicity and speed of obtaining the
solutions, then you can remove the old, less general method. The existing
code is tested extensively in ``test_ode.py``, so if anything is broken, one
of those tests will surely fail.
"""
from __future__ import print_function, division
from typing import Dict, Type
from collections import defaultdict
from itertools import islice
from sympy.functions import hyper
from sympy.core import Add, S, Mul, Pow, oo, Rational
from sympy.core.compatibility import ordered, iterable
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.function import (Function, Derivative, AppliedUndef, diff,
expand, expand_mul, Subs, _mexpand)
from sympy.core.multidimensional import vectorize
from sympy.core.numbers import NaN, zoo, I, Number
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, Dummy, symbols
from sympy.core.sympify import sympify
from sympy.logic.boolalg import (BooleanAtom, And, Not, BooleanTrue,
BooleanFalse)
from sympy.functions import cos, cosh, exp, im, log, re, sin, sinh, tan, sqrt, \
atan2, conjugate, Piecewise, cbrt, besselj, bessely, airyai, airybi
from sympy.functions.combinatorial.factorials import factorial
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import wronskian, Matrix, eye, zeros
from sympy.polys import (Poly, RootOf, rootof, terms_gcd,
PolynomialError, lcm, roots, gcd)
from sympy.polys.polyroots import roots_quartic
from sympy.polys.polytools import cancel, degree, div
from sympy.series import Order
from sympy.series.series import series
from sympy.simplify import (collect, logcombine, powsimp, # type: ignore
separatevars, simplify, trigsimp, posify, cse)
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import collect_const, fraction
from sympy.solvers import checksol, solve
from sympy.solvers.pde import pdsolve
from sympy.utilities import numbered_symbols, default_sort_key, sift
from sympy.solvers.deutils import _preprocess, ode_order, _desolve
from .subscheck import sub_func_doit
#: This is a list of hints in the order that they should be preferred by
#: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the
#: list should produce simpler solutions than those later in the list (for
#: ODEs that fit both). For now, the order of this list is based on empirical
#: observations by the developers of SymPy.
#:
#: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE
#: can be overridden (see the docstring).
#:
#: In general, ``_Integral`` hints are grouped at the end of the list, unless
#: there is a method that returns an unevaluable integral most of the time
#: (which go near the end of the list anyway). ``default``, ``all``,
#: ``best``, and ``all_Integral`` meta-hints should not be included in this
#: list, but ``_best`` and ``_Integral`` hints should be included.
allhints = (
"factorable",
"nth_algebraic",
"separable",
"1st_exact",
"1st_linear",
"Bernoulli",
"Riccati_special_minus2",
"1st_homogeneous_coeff_best",
"1st_homogeneous_coeff_subs_indep_div_dep",
"1st_homogeneous_coeff_subs_dep_div_indep",
"almost_linear",
"linear_coefficients",
"separable_reduced",
"1st_power_series",
"lie_group",
"nth_linear_constant_coeff_homogeneous",
"nth_linear_euler_eq_homogeneous",
"nth_linear_constant_coeff_undetermined_coefficients",
"nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients",
"nth_linear_constant_coeff_variation_of_parameters",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters",
"Liouville",
"2nd_linear_airy",
"2nd_linear_bessel",
"2nd_hypergeometric",
"2nd_hypergeometric_Integral",
"nth_order_reducible",
"2nd_power_series_ordinary",
"2nd_power_series_regular",
"nth_algebraic_Integral",
"separable_Integral",
"1st_exact_Integral",
"1st_linear_Integral",
"Bernoulli_Integral",
"1st_homogeneous_coeff_subs_indep_div_dep_Integral",
"1st_homogeneous_coeff_subs_dep_div_indep_Integral",
"almost_linear_Integral",
"linear_coefficients_Integral",
"separable_reduced_Integral",
"nth_linear_constant_coeff_variation_of_parameters_Integral",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral",
"Liouville_Integral",
)
lie_heuristics = (
"abaco1_simple",
"abaco1_product",
"abaco2_similar",
"abaco2_unique_unknown",
"abaco2_unique_general",
"linear",
"function_sum",
"bivariate",
"chi"
)
def get_numbered_constants(eq, num=1, start=1, prefix='C'):
"""
Returns a list of constants that do not occur
in eq already.
"""
ncs = iter_numbered_constants(eq, start, prefix)
Cs = [next(ncs) for i in range(num)]
return (Cs[0] if num == 1 else tuple(Cs))
def iter_numbered_constants(eq, start=1, prefix='C'):
"""
Returns an iterator of constants that do not occur
in eq already.
"""
if isinstance(eq, (Expr, Eq)):
eq = [eq]
elif not iterable(eq):
raise ValueError("Expected Expr or iterable but got %s" % eq)
atom_set = set().union(*[i.free_symbols for i in eq])
func_set = set().union(*[i.atoms(Function) for i in eq])
if func_set:
atom_set |= {Symbol(str(f.func)) for f in func_set}
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)
def dsolve(eq, func=None, hint="default", simplify=True,
ics= None, xi=None, eta=None, x0=0, n=6, **kwargs):
r"""
Solves any (supported) kind of ordinary differential equation and
system of ordinary differential equations.
For single ordinary differential equation
=========================================
It is classified under this when number of equation in ``eq`` is one.
**Usage**
``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation
``eq`` for function ``f(x)``, using method ``hint``.
**Details**
``eq`` can be any supported ordinary differential equation (see the
:py:mod:`~sympy.solvers.ode` docstring for supported methods).
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``f(x)`` is a function of one variable whose derivatives in that
variable make up the ordinary differential equation ``eq``. In
many cases it is not necessary to provide this; it will be
autodetected (and an error raised if it couldn't be detected).
``hint`` is the solving method that you want dsolve to use. Use
``classify_ode(eq, f(x))`` to get all of the possible hints for an
ODE. The default hint, ``default``, will use whatever hint is
returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See
Hints below for more options that you can use for hint.
``simplify`` enables simplification by
:py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more
information. Turn this off, for example, to disable solving of
solutions for ``func`` or simplification of arbitrary constants.
It will still integrate with this hint. Note that the solution may
contain more arbitrary constants than the order of the ODE with
this option enabled.
``xi`` and ``eta`` are the infinitesimal functions of an ordinary
differential equation. They are the infinitesimals of the Lie group
of point transformations for which the differential equation is
invariant. The user can specify values for the infinitesimals. If
nothing is specified, ``xi`` and ``eta`` are calculated using
:py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various
heuristics.
``ics`` is the set of initial/boundary conditions for the differential equation.
It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2):
x3}`` and so on. For power series solutions, if no initial
conditions are specified ``f(0)`` is assumed to be ``C0`` and the power
series solution is calculated about 0.
``x0`` is the point about which the power series solution of a differential
equation is to be evaluated.
``n`` gives the exponent of the dependent variable up to which the power series
solution of a differential equation is to be evaluated.
**Hints**
Aside from the various solving methods, there are also some meta-hints
that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`:
``default``:
This uses whatever hint is returned first by
:py:meth:`~sympy.solvers.ode.classify_ode`. This is the
default argument to :py:meth:`~sympy.solvers.ode.dsolve`.
``all``:
To make :py:meth:`~sympy.solvers.ode.dsolve` apply all
relevant classification hints, use ``dsolve(ODE, func,
hint="all")``. This will return a dictionary of
``hint:solution`` terms. If a hint causes dsolve to raise the
``NotImplementedError``, value of that hint's key will be the
exception object raised. The dictionary will also include
some special keys:
- ``order``: The order of the ODE. See also
:py:meth:`~sympy.solvers.deutils.ode_order` in
``deutils.py``.
- ``best``: The simplest hint; what would be returned by
``best`` below.
- ``best_hint``: The hint that would produce the solution
given by ``best``. If more than one hint produces the best
solution, the first one in the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode` is chosen.
- ``default``: The solution that would be returned by default.
This is the one produced by the hint that appears first in
the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode`.
``all_Integral``:
This is the same as ``all``, except if a hint also has a
corresponding ``_Integral`` hint, it only returns the
``_Integral`` hint. This is useful if ``all`` causes
:py:meth:`~sympy.solvers.ode.dsolve` to hang because of a
difficult or impossible integral. This meta-hint will also be
much faster than ``all``, because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive
routine.
``best``:
To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods
and return the simplest one. This takes into account whether
the solution is solvable in the function, whether it contains
any Integral classes (i.e. unevaluatable integrals), and
which one is the shortest in size.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for
a list of all supported hints.
**Tips**
- You can declare the derivative of an unknown function this way:
>>> from sympy import Function, Derivative
>>> from sympy.abc import x # x is the independent variable
>>> f = Function("f")(x) # f is a function of x
>>> # f_ will be the derivative of f with respect to x
>>> f_ = Derivative(f, x)
- See ``test_ode.py`` for many tests, which serves also as a set of
examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.dsolve` always returns an
:py:class:`~sympy.core.relational.Equality` class (except for the
case when the hint is ``all`` or ``all_Integral``). If possible, it
solves the solution explicitly for the function being solved for.
Otherwise, it returns an implicit solution.
- Arbitrary constants are symbols named ``C1``, ``C2``, and so on.
- Because all solutions should be mathematically equivalent, some
hints may return the exact same result for an ODE. Often, though,
two different hints will return the same solution formatted
differently. The two should be equivalent. Also note that sometimes
the values of the arbitrary constants in two different solutions may
not be the same, because one constant may have "absorbed" other
constants into it.
- Do ``help(ode.ode_<hintname>)`` to get help more information on a
specific hint, where ``<hintname>`` is the name of a hint without
``_Integral``.
For system of ordinary differential equations
=============================================
**Usage**
``dsolve(eq, func)`` -> Solve a system of ordinary differential
equations ``eq`` for ``func`` being list of functions including
`x(t)`, `y(t)`, `z(t)` where number of functions in the list depends
upon the number of equations provided in ``eq``.
**Details**
``eq`` can be any supported system of ordinary differential equations
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which
together with some of their derivatives make up the system of ordinary
differential equation ``eq``. It is not necessary to provide this; it
will be autodetected (and an error raised if it couldn't be detected).
**Hints**
The hints are formed by parameters returned by classify_sysode, combining
them give hints name used later for forming method name.
Examples
========
>>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x))
Eq(f(x), C1*sin(3*x) + C2*cos(3*x))
>>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
>>> dsolve(eq, hint='1st_exact')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> dsolve(eq, hint='almost_linear')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t)))
>>> dsolve(eq)
[Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)),
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) +
exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))]
>>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t)))
>>> dsolve(eq)
{Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))}
"""
if iterable(eq):
match = classify_sysode(eq, func)
eq = match['eq']
order = match['order']
func = match['func']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
# keep highest order term coefficient positive
for i in range(len(eq)):
for func_ in func:
if isinstance(func_, list):
pass
else:
if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative:
eq[i] = -eq[i]
match['eq'] = eq
if len(set(order.values()))!=1:
raise ValueError("It solves only those systems of equations whose orders are equal")
match['order'] = list(order.values())[0]
def recur_len(l):
return sum(recur_len(item) if isinstance(item,list) else 1 for item in l)
if recur_len(func) != len(eq):
raise ValueError("dsolve() and classify_sysode() work with "
"number of functions being equal to number of equations")
if match['type_of_equation'] is None:
raise NotImplementedError
else:
if match['is_linear'] == True:
if match['no_of_equation'] > 3:
solvefunc = globals()['sysode_linear_neq_order%(order)s' % match]
else:
solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match]
else:
solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match]
sols = solvefunc(match)
if ics:
constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols
solved_constants = solve_ics(sols, func, constants, ics)
return [sol.subs(solved_constants) for sol in sols]
return sols
else:
given_hint = hint # hint given by the user
# See the docstring of _desolve for more details.
hints = _desolve(eq, func=func,
hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics,
x0=x0, n=n, **kwargs)
eq = hints.pop('eq', eq)
all_ = hints.pop('all', False)
if all_:
retdict = {}
failed_hints = {}
gethints = classify_ode(eq, dict=True)
orderedhints = gethints['ordered_hints']
for hint in hints:
try:
rv = _helper_simplify(eq, hint, hints[hint], simplify)
except NotImplementedError as detail:
failed_hints[hint] = detail
else:
retdict[hint] = rv
func = hints[hint]['func']
retdict['best'] = min(list(retdict.values()), key=lambda x:
ode_sol_simplicity(x, func, trysolving=not simplify))
if given_hint == 'best':
return retdict['best']
for i in orderedhints:
if retdict['best'] == retdict.get(i, None):
retdict['best_hint'] = i
break
retdict['default'] = gethints['default']
retdict['order'] = gethints['order']
retdict.update(failed_hints)
return retdict
else:
# The key 'hint' stores the hint needed to be solved for.
hint = hints['hint']
return _helper_simplify(eq, hint, hints, simplify, ics=ics)
def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs):
r"""
Helper function of dsolve that calls the respective
:py:mod:`~sympy.solvers.ode` functions to solve for the ordinary
differential equations. This minimizes the computation in calling
:py:meth:`~sympy.solvers.deutils._desolve` multiple times.
"""
r = match
if hint.endswith('_Integral'):
solvefunc = globals()['ode_' + hint[:-len('_Integral')]]
else:
solvefunc = globals()['ode_' + hint]
func = r['func']
order = r['order']
match = r[hint]
free = eq.free_symbols
cons = lambda s: s.free_symbols.difference(free)
if simplify:
# odesimp() will attempt to integrate, if necessary, apply constantsimp(),
# attempt to solve for func, and apply any other hint specific
# simplifications
sols = solvefunc(eq, func, order, match)
if iterable(sols):
rv = [odesimp(eq, s, func, hint) for s in sols]
else:
rv = odesimp(eq, sols, func, hint)
else:
# We still want to integrate (you can disable it separately with the hint)
match['simplify'] = False # Some hints can take advantage of this option
exprs = solvefunc(eq, func, order, match)
if isinstance(exprs, list):
rv = [_handle_Integral(expr, func, hint) for expr in exprs]
else:
rv = _handle_Integral(exprs, func, hint)
if isinstance(rv, list):
rv = _remove_redundant_solutions(eq, rv, order, func.args[0])
if len(rv) == 1:
rv = rv[0]
if ics and not 'power_series' in hint:
if isinstance(rv, (Expr, Eq)):
solved_constants = solve_ics([rv], [r['func']], cons(rv), ics)
rv = rv.subs(solved_constants)
else:
rv1 = []
for s in rv:
try:
solved_constants = solve_ics([s], [r['func']], cons(s), ics)
except ValueError:
continue
rv1.append(s.subs(solved_constants))
if len(rv1) == 1:
return rv1[0]
rv = rv1
return rv
def solve_ics(sols, funcs, constants, ics):
"""
Solve for the constants given initial conditions
``sols`` is a list of solutions.
``funcs`` is a list of functions.
``constants`` is a list of constants.
``ics`` is the set of initial/boundary conditions for the differential
equation. It should be given in the form of ``{f(x0): x1,
f(x).diff(x).subs(x, x2): x3}`` and so on.
Returns a dictionary mapping constants to values.
``solution.subs(constants)`` will replace the constants in ``solution``.
Example
=======
>>> # From dsolve(f(x).diff(x) - f(x), f(x))
>>> from sympy import symbols, Eq, exp, Function
>>> from sympy.solvers.ode.ode import solve_ics
>>> f = Function('f')
>>> x, C1 = symbols('x C1')
>>> sols = [Eq(f(x), C1*exp(x))]
>>> funcs = [f(x)]
>>> constants = [C1]
>>> ics = {f(0): 2}
>>> solved_constants = solve_ics(sols, funcs, constants, ics)
>>> solved_constants
{C1: 2}
>>> sols[0].subs(solved_constants)
Eq(f(x), 2*exp(x))
"""
# Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x,
# x0)): value (currently checked by classify_ode). To solve, replace x
# with x0, f(x0) with value, then solve for constants. For f^(n)(x0),
# differentiate the solution n times, so that f^(n)(x) appears.
x = funcs[0].args[0]
diff_sols = []
subs_sols = []
diff_variables = set()
for funcarg, value in ics.items():
if isinstance(funcarg, AppliedUndef):
x0 = funcarg.args[0]
matching_func = [f for f in funcs if f.func == funcarg.func][0]
S = sols
elif isinstance(funcarg, (Subs, Derivative)):
if isinstance(funcarg, Subs):
# Make sure it stays a subs. Otherwise subs below will produce
# a different looking term.
funcarg = funcarg.doit()
if isinstance(funcarg, Subs):
deriv = funcarg.expr
x0 = funcarg.point[0]
variables = funcarg.expr.variables
matching_func = deriv
elif isinstance(funcarg, Derivative):
deriv = funcarg
x0 = funcarg.variables[0]
variables = (x,)*len(funcarg.variables)
matching_func = deriv.subs(x0, x)
if variables not in diff_variables:
for sol in sols:
if sol.has(deriv.expr.func):
diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables)))
diff_variables.add(variables)
S = diff_sols
else:
raise NotImplementedError("Unrecognized initial condition")
for sol in S:
if sol.has(matching_func):
sol2 = sol
sol2 = sol2.subs(x, x0)
sol2 = sol2.subs(funcarg, value)
# This check is necessary because of issue #15724
if not isinstance(sol2, BooleanAtom) or not subs_sols:
subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)]
subs_sols.append(sol2)
# TODO: Use solveset here
try:
solved_constants = solve(subs_sols, constants, dict=True)
except NotImplementedError:
solved_constants = []
# XXX: We can't differentiate between the solution not existing because of
# invalid initial conditions, and not existing because solve is not smart
# enough. If we could use solveset, this might be improvable, but for now,
# we use NotImplementedError in this case.
if not solved_constants:
raise ValueError("Couldn't solve for initial conditions")
if solved_constants == True:
raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.")
if len(solved_constants) > 1:
raise NotImplementedError("Initial conditions produced too many solutions for constants")
return solved_constants[0]
def classify_ode(eq, func=None, dict=False, ics=None, **kwargs):
r"""
Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve`
classifications for an ODE.
The tuple is ordered so that first item is the classification that
:py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In
general, classifications at the near the beginning of the list will
produce better solutions faster than those near the end, thought there are
always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a
different classification, use ``dsolve(ODE, func,
hint=<classification>)``. See also the
:py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints
you can use.
If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will
return a dictionary of ``hint:match`` expression terms. This is intended
for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that
because dictionaries are ordered arbitrarily, this will most likely not be
in the same order as the tuple.
You can get help on different hints by executing
``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint
without ``_Integral``.
See :py:data:`~sympy.solvers.ode.allhints` or the
:py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints
that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`.
Notes
=====
These are remarks on hint names.
``_Integral``
If a classification has ``_Integral`` at the end, it will return the
expression with an unevaluated :py:class:`~.Integral`
class in it. Note that a hint may do this anyway if
:py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral,
though just using an ``_Integral`` will do so much faster. Indeed, an
``_Integral`` hint will always be faster than its corresponding hint
without ``_Integral`` because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine.
If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because
:py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or
impossible integral. Try using an ``_Integral`` hint or
``all_Integral`` to get it return something.
Note that some hints do not have ``_Integral`` counterparts. This is
because :py:func:`~sympy.integrals.integrals.integrate` is not used in
solving the ODE for those method. For example, `n`\th order linear
homogeneous ODEs with constant coefficients do not require integration
to solve, so there is no
``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can
easily evaluate any unevaluated
:py:class:`~sympy.integrals.integrals.Integral`\s in an expression by
doing ``expr.doit()``.
Ordinals
Some hints contain an ordinal such as ``1st_linear``. This is to help
differentiate them from other hints, as well as from other methods
that may not be implemented yet. If a hint has ``nth`` in it, such as
the ``nth_linear`` hints, this means that the method used to applies
to ODEs of any order.
``indep`` and ``dep``
Some hints contain the words ``indep`` or ``dep``. These reference
the independent variable and the dependent function, respectively. For
example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to
`x` and ``dep`` will refer to `f`.
``subs``
If a hints has the word ``subs`` in it, it means the the ODE is solved
by substituting the expression given after the word ``subs`` for a
single dummy variable. This is usually in terms of ``indep`` and
``dep`` as above. The substituted expression will be written only in
characters allowed for names of Python objects, meaning operators will
be spelled out. For example, ``indep``/``dep`` will be written as
``indep_div_dep``.
``coeff``
The word ``coeff`` in a hint refers to the coefficients of something
in the ODE, usually of the derivative terms. See the docstring for
the individual methods for more info (``help(ode)``). This is
contrast to ``coefficients``, as in ``undetermined_coefficients``,
which refers to the common name of a method.
``_best``
Methods that have more than one fundamental way to solve will have a
hint for each sub-method and a ``_best`` meta-classification. This
will evaluate all hints and return the best, using the same
considerations as the normal ``best`` meta-hint.
Examples
========
>>> from sympy import Function, classify_ode, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> classify_ode(Eq(f(x).diff(x), 0), f(x))
('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral',
'separable_Integral', '1st_linear_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
>>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4)
('nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
"""
ics = sympify(ics)
prep = kwargs.pop('prep', True)
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_ode() only "
"work with functions of one variable, not %s" % func)
# Some methods want the unprocessed equation
eq_orig = eq
if prep or func is None:
eq, func_ = _preprocess(eq, func)
if func is None:
func = func_
x = func.args[0]
f = func.func
y = Dummy('y')
xi = kwargs.get('xi')
eta = kwargs.get('eta')
terms = kwargs.get('n')
if isinstance(eq, Equality):
if eq.rhs != 0:
return classify_ode(eq.lhs - eq.rhs, func, dict=dict, ics=ics, xi=xi,
n=terms, eta=eta, prep=False)
eq = eq.lhs
order = ode_order(eq, f(x))
# hint:matchdict or hint:(tuple of matchdicts)
# Also will contain "default":<default hint> and "order":order items.
matching_hints = {"order": order}
df = f(x).diff(x)
a = Wild('a', exclude=[f(x)])
b = Wild('b', exclude=[f(x)])
c = Wild('c', exclude=[f(x)])
d = Wild('d', exclude=[df, f(x).diff(x, 2)])
e = Wild('e', exclude=[df])
k = Wild('k', exclude=[df])
n = Wild('n', exclude=[x, f(x), df])
c1 = Wild('c1', exclude=[x])
a2 = Wild('a2', exclude=[x, f(x), df])
b2 = Wild('b2', exclude=[x, f(x), df])
c2 = Wild('c2', exclude=[x, f(x), df])
d2 = Wild('d2', exclude=[x, f(x), df])
a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)])
b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)])
c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)])
r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint
boundary = {} # Used to extract initial conditions
C1 = Symbol("C1")
# Preprocessing to get the initial conditions out
if ics is not None:
for funcarg in ics:
# Separating derivatives
if isinstance(funcarg, (Subs, Derivative)):
# f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x,
# y) is a Derivative
if isinstance(funcarg, Subs):
deriv = funcarg.expr
old = funcarg.variables[0]
new = funcarg.point[0]
elif isinstance(funcarg, Derivative):
deriv = funcarg
# No information on this. Just assume it was x
old = x
new = funcarg.variables[0]
if (isinstance(deriv, Derivative) and isinstance(deriv.args[0],
AppliedUndef) and deriv.args[0].func == f and
len(deriv.args[0].args) == 1 and old == x and not
new.has(x) and all(i == deriv.variables[0] for i in
deriv.variables) and not ics[funcarg].has(f)):
dorder = ode_order(deriv, x)
temp = 'f' + str(dorder)
boundary.update({temp: new, temp + 'val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Derivatives")
# Separating functions
elif isinstance(funcarg, AppliedUndef):
if (funcarg.func == f and len(funcarg.args) == 1 and
not funcarg.args[0].has(x) and not ics[funcarg].has(f)):
boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Function")
else:
raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}")
# Factorable method
r = _ode_factorable_match(eq, func, kwargs.get('x0', 0))
if r:
matching_hints['factorable'] = r
# Any ODE that can be solved with a combination of algebra and
# integrals e.g.:
# d^3/dx^3(x y) = F(x)
r = _nth_algebraic_match(eq_orig, func)
if r['solutions']:
matching_hints['nth_algebraic'] = r
matching_hints['nth_algebraic_Integral'] = r
eq = expand(eq)
# Precondition to try remove f(x) from highest order derivative
reduced_eq = None
if eq.is_Add:
deriv_coef = eq.coeff(f(x).diff(x, order))
if deriv_coef not in (1, 0):
r = deriv_coef.match(a*f(x)**c1)
if r and r[c1]:
den = f(x)**r[c1]
reduced_eq = Add(*[arg/den for arg in eq.args])
if not reduced_eq:
reduced_eq = eq
if order == 1:
## Linear case: a(x)*y'+b(x)*y+c(x) == 0
if eq.is_Add:
ind, dep = reduced_eq.as_independent(f)
else:
u = Dummy('u')
ind, dep = (reduced_eq + u).as_independent(f)
ind, dep = [tmp.subs(u, 0) for tmp in [ind, dep]]
r = {a: dep.coeff(df),
b: dep.coeff(f(x)),
c: ind}
# double check f[a] since the preconditioning may have failed
if not r[a].has(f) and not r[b].has(f) and (
r[a]*df + r[b]*f(x) + r[c]).expand() - reduced_eq == 0:
r['a'] = a
r['b'] = b
r['c'] = c
matching_hints["1st_linear"] = r
matching_hints["1st_linear_Integral"] = r
## Bernoulli case: a(x)*y'+b(x)*y+c(x)*y**n == 0
r = collect(
reduced_eq, f(x), exact=True).match(a*df + b*f(x) + c*f(x)**n)
if r and r[c] != 0 and r[n] != 1: # See issue 4676
r['a'] = a
r['b'] = b
r['c'] = c
r['n'] = n
matching_hints["Bernoulli"] = r
matching_hints["Bernoulli_Integral"] = r
## Riccati special n == -2 case: a2*y'+b2*y**2+c2*y/x+d2/x**2 == 0
r = collect(reduced_eq,
f(x), exact=True).match(a2*df + b2*f(x)**2 + c2*f(x)/x + d2/x**2)
if r and r[b2] != 0 and (r[c2] != 0 or r[d2] != 0):
r['a2'] = a2
r['b2'] = b2
r['c2'] = c2
r['d2'] = d2
matching_hints["Riccati_special_minus2"] = r
# NON-REDUCED FORM OF EQUATION matches
r = collect(eq, df, exact=True).match(d + e * df)
if r:
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = r[d].subs(f(x), y)
r[e] = r[e].subs(f(x), y)
# FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS
# TODO: Hint first order series should match only if d/e is analytic.
# For now, only d/e and (d/e).diff(arg) is checked for existence at
# at a given point.
# This is currently done internally in ode_1st_power_series.
point = boundary.get('f0', 0)
value = boundary.get('f0val', C1)
check = cancel(r[d]/r[e])
check1 = check.subs({x: point, y: value})
if not check1.has(oo) and not check1.has(zoo) and \
not check1.has(NaN) and not check1.has(-oo):
check2 = (check1.diff(x)).subs({x: point, y: value})
if not check2.has(oo) and not check2.has(zoo) and \
not check2.has(NaN) and not check2.has(-oo):
rseries = r.copy()
rseries.update({'terms': terms, 'f0': point, 'f0val': value})
matching_hints["1st_power_series"] = rseries
r3.update(r)
## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where
# dP/dy == dQ/dx
try:
if r[d] != 0:
numerator = simplify(r[d].diff(y) - r[e].diff(x))
# The following few conditions try to convert a non-exact
# differential equation into an exact one.
# References : Differential equations with applications
# and historical notes - George E. Simmons
if numerator:
# If (dP/dy - dQ/dx) / Q = f(x)
# then exp(integral(f(x))*equation becomes exact
factor = simplify(numerator/r[e])
variables = factor.free_symbols
if len(variables) == 1 and x == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
# If (dP/dy - dQ/dx) / -P = f(y)
# then exp(integral(f(y))*equation becomes exact
factor = simplify(-numerator/r[d])
variables = factor.free_symbols
if len(variables) == 1 and y == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
except NotImplementedError:
# Differentiating the coefficients might fail because of things
# like f(2*x).diff(x). See issue 4624 and issue 4719.
pass
# Any first order ODE can be ideally solved by the Lie Group
# method
matching_hints["lie_group"] = r3
# This match is used for several cases below; we now collect on
# f(x) so the matching works.
r = collect(reduced_eq, df, exact=True).match(d + e*df)
if r is None and 'factorable' not in matching_hints:
roots = solve(reduced_eq, df)
if roots:
meq = Mul(*[(df - i) for i in roots])*Dummy()
m = _ode_factorable_match(meq, func, kwargs.get('x0', 0))
matching_hints['factorable'] = m
if r:
# Using r[d] and r[e] without any modification for hints
# linear-coefficients and separable-reduced.
num, den = r[d], r[e] # ODE = d/e + df
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = num.subs(f(x), y)
r[e] = den.subs(f(x), y)
## Separable Case: y' == P(y)*Q(x)
r[d] = separatevars(r[d])
r[e] = separatevars(r[e])
# m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
m1 = separatevars(r[d], dict=True, symbols=(x, y))
m2 = separatevars(r[e], dict=True, symbols=(x, y))
if m1 and m2:
r1 = {'m1': m1, 'm2': m2, 'y': y}
matching_hints["separable"] = r1
matching_hints["separable_Integral"] = r1
## First order equation with homogeneous coefficients:
# dy/dx == F(y/x) or dy/dx == F(x/y)
ordera = homogeneous_order(r[d], x, y)
if ordera is not None:
orderb = homogeneous_order(r[e], x, y)
if ordera == orderb:
# u1=y/x and u2=x/y
u1 = Dummy('u1')
u2 = Dummy('u2')
s = "1st_homogeneous_coeff_subs"
s1 = s + "_dep_div_indep"
s2 = s + "_indep_div_dep"
if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0:
matching_hints[s1] = r
matching_hints[s1 + "_Integral"] = r
if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0:
matching_hints[s2] = r
matching_hints[s2 + "_Integral"] = r
if s1 in matching_hints and s2 in matching_hints:
matching_hints["1st_homogeneous_coeff_best"] = r
## Linear coefficients of the form
# y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0
# that can be reduced to homogeneous form.
F = num/den
params = _linear_coeff_match(F, func)
if params:
xarg, yarg = params
u = Dummy('u')
t = Dummy('t')
# Dummy substitution for df and f(x).
dummy_eq = reduced_eq.subs(((df, t), (f(x), u)))
reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x)))
dummy_eq = simplify(dummy_eq.subs(reps))
# get the re-cast values for e and d
r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d)
if r2:
orderd = homogeneous_order(r2[d], x, f(x))
if orderd is not None:
ordere = homogeneous_order(r2[e], x, f(x))
if orderd == ordere:
# Match arguments are passed in such a way that it
# is coherent with the already existing homogeneous
# functions.
r2[d] = r2[d].subs(f(x), y)
r2[e] = r2[e].subs(f(x), y)
r2.update({'xarg': xarg, 'yarg': yarg,
'd': d, 'e': e, 'y': y})
matching_hints["linear_coefficients"] = r2
matching_hints["linear_coefficients_Integral"] = r2
## Equation of the form y' + (y/x)*H(x^n*y) = 0
# that can be reduced to separable form
factor = simplify(x/f(x)*num/den)
# Try representing factor in terms of x^n*y
# where n is lowest power of x in factor;
# first remove terms like sqrt(2)*3 from factor.atoms(Mul)
u = None
for mul in ordered(factor.atoms(Mul)):
if mul.has(x):
_, u = mul.as_independent(x, f(x))
break
if u and u.has(f(x)):
h = x**(degree(Poly(u.subs(f(x), y), gen=x)))*f(x)
p = Wild('p')
if (u/h == 1) or ((u/h).simplify().match(x**p)):
t = Dummy('t')
r2 = {'t': t}
xpart, ypart = u.as_independent(f(x))
test = factor.subs(((u, t), (1/u, 1/t)))
free = test.free_symbols
if len(free) == 1 and free.pop() == t:
r2.update({'power': xpart.as_base_exp()[1], 'u': test})
matching_hints["separable_reduced"] = r2
matching_hints["separable_reduced_Integral"] = r2
## Almost-linear equation of the form f(x)*g(y)*y' + k(x)*l(y) + m(x) = 0
r = collect(eq, [df, f(x)]).match(e*df + d)
if r:
r2 = r.copy()
r2[c] = S.Zero
if r2[d].is_Add:
# Separate the terms having f(x) to r[d] and
# remaining to r[c]
no_f, r2[d] = r2[d].as_independent(f(x))
r2[c] += no_f
factor = simplify(r2[d].diff(f(x))/r[e])
if factor and not factor.has(f(x)):
r2[d] = factor_terms(r2[d])
u = r2[d].as_independent(f(x), as_Add=False)[1]
r2.update({'a': e, 'b': d, 'c': c, 'u': u})
r2[d] /= u
r2[e] /= u.diff(f(x))
matching_hints["almost_linear"] = r2
matching_hints["almost_linear_Integral"] = r2
elif order == 2:
# Liouville ODE in the form
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98
s = d*f(x).diff(x, 2) + e*df**2 + k*df
r = reduced_eq.match(s)
if r and r[d] != 0:
y = Dummy('y')
g = simplify(r[e]/r[d]).subs(f(x), y)
h = simplify(r[k]/r[d]).subs(f(x), y)
if y in h.free_symbols or x in g.free_symbols:
pass
else:
r = {'g': g, 'h': h, 'y': y}
matching_hints["Liouville"] = r
matching_hints["Liouville_Integral"] = r
# Homogeneous second order differential equation of the form
# a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3
# It has a definite power series solution at point x0 if, b3/a3 and c3/a3
# are analytic at x0.
deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
ordinary = False
if r:
if not all([r[key].is_polynomial() for key in r]):
n, d = reduced_eq.as_numer_denom()
reduced_eq = expand(n)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
if r and r[a3] != 0:
p = cancel(r[b3]/r[a3]) # Used below
q = cancel(r[c3]/r[a3]) # Used below
point = kwargs.get('x0', 0)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
ordinary = True
r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms})
matching_hints["2nd_power_series_ordinary"] = r
# Checking if the differential equation has a regular singular point
# at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0)
# and (c3/a3)*((x - x0)**2) are analytic at x0.
if not ordinary:
p = cancel((x - point)*p)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
q = cancel(((x - point)**2)*q)
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms}
matching_hints["2nd_power_series_regular"] = coeff_dict
# For Hypergeometric solutions.
_r = {}
_r.update(r)
rn = match_2nd_hypergeometric(_r, func)
if rn:
matching_hints["2nd_hypergeometric"] = rn
matching_hints["2nd_hypergeometric_Integral"] = rn
# If the ODE has regular singular point at x0 and is of the form
# Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) +
# (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation
rn = match_2nd_linear_bessel(r, f(x))
if rn:
matching_hints["2nd_linear_bessel"] = rn
# If the ODE is ordinary and is of the form of Airy's Equation
# Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x))
if p.is_zero:
a4 = Wild('a4', exclude=[x,f(x),df])
b4 = Wild('b4', exclude=[x,f(x),df])
rn = q.match(a4+b4*x)
if rn and rn[b4] != 0:
rn = {'b':rn[a4],'m':rn[b4]}
matching_hints["2nd_linear_airy"] = rn
if order > 0:
# Any ODE that can be solved with a substitution and
# repeated integration e.g.:
# `d^2/dx^2(y) + x*d/dx(y) = constant
#f'(x) must be finite for this to work
r = _nth_order_reducible_match(reduced_eq, func)
if r:
matching_hints['nth_order_reducible'] = r
# nth order linear ODE
# a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b
r = _nth_linear_match(reduced_eq, func, order)
# Constant coefficient case (a_i is constant for all i)
if r and not any(r[i].has(x) for i in r if i >= 0):
# Inhomogeneous case: F(x) is not identically 0
if r[-1]:
eq_homogeneous = Add(eq,-r[-1])
undetcoeff = _undetermined_coefficients_match(r[-1], x, func, eq_homogeneous)
s = "nth_linear_constant_coeff_variation_of_parameters"
matching_hints[s] = r
matching_hints[s + "_Integral"] = r
if undetcoeff['test']:
r['trialset'] = undetcoeff['trialset']
matching_hints[
"nth_linear_constant_coeff_undetermined_coefficients"
] = r
# Homogeneous case: F(x) is identically 0
else:
matching_hints["nth_linear_constant_coeff_homogeneous"] = r
# nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x)
#In case of Homogeneous euler equation F(x) = 0
def _test_term(coeff, order):
r"""
Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x),
where K is independent of x and y(x), order>= 0.
So we need to check that for each term, coeff == K*x**order from
some K. We have a few cases, since coeff may have several
different types.
"""
if order < 0:
raise ValueError("order should be greater than 0")
if coeff == 0:
return True
if order == 0:
if x in coeff.free_symbols:
return False
return True
if coeff.is_Mul:
if coeff.has(f(x)):
return False
return x**order in coeff.args
elif coeff.is_Pow:
return coeff.as_base_exp() == (x, order)
elif order == 1:
return x == coeff
return False
# Find coefficient for highest derivative, multiply coefficients to
# bring the equation into Euler form if possible
r_rescaled = None
if r is not None:
coeff = r[order]
factor = x**order / coeff
r_rescaled = {i: factor*r[i] for i in r if i != 'trialset'}
# XXX: Mixing up the trialset with the coefficients is error-prone.
# These should be separated as something like r['coeffs'] and
# r['trialset']
if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in
r_rescaled if i != 'trialset' and i >= 0):
if not r_rescaled[-1]:
matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled
else:
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled
e, re = posify(r_rescaled[-1].subs(x, exp(x)))
undetcoeff = _undetermined_coefficients_match(e.subs(re), x)
if undetcoeff['test']:
r_rescaled['trialset'] = undetcoeff['trialset']
matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled
# Order keys based on allhints.
retlist = [i for i in allhints if i in matching_hints]
if dict:
# Dictionaries are ordered arbitrarily, so make note of which
# hint would come first for dsolve(). Use an ordered dict in Py 3.
matching_hints["default"] = retlist[0] if retlist else None
matching_hints["ordered_hints"] = tuple(retlist)
return matching_hints
else:
return tuple(retlist)
def equivalence(max_num_pow, dem_pow):
# this function is made for checking the equivalence with 2F1 type of equation.
# max_num_pow is the value of maximum power of x in numerator
# and dem_pow is list of powers of different factor of form (a*x b).
# reference from table 1 in paper - "Non-Liouvillian solutions for second order
# linear ODEs" by L. Chan, E.S. Cheb-Terrab.
# We can extend it for 1F1 and 0F1 type also.
if max_num_pow == 2:
if dem_pow in [[2, 2], [2, 2, 2]]:
return "2F1"
elif max_num_pow == 1:
if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]:
return "2F1"
elif max_num_pow == 0:
if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]:
return "2F1"
return None
def equivalence_hypergeometric(A, B, func):
from sympy import factor
# This method for finding the equivalence is only for 2F1 type.
# We can extend it for 1F1 and 0F1 type also.
x = func.args[0]
# making given equation in normal form
I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B))
# computing shifted invariant(J1) of the equation
J1 = factor(cancel(x**2*I1 + S(1)/4))
num, dem = J1.as_numer_denom()
num = powdenest(expand(num))
dem = powdenest(expand(dem))
pow_num = set()
pow_dem = set()
# this function will compute the different powers of variable(x) in J1.
# then it will help in finding value of k. k is power of x such that we can express
# J1 = x**k * J0(x**k) then all the powers in J0 become integers.
def _power_counting(num):
_pow = {0}
for val in num:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
_pow.add(val.as_base_exp()[1])
elif val == x:
_pow.add(val.as_base_exp()[1])
else:
_pow.update(_power_counting(val.args))
return _pow
pow_num = _power_counting((num, ))
pow_dem = _power_counting((dem, ))
pow_dem.update(pow_num)
_pow = pow_dem
k = gcd(_pow)
# computing I0 of the given equation
I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True)
I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True)))
num, dem = I0.as_numer_denom()
max_num_pow = max(_power_counting((num, )))
dem_args = dem.args
sing_point = []
dem_pow = []
# calculating singular point of I0.
for arg in dem_args:
if arg.has(x):
if isinstance(arg, Pow):
# (x-a)**n
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0])
else:
# (x-a) type
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg, x).keys())[0])
dem_pow.sort()
# checking if equivalence is exists or not.
if equivalence(max_num_pow, dem_pow) == "2F1":
return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"}
else:
return None
def ode_2nd_hypergeometric(eq, func, order, match):
from sympy.simplify.hyperexpand import hyperexpand
from sympy import factor
x = func.args[0]
C0, C1 = get_numbered_constants(eq, num=2)
a = match['a']
b = match['b']
c = match['c']
A = match['A']
# B = match['B']
sol = None
if match['type'] == "2F1":
if c.is_integer == False:
sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c)
elif c == 1:
y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x)
sol = C0*hyper([a, b], [c], x) + C1*y2
elif (c-a-b).is_integer == False:
sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b)
if sol is None:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the hypergeometric method")
# applying transformation in the solution
subs = match['mobius']
dtdx = simplify(1/(subs.diff(x)))
_B = ((a + b + 1)*x - c).subs(x, subs)*dtdx
_B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx))
_A = factor((x**2 - x).subs(x, subs)*(dtdx**2))
e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True))
sol = sol.subs(x, match['mobius'])
sol = sol.subs(x, x**match['k'])
e = e.subs(x, x**match['k'])
if not A.is_zero:
e1 = Integral(A/2, x)
e1 = exp(logcombine(e1, force=True))
sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
sol = cancel((e)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
def match_2nd_2F1_hypergeometric(I, k, sing_point, func):
from sympy import factor
x = func.args[0]
a = Wild("a")
b = Wild("b")
c = Wild("c")
t = Wild("t")
s = Wild("s")
r = Wild("r")
alpha = Wild("alpha")
beta = Wild("beta")
gamma = Wild("gamma")
delta = Wild("delta")
rn = {'type':None}
# I0 of the standerd 2F1 equation.
I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2)
if sing_point != [0, 1]:
# If singular point is [0, 1] then we have standerd equation.
eqs = []
sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)]
# making equations for the finding the mobius transformation
for i in range(3):
if i<len(sing_point):
eqs.append(Eq(sing_eqs[i], sing_point[i]))
else:
eqs.append(Eq(1/sing_eqs[i], 0))
# solving above equations for the mobius transformation
_beta = -alpha*sing_point[0]
_delta = -gamma*sing_point[1]
_gamma = alpha
if len(sing_point) == 3:
_gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1])
mob = (alpha*x + beta)/(gamma*x + delta)
mob = mob.subs(beta, _beta)
mob = mob.subs(delta, _delta)
mob = mob.subs(gamma, _gamma)
mob = cancel(mob)
t = (beta - delta*x)/(gamma*x - alpha)
t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma))
else:
mob = x
t = x
# applying mobius transformation in I to make it into I0.
I = I.subs(x, t)
I = I*(t.diff(x))**2
I = factor(I)
dict_I = {x**2:0, x:0, 1:0}
I0_num, I0_dem = I0.as_numer_denom()
# collecting coeff of (x**2, x), of the standerd equation.
# substituting (a-b) = s, (a+b) = r
dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)}
# collecting coeff of (x**2, x) from I0 of the given equation.
dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False))
eqs = []
# We are comparing the coeff of powers of different x, for finding the values of
# parameters of standerd equation.
for key in [x**2, x, 1]:
eqs.append(Eq(dict_I[key], dict_I0[key]))
# We can have many possible roots for the equation.
# I am selecting the root on the basis that when we have
# standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x)
# then root should be a, b, c.
_c = 1 - factor(sqrt(1+eqs[2].lhs))
if not _c.has(Symbol):
_c = min(list(roots(eqs[2], c)))
_s = factor(sqrt(eqs[0].lhs + 1))
_r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c))
_a = (_r + _s)/2
_b = (_r - _s)/2
rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"}
return rn
def match_2nd_hypergeometric(r, func):
x = func.args[0]
a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)])
b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)])
c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)])
A = cancel(r[b3]/r[a3])
B = cancel(r[c3]/r[a3])
d = equivalence_hypergeometric(A, B, func)
rn = None
if d:
if d['type'] == "2F1":
rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func)
if rn is not None:
rn.update({'A':A, 'B':B})
# We can extend it for 1F1 and 0F1 type also.
return rn
def match_2nd_linear_bessel(r, func):
from sympy.polys.polytools import factor
# eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x)
f = func
x = func.args[0]
df = f.diff(x)
a = Wild('a', exclude=[f,df])
b = Wild('b', exclude=[x, f,df])
a4 = Wild('a4', exclude=[x,f,df])
b4 = Wild('b4', exclude=[x,f,df])
c4 = Wild('c4', exclude=[x,f,df])
d4 = Wild('d4', exclude=[x,f,df])
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)])
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)])
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)])
# leading coeff of f(x).diff(x, 2)
coeff = factor(r[a3]).match(a4*(x-b)**b4)
if coeff:
# if coeff[b4] = 0 means constant coefficient
if coeff[b4] == 0:
return None
point = coeff[b]
else:
return None
if point:
r[a3] = simplify(r[a3].subs(x, x+point))
r[b3] = simplify(r[b3].subs(x, x+point))
r[c3] = simplify(r[c3].subs(x, x+point))
# making a3 in the form of x**2
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4])))
# checking if b3 is of form c*(x-b)
coeff1 = factor(r[b3]).match(a4*(x))
if coeff1 is None:
return None
# c3 maybe of very complex form so I am simply checking (a - b) form
# if yes later I will match with the standerd form of bessel in a and b
# a, b are wild variable defined above.
_coeff2 = r[c3].match(a - b)
if _coeff2 is None:
return None
# matching with standerd form for c3
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4))
if coeff2 is None:
return None
if _coeff2[b] == 0:
coeff2[d4] = 0
else:
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4]
rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]}
rn['c4'] = coeff1[a4]
rn['b4'] = point
return rn
def classify_sysode(eq, funcs=None, **kwargs):
r"""
Returns a dictionary of parameter names and values that define the system
of ordinary differential equations in ``eq``.
The parameters are further used in
:py:meth:`~sympy.solvers.ode.dsolve` for solving that system.
The parameter names and values are:
'is_linear' (boolean), which tells whether the given system is linear.
Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are
nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators.
'func' (list) contains the :py:class:`~sympy.core.function.Function`s that
appear with a derivative in the ODE, i.e. those that we are trying to solve
the ODE for.
'order' (dict) with the maximum derivative for each element of the 'func'
parameter.
'func_coeff' (dict) with the coefficient for each triple ``(equation number,
function, order)```. The coefficients are those subexpressions that do not
appear in 'func', and hence can be considered constant for purposes of ODE
solving.
'eq' (list) with the equations from ``eq``, sympified and transformed into
expressions (we are solving for these expressions to be zero).
'no_of_equations' (int) is the number of equations (same as ``len(eq)``).
'type_of_equation' (string) is an internal classification of the type of
ODE.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm
-A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists
Examples
========
>>> from sympy import Function, Eq, symbols, diff
>>> from sympy.solvers.ode.ode import classify_sysode
>>> from sympy.abc import t
>>> f, x, y = symbols('f, x, y', cls=Function)
>>> k, l, m, n = symbols('k, l, m, n', Integer=True)
>>> x1 = diff(x(t), t) ; y1 = diff(y(t), t)
>>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t)
>>> eq = (Eq(5*x1, 12*x(t) - 6*y(t)), Eq(2*y1, 11*x(t) + 3*y(t)))
>>> classify_sysode(eq)
{'eq': [-12*x(t) + 6*y(t) + 5*Derivative(x(t), t), -11*x(t) - 3*y(t) + 2*Derivative(y(t), t)],
'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 5, (0, y(t), 0): 6,
(0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 2},
'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type1'}
>>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
>>> classify_sysode(eq)
{'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t), t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)],
'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2,
(0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1},
'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type4'}
"""
# Sympify equations and convert iterables of equations into
# a list of equations
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eq, funcs = (_sympify(w) for w in [eq, funcs])
if len(eq) == 0:
raise ValueError("classify_sysode() works for systems of ODEs. "
"For scalar ODEs, classify_ode should be used")
for i, fi in enumerate(eq):
if isinstance(fi, Equality):
eq[i] = fi.lhs - fi.rhs
matching_hints = {"no_of_equation":i+1}
matching_hints['eq'] = eq
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
# find all the functions if not given
order = dict()
if funcs==[None]:
funcs = []
for eqs in eq:
derivs = eqs.atoms(Derivative)
func = set().union(*[d.atoms(AppliedUndef) for d in derivs])
for func_ in func:
funcs.append(func_)
funcs = list(set(funcs))
if len(funcs) != len(eq):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
func_dict = dict()
for func in funcs:
if not order.get(func, False):
max_order = 0
for i, eqs_ in enumerate(eq):
order_ = ode_order(eqs_,func)
if max_order < order_:
max_order = order_
eq_no = i
if eq_no in func_dict:
list_func = []
list_func.append(func_dict[eq_no])
list_func.append(func)
func_dict[eq_no] = list_func
else:
func_dict[eq_no] = func
order[func] = max_order
funcs = [func_dict[i] for i in range(len(func_dict))]
matching_hints['func'] = funcs
for func in funcs:
if isinstance(func, list):
for func_elem in func:
if len(func_elem.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
else:
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# find the order of all equation in system of odes
matching_hints["order"] = order
# find coefficients of terms f(t), diff(f(t),t) and higher derivatives
# and similarly for other functions g(t), diff(g(t),t) in all equations.
# Here j denotes the equation number, funcs[l] denotes the function about
# which we are talking about and k denotes the order of function funcs[l]
# whose coefficient we are calculating.
def linearity_check(eqs, j, func, is_linear_):
for k in range(order[func] + 1):
func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k))
if is_linear_ == True:
if func_coef[j, func, k] == 0:
if k == 0:
coef = eqs.as_independent(func, as_Add=True)[1]
for xr in range(1, ode_order(eqs,func) + 1):
coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1]
if coef != 0:
is_linear_ = False
else:
if eqs.as_independent(diff(func, t, k), as_Add=True)[1]:
is_linear_ = False
else:
for func_ in funcs:
if isinstance(func_, list):
for elem_func_ in func_:
dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
else:
dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
return is_linear_
func_coef = {}
is_linear = True
for j, eqs in enumerate(eq):
for func in funcs:
if isinstance(func, list):
for func_elem in func:
is_linear = linearity_check(eqs, j, func_elem, is_linear)
else:
is_linear = linearity_check(eqs, j, func, is_linear)
matching_hints['func_coeff'] = func_coef
matching_hints['is_linear'] = is_linear
if len(set(order.values())) == 1:
order_eq = list(matching_hints['order'].values())[0]
if matching_hints['is_linear'] == True:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef)
elif order_eq == 2:
type_of_equation = check_linear_2eq_order2(eq, funcs, func_coef)
else:
type_of_equation = None
elif matching_hints['no_of_equation'] == 3:
if order_eq == 1:
type_of_equation = check_linear_3eq_order1(eq, funcs, func_coef)
if type_of_equation is None:
type_of_equation = check_linear_neq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
else:
if order_eq == 1:
type_of_equation = check_linear_neq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
else:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
elif matching_hints['no_of_equation'] == 3:
if order_eq == 1:
type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
else:
type_of_equation = None
else:
type_of_equation = None
matching_hints['type_of_equation'] = type_of_equation
return matching_hints
def check_linear_2eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
r = dict()
# for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1)
# and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2)
r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1]
r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
# We can handle homogeneous case and simple constant forcings
r['d1'] = forcing[0]
r['d2'] = forcing[1]
else:
# Issue #9244: nonhomogeneous linear systems are not supported
return None
# Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and
# Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t))
p = 0
q = 0
p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0]))
p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0]))
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q and n==0:
if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j:
p = 1
elif q and n==1:
if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j:
p = 2
# End of condition for type 6
if r['d1']!=0 or r['d2']!=0:
if not r['d1'].has(t) and not r['d2'].has(t):
if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()):
# Equations for type 2 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)+d1) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)+d2)
return "type2"
else:
return None
else:
if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()):
# Equations for type 1 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t))
return "type1"
else:
r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2']
r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2']
if (r['b1'] == r['c2']) and (r['c1'] == r['b2']):
# Equation for type 3 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), g(t)*x(t) + f(t)*y(t))
return "type3"
elif (r['b1'] == r['c2']) and (r['c1'] == -r['b2']) or (r['b1'] == -r['c2']) and (r['c1'] == r['b2']):
# Equation for type 4 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), -g(t)*x(t) + f(t)*y(t))
return "type4"
elif (not cancel(r['b2']/r['c1']).has(t) and not cancel((r['c2']-r['b1'])/r['c1']).has(t)) \
or (not cancel(r['b1']/r['c2']).has(t) and not cancel((r['c1']-r['b2'])/r['c2']).has(t)):
# Equations for type 5 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), a*g(t)*x(t) + [f(t) + b*g(t)]*y(t)
return "type5"
elif p:
return "type6"
else:
# Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t))
return "type7"
def check_linear_2eq_order2(eq, func, func_coef):
x = func[0].func
y = func[1].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
r = dict()
a = Wild('a', exclude=[1/t])
b = Wild('b', exclude=[1/t**2])
u = Wild('u', exclude=[t, t**2])
v = Wild('v', exclude=[t, t**2])
w = Wild('w', exclude=[t, t**2])
p = Wild('p', exclude=[t, t**2])
r['a1'] = fc[0,x(t),2] ; r['a2'] = fc[1,y(t),2]
r['b1'] = fc[0,x(t),1] ; r['b2'] = fc[1,x(t),1]
r['c1'] = fc[0,y(t),1] ; r['c2'] = fc[1,y(t),1]
r['d1'] = fc[0,x(t),0] ; r['d2'] = fc[1,x(t),0]
r['e1'] = fc[0,y(t),0] ; r['e2'] = fc[1,y(t),0]
const = [S.Zero, S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not (j.has(x(t)) or j.has(y(t))):
const[i] += j
r['f1'] = const[0]
r['f2'] = const[1]
if r['f1']!=0 or r['f2']!=0:
if all(not r[k].has(t) for k in 'a1 a2 d1 d2 e1 e2 f1 f2'.split()) \
and r['b1']==r['c1']==r['b2']==r['c2']==0:
return "type2"
elif all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2 d1 d2 e1 e1'.split()):
p = [S.Zero, S.Zero] ; q = [S.Zero, S.Zero]
for n, e in enumerate([r['f1'], r['f2']]):
if e.has(t):
tpart = e.as_independent(t, Mul)[1]
for i in Mul.make_args(tpart):
if i.has(exp):
b, e = i.as_base_exp()
co = e.coeff(t)
if co and not co.has(t) and co.has(I):
p[n] = 1
else:
q[n] = 1
else:
q[n] = 1
else:
q[n] = 1
if p[0]==1 and p[1]==1 and q[0]==0 and q[1]==0:
return "type4"
else:
return None
else:
return None
else:
if r['b1']==r['b2']==r['c1']==r['c2']==0 and all(not r[k].has(t) \
for k in 'a1 a2 d1 d2 e1 e2'.split()):
return "type1"
elif r['b1']==r['e1']==r['c2']==r['d2']==0 and all(not r[k].has(t) \
for k in 'a1 a2 b2 c1 d1 e2'.split()) and r['c1'] == -r['b2'] and \
r['d1'] == r['e2']:
return "type3"
elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \
(r['d2']/r['a2']).has(t) and not (r['e1']/r['a1']).has(t) and \
r['b1']==r['d1']==r['c2']==r['e2']==0:
return "type5"
elif ((r['a1']/r['d1']).expand()).match((p*(u*t**2+v*t+w)**2).expand()) and not \
(cancel(r['a1']*r['d2']/(r['a2']*r['d1']))).has(t) and not (r['d1']/r['e1']).has(t) and not \
(r['d2']/r['e2']).has(t) and r['b1'] == r['b2'] == r['c1'] == r['c2'] == 0:
return "type10"
elif not cancel(r['d1']/r['e1']).has(t) and not cancel(r['d2']/r['e2']).has(t) and not \
cancel(r['d1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['b1']==r['b2']==r['c1']==r['c2']==0:
return "type6"
elif not cancel(r['b1']/r['c1']).has(t) and not cancel(r['b2']/r['c2']).has(t) and not \
cancel(r['b1']*r['a2']/(r['b2']*r['a1'])).has(t) and r['d1']==r['d2']==r['e1']==r['e2']==0:
return "type7"
elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \
cancel(r['e1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['e1'].has(t) \
and r['b1']==r['d1']==r['c2']==r['e2']==0:
return "type8"
elif (r['b1']/r['a1']).match(a/t) and (r['b2']/r['a2']).match(a/t) and not \
(r['b1']/r['c1']).has(t) and not (r['b2']/r['c2']).has(t) and \
(r['d1']/r['a1']).match(b/t**2) and (r['d2']/r['a2']).match(b/t**2) \
and not (r['d1']/r['e1']).has(t) and not (r['d2']/r['e2']).has(t):
return "type9"
elif -r['b1']/r['d1']==-r['c1']/r['e1']==-r['b2']/r['d2']==-r['c2']/r['e2']==t:
return "type11"
else:
return None
def check_linear_3eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
z = func[2].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
r = dict()
r['a1'] = fc[0,x(t),1]; r['a2'] = fc[1,y(t),1]; r['a3'] = fc[2,z(t),1]
r['b1'] = fc[0,x(t),0]; r['b2'] = fc[1,x(t),0]; r['b3'] = fc[2,x(t),0]
r['c1'] = fc[0,y(t),0]; r['c2'] = fc[1,y(t),0]; r['c3'] = fc[2,y(t),0]
r['d1'] = fc[0,z(t),0]; r['d2'] = fc[1,z(t),0]; r['d3'] = fc[2,z(t),0]
forcing = [S.Zero, S.Zero, S.Zero]
for i in range(3):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t), z(t)):
forcing[i] += j
if forcing[0].has(t) or forcing[1].has(t) or forcing[2].has(t):
# We can handle homogeneous case and simple constant forcings.
# Issue #9244: nonhomogeneous linear systems are not supported
return None
if all(not r[k].has(t) for k in 'a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3'.split()):
if r['c1']==r['d1']==r['d2']==0:
return 'type1'
elif r['c1'] == -r['b2'] and r['d1'] == -r['b3'] and r['d2'] == -r['c3'] \
and r['b1'] == r['c2'] == r['d3'] == 0:
return 'type2'
elif r['b1'] == r['c2'] == r['d3'] == 0 and r['c1']/r['a1'] == -r['d1']/r['a1'] \
and r['d2']/r['a2'] == -r['b2']/r['a2'] and r['b3']/r['a3'] == -r['c3']/r['a3']:
return 'type3'
else:
return None
else:
for k1 in 'c1 d1 b2 d2 b3 c3'.split():
if r[k1] == 0:
continue
else:
if all(not cancel(r[k1]/r[k]).has(t) for k in 'd1 b2 d2 b3 c3'.split() if r[k]!=0) \
and all(not cancel(r[k1]/(r['b1'] - r[k])).has(t) for k in 'b1 c2 d3'.split() if r['b1']!=r[k]):
return 'type4'
else:
break
return None
def check_linear_neq_order1(eq, func, func_coef):
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
n = len(eq)
for i in range(n):
for j in range(n):
if (fc[i, func[j], 0]/fc[i, func[i], 1]).has(t):
return None
if len(eq) == 3:
return 'type6'
return 'type1'
def check_nonlinear_2eq_order1(eq, func, func_coef):
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
f = Wild('f')
g = Wild('g')
u, v = symbols('u, v', cls=Dummy)
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \
or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)):
return 'type5'
else:
return None
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
eq_type = check_type(x, y)
if not eq_type:
eq_type = check_type(y, x)
return eq_type
x = func[0].func
y = func[1].func
fc = func_coef
n = Wild('n', exclude=[x(t),y(t)])
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type1'
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type2'
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \
r2[g].subs(x(t),u).subs(y(t),v).has(t)):
return 'type3'
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
# phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
if R1 and R2:
return 'type4'
return None
def check_nonlinear_2eq_order2(eq, func, func_coef):
return None
def check_nonlinear_3eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
z = func[2].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
u, v, w = symbols('u, v, w', cls=Dummy)
a = Wild('a', exclude=[x(t), y(t), z(t), t])
b = Wild('b', exclude=[x(t), y(t), z(t), t])
c = Wild('c', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
F1 = Wild('F1')
F2 = Wild('F2')
F3 = Wild('F3')
for i in range(3):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t))
r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t))
r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type1'
r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f)
if r:
r1 = collect_const(r[f]).match(a*f)
r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t))
r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type2'
r = eq[0].match(diff(x(t),t) - (F2-F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1)
if r2:
r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2])
if r1 and r2 and r3:
return 'type3'
r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1)
if r2:
r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2])
if r1 and r2 and r3:
return 'type4'
r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1))
if r2:
r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2]))
if r1 and r2 and r3:
return 'type5'
return None
def check_nonlinear_3eq_order2(eq, func, func_coef):
return None
@vectorize(0)
def odesimp(ode, eq, func, hint):
r"""
Simplifies solutions of ODEs, including trying to solve for ``func`` and
running :py:meth:`~sympy.solvers.ode.constantsimp`.
It may use knowledge of the type of solution that the hint returns to
apply additional simplifications.
It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s
in the expression, if the hint is not an ``_Integral`` hint.
This function should have no effect on expressions returned by
:py:meth:`~sympy.solvers.ode.dsolve`, as
:py:meth:`~sympy.solvers.ode.dsolve` already calls
:py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions
do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the
:py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this
function is designed for mainly internal use.
Examples
========
>>> from sympy import sin, symbols, dsolve, pprint, Function
>>> from sympy.solvers.ode.ode import odesimp
>>> x , u2, C1= symbols('x,u2,C1')
>>> f = Function('f')
>>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral',
... simplify=False)
>>> pprint(eq, wrap_line=False)
x
----
f(x)
/
|
| / 1 \
| -|u2 + -------|
| | /1 \|
| | sin|--||
| \ \u2//
log(f(x)) = log(C1) + | ---------------- d(u2)
| 2
| u2
|
/
>>> pprint(odesimp(eq, f(x), 1, {C1},
... hint='1st_homogeneous_coeff_subs_indep_div_dep'
... )) #doctest: +SKIP
x
--------- = C1
/f(x)\
tan|----|
\2*x /
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
constants = eq.free_symbols - ode.free_symbols
# First, integrate if the hint allows it.
eq = _handle_Integral(eq, func, hint)
if hint.startswith("nth_linear_euler_eq_nonhomogeneous"):
eq = simplify(eq)
if not isinstance(eq, Equality):
raise TypeError("eq should be an instance of Equality")
# Second, clean up the arbitrary constants.
# Right now, nth linear hints can put as many as 2*order constants in an
# expression. If that number grows with another hint, the third argument
# here should be raised accordingly, or constantsimp() rewritten to handle
# an arbitrary number of constants.
eq = constantsimp(eq, constants)
# Lastly, now that we have cleaned up the expression, try solving for func.
# When CRootOf is implemented in solve(), we will want to return a CRootOf
# every time instead of an Equality.
# Get the f(x) on the left if possible.
if eq.rhs == func and not eq.lhs.has(func):
eq = [Eq(eq.rhs, eq.lhs)]
# make sure we are working with lists of solutions in simplified form.
if eq.lhs == func and not eq.rhs.has(func):
# The solution is already solved
eq = [eq]
# special simplification of the rhs
if hint.startswith("nth_linear_constant_coeff"):
# Collect terms to make the solution look nice.
# This is also necessary for constantsimp to remove unnecessary
# terms from the particular solution from variation of parameters
#
# Collect is not behaving reliably here. The results for
# some linear constant-coefficient equations with repeated
# roots do not properly simplify all constants sometimes.
# 'collectterms' gives different orders sometimes, and results
# differ in collect based on that order. The
# sort-reverse trick fixes things, but may fail in the
# future. In addition, collect is splitting exponentials with
# rational powers for no reason. We have to do a match
# to fix this using Wilds.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms.sort(key=default_sort_key)
collectterms.reverse()
assert len(eq) == 1 and eq[0].lhs == f(x)
sol = eq[0].rhs
sol = expand_mul(sol)
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x))
del collectterms
# Collect is splitting exponentials with rational powers for
# no reason. We call powsimp to fix.
sol = powsimp(sol)
eq[0] = Eq(f(x), sol)
else:
# The solution is not solved, so try to solve it
try:
floats = any(i.is_Float for i in eq.atoms(Number))
eqsol = solve(eq, func, force=True, rational=False if floats else None)
if not eqsol:
raise NotImplementedError
except (NotImplementedError, PolynomialError):
eq = [eq]
else:
def _expand(expr):
numer, denom = expr.as_numer_denom()
if denom.is_Add:
return expr
else:
return powsimp(expr.expand(), combine='exp', deep=True)
# XXX: the rest of odesimp() expects each ``t`` to be in a
# specific normal form: rational expression with numerator
# expanded, but with combined exponential functions (at
# least in this setup all tests pass).
eq = [Eq(f(x), _expand(t)) for t in eqsol]
# special simplification of the lhs.
if hint.startswith("1st_homogeneous_coeff"):
for j, eqi in enumerate(eq):
newi = logcombine(eqi, force=True)
if isinstance(newi.lhs, log) and newi.rhs == 0:
newi = Eq(newi.lhs.args[0]/C1, C1)
eq[j] = newi
# We cleaned up the constants before solving to help the solve engine with
# a simpler expression, but the solved expression could have introduced
# things like -C1, so rerun constantsimp() one last time before returning.
for i, eqi in enumerate(eq):
eq[i] = constantsimp(eqi, constants)
eq[i] = constant_renumber(eq[i], ode.free_symbols)
# If there is only 1 solution, return it;
# otherwise return the list of solutions.
if len(eq) == 1:
eq = eq[0]
return eq
def ode_sol_simplicity(sol, func, trysolving=True):
r"""
Returns an extended integer representing how simple a solution to an ODE
is.
The following things are considered, in order from most simple to least:
- ``sol`` is solved for ``func``.
- ``sol`` is not solved for ``func``, but can be if passed to solve (e.g.,
a solution returned by ``dsolve(ode, func, simplify=False``).
- If ``sol`` is not solved for ``func``, then base the result on the
length of ``sol``, as computed by ``len(str(sol))``.
- If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s,
this will automatically be considered less simple than any of the above.
This function returns an integer such that if solution A is simpler than
solution B by above metric, then ``ode_sol_simplicity(sola, func) <
ode_sol_simplicity(solb, func)``.
Currently, the following are the numbers returned, but if the heuristic is
ever improved, this may change. Only the ordering is guaranteed.
+----------------------------------------------+-------------------+
| Simplicity | Return |
+==============================================+===================+
| ``sol`` solved for ``func`` | ``-2`` |
+----------------------------------------------+-------------------+
| ``sol`` not solved for ``func`` but can be | ``-1`` |
+----------------------------------------------+-------------------+
| ``sol`` is not solved nor solvable for | ``len(str(sol))`` |
| ``func`` | |
+----------------------------------------------+-------------------+
| ``sol`` contains an | ``oo`` |
| :obj:`~sympy.integrals.integrals.Integral` | |
+----------------------------------------------+-------------------+
``oo`` here means the SymPy infinity, which should compare greater than
any integer.
If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve
``sol``, you can use ``trysolving=False`` to skip that step, which is the
only potentially slow step. For example,
:py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag
should do this.
If ``sol`` is a list of solutions, if the worst solution in the list
returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``,
that is, the length of the string representation of the whole list.
Examples
========
This function is designed to be passed to ``min`` as the key argument,
such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i,
f(x)))``.
>>> from sympy import symbols, Function, Eq, tan, cos, sqrt, Integral
>>> from sympy.solvers.ode.ode import ode_sol_simplicity
>>> x, C1, C2 = symbols('x, C1, C2')
>>> f = Function('f')
>>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
-2
>>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
-1
>>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
oo
>>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1)
>>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2)
>>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]]
[28, 35]
>>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
Eq(f(x)/tan(f(x)/(2*x)), C1)
"""
# TODO: if two solutions are solved for f(x), we still want to be
# able to get the simpler of the two
# See the docstring for the coercion rules. We check easier (faster)
# things here first, to save time.
if iterable(sol):
# See if there are Integrals
for i in sol:
if ode_sol_simplicity(i, func, trysolving=trysolving) == oo:
return oo
return len(str(sol))
if sol.has(Integral):
return oo
# Next, try to solve for func. This code will change slightly when CRootOf
# is implemented in solve(). Probably a CRootOf solution should fall
# somewhere between a normal solution and an unsolvable expression.
# First, see if they are already solved
if sol.lhs == func and not sol.rhs.has(func) or \
sol.rhs == func and not sol.lhs.has(func):
return -2
# We are not so lucky, try solving manually
if trysolving:
try:
sols = solve(sol, func)
if not sols:
raise NotImplementedError
except NotImplementedError:
pass
else:
return -1
# Finally, a naive computation based on the length of the string version
# of the expression. This may favor combined fractions because they
# will not have duplicate denominators, and may slightly favor expressions
# with fewer additions and subtractions, as those are separated by spaces
# by the printer.
# Additional ideas for simplicity heuristics are welcome, like maybe
# checking if a equation has a larger domain, or if constantsimp has
# introduced arbitrary constants numbered higher than the order of a
# given ODE that sol is a solution of.
return len(str(sol))
def _get_constant_subexpressions(expr, Cs):
Cs = set(Cs)
Ces = []
def _recursive_walk(expr):
expr_syms = expr.free_symbols
if expr_syms and expr_syms.issubset(Cs):
Ces.append(expr)
else:
if expr.func == exp:
expr = expr.expand(mul=True)
if expr.func in (Add, Mul):
d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs))
if len(d[True]) > 1:
x = expr.func(*d[True])
if not x.is_number:
Ces.append(x)
elif isinstance(expr, Integral):
if expr.free_symbols.issubset(Cs) and \
all(len(x) == 3 for x in expr.limits):
Ces.append(expr)
for i in expr.args:
_recursive_walk(i)
return
_recursive_walk(expr)
return Ces
def __remove_linear_redundancies(expr, Cs):
cnts = {i: expr.count(i) for i in Cs}
Cs = [i for i in Cs if cnts[i] > 0]
def _linear(expr):
if isinstance(expr, Add):
xs = [i for i in Cs if expr.count(i)==cnts[i] \
and 0 == expr.diff(i, 2)]
d = {}
for x in xs:
y = expr.diff(x)
if y not in d:
d[y]=[]
d[y].append(x)
for y in d:
if len(d[y]) > 1:
d[y].sort(key=str)
for x in d[y][1:]:
expr = expr.subs(x, 0)
return expr
def _recursive_walk(expr):
if len(expr.args) != 0:
expr = expr.func(*[_recursive_walk(i) for i in expr.args])
expr = _linear(expr)
return expr
if isinstance(expr, Equality):
lhs, rhs = [_recursive_walk(i) for i in expr.args]
f = lambda i: isinstance(i, Number) or i in Cs
if isinstance(lhs, Symbol) and lhs in Cs:
rhs, lhs = lhs, rhs
if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f)
for i in [True, False]:
for hs in [dlhs, drhs]:
if i not in hs:
hs[i] = [0]
# this calculation can be simplified
lhs = Add(*dlhs[False]) - Add(*drhs[False])
rhs = Add(*drhs[True]) - Add(*dlhs[True])
elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
if True in dlhs:
if False not in dlhs:
dlhs[False] = [1]
lhs = Mul(*dlhs[False])
rhs = rhs/Mul(*dlhs[True])
return Eq(lhs, rhs)
else:
return _recursive_walk(expr)
@vectorize(0)
def constantsimp(expr, constants):
r"""
Simplifies an expression with arbitrary constants in it.
This function is written specifically to work with
:py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use.
Simplification is done by "absorbing" the arbitrary constants into other
arbitrary constants, numbers, and symbols that they are not independent
of.
The symbols must all have the same name with numbers after it, for
example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be
'``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3.
If the arbitrary constants are independent of the variable ``x``, then the
independent symbol would be ``x``. There is no need to specify the
dependent function, such as ``f(x)``, because it already has the
independent symbol, ``x``, in it.
Because terms are "absorbed" into arbitrary constants and because
constants are renumbered after simplifying, the arbitrary constants in
expr are not necessarily equal to the ones of the same name in the
returned result.
If two or more arbitrary constants are added, multiplied, or raised to the
power of each other, they are first absorbed together into a single
arbitrary constant. Then the new constant is combined into other terms if
necessary.
Absorption of constants is done with limited assistance:
1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join
constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x
C_1 \cos(x)`;
2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are
expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`.
Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants
after simplification or else arbitrary numbers on constants may appear,
e.g. `C_1 + C_3 x`.
In rare cases, a single constant can be "simplified" into two constants.
Every differential equation solution should have as many arbitrary
constants as the order of the differential equation. The result here will
be technically correct, but it may, for example, have `C_1` and `C_2` in
an expression, when `C_1` is actually equal to `C_2`. Use your discretion
in such situations, and also take advantage of the ability to use hints in
:py:meth:`~sympy.solvers.ode.dsolve`.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constantsimp
>>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y')
>>> constantsimp(2*C1*x, {C1, C2, C3})
C1*x
>>> constantsimp(C1 + 2 + x, {C1, C2, C3})
C1 + x
>>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3})
C1 + C3*x
"""
# This function works recursively. The idea is that, for Mul,
# Add, Pow, and Function, if the class has a constant in it, then
# we can simplify it, which we do by recursing down and
# simplifying up. Otherwise, we can skip that part of the
# expression.
Cs = constants
orig_expr = expr
constant_subexprs = _get_constant_subexpressions(expr, Cs)
for xe in constant_subexprs:
xes = list(xe.free_symbols)
if not xes:
continue
if all([expr.count(c) == xe.count(c) for c in xes]):
xes.sort(key=str)
expr = expr.subs(xe, xes[0])
# try to perform common sub-expression elimination of constant terms
try:
commons, rexpr = cse(expr)
commons.reverse()
rexpr = rexpr[0]
for s in commons:
cs = list(s[1].atoms(Symbol))
if len(cs) == 1 and cs[0] in Cs and \
cs[0] not in rexpr.atoms(Symbol) and \
not any(cs[0] in ex for ex in commons if ex != s):
rexpr = rexpr.subs(s[0], cs[0])
else:
rexpr = rexpr.subs(*s)
expr = rexpr
except IndexError:
pass
expr = __remove_linear_redundancies(expr, Cs)
def _conditional_term_factoring(expr):
new_expr = terms_gcd(expr, clear=False, deep=True, expand=False)
# we do not want to factor exponentials, so handle this separately
if new_expr.is_Mul:
infac = False
asfac = False
for m in new_expr.args:
if isinstance(m, exp):
asfac = True
elif m.is_Add:
infac = any(isinstance(fi, exp) for t in m.args
for fi in Mul.make_args(t))
if asfac and infac:
new_expr = expr
break
return new_expr
expr = _conditional_term_factoring(expr)
# call recursively if more simplification is possible
if orig_expr != expr:
return constantsimp(expr, Cs)
return expr
def constant_renumber(expr, variables=None, newconstants=None):
r"""
Renumber arbitrary constants in ``expr`` to use the symbol names as given
in ``newconstants``. In the process, this reorders expression terms in a
standard way.
If ``newconstants`` is not provided then the new constant names will be
``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable
giving the new symbols to use for the constants in order.
The ``variables`` argument is a list of non-constant symbols. All other
free symbols found in ``expr`` are assumed to be constants and will be
renumbered. If ``variables`` is not given then any numbered symbol
beginning with ``C`` (e.g. ``C1``) is assumed to be a constant.
Symbols are renumbered based on ``.sort_key()``, so they should be
numbered roughly in the order that they appear in the final, printed
expression. Note that this ordering is based in part on hashes, so it can
produce different results on different machines.
The structure of this function is very similar to that of
:py:meth:`~sympy.solvers.ode.constantsimp`.
Examples
========
>>> from sympy import symbols, Eq, pprint
>>> from sympy.solvers.ode.ode import constant_renumber
>>> x, C1, C2, C3 = symbols('x,C1:4')
>>> expr = C3 + C2*x + C1*x**2
>>> expr
C1*x**2 + C2*x + C3
>>> constant_renumber(expr)
C1 + C2*x + C3*x**2
The ``variables`` argument specifies which are constants so that the
other symbols will not be renumbered:
>>> constant_renumber(expr, [C1, x])
C1*x**2 + C2 + C3*x
The ``newconstants`` argument is used to specify what symbols to use when
replacing the constants:
>>> constant_renumber(expr, [x], newconstants=symbols('E1:4'))
E1 + E2*x + E3*x**2
"""
if type(expr) in (set, list, tuple):
renumbered = [constant_renumber(e, variables, newconstants) for e in expr]
return type(expr)(renumbered)
# Symbols in solution but not ODE are constants
if variables is not None:
variables = set(variables)
constantsymbols = list(expr.free_symbols - variables)
# Any Cn is a constant...
else:
variables = set()
isconstant = lambda s: s.startswith('C') and s[1:].isdigit()
constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)]
# Find new constants checking that they aren't already in the ODE
if newconstants is None:
iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables)
else:
iter_constants = (sym for sym in newconstants if sym not in variables)
# XXX: This global newstartnumber hack should be removed
global newstartnumber
newstartnumber = 1
endnumber = len(constantsymbols)
constants_found = [None]*(endnumber + 2)
# make a mapping to send all constantsymbols to S.One and use
# that to make sure that term ordering is not dependent on
# the indexed value of C
C_1 = [(ci, S.One) for ci in constantsymbols]
sort_key=lambda arg: default_sort_key(arg.subs(C_1))
def _constant_renumber(expr):
r"""
We need to have an internal recursive function so that
newstartnumber maintains its values throughout recursive calls.
"""
# FIXME: Use nonlocal here when support for Py2 is dropped:
global newstartnumber
if isinstance(expr, Equality):
return Eq(
_constant_renumber(expr.lhs),
_constant_renumber(expr.rhs))
if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \
not expr.has(*constantsymbols):
# Base case, as above. Hope there aren't constants inside
# of some other class, because they won't be renumbered.
return expr
elif expr.is_Piecewise:
return expr
elif expr in constantsymbols:
if expr not in constants_found:
constants_found[newstartnumber] = expr
newstartnumber += 1
return expr
elif expr.is_Function or expr.is_Pow or isinstance(expr, Tuple):
return expr.func(
*[_constant_renumber(x) for x in expr.args])
else:
sortedargs = list(expr.args)
sortedargs.sort(key=sort_key)
return expr.func(*[_constant_renumber(x) for x in sortedargs])
expr = _constant_renumber(expr)
# Don't renumber symbols present in the ODE.
constants_found = [c for c in constants_found if c not in variables]
# Renumbering happens here
expr = expr.subs(zip(constants_found[1:], iter_constants), simultaneous=True)
return expr
def _handle_Integral(expr, func, hint):
r"""
Converts a solution with Integrals in it into an actual solution.
For most hints, this simply runs ``expr.doit()``.
"""
# XXX: This global y hack should be removed
global y
x = func.args[0]
f = func.func
if hint == "1st_exact":
sol = (expr.doit()).subs(y, f(x))
del y
elif hint == "1st_exact_Integral":
sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs)
del y
elif hint == "nth_linear_constant_coeff_homogeneous":
sol = expr
elif not hint.endswith("_Integral"):
sol = expr.doit()
else:
sol = expr
return sol
def _ode_factorable_match(eq, func, x0):
from sympy.polys.polytools import factor
eqs = factor(eq)
eqs = fraction(eqs)[0] # p/q =0, So we need to solve only p=0
eqns = []
r = None
if isinstance(eqs, Pow):
# if f(x)**p=0 then f(x)=0 (p>0)
if eqs.exp.is_positive:
eq = eqs.base
if isinstance(eq, Pow):
return None
else:
r = _ode_factorable_match(eq, func, x0)
if r is None:
r = {'eqns' : [eq], 'x0': x0}
return r
if isinstance(eqs, Mul):
fac = eqs.args
for i in fac:
if i.has(func):
eqns.append(i)
if len(eqns)>0:
r = {'eqns' : eqns, 'x0' : x0}
return r
# FIXME: replace the general solution in the docstring with
# dsolve(equation, hint='1st_exact_Integral'). You will need to be able
# to have assumptions on P and Q that dP/dy = dQ/dx.
def ode_1st_exact(eq, func, order, match):
r"""
Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total
differential of a function. That is, the differential equation
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0
is exact if there is some function `F(x, y)` such that `P(x, y) =
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can
be shown that a necessary and sufficient condition for a first order ODE
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`.
Then, the solution will be as given below::
>>> from sympy import Function, Eq, Integral, symbols, pprint
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
>>> P, Q, F= map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
... Integral(Q(x0, t), (t, y0, y))), C1))
x y
/ /
| |
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1
| |
/ /
x0 y0
Where the first partials of `P` and `Q` exist and are continuous in a
simply connected region.
A note: SymPy currently has no way to represent inert substitution on an
expression, so the hint ``1st_exact_Integral`` will return an integral
with `dy`. This is supposed to represent the function that you are
solving for.
Examples
========
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
References
==========
- https://en.wikipedia.org/wiki/Exact_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 73
# indirect doctest
"""
x = func.args[0]
r = match # d+e*diff(f(x),x)
e = r[r['e']]
d = r[r['d']]
# XXX: This global y hack should be removed
global y # This is the only way to pass dummy y to _handle_Integral
y = r['y']
C1 = get_numbered_constants(eq, num=1)
# Refer Joel Moses, "Symbolic Integration - The Stormy Decade",
# Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558
# which gives the method to solve an exact differential equation.
sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y)
return Eq(sol, C1)
def ode_1st_homogeneous_coeff_best(eq, func, order, match):
r"""
Returns the best solution to an ODE from the two hints
``1st_homogeneous_coeff_subs_dep_div_indep`` and
``1st_homogeneous_coeff_subs_indep_div_dep``.
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
docstrings for more information on these hints. Note that there is no
``ode_1st_homogeneous_coeff_best_Integral`` hint.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_best', simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
# There are two substitutions that solve the equation, u1=y/x and u2=x/y
# They produce different integrals, so try them both and see which
# one is easier.
sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq,
func, order, match)
sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq,
func, order, match)
simplify = match.get('simplify', True)
if simplify:
# why is odesimp called here? Should it be at the usual spot?
sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep")
sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep")
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func,
trysolving=not simplify))
def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_1 = \frac{\text{<dependent
variable>}}{\text{<independent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential
equation into an equation separable in the variables `x` and `u`. If
`h(u_1)` is the function that results from making the substitution `u_1 =
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is::
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform)
/f(x)\ /f(x)\ d
g|----| + h|----|*--(f(x))
\ x / \ x / dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
f(x)
----
x
/
|
| -h(u1)
log(x) = C1 + | ---------------- d(u1)
| u1*h(u1) + g(u1)
|
/
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`.
Examples
========
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))
/ 3 \
|3*f(x) f (x)|
log|------ + -----|
| x 3 |
\ x /
log(x) = log(C1) - -------------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u1 = Dummy('u1') # u1 == f(x)/x
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0)
yarg = match.get('yarg', 0)
int = Integral(
(-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}),
(u1, None, f(x)/x))
sol = logcombine(Eq(log(x), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_2 = \frac{\text{<independent
variable>}}{\text{<dependent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential
equation into an equation separable in the variables `y` and `u_2`. If
`h(u_2)` is the function that results from making the substitution `u_2 =
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform)
/ x \ / x \ d
g|----| + h|----|*--(f(x))
\f(x)/ \f(x)/ dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
x
----
f(x)
/
|
| -g(u2)
| ---------------- d(u2)
| u2*g(u2) + h(u2)
|
/
<BLANKLINE>
f(x) = C1*e
Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`.
Examples
========
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u2 = Dummy('u2') # u2 == x/f(x)
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0) # If xarg present take xarg, else zero
yarg = match.get('yarg', 0) # If yarg present take yarg, else zero
int = Integral(
simplify(
(-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})),
(u2, None, x/f(x)))
sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
# XXX: Should this function maybe go somewhere else?
def homogeneous_order(eq, *symbols):
r"""
Returns the order `n` if `g` is homogeneous and ``None`` if it is not
homogeneous.
Determines if a function is homogeneous and if so of what order. A
function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y,
\cdots) = t^n f(x, y, \cdots)`.
If the function is of two variables, `F(x, y)`, then `f` being homogeneous
of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)`
or `H(y/x)`. This fact is used to solve 1st order ordinary differential
equations whose coefficients are homogeneous of the same order (see the
docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`).
Symbols can be functions, but every argument of the function must be a
symbol, and the arguments of the function that appear in the expression
must match those given in the list of symbols. If a declared function
appears with different arguments than given in the list of symbols,
``None`` is returned.
Examples
========
>>> from sympy import Function, homogeneous_order, sqrt
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> homogeneous_order(f(x), f(x)) is None
True
>>> homogeneous_order(f(x,y), f(y, x), x, y) is None
True
>>> homogeneous_order(f(x), f(x), x)
1
>>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
2
>>> homogeneous_order(x**2+f(x), x, f(x)) is None
True
"""
if not symbols:
raise ValueError("homogeneous_order: no symbols were given.")
symset = set(symbols)
eq = sympify(eq)
# The following are not supported
if eq.has(Order, Derivative):
return None
# These are all constants
if (eq.is_Number or
eq.is_NumberSymbol or
eq.is_number
):
return S.Zero
# Replace all functions with dummy variables
dum = numbered_symbols(prefix='d', cls=Dummy)
newsyms = set()
for i in [j for j in symset if getattr(j, 'is_Function')]:
iargs = set(i.args)
if iargs.difference(symset):
return None
else:
dummyvar = next(dum)
eq = eq.subs(i, dummyvar)
symset.remove(i)
newsyms.add(dummyvar)
symset.update(newsyms)
if not eq.free_symbols & symset:
return None
# assuming order of a nested function can only be equal to zero
if isinstance(eq, Function):
return None if homogeneous_order(
eq.args[0], *tuple(symset)) != 0 else S.Zero
# make the replacement of x with x*t and see if t can be factored out
t = Dummy('t', positive=True) # It is sufficient that t > 0
eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t]
if eqs is S.One:
return S.Zero # there was no term with only t
i, d = eqs.as_independent(t, as_Add=False)
b, e = d.as_base_exp()
if b == t:
return e
def ode_1st_linear(eq, func, order, match):
r"""
Solves 1st order linear differential equations.
These are differential equations of the form
.. math:: dy/dx + P(x) y = Q(x)\text{.}
These kinds of differential equations can be solved in a general way. The
integrating factor `e^{\int P(x) \,dx}` will turn the equation into a
separable equation. The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin
>>> from sympy.abc import x
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
>>> pprint(genform)
d
P(x)*f(x) + --(f(x)) = Q(x)
dx
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
/ / \
| | |
| | / | /
| | | | |
| | | P(x) dx | - | P(x) dx
| | | | |
| | / | /
f(x) = |C1 + | Q(x)*e dx|*e
| | |
\ / /
Examples
========
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
... f(x), '1st_linear'))
f(x) = x*(C1 - cos(x))
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 92
# indirect doctest
"""
x = func.args[0]
f = func.func
r = match # a*diff(f(x),x) + b*f(x) + c
C1 = get_numbered_constants(eq, num=1)
t = exp(Integral(r[r['b']]/r[r['a']], x))
tt = Integral(t*(-r[r['c']]/r[r['a']]), x)
f = match.get('u', f(x)) # take almost-linear u if present, else f(x)
return Eq(f, (tt + C1)/t)
def ode_Bernoulli(eq, func, order, match):
r"""
Solves Bernoulli differential equations.
These are equations of the form
.. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.}
The substitution `w = 1/y^{1-n}` will transform an equation of this form
into one that is linear (see the docstring of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_linear`). The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, n
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
>>> pprint(genform)
d n
P(x)*f(x) + --(f(x)) = Q(x)*f (x)
dx
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=100)
1
-----
1 - n
// / \ \
|| | | |
|| | / | / |
|| | | | | |
|| | (1 - n)* | P(x) dx | -(1 - n)* | P(x) dx|
|| | | | | |
|| | / | / |
f(x) = ||C1 + (n - 1)* | -Q(x)*e dx|*e |
|| | | |
\\ / / /
Note that the equation is separable when `n = 1` (see the docstring of
:py:meth:`~sympy.solvers.ode.ode.ode_separable`).
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
... hint='separable_Integral'))
f(x)
/
| /
| 1 |
| - dy = C1 + | (-P(x) + Q(x)) dx
| y |
| /
/
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
... f(x), hint='Bernoulli'))
1
f(x) = -------------------
/ log(x) 1\
x*|C1 + ------ + -|
\ x x/
References
==========
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 95
# indirect doctest
"""
x = func.args[0]
f = func.func
r = match # a*diff(f(x),x) + b*f(x) + c*f(x)**n, n != 1
C1 = get_numbered_constants(eq, num=1)
t = exp((1 - r[r['n']])*Integral(r[r['b']]/r[r['a']], x))
tt = (r[r['n']] - 1)*Integral(t*r[r['c']]/r[r['a']], x)
return Eq(f(x), ((tt + C1)/t)**(1/(1 - r[r['n']])))
def ode_Riccati_special_minus2(eq, func, order, match):
r"""
The general Riccati equation has the form
.. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.}
While it does not have a general solution [1], the "special" form, `dy/dx
= a y^2 - b x^c`, does have solutions in many cases [2]. This routine
returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained
by using a suitable change of variables to reduce it to the special form
and is valid when neither `a` nor `b` are zero and either `c` or `d` is
zero.
>>> from sympy.abc import x, y, a, b, c, d
>>> from sympy.solvers.ode import dsolve, checkodesol
>>> from sympy import pprint, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)
>>> sol = dsolve(genform, y)
>>> pprint(sol, wrap_line=False)
/ / __________________ \\
| __________________ | / 2 ||
| / 2 | \/ 4*b*d - (a + c) *log(x)||
-|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------||
\ \ 2*a //
f(x) = ------------------------------------------------------------------------
2*b*x
>>> checkodesol(genform, sol, order=1)[0]
True
References
==========
1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati
2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf -
http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf
"""
x = func.args[0]
f = func.func
r = match # a2*diff(f(x),x) + b2*f(x) + c2*f(x)/x + d2/x**2
a2, b2, c2, d2 = [r[r[s]] for s in 'a2 b2 c2 d2'.split()]
C1 = get_numbered_constants(eq, num=1)
mu = sqrt(4*d2*b2 - (a2 - c2)**2)
return Eq(f(x), (a2 - c2 - mu*tan(mu/(2*a2)*log(x) + C1))/(2*b2*x))
def ode_Liouville(eq, func, order, match):
r"""
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\!
\frac{dy}{dx}\!\right)^2 + h(x)
\frac{dy}{dx}\text{.}
The general solution is:
>>> from sympy import Function, dsolve, Eq, pprint, diff
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
... h(x)*diff(f(x),x), 0)
>>> pprint(genform)
2 2
/d \ d d
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0
\dx / dx 2
dx
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
f(x)
/ /
| |
| / | /
| | | |
| - | h(x) dx | | g(y) dy
| | | |
| / | /
C1 + C2* | e dx + | e dy = 0
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
... diff(f(x), x)/x, f(x), hint='Liouville'))
________________ ________________
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ]
References
==========
- Goldstein and Braun, "Advanced Methods for the Solution of Differential
Equations", pp. 98
- http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville
# indirect doctest
"""
# Liouville ODE:
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98, as well as
# http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville
x = func.args[0]
f = func.func
r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x)
y = r['y']
C1, C2 = get_numbered_constants(eq, num=2)
int = Integral(exp(Integral(r['g'], y)), (y, None, f(x)))
sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0)
return sol
def ode_2nd_power_series_ordinary(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at an ordinary point. A homogeneous
differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials,
it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at
`x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`,
in the differential equation, and equating the nth term. Using this relation
various terms can be generated.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x, y
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) + f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_ordinary'))
/ 4 2 \ / 2\
|x x | | x | / 6\
f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x /
\24 2 / \ 6 /
References
==========
- http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = Dummy("n", integer=True)
s = Wild("s")
k = Wild("k", exclude=[x])
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match[match['a3']]
q = match[match['b3']]
r = match[match['c3']]
seriesdict = {}
recurr = Function("r")
# Generating the recurrence relation which works this way:
# for the second order term the summation begins at n = 2. The coefficients
# p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that
# the exponent of x becomes n.
# For example, if p is x, then the second degree recurrence term is
# an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to
# an+1*n*(n - 1)*x**n.
# A similar process is done with the first order and zeroth order term.
coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)]
for index, coeff in enumerate(coefflist):
if coeff[1]:
f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0)))
if f2.is_Add:
addargs = f2.args
else:
addargs = [f2]
for arg in addargs:
powm = arg.match(s*x**k)
term = coeff[0]*powm[s]
if not powm[k].is_Symbol:
term = term.subs(n, n - powm[k].as_independent(n)[0])
startind = powm[k].subs(n, index)
# Seeing if the startterm can be reduced further.
# If it vanishes for n lesser than startind, it is
# equal to summation from n.
if startind:
for i in reversed(range(startind)):
if not term.subs(n, i):
seriesdict[term] = i
else:
seriesdict[term] = i + 1
break
else:
seriesdict[term] = S.Zero
# Stripping of terms so that the sum starts with the same number.
teq = S.Zero
suminit = seriesdict.values()
rkeys = seriesdict.keys()
req = Add(*rkeys)
if any(suminit):
maxval = max(suminit)
for term in seriesdict:
val = seriesdict[term]
if val != maxval:
for i in range(val, maxval):
teq += term.subs(n, val)
finaldict = {}
if teq:
fargs = teq.atoms(AppliedUndef)
if len(fargs) == 1:
finaldict[fargs.pop()] = 0
else:
maxf = max(fargs, key = lambda x: x.args[0])
sol = solve(teq, maxf)
if isinstance(sol, list):
sol = sol[0]
finaldict[maxf] = sol
# Finding the recurrence relation in terms of the largest term.
fargs = req.atoms(AppliedUndef)
maxf = max(fargs, key = lambda x: x.args[0])
minf = min(fargs, key = lambda x: x.args[0])
if minf.args[0].is_Symbol:
startiter = 0
else:
startiter = -minf.args[0].as_independent(n)[0]
lhs = maxf
rhs = solve(req, maxf)
if isinstance(rhs, list):
rhs = rhs[0]
# Checking how many values are already present
tcounter = len([t for t in finaldict.values() if t])
for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary
check = rhs.subs(n, startiter)
nlhs = lhs.subs(n, startiter)
nrhs = check.subs(finaldict)
finaldict[nlhs] = nrhs
startiter += 1
# Post processing
series = C0 + C1*(x - x0)
for term in finaldict:
if finaldict[term]:
fact = term.args[0]
series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*(
x - x0)**fact)
series = collect(expand_mul(series), [C0, C1]) + Order(x**terms)
return Eq(f(x), series)
def ode_2nd_linear_airy(eq, func, order, match):
r"""
Gives solution of the Airy differential equation
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0
in terms of Airy special functions airyai and airybi.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) - x*f(x)
>>> dsolve(eq)
Eq(f(x), C1*airyai(x) + C2*airybi(x))
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
b = match['b']
m = match['m']
if m.is_positive:
arg = - b/cbrt(m)**2 - cbrt(m)*x
elif m.is_negative:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
else:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
return Eq(f(x), C0*airyai(arg) + C1*airybi(arg))
def ode_2nd_power_series_regular(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at a regular point. A second order
homogeneous differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}`
and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity
`P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for
finding the power series solutions is:
1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series
solutions about x0. Find `p0` and `q0` which are the constants of the
power series expansions.
2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the
roots `m1` and `m2` of the indicial equation.
3. If `m1 - m2` is a non integer there exists two series solutions. If
`m1 = m2`, there exists only one solution. If `m1 - m2` is an integer,
then the existence of one solution is confirmed. The other solution may
or may not exist.
The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The
coefficients are determined by the following recurrence relation.
`a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case
in which `m1 - m2` is an integer, it can be seen from the recurrence relation
that for the lower root `m`, when `n` equals the difference of both the
roots, the denominator becomes zero. So if the numerator is not equal to zero,
a second series solution exists.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x, y
>>> f = Function("f")
>>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_regular'))
/ 6 4 2 \
| x x x |
/ 4 2 \ C1*|- --- + -- - -- + 1|
| x x | \ 720 24 2 / / 6\
f(x) = C2*|--- - -- + 1| + ------------------------ + O\x /
\120 6 / x
References
==========
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
m = Dummy("m") # for solving the indicial equation
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match['p']
q = match['q']
# Generating the indicial equation
indicial = []
for term in [p, q]:
if not term.has(x):
indicial.append(term)
else:
term = series(term, n=1, x0=x0)
if isinstance(term, Order):
indicial.append(S.Zero)
else:
for arg in term.args:
if not arg.has(x):
indicial.append(arg)
break
p0, q0 = indicial
sollist = solve(m*(m - 1) + m*p0 + q0, m)
if sollist and isinstance(sollist, list) and all(
[sol.is_real for sol in sollist]):
serdict1 = {}
serdict2 = {}
if len(sollist) == 1:
# Only one series solution exists in this case.
m1 = m2 = sollist.pop()
if terms-m1-1 <= 0:
return Eq(f(x), Order(terms))
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
else:
m1 = sollist[0]
m2 = sollist[1]
if m1 < m2:
m1, m2 = m2, m1
# Irrespective of whether m1 - m2 is an integer or not, one
# Frobenius series solution exists.
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
if not (m1 - m2).is_integer:
# Second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1)
else:
# Check if second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1)
if serdict1:
finalseries1 = C0
for key in serdict1:
power = int(key.name[1:])
finalseries1 += serdict1[key]*(x - x0)**power
finalseries1 = (x - x0)**m1*finalseries1
finalseries2 = S.Zero
if serdict2:
for key in serdict2:
power = int(key.name[1:])
finalseries2 += serdict2[key]*(x - x0)**power
finalseries2 += C1
finalseries2 = (x - x0)**m2*finalseries2
return Eq(f(x), collect(finalseries1 + finalseries2,
[C0, C1]) + Order(x**terms))
def ode_2nd_linear_bessel(eq, func, order, match):
r"""
Gives solution of the Bessel differential equation
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x)
if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)) as both the solutions are linearly independent else if
n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)).
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy import Symbol
>>> v = Symbol('v', positive=True)
>>> from sympy.solvers.ode import dsolve, checkodesol
>>> from sympy import pprint, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
>>> dsolve(genform)
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))
References
==========
https://www.math24.net/bessel-differential-equation/
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = match['n']
a4 = match['a4']
c4 = match['c4']
d4 = match['d4']
b4 = match['b4']
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2)
return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4)
+ C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))
def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None):
r"""
Returns a dict with keys as coefficients and values as their values in terms of C0
"""
n = int(n)
# In cases where m1 - m2 is not an integer
m2 = check
d = Dummy("d")
numsyms = numbered_symbols("C", start=0)
numsyms = [next(numsyms) for i in range(n + 1)]
serlist = []
for ser in [p, q]:
# Order term not present
if ser.is_polynomial(x) and Poly(ser, x).degree() <= n:
if x0:
ser = ser.subs(x, x + x0)
dict_ = Poly(ser, x).as_dict()
# Order term present
else:
tseries = series(ser, x=x0, n=n+1)
# Removing order
dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict()
# Fill in with zeros, if coefficients are zero.
for i in range(n + 1):
if (i,) not in dict_:
dict_[(i,)] = S.Zero
serlist.append(dict_)
pseries = serlist[0]
qseries = serlist[1]
indicial = d*(d - 1) + d*p0 + q0
frobdict = {}
for i in range(1, n + 1):
num = c*(m*pseries[(i,)] + qseries[(i,)])
for j in range(1, i):
sym = Symbol("C" + str(j))
num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)])
# Checking for cases when m1 - m2 is an integer. If num equals zero
# then a second Frobenius series solution cannot be found. If num is not zero
# then set constant as zero and proceed.
if m2 is not None and i == m2 - m:
if num:
return False
else:
frobdict[numsyms[i]] = S.Zero
else:
frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i))
return frobdict
def _nth_order_reducible_match(eq, func):
r"""
Matches any differential equation that can be rewritten with a smaller
order. Only derivatives of ``func`` alone, wrt a single variable,
are considered, and only in them should ``func`` appear.
"""
# ODE only handles functions of 1 variable so this affirms that state
assert len(func.args) == 1
x = func.args[0]
vc = [d.variable_count[0] for d in eq.atoms(Derivative)
if d.expr == func and len(d.variable_count) == 1]
ords = [c for v, c in vc if v == x]
if len(ords) < 2:
return
smallest = min(ords)
# make sure func does not appear outside of derivatives
D = Dummy()
if eq.subs(func.diff(x, smallest), D).has(func):
return
return {'n': smallest}
def ode_nth_order_reducible(eq, func, order, match):
r"""
Solves ODEs that only involve derivatives of the dependent variable using
a substitution of the form `f^n(x) = g(x)`.
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If
that gives an explicit solution for `g` then `f` is found simply by
integration.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0)
>>> dsolve(eq, f(x), hint='nth_order_reducible')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
"""
x = func.args[0]
f = func.func
n = match['n']
# get a unique function name for g
names = [a.name for a in eq.atoms(AppliedUndef)]
while True:
name = Dummy().name
if name not in names:
g = Function(name)
break
w = f(x).diff(x, n)
geq = eq.subs(w, g(x))
gsol = dsolve(geq, g(x))
if not isinstance(gsol, list):
gsol = [gsol]
# Might be multiple solutions to the reduced ODE:
fsol = []
for gsoli in gsol:
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times
fsol.append(fsoli)
if len(fsol) == 1:
fsol = fsol[0]
return fsol
# This needs to produce an invertible function but the inverse depends
# which variable we are integrating with respect to. Since the class can
# be stored in cached results we need to ensure that we always get the
# same class back for each particular integration variable so we store these
# classes in a global dict:
_nth_algebraic_diffx_stored = {} # type: Dict[Symbol, Type[Function]]
def _nth_algebraic_diffx(var):
cls = _nth_algebraic_diffx_stored.get(var, None)
if cls is None:
# A class that behaves like Derivative wrt var but is "invertible".
class diffx(Function):
def inverse(self):
# don't use integrate here because fx has been replaced by _t
# in the equation; integrals will not be correct while solve
# is at work.
return lambda expr: Integral(expr, var) + Dummy('C')
cls = _nth_algebraic_diffx_stored.setdefault(var, diffx)
return cls
def _nth_algebraic_match(eq, func):
r"""
Matches any differential equation that nth_algebraic can solve. Uses
`sympy.solve` but teaches it how to integrate derivatives.
This involves calling `sympy.solve` and does most of the work of finding a
solution (apart from evaluating the integrals).
"""
# The independent variable
var = func.args[0]
# Derivative that solve can handle:
diffx = _nth_algebraic_diffx(var)
# Replace derivatives wrt the independent variable with diffx
def replace(eq, var):
def expand_diffx(*args):
differand, diffs = args[0], args[1:]
toreplace = differand
for v, n in diffs:
for _ in range(n):
if v == var:
toreplace = diffx(toreplace)
else:
toreplace = Derivative(toreplace, v)
return toreplace
return eq.replace(Derivative, expand_diffx)
# Restore derivatives in solution afterwards
def unreplace(eq, var):
return eq.replace(diffx, lambda e: Derivative(e, var))
subs_eqn = replace(eq, var)
try:
# turn off simplification to protect Integrals that have
# _t instead of fx in them and would otherwise factor
# as t_*Integral(1, x)
solns = solve(subs_eqn, func, simplify=False)
except NotImplementedError:
solns = []
solns = [simplify(unreplace(soln, var)) for soln in solns]
solns = [Equality(func, soln) for soln in solns]
return {'var':var, 'solutions':solns}
def ode_nth_algebraic(eq, func, order, match):
r"""
Solves an `n`\th order ordinary differential equation using algebra and
integrals.
There is no general form for the kind of equation that this can solve. The
the equation is solved algebraically treating differentiation as an
invertible algebraic function.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0)
>>> dsolve(eq, f(x), hint='nth_algebraic')
... # doctest: +NORMALIZE_WHITESPACE
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
Note that this solver can return algebraic solutions that do not have any
integration constants (f(x) = 0 in the above example).
# indirect doctest
"""
return match['solutions']
def _remove_redundant_solutions(eq, solns, order, var):
r"""
Remove redundant solutions from the set of solutions.
This function is needed because otherwise dsolve can return
redundant solutions. As an example consider:
eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0)
There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0
leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0
leading to the solution f(x) = C1. In this particular case we then see
that the second solution is a special case of the first and we don't
want to return it.
This does not always happen. If we have
eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0)
then we get the algebraic solution f(x) = [-2, 2] and the integral solution
f(x) = x + C1 and in this case the two solutions are not equivalent wrt
initial conditions so both should be returned.
"""
def is_special_case_of(soln1, soln2):
return _is_special_case_of(soln1, soln2, eq, order, var)
unique_solns = []
for soln1 in solns:
for soln2 in unique_solns[:]:
if is_special_case_of(soln1, soln2):
break
elif is_special_case_of(soln2, soln1):
unique_solns.remove(soln2)
else:
unique_solns.append(soln1)
return unique_solns
def _is_special_case_of(soln1, soln2, eq, order, var):
r"""
True if soln1 is found to be a special case of soln2 wrt some value of the
constants that appear in soln2. False otherwise.
"""
# The solutions returned by dsolve may be given explicitly or implicitly.
# We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs)
# of the two solutions.
#
# Since this is supposed to hold for all x it also holds for derivatives.
# For an order n ode we should be able to differentiate
# each solution n times to get n+1 equations.
#
# We then try to solve those n+1 equations for the integrations constants
# in sol2. If we can find a solution that doesn't depend on x then it
# means that some value of the constants in sol1 is a special case of
# sol2 corresponding to a particular choice of the integration constants.
# In case the solution is in implicit form we subtract the sides
soln1 = soln1.rhs - soln1.lhs
soln2 = soln2.rhs - soln2.lhs
# Work for the series solution
if soln1.has(Order) and soln2.has(Order):
if soln1.getO() == soln2.getO():
soln1 = soln1.removeO()
soln2 = soln2.removeO()
else:
return False
elif soln1.has(Order) or soln2.has(Order):
return False
constants1 = soln1.free_symbols.difference(eq.free_symbols)
constants2 = soln2.free_symbols.difference(eq.free_symbols)
constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1))
if len(constants1) == 1:
constants1_new = {constants1_new}
for c_old, c_new in zip(constants1, constants1_new):
soln1 = soln1.subs(c_old, c_new)
# n equations for sol1 = sol2, sol1'=sol2', ...
lhs = soln1
rhs = soln2
eqns = [Eq(lhs, rhs)]
for n in range(1, order):
lhs = lhs.diff(var)
rhs = rhs.diff(var)
eq = Eq(lhs, rhs)
eqns.append(eq)
# BooleanTrue/False awkwardly show up for trivial equations
if any(isinstance(eq, BooleanFalse) for eq in eqns):
return False
eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)]
try:
constant_solns = solve(eqns, constants2)
except NotImplementedError:
return False
# Sometimes returns a dict and sometimes a list of dicts
if isinstance(constant_solns, dict):
constant_solns = [constant_solns]
# after solving the issue 17418, maybe we don't need the following checksol code.
for constant_soln in constant_solns:
for eq in eqns:
eq=eq.rhs-eq.lhs
if checksol(eq, constant_soln) is not True:
return False
# If any solution gives all constants as expressions that don't depend on
# x then there exists constants for soln2 that give soln1
for constant_soln in constant_solns:
if not any(c.has(var) for c in constant_soln.values()):
return True
return False
def _nth_linear_match(eq, func, order):
r"""
Matches a differential equation to the linear form:
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0
Returns a dict of order:coeff terms, where order is the order of the
derivative on each term, and coeff is the coefficient of that derivative.
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is
not linear. This function assumes that ``func`` has already been checked
to be good.
Examples
========
>>> from sympy import Function, cos, sin
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _nth_linear_match
>>> f = Function('f')
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(x), f(x), 3)
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(f(x)), f(x), 3) == None
True
"""
x = func.args[0]
one_x = {x}
terms = {i: S.Zero for i in range(-1, order + 1)}
for i in Add.make_args(eq):
if not i.has(func):
terms[-1] += i
else:
c, f = i.as_independent(func)
if (isinstance(f, Derivative)
and set(f.variables) == one_x
and f.args[0] == func):
terms[f.derivative_count] += c
elif f == func:
terms[len(f.args[1:])] += c
else:
return None
return terms
def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear homogeneous variable-coefficient
Cauchy-Euler equidimensional ordinary differential equation.
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `f(x) = x^r`, and deriving a characteristic equation
for `r`. When there are repeated roots, we include extra terms of the
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration
constant, `r` is a root of the characteristic equation, and `k` ranges
over the multiplicity of `r`. In the cases where the roots are complex,
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))`
are returned, based on expansions with Euler's formula. The general
solution is the sum of the terms found. If SymPy cannot find exact roots
to the characteristic equation, a
:py:obj:`~.ComplexRootOf` instance will be returned
instead.
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
... hint='nth_linear_euler_eq_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), sqrt(x)*(C1 + C2*log(x)))
Note that because this method does not involve integration, there is no
``nth_linear_euler_eq_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
corresponding to the fundamental solution set, for use with non
homogeneous solution methods like variation of parameters and
undetermined coefficients. Note that, though the solutions should be
linearly independent, this function does not explicitly check that. You
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear
independence. Also, ``assert len(sollist) == order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
>>> pprint(dsolve(eq, f(x),
... hint='nth_linear_euler_eq_homogeneous'))
2
f(x) = x *(C1 + C2*x)
References
==========
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and
Engineers", Springer 1999, pp. 12
# indirect doctest
"""
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
chareq = Poly(chareq, symbol)
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
constants.reverse()
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
gsol = S.Zero
# We need keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
ln = log
for root, multiplicity in charroots.items():
for i in range(multiplicity):
if isinstance(root, RootOf):
gsol += (x**root) * constants.pop()
if multiplicity != 1:
raise ValueError("Value should be 1")
collectterms = [(0, root, 0)] + collectterms
elif root.is_real:
gsol += ln(x)**i*(x**root) * constants.pop()
collectterms = [(i, root, 0)] + collectterms
else:
reroot = re(root)
imroot = im(root)
gsol += ln(x)**i * (x**reroot) * (
constants.pop() * sin(abs(imroot)*ln(x))
+ constants.pop() * cos(imroot*ln(x)))
# Preserve ordering (multiplicity, real part, imaginary part)
# It will be assumed implicitly when constructing
# fundamental solution sets.
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'sol':
return Eq(f(x), gsol)
elif returns in ('list' 'both'):
# HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through)
# Create a list of (hopefully) linearly independent solutions
gensols = []
# Keep track of when to use sin or cos for nonzero imroot
for i, reroot, imroot in collectterms:
if imroot == 0:
gensols.append(ln(x)**i*x**reroot)
else:
sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x))
if sin_form in gensols:
cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x))
gensols.append(cos_form)
else:
gensols.append(sin_form)
if returns == 'list':
return gensols
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using undetermined coefficients.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `x = exp(t)`, and deriving a characteristic equation
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can
be then solved by nth_linear_constant_coeff_undetermined_coefficients if
g(exp(t)) has finite number of linearly independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
After replacement of x by exp(t), this method works by creating a trial function
from the expression and all of its linear independent derivatives and
substituting them into the original ODE. The coefficients for each term
will be a system of linear equations, which are be solved for and
substituted, giving the solution. If any of the trial functions are linearly
dependent on the solution to the homogeneous equation, they are multiplied
by sufficient `x` to make them linearly independent.
Examples
========
>>> from sympy import dsolve, Function, Derivative, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)
"""
x = func.args[0]
f = func.func
r = match
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
for i in range(1,degree(Poly(chareq, symbol))+1):
eq += chareq.coeff(symbol**i)*diff(f(x), x, i)
if chareq.as_coeff_add(symbol)[0]:
eq += chareq.as_coeff_add(symbol)[0]*f(x)
e, re = posify(r[-1].subs(x, exp(x)))
eq += e.subs(re)
match = _nth_linear_match(eq, f(x), ode_order(eq, f(x)))
eq_homogeneous = Add(eq,-match[-1])
match['trialset'] = _undetermined_coefficients_match(match[-1], x, func, eq_homogeneous)['trialset']
return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand()
def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using variation of parameters.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by multiplying eq given below with `a_n x^{n}`
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation, but sometimes SymPy cannot simplify the
Wronskian well enough to integrate it. If this method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, Derivative
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
Eq(f(x), C1*x + C2*x**2 + x**4/6)
"""
x = func.args[0]
f = func.func
r = match
gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both')
match.update(gensol)
r[-1] = r[-1]/r[ode_order(eq, f(x))]
sol = _solve_variation_of_parameters(eq, func, order, match)
return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))])
def ode_almost_linear(eq, func, order, match):
r"""
Solves an almost-linear differential equation.
The general form of an almost linear differential equation is
.. math:: f(x) g(y) y + k(x) l(y) + m(x) = 0
\text{where} l'(y) = g(y)\text{.}
This can be solved by substituting `l(y) = u(y)`. Making the given
substitution reduces it to a linear differential equation of the form `u'
+ P(x) u + Q(x) = 0`.
The general solution is
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, y, n
>>> f, g, k, l = map(Function, ['f', 'g', 'k', 'l'])
>>> genform = Eq(f(x)*(l(y).diff(y)) + k(x)*l(y) + g(x), 0)
>>> pprint(genform)
d
f(x)*--(l(y)) + g(x) + k(x)*l(y) = 0
dy
>>> pprint(dsolve(genform, hint = 'almost_linear'))
/ // y*k(x) \\
| || ------ ||
| || f(x) || -y*k(x)
| ||-g(x)*e || --------
| ||-------------- for k(x) != 0|| f(x)
l(y) = |C1 + |< k(x) ||*e
| || ||
| || -y*g(x) ||
| || -------- otherwise ||
| || f(x) ||
\ \\ //
See Also
========
:meth:`sympy.solvers.ode.ode.ode_1st_linear`
Examples
========
>>> from sympy import Function, Derivative, pprint
>>> from sympy.solvers.ode import dsolve, classify_ode
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = x*d + x*f(x) + 1
>>> dsolve(eq, f(x), hint='almost_linear')
Eq(f(x), (C1 - Ei(x))*exp(-x))
>>> pprint(dsolve(eq, f(x), hint='almost_linear'))
-x
f(x) = (C1 - Ei(x))*e
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
# Since ode_1st_linear has already been implemented, and the
# coefficients have been modified to the required form in
# classify_ode, just passing eq, func, order and match to
# ode_1st_linear will give the required output.
return ode_1st_linear(eq, func, order, match)
def _linear_coeff_match(expr, func):
r"""
Helper function to match hint ``linear_coefficients``.
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2
f(x) + c_2)` where the following conditions hold:
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals;
2. `c_1` or `c_2` are not equal to zero;
3. `a_2 b_1 - a_1 b_2` is not equal to zero.
Return ``xarg``, ``yarg`` where
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)`
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)`
Examples
========
>>> from sympy import Function
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _linear_coeff_match
>>> from sympy.functions.elementary.trigonometric import sin
>>> f = Function('f')
>>> _linear_coeff_match((
... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x))
(1/9, 22/9)
>>> _linear_coeff_match(
... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x))
(19/27, 2/27)
>>> _linear_coeff_match(sin(f(x)/x), f(x))
"""
f = func.func
x = func.args[0]
def abc(eq):
r'''
Internal function of _linear_coeff_match
that returns Rationals a, b, c
if eq is a*x + b*f(x) + c, else None.
'''
eq = _mexpand(eq)
c = eq.as_independent(x, f(x), as_Add=True)[0]
if not c.is_Rational:
return
a = eq.coeff(x)
if not a.is_Rational:
return
b = eq.coeff(f(x))
if not b.is_Rational:
return
if eq == a*x + b*f(x) + c:
return a, b, c
def match(arg):
r'''
Internal function of _linear_coeff_match that returns Rationals a1,
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x)
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is
non-zero, else None.
'''
n, d = arg.together().as_numer_denom()
m = abc(n)
if m is not None:
a1, b1, c1 = m
m = abc(d)
if m is not None:
a2, b2, c2 = m
d = a2*b1 - a1*b2
if (c1 or c2) and d:
return a1, b1, c1, a2, b2, c2, d
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr}
m1 = match(m.pop())
if m1 and all(match(mi) == m1 for mi in m):
a1, b1, c1, a2, b2, c2, denom = m1
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom
def ode_linear_coefficients(eq, func, order, match):
r"""
Solves a differential equation with linear coefficients.
The general form of a differential equation with linear coefficients is
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y +
c_2}\!\right) = 0\text{,}
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2
- a_2 b_1 \ne 0`.
This can be solved by substituting:
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2}
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1
b_2}\text{.}
This substitution reduces the equation to a homogeneous differential
equation.
See Also
========
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
Examples
========
>>> from sympy import Function, Derivative, pprint
>>> from sympy.solvers.ode import dsolve, classify_ode
>>> from sympy.abc import x
>>> f = Function('f')
>>> df = f(x).diff(x)
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
>>> dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
>>> pprint(dsolve(eq, hint='linear_coefficients'))
___________ ___________
/ 2 / 2
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
return ode_1st_homogeneous_coeff_best(eq, func, order, match)
def ode_separable_reduced(eq, func, order, match):
r"""
Solves a differential equation that can be reduced to the separable form.
The general form of this equation is
.. math:: y' + (y/x) H(x^n y) = 0\text{}.
This can be solved by substituting `u(y) = x^n y`. The equation then
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} -
\frac{1}{x} = 0`.
The general solution is:
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, n
>>> f, g = map(Function, ['f', 'g'])
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
>>> pprint(genform)
/ n \
d f(x)*g\x *f(x)/
--(f(x)) + ---------------
dx x
>>> pprint(dsolve(genform, hint='separable_reduced'))
n
x *f(x)
/
|
| 1
| ------------ dy = C1 + log(x)
| y*(n - g(y))
|
/
See Also
========
:meth:`sympy.solvers.ode.ode.ode_separable`
Examples
========
>>> from sympy import Function, Derivative, pprint
>>> from sympy.solvers.ode import dsolve, classify_ode
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = (x - x**2*f(x))*d - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'))
___________ ___________
/ 2 / 2
1 - \/ C1*x + 1 \/ C1*x + 1 + 1
[f(x) = ------------------, f(x) = ------------------]
x x
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
# Arguments are passed in a way so that they are coherent with the
# ode_separable function
x = func.args[0]
f = func.func
y = Dummy('y')
u = match['u'].subs(match['t'], y)
ycoeff = 1/(y*(match['power'] - u))
m1 = {y: 1, x: -1/x, 'coeff': 1}
m2 = {y: ycoeff, x: 1, 'coeff': 1}
r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)}
return ode_separable(eq, func, order, r)
def ode_1st_power_series(eq, func, order, match):
r"""
The power series solution is a method which gives the Taylor series expansion
to the solution of a differential equation.
For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power
series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`.
The solution is given by
.. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!},
where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`.
To compute the values of the `F_{n}(x_{0},b)` the following algorithm is
followed, until the required number of terms are generated.
1. `F_1 = h(x_{0}, b)`
2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}`
Examples
========
>>> from sympy import Function, Derivative, pprint, exp
>>> from sympy.solvers.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = exp(x)*(f(x).diff(x)) - f(x)
>>> pprint(dsolve(eq, hint='1st_power_series'))
3 4 5
C1*x C1*x C1*x / 6\
f(x) = C1 + C1*x - ----- + ----- + ----- + O\x /
6 24 60
References
==========
- Travis W. Walker, Analytic power series technique for solving first-order
differential equations, p.p 17, 18
"""
x = func.args[0]
y = match['y']
f = func.func
h = -match[match['d']]/match[match['e']]
point = match.get('f0')
value = match.get('f0val')
terms = match.get('terms')
# First term
F = h
if not h:
return Eq(f(x), value)
# Initialization
series = value
if terms > 1:
hc = h.subs({x: point, y: value})
if hc.has(oo) or hc.has(NaN) or hc.has(zoo):
# Derivative does not exist, not analytic
return Eq(f(x), oo)
elif hc:
series += hc*(x - point)
for factcount in range(2, terms):
Fnew = F.diff(x) + F.diff(y)*h
Fnewc = Fnew.subs({x: point, y: value})
# Same logic as above
if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo):
return Eq(f(x), oo)
series += Fnewc*((x - point)**factcount)/factorial(factcount)
F = Fnew
series += Order(x**terms)
return Eq(f(x), series)
def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='sol'):
r"""
Solves an `n`\th order linear homogeneous differential equation with
constant coefficients.
This is an equation of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = 0\text{.}
These equations can be solved in a general manner, by taking the roots of
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m +
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms,
for each where `C_n` is an arbitrary constant, `r` is a root of the
characteristic equation and `i` is one of each from 0 to the multiplicity
of the root - 1 (for example, a root 3 of multiplicity 2 would create the
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`.
Complex roots always come in conjugate pairs in polynomials with real
coefficients, so the two roots will be represented (after simplifying the
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`.
If SymPy cannot find exact roots to the characteristic equation, a
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return
instead.
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1)))
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1)))
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3)))
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3))))
Note that because this method does not involve integration, there is no
``nth_linear_constant_coeff_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
for use with non homogeneous solution methods like variation of
parameters and undetermined coefficients. Note that, though the
solutions should be linearly independent, this function does not
explicitly check that. You can do ``assert simplify(wronskian(sollist))
!= 0`` to check for linear independence. Also, ``assert len(sollist) ==
order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous'))
x -2*x
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation section:
Nonhomogeneous_equation_with_constant_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 211
# indirect doctest
"""
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if type(i) == str or i < 0:
pass
else:
chareq += r[i]*symbol**i
chareq = Poly(chareq, symbol)
# Can't just call roots because it doesn't return rootof for unsolveable
# polynomials.
chareqroots = roots(chareq, multiple=True)
if len(chareqroots) != order:
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()])
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
# We need to keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
gensols = []
conjugate_roots = [] # used to prevent double-use of conjugate roots
# Loop over roots in theorder provided by roots/rootof...
for root in chareqroots:
# but don't repoeat multiple roots.
if root not in charroots:
continue
multiplicity = charroots.pop(root)
for i in range(multiplicity):
if chareq_is_complex:
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
continue
reroot = re(root)
imroot = im(root)
if imroot.has(atan2) and reroot.has(atan2):
# Remove this condition when re and im stop returning
# circular atan2 usages.
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
else:
if root in conjugate_roots:
collectterms = [(i, reroot, imroot)] + collectterms
continue
if imroot == 0:
gensols.append(x**i*exp(reroot*x))
collectterms = [(i, reroot, 0)] + collectterms
continue
conjugate_roots.append(conjugate(root))
gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x))
gensols.append(x**i*exp(reroot*x) * cos( imroot * x))
# This ordering is important
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'list':
return gensols
elif returns in ('sol' 'both'):
gsol = Add(*[i*j for (i, j) in zip(constants, gensols)])
if returns == 'sol':
return Eq(f(x), gsol)
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of undetermined coefficients.
This method works on differential equations of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = P(x)\text{,}
where `P(x)` is a function that has a finite number of linearly
independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
This method works by creating a trial function from the expression and all
of its linear independent derivatives and substituting them into the
original ODE. The coefficients for each term will be a system of linear
equations, which are be solved for and substituted, giving the solution.
If any of the trial functions are linearly dependent on the solution to
the homogeneous equation, they are multiplied by sufficient `x` to make
them linearly independent.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
... 4*exp(-x)*x**2 + cos(2*x), f(x),
... hint='nth_linear_constant_coeff_undetermined_coefficients'))
/ 4\
| x | -x 4*sin(2*x) 3*cos(2*x)
f(x) = |C1 + C2*x + --|*e - ---------- + ----------
\ 3 / 25 25
References
==========
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 221
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_undetermined_coefficients(eq, func, order, match)
def _solve_undetermined_coefficients(eq, func, order, match):
r"""
Helper function for the method of undetermined coefficients.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_undetermined_coefficients`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
``trialset``
The set of trial functions as returned by
``_undetermined_coefficients_match()['trialset']``.
"""
x = func.args[0]
f = func.func
r = match
coeffs = numbered_symbols('a', cls=Dummy)
coefflist = []
gensols = r['list']
gsol = r['sol']
trialset = r['trialset']
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply" +
" undetermined coefficients to " + str(eq) +
" (number of terms != order)")
trialfunc = 0
for i in trialset:
c = next(coeffs)
coefflist.append(c)
trialfunc += c*i
eqs = sub_func_doit(eq, f(x), trialfunc)
coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1))))
eqs = _mexpand(eqs)
for i in Add.make_args(eqs):
s = separatevars(i, dict=True, symbols=[x])
if coeffsdict.get(s[x]):
coeffsdict[s[x]] += s['coeff']
else:
coeffsdict[s[x]] = s['coeff']
coeffvals = solve(list(coeffsdict.values()), coefflist)
if not coeffvals:
raise NotImplementedError(
"Could not solve `%s` using the "
"method of undetermined coefficients "
"(unable to solve for coefficients)." % eq)
psol = trialfunc.subs(coeffvals)
return Eq(f(x), gsol.rhs + psol)
def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero):
r"""
Returns a trial function match if undetermined coefficients can be applied
to ``expr``, and ``None`` otherwise.
A trial expression can be found for an expression for use with the method
of undetermined coefficients if the expression is an
additive/multiplicative combination of constants, polynomials in `x` (the
independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and
`e^{a x}` terms (in other words, it has a finite number of linearly
independent derivatives).
Note that you may still need to multiply each term returned here by
sufficient `x` to make it linearly independent with the solutions to the
homogeneous equation.
This is intended for internal use by ``undetermined_coefficients`` hints.
SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of
only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So,
for example, you will need to manually convert `\sin^2(x)` into `[1 +
\cos(2 x)]/2` to properly apply the method of undetermined coefficients on
it.
Examples
========
>>> from sympy import log, exp
>>> from sympy.solvers.ode.ode import _undetermined_coefficients_match
>>> from sympy.abc import x
>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
{'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}}
>>> _undetermined_coefficients_match(log(x), x)
{'test': False}
"""
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
retdict = {}
def _test_term(expr, x):
r"""
Test if ``expr`` fits the proper form for undetermined coefficients.
"""
if not expr.has(x):
return True
elif expr.is_Add:
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Mul:
if expr.has(sin, cos):
foundtrig = False
# Make sure that there is only one trig function in the args.
# See the docstring.
for i in expr.args:
if i.has(sin, cos):
if foundtrig:
return False
else:
foundtrig = True
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Function:
if expr.func in (sin, cos, exp, sinh, cosh):
if expr.args[0].match(a*x + b):
return True
else:
return False
else:
return False
elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
expr.exp >= 0:
return True
elif expr.is_Pow and expr.base.is_number:
if expr.exp.match(a*x + b):
return True
else:
return False
elif expr.is_Symbol or expr.is_number:
return True
else:
return False
def _get_trial_set(expr, x, exprs=set([])):
r"""
Returns a set of trial terms for undetermined coefficients.
The idea behind undetermined coefficients is that the terms expression
repeat themselves after a finite number of derivatives, except for the
coefficients (they are linearly dependent). So if we collect these,
we should have the terms of our trial function.
"""
def _remove_coefficient(expr, x):
r"""
Returns the expression without a coefficient.
Similar to expr.as_independent(x)[1], except it only works
multiplicatively.
"""
term = S.One
if expr.is_Mul:
for i in expr.args:
if i.has(x):
term *= i
elif expr.has(x):
term = expr
return term
expr = expand_mul(expr)
if expr.is_Add:
for term in expr.args:
if _remove_coefficient(term, x) in exprs:
pass
else:
exprs.add(_remove_coefficient(term, x))
exprs = exprs.union(_get_trial_set(term, x, exprs))
else:
term = _remove_coefficient(expr, x)
tmpset = exprs.union({term})
oldset = set([])
while tmpset != oldset:
# If you get stuck in this loop, then _test_term is probably
# broken
oldset = tmpset.copy()
expr = expr.diff(x)
term = _remove_coefficient(expr, x)
if term.is_Add:
tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
else:
tmpset.add(term)
exprs = tmpset
return exprs
def is_homogeneous_solution(term):
r""" This function checks whether the given trialset contains any root
of homogenous equation"""
return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero
retdict['test'] = _test_term(expr, x)
if retdict['test']:
# Try to generate a list of trial solutions that will have the
# undetermined coefficients. Note that if any of these are not linearly
# independent with any of the solutions to the homogeneous equation,
# then they will need to be multiplied by sufficient x to make them so.
# This function DOES NOT do that (it doesn't even look at the
# homogeneous equation).
temp_set = set([])
for i in Add.make_args(expr):
act = _get_trial_set(i,x)
if eq_homogeneous is not S.Zero:
while any(is_homogeneous_solution(ts) for ts in act):
act = {x*ts for ts in act}
temp_set = temp_set.union(act)
retdict['trialset'] = temp_set
return retdict
def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of variation of parameters.
This method works on any differential equations of the form
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0
f(x) = P(x)\text{.}
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, P(x)]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation with constant coefficients, but sometimes
SymPy cannot simplify the Wronskian well enough to integrate it. If this
method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
... hint='nth_linear_constant_coeff_variation_of_parameters'))
/ 3 \
| 2 x *(6*log(x) - 11)| x
f(x) = |C1 + C2*x + C3*x + ------------------|*e
\ 36 /
References
==========
- https://en.wikipedia.org/wiki/Variation_of_parameters
- http://planetmath.org/VariationOfParameters
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 233
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_variation_of_parameters(eq, func, order, match)
def _solve_variation_of_parameters(eq, func, order, match):
r"""
Helper function for the method of variation of parameters and nonhomogeneous euler eq.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_variation_of_parameters`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
"""
x = func.args[0]
f = func.func
r = match
psol = 0
gensols = r['list']
gsol = r['sol']
wr = wronskian(gensols, x)
if r.get('simplify', True):
wr = simplify(wr) # We need much better simplification for
# some ODEs. See issue 4662, for example.
# To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1
wr = trigsimp(wr, deep=True, recursive=True)
if not wr:
# The wronskian will be 0 iff the solutions are not linearly
# independent.
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " + str(eq) + " (Wronskian == 0)")
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " +
str(eq) + " (number of terms != order)")
negoneterm = (-1)**(order)
for i in gensols:
psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order]
negoneterm *= -1
if r.get('simplify', True):
psol = simplify(psol)
psol = trigsimp(psol, deep=True)
return Eq(f(x), gsol.rhs + psol)
def ode_factorable(eq, func, order, match):
r"""
Solves equations having a solvable factor.
This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It
will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the
list of solutions.
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint, Derivative
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x))
>>> pprint(dsolve(eq, f(x)))
-x
[f(x) = 2, f(x) = -2, f(x) = C1*e ]
"""
eqns = match['eqns']
x0 = match['x0']
sols = []
for eq in eqns:
try:
sol = dsolve(eq, func, x0=x0)
except NotImplementedError:
continue
else:
if isinstance(sol, list):
sols.extend(sol)
else:
sols.append(sol)
if sols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the factorable group method")
return sols
def ode_separable(eq, func, order, match):
r"""
Solves separable 1st order differential equations.
This is any differential equation that can be written as `P(y)
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`.
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back
end, so if a separable equation is not caught by this solver, it is most
likely the fault of that function.
:py:meth:`~sympy.simplify.simplify.separatevars` is
smart enough to do most expansion and factoring necessary to convert a
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The
general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform)
d
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
dx
>>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
f(x)
/ /
| |
| b(y) | c(x)
| ---- dy = C1 + | ---- dx
| d(y) | a(x)
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
... hint='separable', simplify=False))
/ 2 \ 2
log\3*f (x) - 1/ x
---------------- = C1 + --
6 2
References
==========
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 52
# indirect doctest
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
r = match # {'m1':m1, 'm2':m2, 'y':y}
u = r.get('hint', f(x)) # get u from separable_reduced else get f(x)
return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']],
(r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/
r['m2'][x], x) + C1)
def checkinfsol(eq, infinitesimals, func=None, order=None):
r"""
This function is used to check if the given infinitesimals are the
actual infinitesimals of the given first order differential equation.
This method is specific to the Lie Group Solver of ODEs.
As of now, it simply checks, by substituting the infinitesimals in the
partial differential equation.
.. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x}\right)*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0
where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}`
The infinitesimals should be given in the form of a list of dicts
``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the
output of the function infinitesimals. It returns a list
of values of the form ``[(True/False, sol)]`` where ``sol`` is the value
obtained after substituting the infinitesimals in the PDE. If it
is ``True``, then ``sol`` would be 0.
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Lie groups solver has been implemented "
"only for first order differential equations")
else:
df = func.diff(x)
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy('y')
h = h.subs(func, y)
xi = Function('xi')(x, y)
eta = Function('eta')(x, y)
dxi = Function('xi')(x, func)
deta = Function('eta')(x, func)
pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h -
(xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)))
soltup = []
for sol in infinitesimals:
tsol = {xi: S(sol[dxi]).subs(func, y),
eta: S(sol[deta]).subs(func, y)}
sol = simplify(pde.subs(tsol).doit())
if sol:
soltup.append((False, sol.subs(y, func)))
else:
soltup.append((True, 0))
return soltup
def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf):
xi = Function("xi")
eta = Function("eta")
f = func.func
x = func.args[0]
y = match['y']
h = match['h']
tempsol = []
if not inf:
try:
inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match)
except ValueError:
return None
for infsim in inf:
xiinf = (infsim[xi(x, func)]).subs(func, y)
etainf = (infsim[eta(x, func)]).subs(func, y)
# This condition creates recursion while using pdsolve.
# Since the first step while solving a PDE of form
# a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0
# is to solve the ODE dy/dx = b/a
if simplify(etainf/xiinf) == h:
continue
rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf
r = pdsolve(rpde, func=f(x, y)).rhs
s = pdsolve(rpde - 1, func=f(x, y)).rhs
newcoord = [_lie_group_remove(coord) for coord in [r, s]]
r = Dummy("r")
s = Dummy("s")
C1 = Symbol("C1")
rcoord = newcoord[0]
scoord = newcoord[-1]
try:
sol = solve([r - rcoord, s - scoord], x, y, dict=True)
if sol == []:
continue
except NotImplementedError:
continue
else:
sol = sol[0]
xsub = sol[x]
ysub = sol[y]
num = simplify(scoord.diff(x) + scoord.diff(y)*h)
denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h)
if num and denom:
diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)]))
sep = separatevars(diffeq, symbols=[r, s], dict=True)
if sep:
# Trying to separate, r and s coordinates
deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r)
# Substituting and reverting back to original coordinates
deq = deq.subs([(r, rcoord), (s, scoord)])
try:
sdeq = solve(deq, y)
except NotImplementedError:
tempsol.append(deq)
else:
return [Eq(f(x), sol) for sol in sdeq]
elif denom: # (ds/dr) is zero which means s is constant
return [Eq(f(x), solve(scoord - C1, y)[0])]
elif num: # (dr/ds) is zero which means r is constant
return [Eq(f(x), solve(rcoord - C1, y)[0])]
# If nothing works, return solution as it is, without solving for y
if tempsol:
return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol]
return None
def _ode_lie_group( s, func, order, match):
heuristics = lie_heuristics
inf = {}
f = func.func
x = func.args[0]
df = func.diff(x)
xi = Function("xi")
eta = Function("eta")
xis = match['xi']
etas = match['eta']
y = match.pop('y', None)
if y:
h = -simplify(match[match['d']]/match[match['e']])
y = y
else:
y = Dummy("y")
h = s.subs(func, y)
if xis is not None and etas is not None:
inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}]
if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]:
heuristics = ["user_defined"] + list(heuristics)
match = {'h': h, 'y': y}
# This is done so that if any heuristic raises a ValueError
# another heuristic can be used.
sol = None
for heuristic in heuristics:
sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf)
if sol:
return sol
return sol
def ode_lie_group(eq, func, order, match):
r"""
This hint implements the Lie group method of solving first order differential
equations. The aim is to convert the given differential equation from the
given coordinate system into another coordinate system where it becomes
invariant under the one-parameter Lie group of translations. The converted
ODE can be easily solved by quadrature. It makes use of the
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the
infinitesimals of the transformation.
The coordinates `r` and `s` can be found by solving the following Partial
Differential Equations.
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y}
= 0
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y}
= 1
The differential equation becomes separable in the new coordinate system
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} +
h(x, y)\frac{\partial s}{\partial y}}{
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}}
After finding the solution by integration, it is then converted back to the original
coordinate system by substituting `r` and `s` in terms of `x` and `y` again.
Examples
========
>>> from sympy import Function, dsolve, Eq, exp, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
... hint='lie_group'))
/ 2\ 2
| x | -x
f(x) = |C1 + --|*e
\ 2 /
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
x = func.args[0]
df = func.diff(x)
try:
eqsol = solve(eq, df)
except NotImplementedError:
eqsol = []
desols = []
for s in eqsol:
sol = _ode_lie_group(s, func, order, match=match)
if sol:
desols.extend(sol)
if desols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the lie group method")
return desols
def _lie_group_remove(coords):
r"""
This function is strictly meant for internal use by the Lie group ODE solving
method. It replaces arbitrary functions returned by pdsolve as follows:
1] If coords is an arbitrary function, then its argument is returned.
2] An arbitrary function in an Add object is replaced by zero.
3] An arbitrary function in a Mul object is replaced by one.
4] If there is no arbitrary function coords is returned unchanged.
Examples
========
>>> from sympy.solvers.ode.ode import _lie_group_remove
>>> from sympy import Function
>>> from sympy.abc import x, y
>>> F = Function("F")
>>> eq = x**2*y
>>> _lie_group_remove(eq)
x**2*y
>>> eq = F(x**2*y)
>>> _lie_group_remove(eq)
x**2*y
>>> eq = x*y**2 + F(x**3)
>>> _lie_group_remove(eq)
x*y**2
>>> eq = (F(x**3) + y)*x**4
>>> _lie_group_remove(eq)
x**4*y
"""
if isinstance(coords, AppliedUndef):
return coords.args[0]
elif coords.is_Add:
subfunc = coords.atoms(AppliedUndef)
if subfunc:
for func in subfunc:
coords = coords.subs(func, 0)
return coords
elif coords.is_Pow:
base, expr = coords.as_base_exp()
base = _lie_group_remove(base)
expr = _lie_group_remove(expr)
return base**expr
elif coords.is_Mul:
mulargs = []
coordargs = coords.args
for arg in coordargs:
if not isinstance(coords, AppliedUndef):
mulargs.append(_lie_group_remove(arg))
return Mul(*mulargs)
return coords
def infinitesimals(eq, func=None, order=None, hint='default', match=None):
r"""
The infinitesimal functions of an ordinary differential equation, `\xi(x,y)`
and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations
for which the differential equation is invariant. So, the ODE `y'=f(x,y)`
would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`,
`y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`.
A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group
becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`.
They are tangents to the coordinate curves of the new system.
Consider the transformation `(x, y) \to (X, Y)` such that the
differential equation remains invariant. `\xi` and `\eta` are the tangents to
the transformed coordinates `X` and `Y`, at `\varepsilon=0`.
.. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \xi,
\left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \eta,
The infinitesimals can be found by solving the following PDE:
>>> from sympy import Function, diff, Eq, pprint
>>> from sympy.abc import x, y
>>> xi, eta, h = map(Function, ['xi', 'eta', 'h'])
>>> h = h(x, y) # dy/dx = h
>>> eta = eta(x, y)
>>> xi = xi(x, y)
>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h
... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
>>> pprint(genform)
/d d \ d 2 d
|--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x
\dy dx / dy dy
<BLANKLINE>
d d
i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0
dx dx
Solving the above mentioned PDE is not trivial, and can be solved only by
making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an
infinitesimal is found, the attempt to find more heuristics stops. This is done to
optimise the speed of solving the differential equation. If a list of all the
infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives
the complete list of infinitesimals. If the infinitesimals for a particular
heuristic needs to be found, it can be passed as a flag to ``hint``.
Examples
========
>>> from sympy import Function, diff
>>> from sympy.solvers.ode import infinitesimals
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x) - x**2*f(x)
>>> infinitesimals(eq)
[{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}]
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Infinitesimals for only "
"first order ODE's have been implemented")
else:
df = func.diff(x)
# Matching differential equation of the form a*df + b
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
if match: # Used by lie_group hint
h = match['h']
y = match['y']
else:
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy("y")
h = h.subs(func, y)
u = Dummy("u")
hx = h.diff(x)
hy = h.diff(y)
hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE
match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv}
if hint == 'all':
xieta = []
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
inflist = function(match, comp=True)
if inflist:
xieta.extend([inf for inf in inflist if inf not in xieta])
if xieta:
return xieta
else:
raise NotImplementedError("Infinitesimals could not be found for "
"the given ODE")
elif hint == 'default':
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
xieta = function(match, comp=False)
if xieta:
return xieta
raise NotImplementedError("Infinitesimals could not be found for"
" the given ODE")
elif hint not in lie_heuristics:
raise ValueError("Heuristic not recognized: " + hint)
else:
function = globals()['lie_heuristic_' + hint]
xieta = function(match, comp=True)
if xieta:
return xieta
else:
raise ValueError("Infinitesimals could not be found using the"
" given heuristic")
def lie_heuristic_abaco1_simple(match, comp=False):
r"""
The first heuristic uses the following four sets of
assumptions on `\xi` and `\eta`
.. math:: \xi = 0, \eta = f(x)
.. math:: \xi = 0, \eta = f(y)
.. math:: \xi = f(x), \eta = 0
.. math:: \xi = f(y), \eta = 0
The success of this heuristic is determined by algebraic factorisation.
For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE
.. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x})*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0
reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0`
If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually
be integrated easily. A similar idea is applied to the other 3 assumptions as well.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
xieta = []
y = match['y']
h = match['h']
func = match['func']
x = func.args[0]
hx = match['hx']
hy = match['hy']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
hysym = hy.free_symbols
if y not in hysym:
try:
fx = exp(integrate(hy, x))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fx}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = hy/h
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fy.subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/h
facsym = factor.free_symbols
if y not in facsym:
try:
fx = exp(integrate(factor, x))
except NotImplementedError:
pass
else:
inf = {xi: fx, eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/(h**2)
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: fy.subs(y, func), eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco1_product(match, comp=False):
r"""
The second heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x)*g(y)
.. math:: \eta = f(x)*g(y), \xi = 0
The first assumption of this heuristic holds good if
`\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is
separable in `x` and `y`, then the separated factors containing `x`
is `f(x)`, and `g(y)` is obtained by
.. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy}
provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function
of `y` only.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again
interchanged, to get `\eta` as `f(x)*g(y)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
y = match['y']
h = match['h']
hinv = match['hinv']
func = match['func']
x = func.args[0]
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*h)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
u1 = Dummy("u1")
inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*hinv)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
etaval = fx*gy
etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y)
inf = {eta: etaval.subs(y, func), xi: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_bivariate(match, comp=False):
r"""
The third heuristic assumes the infinitesimals `\xi` and `\eta`
to be bi-variate polynomials in `x` and `y`. The assumption made here
for the logic below is that `h` is a rational function in `x` and `y`
though that may not be necessary for the infinitesimals to be
bivariate polynomials. The coefficients of the infinitesimals
are found out by substituting them in the PDE and grouping similar terms
that are polynomials and since they form a linear system, solve and check
for non trivial solutions. The degree of the assumed bivariates
are increased till a certain maximum value.
References
==========
- Lie Groups and Differential Equations
pp. 327 - pp. 329
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
# The maximum degree that the infinitesimals can take is
# calculated by this technique.
etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid")
ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy
num, denom = cancel(ipde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
deta = Function('deta')(x, y)
dxi = Function('dxi')(x, y)
ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2
- dxi*hx - deta*hy)
xieq = Symbol("xi0")
etaeq = Symbol("eta0")
for i in range(deg + 1):
if i:
xieq += Add(*[
Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
etaeq += Add(*[
Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom()
pden = expand(pden)
# If the individual terms are monomials, the coefficients
# are grouped
if pden.is_polynomial(x, y) and pden.is_Add:
polyy = Poly(pden, x, y).as_dict()
if polyy:
symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y}
soldict = solve(polyy.values(), *symset)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
xired = xieq.subs(soldict)
etared = etaeq.subs(soldict)
# Scaling is done by substituting one for the parameters
# This can be any number except zero.
dict_ = dict((sym, 1) for sym in symset)
inf = {eta: etared.subs(dict_).subs(y, func),
xi: xired.subs(dict_).subs(y, func)}
return [inf]
def lie_heuristic_chi(match, comp=False):
r"""
The aim of the fourth heuristic is to find the function `\chi(x, y)`
that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx}
- \frac{\partial h}{\partial y}\chi = 0`.
This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition,
`h` should be a rational function in `x` and `y`. The method used here is
to substitute a general binomial for `\chi` up to a certain maximum degree
is reached. The coefficients of the polynomials, are calculated by by collecting
terms of the same order in `x` and `y`.
After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to
determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h`
which would give `-\xi` as the quotient and `\eta` as the remainder.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
h = match['h']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
schi, schix, schiy = symbols("schi, schix, schiy")
cpde = schix + h*schiy - hy*schi
num, denom = cancel(cpde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
chi = Function('chi')(x, y)
chix = chi.diff(x)
chiy = chi.diff(y)
cpde = chix + h*chiy - hy*chi
chieq = Symbol("chi")
for i in range(1, deg + 1):
chieq += Add(*[
Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom()
cnum = expand(cnum)
if cnum.is_polynomial(x, y) and cnum.is_Add:
cpoly = Poly(cnum, x, y).as_dict()
if cpoly:
solsyms = chieq.free_symbols - {x, y}
soldict = solve(cpoly.values(), *solsyms)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
chieq = chieq.subs(soldict)
dict_ = dict((sym, 1) for sym in solsyms)
chieq = chieq.subs(dict_)
# After finding chi, the main aim is to find out
# eta, xi by the equation eta = xi*h + chi
# One method to set xi, would be rearranging it to
# (eta/h) - xi = (chi/h). This would mean dividing
# chi by h would give -xi as the quotient and eta
# as the remainder. Thanks to Sean Vig for suggesting
# this method.
xic, etac = div(chieq, h)
inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)}
return [inf]
def lie_heuristic_function_sum(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x) + g(y)
.. math:: \eta = f(x) + g(y), \xi = 0
The first assumption of this heuristic holds good if
.. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{
\partial x^{2}}(h^{-1}))^{-1}]
is separable in `x` and `y`,
1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`.
From this `g(y)` can be determined.
2. The separated factors containing `x` is `f''(x)`.
3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals
`\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first
assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates
are again interchanged, to get `\eta` as `f(x) + g(y)`.
For both assumptions, the constant factors are separated among `g(y)`
and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that
obtained from 2]. If not possible, then this heuristic fails.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
h = match['h']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
for odefac in [h, hinv]:
factor = odefac*((1/odefac).diff(x, 2))
sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y])
if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y):
k = Dummy("k")
try:
gy = k*integrate(sep[y], y)
except NotImplementedError:
pass
else:
fdd = 1/(k*sep[x]*sep['coeff'])
fx = simplify(fdd/factor - gy)
check = simplify(fx.diff(x, 2) - fdd)
if fx:
if not check:
fx = fx.subs(k, 1)
gy = (gy/k)
else:
sol = solve(check, k)
if sol:
sol = sol[0]
fx = fx.subs(k, sol)
gy = (gy/k)*sol
else:
continue
if odefac == hinv: # Inverse ODE
fx = fx.subs(x, y)
gy = gy.subs(y, x)
etaval = factor_terms(fx + gy)
if etaval.is_Mul:
etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)])
if odefac == hinv: # Inverse ODE
inf = {eta: etaval.subs(y, func), xi : S.Zero}
else:
inf = {xi: etaval.subs(y, func), eta : S.Zero}
if not comp:
return [inf]
else:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco2_similar(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = g(x), \xi = f(x)
.. math:: \eta = f(y), \xi = g(y)
For the first assumption,
1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{
\partial yy}}` is calculated. Let us say this value is A
2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{
\frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)`
and `A(x)*f(x)` gives `g(x)`
3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{
\partial Y}} = \gamma` is calculated. If
a] `\gamma` is a function of `x` alone
b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{
\partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone.
then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)`
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again
interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
factor = cancel(h.diff(y)/h.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{xi: tau, eta: gx}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{xi: tau, eta: gx}]
factor = cancel(hinv.diff(y)/hinv.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/(
hinv + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
def lie_heuristic_abaco2_unique_unknown(match, comp=False):
r"""
This heuristic assumes the presence of unknown functions or known functions
with non-integer powers.
1. A list of all functions and non-integer powers containing x and y
2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{
\frac{\partial f}{\partial x}} = R`
If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then
a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return
`\xi` and `\eta`
b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE.
If yes, then return `\xi` and `\eta`
If not, then check if
a] :math:`\xi = -R,\eta = 1`
b] :math:`\xi = 1, \eta = -\frac{1}{R}`
are solutions.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
funclist = []
for atom in h.atoms(Pow):
base, exp = atom.as_base_exp()
if base.has(x) and base.has(y):
if not exp.is_Integer:
funclist.append(atom)
for function in h.atoms(AppliedUndef):
syms = function.free_symbols
if x in syms and y in syms:
funclist.append(function)
for f in funclist:
frac = cancel(f.diff(y)/f.diff(x))
sep = separatevars(frac, dict=True, symbols=[x, y])
if sep and sep['coeff']:
xitry1 = sep[x]
etatry1 = -1/(sep[y]*sep['coeff'])
pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy
if not simplify(pde1):
return [{xi: xitry1, eta: etatry1.subs(y, func)}]
xitry2 = 1/etatry1
etatry2 = 1/xitry1
pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy
if not simplify(expand(pde2)):
return [{xi: xitry2.subs(y, func), eta: etatry2}]
else:
etatry = -1/frac
pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy
if not simplify(pde):
return [{xi: S.One, eta: etatry.subs(y, func)}]
xitry = -frac
pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy
if not simplify(expand(pde)):
return [{xi: xitry.subs(y, func), eta: S.One}]
def lie_heuristic_abaco2_unique_general(match, comp=False):
r"""
This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)`
without making any assumptions on `h`.
The complete sequence of steps is given in the paper mentioned below.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
A = hx.diff(y)
B = hy.diff(y) + hy**2
C = hx.diff(x) - hx**2
if not (A and B and C):
return
Ax = A.diff(x)
Ay = A.diff(y)
Axy = Ax.diff(y)
Axx = Ax.diff(x)
Ayy = Ay.diff(y)
D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay
if not D:
E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A)
if E1:
E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if not E2:
E3 = simplify(
E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4)
if not E3:
etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -4*A**3*etaval/E1
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
else:
E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if E1:
E2 = simplify(
4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2))
if not E2:
E3 = simplify(
-(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D +
(A*hx - 3*Ax)*E1)*E1)
if not E3:
etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -E1*etaval/D
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
def lie_heuristic_linear(match, comp=False):
r"""
This heuristic assumes
1. `\xi = ax + by + c` and
2. `\eta = fx + gy + h`
After substituting the following assumptions in the determining PDE, it
reduces to
.. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x}
- (fx + gy + c)\frac{\partial h}{\partial y}
Solving the reduced PDE obtained, using the method of characteristics, becomes
impractical. The method followed is grouping similar terms and solving the system
of linear equations obtained. The difference between the bivariate heuristic is that
`h` need not be a rational function in this case.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
coeffdict = {}
symbols = numbered_symbols("c", cls=Dummy)
symlist = [next(symbols) for _ in islice(symbols, 6)]
C0, C1, C2, C3, C4, C5 = symlist
pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2
pde, denom = pde.as_numer_denom()
pde = powsimp(expand(pde))
if pde.is_Add:
terms = pde.args
for term in terms:
if term.is_Mul:
rem = Mul(*[m for m in term.args if not m.has(x, y)])
xypart = term/rem
if xypart not in coeffdict:
coeffdict[xypart] = rem
else:
coeffdict[xypart] += rem
else:
if term not in coeffdict:
coeffdict[term] = S.One
else:
coeffdict[term] += S.One
sollist = coeffdict.values()
soldict = solve(sollist, symlist)
if soldict:
if isinstance(soldict, list):
soldict = soldict[0]
subval = soldict.values()
if any(t for t in subval):
onedict = dict(zip(symlist, [1]*6))
xival = C0*x + C1*func + C2
etaval = C3*x + C4*func + C5
xival = xival.subs(soldict)
etaval = etaval.subs(soldict)
xival = xival.subs(onedict)
etaval = etaval.subs(onedict)
return [{xi: xival, eta: etaval}]
def sysode_linear_2eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
func = match_['func']
fc = match_['func_coeff']
eq = match_['eq']
r = dict()
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
# for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1)
# and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2)
r['a'] = -fc[0,x(t),0]/fc[0,x(t),1]
r['c'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['b'] = -fc[0,y(t),0]/fc[0,x(t),1]
r['d'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
r['k1'] = forcing[0]
r['k2'] = forcing[1]
else:
raise NotImplementedError("Only homogeneous problems are supported" +
" (and constant inhomogeneity)")
if match_['type_of_equation'] == 'type1':
sol = _linear_2eq_order1_type1(x, y, t, r, eq)
if match_['type_of_equation'] == 'type2':
gsol = _linear_2eq_order1_type1(x, y, t, r, eq)
psol = _linear_2eq_order1_type2(x, y, t, r, eq)
sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])]
if match_['type_of_equation'] == 'type3':
sol = _linear_2eq_order1_type3(x, y, t, r, eq)
if match_['type_of_equation'] == 'type4':
sol = _linear_2eq_order1_type4(x, y, t, r, eq)
if match_['type_of_equation'] == 'type5':
sol = _linear_2eq_order1_type5(x, y, t, r, eq)
if match_['type_of_equation'] == 'type6':
sol = _linear_2eq_order1_type6(x, y, t, r, eq)
if match_['type_of_equation'] == 'type7':
sol = _linear_2eq_order1_type7(x, y, t, r, eq)
return sol
def _linear_2eq_order1_type1(x, y, t, r, eq):
r"""
It is classified under system of two linear homogeneous first-order constant-coefficient
ordinary differential equations.
The equations which come under this type are
.. math:: x' = ax + by,
.. math:: y' = cx + dy
The characteristics equation is written as
.. math:: \lambda^{2} + (a+d) \lambda + ad - bc = 0
and its discriminant is `D = (a-d)^{2} + 4bc`. There are several cases
1. Case when `ad - bc \neq 0`. The origin of coordinates, `x = y = 0`,
is the only stationary point; it is
- a node if `D = 0`
- a node if `D > 0` and `ad - bc > 0`
- a saddle if `D > 0` and `ad - bc < 0`
- a focus if `D < 0` and `a + d \neq 0`
- a centre if `D < 0` and `a + d \neq 0`.
1.1. If `D > 0`. The characteristic equation has two distinct real roots
`\lambda_1` and `\lambda_ 2` . The general solution of the system in question is expressed as
.. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t}
.. math:: y = C_1 (\lambda_1 - a) e^{\lambda_1 t} + C_2 (\lambda_2 - a) e^{\lambda_2 t}
where `C_1` and `C_2` being arbitrary constants
1.2. If `D < 0`. The characteristics equation has two conjugate
roots, `\lambda_1 = \sigma + i \beta` and `\lambda_2 = \sigma - i \beta`.
The general solution of the system is given by
.. math:: x = b e^{\sigma t} (C_1 \sin(\beta t) + C_2 \cos(\beta t))
.. math:: y = e^{\sigma t} ([(\sigma - a) C_1 - \beta C_2] \sin(\beta t) + [\beta C_1 + (\sigma - a) C_2 \cos(\beta t)])
1.3. If `D = 0` and `a \neq d`. The characteristic equation has
two equal roots, `\lambda_1 = \lambda_2`. The general solution of the system is written as
.. math:: x = 2b (C_1 + \frac{C_2}{a-d} + C_2 t) e^{\frac{a+d}{2} t}
.. math:: y = [(d - a) C_1 + C_2 + (d - a) C_2 t] e^{\frac{a+d}{2} t}
1.4. If `D = 0` and `a = d \neq 0` and `b = 0`
.. math:: x = C_1 e^{a t} , y = (c C_1 t + C_2) e^{a t}
1.5. If `D = 0` and `a = d \neq 0` and `c = 0`
.. math:: x = (b C_1 t + C_2) e^{a t} , y = C_1 e^{a t}
2. Case when `ad - bc = 0` and `a^{2} + b^{2} > 0`. The whole straight
line `ax + by = 0` consists of singular points. The original system of differential
equations can be rewritten as
.. math:: x' = ax + by , y' = k (ax + by)
2.1 If `a + bk \neq 0`, solution will be
.. math:: x = b C_1 + C_2 e^{(a + bk) t} , y = -a C_1 + k C_2 e^{(a + bk) t}
2.2 If `a + bk = 0`, solution will be
.. math:: x = C_1 (bk t - 1) + b C_2 t , y = k^{2} b C_1 t + (b k^{2} t + 1) C_2
"""
C1, C2 = get_numbered_constants(eq, num=2)
a, b, c, d = r['a'], r['b'], r['c'], r['d']
real_coeff = all(v.is_real for v in (a, b, c, d))
D = (a - d)**2 + 4*b*c
l1 = (a + d + sqrt(D))/2
l2 = (a + d - sqrt(D))/2
equal_roots = Eq(D, 0).expand()
gsol1, gsol2 = [], []
# Solutions have exponential form if either D > 0 with real coefficients
# or D != 0 with complex coefficients. Eigenvalues are distinct.
# For each eigenvalue lam, pick an eigenvector, making sure we don't get (0, 0)
# The candidates are (b, lam-a) and (lam-d, c).
exponential_form = D > 0 if real_coeff else Not(equal_roots)
bad_ab_vector1 = And(Eq(b, 0), Eq(l1, a))
bad_ab_vector2 = And(Eq(b, 0), Eq(l2, a))
vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)),
Piecewise((c, bad_ab_vector1), (l1 - a, True))))
vector2 = Matrix((Piecewise((l2 - d, bad_ab_vector2), (b, True)),
Piecewise((c, bad_ab_vector2), (l2 - a, True))))
sol_vector = C1*exp(l1*t)*vector1 + C2*exp(l2*t)*vector2
gsol1.append((sol_vector[0], exponential_form))
gsol2.append((sol_vector[1], exponential_form))
# Solutions have trigonometric form for real coefficients with D < 0
# Both b and c are nonzero in this case, so (b, lam-a) is an eigenvector
# It splits into real/imag parts as (b, sigma-a) and (0, beta). Then
# multiply it by C1(cos(beta*t) + I*C2*sin(beta*t)) and separate real/imag
trigonometric_form = D < 0 if real_coeff else False
sigma = re(l1)
if im(l1).is_positive:
beta = im(l1)
else:
beta = im(l2)
vector1 = Matrix((b, sigma - a))
vector2 = Matrix((0, beta))
sol_vector = exp(sigma*t) * (C1*(cos(beta*t)*vector1 - sin(beta*t)*vector2) + \
C2*(sin(beta*t)*vector1 + cos(beta*t)*vector2))
gsol1.append((sol_vector[0], trigonometric_form))
gsol2.append((sol_vector[1], trigonometric_form))
# Final case is D == 0, a single eigenvalue. If the eigenspace is 2-dimensional
# then we have a scalar matrix, deal with this case first.
scalar_matrix = And(Eq(a, d), Eq(b, 0), Eq(c, 0))
vector1 = Matrix((S.One, S.Zero))
vector2 = Matrix((S.Zero, S.One))
sol_vector = exp(l1*t) * (C1*vector1 + C2*vector2)
gsol1.append((sol_vector[0], scalar_matrix))
gsol2.append((sol_vector[1], scalar_matrix))
# Have one eigenvector. Get a generalized eigenvector from (A-lam)*vector2 = vector1
vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)),
Piecewise((c, bad_ab_vector1), (l1 - a, True))))
vector2 = Matrix((Piecewise((S.One, bad_ab_vector1), (S.Zero, Eq(a, l1)),
(b/(a - l1), True)),
Piecewise((S.Zero, bad_ab_vector1), (S.One, Eq(a, l1)),
(S.Zero, True))))
sol_vector = exp(l1*t) * (C1*vector1 + C2*(vector2 + t*vector1))
gsol1.append((sol_vector[0], equal_roots))
gsol2.append((sol_vector[1], equal_roots))
return [Eq(x(t), Piecewise(*gsol1)), Eq(y(t), Piecewise(*gsol2))]
def _linear_2eq_order1_type2(x, y, t, r, eq):
r"""
The equations of this type are
.. math:: x' = ax + by + k1 , y' = cx + dy + k2
The general solution of this system is given by sum of its particular solution and the
general solution of the corresponding homogeneous system is obtained from type1.
1. When `ad - bc \neq 0`. The particular solution will be
`x = x_0` and `y = y_0` where `x_0` and `y_0` are determined by solving linear system of equations
.. math:: a x_0 + b y_0 + k1 = 0 , c x_0 + d y_0 + k2 = 0
2. When `ad - bc = 0` and `a^{2} + b^{2} > 0`. In this case, the system of equation becomes
.. math:: x' = ax + by + k_1 , y' = k (ax + by) + k_2
2.1 If `\sigma = a + bk \neq 0`, particular solution is given by
.. math:: x = b \sigma^{-1} (c_1 k - c_2) t - \sigma^{-2} (a c_1 + b c_2)
.. math:: y = kx + (c_2 - c_1 k) t
2.2 If `\sigma = a + bk = 0`, particular solution is given by
.. math:: x = \frac{1}{2} b (c_2 - c_1 k) t^{2} + c_1 t
.. math:: y = kx + (c_2 - c_1 k) t
"""
r['k1'] = -r['k1']; r['k2'] = -r['k2']
if (r['a']*r['d'] - r['b']*r['c']) != 0:
x0, y0 = symbols('x0, y0', cls=Dummy)
sol = solve((r['a']*x0+r['b']*y0+r['k1'], r['c']*x0+r['d']*y0+r['k2']), x0, y0)
psol = [sol[x0], sol[y0]]
elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2+r['b']**2) > 0:
k = r['c']/r['a']
sigma = r['a'] + r['b']*k
if sigma != 0:
sol1 = r['b']*sigma**-1*(r['k1']*k-r['k2'])*t - sigma**-2*(r['a']*r['k1']+r['b']*r['k2'])
sol2 = k*sol1 + (r['k2']-r['k1']*k)*t
else:
# FIXME: a previous typo fix shows this is not covered by tests
sol1 = r['b']*(r['k2']-r['k1']*k)*t**2 + r['k1']*t
sol2 = k*sol1 + (r['k2']-r['k1']*k)*t
psol = [sol1, sol2]
return psol
def _linear_2eq_order1_type3(x, y, t, r, eq):
r"""
The equations of this type of ode are
.. math:: x' = f(t) x + g(t) y
.. math:: y' = g(t) x + f(t) y
The solution of such equations is given by
.. math:: x = e^{F} (C_1 e^{G} + C_2 e^{-G}) , y = e^{F} (C_1 e^{G} - C_2 e^{-G})
where `C_1` and `C_2` are arbitrary constants, and
.. math:: F = \int f(t) \,dt , G = \int g(t) \,dt
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
F = Integral(r['a'], t)
G = Integral(r['b'], t)
sol1 = exp(F)*(C1*exp(G) + C2*exp(-G))
sol2 = exp(F)*(C1*exp(G) - C2*exp(-G))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type4(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = -g(t) x + f(t) y
The solution is given by
.. math:: x = F (C_1 \cos(G) + C_2 \sin(G)), y = F (-C_1 \sin(G) + C_2 \cos(G))
where `C_1` and `C_2` are arbitrary constants, and
.. math:: F = \int f(t) \,dt , G = \int g(t) \,dt
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
if r['b'] == -r['c']:
F = exp(Integral(r['a'], t))
G = Integral(r['b'], t)
sol1 = F*(C1*cos(G) + C2*sin(G))
sol2 = F*(-C1*sin(G) + C2*cos(G))
# FIXME: the case below doesn't seem correct, is only XFAIL tested and doesn't
# match the description in the docstring above. It can be triggered with:
# dsolve([Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), x*f(x) - g(x))])
elif r['d'] == -r['a']:
F = exp(Integral(r['b'], t))
G = Integral(r['d'], t)
sol1 = F*(-C1*sin(G) + C2*cos(G))
sol2 = F*(C1*cos(G) + C2*sin(G))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type5(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = a g(t) x + [f(t) + b g(t)] y
The transformation of
.. math:: x = e^{\int f(t) \,dt} u , y = e^{\int f(t) \,dt} v , T = \int g(t) \,dt
leads to a system of constant coefficient linear differential equations
.. math:: u'(T) = v , v'(T) = au + bv
"""
u, v = symbols('u, v', cls=Function)
T = Symbol('T')
if not cancel(r['c']/r['b']).has(t):
p = cancel(r['c']/r['b'])
q = cancel((r['d']-r['a'])/r['b'])
eq = (Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T)))
sol = dsolve(eq)
sol1 = exp(Integral(r['a'], t))*sol[0].rhs.subs(T, Integral(r['b'], t))
sol2 = exp(Integral(r['a'], t))*sol[1].rhs.subs(T, Integral(r['b'], t))
# The case below isn't tested and doesn't match the description in the
# docstring above. Perhaps this should be removed...
if not cancel(r['a']/r['d']).has(t):
p = cancel(r['a']/r['d'])
q = cancel((r['b']-r['c'])/r['d'])
sol = dsolve(Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T)))
sol1 = exp(Integral(r['c'], t))*sol[1].rhs.subs(T, Integral(r['d'], t))
sol2 = exp(Integral(r['c'], t))*sol[0].rhs.subs(T, Integral(r['d'], t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type6(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y
This is solved by first multiplying the first equation by `-a` and adding
it to the second equation to obtain
.. math:: y' - a x' = -a h(t) (y - a x)
Setting `U = y - ax` and integrating the equation we arrive at
.. math:: y - ax = C_1 e^{-a \int h(t) \,dt}
and on substituting the value of y in first equation give rise to first order ODEs. After solving for
`x`, we can obtain `y` by substituting the value of `x` in second equation.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
p = 0
q = 0
p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0])
p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0])
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q!=0 and n==0:
if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j:
p = 1
s = j
break
if q!=0 and n==1:
if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j:
p = 2
s = j
break
if p == 1:
equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t)))
hint1 = classify_ode(equ)[1]
sol1 = dsolve(equ, hint=hint1+'_Integral').rhs
sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t))
elif p ==2:
equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
hint1 = classify_ode(equ)[1]
sol2 = dsolve(equ, hint=hint1+'_Integral').rhs
sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type7(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = h(t) x + p(t) y
Differentiating the first equation and substituting the value of `y`
from second equation will give a second-order linear equation
.. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0
This above equation can be easily integrated if following conditions are satisfied.
1. `fgp - g^{2} h + f g' - f' g = 0`
2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg`
If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes
a constant coefficient differential equation which is also solved by current solver.
Otherwise if the above condition fails then,
a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)`
Then the general solution is expressed as
.. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt
.. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt]
where C1 and C2 are arbitrary constants and
.. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b']
e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t)
m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t)
m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t)
if e1 == 0:
sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif e2 == 0:
sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t):
sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t):
sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
else:
x0 = Function('x0')(t) # x0 and y0 being particular solutions
y0 = Function('y0')(t)
F = exp(Integral(r['a'],t))
P = exp(Integral(r['d'],t))
sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t)
sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def sysode_linear_2eq_order2(match_):
x = match_['func'][0].func
y = match_['func'][1].func
func = match_['func']
fc = match_['func_coeff']
eq = match_['eq']
r = dict()
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
for i in range(2):
eqs = []
for terms in Add.make_args(eq[i]):
eqs.append(terms/fc[i,func[i],2])
eq[i] = Add(*eqs)
# for equations Eq(diff(x(t),t,t), a1*diff(x(t),t)+b1*diff(y(t),t)+c1*x(t)+d1*y(t)+e1)
# and Eq(a2*diff(y(t),t,t), a2*diff(x(t),t)+b2*diff(y(t),t)+c2*x(t)+d2*y(t)+e2)
r['a1'] = -fc[0,x(t),1]/fc[0,x(t),2] ; r['a2'] = -fc[1,x(t),1]/fc[1,y(t),2]
r['b1'] = -fc[0,y(t),1]/fc[0,x(t),2] ; r['b2'] = -fc[1,y(t),1]/fc[1,y(t),2]
r['c1'] = -fc[0,x(t),0]/fc[0,x(t),2] ; r['c2'] = -fc[1,x(t),0]/fc[1,y(t),2]
r['d1'] = -fc[0,y(t),0]/fc[0,x(t),2] ; r['d2'] = -fc[1,y(t),0]/fc[1,y(t),2]
const = [S.Zero, S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not (j.has(x(t)) or j.has(y(t))):
const[i] += j
r['e1'] = -const[0]
r['e2'] = -const[1]
if match_['type_of_equation'] == 'type1':
sol = _linear_2eq_order2_type1(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type2':
gsol = _linear_2eq_order2_type1(x, y, t, r, eq)
psol = _linear_2eq_order2_type2(x, y, t, r, eq)
sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])]
elif match_['type_of_equation'] == 'type3':
sol = _linear_2eq_order2_type3(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type4':
sol = _linear_2eq_order2_type4(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type5':
sol = _linear_2eq_order2_type5(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type6':
sol = _linear_2eq_order2_type6(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type7':
sol = _linear_2eq_order2_type7(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type8':
sol = _linear_2eq_order2_type8(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type9':
sol = _linear_2eq_order2_type9(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type10':
sol = _linear_2eq_order2_type10(x, y, t, r, eq)
elif match_['type_of_equation'] == 'type11':
sol = _linear_2eq_order2_type11(x, y, t, r, eq)
return sol
def _linear_2eq_order2_type1(x, y, t, r, eq):
r"""
System of two constant-coefficient second-order linear homogeneous differential equations
.. math:: x'' = ax + by
.. math:: y'' = cx + dy
The characteristic equation for above equations
.. math:: \lambda^4 - (a + d) \lambda^2 + ad - bc = 0
whose discriminant is `D = (a - d)^2 + 4bc \neq 0`
1. When `ad - bc \neq 0`
1.1. If `D \neq 0`. The characteristic equation has four distinct roots, `\lambda_1, \lambda_2, \lambda_3, \lambda_4`.
The general solution of the system is
.. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} + C_3 b e^{\lambda_3 t} + C_4 b e^{\lambda_4 t}
.. math:: y = C_1 (\lambda_1^{2} - a) e^{\lambda_1 t} + C_2 (\lambda_2^{2} - a) e^{\lambda_2 t} + C_3 (\lambda_3^{2} - a) e^{\lambda_3 t} + C_4 (\lambda_4^{2} - a) e^{\lambda_4 t}
where `C_1,..., C_4` are arbitrary constants.
1.2. If `D = 0` and `a \neq d`:
.. math:: x = 2 C_1 (bt + \frac{2bk}{a - d}) e^{\frac{kt}{2}} + 2 C_2 (bt + \frac{2bk}{a - d}) e^{\frac{-kt}{2}} + 2b C_3 t e^{\frac{kt}{2}} + 2b C_4 t e^{\frac{-kt}{2}}
.. math:: y = C_1 (d - a) t e^{\frac{kt}{2}} + C_2 (d - a) t e^{\frac{-kt}{2}} + C_3 [(d - a) t + 2k] e^{\frac{kt}{2}} + C_4 [(d - a) t - 2k] e^{\frac{-kt}{2}}
where `C_1,..., C_4` are arbitrary constants and `k = \sqrt{2 (a + d)}`
1.3. If `D = 0` and `a = d \neq 0` and `b = 0`:
.. math:: x = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t}
.. math:: y = c C_1 t e^{\sqrt{a} t} - c C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t}
1.4. If `D = 0` and `a = d \neq 0` and `c = 0`:
.. math:: x = b C_1 t e^{\sqrt{a} t} - b C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t}
.. math:: y = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t}
2. When `ad - bc = 0` and `a^2 + b^2 > 0`. Then the original system becomes
.. math:: x'' = ax + by
.. math:: y'' = k (ax + by)
2.1. If `a + bk \neq 0`:
.. math:: x = C_1 e^{t \sqrt{a + bk}} + C_2 e^{-t \sqrt{a + bk}} + C_3 bt + C_4 b
.. math:: y = C_1 k e^{t \sqrt{a + bk}} + C_2 k e^{-t \sqrt{a + bk}} - C_3 at - C_4 a
2.2. If `a + bk = 0`:
.. math:: x = C_1 b t^3 + C_2 b t^2 + C_3 t + C_4
.. math:: y = kx + 6 C_1 t + 2 C_2
"""
r['a'] = r['c1']
r['b'] = r['d1']
r['c'] = r['c2']
r['d'] = r['d2']
l = Symbol('l')
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
chara_eq = l**4 - (r['a']+r['d'])*l**2 + r['a']*r['d'] - r['b']*r['c']
l1 = rootof(chara_eq, 0)
l2 = rootof(chara_eq, 1)
l3 = rootof(chara_eq, 2)
l4 = rootof(chara_eq, 3)
D = (r['a'] - r['d'])**2 + 4*r['b']*r['c']
if (r['a']*r['d'] - r['b']*r['c']) != 0:
if D != 0:
gsol1 = C1*r['b']*exp(l1*t) + C2*r['b']*exp(l2*t) + C3*r['b']*exp(l3*t) \
+ C4*r['b']*exp(l4*t)
gsol2 = C1*(l1**2-r['a'])*exp(l1*t) + C2*(l2**2-r['a'])*exp(l2*t) + \
C3*(l3**2-r['a'])*exp(l3*t) + C4*(l4**2-r['a'])*exp(l4*t)
else:
if r['a'] != r['d']:
k = sqrt(2*(r['a']+r['d']))
mid = r['b']*t+2*r['b']*k/(r['a']-r['d'])
gsol1 = 2*C1*mid*exp(k*t/2) + 2*C2*mid*exp(-k*t/2) + \
2*r['b']*C3*t*exp(k*t/2) + 2*r['b']*C4*t*exp(-k*t/2)
gsol2 = C1*(r['d']-r['a'])*t*exp(k*t/2) + C2*(r['d']-r['a'])*t*exp(-k*t/2) + \
C3*((r['d']-r['a'])*t+2*k)*exp(k*t/2) + C4*((r['d']-r['a'])*t-2*k)*exp(-k*t/2)
elif r['a'] == r['d'] != 0 and r['b'] == 0:
sa = sqrt(r['a'])
gsol1 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t)
gsol2 = r['c']*C1*t*exp(sa*t)-r['c']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t)
elif r['a'] == r['d'] != 0 and r['c'] == 0:
sa = sqrt(r['a'])
gsol1 = r['b']*C1*t*exp(sa*t)-r['b']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t)
gsol2 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t)
elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2 + r['b']**2) > 0:
k = r['c']/r['a']
if r['a'] + r['b']*k != 0:
mid = sqrt(r['a'] + r['b']*k)
gsol1 = C1*exp(mid*t) + C2*exp(-mid*t) + C3*r['b']*t + C4*r['b']
gsol2 = C1*k*exp(mid*t) + C2*k*exp(-mid*t) - C3*r['a']*t - C4*r['a']
else:
gsol1 = C1*r['b']*t**3 + C2*r['b']*t**2 + C3*t + C4
gsol2 = k*gsol1 + 6*C1*t + 2*C2
return [Eq(x(t), gsol1), Eq(y(t), gsol2)]
def _linear_2eq_order2_type2(x, y, t, r, eq):
r"""
The equations in this type are
.. math:: x'' = a_1 x + b_1 y + c_1
.. math:: y'' = a_2 x + b_2 y + c_2
The general solution of this system is given by the sum of its particular solution
and the general solution of the homogeneous system. The general solution is given
by the linear system of 2 equation of order 2 and type 1
1. If `a_1 b_2 - a_2 b_1 \neq 0`. A particular solution will be `x = x_0` and `y = y_0`
where the constants `x_0` and `y_0` are determined by solving the linear algebraic system
.. math:: a_1 x_0 + b_1 y_0 + c_1 = 0, a_2 x_0 + b_2 y_0 + c_2 = 0
2. If `a_1 b_2 - a_2 b_1 = 0` and `a_1^2 + b_1^2 > 0`. In this case, the system in question becomes
.. math:: x'' = ax + by + c_1, y'' = k (ax + by) + c_2
2.1. If `\sigma = a + bk \neq 0`, the particular solution will be
.. math:: x = \frac{1}{2} b \sigma^{-1} (c_1 k - c_2) t^2 - \sigma^{-2} (a c_1 + b c_2)
.. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2
2.2. If `\sigma = a + bk = 0`, the particular solution will be
.. math:: x = \frac{1}{24} b (c_2 - c_1 k) t^4 + \frac{1}{2} c_1 t^2
.. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2
"""
x0, y0 = symbols('x0, y0')
if r['c1']*r['d2'] - r['c2']*r['d1'] != 0:
sol = solve((r['c1']*x0+r['d1']*y0+r['e1'], r['c2']*x0+r['d2']*y0+r['e2']), x0, y0)
psol = [sol[x0], sol[y0]]
elif r['c1']*r['d2'] - r['c2']*r['d1'] == 0 and (r['c1']**2 + r['d1']**2) > 0:
k = r['c2']/r['c1']
sig = r['c1'] + r['d1']*k
if sig != 0:
psol1 = r['d1']*sig**-1*(r['e1']*k-r['e2'])*t**2/2 - \
sig**-2*(r['c1']*r['e1']+r['d1']*r['e2'])
psol2 = k*psol1 + (r['e2'] - r['e1']*k)*t**2/2
psol = [psol1, psol2]
else:
psol1 = r['d1']*(r['e2']-r['e1']*k)*t**4/24 + r['e1']*t**2/2
psol2 = k*psol1 + (r['e2']-r['e1']*k)*t**2/2
psol = [psol1, psol2]
return psol
def _linear_2eq_order2_type3(x, y, t, r, eq):
r"""
These type of equation is used for describing the horizontal motion of a pendulum
taking into account the Earth rotation.
The solution is given with `a^2 + 4b > 0`:
.. math:: x = C_1 \cos(\alpha t) + C_2 \sin(\alpha t) + C_3 \cos(\beta t) + C_4 \sin(\beta t)
.. math:: y = -C_1 \sin(\alpha t) + C_2 \cos(\alpha t) - C_3 \sin(\beta t) + C_4 \cos(\beta t)
where `C_1,...,C_4` and
.. math:: \alpha = \frac{1}{2} a + \frac{1}{2} \sqrt{a^2 + 4b}, \beta = \frac{1}{2} a - \frac{1}{2} \sqrt{a^2 + 4b}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
if r['b1']**2 - 4*r['c1'] > 0:
r['a'] = r['b1'] ; r['b'] = -r['c1']
alpha = r['a']/2 + sqrt(r['a']**2 + 4*r['b'])/2
beta = r['a']/2 - sqrt(r['a']**2 + 4*r['b'])/2
sol1 = C1*cos(alpha*t) + C2*sin(alpha*t) + C3*cos(beta*t) + C4*sin(beta*t)
sol2 = -C1*sin(alpha*t) + C2*cos(alpha*t) - C3*sin(beta*t) + C4*cos(beta*t)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type4(x, y, t, r, eq):
r"""
These equations are found in the theory of oscillations
.. math:: x'' + a_1 x' + b_1 y' + c_1 x + d_1 y = k_1 e^{i \omega t}
.. math:: y'' + a_2 x' + b_2 y' + c_2 x + d_2 y = k_2 e^{i \omega t}
The general solution of this linear nonhomogeneous system of constant-coefficient
differential equations is given by the sum of its particular solution and the
general solution of the corresponding homogeneous system (with `k_1 = k_2 = 0`)
1. A particular solution is obtained by the method of undetermined coefficients:
.. math:: x = A_* e^{i \omega t}, y = B_* e^{i \omega t}
On substituting these expressions into the original system of differential equations,
one arrive at a linear nonhomogeneous system of algebraic equations for the
coefficients `A` and `B`.
2. The general solution of the homogeneous system of differential equations is determined
by a linear combination of linearly independent particular solutions determined by
the method of undetermined coefficients in the form of exponentials:
.. math:: x = A e^{\lambda t}, y = B e^{\lambda t}
On substituting these expressions into the original system and collecting the
coefficients of the unknown `A` and `B`, one obtains
.. math:: (\lambda^{2} + a_1 \lambda + c_1) A + (b_1 \lambda + d_1) B = 0
.. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + b_2 \lambda + d_2) B = 0
The determinant of this system must vanish for nontrivial solutions A, B to exist.
This requirement results in the following characteristic equation for `\lambda`
.. math:: (\lambda^2 + a_1 \lambda + c_1) (\lambda^2 + b_2 \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0
If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original
system of the differential equations has the form
.. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t}
.. math:: y = C_1 (\lambda_1^{2} + a_1 \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + a_1 \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + a_1 \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + a_1 \lambda_4 + c_1) e^{\lambda_4 t}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
k = Symbol('k')
Ra, Ca, Rb, Cb = symbols('Ra, Ca, Rb, Cb')
a1 = r['a1'] ; a2 = r['a2']
b1 = r['b1'] ; b2 = r['b2']
c1 = r['c1'] ; c2 = r['c2']
d1 = r['d1'] ; d2 = r['d2']
k1 = r['e1'].expand().as_independent(t)[0]
k2 = r['e2'].expand().as_independent(t)[0]
ew1 = r['e1'].expand().as_independent(t)[1]
ew2 = powdenest(ew1).as_base_exp()[1]
ew3 = collect(ew2, t).coeff(t)
w = cancel(ew3/I)
# The particular solution is assumed to be (Ra+I*Ca)*exp(I*w*t) and
# (Rb+I*Cb)*exp(I*w*t) for x(t) and y(t) respectively
# peq1, peq2, peq3, peq4 unused
# peq1 = (-w**2+c1)*Ra - a1*w*Ca + d1*Rb - b1*w*Cb - k1
# peq2 = a1*w*Ra + (-w**2+c1)*Ca + b1*w*Rb + d1*Cb
# peq3 = c2*Ra - a2*w*Ca + (-w**2+d2)*Rb - b2*w*Cb - k2
# peq4 = a2*w*Ra + c2*Ca + b2*w*Rb + (-w**2+d2)*Cb
# FIXME: solve for what in what? Ra, Rb, etc I guess
# but then psol not used for anything?
# psol = solve([peq1, peq2, peq3, peq4])
chareq = (k**2+a1*k+c1)*(k**2+b2*k+d2) - (b1*k+d1)*(a2*k+c2)
[k1, k2, k3, k4] = roots_quartic(Poly(chareq))
sol1 = -C1*(b1*k1+d1)*exp(k1*t) - C2*(b1*k2+d1)*exp(k2*t) - \
C3*(b1*k3+d1)*exp(k3*t) - C4*(b1*k4+d1)*exp(k4*t) + (Ra+I*Ca)*exp(I*w*t)
a1_ = (a1-1)
sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*t) + C2*(k2**2+a1_*k2+c1)*exp(k2*t) + \
C3*(k3**2+a1_*k3+c1)*exp(k3*t) + C4*(k4**2+a1_*k4+c1)*exp(k4*t) + (Rb+I*Cb)*exp(I*w*t)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type5(x, y, t, r, eq):
r"""
The equation which come under this category are
.. math:: x'' = a (t y' - y)
.. math:: y'' = b (t x' - x)
The transformation
.. math:: u = t x' - x, b = t y' - y
leads to the first-order system
.. math:: u' = atv, v' = btu
The general solution of this system is given by
If `ab > 0`:
.. math:: u = C_1 a e^{\frac{1}{2} \sqrt{ab} t^2} + C_2 a e^{-\frac{1}{2} \sqrt{ab} t^2}
.. math:: v = C_1 \sqrt{ab} e^{\frac{1}{2} \sqrt{ab} t^2} - C_2 \sqrt{ab} e^{-\frac{1}{2} \sqrt{ab} t^2}
If `ab < 0`:
.. math:: u = C_1 a \cos(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 a \sin(-\frac{1}{2} \sqrt{\left|ab\right|} t^2)
.. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 \sqrt{\left|ab\right|} \cos(-\frac{1}{2} \sqrt{\left|ab\right|} t^2)
where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v`
in above equations and integrating the resulting expressions, the general solution will become
.. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt
where `C_3` and `C_4` are arbitrary constants.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
r['a'] = -r['d1'] ; r['b'] = -r['c2']
mul = sqrt(abs(r['a']*r['b']))
if r['a']*r['b'] > 0:
u = C1*r['a']*exp(mul*t**2/2) + C2*r['a']*exp(-mul*t**2/2)
v = C1*mul*exp(mul*t**2/2) - C2*mul*exp(-mul*t**2/2)
else:
u = C1*r['a']*cos(mul*t**2/2) + C2*r['a']*sin(mul*t**2/2)
v = -C1*mul*sin(mul*t**2/2) + C2*mul*cos(mul*t**2/2)
sol1 = C3*t + t*Integral(u/t**2, t)
sol2 = C4*t + t*Integral(v/t**2, t)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type6(x, y, t, r, eq):
r"""
The equations are
.. math:: x'' = f(t) (a_1 x + b_1 y)
.. math:: y'' = f(t) (a_2 x + b_2 y)
If `k_1` and `k_2` are roots of the quadratic equation
.. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0
Then by multiplying appropriate constants and adding together original equations
we obtain two independent equations:
.. math:: z_1'' = k_1 f(t) z_1, z_1 = a_2 x + (k_1 - a_1) y
.. math:: z_2'' = k_2 f(t) z_2, z_2 = a_2 x + (k_2 - a_1) y
Solving the equations will give the values of `x` and `y` after obtaining the value
of `z_1` and `z_2` by solving the differential equation and substituting the result.
"""
k = Symbol('k')
z = Function('z')
num, den = cancel(
(r['c1']*x(t) + r['d1']*y(t))/
(r['c2']*x(t) + r['d2']*y(t))).as_numer_denom()
f = r['c1']/num.coeff(x(t))
a1 = num.coeff(x(t))
b1 = num.coeff(y(t))
a2 = den.coeff(x(t))
b2 = den.coeff(y(t))
chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1
k1, k2 = [rootof(chareq, k) for k in range(Poly(chareq).degree())]
z1 = dsolve(diff(z(t),t,t) - k1*f*z(t)).rhs
z2 = dsolve(diff(z(t),t,t) - k2*f*z(t)).rhs
sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2))
sol2 = (z1 - z2)/(k1 - k2)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type7(x, y, t, r, eq):
r"""
The equations are given as
.. math:: x'' = f(t) (a_1 x' + b_1 y')
.. math:: y'' = f(t) (a_2 x' + b_2 y')
If `k_1` and 'k_2` are roots of the quadratic equation
.. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0
Then the system can be reduced by adding together the two equations multiplied
by appropriate constants give following two independent equations:
.. math:: z_1'' = k_1 f(t) z_1', z_1 = a_2 x + (k_1 - a_1) y
.. math:: z_2'' = k_2 f(t) z_2', z_2 = a_2 x + (k_2 - a_1) y
Integrating these and returning to the original variables, one arrives at a linear
algebraic system for the unknowns `x` and `y`:
.. math:: a_2 x + (k_1 - a_1) y = C_1 \int e^{k_1 F(t)} \,dt + C_2
.. math:: a_2 x + (k_2 - a_1) y = C_3 \int e^{k_2 F(t)} \,dt + C_4
where `C_1,...,C_4` are arbitrary constants and `F(t) = \int f(t) \,dt`
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
k = Symbol('k')
num, den = cancel(
(r['a1']*x(t) + r['b1']*y(t))/
(r['a2']*x(t) + r['b2']*y(t))).as_numer_denom()
f = r['a1']/num.coeff(x(t))
a1 = num.coeff(x(t))
b1 = num.coeff(y(t))
a2 = den.coeff(x(t))
b2 = den.coeff(y(t))
chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1
[k1, k2] = [rootof(chareq, k) for k in range(Poly(chareq).degree())]
F = Integral(f, t)
z1 = C1*Integral(exp(k1*F), t) + C2
z2 = C3*Integral(exp(k2*F), t) + C4
sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2))
sol2 = (z1 - z2)/(k1 - k2)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type8(x, y, t, r, eq):
r"""
The equation of this category are
.. math:: x'' = a f(t) (t y' - y)
.. math:: y'' = b f(t) (t x' - x)
The transformation
.. math:: u = t x' - x, v = t y' - y
leads to the system of first-order equations
.. math:: u' = a t f(t) v, v' = b t f(t) u
The general solution of this system has the form
If `ab > 0`:
.. math:: u = C_1 a e^{\sqrt{ab} \int t f(t) \,dt} + C_2 a e^{-\sqrt{ab} \int t f(t) \,dt}
.. math:: v = C_1 \sqrt{ab} e^{\sqrt{ab} \int t f(t) \,dt} - C_2 \sqrt{ab} e^{-\sqrt{ab} \int t f(t) \,dt}
If `ab < 0`:
.. math:: u = C_1 a \cos(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 a \sin(-\sqrt{\left|ab\right|} \int t f(t) \,dt)
.. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 \sqrt{\left|ab\right|} \cos(-\sqrt{\left|ab\right|} \int t f(t) \,dt)
where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v`
in above equations and integrating the resulting expressions, the general solution will become
.. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt
where `C_3` and `C_4` are arbitrary constants.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
num, den = cancel(r['d1']/r['c2']).as_numer_denom()
f = -r['d1']/num
a = num
b = den
mul = sqrt(abs(a*b))
Igral = Integral(t*f, t)
if a*b > 0:
u = C1*a*exp(mul*Igral) + C2*a*exp(-mul*Igral)
v = C1*mul*exp(mul*Igral) - C2*mul*exp(-mul*Igral)
else:
u = C1*a*cos(mul*Igral) + C2*a*sin(mul*Igral)
v = -C1*mul*sin(mul*Igral) + C2*mul*cos(mul*Igral)
sol1 = C3*t + t*Integral(u/t**2, t)
sol2 = C4*t + t*Integral(v/t**2, t)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type9(x, y, t, r, eq):
r"""
.. math:: t^2 x'' + a_1 t x' + b_1 t y' + c_1 x + d_1 y = 0
.. math:: t^2 y'' + a_2 t x' + b_2 t y' + c_2 x + d_2 y = 0
These system of equations are euler type.
The substitution of `t = \sigma e^{\tau} (\sigma \neq 0)` leads to the system of constant
coefficient linear differential equations
.. math:: x'' + (a_1 - 1) x' + b_1 y' + c_1 x + d_1 y = 0
.. math:: y'' + a_2 x' + (b_2 - 1) y' + c_2 x + d_2 y = 0
The general solution of the homogeneous system of differential equations is determined
by a linear combination of linearly independent particular solutions determined by
the method of undetermined coefficients in the form of exponentials
.. math:: x = A e^{\lambda t}, y = B e^{\lambda t}
On substituting these expressions into the original system and collecting the
coefficients of the unknown `A` and `B`, one obtains
.. math:: (\lambda^{2} + (a_1 - 1) \lambda + c_1) A + (b_1 \lambda + d_1) B = 0
.. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + (b_2 - 1) \lambda + d_2) B = 0
The determinant of this system must vanish for nontrivial solutions A, B to exist.
This requirement results in the following characteristic equation for `\lambda`
.. math:: (\lambda^2 + (a_1 - 1) \lambda + c_1) (\lambda^2 + (b_2 - 1) \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0
If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original
system of the differential equations has the form
.. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t}
.. math:: y = C_1 (\lambda_1^{2} + (a_1 - 1) \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + (a_1 - 1) \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + (a_1 - 1) \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + (a_1 - 1) \lambda_4 + c_1) e^{\lambda_4 t}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
k = Symbol('k')
a1 = -r['a1']*t; a2 = -r['a2']*t
b1 = -r['b1']*t; b2 = -r['b2']*t
c1 = -r['c1']*t**2; c2 = -r['c2']*t**2
d1 = -r['d1']*t**2; d2 = -r['d2']*t**2
eq = (k**2+(a1-1)*k+c1)*(k**2+(b2-1)*k+d2)-(b1*k+d1)*(a2*k+c2)
[k1, k2, k3, k4] = roots_quartic(Poly(eq))
sol1 = -C1*(b1*k1+d1)*exp(k1*log(t)) - C2*(b1*k2+d1)*exp(k2*log(t)) - \
C3*(b1*k3+d1)*exp(k3*log(t)) - C4*(b1*k4+d1)*exp(k4*log(t))
a1_ = (a1-1)
sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*log(t)) + C2*(k2**2+a1_*k2+c1)*exp(k2*log(t)) \
+ C3*(k3**2+a1_*k3+c1)*exp(k3*log(t)) + C4*(k4**2+a1_*k4+c1)*exp(k4*log(t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type10(x, y, t, r, eq):
r"""
The equation of this category are
.. math:: (\alpha t^2 + \beta t + \gamma)^{2} x'' = ax + by
.. math:: (\alpha t^2 + \beta t + \gamma)^{2} y'' = cx + dy
The transformation
.. math:: \tau = \int \frac{1}{\alpha t^2 + \beta t + \gamma} \,dt , u = \frac{x}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} , v = \frac{y}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}}
leads to a constant coefficient linear system of equations
.. math:: u'' = (a - \alpha \gamma + \frac{1}{4} \beta^{2}) u + b v
.. math:: v'' = c u + (d - \alpha \gamma + \frac{1}{4} \beta^{2}) v
These system of equations obtained can be solved by type1 of System of two
constant-coefficient second-order linear homogeneous differential equations.
"""
# FIXME: This function is equivalent to type6 (and broken). Should be removed...
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
u, v = symbols('u, v', cls=Function)
assert False
p = Wild('p', exclude=[t, t**2])
q = Wild('q', exclude=[t, t**2])
s = Wild('s', exclude=[t, t**2])
n = Wild('n', exclude=[t, t**2])
num, den = r['c1'].as_numer_denom()
dic = den.match((n*(p*t**2+q*t+s)**2).expand())
eqz = dic[p]*t**2 + dic[q]*t + dic[s]
a = num/dic[n]
b = cancel(r['d1']*eqz**2)
c = cancel(r['c2']*eqz**2)
d = cancel(r['d2']*eqz**2)
[msol1, msol2] = dsolve([Eq(diff(u(t), t, t), (a - dic[p]*dic[s] + dic[q]**2/4)*u(t) \
+ b*v(t)), Eq(diff(v(t),t,t), c*u(t) + (d - dic[p]*dic[s] + dic[q]**2/4)*v(t))])
sol1 = (msol1.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t))
sol2 = (msol2.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order2_type11(x, y, t, r, eq):
r"""
The equations which comes under this type are
.. math:: x'' = f(t) (t x' - x) + g(t) (t y' - y)
.. math:: y'' = h(t) (t x' - x) + p(t) (t y' - y)
The transformation
.. math:: u = t x' - x, v = t y' - y
leads to the linear system of first-order equations
.. math:: u' = t f(t) u + t g(t) v, v' = t h(t) u + t p(t) v
On substituting the value of `u` and `v` in transformed equation gives value of `x` and `y` as
.. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt , y = C_4 t + t \int \frac{v}{t^2} \,dt.
where `C_3` and `C_4` are arbitrary constants.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
u, v = symbols('u, v', cls=Function)
f = -r['c1'] ; g = -r['d1']
h = -r['c2'] ; p = -r['d2']
[msol1, msol2] = dsolve([Eq(diff(u(t),t), t*f*u(t) + t*g*v(t)), Eq(diff(v(t),t), t*h*u(t) + t*p*v(t))])
sol1 = C3*t + t*Integral(msol1.rhs/t**2, t)
sol2 = C4*t + t*Integral(msol2.rhs/t**2, t)
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def sysode_linear_3eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
z = match_['func'][2].func
func = match_['func']
fc = match_['func_coeff']
eq = match_['eq']
r = dict()
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
for i in range(3):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
# for equations:
# Eq(g1*diff(x(t),t), a1*x(t)+b1*y(t)+c1*z(t)+d1),
# Eq(g2*diff(y(t),t), a2*x(t)+b2*y(t)+c2*z(t)+d2), and
# Eq(g3*diff(z(t),t), a3*x(t)+b3*y(t)+c3*z(t)+d3)
r['a1'] = fc[0,x(t),0]/fc[0,x(t),1]; r['a2'] = fc[1,x(t),0]/fc[1,y(t),1];
r['a3'] = fc[2,x(t),0]/fc[2,z(t),1]
r['b1'] = fc[0,y(t),0]/fc[0,x(t),1]; r['b2'] = fc[1,y(t),0]/fc[1,y(t),1];
r['b3'] = fc[2,y(t),0]/fc[2,z(t),1]
r['c1'] = fc[0,z(t),0]/fc[0,x(t),1]; r['c2'] = fc[1,z(t),0]/fc[1,y(t),1];
r['c3'] = fc[2,z(t),0]/fc[2,z(t),1]
for i in range(3):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t), z(t)):
raise NotImplementedError("Only homogeneous problems are supported, non-homogeneous are not supported currently.")
if match_['type_of_equation'] == 'type1':
sol = _linear_3eq_order1_type1(x, y, z, t, r, eq)
if match_['type_of_equation'] == 'type2':
sol = _linear_3eq_order1_type2(x, y, z, t, r, eq)
if match_['type_of_equation'] == 'type3':
sol = _linear_3eq_order1_type3(x, y, z, t, r, eq)
if match_['type_of_equation'] == 'type4':
sol = _linear_3eq_order1_type4(x, y, z, t, r, eq)
if match_['type_of_equation'] == 'type6':
sol = _linear_neq_order1_type1(match_)
return sol
def _linear_3eq_order1_type1(x, y, z, t, r, eq):
r"""
.. math:: x' = ax
.. math:: y' = bx + cy
.. math:: z' = dx + ky + pz
Solution of such equations are forward substitution. Solving first equations
gives the value of `x`, substituting it in second and third equation and
solving second equation gives `y` and similarly substituting `y` in third
equation give `z`.
.. math:: x = C_1 e^{at}
.. math:: y = \frac{b C_1}{a - c} e^{at} + C_2 e^{ct}
.. math:: z = \frac{C_1}{a - p} (d + \frac{bk}{a - c}) e^{at} + \frac{k C_2}{c - p} e^{ct} + C_3 e^{pt}
where `C_1, C_2` and `C_3` are arbitrary constants.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
a = -r['a1']; b = -r['a2']; c = -r['b2']
d = -r['a3']; k = -r['b3']; p = -r['c3']
sol1 = C1*exp(a*t)
sol2 = b*C1*exp(a*t)/(a-c) + C2*exp(c*t)
sol3 = C1*(d+b*k/(a-c))*exp(a*t)/(a-p) + k*C2*exp(c*t)/(c-p) + C3*exp(p*t)
return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)]
def _linear_3eq_order1_type2(x, y, z, t, r, eq):
r"""
The equations of this type are
.. math:: x' = cy - bz
.. math:: y' = az - cx
.. math:: z' = bx - ay
1. First integral:
.. math:: ax + by + cz = A \qquad - (1)
.. math:: x^2 + y^2 + z^2 = B^2 \qquad - (2)
where `A` and `B` are arbitrary constants. It follows from these integrals
that the integral lines are circles formed by the intersection of the planes
`(1)` and sphere `(2)`
2. Solution:
.. math:: x = a C_0 + k C_1 \cos(kt) + (c C_2 - b C_3) \sin(kt)
.. math:: y = b C_0 + k C_2 \cos(kt) + (a C_2 - c C_3) \sin(kt)
.. math:: z = c C_0 + k C_3 \cos(kt) + (b C_2 - a C_3) \sin(kt)
where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration,
`C_1,...,C_4` are constrained by a single relation,
.. math:: a C_1 + b C_2 + c C_3 = 0
"""
C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0)
a = -r['c2']; b = -r['a3']; c = -r['b1']
k = sqrt(a**2 + b**2 + c**2)
C3 = (-a*C1 - b*C2)/c
sol1 = a*C0 + k*C1*cos(k*t) + (c*C2-b*C3)*sin(k*t)
sol2 = b*C0 + k*C2*cos(k*t) + (a*C3-c*C1)*sin(k*t)
sol3 = c*C0 + k*C3*cos(k*t) + (b*C1-a*C2)*sin(k*t)
return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)]
def _linear_3eq_order1_type3(x, y, z, t, r, eq):
r"""
Equations of this system of ODEs
.. math:: a x' = bc (y - z)
.. math:: b y' = ac (z - x)
.. math:: c z' = ab (x - y)
1. First integral:
.. math:: a^2 x + b^2 y + c^2 z = A
where A is an arbitrary constant. It follows that the integral lines are plane curves.
2. Solution:
.. math:: x = C_0 + k C_1 \cos(kt) + a^{-1} bc (C_2 - C_3) \sin(kt)
.. math:: y = C_0 + k C_2 \cos(kt) + a b^{-1} c (C_3 - C_1) \sin(kt)
.. math:: z = C_0 + k C_3 \cos(kt) + ab c^{-1} (C_1 - C_2) \sin(kt)
where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration,
`C_1,...,C_4` are constrained by a single relation
.. math:: a^2 C_1 + b^2 C_2 + c^2 C_3 = 0
"""
C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0)
c = sqrt(r['b1']*r['c2'])
b = sqrt(r['b1']*r['a3'])
a = sqrt(r['c2']*r['a3'])
C3 = (-a**2*C1-b**2*C2)/c**2
k = sqrt(a**2 + b**2 + c**2)
sol1 = C0 + k*C1*cos(k*t) + a**-1*b*c*(C2-C3)*sin(k*t)
sol2 = C0 + k*C2*cos(k*t) + a*b**-1*c*(C3-C1)*sin(k*t)
sol3 = C0 + k*C3*cos(k*t) + a*b*c**-1*(C1-C2)*sin(k*t)
return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)]
def _linear_3eq_order1_type4(x, y, z, t, r, eq):
r"""
Equations:
.. math:: x' = (a_1 f(t) + g(t)) x + a_2 f(t) y + a_3 f(t) z
.. math:: y' = b_1 f(t) x + (b_2 f(t) + g(t)) y + b_3 f(t) z
.. math:: z' = c_1 f(t) x + c_2 f(t) y + (c_3 f(t) + g(t)) z
The transformation
.. math:: x = e^{\int g(t) \,dt} u, y = e^{\int g(t) \,dt} v, z = e^{\int g(t) \,dt} w, \tau = \int f(t) \,dt
leads to the system of constant coefficient linear differential equations
.. math:: u' = a_1 u + a_2 v + a_3 w
.. math:: v' = b_1 u + b_2 v + b_3 w
.. math:: w' = c_1 u + c_2 v + c_3 w
These system of equations are solved by homogeneous linear system of constant
coefficients of `n` equations of first order. Then substituting the value of
`u, v` and `w` in transformed equation gives value of `x, y` and `z`.
"""
u, v, w = symbols('u, v, w', cls=Function)
a2, a3 = cancel(r['b1']/r['c1']).as_numer_denom()
f = cancel(r['b1']/a2)
b1 = cancel(r['a2']/f); b3 = cancel(r['c2']/f)
c1 = cancel(r['a3']/f); c2 = cancel(r['b3']/f)
a1, g = div(r['a1'],f)
b2 = div(r['b2'],f)[0]
c3 = div(r['c3'],f)[0]
trans_eq = (diff(u(t),t)-a1*u(t)-a2*v(t)-a3*w(t), diff(v(t),t)-b1*u(t)-\
b2*v(t)-b3*w(t), diff(w(t),t)-c1*u(t)-c2*v(t)-c3*w(t))
sol = dsolve(trans_eq)
sol1 = exp(Integral(g,t))*((sol[0].rhs).subs(t, Integral(f,t)))
sol2 = exp(Integral(g,t))*((sol[1].rhs).subs(t, Integral(f,t)))
sol3 = exp(Integral(g,t))*((sol[2].rhs).subs(t, Integral(f,t)))
return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)]
def sysode_linear_neq_order1(match_):
sol = _linear_neq_order1_type1(match_)
return sol
def _linear_neq_order1_type1(match_):
r"""
System of n first-order constant-coefficient linear nonhomogeneous differential equation
.. math:: y'_k = a_{k1} y_1 + a_{k2} y_2 +...+ a_{kn} y_n; k = 1,2,...,n
or that can be written as `\vec{y'} = A . \vec{y}`
where `\vec{y}` is matrix of `y_k` for `k = 1,2,...n` and `A` is a `n \times n` matrix.
Since these equations are equivalent to a first order homogeneous linear
differential equation. So the general solution will contain `n` linearly
independent parts and solution will consist some type of exponential
functions. Assuming `y = \vec{v} e^{rt}` is a solution of the system where
`\vec{v}` is a vector of coefficients of `y_1,...,y_n`. Substituting `y` and
`y' = r v e^{r t}` into the equation `\vec{y'} = A . \vec{y}`, we get
.. math:: r \vec{v} e^{rt} = A \vec{v} e^{rt}
.. math:: r \vec{v} = A \vec{v}
where `r` comes out to be eigenvalue of `A` and vector `\vec{v}` is the eigenvector
of `A` corresponding to `r`. There are three possibilities of eigenvalues of `A`
- `n` distinct real eigenvalues
- complex conjugate eigenvalues
- eigenvalues with multiplicity `k`
1. When all eigenvalues `r_1,..,r_n` are distinct with `n` different eigenvectors
`v_1,...v_n` then the solution is given by
.. math:: \vec{y} = C_1 e^{r_1 t} \vec{v_1} + C_2 e^{r_2 t} \vec{v_2} +...+ C_n e^{r_n t} \vec{v_n}
where `C_1,C_2,...,C_n` are arbitrary constants.
2. When some eigenvalues are complex then in order to make the solution real,
we take a linear combination: if `r = a + bi` has an eigenvector
`\vec{v} = \vec{w_1} + i \vec{w_2}` then to obtain real-valued solutions to
the system, replace the complex-valued solutions `e^{rx} \vec{v}`
with real-valued solution `e^{ax} (\vec{w_1} \cos(bx) - \vec{w_2} \sin(bx))`
and for `r = a - bi` replace the solution `e^{-r x} \vec{v}` with
`e^{ax} (\vec{w_1} \sin(bx) + \vec{w_2} \cos(bx))`
3. If some eigenvalues are repeated. Then we get fewer than `n` linearly
independent eigenvectors, we miss some of the solutions and need to
construct the missing ones. We do this via generalized eigenvectors, vectors
which are not eigenvectors but are close enough that we can use to write
down the remaining solutions. For a eigenvalue `r` with eigenvector `\vec{w}`
we obtain `\vec{w_2},...,\vec{w_k}` using
.. math:: (A - r I) . \vec{w_2} = \vec{w}
.. math:: (A - r I) . \vec{w_3} = \vec{w_2}
.. math:: \vdots
.. math:: (A - r I) . \vec{w_k} = \vec{w_{k-1}}
Then the solutions to the system for the eigenspace are `e^{rt} [\vec{w}],
e^{rt} [t \vec{w} + \vec{w_2}], e^{rt} [\frac{t^2}{2} \vec{w} + t \vec{w_2} + \vec{w_3}],
...,e^{rt} [\frac{t^{k-1}}{(k-1)!} \vec{w} + \frac{t^{k-2}}{(k-2)!} \vec{w_2} +...+ t \vec{w_{k-1}}
+ \vec{w_k}]`
So, If `\vec{y_1},...,\vec{y_n}` are `n` solution of obtained from three
categories of `A`, then general solution to the system `\vec{y'} = A . \vec{y}`
.. math:: \vec{y} = C_1 \vec{y_1} + C_2 \vec{y_2} + \cdots + C_n \vec{y_n}
"""
eq = match_['eq']
func = match_['func']
fc = match_['func_coeff']
n = len(eq)
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
constants = numbered_symbols(prefix='C', cls=Symbol, start=1)
M = Matrix(n,n,lambda i,j:-fc[i,func[j],0])
evector = M.eigenvects(simplify=True)
def is_complex(mat, root):
return Matrix(n, 1, lambda i,j: re(mat[i])*cos(im(root)*t) - im(mat[i])*sin(im(root)*t))
def is_complex_conjugate(mat, root):
return Matrix(n, 1, lambda i,j: re(mat[i])*sin(abs(im(root))*t) + im(mat[i])*cos(im(root)*t)*abs(im(root))/im(root))
conjugate_root = []
e_vector = zeros(n,1)
for evects in evector:
if evects[0] not in conjugate_root:
# If number of column of an eigenvector is not equal to the multiplicity
# of its eigenvalue then the legt eigenvectors are calculated
if len(evects[2])!=evects[1]:
var_mat = Matrix(n, 1, lambda i,j: Symbol('x'+str(i)))
Mnew = (M - evects[0]*eye(evects[2][-1].rows))*var_mat
w = [0 for i in range(evects[1])]
w[0] = evects[2][-1]
for r in range(1, evects[1]):
w_ = Mnew - w[r-1]
sol_dict = solve(list(w_), var_mat[1:])
sol_dict[var_mat[0]] = var_mat[0]
for key, value in sol_dict.items():
sol_dict[key] = value.subs(var_mat[0],1)
w[r] = Matrix(n, 1, lambda i,j: sol_dict[var_mat[i]])
evects[2].append(w[r])
for i in range(evects[1]):
C = next(constants)
for j in range(i+1):
if evects[0].has(I):
evects[2][j] = simplify(evects[2][j])
e_vector += C*is_complex(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j)
C = next(constants)
e_vector += C*is_complex_conjugate(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j)
else:
e_vector += C*evects[2][j]*t**(i-j)*exp(evects[0]*t)/factorial(i-j)
if evects[0].has(I):
conjugate_root.append(conjugate(evects[0]))
sol = []
for i in range(len(eq)):
sol.append(Eq(func[i],e_vector[i]))
return sol
def sysode_nonlinear_2eq_order1(match_):
func = match_['func']
eq = match_['eq']
fc = match_['func_coeff']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_2eq_order1_type5(func, t, eq)
return sol
x = func[0].func
y = func[1].func
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_2eq_order1_type1(x, y, t, eq)
elif match_['type_of_equation'] == 'type2':
sol = _nonlinear_2eq_order1_type2(x, y, t, eq)
elif match_['type_of_equation'] == 'type3':
sol = _nonlinear_2eq_order1_type3(x, y, t, eq)
elif match_['type_of_equation'] == 'type4':
sol = _nonlinear_2eq_order1_type4(x, y, t, eq)
return sol
def _nonlinear_2eq_order1_type1(x, y, t, eq):
r"""
Equations:
.. math:: x' = x^n F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `n \neq 1`
.. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}}
if `n = 1`
.. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy}
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n!=1:
phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n))
else:
phi = C1*exp(Integral(1/g, v))
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type2(x, y, t, eq):
r"""
Equations:
.. math:: x' = e^{\lambda x} F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `\lambda \neq 0`
.. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy)
if `\lambda = 0`
.. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n:
phi = -1/n*log(C1 - n*Integral(1/g, v))
else:
phi = C1 + Integral(1/g, v)
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type3(x, y, t, eq):
r"""
Autonomous system of general form
.. math:: x' = F(x,y)
.. math:: y' = G(x,y)
Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general
solution of the first-order equation
.. math:: F(x,y) y'_x = G(x,y)
Then the general solution of the original system of equations has the form
.. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
v = Function('v')
u = Symbol('u')
f = Wild('f')
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
F = r1[f].subs(x(t), u).subs(y(t), v(u))
G = r2[g].subs(x(t), u).subs(y(t), v(u))
sol2r = dsolve(Eq(diff(v(u), u), G/F))
if isinstance(sol2r, Expr):
sol2r = [sol2r]
for sol2s in sol2r:
sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u)
sol = []
for sols in sol1:
sol.append(Eq(x(t), sols))
sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols)))
return sol
def _nonlinear_2eq_order1_type4(x, y, t, eq):
r"""
Equation:
.. math:: x' = f_1(x) g_1(y) \phi(x,y,t)
.. math:: y' = f_2(x) g_2(y) \phi(x,y,t)
First integral:
.. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C
where `C` is an arbitrary constant.
On solving the first integral for `x` (resp., `y` ) and on substituting the
resulting expression into either equation of the original solution, one
arrives at a first-order equation for determining `y` (resp., `x` ).
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v = symbols('u, v')
U, V = symbols('U, V', cls=Function)
f = Wild('f')
g = Wild('g')
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
F1 = R1[f1]; F2 = R2[f2]
G1 = R1[g1]; G2 = R2[g2]
sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u)
sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v)
sol = []
for sols in sol1r:
sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs))
for sols in sol2r:
sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs))
return set(sol)
def _nonlinear_2eq_order1_type5(func, t, eq):
r"""
Clairaut system of ODEs
.. math:: x = t x' + F(x',y')
.. math:: y = t y' + G(x',y')
The following are solutions of the system
`(i)` straight lines:
.. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2)
where `C_1` and `C_2` are arbitrary constants;
`(ii)` envelopes of the above lines;
`(iii)` continuously differentiable lines made up from segments of the lines
`(i)` and `(ii)`.
"""
C1, C2 = get_numbered_constants(eq, num=2)
f = Wild('f')
g = Wild('g')
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
return [r1, r2]
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
[r1, r2] = check_type(x, y)
if not (r1 and r2):
[r1, r2] = check_type(y, x)
x, y = y, x
x1 = diff(x(t),t); y1 = diff(y(t),t)
return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))}
def sysode_nonlinear_3eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
z = match_['func'][2].func
eq = match_['eq']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq)
if match_['type_of_equation'] == 'type2':
sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq)
if match_['type_of_equation'] == 'type3':
sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq)
if match_['type_of_equation'] == 'type4':
sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq)
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq)
return sol
def _nonlinear_3eq_order1_type1(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a separable first-order equation on `x`. Similarly doing that
for other two equations, we will arrive at first order equation on `y` and `z` too.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t))
r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t)))
r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
b = vals[0].subs(w, c)
a = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x)
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y)
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z)
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type2(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z f(x, y, z, t)
.. math:: b y' = (c - a) z x f(x, y, z, t)
.. math:: c z' = (a - b) x y f(x, y, z, t)
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a first-order differential equations on `x`. Similarly doing
that for other two equations we will arrive at first order equation on `y` and `z`.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f)
r = collect_const(r1[f]).match(p*f)
r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t)))
r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
a = vals[0].subs(w, c)
b = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f])
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f])
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f])
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type3(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2
where `F_n = F_n(x, y, z, t)`.
1. First Integral:
.. math:: a x + b y + c z = C_1,
where C is an arbitrary constant.
2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)`
Then, on eliminating `t` and `z` from the first two equation of the system, one
arrives at the first-order equation
.. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) -
b F_3 (x, y, z)}
where `z = \frac{1}{c} (C_1 - a x - b y)`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = (diff(x(t), t) - eq[0]).match(F2-F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w)
z_xy = (C1-a*u-b*v)/c
y_zx = (C1-a*u-c*w)/b
x_yz = (C1-b*v-c*w)/a
y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs
z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs
z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs
x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs
y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs
x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs
sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs
sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs
sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type4(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2
where `F_n = F_n (x, y, z, t)`
1. First integral:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
where `C` is an arbitrary constant.
2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on
eliminating `t` and `z` from the first two equations of the system, one arrives at
the first-order equation
.. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)}
{c z F_2 (x, y, z) - b y F_3 (x, y, z)}
where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w)
x_yz = sqrt((C1 - b*v**2 - c*w**2)/a)
y_zx = sqrt((C1 - c*w**2 - a*u**2)/b)
z_xy = sqrt((C1 - a*u**2 - b*v**2)/c)
y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs
z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs
z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs
x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs
y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs
x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs
sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs
sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs
sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type5(x, y, z, t, eq):
r"""
.. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2)
where `F_n = F_n (x, y, z, t)` and are arbitrary functions.
First Integral:
.. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1
where `C` is an arbitrary constant. If the function `F_n` is independent of `t`,
then, by eliminating `t` and `z` from the first two equations of the system, one
arrives at a first-order equation.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1)))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w)
x_yz = (C1*v**-b*w**-c)**-a
y_zx = (C1*w**-c*u**-a)**-b
z_xy = (C1*u**-a*v**-b)**-c
y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs
z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs
z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs
x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs
y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs
x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs
sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs
sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs
sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs
return [sol1, sol2, sol3]
|
143b320ae9ca52f73e1ae87820fa325f4af5ca7e0e56dbbfe9109d81d8dd71f8 | from .ode import (allhints, checkinfsol, classify_ode,
constantsimp, dsolve, homogeneous_order, infinitesimals)
from .subscheck import checkodesol
__all__ = [
'allhints', 'checkinfsol', 'checkodesol', 'classify_ode', 'constantsimp',
'dsolve', 'homogeneous_order', 'infinitesimals',
]
|
2eb21b4c938c597ebf13a9801538ecae2dbb6f088a8697b4fd5c9342abdeb440 | from sympy.core import S, Pow
from sympy.core.compatibility import iterable, is_sequence
from sympy.core.function import (Derivative, AppliedUndef, diff)
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.functions import exp
from sympy.series import Order
from sympy.simplify import (simplify, trigsimp, posify, besselsimp) # type: ignore
from sympy.solvers import solve
from sympy.solvers.deutils import _preprocess, ode_order
def sub_func_doit(eq, func, new):
r"""
When replacing the func with something else, we usually want the
derivative evaluated, so this function helps in making that happen.
Examples
========
>>> from sympy import Derivative, symbols, Function
>>> from sympy.solvers.ode.ode import sub_func_doit
>>> x, z = symbols('x, z')
>>> y = Function('y')
>>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x)
2
>>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x),
... 1/(x*(z + 1/x)))
x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x))
...- 1/(x**2*(z + 1/x)**2)
"""
reps= {func: new}
for d in eq.atoms(Derivative):
if d.expr == func:
reps[d] = new.diff(*d.variable_count)
else:
reps[d] = d.xreplace({func: new}).doit(deep=False)
return eq.xreplace(reps)
def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True):
r"""
Substitutes ``sol`` into ``ode`` and checks that the result is ``0``.
This only works when ``func`` is one function, like `f(x)`. ``sol`` can
be a single solution or a list of solutions. Each solution may be an
:py:class:`~sympy.core.relational.Equality` that the solution satisfies,
e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an
:py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it
will not be necessary to explicitly identify the function, but if the
function cannot be inferred from the original equation it can be supplied
through the ``func`` argument.
If a sequence of solutions is passed, the same sort of container will be
used to return the result for each solution.
It tries the following methods, in order, until it finds zero equivalence:
1. Substitute the solution for `f` in the original equation. This only
works if ``ode`` is solved for `f`. It will attempt to solve it first
unless ``solve_for_func == False``.
2. Take `n` derivatives of the solution, where `n` is the order of
``ode``, and check to see if that is equal to the solution. This only
works on exact ODEs.
3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time
solving for the derivative of `f` of that order (this will always be
possible because `f` is a linear operator). Then back substitute each
derivative into ``ode`` in reverse order.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results in ``0``, and ``False`` otherwise. The second
item in the tuple is what the substitution results in. It should always
be ``0`` if the first item is ``True``. Sometimes this function will
return ``False`` even when an expression is identically equal to ``0``.
This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not
reduce the expression to ``0``. If an expression returned by this
function vanishes identically, then ``sol`` really is a solution to
the ``ode``.
If this function seems to hang, it is probably because of a hard
simplification.
To use this function to test, test the first item of the tuple.
Examples
========
>>> from sympy import Eq, Function, checkodesol, symbols
>>> x, C1 = symbols('x,C1')
>>> f = Function('f')
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
(True, 0)
>>> assert checkodesol(f(x).diff(x), C1)[0]
>>> assert not checkodesol(f(x).diff(x), x)[0]
>>> checkodesol(f(x).diff(x, 2), x**2)
(False, 2)
"""
if not isinstance(ode, Equality):
ode = Eq(ode, 0)
if func is None:
try:
_, func = _preprocess(ode.lhs)
except ValueError:
funcs = [s.atoms(AppliedUndef) for s in (
sol if is_sequence(sol, set) else [sol])]
funcs = set().union(*funcs)
if len(funcs) != 1:
raise ValueError(
'must pass func arg to checkodesol for this case.')
func = funcs.pop()
if not isinstance(func, AppliedUndef) or len(func.args) != 1:
raise ValueError(
"func must be a function of one variable, not %s" % func)
if is_sequence(sol, set):
return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol])
if not isinstance(sol, Equality):
sol = Eq(func, sol)
elif sol.rhs == func:
sol = sol.reversed
if order == 'auto':
order = ode_order(ode, func)
solved = sol.lhs == func and not sol.rhs.has(func)
if solve_for_func and not solved:
rhs = solve(sol, func)
if rhs:
eqs = [Eq(func, t) for t in rhs]
if len(rhs) == 1:
eqs = eqs[0]
return checkodesol(ode, eqs, order=order,
solve_for_func=False)
x = func.args[0]
# Handle series solutions here
if sol.has(Order):
assert sol.lhs == func
Oterm = sol.rhs.getO()
solrhs = sol.rhs.removeO()
Oexpr = Oterm.expr
assert isinstance(Oexpr, Pow)
sorder = Oexpr.exp
assert Oterm == Order(x**sorder)
odesubs = (ode.lhs-ode.rhs).subs(func, solrhs).doit().expand()
neworder = Order(x**(sorder - order))
odesubs = odesubs + neworder
assert odesubs.getO() == neworder
residual = odesubs.removeO()
return (residual == 0, residual)
s = True
testnum = 0
while s:
if testnum == 0:
# First pass, try substituting a solved solution directly into the
# ODE. This has the highest chance of succeeding.
ode_diff = ode.lhs - ode.rhs
if sol.lhs == func:
s = sub_func_doit(ode_diff, func, sol.rhs)
s = besselsimp(s)
else:
testnum += 1
continue
ss = simplify(s.rewrite(exp))
if ss:
# with the new numer_denom in power.py, if we do a simple
# expansion then testnum == 0 verifies all solutions.
s = ss.expand(force=True)
else:
s = 0
testnum += 1
elif testnum == 1:
# Second pass. If we cannot substitute f, try seeing if the nth
# derivative is equal, this will only work for odes that are exact,
# by definition.
s = simplify(
trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) -
trigsimp(ode.lhs) + trigsimp(ode.rhs))
# s2 = simplify(
# diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \
# ode.lhs + ode.rhs)
testnum += 1
elif testnum == 2:
# Third pass. Try solving for df/dx and substituting that into the
# ODE. Thanks to Chris Smith for suggesting this method. Many of
# the comments below are his, too.
# The method:
# - Take each of 1..n derivatives of the solution.
# - Solve each nth derivative for d^(n)f/dx^(n)
# (the differential of that order)
# - Back substitute into the ODE in decreasing order
# (i.e., n, n-1, ...)
# - Check the result for zero equivalence
if sol.lhs == func and not sol.rhs.has(func):
diffsols = {0: sol.rhs}
elif sol.rhs == func and not sol.lhs.has(func):
diffsols = {0: sol.lhs}
else:
diffsols = {}
sol = sol.lhs - sol.rhs
for i in range(1, order + 1):
# Differentiation is a linear operator, so there should always
# be 1 solution. Nonetheless, we test just to make sure.
# We only need to solve once. After that, we automatically
# have the solution to the differential in the order we want.
if i == 1:
ds = sol.diff(x)
try:
sdf = solve(ds, func.diff(x, i))
if not sdf:
raise NotImplementedError
except NotImplementedError:
testnum += 1
break
else:
diffsols[i] = sdf[0]
else:
# This is what the solution says df/dx should be.
diffsols[i] = diffsols[i - 1].diff(x)
# Make sure the above didn't fail.
if testnum > 2:
continue
else:
# Substitute it into ODE to check for self consistency.
lhs, rhs = ode.lhs, ode.rhs
for i in range(order, -1, -1):
if i == 0 and 0 not in diffsols:
# We can only substitute f(x) if the solution was
# solved for f(x).
break
lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i])
rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i])
ode_or_bool = Eq(lhs, rhs)
ode_or_bool = simplify(ode_or_bool)
if isinstance(ode_or_bool, (bool, BooleanAtom)):
if ode_or_bool:
lhs = rhs = S.Zero
else:
lhs = ode_or_bool.lhs
rhs = ode_or_bool.rhs
# No sense in overworking simplify -- just prove that the
# numerator goes to zero
num = trigsimp((lhs - rhs).as_numer_denom()[0])
# since solutions are obtained using force=True we test
# using the same level of assumptions
## replace function with dummy so assumptions will work
_func = Dummy('func')
num = num.subs(func, _func)
## posify the expression
num, reps = posify(num)
s = simplify(num).xreplace(reps).xreplace({_func: func})
testnum += 1
else:
break
if not s:
return (True, s)
elif s is True: # The code above never was able to change s
raise NotImplementedError("Unable to test if " + str(sol) +
" is a solution to " + str(ode) + ".")
else:
return (False, s)
def checksysodesol(eqs, sols, func=None):
r"""
Substitutes corresponding ``sols`` for each functions into each ``eqs`` and
checks that the result of substitutions for each equation is ``0``. The
equations and solutions passed can be any iterable.
This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`.
For each function, ``sols`` can have a single solution or a list of solutions.
In most cases it will not be necessary to explicitly identify the function,
but if the function cannot be inferred from the original equation it
can be supplied through the ``func`` argument.
When a sequence of equations is passed, the same sequence is used to return
the result for each equation with each function substituted with corresponding
solutions.
It tries the following method to find zero equivalence for each equation:
Substitute the solutions for functions, like `x(t)` and `y(t)` into the
original equations containing those functions.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results for each equation is ``0``, and ``False`` otherwise.
The second item in the tuple is what the substitution results in. Each element
of the ``list`` should always be ``0`` corresponding to each equation if the
first item is ``True``. Note that sometimes this function may return ``False``,
but with an expression that is identically equal to ``0``, instead of returning
``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot
reduce the expression to ``0``. If an expression returned by each function
vanishes identically, then ``sols`` really is a solution to ``eqs``.
If this function seems to hang, it is probably because of a difficult simplification.
Examples
========
>>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function
>>> from sympy.solvers.ode.subscheck import checksysodesol
>>> C1, C2 = symbols('C1:3')
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12))
>>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3),
... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
>>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3))
>>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2),
... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
"""
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eqs = _sympify(eqs)
for i in range(len(eqs)):
if isinstance(eqs[i], Equality):
eqs[i] = eqs[i].lhs - eqs[i].rhs
if func is None:
funcs = []
for eq in eqs:
derivs = eq.atoms(Derivative)
func = set().union(*[d.atoms(AppliedUndef) for d in derivs])
for func_ in func:
funcs.append(func_)
funcs = list(set(funcs))
if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\
and len({func.args for func in funcs})!=1:
raise ValueError("func must be a function of one variable, not %s" % func)
for sol in sols:
if len(sol.atoms(AppliedUndef)) != 1:
raise ValueError("solutions should have one function only")
if len(funcs) != len({sol.lhs for sol in sols}):
raise ValueError("number of solutions provided does not match the number of equations")
dictsol = dict()
for sol in sols:
func = list(sol.atoms(AppliedUndef))[0]
if sol.rhs == func:
sol = sol.reversed
solved = sol.lhs == func and not sol.rhs.has(func)
if not solved:
rhs = solve(sol, func)
if not rhs:
raise NotImplementedError
else:
rhs = sol.rhs
dictsol[func] = rhs
checkeq = []
for eq in eqs:
for func in funcs:
eq = sub_func_doit(eq, func, dictsol[func])
ss = simplify(eq)
if ss != 0:
eq = ss.expand(force=True)
else:
eq = 0
checkeq.append(eq)
if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0:
return (True, checkeq)
else:
return (False, checkeq)
|
ce148659a4cb64ddc7ab6966095b79594f9a2b1b40e66702355a11083d94c8b6 | from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat, diff)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt,
Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
sinh, tanh, cosh, sech, coth)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (Complement, EmptySet, FiniteSet,
Intersection, Interval, Union, imageset, ProductSet)
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP,
nocache_fail)
from sympy.testing.randtest import verify_numerically as tn
from sympy.physics.units import cm
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic,
_solve_logarithm, _term_factors, _is_modular)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
c = Symbol('c', real=True)
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
q = Symbol('q', real=True)
m = Symbol('m', real=True)
n = Symbol('n', real=True)
def test_invert_real():
x = Symbol('x', real=True)
y = Symbol('y')
n = Symbol('n')
def ireal(x, s=S.Reals):
return Intersection(s, x)
# issue 14223
assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet)
assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert invert_real(sin(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))
assert invert_real(sin(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))
assert invert_real(csc(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))
assert invert_real(csc(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))
assert invert_real(cos(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))
assert invert_real(cos(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))
assert invert_real(sec(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))
assert invert_real(sec(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))
assert invert_real(tan(x), y, x) == \
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))
assert invert_real(tan(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))
assert invert_real(cot(x), y, x) == \
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
assert invert_real(cot(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))
assert invert_real(tan(tan(x)), y, x) == \
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_complex(exp(x), y, x) == \
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_issue_17479():
x, y, z = symbols("x, y, z")
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = diff(f, x)
fy = diff(f, y)
fz = diff(f, z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
assert len(sol) >= 4 and len(sol) <= 20
# nonlinsolve has been giving a varying number of solutions
# (originally 18, then 20, now 19) due to various internal changes.
# Unfortunately not all the solutions are actually valid and some are
# redundant. Since the original issue was that an exception was raised,
# this first test only checks that nonlinsolve returns a "plausible"
# solution set. The next test checks the result for correctness.
@XFAIL
def test_issue_18449():
x, y, z = symbols("x, y, z")
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = diff(f, x)
fy = diff(f, y)
fz = diff(f, z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
for (xs, ys, zs) in sol:
d = {x: xs, y: ys, z: zs}
assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0)
# After simplification and removal of duplicate elements, there should
# only be 4 parametric solutions left:
# simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z),
# (-sqrt(1 - z**2), z, z),
# (sqrt(1 - z**2), -z, z),
# (-sqrt(1 - z**2), -z, z))
# TODO: Is the above solution set definitely complete?
def test_is_function_class_equation():
from sympy.abc import x, a
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([x], x))
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
Union({log(3)}, Intersection({-b/a}, S.Reals))
anz = Symbol('anz', nonzero=True)
assert solveset_real((anz*x + b)*(exp(x) - 3), x) == \
FiniteSet(-b/anz, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) == EmptySet()
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.Half, x) == \
FiniteSet(erfinv(S.Half))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One)
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** S.Half,
S(4),
-2 - 3 ** S.Half)
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) == ConditionSet(x,
Eq(x**6 + x**4 + I, 0), S.Reals)
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6)
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
def test_solveset_sqrt_2():
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3))
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')
rb = Rational(4, 5)
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
set([i.n(chop=True) for i in ans]) == \
set([i.n(chop=True) for i in (ra, rb)])
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \
FiniteSet(Rational(-295244, 59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(Rational(1, 3))
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)]
cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
Rational(5, 3) +
I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S.Zero, S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) == EmptySet()
def test_no_sol():
assert solveset(1 - oo*x) == EmptySet()
assert solveset(oo*x, x) == EmptySet()
assert solveset(oo*x - oo, x) == EmptySet()
assert solveset_real(4, x) == EmptySet()
assert solveset_real(exp(x), x) == EmptySet()
assert solveset_real(x**2 + 1, x) == EmptySet()
assert solveset_real(-3*a/sqrt(x), x) == EmptySet()
assert solveset_real(1/x, x) == EmptySet()
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
EmptySet()
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S.One / 3) - 3), x) == \
FiniteSet(S.Zero, S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(Rational(-3, 2), S.Half)
def test_solve_abs():
x = Symbol('x')
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals) == ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n})
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for i in sol.subs(reps):
assert not eqab.subs(x, i)
assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers)))
def test_issue_9824():
assert solveset(sin(x)**2 - 2*sin(x) + 1, x) == ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
assert solveset(cos(x)**2 - 2*cos(x) + 1, x) == ImageSet(Lambda(n, 2*n*pi), S.Integers)
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
u = Union(Interval.open(0, 1), Interval.open(1, 2))
assert solveset_real(eq, x) == u
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, 0 <= x - 3),
(3 - x, 0 > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
def test_solveset_complex_polynomial():
from sympy.abc import x, a, b, c
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) == S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
from sympy.abc import x, n
assert solveset_complex(exp(x) - 1, x) == \
imageset(Lambda(n, I*2*n*pi), S.Integers)
assert solveset_complex(exp(x) - I, x) == \
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert solveset_complex(sinh(x).rewrite(exp), x) == \
imageset(Lambda(n, n*pi*I), S.Integers)
def test_solveset_real_exp():
from sympy.abc import x, y
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S.Zero, 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert s == imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers)
@nocache_fail
def test_solve_trig():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers))
assert solveset_real(sin(x) - 1, x) == \
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)
assert solveset_real(cos(x), x) == \
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers))
assert solveset_real(sin(x) + cos(x), x) == \
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
# This fails when running with the cache off:
assert solveset_complex(cos(x) - S.Half, x) == \
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers))
y, a = symbols('y,a')
assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
Union(ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(ImageSet(Lambda(n, -I*(I*(
2*n*pi + arg(-exp(-2*I*y))) +
2*im(y))), S.Integers), S.Reals))
assert solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x) == \
ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers)
# Tests for _solve_trig2() function
assert solveset_real(2*cos(x)*cos(2*x) - 1, x) == \
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) +
2*pi), S.Integers))
assert solveset_real(2*tan(x)*sin(x) + 1, x) == Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 +sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers))
assert solveset_real(cos(2*x)*cos(4*x) - 1, x) == \
ImageSet(Lambda(n, n*pi), S.Integers)
def test_solve_hyperbolic():
# actual solver: _solve_trig1
n = Dummy('n')
assert solveset(sinh(x) + cosh(x), x) == S.EmptySet
assert solveset(sinh(x) + cos(x), x) == ConditionSet(x,
Eq(cos(x) + sinh(x), 0), S.Complexes)
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
log(sqrt(sqrt(5) - 2)))
assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet(
log(sqrt(3)/3), log(sqrt(3)))
assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet(
log((2 + sqrt(5))*exp(3)))
assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet(
log(-2 + sqrt(5)), log(1 + sqrt(2)))
assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet(
log(S.Half + sqrt(5)/2), log(1 + sqrt(2)))
assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet(
log(sqrt(4 + sqrt(17))))
assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet(
log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2))))
assert solveset_complex(sinh(x) - I/2, x) == Union(
ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers))
assert solveset_complex(sinh(x) + sech(x), x) == Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers))
# issues #9606 / #9531:
assert solveset(sinh(x), x, S.Reals) == FiniteSet(0)
assert solveset(sinh(x), x, S.Complexes) == Union(
ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi), S.Integers))
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
imageset(Lambda(n, n*pi), S.Integers)
assert solveset_real(cos(x), x) == \
imageset(Lambda(n, n*pi + pi/2), S.Integers)
assert solveset_real(cos(x) + sin(x), x) == \
imageset(Lambda(n, n*pi - pi/4), S.Integers)
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(Rational(-5, 3) +
LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = Rational(6, 5)
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
def test_solveset():
x = Symbol('x')
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
S.Integers)
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
def test__solveset_multi():
from sympy.solvers.solveset import _solveset_multi
from sympy import Reals
# Basic univariate case:
from sympy.abc import x
assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,))
# Linear systems of two equations
from sympy.abc import x, y
assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1))
assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1))
assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2))
assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2))
#assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == ImageSet(Lambda(x, (x, -x)), Reals)
assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == Union(
ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals)))
assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet
# Systems of three equations:
from sympy.abc import x, y, z
assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals,
Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half))
# Nonlinear systems:
from sympy.abc import r, theta, z, x, y
assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1))
assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0))
#assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
# ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals))
assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals)))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r],
[Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0))
#assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
# [Interval(0, 1), Interval(0, pi)]) == ?
assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]) == Union(
ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))),
ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi))))
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
ConditionSet(x, True, S.Reals)
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
) == ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals)
assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
) == imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)
assert solveset(x + sin(x) > 1, x, domain=S.Reals
) == ConditionSet(x, x + sin(x) > 1, S.Reals)
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
) == ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals)
assert solveset(y**x-z, x, S.Reals) == \
ConditionSet(x, Eq(y**x - z, 0), S.Reals)
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
x = Symbol('x')
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
x = Symbol('x')
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution == unsolved_object
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
def test_issue_9522():
x = Symbol('x')
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
def test_solvify():
x = Symbol('x')
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2,
S.Half + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)]
assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
def test_abs_invert_solvify():
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
x, y, z = symbols('x, y, z')
a, b, c, d, e, f, g, h, i, j, k, l = symbols('a:l')
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise ValueError if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) there are non-symbols
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y]))
# 4) a nonlinear term is detected in the original expression
raises(ValueError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x)))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_issue_16577():
assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))
def test_linsolve():
x, y, z, u, v, w = symbols("x, y, z, u, v, w")
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, b = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, b, x1, x2))
#raise ValueError if equations are non-linear in given variables
raises(ValueError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(ValueError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [f]])
system2 = (A, B)
sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
b = Matrix([0, 0, 1])
assert linsolve((A, b), (x, y, z)) == EmptySet()
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
a, b, c, d, e = symbols('a, b, c, d, e')
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
Eqns = [8*kilo*newton + x + y, 28*kilo*newton*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {(newton*Rational(-28000, 3), newton*Rational(4000, 3))}
# linsolve fully expands expressions, so removable singularities
# and other nonlinearity does not raise an error
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)}
def test_linsolve_immutable():
A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]])
B = ImmutableDenseMatrix([2, 1, -1])
c = symbols('c1 c2 c3')
assert linsolve([A, B], c) == FiniteSet((1, 3, -1))
A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]])
assert linsolve(A) == FiniteSet((5, 2))
def test_solve_decomposition():
x = Symbol('x')
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert solve_decomposition(f2, x, S.Reals) == s3
assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3)
assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5)
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
def test_nonlinsolve_abs():
soln = FiniteSet((x, Abs(x)))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y)))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditionset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi)), S.Integers)
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert nonlinsolve(sys, [x, y]) == soln
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers))
assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y))
def test_nonlinsolve_positive_dimensional():
x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real = True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real = True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
x, y, z = symbols('x, y, z')
n = Dummy('n')
assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == {
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))}
system = [exp(x) - sin(y), 1/exp(y) - 3]
assert nonlinsolve(system, [x, y]) == {
(ImageSet(Lambda(n, I*(2*n*pi + pi)
+ log(sin(log(3)))), S.Integers), -log(3)),
(ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
+ log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))}
system = [exp(x) - sin(y), y**2 - 4]
assert nonlinsolve(system, [x, y]) == {
(ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)}
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y, z = symbols('x, y, z', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert nonlinsolve(eqs, [y, z]) == soln
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert nonlinsolve(eqs, [x, z]) == soln
r, t = symbols('r, t')
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a,b,c,d = symbols('a, b, c, d', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114_solveset():
# slow testcase
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - pi*Rational(3, 2)
intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0)
symbols = Tuple(x, y)
soln = ConditionSet(
symbols,
intermediate_system,
S.Complexes**2)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
set([x + 1]), [y, x]) == S.EmptySet
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2))
soln = soln_real + soln_complex
assert substitution(eqs, [y, z]) == soln
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
# end of tests for nonlinsolve
def test_issue_9556():
x = Symbol('x')
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
def test_issue_9611():
x = Symbol('x')
a = Symbol('a')
y = Symbol('y')
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
x = Symbol('x')
a = Symbol('a')
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**Rational(1, 3)*sign(y))
def test_issue_10214():
assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**Rational(2, 3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/
(3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3))
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals)
# So that ap - bn is not zero:
ap = Symbol('ap', positive=True)
bn = Symbol('bn', negative=True)
eq = x + (ap - bn)/(-2*ap + 2*bn)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals) == \
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals)
assert solveset(f(g(x)) - pi/2, g(x), S.Reals) == \
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals)
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
r, t = symbols('r t')
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
t = symbols('t')
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet()
def test_issue_14223():
x = Symbol('x')
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
def test_issue_10158():
x = Symbol('x')
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
x, y, n = symbols('x y n')
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert solveset(f, x) == \
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers)
def test_issue_14454():
x = Symbol('x')
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x, S.Reals))
assert invert_real(x**2, number, x, S.Reals) # no error
def test_issue_17882():
assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \
FiniteSet(sqrt(3), -sqrt(3))
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == set([
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)])
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
# exponential tests
def test_exponential_real():
from sympy.abc import x, y, z
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5))
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet()
@XFAIL
def test_exponential_complex():
from sympy.abc import x
from sympy import Dummy
n = Dummy('n')
assert solveset_complex(2**x + 4**x, x) == imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers)
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert solveset_complex(4**(x/2) - 2**(x/3), x) == imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers)
assert solveset(2**x + 32, x) == imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers)
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers)
assert solveset(2**x + 4**x + 8**x, x) == Union(union1, union2)
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert res == ans
def test_expo_conditionset():
from sympy.abc import x, y
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals) == ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals)
assert solveset(f2, x, S.Reals) == ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals)
assert solveset(f3, x, S.Reals) == ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals)
assert solveset(f4, x, S.Reals) == ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals)
assert solveset(f5, x, S.Reals) == ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
w = symbols('w')
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals)
sol2 = Intersection({log(2)/log(x/y)}, S.Reals)
assert solveset(f1, w, S.Reals) == sol1
assert solveset(f2, w, S.Reals) == sol2
assert solveset(x**x, x, S.Reals) == S.EmptySet
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet(
(x - z)/log(2)) - FiniteSet(0)
a, b, x, y = symbols('a b x y')
assert solveset_real(a**x - b**x, x) == ConditionSet(
x, (a > 0) & (b > 0), FiniteSet(0))
assert solveset(a**x - b**x, x) == ConditionSet(
x, Ne(a, 0) & Ne(b, 0), FiniteSet(0))
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
x, y, z = symbols('x y z')
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) == EmptySet()
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) == EmptySet()
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
assert linear_coeffs(1.0, x, y) == [0, 0, 1.0]
# modular tests
def test_is_modular():
x, y = symbols('x y')
assert _is_modular(y, x) is False
assert _is_modular(Mod(x, 3) - 1, x) is True
assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True
assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True
assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True
assert _is_modular(Mod(x, 3) - 1, y) is False
assert _is_modular(Mod(x, 3)**2 - 5, x) is False
assert _is_modular(Mod(x, 3)**2 - y, x) is False
assert _is_modular(exp(Mod(x, 3)) - 1, x) is False
assert _is_modular(Mod(3, y) - 1, y) is False
def test_invert_modular():
x, y = symbols('x y')
n = Dummy('n', integer=True)
from sympy.solvers.solveset import _invert_modular as invert_modular
# non invertible cases
assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5)
assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5)
assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5)
# a is symbol
assert invert_modular(Mod(x, 7), S(5), n, x) == \
(x, ImageSet(Lambda(n, 7*n + 5), S.Integers))
# a.is_Add
assert invert_modular(Mod(x + 8, 7), S(5), n, x) == \
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers))
assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \
(Mod(x**2 + x, 7), 5)
# a.is_Mul
assert invert_modular(Mod(3*x, 7), S(5), n, x) == \
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers))
assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \
(Mod((x + 1)*(x + 2), 7), 5)
# a.is_Pow
assert invert_modular(Mod(x**4, 7), S(5), n, x) == \
(x, EmptySet())
assert invert_modular(Mod(3**x, 4), S(3), n, x) == \
(x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0))
assert invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) == \
(x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0))
assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, EmptySet())
def test_solve_modular():
x = Symbol('x')
n = Dummy('n', integer=True)
# if rhs has symbol (need to be implemented in future).
assert solveset(Mod(x, 4) - x, x, S.Integers) == \
ConditionSet(x, Eq(-x + Mod(x, 4), 0), \
S.Integers)
# when _invert_modular fails to invert
assert solveset(3 - Mod(sin(x), 7), x, S.Integers) == \
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers)
assert solveset(3 - Mod(log(x), 7), x, S.Integers) == \
ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers)
assert solveset(3 - Mod(exp(x), 7), x, S.Integers) == \
ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0), S.Integers)
# EmptySet solution definitely
assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet()
assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet()
# Negative m
assert solveset(2 + Mod(x, -3), x, S.Integers) == \
ImageSet(Lambda(n, -3*n - 2), S.Integers)
assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet()
# linear expression in Mod
assert solveset(3 - Mod(x, 5), x, S.Integers) == ImageSet(Lambda(n, 5*n + 3), S.Integers)
assert solveset(3 - Mod(5*x - 8, 7), x, S.Integers) == \
ImageSet(Lambda(n, 7*n + 5), S.Integers)
assert solveset(3 - Mod(5*x, 7), x, S.Integers) == \
ImageSet(Lambda(n, 7*n + 2), S.Integers)
# higher degree expression in Mod
assert solveset(Mod(x**2, 160) - 9, x, S.Integers) == \
Union(ImageSet(Lambda(n, 160*n + 3), S.Integers),
ImageSet(Lambda(n, 160*n + 13), S.Integers),
ImageSet(Lambda(n, 160*n + 67), S.Integers),
ImageSet(Lambda(n, 160*n + 77), S.Integers),
ImageSet(Lambda(n, 160*n + 83), S.Integers),
ImageSet(Lambda(n, 160*n + 93), S.Integers),
ImageSet(Lambda(n, 160*n + 147), S.Integers),
ImageSet(Lambda(n, 160*n + 157), S.Integers))
assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet()
assert solveset(Mod(x**4, 17) - 13, x, S.Integers) == \
Union(ImageSet(Lambda(n, 17*n + 3), S.Integers),
ImageSet(Lambda(n, 17*n + 5), S.Integers),
ImageSet(Lambda(n, 17*n + 12), S.Integers),
ImageSet(Lambda(n, 17*n + 14), S.Integers))
# a.is_Pow tests
assert solveset(Mod(7**x, 41) - 15, x, S.Integers) == \
ImageSet(Lambda(n, 40*n + 3), S.Naturals0)
assert solveset(Mod(12**x, 21) - 18, x, S.Integers) == \
ImageSet(Lambda(n, 6*n + 2), S.Naturals0)
assert solveset(Mod(3**x, 4) - 3, x, S.Integers) == \
ImageSet(Lambda(n, 2*n + 1), S.Naturals0)
assert solveset(Mod(2**x, 7) - 2 , x, S.Integers) == \
ImageSet(Lambda(n, 3*n + 1), S.Naturals0)
assert solveset(Mod(3**(3**x), 4) - 3, x, S.Integers) == \
Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)},
S.Integers)), S.Naturals0), S.Integers)
# Implemented for m without primitive root
assert solveset(Mod(x**3, 7) - 2, x, S.Integers) == EmptySet()
assert solveset(Mod(x**3, 8) - 1, x, S.Integers) == \
ImageSet(Lambda(n, 8*n + 1), S.Integers)
assert solveset(Mod(x**4, 9) - 4, x, S.Integers) == \
Union(ImageSet(Lambda(n, 9*n + 4), S.Integers),
ImageSet(Lambda(n, 9*n + 5), S.Integers))
# domain intersection
assert solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0) == \
Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0)
# Complex args
assert solveset(Mod(x, 3) - I, x, S.Integers) == \
EmptySet()
assert solveset(Mod(I*x, 3) - 2, x, S.Integers) == \
ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers)
assert solveset(Mod(I + x, 3) - 2, x, S.Integers) == \
ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers)
# issue 13178
n = symbols('n', integer=True)
a = 742938285
z = 1898888478
m = 2**31 - 1
x = 20170816
assert solveset(x - Mod(a**n*z, m), n, S.Integers) == \
ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0)
assert solveset(x - Mod(a**n*z, m), n, S.Naturals0) == \
Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0),
S.Naturals0)
assert solveset(x - Mod(a**(2*n)*z, m), n, S.Integers) == \
Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0),
S.Integers)
assert solveset(x - Mod(a**(2*n + 7)*z, m), n, S.Integers) == EmptySet()
assert solveset(x - Mod(a**(n - 4)*z, m), n, S.Integers) == \
Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0),
S.Integers)
@XFAIL
def test_solve_modular_fail():
# issue 17373 (https://github.com/sympy/sympy/issues/17373)
assert solveset(Mod(x**4, 14) - 11, x, S.Integers) == \
Union(ImageSet(Lambda(n, 14*n + 3), S.Integers),
ImageSet(Lambda(n, 14*n + 11), S.Integers))
assert solveset(Mod(x**31, 74) - 43, x, S.Integers) == \
ImageSet(Lambda(n, 74*n + 31), S.Integers)
# end of modular tests
|
e45434786ef872d6509262d2cbb8ca1dd51f6f87aee7f99bc69b4a40a43a9615 | from sympy import (
Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral,
LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne,
Wild, acos, asin, atan, atanh, cos, cosh, diff, erf, erfinv, erfc,
erfcinv, exp, im, log, pi, re, sec, sin,
sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh,
root, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo,
E, cbrt, denom, Add, Piecewise, GoldenRatio, TribonacciConstant)
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, check_assumptions, denoms, \
failing_assumptions
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.testing.pytest import slow, XFAIL, SKIP, raises
from sympy.testing.randtest import verify_numerically as tn
from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0}
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == set([S(2), -S(2)])
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
# duplicate symbols removed
assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2}
# unordered symbols
# only 1
assert solve(y - 3, set([y])) == [3]
# more than 1
assert solve(y - 3, set([x, y])) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == \
[(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]
assert solve(*args, set=True) == \
([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]))
assert solve(*args, dict=True) == \
[{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}]
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
flags = dict(dict=True)
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}]
flags.update(dict(simplify=False))
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}]
# failing undetermined system
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x-1, False], [x], set=True) == ([], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == set([-S.One, S.One])
assert set(solve(Eq(x**2, 1), x)) == set([-S.One, S.One])
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {y: S.Zero, x: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == set([
-2 + 3**S.Half,
S(4),
-2 - 3**S.Half
])
assert set(solve((x**2 - 1)**2 - a, x)) == \
set([sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))])
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == set([S.Zero, 1/a**2])
assert set(solve(x*(root(x, 3) - 3), x)) == set([S.Zero, S(27)])
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2],
[ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: -t - t/n, z: -t - t/n, y: 0}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == set([-b/a, log(3)])
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [pi*Rational(-3, 4), pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [set([
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
]), set([
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)]),
set([
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)])]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == set([S(-4), log(8) + pi*I])
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
ans = [(log(2401) + 5*LambertW((-1 + sqrt(5) + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))* -1))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) - sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) + sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((-sqrt(5) + 1 + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(-3*log(7))]
assert result == ans
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [log(10)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = set((3*x - 1, 2*y - 4))
assert solve(eqns, set((x, y))) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \
{a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \
{a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \
{a: -2, b: 2, c: -1}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S.Zero < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6))
assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(True, x)) == True
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == set([S.Zero, S(14)])
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
set([log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)]),
set([2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)]),
set([log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)]),
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
set([log(-sqrt(3) + 2), log(sqrt(3) + 2)])
assert set(solve(x**y + x**(2*y) - 1, x)) == \
set([(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)])
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == set([sqrt(y), S.Zero, -sqrt(y)])
assert set(solve(x*(x - y/x), x, check=True)) == set([sqrt(y), -sqrt(y)])
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert set(solve((
a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)])
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
set([log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a])
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
set([(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))])
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(Rational(1, 3))), Rational(1, 3))]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
set([(log(-sin(2)), -S(2)), (log(sin(2)), S(2))])
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([x, y], set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)})
assert set(solve(eqs, x, y)) == \
set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))])
assert set(solve(eqs, y, z)) == \
set([
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))])
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([x, y], set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)})
assert set(solve(eqs, x, y)) == set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))])
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], set([(S.One, S(3)), (S(3), S.One)]))
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
set([(S.One, S(3)), (S(3), S.One)])
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
set([(-sqrt(-y - 4),), (sqrt(-y - 4),)])
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
set([(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))])
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == set([S.Zero, Rational(9, 16)])
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
set([S.Zero, Rational(9, 16)])
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == set([-S.One, S(2)])
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == set([S(5), S(13)])
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
set([Rational(-1, 2), Rational(-1, 3)])
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == set([-S(8), S(2)])
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [Rational(-1, 11)]
assert solve(p + 6*I) == []
# issue 8622
assert unrad((root(x + 1, 5) - root(x, 3))) == (
x**5 - x**3 - 3*x**2 - 3*x - 1, [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**Rational(1, 3) + x)**Rational(5, 2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 +
10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# is this needed?
#assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
# x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, [])
raises(NotImplementedError, lambda:
unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1))
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) -
sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 -
Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 -
(Rational(-1, 2) + sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) -
Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x +
27*sqrt(x**2))**Rational(1, 3)/21 - (x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) -
Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4,
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = F*Rational(2, 7) - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(-s*(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 +
51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
eq = root(x, 3) - root(y, 3) + root(x, 5)
assert check(unrad(eq),
(s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x]))
eq = root(x, 3) + root(y, 3) + root(x*y, 4)
assert check(unrad(eq),
(s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 -
3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 -
3*s**3*y**5 - y**6), [s, s**4 - x*y]))
raises(NotImplementedError,
lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5)))
# Test unrad with an Equality
eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5))
assert check(unrad(eq),
(-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x]))
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*((1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
dQ4: I3 - I5,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6,
I1: I2 + I3,
Q4: -I3/2 + 3*I5/2 - dI4/2}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_2750 but solved with the matrix solver.'''
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == {
dI4: -I3 + 3*I5 - 2*Q4,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
dQ2: I2,
I1: I2 + I3,
Q2: 2*I3 + 2*I5 + 3*I6,
dQ4: I3 - I5,
I4: I3 - I5}
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[{f(x): 3*D, y: 9*D**2 + 4}]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([g(a)], set([
(-sqrt(h(a)**2*f(a)**2 + G)/f(a),),
(sqrt(h(a)**2*f(a)**2+ G)/f(a),)]))
args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)]
assert set(solve(*args)) == \
set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))])
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], set([
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))]))
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
set([-sqrt(-x), sqrt(-x)])
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
set([S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half])
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
assert check_assumptions(1, x) == True
raises(AssertionError, lambda: check_assumptions(2*x, x, positive=True))
raises(TypeError, lambda: check_assumptions(1, 1))
def test_failing_assumptions():
x = Symbol('x', real=True, positive=True)
y = Symbol('y')
assert failing_assumptions(6*x + y, **x.assumptions0) == \
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
'negative': None, 'zero': None, 'extended_real': None, 'finite': None,
'infinite': None, 'extended_negative': None, 'extended_nonnegative': None,
'extended_nonpositive': None, 'extended_nonzero': None,
'extended_positive': None }
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \
== 3
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \
== 3
assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1
assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,), (2,)]
assert set(solve(abs(x - 7) - 8)) == set([-S.One, S(15)])
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import x, y
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == set([x, exp(x)])
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478...
assert solve(x**3 - 3**x, x) == ans
assert set(solve(3*log(x) - x*log(3))) == set(ans)
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
assert solve(3*sin(x) - x*sin(3), x) == [3]
assert set(solve(x**a - a**x), x) == set(
[a, -a*LambertW(-log(a)/a)/log(a)])
@slow
def test_lambert_bivariate():
# tests passing current implementation
assert solve((x**2 + x)*exp((x**2 + x)) - 1) == [
Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2,
Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2]
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2,
Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve((a/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
assert solve((1/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)/4),
4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21
4*LambertW(-sqrt(2)/4, -1)]
assert solve(x*log(x) + 3*x + 1, x) == \
[exp(-3 + LambertW(-exp(3)))]
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
# check collection
ax = a**(3*x + 5)
ans = solve(3*log(ax) + b*log(ax) + ax, x)
x0 = 1/log(a)
x1 = sqrt(3)*I
x2 = b + 3
x3 = x2*LambertW(1/x2)/a**5
x4 = x3**Rational(1, 3)/2
assert ans == [
x0*log(x4*(x1 - 1)),
x0*log(-x4*(x1 + 1)),
x0*log(x3)/3]
x1 = LambertW(Rational(1, 3))
x2 = a**(-5)
x3 = 3**Rational(1, 3)
x4 = 3**Rational(5, 6)*I
x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2
ans = solve(3*log(ax) + ax, x)
assert ans == [
x0*log(3*x1*x2)/3,
x0*log(x5*(-x3 + x4)),
x0*log(-x5*(x3 + x4))]
# coverage
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))]
assert set(solve(3**cos(x) - cos(x)**3)) == set(
[acos(3), acos(-3*LambertW(-log(3)/3)/log(3))])
# should give only one solution after using `uniq`
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
# cases when p != S.One
# issue 4271
ans = solve((a/x + exp(x/2)).diff(x, 2), x)
x0 = (-a)**Rational(1, 3)
x1 = sqrt(3)*I
x2 = x0/6
assert ans == [
6*LambertW(x0/3),
6*LambertW(x2*(x1 - 1)),
6*LambertW(-x2*(x1 + 1))]
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \
6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
# this is slow but not exceedingly slow
assert solve((x**3)**(x/2) + pi/2, x) == [
exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))]
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [-2*atan(2 - sqrt(5)),
-2*atan(2 + sqrt(5))]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == set([(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)])
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 2617
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == set([x**y])
assert _simple_dens(1/root(x, 3), [x]) == set([x])
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [set([tuple(i.evalf(2) for i in j) for j in R]) for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3),
pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9),
pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3),
pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi,
-2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)),
-2*I*log(-sin(pi/18) - I*cos(pi/18)),
-2*I*log(-sin(pi/18) + I*cos(pi/18)),
-2*I*log(sin(pi/18) - I*cos(pi/18)),
-2*I*log(sin(pi/18) + I*cos(pi/18))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
s = solve(terms, [a, b, c, d, e, f, g], dict=True)
assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1),
c: -sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1),
c: sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == set([2, y])
assert denoms(x/2 + 1/y, y) == set([y])
assert denoms(x/2 + 1/y, [y]) == set([y])
assert denoms(1/x + 1/y + 1/z, [x, y]) == set([x, y])
assert denoms(1/x + 1/y + 1/z, x, y) == set([x, y])
assert denoms(1/x + 1/y + 1/z, set([x, y])) == set([x, y])
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1},
{x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
def test_Abs_handling():
x = symbols('x', real=True)
assert solve(abs(x/y), x) == [0]
def test_issue_7982():
x = Symbol('x')
# Test that no exception happens
assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false
# From #8040
assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false
def test_issue_14645():
x, y = symbols('x y')
assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)]
def test_issue_12024():
x, y = symbols('x y')
assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \
[{y: Piecewise((0.0, x < 0.1), (x, True))}]
def test_issue_17452():
assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)),
sqrt(log(pi) + I*pi)/sqrt(log(7))]
assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))]
def test_issue_17799():
assert solve(-erf(x**(S(1)/3))**pi + I, x) == []
def test_issue_17650():
x = Symbol('x', real=True)
assert solve(abs((abs(x**2 - 1) - x)) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)]
def test_issue_17882():
eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3))
assert unrad(eq) == (4*x**2 - 12, [])
def test_issue_17949():
assert solve(exp(+x+x**2), x) == []
assert solve(exp(-x+x**2), x) == []
assert solve(exp(+x-x**2), x) == []
assert solve(exp(-x-x**2), x) == []
def test_issue_11553():
eq1 = x + y + 1
eq2 = x + GoldenRatio
assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio}
eq3 = x + 2 + TribonacciConstant
assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant}
|
963a223a17fc8d34050c5f412b0d45e742bc964a48f42bd994740d7dbebff5ce | """Tests for solvers of systems of polynomial equations. """
from sympy import (flatten, I, Integer, Poly, QQ, Rational, S, sqrt,
solve, symbols)
from sympy.abc import x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
solve_triangulated, solve_biquadratic, SolveFailed)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises
def test_solve_poly_system():
assert solve_poly_system([x - 1], x) == [(S.One,)]
assert solve_poly_system([y - x, y - x - 1], x, y) is None
assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
[(Rational(3, 2), Integer(2), Integer(10))]
assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
[(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
solution = [(1, -1), (1, 1)]
assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
assert solve_poly_system([x**2 - y**2, x - 1]) == solution
assert solve_poly_system(
[x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
raises(NotImplementedError, lambda: solve_poly_system(
[z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
raises(PolynomialError, lambda: solve_poly_system([1/x], x))
def test_solve_biquadratic():
x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
f_1 = (x - 1)**2 + (y - 1)**2 - r**2
f_2 = (x - 2)**2 + (y - 2)**2 - r**2
s = sqrt(2*r**2 - 1)
a = (3 - s)/2
b = (3 + s)/2
assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
f_1 = (x - 1)**2 + (y - 2)**2 - r**2
f_2 = (x - 1)**2 + (y - 1)**2 - r**2
assert solve_poly_system([f_1, f_2], x, y) == \
[(1 - sqrt(((2*r - 1)*(2*r + 1)))/2, Rational(3, 2)),
(1 + sqrt(((2*r - 1)*(2*r + 1)))/2, Rational(3, 2))]
query = lambda expr: expr.is_Pow and expr.exp is S.Half
f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
f_2 = (x - x1)**2 + (y - 1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(r.count(query) == 1 for r in flatten(result))
f_1 = (x - x0)**2 + (y - y0)**2 - r**2
f_2 = (x - x1)**2 + (y - y1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(len(r.find(query)) == 1 for r in flatten(result))
s1 = (x*y - y, x**2 - x)
assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
s2 = (x*y - x, y**2 - y)
assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
gens = (x, y)
for seq in (s1, s2):
(f, g), opt = parallel_poly_from_expr(seq, *gens)
raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
seq = (x**2 + y**2 - 2, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == [
(-1, -1), (-1, 1), (1, -1), (1, 1)]
ans = [(0, -1), (0, 1)]
seq = (x**2 + y**2 - 1, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
def test_solve_triangulated():
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
dom = QQ.algebraic_field(sqrt(2))
assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
def test_solve_issue_3686():
roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
# TODO: does this really have to be so complicated?!
assert len(roots) == 2
assert roots[0][0] == 0
assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
assert roots[1][0] == 0
assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
|
bc1d4f766fde241f466ef8e039146a61848e120a95c1bb874c05da86fd8117e7 | """Tests for tools for solving inequalities and systems of inequalities. """
from sympy import (And, Eq, FiniteSet, Ge, Gt, Interval, Le, Lt, Ne, oo, I,
Or, S, sin, cos, tan, sqrt, Symbol, Union, Integral, Sum,
Function, Poly, PurePoly, pi, root, log, exp, Dummy, Abs,
Piecewise, Rational)
from sympy.solvers.inequalities import (reduce_inequalities,
solve_poly_inequality as psolve,
reduce_rational_inequalities,
solve_univariate_inequality as isolve,
reduce_abs_inequality,
_solve_inequality)
from sympy.polys.rootoftools import rootof
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.abc import x, y
from sympy.testing.pytest import raises, XFAIL
inf = oo.evalf()
def test_solve_poly_inequality():
assert psolve(Poly(0, x), '==') == [S.Reals]
assert psolve(Poly(1, x), '==') == [S.EmptySet]
assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
def test_reduce_poly_inequalities_real_interval():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=False) == \
S.Reals if x.is_real else Interval(-oo, oo)
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
assert reduce_rational_inequalities(
[[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1)]], x, relational=False) == \
Union(Interval(-oo, -1), Interval(1, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 1)]], x, relational=False) == \
Interval(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 1)]], x, relational=False) == \
FiniteSet(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities([[Eq(
x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
assert reduce_rational_inequalities(
[[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
assert reduce_rational_inequalities([[Lt(
x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0), Interval(1.0, inf))
assert reduce_rational_inequalities(
[[Gt(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0, right_open=True),
Interval(1.0, inf, left_open=True))
assert reduce_rational_inequalities([[Ne(
x**2, 1.0)]], x, relational=False) == \
FiniteSet(-1.0, 1.0).complement(S.Reals)
s = sqrt(2)
assert reduce_rational_inequalities([[Lt(
x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
Interval(1, s, True, True))
assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
def test_reduce_poly_inequalities_complex_relational():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=True) == False
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
for one in (S.One, S(1.0)):
inf = one*oo
assert reduce_rational_inequalities(
[[Eq(x**2, one)]], x, relational=True) == \
Or(Eq(x, -one), Eq(x, one))
assert reduce_rational_inequalities(
[[Le(x**2, one)]], x, relational=True) == \
And(And(Le(-one, x), Le(x, one)))
assert reduce_rational_inequalities(
[[Lt(x**2, one)]], x, relational=True) == \
And(And(Lt(-one, x), Lt(x, one)))
assert reduce_rational_inequalities(
[[Ge(x**2, one)]], x, relational=True) == \
And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
assert reduce_rational_inequalities(
[[Gt(x**2, one)]], x, relational=True) == \
And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
assert reduce_rational_inequalities(
[[Ne(x**2, one)]], x, relational=True) == \
Or(And(Lt(-inf, x), Lt(x, -one)),
And(Lt(-one, x), Lt(x, one)),
And(Lt(one, x), Lt(x, inf)))
def test_reduce_rational_inequalities_real_relational():
assert reduce_rational_inequalities([], x) == False
assert reduce_rational_inequalities(
[[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
assert reduce_rational_inequalities(
[[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
relational=False) == \
Union(Interval.open(-5, 2), Interval.open(2, 3))
assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
relational=False) == \
Interval.Ropen(-1, 5)
assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
relational=False) == \
Union(Interval.open(-3, -1), Interval.open(1, oo))
assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
relational=False) == \
Union(Interval.open(-4, 1), Interval.open(1, 4))
assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
relational=False) == \
Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))
assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
relational=False) == \
Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
# issue sympy/sympy#10237
assert reduce_rational_inequalities(
[[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
def test_reduce_abs_inequalities():
e = abs(x - 5) < 3
ans = And(Lt(2, x), Lt(x, 8))
assert reduce_inequalities(e) == ans
assert reduce_inequalities(e, x) == ans
assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
assert reduce_inequalities(
abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
assert reduce_inequalities(abs(x - 4) + abs(
3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))
nr = Symbol('nr', extended_real=False)
raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
def test_reduce_inequalities_general():
assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)
def test_reduce_inequalities_boolean():
assert reduce_inequalities(
[Eq(x**2, 0), True]) == Eq(x, 0)
assert reduce_inequalities([Eq(x**2, 0), False]) == False
assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
def test_reduce_inequalities_multivariate():
assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
def test_reduce_inequalities_errors():
raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
def test__solve_inequalities():
assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
def test_issue_6343():
eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
assert reduce_inequalities(eq) == \
And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)
def test_issue_8235():
assert reduce_inequalities(x**2 - 1 < 0) == \
And(S.NegativeOne < x, x < 1)
assert reduce_inequalities(x**2 - 1 <= 0) == \
And(S.NegativeOne <= x, x <= 1)
assert reduce_inequalities(x**2 - 1 > 0) == \
Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
assert reduce_inequalities(x**2 - 1 >= 0) == \
Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))
eq = x**8 + x - 9 # we want CRootOf solns here
sol = solve(eq >= 0)
tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
assert sol == tru
# recast vanilla as real
assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)
def test_issue_5526():
assert reduce_inequalities(0 <=
x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
(x >= -Integral(y**2, (y, 1, 3)) + 1)
f = Function('f')
e = Sum(f(x), (x, 1, 3))
assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
(x >= -y**2 - Sum(f(x), (x, 1, 3)))
def test_solve_univariate_inequality():
assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
Interval(2, oo))
assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
Lt(-oo, x)))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
Union(Interval(1, 2), Interval(3, oo))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
Or(Eq(x, 0), Eq(x, 3))
# issue 2785:
assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
Interval(S.Half + sqrt(5)/2, oo, True, True))
# issue 2794:
assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
Interval(1, oo, True)
#issue 13105
assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
# numerical testing in valid() is needed
assert isolve(x**7 - x - 2 > 0, x) == \
And(rootof(x**7 - x - 2, 0) < x, x < oo)
# handle numerator and denominator; although these would be handled as
# rational inequalities, these test confirm that the right thing is done
# when the domain is EX (e.g. when 2 is replaced with sqrt(2))
assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
den = ((x - 1)*(x - 2)).expand()
assert isolve((x - 1)/den <= 0, x) == \
Or(And(-oo < x, x < 1), And(S.One < x, x < 2))
n = Dummy('n')
raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
c1 = Dummy("c1", positive=True)
raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
n = Dummy('n', negative=True)
assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
assert isolve(n/c1 < 0, c1) == True
assert isolve(n/c1 > 0, c1) == False
zero = cos(1)**2 + sin(1)**2 - 1
raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
raises(NotImplementedError, lambda: isolve(
x**2 < zero*I, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
raises(TypeError, lambda: isolve(x - I < 0, x))
zero = x**2 + x - x*(x + 1)
assert isolve(zero < 0, x, relational=False) is S.EmptySet
assert isolve(zero <= 0, x, relational=False) is S.Reals
# make sure iter_solutions gets a default value
raises(NotImplementedError, lambda: isolve(
Eq(cos(x)**2 + sin(x)**2, 1), x))
def test_trig_inequalities():
# all the inequalities are solved in a periodic interval.
assert isolve(sin(x) < S.Half, x, relational=False) == \
Union(Interval(0, pi/6, False, True), Interval(pi*Rational(5, 6), 2*pi, True, False))
assert isolve(sin(x) > S.Half, x, relational=False) == \
Interval(pi/6, pi*Rational(5, 6), True, True)
assert isolve(cos(x) < S.Zero, x, relational=False) == \
Interval(pi/2, pi*Rational(3, 2), True, True)
assert isolve(cos(x) >= S.Zero, x, relational=False) == \
Union(Interval(0, pi/2), Interval(pi*Rational(3, 2), 2*pi))
assert isolve(tan(x) < S.One, x, relational=False) == \
Union(Interval.Ropen(0, pi/4), Interval.Lopen(pi/2, pi))
assert isolve(sin(x) <= S.Zero, x, relational=False) == \
Union(FiniteSet(S.Zero), Interval(pi, 2*pi))
assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
def test_issue_9954():
assert isolve(x**2 >= 0, x, relational=False) == S.Reals
assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
@XFAIL
def test_slow_general_univariate():
r = rootof(x**5 - x**2 + 1, 0)
assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))
def test_issue_8545():
eq = 1 - x - abs(1 - x)
ans = And(Lt(1, x), Lt(x, oo))
assert reduce_abs_inequality(eq, '<', x) == ans
eq = 1 - x - sqrt((1 - x)**2)
assert reduce_inequalities(eq < 0) == ans
def test_issue_8974():
assert isolve(-oo < x, x) == And(-oo < x, x < oo)
assert isolve(oo > x, x) == And(-oo < x, x < oo)
def test_issue_10198():
assert reduce_inequalities(
-1 + 1/abs(1/x - 1) < 0) == Or(
And(-oo < x, x < 0), And(S.Zero < x, x < S.Half)
)
assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
Or(And(-oo < x, x < 0),
And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
1 - 1/sqrt(x)), '<', x))
def test_issue_10047():
# issue 10047: this must remain an inequality, not True, since if x
# is not real the inequality is invalid
# assert solve(sin(x) < 2) == (x <= oo)
# with PR 16956, (x <= oo) autoevaluates when x is extended_real
# which is assumed in the current implementation of inequality solvers
assert solve(sin(x) < 2) == True
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
def test_issue_10268():
assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))
@XFAIL
def test_isolve_Sets():
n = Dummy('n')
assert isolve(Abs(x) <= n, x, relational=False) == \
Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
def test_issue_10671_12466():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
Interval.Lopen(6, 7)
def test__solve_inequality():
for op in (Gt, Lt, Le, Ge, Eq, Ne):
assert _solve_inequality(op(x, 1), x).lhs == x
assert _solve_inequality(op(S.One, x), x).lhs == x
# don't get tricked by symbol on right: solve it
assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
ie = Eq(S.One, y)
assert _solve_inequality(ie, x) == ie
for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
for c in (0, 1):
e = 2*fx - c > 0
assert _solve_inequality(e, x, linear=True) == (
fx > c/S(2))
assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
x*(x + 1) < S.Half)
assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
nz = Symbol('nz', nonzero=True)
assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
a = Symbol('a', positive=True)
assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
# make sure to include conditions under which solution is valid
e = Eq(1 - x, x*(1/x - 1))
assert _solve_inequality(e, x) == Ne(x, 0)
assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
def test__pt():
from sympy.solvers.inequalities import _pt
assert _pt(-oo, oo) == 0
assert _pt(S.One, S(3)) == 2
assert _pt(S.One, oo) == _pt(oo, S.One) == 2
assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
assert _pt(x, oo) == _pt(oo, x) == x + 1
assert _pt(x, -oo) == _pt(-oo, x) == x - 1
raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))
|
0e87a740e3aa6b3485f8276b10e0fadb89009bb59779328d99bd5a679c6fc3fb | from sympy.solvers.decompogen import decompogen, compogen
from sympy import sin, cos, sqrt, Abs, exp, symbols
from sympy.testing.pytest import XFAIL, raises
x, y = symbols('x y')
def test_decompogen():
assert decompogen(sin(cos(x)), x) == [sin(x), cos(x)]
assert decompogen(sin(x)**2 + sin(x) + 1, x) == [x**2 + x + 1, sin(x)]
assert decompogen(sqrt(6*x**2 - 5), x) == [sqrt(x), 6*x**2 - 5]
assert decompogen(sin(sqrt(cos(x**2 + 1))), x) == [sin(x), sqrt(x), cos(x), x**2 + 1]
assert decompogen(Abs(cos(x)**2 + 3*cos(x) - 4), x) == [Abs(x), x**2 + 3*x - 4, cos(x)]
assert decompogen(sin(x)**2 + sin(x) - sqrt(3)/2, x) == [x**2 + x - sqrt(3)/2, sin(x)]
assert decompogen(Abs(cos(y)**2 + 3*cos(x) - 4), x) == [Abs(x), 3*x + cos(y)**2 - 4, cos(x)]
assert decompogen(x, y) == [x]
assert decompogen(1, x) == [1]
raises(TypeError, lambda: decompogen(x < 5, x))
def test_decompogen_poly():
assert decompogen(x**4 + 2*x**2 + 1, x) == [x**2 + 2*x + 1, x**2]
assert decompogen(x**4 + 2*x**3 - x - 1, x) == [x**2 - x - 1, x**2 + x]
@XFAIL
def test_decompogen_fails():
A = lambda x: x**2 + 2*x + 3
B = lambda x: 4*x**2 + 5*x + 6
assert decompogen(A(x*exp(x)), x) == [x**2 + 2*x + 3, x*exp(x)]
assert decompogen(A(B(x)), x) == [x**2 + 2*x + 3, 4*x**2 + 5*x + 6]
assert decompogen(A(1/x + 1/x**2), x) == [x**2 + 2*x + 3, 1/x + 1/x**2]
assert decompogen(A(1/x + 2/(x + 1)), x) == [x**2 + 2*x + 3, 1/x + 2/(x + 1)]
def test_compogen():
assert compogen([sin(x), cos(x)], x) == sin(cos(x))
assert compogen([x**2 + x + 1, sin(x)], x) == sin(x)**2 + sin(x) + 1
assert compogen([sqrt(x), 6*x**2 - 5], x) == sqrt(6*x**2 - 5)
assert compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) == sin(sqrt(
cos(x**2 + 1)))
assert compogen([Abs(x), x**2 + 3*x - 4, cos(x)], x) == Abs(cos(x)**2 +
3*cos(x) - 4)
assert compogen([x**2 + x - sqrt(3)/2, sin(x)], x) == (sin(x)**2 + sin(x) -
sqrt(3)/2)
assert compogen([Abs(x), 3*x + cos(y)**2 - 4, cos(x)], x) == \
Abs(3*cos(x) + cos(y)**2 - 4)
assert compogen([x**2 + 2*x + 1, x**2], x) == x**4 + 2*x**2 + 1
# the result is in unsimplified form
assert compogen([x**2 - x - 1, x**2 + x], x) == -x**2 - x + (x**2 + x)**2 - 1
|
e4ba72ca74a4736088348acf9a240c862c1a72caea53498b40456e39b232666d | from sympy import (Eq, Matrix, pi, sin, sqrt, Symbol, Integral, Piecewise,
symbols, Float, I, Rational)
from mpmath import mnorm, mpf
from sympy.solvers import nsolve
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import raises, XFAIL
from sympy.utilities.decorator import conserve_mpmath_dps
@XFAIL
def test_nsolve_fail():
x = symbols('x')
# Sometimes it is better to use the numerator (issue 4829)
# but sometimes it is not (issue 11768) so leave this to
# the discretion of the user
ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0)
assert ans > 0.46 and ans < 0.47
def test_nsolve_denominator():
x = symbols('x')
# Test that nsolve uses the full expression (numerator and denominator).
ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1)
# The root -2 was divided out, so make sure we don't find it.
assert ans == -1.0
def test_nsolve():
# onedimensional
x = Symbol('x')
assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
# Testing checks on number of inputs
raises(TypeError, lambda: nsolve(Eq(2*x, 2)))
raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2))
# multidimensional
x1 = Symbol('x1')
x2 = Symbol('x2')
f1 = 3 * x1**2 - 2 * x2**2 - 1
f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
f = Matrix((f1, f2)).T
F = lambdify((x1, x2), f.T, modules='mpmath')
for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
x = nsolve(f, (x1, x2), x0, tol=1.e-8)
assert mnorm(F(*x), 1) <= 1.e-10
# The Chinese mathematician Zhu Shijie was the very first to solve this
# nonlinear system 700 years ago (z was added to make it 3-dimensional)
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
f1 = -x + 2*y
f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
f3 = sqrt(x**2 + y**2)*z
f = Matrix((f1, f2, f3)).T
F = lambdify((x, y, z), f.T, modules='mpmath')
def getroot(x0):
root = nsolve(f, (x, y, z), x0)
assert mnorm(F(*root), 1) <= 1.e-8
return root
assert list(map(round, getroot((1, 1, 1)))) == [2.0, 1.0, 0.0]
assert nsolve([Eq(
f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z], (1, 1, 1)) # just see that it works
a = Symbol('a')
assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) -
mpf('0.31883011387318591')) < 1e-15
def test_issue_6408():
x = Symbol('x')
assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0.0
@XFAIL
def test_issue_6408_fail():
x, y = symbols('x y')
assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0.0
@conserve_mpmath_dps
def test_increased_dps():
# Issue 8564
import mpmath
mpmath.mp.dps = 128
x = Symbol('x')
e1 = x**2 - pi
q = nsolve(e1, x, 3.0)
assert abs(sqrt(pi).evalf(128) - q) < 1e-128
def test_nsolve_precision():
x, y = symbols('x y')
sol = nsolve(x**2 - pi, x, 3, prec=128)
assert abs(sqrt(pi).evalf(128) - sol) < 1e-128
assert isinstance(sol, Float)
sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128)
assert isinstance(sols, Matrix)
assert sols.shape == (2, 1)
assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128
assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128
assert all(isinstance(i, Float) for i in sols)
def test_nsolve_complex():
x, y = symbols('x y')
assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I
assert nsolve(x**2 + 2, I) == sqrt(2.)*I
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
def test_nsolve_dict_kwarg():
x, y = symbols('x y')
# one variable
assert nsolve(x**2 - 2, 1, dict = True) == \
[{x: sqrt(2.)}]
# one variable with complex solution
assert nsolve(x**2 + 2, I, dict = True) == \
[{x: sqrt(2.)*I}]
# two variables
assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \
[{x: sqrt(2.), y: sqrt(3.)}]
def test_nsolve_rational():
x = symbols('x')
assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100)
def test_issue_14950():
x = Matrix(symbols('t s'))
x0 = Matrix([17, 23])
eqn = x + x0
assert nsolve(eqn, x, x0) == -x0
assert nsolve(eqn.T, x.T, x0.T) == -x0
|
079b65bc2cb0799ee96c08a2a45f7c3de6e5096386d2b55652e1cca41ad97e72 | from sympy import (Derivative as D, Eq, exp, sin,
Function, Symbol, symbols, cos, log)
from sympy.core import S
from sympy.solvers.pde import (pde_separate, pde_separate_add, pde_separate_mul,
pdsolve, classify_pde, checkpdesol)
from sympy.testing.pytest import raises
a, b, c, x, y = symbols('a b c x y')
def test_pde_separate_add():
x, y, z, t = symbols("x,y,z,t")
F, T, X, Y, Z, u = map(Function, 'FTXYZu')
eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
res = pde_separate_add(eq, u(x, t), [X(x), T(t)])
assert res == [D(X(x), x)*exp(-X(x)), D(T(t), t)*exp(T(t))]
def test_pde_separate():
x, y, z, t = symbols("x,y,z,t")
F, T, X, Y, Z, u = map(Function, 'FTXYZu')
eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
raises(ValueError, lambda: pde_separate(eq, u(x, t), [X(x), T(t)], 'div'))
def test_pde_separate_mul():
x, y, z, t = symbols("x,y,z,t")
c = Symbol("C", real=True)
Phi = Function('Phi')
F, R, T, X, Y, Z, u = map(Function, 'FRTXYZu')
r, theta, z = symbols('r,theta,z')
# Something simple :)
eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z), 0)
# Duplicate arguments in functions
raises(
ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
# Wrong number of arguments
raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
# Wrong variables: [x, y] -> [x, z]
raises(
ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))
assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == \
[D(Y(y), y)/Y(y), -D(u(x, z), x)/u(x, z) - D(u(x, z), z)/u(x, z)]
assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == \
[D(X(x), x)/X(x), -D(Z(z), z)/Z(z) - D(Y(y), y)/Y(y)]
# wave equation
wave = Eq(D(u(x, t), t, t), c**2*D(u(x, t), x, x))
res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
assert res == [D(X(x), x, x)/X(x), D(T(t), t, t)/(c**2*T(t))]
# Laplace equation in cylindrical coords
eq = Eq(1/r * D(Phi(r, theta, z), r) + D(Phi(r, theta, z), r, 2) +
1/r**2 * D(Phi(r, theta, z), theta, 2) + D(Phi(r, theta, z), z, 2), 0)
# Separate z
res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
assert res == [D(Z(z), z, z)/Z(z),
-D(u(theta, r), r, r)/u(theta, r) -
D(u(theta, r), r)/(r*u(theta, r)) -
D(u(theta, r), theta, theta)/(r**2*u(theta, r))]
# Lets use the result to create a new equation...
eq = Eq(res[1], c)
# ...and separate theta...
res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
assert res == [D(T(theta), theta, theta)/T(theta),
-r*D(R(r), r)/R(r) - r**2*D(R(r), r, r)/R(r) - c*r**2]
# ...or r...
res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
assert res == [r*D(R(r), r)/R(r) + r**2*D(R(r), r, r)/R(r) + c*r**2,
-D(T(theta), theta, theta)/T(theta)]
def test_issue_11726():
x, t = symbols("x t")
f = symbols("f", cls=Function)
X, T = symbols("X T", cls=Function)
u = f(x, t)
eq = u.diff(x, 2) - u.diff(t, 2)
res = pde_separate(eq, u, [T(x), X(t)])
assert res == [D(T(x), x, x)/T(x),D(X(t), t, t)/X(t)]
def test_pde_classify():
# When more number of hints are added, add tests for classifying here.
f = Function('f')
eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
eq5 = x**2*f(x,y) + x*f(x,y).diff(x) + x*y*f(x,y).diff(y)
eq6 = y*x**2*f(x,y) + y*f(x,y).diff(x) + f(x,y).diff(y)
for eq in [eq1, eq2, eq3]:
assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
for eq in [eq4, eq5, eq6]:
assert classify_pde(eq) == ('1st_linear_variable_coeff',)
def test_checkpdesol():
f, F = map(Function, ['f', 'F'])
eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
for eq in [eq1, eq2, eq3]:
assert checkpdesol(eq, pdsolve(eq))[0]
eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
eq5 = 2*f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
eq6 = f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
assert checkpdesol(eq4, [pdsolve(eq5), pdsolve(eq6)]) == [
(False, (x - 2)*F(3*x - y)*exp(-x/S(5) - 3*y/S(5))),
(False, (x - 1)*F(3*x - y)*exp(-x/S(10) - 3*y/S(10)))]
for eq in [eq4, eq5, eq6]:
assert checkpdesol(eq, pdsolve(eq))[0]
sol = pdsolve(eq4)
sol4 = Eq(sol.lhs - sol.rhs, 0)
raises(NotImplementedError, lambda:
checkpdesol(eq4, sol4, solve_for_func=False))
def test_solvefun():
f, F, G, H = map(Function, ['f', 'F', 'G', 'H'])
eq1 = f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)
assert pdsolve(eq1) == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
assert pdsolve(eq1, solvefun=G) == Eq(f(x, y), G(x - y)*exp(-x/2 - y/2))
assert pdsolve(eq1, solvefun=H) == Eq(f(x, y), H(x - y)*exp(-x/2 - y/2))
def test_pde_1st_linear_constant_coeff_homogeneous():
f, F = map(Function, ['f', 'F'])
u = f(x, y)
eq = 2*u + u.diff(x) + u.diff(y)
assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
sol = pdsolve(eq)
assert sol == Eq(u, F(x - y)*exp(-x - y))
assert checkpdesol(eq, sol)[0]
eq = 4 + (3*u.diff(x)/u) + (2*u.diff(y)/u)
assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
sol = pdsolve(eq)
assert sol == Eq(u, F(2*x - 3*y)*exp(-S(12)*x/13 - S(8)*y/13))
assert checkpdesol(eq, sol)[0]
eq = u + (6*u.diff(x)) + (7*u.diff(y))
assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
sol = pdsolve(eq)
assert sol == Eq(u, F(7*x - 6*y)*exp(-6*x/S(85) - 7*y/S(85)))
assert checkpdesol(eq, sol)[0]
eq = a*u + b*u.diff(x) + c*u.diff(y)
sol = pdsolve(eq)
assert checkpdesol(eq, sol)[0]
def test_pde_1st_linear_constant_coeff():
f, F = map(Function, ['f', 'F'])
u = f(x,y)
eq = -2*u.diff(x) + 4*u.diff(y) + 5*u - exp(x + 3*y)
sol = pdsolve(eq)
assert sol == Eq(f(x,y),
(F(4*x + 2*y) + exp(x/S(2) + 4*y)/S(15))*exp(x/S(2) - y))
assert classify_pde(eq) == ('1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral')
assert checkpdesol(eq, sol)[0]
eq = (u.diff(x)/u) + (u.diff(y)/u) + 1 - (exp(x + y)/u)
sol = pdsolve(eq)
assert sol == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2) + exp(x + y)/S(3))
assert classify_pde(eq) == ('1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral')
assert checkpdesol(eq, sol)[0]
eq = 2*u + -u.diff(x) + 3*u.diff(y) + sin(x)
sol = pdsolve(eq)
assert sol == Eq(f(x, y),
F(3*x + y)*exp(x/S(5) - 3*y/S(5)) - 2*sin(x)/S(5) - cos(x)/S(5))
assert classify_pde(eq) == ('1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral')
assert checkpdesol(eq, sol)[0]
eq = u + u.diff(x) + u.diff(y) + x*y
sol = pdsolve(eq)
assert sol == Eq(f(x, y),
-x*y + x + y + F(x - y)*exp(-x/S(2) - y/S(2)) - 2)
assert classify_pde(eq) == ('1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral')
assert checkpdesol(eq, sol)[0]
eq = u + u.diff(x) + u.diff(y) + log(x)
assert classify_pde(eq) == ('1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral')
def test_pdsolve_all():
f, F = map(Function, ['f', 'F'])
u = f(x,y)
eq = u + u.diff(x) + u.diff(y) + x**2*y
sol = pdsolve(eq, hint = 'all')
keys = ['1st_linear_constant_coeff',
'1st_linear_constant_coeff_Integral', 'default', 'order']
assert sorted(sol.keys()) == keys
assert sol['order'] == 1
assert sol['default'] == '1st_linear_constant_coeff'
assert sol['1st_linear_constant_coeff'] == Eq(f(x, y),
-x**2*y + x**2 + 2*x*y - 4*x - 2*y + F(x - y)*exp(-x/S(2) - y/S(2)) + 6)
def test_pdsolve_variable_coeff():
f, F = map(Function, ['f', 'F'])
u = f(x, y)
eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
sol = pdsolve(eq, hint="1st_linear_variable_coeff")
assert sol == Eq(u, F(x*y)*exp(y**2/2) + 1)
assert checkpdesol(eq, sol)[0]
eq = x**2*u + x*u.diff(x) + x*y*u.diff(y)
sol = pdsolve(eq, hint='1st_linear_variable_coeff')
assert sol == Eq(u, F(y*exp(-x))*exp(-x**2/2))
assert checkpdesol(eq, sol)[0]
eq = y*x**2*u + y*u.diff(x) + u.diff(y)
sol = pdsolve(eq, hint='1st_linear_variable_coeff')
assert sol == Eq(u, F(-2*x + y**2)*exp(-x**3/3))
assert checkpdesol(eq, sol)[0]
eq = exp(x)**2*(u.diff(x)) + y
sol = pdsolve(eq, hint='1st_linear_variable_coeff')
assert sol == Eq(u, y*exp(-2*x)/2 + F(y))
assert checkpdesol(eq, sol)[0]
eq = exp(2*x)*(u.diff(y)) + y*u - u
sol = pdsolve(eq, hint='1st_linear_variable_coeff')
assert sol == Eq(u, exp((-y**2 + 2*y + 2*F(x))*exp(-2*x)/2))
|
e13506cf670776db797180c8683b5fe268cab6ccefcb4f77fd8ffd8addecbf0c | from sympy import Eq, factorial, Function, Lambda, rf, S, sqrt, symbols, I, \
expand_func, binomial, gamma, Rational
from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio
from sympy.testing.pytest import raises, slow
from sympy.abc import a, b
y = Function('y')
n, k = symbols('n,k', integer=True)
C0, C1, C2 = symbols('C0,C1,C2')
def test_rsolve_poly():
assert rsolve_poly([-1, -1, 1], 0, n) == 0
assert rsolve_poly([-1, -1, 1], 1, n) == -1
assert rsolve_poly([-1, n + 1], n, n) == 1
assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2
assert rsolve_poly([-n - 1, n], 1, n) == C1*n - 1
assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1
assert rsolve_poly([-1, 1], n**5 + n**3, n) == \
C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3
def test_rsolve_ratio():
solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n,
-2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n)
assert solution in [
C1*((-2*n + 3)/(n**2 - 1))/3,
(S.Half)*(C1*(-3 + 2*n)/(-1 + n**2)),
(S.Half)*(C1*( 3 - 2*n)/( 1 - n**2)),
(S.Half)*(C2*(-3 + 2*n)/(-1 + n**2)),
(S.Half)*(C2*( 3 - 2*n)/( 1 - n**2)),
]
def test_rsolve_hyper():
assert rsolve_hyper([-1, -1, 1], 0, n) in [
C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
]
assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [
C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n),
C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n),
]
assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [
C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n),
C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n),
]
assert rsolve_hyper(
[2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n
assert rsolve_hyper(
[n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == None
assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None
assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2
assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2
assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n
assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n
assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2)
assert rsolve_hyper([1, 1, 1], 0, n).expand() == \
C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n
assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) is None
def recurrence_term(c, f):
"""Compute RHS of recurrence in f(n) with coefficients in c."""
return sum(c[i]*f.subs(n, n + i) for i in range(len(c)))
def test_rsolve_bulk():
"""Some bulk-generated tests."""
funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3*
n**3 + 12*n**4 - 52*n**5 ]
coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 -
n + 12, 1] ]
for p in funcs:
# compute difference
for c in coeffs:
q = recurrence_term(c, p)
if p.is_polynomial(n):
assert rsolve_poly(c, q, n) == p
# See issue 3956:
#if p.is_hypergeometric(n):
# assert rsolve_hyper(c, q, n) == p
def test_rsolve():
f = y(n + 2) - y(n + 1) - y(n)
h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \
- sqrt(5)*(S.Half - S.Half*sqrt(5))**n
assert rsolve(f, y(n)) in [
C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
]
assert rsolve(f, y(n), [0, 5]) == h
assert rsolve(f, y(n), {0: 0, 1: 5}) == h
assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h
assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h
assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)
g = C1*factorial(n) + C0*2**n
h = -3*factorial(n) + 3*2**n
assert rsolve(f, y(n)) == g
assert rsolve(f, y(n), []) == g
assert rsolve(f, y(n), {}) == g
assert rsolve(f, y(n), [0, 3]) == h
assert rsolve(f, y(n), {0: 0, 1: 3}) == h
assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = y(n) - y(n - 1) - 2
assert rsolve(f, y(n), {y(0): 0}) == 2*n
assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1
assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = 3*y(n - 1) - y(n) - 1
assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half
assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half
assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = y(n) - 1/n*y(n - 1)
assert rsolve(f, y(n)) == C0/factorial(n)
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = y(n) - 1/n*y(n - 1) - 1
assert rsolve(f, y(n)) is None
f = 2*y(n - 1) + (1 - n)*y(n)/n
assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n
assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2
assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n)
assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2)
assert rsolve(
f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n)
assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n
assert rsolve(y(n) - a*y(n-2),y(n), \
{y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \
a**(n/2)*(-(-1)**n*b + a)
f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n)
assert expand_func(rsolve(f, y(n), \
{y(1): binomial(2*n + 1, 3)}).rewrite(gamma)).simplify() == \
2**(2*n)*n*(2*n - 1)*(4*n**2 - 1)/12
assert (rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n)) -
(C0*((sqrt(-a**2 + 1) - 1)/a)**n +
C1*((-sqrt(-a**2 + 1) - 1)/a)**n)).simplify() == 0
assert rsolve((k + 1)*y(k), y(k)) is None
assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k))
is None)
def test_rsolve_raises():
x = Function('x')
raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n)))
raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n)))
raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n)))
raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n)))
raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0}))
def test_issue_6844():
f = y(n + 2) - y(n + 1) + y(n)/4
assert rsolve(f, y(n)) == 2**(-n)*(C0 + C1*n)
assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2*2**(-n)*n
@slow
def test_issue_15751():
f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8)
assert rsolve(f, y(n)) is not None
|
b1575c402b3ae8ce7b76984daae46efd230be9f04b8aa0fe099e777579eece2a | """
If the arbitrary constant class from issue 4435 is ever implemented, this
should serve as a set of test cases.
"""
from sympy import (acos, cos, cosh, Eq, exp, Function, I, Integral, log, Pow,
S, sin, sinh, sqrt, Symbol)
from sympy.solvers.ode.ode import constantsimp, constant_renumber
from sympy.testing.pytest import XFAIL
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
u2 = Symbol('u2')
_a = Symbol('_a')
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
f = Function('f')
def test_constant_mul():
# We want C1 (Constant) below to absorb the y's, but not the x's
assert constant_renumber(constantsimp(y*C1, [C1])) == C1*y
assert constant_renumber(constantsimp(C1*y, [C1])) == C1*y
assert constant_renumber(constantsimp(x*C1, [C1])) == x*C1
assert constant_renumber(constantsimp(C1*x, [C1])) == x*C1
assert constant_renumber(constantsimp(2*C1, [C1])) == C1
assert constant_renumber(constantsimp(C1*2, [C1])) == C1
assert constant_renumber(constantsimp(y*C1*x, [C1, y])) == C1*x
assert constant_renumber(constantsimp(x*y*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(y*x*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*x*y, [C1, y])) == C1*x
assert constant_renumber(constantsimp(x*C1*y, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*y*(y + 1), [C1])) == C1*y*(y+1)
assert constant_renumber(constantsimp(y*C1*(y + 1), [C1])) == C1*y*(y+1)
assert constant_renumber(constantsimp(x*(y*C1), [C1])) == x*y*C1
assert constant_renumber(constantsimp(x*(C1*y), [C1])) == x*y*C1
assert constant_renumber(constantsimp(C1*(x*y), [C1, y])) == C1*x
assert constant_renumber(constantsimp((x*y)*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp((y*x)*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(y*(y + 1)*C1, [C1, y])) == C1
assert constant_renumber(constantsimp((C1*x)*y, [C1, y])) == C1*x
assert constant_renumber(constantsimp(y*(x*C1), [C1, y])) == x*C1
assert constant_renumber(constantsimp((x*C1)*y, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*x*y*x*y*2, [C1, y])) == C1*x**2
assert constant_renumber(constantsimp(C1*x*y*z, [C1, y, z])) == C1*x
assert constant_renumber(constantsimp(C1*x*y**2*sin(z), [C1, y, z])) == C1*x
assert constant_renumber(constantsimp(C1*C1, [C1])) == C1
assert constant_renumber(constantsimp(C1*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1*C1*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1*x*2**x, [C1])) == C1*x*2**x
def test_constant_add():
assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + 2, [C1])) == C1
assert constant_renumber(constantsimp(2 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + y, [C1, y])) == C1
assert constant_renumber(constantsimp(C1 + x, [C1])) == C1 + x
assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2 + C1, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1 + C2 + C1, [C1, C2])) == C1
def test_constant_power_as_base():
assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
assert constant_renumber(constantsimp(Pow(C1, C1), [C1])) == C1
assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
assert constant_renumber(constantsimp(C1**C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2**C1, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2**C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1**y, [C1, y])) == C1
assert constant_renumber(constantsimp(C1**x, [C1])) == C1**x
assert constant_renumber(constantsimp(C1**2, [C1])) == C1
assert constant_renumber(
constantsimp(C1**(x*y), [C1])) == C1**(x*y)
def test_constant_power_as_exp():
assert constant_renumber(constantsimp(x**C1, [C1])) == x**C1
assert constant_renumber(constantsimp(y**C1, [C1, y])) == C1
assert constant_renumber(constantsimp(x**y**C1, [C1, y])) == x**C1
assert constant_renumber(
constantsimp((x**y)**C1, [C1])) == (x**y)**C1
assert constant_renumber(
constantsimp(x**(y**C1), [C1, y])) == x**C1
assert constant_renumber(constantsimp(x**C1**y, [C1, y])) == x**C1
assert constant_renumber(
constantsimp(x**(C1**y), [C1, y])) == x**C1
assert constant_renumber(
constantsimp((x**C1)**y, [C1])) == (x**C1)**y
assert constant_renumber(constantsimp(2**C1, [C1])) == C1
assert constant_renumber(constantsimp(S(2)**C1, [C1])) == C1
assert constant_renumber(constantsimp(exp(C1), [C1])) == C1
assert constant_renumber(
constantsimp(exp(C1 + x), [C1])) == C1*exp(x)
assert constant_renumber(constantsimp(Pow(2, C1), [C1])) == C1
def test_constant_function():
assert constant_renumber(constantsimp(sin(C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1, C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1, C2), [C1, C2])) == C1
assert constant_renumber(constantsimp(f(C2, C1), [C1, C2])) == C1
assert constant_renumber(constantsimp(f(C2, C2), [C1, C2])) == C1
assert constant_renumber(
constantsimp(f(C1, x), [C1])) == f(C1, x)
assert constant_renumber(constantsimp(f(C1, y), [C1, y])) == C1
assert constant_renumber(constantsimp(f(y, C1), [C1, y])) == C1
assert constant_renumber(constantsimp(f(C1, y, C2), [C1, C2, y])) == C1
def test_constant_function_multiple():
# The rules to not renumber in this case would be too complicated, and
# dsolve is not likely to ever encounter anything remotely like this.
assert constant_renumber(
constantsimp(f(C1, C1, x), [C1])) == f(C1, C1, x)
def test_constant_multiple():
assert constant_renumber(constantsimp(C1*2 + 2, [C1])) == C1
assert constant_renumber(constantsimp(x*2/C1, [C1])) == C1*x
assert constant_renumber(constantsimp(C1**2*2 + 2, [C1])) == C1
assert constant_renumber(
constantsimp(sin(2*C1) + x + sqrt(2), [C1])) == C1 + x
assert constant_renumber(constantsimp(2*C1 + C2, [C1, C2])) == C1
def test_constant_repeated():
assert C1 + C1*x == constant_renumber( C1 + C1*x)
def test_ode_solutions():
# only a few examples here, the rest will be tested in the actual dsolve tests
assert constant_renumber(constantsimp(C1*exp(2*x) + exp(x)*(C2 + C3), [C1, C2, C3])) == \
constant_renumber((C1*exp(x) + C2*exp(2*x)))
assert constant_renumber(
constantsimp(Eq(f(x), I*C1*sinh(x/3) + C2*cosh(x/3)), [C1, C2])
) == constant_renumber(Eq(f(x), C1*sinh(x/3) + C2*cosh(x/3)))
assert constant_renumber(constantsimp(Eq(f(x), acos((-C1)/cos(x))), [C1])) == \
Eq(f(x), acos(C1/cos(x)))
assert constant_renumber(
constantsimp(Eq(log(f(x)/C1) + 2*exp(x/f(x)), 0), [C1])
) == Eq(log(C1*f(x)) + 2*exp(x/f(x)), 0)
assert constant_renumber(constantsimp(Eq(log(x*sqrt(2)*sqrt(1/x)*sqrt(f(x))
/C1) + x**2/(2*f(x)**2), 0), [C1])) == \
Eq(log(C1*sqrt(x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert constant_renumber(constantsimp(Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(x/C1) -
cos(f(x)/x)*exp(-f(x)/x)/2, 0), [C1])) == \
Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(C1*x) - cos(f(x)/x)*
exp(-f(x)/x)/2, 0)
assert constant_renumber(constantsimp(Eq(-Integral(-1/(sqrt(1 - u2**2)*u2),
(u2, _a, x/f(x))) + log(f(x)/C1), 0), [C1])) == \
Eq(-Integral(-1/(u2*sqrt(1 - u2**2)), (u2, _a, x/f(x))) +
log(C1*f(x)), 0)
assert [constantsimp(i, [C1]) for i in [Eq(f(x), sqrt(-C1*x + x**2)), Eq(f(x), -sqrt(-C1*x + x**2))]] == \
[Eq(f(x), sqrt(x*(C1 + x))), Eq(f(x), -sqrt(x*(C1 + x)))]
@XFAIL
def test_nonlocal_simplification():
assert constantsimp(C1 + C2+x*C2, [C1, C2]) == C1 + C2*x
def test_constant_Eq():
# C1 on the rhs is well-tested, but the lhs is only tested here
assert constantsimp(Eq(C1, 3 + f(x)*x), [C1]) == Eq(x*f(x), C1)
assert constantsimp(Eq(C1, 3 * f(x)*x), [C1]) == Eq(f(x)*x, C1)
|
3dd81a10d781f60c38ccf87c0e9b013e8491220e359163f99fe342f81ff246fd | from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo,
powsimp, Rational)
from sympy.core.function import _mexpand
from sympy.core.compatibility import ordered
from sympy.functions.elementary.trigonometric import sin
from sympy.solvers.diophantine import diophantine
from sympy.solvers.diophantine.diophantine import (diop_DN,
diop_solve, diop_ternary_quadratic_normal,
diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
reconstruct, partition, power_representation,
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
_diop_ternary_quadratic_normal, _diop_general_sum_of_squares, _nint_or_floor,
_odd, _even, _remove_gcd, _can_do_sum_of_squares)
from sympy.utilities import default_sort_key
from sympy.testing.pytest import slow, raises, XFAIL
from sympy.utilities.iterables import (
signed_permutations)
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
m1, m2, m3 = symbols('m1:4', integer=True)
n1 = symbols('n1', integer=True)
def diop_simplify(eq):
return _mexpand(powsimp(_mexpand(eq)))
def test_input_format():
raises(TypeError, lambda: diophantine(sin(x)))
raises(TypeError, lambda: diophantine(x/pi - 3))
def test_nosols():
# diophantine should sympify eq so that these are equivalent
assert diophantine(3) == set()
assert diophantine(S(3)) == set()
def test_univariate():
assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
def test_classify_diop():
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
raises(ValueError, lambda: classify_diop(1))
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
assert classify_diop(14*x**2 + 15*x - 42) == (
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
assert classify_diop(x*y + z) == (
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
assert classify_diop(x*y + z + w + x**2) == (
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + x*z + x**2 + 1) == (
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z + w + 42) == (
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z*w) == (
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
assert classify_diop(x*y**2 + 1) == (
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
def test_linear():
assert diop_solve(x) == (0,)
assert diop_solve(1*x) == (0,)
assert diop_solve(3*x) == (0,)
assert diop_solve(x + 1) == (-1,)
assert diop_solve(2*x + 1) == (None,)
assert diop_solve(2*x + 4) == (-2,)
assert diop_solve(y + x) == (t_0, -t_0)
assert diop_solve(y + x + 0) == (t_0, -t_0)
assert diop_solve(y + x - 0) == (t_0, -t_0)
assert diop_solve(0*x - y - 5) == (-5,)
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
assert diop_solve(4*x + 6*y - 3) == (None, None)
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
# to ignore constant factors, use diophantine
raises(TypeError, lambda: diop_solve(x/2))
def test_quadratic_simple_hyperbolic_case():
# Simple Hyperbolic case: A = C = 0 and B != 0
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
{(-133, -11), (5, -57)}
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set([])
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
(-29, -69), (-27, 64), (-21, 7),
(-9, 1), (105, -2)}
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set([])
assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
assert diophantine(48*x*y)
def test_quadratic_elliptical_case():
# Elliptical case: B**2 - 4AC < 0
assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set([])
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
{(-1, -1), (-1, 2), (1, -2), (1, 1)}
def test_quadratic_parabolic_case():
# Parabolic case: B**2 - 4AC = 0
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(y**2 - 41*x + 40)
def test_quadratic_perfect_square():
# B**2 - 4*A*C > 0
# B**2 - 4*A*C is a perfect square
assert check_solutions(48*x*y)
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
def test_quadratic_non_perfect_square():
# B**2 - 4*A*C is not a perfect square
# Used check_solutions() since the solutions are complex expressions involving
# square roots and exponents
assert check_solutions(x**2 - 2*x - 5*y**2)
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
assert check_solutions(x**2 - x*y - y**2 - 3*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
def test_issue_9106():
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
def test_issue_18138():
eq = x**2 - x - y**2
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
@slow
def test_quadratic_non_perfect_slow():
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
# This leads to very large numbers.
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
def test_DN():
# Most of the test cases were adapted from,
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
# http://www.jpr2718.org/pell.pdf
# others are verified using Wolfram Alpha.
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
# Solutions are straightforward in these cases.
assert diop_DN(3, 0) == [(0, 0)]
assert diop_DN(-17, -5) == []
assert diop_DN(-19, 23) == [(2, 1)]
assert diop_DN(-13, 17) == [(2, 1)]
assert diop_DN(-15, 13) == []
assert diop_DN(0, 5) == []
assert diop_DN(0, 9) == [(3, t)]
assert diop_DN(9, 0) == [(3*t, t)]
assert diop_DN(16, 24) == []
assert diop_DN(9, 180) == [(18, 4)]
assert diop_DN(9, -180) == [(12, 6)]
assert diop_DN(7, 0) == [(0, 0)]
# When equation is x**2 + y**2 = N
# Solutions are interchangeable
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
# D > 0 and D is not a square
# N = 1
assert diop_DN(13, 1) == [(649, 180)]
assert diop_DN(980, 1) == [(51841, 1656)]
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
assert diop_DN(986, 1) == [(49299, 1570)]
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
assert diop_DN(17, 1) == [(33, 8)]
assert diop_DN(19, 1) == [(170, 39)]
# N = -1
assert diop_DN(13, -1) == [(18, 5)]
assert diop_DN(991, -1) == []
assert diop_DN(41, -1) == [(32, 5)]
assert diop_DN(290, -1) == [(17, 1)]
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_DN(32, -1) == []
# |N| > 1
# Some tests were created using calculator at
# http://www.numbertheory.org/php/patz.html
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
# So (-3, 1) and (393, 109) should be in the same equivalent class
assert equivalent(-3, 1, 393, 109, 13, -4) == True
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
(483790960, 38610722), (26277068347, 2097138361),
(21950079635497, 1751807067011)}
assert diop_DN(13, 25) == [(3245, 900)]
assert diop_DN(192, 18) == []
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
assert diop_DN(167, 2) == [(13, 1)]
assert diop_DN(167, -2) == []
assert diop_DN(123, -2) == [(11, 1)]
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
# the same equivalence class
assert equivalent(11, 1, -11, 1, 123, -2)
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
assert diop_DN(0, 0, t) == [(0, t)]
assert diop_DN(0, -1, t) == []
def test_bf_pell():
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
assert diop_bf_DN(167, -2) == []
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_bf_DN(340, -4) == [(756, 41)]
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
assert diop_bf_DN(0, 0, t) == [(0, t)]
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
assert diop_bf_DN(3, 0, t) == [(0, 0)]
assert diop_bf_DN(1, -2, t) == []
def test_length():
assert length(2, 1, 0) == 1
assert length(-2, 4, 5) == 3
assert length(-5, 4, 17) == 4
assert length(0, 4, 13) == 6
assert length(7, 13, 11) == 23
assert length(1, 6, 4) == 2
def is_pell_transformation_ok(eq):
"""
Test whether X*Y, X, or Y terms are present in the equation
after transforming the equation using the transformation returned
by transformation_to_pell(). If they are not present we are good.
Moreover, coefficient of X**2 should be a divisor of coefficient of
Y**2 and the constant term.
"""
A, B = transformation_to_DN(eq)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
for term in [X*Y, X, Y]:
if term in coeff.keys():
return False
for term in [X**2, Y**2, 1]:
if term not in coeff.keys():
coeff[term] = 0
if coeff[X**2] != 0:
return divisible(coeff[Y**2], coeff[X**2]) and \
divisible(coeff[1], coeff[X**2])
return True
def test_transformation_to_pell():
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
assert is_pell_transformation_ok(x**2 - y**2 + 17)
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
def test_find_DN():
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
def test_ldescent():
# Equations which have solutions
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
(4, 32), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = ldescent(a, b)
assert a*x**2 + b*y**2 == w**2
assert ldescent(-1, -1) is None
def test_diop_ternary_quadratic_normal():
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(23*x**2 + 616*y**2 - z**2)
assert check_solutions(5*x**2 + 4*y**2 - z**2)
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
assert check_solutions(x**2 + 3*y**2 - z**2)
assert check_solutions(4*x**2 + 5*y**2 - z**2)
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(16*x**2 + y**2 - 25*z**2)
assert check_solutions(6*x**2 - y**2 + 10*z**2)
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def is_normal_transformation_ok(eq):
A = transformation_to_normal(eq)
X, Y, Z = A*Matrix([x, y, z])
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
for term in [X*Y, Y*Z, X*Z]:
if term in coeff.keys():
return False
return True
def test_transformation_to_normal():
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
assert is_normal_transformation_ok(x**2 + 23*y*z)
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
assert is_normal_transformation_ok(2*x*z + 3*y*z)
def test_diop_ternary_quadratic():
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
assert check_solutions(3*x**2 - x*y - y*z - x*z)
assert check_solutions(x**2 - y*z - x*z)
assert check_solutions(5*x**2 - 3*x*y - x*z)
assert check_solutions(4*x**2 - 5*y**2 - x*z)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(8*x**2 - 12*y*z)
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert check_solutions(x*y - 7*y*z + 13*x*z)
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
raises(ValueError, lambda:
_diop_ternary_quadratic_normal((x, y, z),
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
assert diop_ternary_quadratic(eq) == (7, 2, 0)
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
(1, 0, 2)
assert diop_ternary_quadratic(x*y + 2*y*z) == \
(-2, 0, n1)
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
assert parametrize_ternary_quadratic(eq) == \
(8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
# this cannot be tested with diophantine because it will
# factor into a product
assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
def test_square_factor():
assert square_factor(1) == square_factor(-1) == 1
assert square_factor(0) == 1
assert square_factor(5) == square_factor(-5) == 1
assert square_factor(4) == square_factor(-4) == 2
assert square_factor(12) == square_factor(-12) == 2
assert square_factor(6) == 1
assert square_factor(18) == 3
assert square_factor(52) == 2
assert square_factor(49) == 7
assert square_factor(392) == 14
assert square_factor(factorint(-12)) == 2
def test_parametrize_ternary_quadratic():
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(x**2 + 2*x*y + z**2)
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(x**2 - y**2 - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
assert check_solutions(8*x*y + z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def test_no_square_ternary_quadratic():
assert check_solutions(2*x*y + y*z - 3*x*z)
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
assert check_solutions(23*x*y + 34*y*z)
assert check_solutions(x*y + y*z + z*x)
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
def test_descent():
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = descent(a, b)
assert a*x**2 + b*y**2 == w**2
# the docstring warns against bad input, so these are expected results
# - can't both be negative
raises(TypeError, lambda: descent(-1, -3))
# A can't be zero unless B != 1
raises(ZeroDivisionError, lambda: descent(0, 3))
# supposed to be square-free
raises(TypeError, lambda: descent(4, 3))
def test_diophantine():
assert check_solutions((x - y)*(y - z)*(z - x))
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
assert check_solutions((x**2 - 3*y**2 - 1))
assert check_solutions(y**2 + 7*x*y)
assert check_solutions(x**2 - 3*x*y + y**2)
assert check_solutions(z*(x**2 - y**2 - 15))
assert check_solutions(x*(2*y - 2*z + 5))
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
# Following test case caused problems in parametric representation
# But this can be solved by factoring out y.
# No need to use methods for ternary quadratic equations.
assert check_solutions(y**2 - 7*x*y + 4*y*z)
assert check_solutions(x**2 - 2*x + 1)
assert diophantine(x - y) == diophantine(Eq(x, y))
# 18196
eq = x**4 + y**4 - 97
assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
eq = x**2 + y**2 + z**2 - 14
base_sol = {(1, 2, 3)}
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
# test issue 11049
eq = 92*x**2 - 99*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(9, 7, 51)
assert diophantine(eq) == {(
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
5049*p**2 - 1386*p*q - 51*q**2)}
eq = 2*x**2 + 2*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(1, 1, 2)
assert diophantine(eq) == {(
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)}
eq = 411*x**2+57*y**2-221*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(2021, 2645, 3066)
assert diophantine(eq) == \
{(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
eq = 573*x**2+267*y**2-984*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(49, 233, 127)
assert diophantine(eq) == \
{(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
11303*p**2 - 41474*p*q + 41656*q**2)}
# this produces factors during reconstruction
eq = x**2 + 3*y**2 - 12*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(0, 2, 1)
assert diophantine(eq) == \
{(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
# solvers have not been written for every type
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
# rational expressions
assert diophantine(1/x) == set()
assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
{(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
#test issue 18186
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
# issue 18122
assert check_solutions(x**2-y)
assert check_solutions(y**2-x)
assert diophantine((x**2-y), t) == {(t, t**2)}
assert diophantine((y**2-x), t) == {(t**2, -t)}
def test_general_pythagorean():
from sympy.abc import a, b, c, d, e
assert check_solutions(a**2 + b**2 + c**2 - d**2)
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
def test_diop_general_sum_of_squares_quick():
for i in range(3, 10):
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2))
assert _diop_general_sum_of_squares((x, y, z), -2) == set()
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
assert diop_general_sum_of_squares(eq) == \
{(1, 2, 3)}
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
assert len(diop_general_sum_of_squares(eq, 3)) == 3
# issue 11016
var = symbols(':5') + (symbols('6', negative=True),)
eq = Add(*[i**2 for i in var]) - 112
base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
(0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
(1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
(0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
assert diophantine(eq) == base_soln
assert len(diophantine(eq, permute=True)) == 196800
# handle negated squares with signsimp
assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
# diophantine handles simplification, so classify_diop should
# not have to look for additional patterns that are removed
# by diophantine
eq = a**2 + b**2 + c**2 + d**2 - 4
raises(NotImplementedError, lambda: classify_diop(-eq))
def test_diop_partition():
for n in [8, 10]:
for k in range(1, 8):
for p in partition(n, k):
assert len(p) == k
assert [p for p in partition(3, 5)] == []
assert [list(p) for p in partition(3, 5, 1)] == [
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
assert list(partition(0)) == [()]
assert list(partition(1, 0)) == [()]
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
def test_prime_as_sum_of_two_squares():
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
a, b = prime_as_sum_of_two_squares(i)
assert a**2 + b**2 == i
assert prime_as_sum_of_two_squares(7) is None
ans = prime_as_sum_of_two_squares(800029)
assert ans == (450, 773) and type(ans[0]) is int
def test_sum_of_three_squares():
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
800, 801, 802, 803, 804, 805, 806]:
a, b, c = sum_of_three_squares(i)
assert a**2 + b**2 + c**2 == i
assert sum_of_three_squares(7) is None
assert sum_of_three_squares((4**5)*15) is None
assert sum_of_three_squares(25) == (5, 0, 0)
assert sum_of_three_squares(4) == (0, 0, 2)
def test_sum_of_four_squares():
from random import randint
# this should never fail
n = randint(1, 100000000000000)
assert sum(i**2 for i in sum_of_four_squares(n)) == n
assert sum_of_four_squares(0) == (0, 0, 0, 0)
assert sum_of_four_squares(14) == (0, 1, 2, 3)
assert sum_of_four_squares(15) == (1, 1, 2, 3)
assert sum_of_four_squares(18) == (1, 2, 2, 3)
assert sum_of_four_squares(19) == (0, 1, 3, 3)
assert sum_of_four_squares(48) == (0, 4, 4, 4)
def test_power_representation():
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
(32760, 2, 3)]
for test in tests:
n, p, k = test
f = power_representation(n, p, k)
while True:
try:
l = next(f)
assert len(l) == k
chk_sum = 0
for l_i in l:
chk_sum = chk_sum + l_i**p
assert chk_sum == n
except StopIteration:
break
assert list(power_representation(20, 2, 4, True)) == \
[(1, 1, 3, 3), (0, 0, 2, 4)]
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
assert list(power_representation(-1, 2, 2)) == []
assert list(power_representation(1, 1, 1)) == [(1,)]
assert list(power_representation(3, 2, 1)) == []
assert list(power_representation(4, 2, 1)) == [(2,)]
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
assert list(power_representation(-2, 4, 2)) == []
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
assert list(power_representation(0, 3, 2, False)) == []
# when we are dealing with squares, do feasibility checks
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
# there will be a recursion error if these aren't recognized
big = 2**30
for i in [13, 10, 7, 5, 4, 2, 1]:
assert list(sum_of_powers(big, 2, big - i)) == []
def test_assumptions():
"""
Test whether diophantine respects the assumptions.
"""
#Test case taken from the below so question regarding assumptions in diophantine module
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
m, n = symbols('m n', integer=True, positive=True)
diof = diophantine(n**2 + m*n - 500)
assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
a, b = symbols('a b', integer=True, positive=False)
diof = diophantine(a*b + 2*a + 3*b - 6)
assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
def check_solutions(eq):
"""
Determines whether solutions returned by diophantine() satisfy the original
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
check_solutions_normal, check_solutions()
"""
s = diophantine(eq)
factors = Mul.make_args(eq)
var = list(eq.free_symbols)
var.sort(key=default_sort_key)
while s:
solution = s.pop()
for f in factors:
if diop_simplify(f.subs(zip(var, solution))) == 0:
break
else:
return False
return True
def test_diopcoverage():
eq = (2*x + y + 1)**2
assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
assert diop_solve(eq) == {(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)}
assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)}
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
ans = (3*t - 1, -2*t + 1)
assert base_solution_linear(4, 8, 12, t) == ans
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
assert cornacchia(1, 1, 20) is None
assert cornacchia(1, 1, 5) == {(2, 1)}
assert cornacchia(1, 2, 17) == {(3, 2)}
raises(ValueError, lambda: reconstruct(4, 20, 1))
assert gaussian_reduce(4, 1, 3) == (1, 1)
eq = -w**2 - x**2 - y**2 + z**2
assert diop_general_pythagorean(eq) == \
diop_general_pythagorean(-eq) == \
(m1**2 + m2**2 - m3**2, 2*m1*m3,
2*m2*m3, m1**2 + m2**2 + m3**2)
assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None)
assert check_param(Rational(3, 2), S(4) + x, S(2), x) == (None, None)
assert check_param(S(4) + x, Rational(3, 2), S(2), x) == (None, None)
assert _nint_or_floor(16, 10) == 2
assert _odd(1) == (not _even(1)) == True
assert _odd(0) == (not _even(0)) == False
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
(11, 1, 5)
# it's ok if these pass some day when the solvers are implemented
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
{(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
def test_holzer():
# if the input is good, don't let it diverge in holzer()
# (but see test_fail_holzer below)
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
# None in uv condition met; solution is not Holzer reduced
# so this will hopefully change but is here for coverage
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
@XFAIL
def test_fail_holzer():
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
a, b, c = 4, 79, 23
x, y, z = xyz = 26, 1, 11
X, Y, Z = ans = 2, 7, 13
assert eq(*xyz) == 0
assert eq(*ans) == 0
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
h = holzer(x, y, z, a, b, c)
assert h == ans # it would be nice to get the smaller soln
def test_issue_9539():
assert diophantine(6*w + 9*y + 20*x - z) == \
{(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
def test_issue_8943():
assert diophantine(
(3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x))) == \
{(0, 0, 0)}
def test_diop_sum_of_even_powers():
eq = x**4 + y**4 + z**4 - 2673
assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
neg = symbols('neg', negative=True)
eq = x**4 + y**4 + neg**4 - 2673
assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
assert diophantine(x**4 + y**4 + 2) == set()
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
def test_sum_of_squares_powers():
tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
(1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
assert len(ans) == 14
assert ans == tru
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
assert list(sum_of_squares(-10, 2)) == []
assert list(sum_of_squares(2, 3)) == []
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
assert list(sum_of_squares(0, 3)) == []
assert list(sum_of_squares(4, 1)) == [(2,)]
assert list(sum_of_squares(5, 1)) == []
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
assert list(sum_of_squares(11, 5, True)) == [
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
1, 1, 1, 1, 2,
2, 1, 1, 2, 2,
2, 2, 2, 3, 2,
1, 3, 3, 3, 3,
4, 3, 3, 2, 2,
4, 4, 4, 4, 5]
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
0, 0, 0, 0, 0,
1, 0, 0, 1, 0,
0, 1, 0, 1, 1,
0, 1, 1, 0, 1,
2, 1, 1, 1, 1,
1, 1, 1, 1, 3]
for i in range(30):
s1 = set(sum_of_squares(i, 5, True))
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
s2 = set(sum_of_squares(i, 5))
assert all(sum(j**2 for j in t) == i for t in s2)
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
assert list(sum_of_powers(-2, 4, 2)) == []
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
assert list(sum_of_powers(6, 2, 2)) == []
assert list(sum_of_powers(3**5, 3, 1)) == []
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
assert list(sum_of_powers(2**1000, 5, 2)) == []
def test__can_do_sum_of_squares():
assert _can_do_sum_of_squares(3, -1) is False
assert _can_do_sum_of_squares(-3, 1) is False
assert _can_do_sum_of_squares(0, 1)
assert _can_do_sum_of_squares(4, 1)
assert _can_do_sum_of_squares(1, 2)
assert _can_do_sum_of_squares(2, 2)
assert _can_do_sum_of_squares(3, 2) is False
def test_diophantine_permute_sign():
from sympy.abc import a, b, c, d, e
eq = a**4 + b**4 - (2**4 + 3**4)
base_sol = {(2, 3)}
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
assert len(diophantine(eq)) == 35
assert len(diophantine(eq, permute=True)) == 62000
soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
@XFAIL
def test_not_implemented():
eq = x**2 + y**4 - 1**2 - 3**4
assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
def test_issue_9538():
eq = x - 3*y + 2
assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
raises(TypeError, lambda: diophantine(eq, syms={y, x}))
def test_ternary_quadratic():
# solution with 3 parameters
s = diophantine(2*x**2 + y**2 - 2*z**2)
p, q, r = ordered(S(s).free_symbols)
assert s == {(
p**2 - 2*q**2,
-2*p**2 + 4*p*q - 4*p*r - 4*q**2,
p**2 - 4*p*q + 2*q**2 - 4*q*r)}
# solution with Mul in solution
s = diophantine(x**2 + 2*y**2 - 2*z**2)
assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
# solution with no Mul in solution
s = diophantine(2*x**2 + 2*y**2 - z**2)
assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)}
# reduced form when parametrized
s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
assert parametrize_ternary_quadratic(
3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
2*p*q + 3*q**2)
assert parametrize_ternary_quadratic(
124*x**2 - 30*y**2 - 7729*z**2) == (
-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
|
2c9e7d5dcaf994c96eb0049ee6ed74f8e3fcad487f0a45c05c1e472605602f18 | from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff,
Dummy, Eq, Ne, erfi, exp, Function, I, Integral, LambertW, log, O, pi,
Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh,
Piecewise, symbols, Poly, sec, Ei, re, im, atan2, collect, hyper, simplify)
from sympy.solvers.ode import (classify_ode,
homogeneous_order, infinitesimals, checkinfsol,
dsolve)
from sympy.solvers.ode.subscheck import checkodesol, checksysodesol
from sympy.solvers.ode.ode import (_linear_coeff_match,
_ode_factorable_match, _remove_redundant_solutions,
_undetermined_coefficients_match, classify_sysode,
constant_renumber, constantsimp, get_numbered_constants, solve_ics)
from sympy.functions import airyai, airybi, besselj, bessely
from sympy.solvers.deutils import ode_order
from sympy.testing.pytest import XFAIL, skip, raises, slow, ON_TRAVIS, SKIP
from sympy.utilities.misc import filldedent
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
# Note: the tests below may fail (but still be correct) if ODE solver,
# the integral engine, solve(), or even simplify() changes. Also, in
# differently formatted solutions, the arbitrary constants might not be
# equal. Using specific hints in tests can help to avoid this.
# Tests of order higher than 1 should run the solutions through
# constant_renumber because it will normalize it (constant_renumber causes
# dsolve() to return different results on different machines)
def test_get_numbered_constants():
with raises(ValueError):
get_numbered_constants(None)
def test_dsolve_system():
eqs = [-f(x).diff(x), g(x).diff(x)]
sols = {Eq(f(x), C1), Eq(g(x), C2)}
assert set(dsolve(eqs)) == sols
eqs = [f(x).diff(x, 2), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs) # NotImplementedError would be better
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
with raises(ValueError):
# Could also be NotImplementedError. f(x)=0 is a solution...
dsolve(eqs)
eqs = [f(x, y).diff(x)]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs)
def test_dsolve_all_hint():
eq = f(x).diff(x)
output = dsolve(eq, hint='all')
# Match the Dummy variables:
sol1 = output['separable_Integral']
_y = sol1.lhs.args[1][0]
sol1 = output['1st_homogeneous_coeff_subs_dep_div_indep_Integral']
_u1 = sol1.rhs.args[1].args[1][0]
expected = {
'1st_homogeneous_coeff_subs_indep_div_dep_Integral': Eq(f(x), C1),
'separable_Integral': Eq(Integral(1, (_y, f(x))), C1 + Integral(0, x)),
'separable': Eq(f(x), C1),
'lie_group': Eq(f(x), C1),
'nth_linear_constant_coeff_homogeneous': Eq(f(x), C1),
'nth_algebraic_Integral': Eq(f(x), C1),
'1st_power_series': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_indep_div_dep': Eq(f(x), C1),
'1st_linear': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep_Integral': Eq(log(x), C1 + Integral(-1/_u1, (_u1, f(x)/x))),
'1st_homogeneous_coeff_best': Eq(f(x), C1),
'nth_linear_euler_eq_homogeneous': Eq(f(x), C1),
'nth_algebraic': Eq(f(x), C1),
'1st_linear_Integral': Eq(f(x), C1 + Integral(0, x)),
'best': Eq(f(x), C1),
'best_hint': 'nth_algebraic',
'default': 'nth_algebraic',
'order': 1
}
assert output == expected
assert dsolve(eq, hint='best') == Eq(f(x), C1)
def test_dsolve_ics():
# Maybe this should just use one of the solutions instead of raising...
with raises(NotImplementedError):
dsolve(f(x).diff(x) - sqrt(f(x)), ics={f(1):1})
@XFAIL
@slow
def test_nonlinear_3eq_order1_type1():
if ON_TRAVIS:
skip("Too slow for travis.")
a, b, c = symbols('a b c')
eqs = [
a * f(x).diff(x) - (b - c) * g(x) * h(x),
b * g(x).diff(x) - (c - a) * h(x) * f(x),
c * h(x).diff(x) - (a - b) * f(x) * g(x),
]
assert dsolve(eqs) # NotImplementedError
def test_dsolve_euler_rootof():
eq = x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x)
sol = Eq(f(x),
C1*x
+ C2*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 0)
+ C3*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 1)
+ C4*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 2)
+ C5*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 3)
+ C6*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 4)
)
assert dsolve(eq) == sol
def test_linear_2eq_order1_type2_noninvertible():
# a*d - b*c == 0
eqs = [Eq(diff(f(x), x), f(x) + g(x) + 5),
Eq(diff(g(x), x), f(x) + g(x) + 7)]
sol = [Eq(f(x), C1*exp(2*x) + C2 - x - 3), Eq(g(x), C1*exp(2*x) - C2 + x - 3)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
def test_linear_2eq_order1_type2_fixme():
# There is a FIXME comment about this in the code that handles this case.
# The answer returned is currently incorrect as reported by checksysodesol
# below...
# a*d - b*c == 0 and a + b*c/a = 0
eqs = [Eq(diff(f(x), x), f(x) + g(x) + 5),
Eq(diff(g(x), x), -f(x) - g(x) + 7)]
sol = [Eq(f(x), C1 + C2*(x + 1) + 12*x**2 + 5*x), Eq(g(x), -C1 - C2*x - 12*x**2 + 7*x)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
def test_linear_2eq_order1_type4():
eqs = [Eq(diff(f(x), x), f(x) + x*g(x)),
Eq(diff(g(x), x),-x*f(x) + g(x))]
sol = [Eq(f(x), (C1*cos(x**2/2) + C2*sin(x**2/2))*exp(x)),
Eq(g(x), (-C1*sin(x**2/2) + C2*cos(x**2/2))*exp(x))]
# FIXME: This should probably be fixed so that this happens in the solver:
dsolve_sol = dsolve(eqs)
dsolve_sol = [s.doit() for s in sol]
assert dsolve_sol == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
def test_linear_2eq_order1_type4_broken():
eqs = [Eq(f(x).diff(x), f(x) + x*g(x)),
Eq(g(x).diff(x), x*f(x) - g(x))]
# FIXME: This is not the correct solution:
sol = [Eq(f(x), (C1*sin(x) + C2*cos(x))*exp(x**2/2)),
Eq(g(x), (C1*cos(x) - C2*sin(x))*exp(x**2/2))]
dsolve_sol = dsolve(eqs)
dsolve_sol = [s.doit() for s in sol]
assert dsolve_sol == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
def test_linear_2eq_order1_type5():
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x)),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x))]
sol = [
Eq(f(x), (C1*exp(x**3*(S(3)/2 + sqrt(17)/2)/3)
+ C2*exp(x**3*(-sqrt(17)/2 + S(3)/2)/3))*exp(x**2/2)),
Eq(g(x), (C1*(S(3)/2 + sqrt(17)/2)*exp(x**3*(S(3)/2 + sqrt(17)/2)/3)
+ C2*(-sqrt(17)/2 + S(3)/2)*exp(x**3*(-sqrt(17)/2 + S(3)/2)/3))*exp(x**2/2))
]
dsolve_sol = dsolve(eqs)
# FIXME: This should probably be fixed so that this happens in the solver:
dsolve_sol = [s.doit() for s in sol]
assert dsolve_sol == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
def test_linear_2eq_order1_type6_path1():
eqs = [Eq(diff(f(x), x), f(x) + x*g(x)),
Eq(diff(g(x), x), 2*(1 + 2/x)*f(x) + 2*(x - 1/x) * g(x))]
# This solution is currently returned but is incorrect:
sol = [
Eq(f(x), (C1 + Integral(C2*x*exp(-2*Integral(1/x, x))*exp(Integral(-2*x - 1, x)), x))*exp(-Integral(-2*x - 1, x))),
Eq(g(x), C1*exp(-2*Integral(1/x, x))
+ 2*(C1 + Integral(C2*x*exp(-2*Integral(1/x, x))*exp(Integral(-2*x - 1, x)), x))*exp(-Integral(-2*x - 1, x)))
]
dsolve_sol = dsolve(eqs)
# Comparing solutions with == doesn't work in this case...
assert [ds.lhs for ds in dsolve_sol] == [f(x), g(x)]
assert [ds.rhs.equals(ss.rhs) for ds, ss in zip(dsolve_sol, sol)]
assert checksysodesol(eqs, sol) == (True, [0, 0]) # XFAIL
@XFAIL
def test_linear_2eq_order1_type6_path2():
# This is the reverse of the equations above and should also be handled by
# type6.
eqs = [Eq(diff(g(x), x), 2*(1 + 2/x)*g(x) + 2*(x - 1/x) * f(x)),
Eq(diff(f(x), x), g(x) + x*f(x))]
# This solution is currently returned but is incorrect:
sol = [
Eq(g(x), C1*exp(-2*Integral(1/x, x)) + 2*(C1 + Integral(-C2*exp(-2*Integral(1/x, x))*exp(Integral(-2*x - 1, x)), x))*exp(-Integral(-2*x - 1, x))),
Eq(f(x), (C1 + Integral(-C2*exp(-2*Integral(1/x, x))*exp(Integral(-2*x - 1, x)), x))*exp(-Integral(-2*x - 1, x)))
]
dsolve_sol = dsolve(eqs)
# Comparing solutions with == doesn't work in this case...
assert [ds.lhs for ds in dsolve_sol] == [g(x), f(x)]
assert [ds.rhs.equals(ss.rhs) for ds, ss in zip(dsolve_sol, sol)]
assert checksysodesol(eqs, sol) == (True, [0, 0]) # XFAIL
def test_nth_euler_imroot():
eq = x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x
sol = Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x))
dsolve_sol = dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters')
assert dsolve_sol == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_constant_coeff_circular_atan2():
eq = f(x).diff(x, x) + y*f(x)
sol = Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y)))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
@XFAIL
def test_linear_2eq_order2_type1_fail1():
eqs = [Eq(f(x).diff(x, 2), 2*f(x) + g(x)),
Eq(g(x).diff(x, 2), -f(x))]
# This is the returned solution but it isn't correct:
sol = [
Eq(f(x), 2*C1*(x + 2)*exp(x) + 2*C2*(x + 2)*exp(-x) + 2*C3*x*exp(x) + 2*C4*x*exp(-x)),
Eq(g(x), -2*C1*x*exp(x) - 2*C2*x*exp(-x) + C3*(-2*x + 4)*exp(x) + C4*(-2*x - 4)*exp(-x))
]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
def test_linear_2eq_order2_type1_fail2():
eqs = [Eq(f(x).diff(x, 2), 0),
Eq(g(x).diff(x, 2), f(x))]
sol = [
Eq(f(x), C1 + C2*x),
Eq(g(x), C4 + C3*x + C2*x**3/6 + C1*x**2/2)
]
assert dsolve(eqs) == sol # UnboundLocalError
assert checksysodesol(eqs, sol) == (True, [0, 0])
def test_linear_2eq_order2_type1():
eqs = [Eq(f(x).diff(x, 2), 2*f(x)),
Eq(g(x).diff(x, 2), -f(x) + 2*g(x))]
sol = [
Eq(f(x), 2*sqrt(2)*C1*exp(sqrt(2)*x) + 2*sqrt(2)*C2*exp(-sqrt(2)*x)),
Eq(g(x), -C1*x*exp(sqrt(2)*x) + C2*x*exp(-sqrt(2)*x) + C3*exp(sqrt(2)*x) + C4*exp(-sqrt(2)*x))
]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
eqs = [Eq(f(x).diff(x, 2), 2*f(x) + g(x)),
Eq(g(x).diff(x, 2), + 2*g(x))]
sol = [
Eq(f(x), C1*x*exp(sqrt(2)*x) - C2*x*exp(-sqrt(2)*x) + C3*exp(sqrt(2)*x) + C4*exp(-sqrt(2)*x)),
Eq(g(x), 2*sqrt(2)*C1*exp(sqrt(2)*x) + 2*sqrt(2)*C2*exp(-sqrt(2)*x))
]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
eqs = [Eq(f(x).diff(x, 2), f(x)),
Eq(g(x).diff(x, 2), f(x))]
sol = [Eq(f(x), C1*exp(x) + C2*exp(-x)),
Eq(g(x), C1*exp(x) + C2*exp(-x) - C3*x - C4)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
eqs = [Eq(f(x).diff(x, 2), f(x) + g(x)),
Eq(g(x).diff(x, 2), -f(x) - g(x))]
sol = [Eq(f(x), C1*x**3 + C2*x**2 + C3*x + C4),
Eq(g(x), -C1*x**3 + 6*C1*x - C2*x**2 + 2*C2 - C3*x - C4)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
def test_linear_2eq_order2_type2():
eqs = [Eq(f(x).diff(x, 2), f(x) + g(x) + 1),
Eq(g(x).diff(x, 2), f(x) + g(x) + 1)]
sol = [Eq(f(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + C3*x + C4 - S.Half),
Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) - C3*x - C4 - S.Half)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
eqs = [Eq(f(x).diff(x, 2), f(x) + g(x) + 1),
Eq(g(x).diff(x, 2), -f(x) - g(x) + 1)]
sol = [Eq(f(x), C1*x**3 + C2*x**2 + C3*x + C4 + x**4/12 + x**2/2),
Eq(g(x), -C1*x**3 + 6*C1*x - C2*x**2 + 2*C2 - C3*x - C4 - x**4/12 + x**2/2)]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
def test_linear_2eq_order2_type4():
Ca, Cb, Ra, Rb = symbols('Ca, Cb, Ra, Rb')
eq = [f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) + g(x) - 2*exp(I*x),
g(x).diff(x, 2) + 2*g(x).diff(x) + f(x) + g(x) - 2*exp(I*x)]
dsolve_sol = dsolve(eq)
# Solution returned with Ca, Ra etc symbols is clearly incorrect:
sol = [
Eq(f(x), C1 + C2*exp(2*x) + C3*exp(x*(1 + sqrt(3))) + C4*exp(x*(-sqrt(3) + 1)) + (I*Ca + Ra)*exp(I*x)),
Eq(g(x), -C1 - 3*C2*exp(2*x) + C3*(-3*sqrt(3) - 4 + (1 + sqrt(3))**2)*exp(x*(1 + sqrt(3)))
+ C4*(-4 + (-sqrt(3) + 1)**2 + 3*sqrt(3))*exp(x*(-sqrt(3) + 1)) + (I*Cb + Rb)*exp(I*x))
]
assert dsolve_sol == sol
assert checksysodesol(eq, sol) == (True, [0, 0]) # Fails here
def test_linear_2eq_order2_type5():
eqs = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
sol = [Eq(f(x), C3*x + x*Integral((2*C1*cos(x**2) + 2*C2*sin(x**2))/x**2, x)),
Eq(g(x), C4*x + x*Integral((-2*C1*sin(x**2) + 2*C2*cos(x**2))/x**2, x))]
assert dsolve(eqs) == sol
# FIXME: checksysodesol not working:
#assert checksysodesol(eqs, sol) == (True, [0, 0])
def test_linear_2eq_order2_type8():
eqs = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
# FIXME: This is what is returned but it does not seem correct:
sol = [Eq(f(x), C3*x + x*Integral((-C1*cos(Integral(-2, x)) - C2*sin(Integral(-2, x)))/x**2, x)),
Eq(g(x), C4*x + x*Integral((-C1*sin(Integral(-2, x)) + C2*cos(Integral(-2, x)))/x**2, x))]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0]) # Fails here
def test_linear_3eq_order1_type2():
eqs = [
Eq(f(x).diff(x), 2*g(x) - 3*h(x)),
Eq(g(x).diff(x), 4*h(x) - 2*f(x)),
Eq(h(x).diff(x), 3*f(x) - 4*g(x)),
]
sol = [
Eq(f(x), 4*C0 + sqrt(29)*C1*cos(sqrt(29)*x) + (6*C1 + 13*C2/2)*sin(sqrt(29)*x)),
Eq(g(x), 3*C0 + sqrt(29)*C2*cos(sqrt(29)*x) + (-10*C1 - 6*C2)*sin(sqrt(29)*x)),
Eq(h(x), 2*C0 + sqrt(29)*(-2*C1 - 3*C2/2)*cos(sqrt(29)*x) + (3*C1 - 4*C2)*sin(sqrt(29)*x))
]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def test_linear_3eq_order1_type3():
eqs = [
Eq(2*f(x).diff(x), 3*4*(g(x) - h(x))),
Eq(3*g(x).diff(x), 2*4*(h(x) - f(x))),
Eq(4*h(x).diff(x), 2*3*(f(x) - g(x))),
]
sol = [
Eq(f(x), C0 + sqrt(29)*C1*cos(sqrt(29)*x) + (3*C1/2 + 75*C2/8)*sin(sqrt(29)*x)),
Eq(g(x), C0 + sqrt(29)*C2*cos(sqrt(29)*x) + (-10*C1/3 - 3*C2/2)*sin(sqrt(29)*x)),
Eq(h(x), C0 + sqrt(29)*(-C1/4 - 9*C2/16)*cos(sqrt(29)*x) + (3*C1/2 - 3*C2/2)*sin(sqrt(29)*x))
]
assert dsolve(eqs) == sol
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type4():
eqs = [
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
]
dsolve_sol = dsolve(eqs) # KeyError when matching
# sol = ?
# assert dsolve_sol == sol
assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type3():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs = [
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
Eq(g(x).diff(x), (4 - 2*h(x) )),
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
]
dsolve_sol = dsolve(eqs) # Not sure if this finishes...
# sol = ?
# assert dsolve_sol == sol
assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type5():
eqs = [
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
]
dsolve_sol = dsolve(eqs) # KeyError
# sol = ?
# assert dsolve_sol == sol
assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol1 = [Eq(x(t), 9*C1*exp(6*sqrt(3)*t) + 9*C2*exp(-6*sqrt(3)*t)), \
Eq(y(t), 6*sqrt(3)*C1*exp(6*sqrt(3)*t) - 6*sqrt(3)*C2*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol2 = [Eq(x(t), 4*C1*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(-sqrt(1713)/2 + Rational(43, 2)))), \
Eq(y(t), C1*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + \
C2*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + Rational(43, 2))))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol3 = [Eq(x(t), (C1*cos(sqrt(7)*t/2) + C2*sin(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \
Eq(y(t), (C1*(-sqrt(7)*sin(sqrt(7)*t/2)/2 + cos(sqrt(7)*t/2)/2) + \
C2*(sin(sqrt(7)*t/2)/2 + sqrt(7)*cos(sqrt(7)*t/2)/2))*exp(t*Rational(3, 2)))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol4 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol5 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol6 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
s = dsolve(eq6)
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol7 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol8 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq10 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol10 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq10)
assert s == sol10 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_linear_2eq_order1_nonhomog_linear():
e = [Eq(diff(f(x), x), f(x) + g(x) + 5*x),
Eq(diff(g(x), x), f(x) - g(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_nonhomog():
# Note: once implemented, add some tests esp. with resonance
e = [Eq(diff(f(x), x), f(x) + exp(x)),
Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_type2_degen():
e = [Eq(diff(f(x), x), f(x) + 5),
Eq(diff(g(x), x), f(x) + 7)]
s1 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) - C2 + 2*x - 5)]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_dsolve_linear_2eq_order1_diag_triangular():
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
assert checksysodesol(e, s1) == (True, [0, 0])
e = [Eq(diff(f(x), x), 2*f(x)),
Eq(diff(g(x), x), 3*f(x) + 7*g(x))]
s1 = [Eq(f(x), -5*C2*exp(2*x)),
Eq(g(x), 5*C1*exp(7*x) + 3*C2*exp(2*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0():
e = [Eq(diff(f(x), x), -9*I*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -4*C1*exp(-4*I*x) - 4*C2*exp(-9*I*x)), \
Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0_b_eq_0():
e = [Eq(diff(f(x), x), -9*I*f(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -5*I*C2*exp(-9*I*x)), Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_many_zeros():
t = Symbol('t')
corner_cases = [(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, I),
(I, 0, 0, -I), (0, I, 0, 0), (0, I, I, 0)]
s1 = [[Eq(f(t), C1), Eq(g(t), C2)],
[Eq(f(t), C1*exp(t)), Eq(g(t), -C2)],
[Eq(f(t), C1 + C2*t), Eq(g(t), C2)],
[Eq(f(t), C2), Eq(g(t), C1 + C2*t)],
[Eq(f(t), -C2), Eq(g(t), C1*exp(t))],
[Eq(f(t), C1*(1 - I)*exp(t)), Eq(g(t), C2*(-1 + I)*exp(I*t))],
[Eq(f(t), 2*I*C1*exp(I*t)), Eq(g(t), -2*I*C2*exp(-I*t))],
[Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)],
[Eq(f(t), I*C1*exp(I*t) + I*C2*exp(-I*t)), \
Eq(g(t), I*C1*exp(I*t) - I*C2*exp(-I*t))]
]
for r, sol in zip(corner_cases, s1):
eq = [Eq(diff(f(t), t), r[0]*f(t) + r[1]*g(t)),
Eq(diff(g(t), t), r[2]*f(t) + r[3]*g(t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_dsolve_linsystem_symbol_piecewise():
u = Symbol('u') # XXX it's more complicated with real u
eq = (Eq(diff(f(x), x), 2*f(x) + g(x)),
Eq(diff(g(x), x), u*f(x)))
s1 = [Eq(f(x), Piecewise((C1*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1 + C2*(x +
Piecewise((0, Eq(sqrt(4*u + 4)/2 + 1, 2)), (1/(-sqrt(4*u + 4)/2 + 1),
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True))), Eq(g(x),
Piecewise((C1*(sqrt(4*u + 4)/2 - 1)*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*(-sqrt(4*u + 4)/2 - 1)*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4,
0)), ((C1*(sqrt(4*u + 4)/2 - 1) + C2*(x*(sqrt(4*u + 4)/2 - 1) +
Piecewise((1, Eq(sqrt(4*u + 4)/2 + 1, 2)), (0,
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True)))]
assert dsolve(eq) == s1
# FIXME: assert checksysodesol(eq, s) == (True, [0, 0])
# Remove lines below when checksysodesol works
s = [(l.lhs, l.rhs) for l in s1]
for v in [0, 7, -42, 5*I, 3 + 4*I]:
assert eq[0].subs(s).subs(u, v).doit().simplify()
assert eq[1].subs(s).subs(u, v).doit().simplify()
# example from https://groups.google.com/d/msg/sympy/xmzoqW6tWaE/sf0bgQrlCgAJ
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
sol = dsolve((eq1, eq2))
# FIXME: assert checksysodesol(eq, sol) == (True, [0, 0])
# Remove line below when checksysodesol works
assert all(s.has(Piecewise) for s in sol)
@slow
def test_linear_2eq_order2():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t, l = symbols('t, l')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
sol1 = [Eq(x(t), 43*C1*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + 43*C2*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
43*C3*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + 43*C4*exp(t*rootof(l**4 - 14*l**2 + 2, 3))), \
Eq(y(t), C1*(rootof(l**4 - 14*l**2 + 2, 0)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + \
C2*(rootof(l**4 - 14*l**2 + 2, 1)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
C3*(rootof(l**4 - 14*l**2 + 2, 2)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + \
C4*(rootof(l**4 - 14*l**2 + 2, 3)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 3)))]
assert dsolve(eq1) == sol1
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0]) # this one fails
eq2 = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
sol2 = [Eq(x(t), 3*C1*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + 3*C2*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
3*C3*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + 3*C4*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) - Rational(181, 29)), \
Eq(y(t), C1*(rootof(l**4 - 15*l**2 + 29, 0)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + \
C2*(rootof(l**4 - 15*l**2 + 29, 1)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
C3*(rootof(l**4 - 15*l**2 + 29, 2)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + \
C4*(rootof(l**4 - 15*l**2 + 29, 3)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) + Rational(183, 29))]
assert dsolve(eq2) == sol2
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0]) # this one fails
eq3 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol3 = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + \
C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - \
C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))]
assert dsolve(eq3) == sol3
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
sol4 = [Eq(x(t), C3*t + t*Integral((9*C1*exp(3*sqrt(7)*t**2/2) + 9*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t)), \
Eq(y(t), C4*t + t*Integral((3*sqrt(7)*C1*exp(3*sqrt(7)*t**2/2) - 3*sqrt(7)*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t))]
assert dsolve(eq4) == sol4
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \
(log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t)))
sol5 = [Eq(x(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2 - \
C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4 - \
(sqrt(22) + 5)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2) + \
(-sqrt(22) + 5)*(C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C4))/88), \
Eq(y(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + \
C2 - C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4)/44)]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t,t), log(t)*t*diff(y(t),t) - log(t)*y(t)), Eq(diff(y(t),t,t), log(t)*t*diff(x(t),t) - log(t)*x(t)))
sol6 = [Eq(x(t), C3*t + t*Integral((C1*exp(Integral(t*log(t), t)) + \
C2*exp(-Integral(t*log(t), t)))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*exp(Integral(t*log(t), t)) - \
C2*exp(-Integral(t*log(t), t)))/t**2, t))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = (Eq(diff(x(t),t,t), log(t)*(t*diff(x(t),t) - x(t)) + exp(t)*(t*diff(y(t),t) - y(t))), \
Eq(diff(y(t),t,t), (t**2)*(t*diff(x(t),t) - x(t)) + (t)*(t*diff(y(t),t) - y(t))))
sol7 = [Eq(x(t), C3*t + t*Integral((C1*x0(t) + C2*x0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*\
exp(Integral(t*log(t), t))/x0(t)**2, t))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*y0(t) + \
C2*(y0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)**2, t) + \
exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)))/t**2, t))]
assert dsolve(eq7) == sol7
# FIXME: assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = (Eq(diff(x(t),t,t), t*(4*x(t) + 9*y(t))), Eq(diff(y(t),t,t), t*(12*x(t) - 6*y(t))))
sol8 = [Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C1*airyai(-t*(1 + \
sqrt(133))**(S(1)/3)) - 4*C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)) +\
(-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(t*(-1 + sqrt(133))**(S(1)/3))) - (-1 +\
sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3))))/3192), \
Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) -\
C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)))/266)]
assert dsolve(eq8) == sol8
assert checksysodesol(eq8, sol8) == (True, [0, 0])
assert filldedent(dsolve(eq8)) == filldedent('''
[Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(1/3)) +
4*C1*airyai(-t*(1 + sqrt(133))**(1/3)) - 4*C2*airybi(t*(-1 +
sqrt(133))**(1/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(1/3)) +
(-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(1/3)) +
C2*airybi(t*(-1 + sqrt(133))**(1/3))) - (-1 +
sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 +
sqrt(133))**(1/3))))/3192), Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 +
sqrt(133))**(1/3)) + C1*airyai(-t*(1 + sqrt(133))**(1/3)) -
C2*airybi(t*(-1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 +
sqrt(133))**(1/3)))/266)]''')
assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq9 = (Eq(diff(x(t),t,t), t*(4*diff(x(t),t) + 9*diff(y(t),t))), Eq(diff(y(t),t,t), t*(12*diff(x(t),t) - 6*diff(y(t),t))))
sol9 = [Eq(x(t), -sqrt(133)*(4*C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + 4*C2 - \
4*C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - 4*C4 - (-1 + sqrt(133))*(C1*Integral(exp((-sqrt(133) - \
1)*Integral(t, t)), t) + C2) + (-sqrt(133) - 1)*(C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) + \
C4))/3192), Eq(y(t), -sqrt(133)*(C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + C2 - \
C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - C4)/266)]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0])
eq10 = (t**2*diff(x(t),t,t) + 3*t*diff(x(t),t) + 4*t*diff(y(t),t) + 12*x(t) + 9*y(t), \
t**2*diff(y(t),t,t) + 2*t*diff(x(t),t) - 5*t*diff(y(t),t) + 15*x(t) + 8*y(t))
sol10 = [Eq(x(t), -C1*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \
346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - \
C2*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
13 - 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))) - C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))) + 2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 13)), Eq(y(t), C1*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C2*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2)*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \
2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))) + 14 + (1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2) + C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \
346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + \
8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \
346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \
4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)**2 + sqrt(-346/(3*(Rational(4333, 4) + \
5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14))]
assert dsolve(eq10) == sol10
# FIXME: assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this hangs or at least takes a while...
def test_linear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol1 = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol2 = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
eq3 = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol3 = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq3, sol3) == (True, [0, 0, 0])
f = t**3 + log(t)
g = t**2 + sin(t)
eq4 = (Eq(diff(x(t),t),(4*f+g)*x(t)-f*y(t)-2*f*z(t)), Eq(diff(y(t),t),2*f*x(t)+(f+g)*y(t)-2*f*z(t)), Eq(diff(z(t),t),5*f*x(t)+f*y(t)+(-3*f+g)*z(t)))
sol4 = [Eq(x(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 \
+ cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - \
sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*exp(Integral(-t**2 - sin(t), t))), Eq(y(t), \
(C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + \
C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*\
exp(Integral(-t**2 - sin(t), t))), Eq(z(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*cos(sqrt(3)*\
Integral(t**3 + log(t), t)) + C3*sin(sqrt(3)*Integral(t**3 + log(t), t)))*exp(Integral(-t**2 - sin(t), t)))]
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0, 0]) # this one fails
eq5 = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol5 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0])
eq6 = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol6 = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(y(t), C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(z(t), C1*exp(2*t) + C2*cos(t) + C3*sin(t))]
assert checksysodesol(eq6, sol6) == (True, [0, 0, 0])
def test_linear_3eq_order1_nonhomog():
e = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*g(x)),
Eq(diff(h(x), x), h(x) + exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
@XFAIL
def test_linear_3eq_order1_diagonal():
# code makes assumptions about coefficients being nonzero, breaks when assumptions are not true
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x)),
Eq(diff(h(x), x), h(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x)), Eq(h(x), C3*exp(x))]
s = dsolve(e)
assert s == s1
assert checksysodesol(e, s1) == (True, [0, 0, 0])
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = Rational(2, 3)
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))])
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
@slow
def test_dsolve_options():
eq = x*f(x).diff(x) + f(x)
a = dsolve(eq, hint='all')
b = dsolve(eq, hint='all', simplify=False)
c = dsolve(eq, hint='all_Integral')
keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear',
'1st_linear_Integral', 'almost_linear', 'almost_linear_Integral',
'best', 'best_hint', 'default', 'lie_group',
'nth_linear_euler_eq_homogeneous', 'order',
'separable', 'separable_Integral']
Integral_keys = ['1st_exact_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral',
'almost_linear_Integral', 'best', 'best_hint', 'default',
'nth_linear_euler_eq_homogeneous',
'order', 'separable_Integral']
assert sorted(a.keys()) == keys
assert a['order'] == ode_order(eq, f(x))
assert a['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best') == Eq(f(x), C1/x)
assert a['default'] == 'separable'
assert a['best_hint'] == 'separable'
assert not a['1st_exact'].has(Integral)
assert not a['separable'].has(Integral)
assert not a['1st_homogeneous_coeff_best'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not a['1st_linear'].has(Integral)
assert a['1st_linear_Integral'].has(Integral)
assert a['1st_exact_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert a['separable_Integral'].has(Integral)
assert sorted(b.keys()) == keys
assert b['order'] == ode_order(eq, f(x))
assert b['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x)
assert b['default'] == 'separable'
assert b['best_hint'] == '1st_linear'
assert a['separable'] != b['separable']
assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \
b['1st_homogeneous_coeff_subs_dep_div_indep']
assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \
b['1st_homogeneous_coeff_subs_indep_div_dep']
assert not b['1st_exact'].has(Integral)
assert not b['separable'].has(Integral)
assert not b['1st_homogeneous_coeff_best'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not b['1st_linear'].has(Integral)
assert b['1st_linear_Integral'].has(Integral)
assert b['1st_exact_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert b['separable_Integral'].has(Integral)
assert sorted(c.keys()) == Integral_keys
raises(ValueError, lambda: dsolve(eq, hint='notarealhint'))
raises(ValueError, lambda: dsolve(eq, hint='Liouville'))
assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \
dsolve(f(x).diff(x) - 1/f(x)**2, hint='best')
assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x),
hint="1st_linear_Integral") == \
Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)*
exp(Integral(1, x)), x))*exp(-Integral(1, x)))
def test_classify_ode():
assert classify_ode(f(x).diff(x, 2), f(x)) == \
(
'nth_algebraic',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'Liouville',
'2nd_power_series_ordinary',
'nth_algebraic_Integral',
'Liouville_Integral',
)
assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral')
assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == (
'nth_algebraic',
'separable',
'1st_linear', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
assert classify_ode(f(x).diff(x)**2, f(x)) == ('nth_algebraic',
'separable',
'1st_linear',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
# issue 4749: f(x) should be cleared from highest derivative before classifying
a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x))
b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x))
c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x))
assert a == ('1st_linear',
'Bernoulli',
'almost_linear',
'1st_power_series', "lie_group",
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert b == ('factorable',
'1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert c == ('1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert classify_ode(
2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x)
) == ('Bernoulli', 'almost_linear', 'lie_group',
'Bernoulli_Integral', 'almost_linear_Integral')
assert 'Riccati_special_minus2' in \
classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x))
raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff(
y), f(x, y)))
# issue 5176
k = Symbol('k')
assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) +
k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \
('separable', '1st_exact', '1st_power_series', 'lie_group',
'separable_Integral', '1st_exact_Integral')
# preprocessing
ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_algebraic_Integral',
'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral')
# w/o f(x) given
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans
# w/ f(x) and prep=True
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x),
prep=True) == ans
assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_linear', '1st_power_series',
'lie_group', 'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral')
assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_power_series', 'lie_group',
'nth_algebraic_Integral', 'separable_Integral')
# test issue 13864
assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \
('1st_power_series', 'lie_group')
assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict)
def test_classify_ode_ics():
# Dummy
eq = f(x).diff(x, x) - f(x)
# Not f(0) or f'(0)
ics = {x: 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
############################
# f(0) type (AppliedUndef) #
############################
# Wrong function
ics = {g(0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(0, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(0): f(1)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(0): 1}
classify_ode(eq, f(x), ics=ics)
#####################
# f'(0) type (Subs) #
#####################
# Wrong function
ics = {g(x).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Wrong variable
ics = {f(y).diff(y).subs(y, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, y).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, 0): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, 0): 1}
classify_ode(eq, f(x), ics=ics)
###########################
# f'(y) type (Derivative) #
###########################
# Wrong function
ics = {g(x).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, z).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, y): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, y): 1}
classify_ode(eq, f(x), ics=ics)
def test_classify_sysode():
# Here x is assumed to be x(t) and y as y(t) for simplicity.
# Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively.
k, l, m, n = symbols('k, l, m, n', Integer=True)
k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True)
P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function)
P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function)
x, y, z = symbols('x, y, z', cls=Function)
t = symbols('t')
x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; z1 = diff(z(t),t)
x2 = diff(x(t),t,t) ; y2 = diff(y(t),t,t)
eq1 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -5*t, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): -5*t, (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -2, (1, y(t), 1): 1}, \
'type_of_equation': 'type3', 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-5*t*x(t) - 2*y(t) + \
Derivative(x(t), t), -5*t*y(t) - 2*x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq1) == sol1
eq2 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol2 = {'order': {y(t): 2, x(t): 2}, 'type_of_equation': 'type3', 'is_linear': True, 'eq': \
[-k*x(t) + l*Derivative(y(t), t) + Derivative(x(t), t, t), -k*y(t) - l*Derivative(x(t), t) + \
Derivative(y(t), t, t)], 'no_of_equation': 2, 'func_coeff': {(0, y(t), 0): 0, (0, x(t), 2): 1, \
(1, y(t), 1): 0, (1, y(t), 2): 1, (1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -k, (1, x(t), 1): \
-l, (0, x(t), 1): 0, (0, y(t), 1): l, (1, x(t), 0): 0, (1, y(t), 0): -k}, 'func': [x(t), y(t)]}
assert classify_sysode(eq2) == sol2
eq3 = (Eq(x2+4*x1+3*y1+9*x(t)+7*y(t), 11*exp(I*t)), Eq(y2+5*x1+8*y1+3*x(t)+12*y(t), 2*exp(I*t)))
sol3 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): 9, \
(1, x(t), 1): 5, (0, x(t), 1): 4, (0, y(t), 1): 3, (1, x(t), 0): 3, (1, y(t), 0): 12, (0, y(t), 0): 7, \
(0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): 8}, 'type_of_equation': 'type4', 'func': [x(t), y(t)], \
'is_linear': True, 'eq': [9*x(t) + 7*y(t) - 11*exp(I*t) + 4*Derivative(x(t), t) + 3*Derivative(y(t), t) + \
Derivative(x(t), t, t), 3*x(t) + 12*y(t) - 2*exp(I*t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + \
Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq3) == sol3
eq4 = (Eq((4*t**2 + 7*t + 1)**2*x2, 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*y2, x(t) + 9*y(t)))
sol4 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -5, \
(1, x(t), 1): 0, (0, x(t), 1): 0, (0, y(t), 1): 0, (1, x(t), 0): -1, (1, y(t), 0): -9, (0, y(t), 0): -35, \
(0, x(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, (1, y(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, \
(1, y(t), 1): 0}, 'type_of_equation': 'type10', 'func': [x(t), y(t)], 'is_linear': True, \
'eq': [(4*t**2 + 7*t + 1)**2*Derivative(x(t), t, t) - 5*x(t) - 35*y(t), (4*t**2 + 7*t + 1)**2*Derivative(y(t), t, t)\
- x(t) - 9*y(t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq4) == sol4
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol5 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -1, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): -5, \
(1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type2', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [-x(t) - y(t) + Derivative(x(t), t) - 9, -2*x(t) - 5*y(t) + \
Derivative(y(t), t) - 23], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq5) == sol5
eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t))))
sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \
[x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \
y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq6) == sol6
eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t)))
sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \
'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \
Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq7) == sol7
eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)))
sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \
[-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \
Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \
(1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2}
assert classify_sysode(eq8) == sol8
eq9 = (Eq(x1,3*y(t)-11*z(t)),Eq(y1,7*z(t)-3*x(t)),Eq(z1,11*x(t)-7*y(t)))
sol9 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 3, (0, z(t), 0): 11, (0, y(t), 0): -3, (1, z(t), 0): -7, (0, z(t), 1): 0, \
(2, x(t), 0): -11, (2, z(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-3*y(t) + 11*z(t) + Derivative(x(t), t), 3*x(t) - 7*z(t) + Derivative(y(t), t), \
-11*x(t) + 7*y(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq9) == sol9
eq10 = (x2 + log(t)*(t*x1 - x(t)) + exp(t)*(t*y1 - y(t)), y2 + (t**2)*(t*x1 - x(t)) + (t)*(t*y1 - y(t)))
sol10 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -log(t), \
(1, x(t), 1): t**3, (0, x(t), 1): t*log(t), (0, y(t), 1): t*exp(t), (1, x(t), 0): -t**2, (1, y(t), 0): -t, \
(0, y(t), 0): -exp(t), (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): t**2}, 'type_of_equation': 'type11', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [(t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - \
y(t))*exp(t) + Derivative(x(t), t, t), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) \
+ Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq10) == sol10
eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5))
sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \
'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \
-y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq11) == sol11
eq12 = (Eq(x1, y(t)), Eq(y1, x(t)))
sol12 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': \
[x(t), y(t)], 'is_linear': True, 'eq': [-y(t) + Derivative(x(t), t), -x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq12) == sol12
eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2))
sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \
'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \
Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq13) == sol13
eq14 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t)+3*y(t)), Eq(z1, 5*x(t)+7*y(t)+9*z(t)))
sol14 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -3, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -21, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -17, (0, z(t), 0): 0, (0, y(t), 0): 0, (1, z(t), 0): 0, (0, z(t), 1): 0, \
(2, x(t), 0): -5, (2, z(t), 0): -9, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-21*x(t) + Derivative(x(t), t), -17*x(t) - 3*y(t) + Derivative(y(t), t), -5*x(t) - \
7*y(t) - 9*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq14) == sol14
eq15 = (Eq(x1,4*x(t)+5*y(t)+2*z(t)),Eq(y1,x(t)+13*y(t)+9*z(t)),Eq(z1,32*x(t)+41*y(t)+11*z(t)))
sol15 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -13, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -4, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -41, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -1, (0, z(t), 0): -2, (0, y(t), 0): -5, (1, z(t), 0): -9, (0, z(t), 1): 0, \
(2, x(t), 0): -32, (2, z(t), 0): -11, (1, y(t), 1): 1}, 'type_of_equation': 'type6', 'func': \
[x(t), y(t), z(t)], 'is_linear': True, 'eq': [-4*x(t) - 5*y(t) - 2*z(t) + Derivative(x(t), t), -x(t) - 13*y(t) - \
9*z(t) + Derivative(y(t), t), -32*x(t) - 41*y(t) - 11*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq15) == sol15
eq16 = (Eq(3*x1,4*5*(y(t)-z(t))),Eq(4*y1,3*5*(z(t)-x(t))),Eq(5*z1,3*4*(x(t)-y(t))))
sol16 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 5, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 12, (0, x(t), 1): 3, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 15, (0, z(t), 0): 20, (0, y(t), 0): -20, (1, z(t), 0): -15, (0, z(t), 1): 0, \
(2, x(t), 0): -12, (2, z(t), 0): 0, (1, y(t), 1): 4}, 'type_of_equation': 'type3', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-20*y(t) + 20*z(t) + 3*Derivative(x(t), t), 15*x(t) - 15*z(t) + 4*Derivative(y(t), t), \
-12*x(t) + 12*y(t) + 5*Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq16) == sol16
# issue 8193: funcs parameter for classify_sysode has to actually work
assert classify_sysode(eq1, funcs=[x(t), y(t)]) == sol1
def test_solve_ics():
# Basic tests that things work from dsolve.
assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \
Eq(f(x), sqrt(2 * x + 2))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1,
f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x))
assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)],
[f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)),
Eq(g(x), exp(x)*sin(x))]
# Test cases where dsolve returns two solutions.
eq = (x**2*f(x)**2 - x).diff(x)
assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x),
-sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)]
assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x),
-sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)]
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \
{C2: 1}
# Some more complicated tests Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)}
K, r, f0 = symbols('K r f0')
sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1)))
assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol
#Order dependent issues Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
# XXX: Ought to be ValueError
raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1}))
# Degenerate case. f'(0) is identically 0.
raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0}))
EI, q, L = symbols('EI q L')
# eq = Eq(EI*diff(f(x), x, 4), q)
sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))]
funcs = [f(x)]
constants = [C1, C2, C3, C4]
# Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)),
# and Subs
ics1 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
f(L).diff(L, 2): 0,
f(L).diff(L, 3): 0}
ics2 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
Subs(f(x).diff(x, 2), x, L): 0,
Subs(f(x).diff(x, 3), x, L): 0}
solved_constants1 = solve_ics(sols, funcs, constants, ics1)
solved_constants2 = solve_ics(sols, funcs, constants, ics2)
assert solved_constants1 == solved_constants2 == {
C1: 0,
C2: 0,
C3: L**2*q/(4*EI),
C4: -L*q/(6*EI)}
def test_ode_order():
f = Function('f')
g = Function('g')
x = Symbol('x')
assert ode_order(3*x*exp(f(x)), f(x)) == 0
assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1
assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2
assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3
assert ode_order(diff(f(x), x, x), g(x)) == 0
assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2
assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0
# issue 5835: ode_order has to also work for unevaluated derivatives
# (ie, without using doit()).
assert ode_order(Derivative(x*f(x), x), f(x)) == 1
assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2
assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0
assert ode_order(Derivative(f(x), x, x), g(x)) == 0
assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1
assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3
assert ode_order(
x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3
# In all tests below, checkodesol has the order option set to prevent
# superfluous calls to ode_order(), and the solve_for_func flag set to False
# because dsolve() already tries to solve for the function, unless the
# simplify=False option is set.
def test_old_ode_tests():
# These are simple tests from the old ode module
eq1 = Eq(f(x).diff(x), 0)
eq2 = Eq(3*f(x).diff(x) - 5, 0)
eq3 = Eq(3*f(x).diff(x), 5)
eq4 = Eq(9*f(x).diff(x, x) + f(x), 0)
eq5 = Eq(9*f(x).diff(x, x), f(x))
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0)
eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0)
# Type: 2nd order, constant coefficients (two real different roots)
eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0)
# Type: 2nd order, constant coefficients (two real equal roots)
eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0)
# Type: 2nd order, constant coefficients (two complex roots)
eq10 = Eq(3*f(x).diff(x) - 1, 0)
eq11 = Eq(x*f(x).diff(x) - 1, 0)
sol1 = Eq(f(x), C1)
sol2 = Eq(f(x), C1 + x*Rational(5, 3))
sol3 = Eq(f(x), C1 + x*Rational(5, 3))
sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3))
sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))
sol6 = Eq(f(x), (C1 - cos(x))/x**3)
sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x))
sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))
sol10 = Eq(f(x), C1 + x/3)
sol11 = Eq(f(x), C1 + log(x))
assert dsolve(eq1) == sol1
assert dsolve(eq1.lhs) == sol1
assert dsolve(eq2) == sol2
assert dsolve(eq3) == sol3
assert dsolve(eq4) == sol4
assert dsolve(eq5) == sol5
assert dsolve(eq6) == sol6
assert dsolve(eq7) == sol7
assert dsolve(eq8) == sol8
assert dsolve(eq9) == sol9
assert dsolve(eq10) == sol10
assert dsolve(eq11) == sol11
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
def test_1st_linear():
# Type: first order linear form f'(x)+p(x)f(x)=q(x)
eq = Eq(f(x).diff(x) + x*f(x), x**2)
sol = Eq(f(x), (C1 + x*exp(x**2/2)
- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))
assert dsolve(eq, hint='1st_linear') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Bernoulli():
# Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n
eq = Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0)
sol = dsolve(eq, f(x), hint='Bernoulli')
assert sol == Eq(f(x), 1/(x*(C1 + 1/x)))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Riccati_special_minus2():
# Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2
eq = 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2)
sol = dsolve(eq, f(x), hint='Riccati_special_minus2')
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
@slow
def test_1st_exact1():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x)
eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x)
eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x)
sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))
sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1)
sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)
sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1)
sol5 = Eq(x**2*f(x) + f(x)**3/3, C1)
assert dsolve(eq1, f(x), hint='1st_exact') == sol1
assert dsolve(eq2, f(x), hint='1st_exact') == sol2
assert dsolve(eq3, f(x), hint='1st_exact') == sol3
assert dsolve(eq4, hint='1st_exact') == sol4
assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
# issue 5080 blocks the testing of this solution
# FIXME: assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
@slow
@XFAIL
def test_1st_exact2():
"""
This is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
"""
if ON_TRAVIS:
skip("Too slow for travis.")
eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) -
sqrt(x**2 + f(x)**2)))*f(x).diff(x))
sol = dsolve(eq)
assert sol == Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_separable1():
# test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and
# Pollard, pg. 55
eq1 = f(x).diff(x) - f(x)
eq2 = x*f(x).diff(x) - f(x)
eq3 = f(x).diff(x) + sin(x)
eq4 = f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x)
eq5 = f(x).diff(x)/tan(x) - f(x) - 2
eq6 = f(x).diff(x) * (1 - sin(f(x))) - 1
sol1 = Eq(f(x), C1*exp(x))
sol2 = Eq(f(x), C1*x)
sol3 = Eq(f(x), C1 + cos(x))
sol4 = Eq(f(x), tan(C1 + atan(x)))
sol5 = Eq(f(x), C1/cos(x) - 2)
sol6 = Eq(-x + f(x) + cos(f(x)), C1)
assert dsolve(eq1, hint='separable') == sol1
assert dsolve(eq2, hint='separable') == sol2
assert dsolve(eq3, hint='separable') == sol3
assert dsolve(eq4, hint='separable') == sol4
assert dsolve(eq5, hint='separable') == sol5
assert dsolve(eq6, hint='separable') == sol6
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
@slow
def test_separable2():
a = Symbol('a')
eq6 = f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x)
eq7 = f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x)
eq8 = x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2)
eq9 = exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x)
eq10 = (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) -
a**2*sin(f(x))*f(x).diff(x))
sol6 = Eq(Integral((u - 2)/u**3, (u, f(x))),
C1 + Integral(x**(-2), x))
sol7 = Eq(-log(-1 + f(x)**2)/2, C1 - log(2 + x))
sol8 = Eq(asinh(f(x)), C1 - log(log(x)))
# integrate cannot handle the integral on the lhs (cos/tan)
sol9 = Eq(Integral(cos(u)/tan(u), (u, f(x))),
C1 + Integral(-exp(1)*exp(x), x))
sol10 = Eq(-log(cos(f(x))), C1 - log(- a**2 + x**2)/2)
assert dsolve(eq6, hint='separable_Integral').dummy_eq(sol6)
assert dsolve(eq7, hint='separable', simplify=False) == sol7
assert dsolve(eq8, hint='separable', simplify=False) == sol8
assert dsolve(eq9, hint='separable_Integral').dummy_eq(sol9)
assert dsolve(eq10, hint='separable', simplify=False) == sol10
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
def test_separable3():
eq11 = f(x).diff(x) - f(x)*tan(x)
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
eq13 = f(x).diff(x) - f(x)*log(f(x))/tan(x)
sol11 = Eq(f(x), C1/cos(x))
sol12 = Eq(log(sin(f(x))), C1 + 2*x + 2*log(x - 1))
sol13 = Eq(log(log(f(x))), C1 + log(sin(x)))
assert dsolve(eq11, hint='separable') == sol11
assert dsolve(eq12, hint='separable', simplify=False) == sol12
assert dsolve(eq13, hint='separable', simplify=False) == sol13
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=1, solve_for_func=False)[0]
def test_separable4():
# This has a slow integral (1/((1 + y**2)*atan(y))), so we isolate it.
eq14 = x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x))
sol14 = Eq(log(atan(f(x))), C1 - log(x))
assert dsolve(eq14, hint='separable', simplify=False) == sol14
assert checkodesol(eq14, sol14, order=1, solve_for_func=False)[0]
def test_separable5():
eq15 = f(x).diff(x) + x*(f(x) + 1)
eq16 = exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x)
eq17 = f(x).diff(x) + f(x)
eq18 = sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x)
eq19 = (1 - x)*f(x).diff(x) - x*(f(x) + 1)
eq20 = f(x)*diff(f(x), x) + x - 3*x*f(x)**2
eq21 = f(x).diff(x) - exp(x + f(x))
sol15 = Eq(f(x), -1 + C1*exp(-x**2/2))
sol16 = Eq(-exp(-f(x)**2)/2, C1 - x - x**2/2)
sol17 = Eq(f(x), C1*exp(-x))
sol18 = Eq(-log(cos(2*f(x)))/2, C1 + log(cos(x)))
sol19 = Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))
sol20 = Eq(log(-1 + 3*f(x)**2)/6, C1 + x**2/2)
sol21 = Eq(-exp(-f(x)), C1 + exp(x))
assert dsolve(eq15, hint='separable') == sol15
assert dsolve(eq16, hint='separable', simplify=False) == sol16
assert dsolve(eq17, hint='separable') == sol17
assert dsolve(eq18, hint='separable', simplify=False) == sol18
assert dsolve(eq19, hint='separable') == sol19
assert dsolve(eq20, hint='separable', simplify=False) == sol20
assert dsolve(eq21, hint='separable', simplify=False) == sol21
assert checkodesol(eq15, sol15, order=1, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=1, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=1, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=1, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=1, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=1, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=1, solve_for_func=False)[0]
def test_separable_1_5_checkodesol():
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
sol12 = Eq(-log(1 - cos(f(x))**2)/2, C1 - 2*x - 2*log(1 - x))
assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0]
def test_homogeneous_order():
assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0
assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None
assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1
assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/
(pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6)
assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0
assert homogeneous_order(f(x), x, f(x)) == 1
assert homogeneous_order(f(x)**2, x, f(x)) == 2
assert homogeneous_order(x*y*z, x, y) == 2
assert homogeneous_order(x*y*z, x, y, z) == 3
assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2
assert homogeneous_order(f(x, y)**2, x, f(x), y) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None
assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None
assert homogeneous_order(f(y), f(x), x) is None
assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0
assert homogeneous_order(log(1/y) + log(x**2), x, y) is None
assert homogeneous_order(log(1/y) + log(x), x, y) == 0
assert homogeneous_order(log(x/y), x, y) == 0
assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0
a = Symbol('a')
assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0
assert homogeneous_order(f(x).diff(x), x, y) is None
assert homogeneous_order(-f(x).diff(x) + x, x, y) is None
assert homogeneous_order(O(x), x, y) is None
assert homogeneous_order(x + O(x**2), x, y) is None
assert homogeneous_order(x**pi, x) == pi
assert homogeneous_order(x**x, x) is None
raises(ValueError, lambda: homogeneous_order(x*y))
@slow
def test_1st_homogeneous_coeff_ode():
# Type: First order homogeneous, y'=f(y/x)
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))
sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))
sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x)))
sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)
sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))
# indep_div_dep actually has a simpler solution for eq2,
# but it runs too slow
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3
assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4
assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5
assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6
assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7
assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8
# FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?)
# previous code was testing with these other solutions:
sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1)
sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check2():
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
sol2 = Eq(x/tan(f(x)/(2*x)), C1)
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
@XFAIL
def test_1st_homogeneous_coeff_ode_check3():
skip('This is a known issue.')
# checker cannot determine that the following expression is zero:
# (False,
# x*(log(exp(-LambertW(C1*x))) +
# LambertW(C1*x))*exp(-LambertW(C1*x) + 1))
# This is blocked by issue 5080.
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x)))
assert checkodesol(eq3, sol3a, solve_for_func=True)[0]
# Checker can't verify this form either
# (False,
# C1*(log(C1*LambertW(C2*x)/x) + LambertW(C2*x) - 1)*LambertW(C2*x))
# It is because a = W(a)*exp(W(a)), so log(a) == log(W(a)) + W(a) and C2 =
# -E/C1 (which can be verified by solving with simplify=False).
sol3b = Eq(f(x), C1*LambertW(C2*x))
assert checkodesol(eq3, sol3b, solve_for_func=True)[0]
def test_1st_homogeneous_coeff_ode_check7():
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
sol7 = Eq(log(C1*f(x)) + 2*sqrt(1 - x/f(x)), 0)
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode2():
eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x)
eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x)
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))]
sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1))
sol3 = Eq(f(x), log((1/(C1 - log(x)))**x))
# specific hints are applied for speed reasons
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3
# FIXME: sol3 doesn't work with checkodesol (because of **x?)
# previous code was testing with this other solution:
sol3b = Eq(f(x), log(log(C1/x)**(-x)))
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check9():
_u2 = Dummy('u2')
__a = Dummy('a')
eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a,
x/f(x))) + log(C1*f(x)), 0)
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode3():
# The standard integration engine cannot handle one of the integrals
# involved (see issue 4551). meijerg code comes up with an answer, but in
# unconventional form.
# checkodesol fails for this equation, so its test is in
# test_1st_homogeneous_coeff_ode_check9 above. It has to compare string
# expressions because u2 is a dummy variable.
eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol = Eq(log(f(x)), C1 + Piecewise(
(acosh(f(x)/x), abs(f(x)**2)/x**2 > 1),
(-I*asin(f(x)/x), True)))
assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol
def test_1st_homogeneous_coeff_corner_case():
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
@slow
def test_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
eq1 = f(x).diff(x, 2) + 2*f(x).diff(x)
eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x)
eq3 = f(x).diff(x, 2) - f(x)
eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x)
eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0)
eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x)
eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x)
eq10 = f(x).diff(x, 4) - a**2*f(x)
eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x)
eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x)
eq13 = f(x).diff(x, 4)
eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x)
eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x)
eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x)
eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x)
eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x)
eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x)
eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x)
eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x)
eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x)
eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x)
eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x)
eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x)
eq28 = f(x).diff(x, 3) + 8*f(x)
eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x)
eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x)
sol1 = Eq(f(x), C1 + C2*exp(-2*x))
sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x))
sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))
sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))
sol7 = Eq(f(x),
C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2))))
sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sol9 = Eq(f(x),
C1*exp(x) + C2*exp(-x) + C3*exp(x*(-2 + sqrt(2))) +
C4*exp(x*(-2 - sqrt(2))))
sol10 = Eq(f(x),
C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) +
C4*exp(-x*sqrt(a)))
sol11 = Eq(f(x),
C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))
sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))
sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)
sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x))
sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))
sol16 = Eq(f(x), (C1 + C2*x + C3*x**2)*exp(2*x))
sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x))
sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))
sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(x*Rational(5, 6)))
sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))
sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))
sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))
sol25 = Eq(f(x),
C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) +
C4*cos(x*sqrt(2)))
sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))
sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))
sol28 = Eq(f(x),
(C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))
sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x))
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x)))
sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
sol28s = constant_renumber(sol28)
sol29s = constant_renumber(sol29)
sol30s = constant_renumber(sol30)
assert dsolve(eq1) in (sol1, sol1s)
assert dsolve(eq2) in (sol2, sol2s)
assert dsolve(eq3) in (sol3, sol3s)
assert dsolve(eq4) in (sol4, sol4s)
assert dsolve(eq5) in (sol5, sol5s)
assert dsolve(eq6) in (sol6, sol6s)
assert dsolve(eq7) in (sol7, sol7s)
assert dsolve(eq8) in (sol8, sol8s)
assert dsolve(eq9) in (sol9, sol9s)
assert dsolve(eq10) in (sol10, sol10s)
assert dsolve(eq11) in (sol11, sol11s)
assert dsolve(eq12) in (sol12, sol12s)
assert dsolve(eq13) in (sol13, sol13s)
assert dsolve(eq14) in (sol14, sol14s)
assert dsolve(eq15) in (sol15, sol15s)
assert dsolve(eq16) in (sol16, sol16s)
assert dsolve(eq17) in (sol17, sol17s)
assert dsolve(eq18) in (sol18, sol18s)
assert dsolve(eq19) in (sol19, sol19s)
assert dsolve(eq20) in (sol20, sol20s)
assert dsolve(eq21) in (sol21, sol21s)
assert dsolve(eq22) in (sol22, sol22s)
assert dsolve(eq23) in (sol23, sol23s)
assert dsolve(eq24) in (sol24, sol24s)
assert dsolve(eq25) in (sol25, sol25s)
assert dsolve(eq26) in (sol26, sol26s)
assert dsolve(eq27) in (sol27, sol27s)
assert dsolve(eq28) in (sol28, sol28s)
assert dsolve(eq29) in (sol29, sol29s)
assert dsolve(eq30) in (sol30, sol30s)
assert dsolve(eq31) in (sol31,)
assert dsolve(eq32) in (sol32,)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0]
assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0]
assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0]
assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0]
assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0]
# Issue #15237
eqn = Derivative(x*f(x), x, x, x)
hint = 'nth_linear_constant_coeff_homogeneous'
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True))
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False))
def test_nth_linear_constant_coeff_homogeneous_rootof():
# One real root, two complex conjugate pairs
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(r1*x)
+ exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x))
+ exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Three real roots, one complex conjugate pair
eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)]
sol = Eq(f(x),
C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x)
+ exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five distinct real roots
eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)]
sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x))
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Rational root and unsolvable quintic
eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x)
r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(5*x)
+ C6*exp(x*r2)
+ exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x))
+ exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five double roots (this is (x**5 - x + 1)**2)
eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)]
sol = Eq(f(x),
(C1 + C2 *x)*exp(r1*x)
+ exp(re(r2)*x) * ((C3 + C4*x)*sin(im(r2)*x) + (C5 + C6 *x)*cos(im(r2)*x))
+ exp(re(r4)*x) * ((C7 + C8*x)*sin(im(r4)*x) + (C9 + C10*x)*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
def test_nth_linear_constant_coeff_homogeneous_irrational():
our_hint='nth_linear_constant_coeff_homogeneous'
eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
E = exp(1)
eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
@XFAIL
@slow
def test_nth_linear_constant_coeff_homogeneous_rootof_sol():
if ON_TRAVIS:
skip("Too slow for travis.")
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert checkodesol(eq, sol, order=5, solve_for_func=False)[0]
@XFAIL
def test_noncircularized_real_imaginary_parts():
# If this passes, lines numbered 3878-3882 (at the time of this commit)
# of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous
# should be removed.
y = sqrt(1+x)
i, r = im(y), re(y)
assert not (i.has(atan2) and r.has(atan2))
def test_collect_respecting_exponentials():
# If this test passes, lines 1306-1311 (at the time of this commit)
# of sympy/solvers/ode.py should be removed.
sol = 1 + exp(x/2)
assert sol == collect( sol, exp(x/3))
def test_undetermined_coefficients_match():
assert _undetermined_coefficients_match(g(x), x) == {'test': False}
assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \
{'test': True, 'trialset':
set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])}
assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \
{'test': False}
s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)])
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
exp(2*x)*sin(x)*(x**2 + x + 1), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x),
cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x),
x*exp(2*x)*sin(x)])}
assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False}
assert _undetermined_coefficients_match(log(x), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])}
assert _undetermined_coefficients_match(x**y, x) == {'test': False}
assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \
{'test': True, 'trialset': set([exp(1 + 3*x)])}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x),
x**2*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \
{'test': False}
assert _undetermined_coefficients_match(
x**2*sin(x)*exp(x) + x*sin(x) + x, x
) == {
'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S.One,
exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x),
x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])}
assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == {
'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]),
'test': True,
}
assert _undetermined_coefficients_match(2**x*x, x) == \
{'test': True, 'trialset': set([2**x, x*2**x])}
assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \
{'test': True, 'trialset': set([2**x*exp(2*x)])}
assert _undetermined_coefficients_match(exp(-x)/x, x) == \
{'test': False}
# Below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
assert _undetermined_coefficients_match(S(4), x) == \
{'test': True, 'trialset': set([S.One])}
assert _undetermined_coefficients_match(12*exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
assert _undetermined_coefficients_match(exp(I*x), x) == \
{'test': True, 'trialset': set([exp(I*x)])}
assert _undetermined_coefficients_match(sin(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(cos(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \
{'test': True, 'trialset': set([S.One, cos(x), sin(x), exp(x)])}
assert _undetermined_coefficients_match(x**2, x) == \
{'test': True, 'trialset': set([S.One, x, x**2])}
assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \
{'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])}
assert _undetermined_coefficients_match(x - sin(x), x) == \
{'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])}
assert _undetermined_coefficients_match(x**2 + 2*x, x) == \
{'test': True, 'trialset': set([S.One, x, x**2])}
assert _undetermined_coefficients_match(4*x*sin(x), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(x*sin(2*x), x) == \
{'test': True, 'trialset':
set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])}
assert _undetermined_coefficients_match(x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \
{'test': True, 'trialset': set([S.One, x, x**2, exp(-2*x)])}
assert _undetermined_coefficients_match(x*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(x + exp(2*x), x) == \
{'test': True, 'trialset': set([S.One, x, exp(2*x)])}
assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])}
assert _undetermined_coefficients_match(exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
# converted from sin(x)**2
assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \
{'test': True, 'trialset': set([S.One, cos(2*x), sin(2*x)])}
# converted from exp(2*x)*sin(x)**2
assert _undetermined_coefficients_match(
exp(2*x)*(S.Half + cos(2*x)/2), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x),
exp(2*x)])}
assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \
{'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])}
# converted from sin(2*x)*sin(x)
assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \
{'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])}
assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False}
@slow
def test_nth_linear_constant_coeff_undetermined_coefficients():
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
# 3-27 below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
eq3 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x)
eq6 = f2 + 3*f(x).diff(x) + 2*f(x) - sin(x)
eq7 = f2 + 3*f(x).diff(x) + 2*f(x) - cos(x)
eq8 = f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x))
eq9 = f2 + f(x).diff(x) + f(x) - x**2
eq10 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq11 = f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x)
eq12 = f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x)
eq13 = f2 + f(x).diff(x) - x**2 - 2*x
eq14 = f2 + f(x).diff(x) - x - sin(2*x)
eq15 = f2 + f(x) - 4*x*sin(x)
eq16 = f2 + 4*f(x) - x*sin(2*x)
eq17 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq18 = f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \
x**2*exp(-x)
eq19 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2
eq20 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq21 = f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x)
eq22 = f2 + f(x) - sin(x) - exp(-x)
eq23 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
# sin(x)**2
eq24 = f2 + f(x) - S.Half - cos(2*x)/2
# exp(2*x)*sin(x)**2
eq25 = f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2)
eq26 = (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x -
sin(x) - cos(x))
# sin(2*x)*sin(x), skip 3127 for now, match bug
eq27 = f2 + f(x) - cos(x)/2 + cos(3*x)/2
eq28 = f(x).diff(x) - 1
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol4 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(I*x)/10 - 3*I*exp(I*x)/10)
sol6 = Eq(f(x), -3*cos(x)/10 + sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol7 = Eq(f(x), cos(x)/10 + 3*sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol8 = Eq(f(x),
4 - 3*cos(x)/5 + sin(x)/5 + exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol9 = Eq(f(x),
-2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))
sol10 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol11 = Eq(f(x), C1 + C2*exp(3*x) + (-3*sin(x) - cos(x))*exp(2*x)/5)
sol12 = Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))
sol13 = Eq(f(x), C1 + x**3/3 + C2*exp(-x))
sol14 = Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))
sol15 = Eq(f(x), (C1 + x)*sin(x) + (C2 - x**2)*cos(x))
sol16 = Eq(f(x), (C1 + x/16)*sin(2*x) + (C2 - x**2/8)*cos(2*x))
sol17 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol18 = Eq(f(x), (C1 + C2*x + C3*x**2 - x**5/60 + x**3/3)*exp(-x))
sol19 = Eq(f(x), Rational(7, 4) - x*Rational(3, 2) + x**2/2 + C1*exp(-x) + (C2 - x)*exp(-2*x))
sol20 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol21 = Eq(f(x), Rational(-1, 36) - x/6 + C1*exp(-3*x) + (C2 + x/5)*exp(2*x))
sol22 = Eq(f(x), C1*sin(x) + (C2 - x/2)*cos(x) + exp(-x)/2)
sol23 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol24 = Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x))
sol25 = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) +
(-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
sol27 = Eq(f(x), cos(3*x)/16 + C1*cos(x) + (C2 + x/4)*sin(x))
sol28 = Eq(f(x), C1 + x)
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint) in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert dsolve(eq13, hint=hint) in (sol13, sol13s)
assert dsolve(eq14, hint=hint) in (sol14, sol14s)
assert dsolve(eq15, hint=hint) in (sol15, sol15s)
assert dsolve(eq16, hint=hint) in (sol16, sol16s)
assert dsolve(eq17, hint=hint) in (sol17, sol17s)
assert dsolve(eq18, hint=hint) in (sol18, sol18s)
assert dsolve(eq19, hint=hint) in (sol19, sol19s)
assert dsolve(eq20, hint=hint) in (sol20, sol20s)
assert dsolve(eq21, hint=hint) in (sol21, sol21s)
assert dsolve(eq22, hint=hint) in (sol22, sol22s)
assert dsolve(eq23, hint=hint) in (sol23, sol23s)
assert dsolve(eq24, hint=hint) in (sol24, sol24s)
assert dsolve(eq25, hint=hint) in (sol25, sol25s)
assert dsolve(eq26, hint=hint) in (sol26, sol26s)
assert dsolve(eq27, hint=hint) in (sol27, sol27s)
assert dsolve(eq28, hint=hint) == sol28
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=2, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=2, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=2, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=3, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=2, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=2, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=2, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=2, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=3, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=3, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=5, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=2, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=1, solve_for_func=False)[0]
def test_issue_5787():
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S.Half - I)
our_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert our_hint in classify_ode(eq)
@XFAIL
def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp():
# Equivalent to eq26 in
# test_nth_linear_constant_coeff_undetermined_coefficients above.
# This fails because the algorithm for undetermined coefficients
# doesn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
assert dsolve(eq26a, hint=hint) == sol26
assert checkodesol(eq26a, sol26, order=5, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters():
hint = 'nth_linear_constant_coeff_variation_of_parameters'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
eq3 = f(x).diff(x) - 1
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x
eq11 = f2 + f(x) - 1/sin(x)*1/cos(x)
eq12 = f(x).diff(x, 4) - 1/x
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), C1 + x)
sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol7 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol9 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))
sol11 = Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2
)*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))
sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2)
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint + '_Integral').doit() in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral'
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True)
sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False)
assert sol_simp != sol_nsimp
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
def test_Liouville_ODE():
hint = 'Liouville'
# The first part here used to be test_ODE_1() from test_solvers.py
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq1a = diff(x*exp(-f(x)), x, x)
# compare to test_unexpanded_Liouville_ODE() below
eq2 = (eq1*exp(-f(x))/exp(f(x))).expand()
eq3 = diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x)
eq4 = x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x)
eq5 = Eq((x*exp(f(x))).diff(x, x), 0)
sol1 = Eq(f(x), log(x/(C1 + C2*x)))
sol1a = Eq(C1 + C2/x - exp(-f(x)), 0)
sol2 = sol1
sol3 = set(
[Eq(f(x), -sqrt(C1 + C2*log(x))),
Eq(f(x), sqrt(C1 + C2*log(x)))])
sol4 = set([Eq(f(x), sqrt(C1 + C2*exp(x))*exp(-x/2)),
Eq(f(x), -sqrt(C1 + C2*exp(x))*exp(-x/2))])
sol5 = Eq(f(x), log(C1 + C2/x))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq1a, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert set(dsolve(eq3, hint=hint)) in (sol3, sol3s)
assert set(dsolve(eq4, hint=hint)) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq1a, sol1a, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False) == {(True, 0)}
assert checkodesol(eq4, sol4, order=2, solve_for_func=False) == {(True, 0)}
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 -
diff(f(x), x)**2/2, f(x))
not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 -
x*diff(f(x), x)**2/2, f(x))
assert hint not in not_Liouville1
assert hint not in not_Liouville2
assert hint + '_Integral' not in not_Liouville1
assert hint + '_Integral' not in not_Liouville2
def test_unexpanded_Liouville_ODE():
# This is the same as eq1 from test_Liouville_ODE() above.
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq2 = eq1*exp(-f(x))/exp(f(x))
sol2 = Eq(f(x), log(x/(C1 + C2*x)))
sol2s = constant_renumber(sol2)
assert dsolve(eq2) in (sol2, sol2s)
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
def test_issue_4785():
from sympy.abc import A
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral', 'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
# issue 4864
eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x)
assert classify_ode(eq, f(x)) == ('1st_exact',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group', '1st_exact_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
def test_issue_4825():
raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x)))
assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
# See also issue 3793, test Z13.
raises(ValueError, lambda: dsolve(f(x).diff(x), f(y)))
assert classify_ode(f(x).diff(x), f(y), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
def test_constant_renumber_order_issue_5308():
from sympy.utilities.iterables import variations
assert constant_renumber(C1*x + C2*y) == \
constant_renumber(C1*y + C2*x) == \
C1*x + C2*y
e = C1*(C2 + x)*(C3 + y)
for a, b, c in variations([C1, C2, C3], 3):
assert constant_renumber(a*(b + x)*(c + y)) == e
def test_issue_5770():
k = Symbol("k", real=True)
t = Symbol('t')
w = Function('w')
sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t))
assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6
assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \
C1*cos(x)*exp(x)
assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \
C1*cos(x) + C3*sin(x)
assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x)
assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x
assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x
def test_issue_5112_5430():
assert homogeneous_order(-log(x) + acosh(x), x) is None
assert homogeneous_order(y - log(x), x, y) is None
def test_nth_order_linear_euler_eq_homogeneous():
x, t, a, b, c = symbols('x t a b c')
y = Function('y')
our_hint = "nth_linear_euler_eq_homogeneous"
eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t)
assert our_hint in classify_ode(eq)
eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2)
assert our_hint in classify_ode(eq)
eq = Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1 + C2*x**Rational(5, 2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1*sqrt(x) + C2*x**3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0)
sol = (C1 + C2*log(x))/x**2
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = dsolve(eq, f(x), hint=our_hint)
sol = C1/x**2 + C2*x + C3*x**3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = x**5*(C1 + C2*log(x) + C3*log(x)**2)
sols = [sol, constant_renumber(sol)]
sols += [sols[-1].expand()]
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in sols
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = t**2*diff(y(t), t, 2) + t*diff(y(t), t) - 9*y(t)
sol = C1*t**3 + C2*t**-3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, y(t), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x)
sol = C1*sin(log(x)) + C2*cos(log(x))
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients():
x, t = symbols('x t')
a, b, c, d = symbols('a b c d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x
assert our_hint in classify_ode(eq, f(x))
eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1)
sol = C1 + C2*log(x) + log(x)**2/2
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3)
sol = x*(C1 + C2*x + Rational(1, 2)*x**2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x)
sol = C1/x + C2*x**3 - Rational(1, 16)*log(x)/x - Rational(1, 8)*log(x)**2/x
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x))
sol = C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x))
sol = C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters():
x, t = symbols('x, t')
a, b, c, d = symbols('a, b, c, d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x))
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4)
sol = C1*x + C2*x**2 + x**4/6
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x))
sol = C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x))
sol = C1*x + C2*x**2 + x**2*exp(x) - 2*x*exp(x)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
sol = C1*x + C2*x**2 + log(x)/2 + Rational(3, 4)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_issue_5095():
f = Function('f')
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf'))
def test_almost_linear():
from sympy import Ei
A = Symbol('A', positive=True)
our_hint = 'almost_linear'
f = Function('f')
d = f(x).diff(x)
eq = x**2*f(x)**2*d + f(x)**3 + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol[0].rhs == (C1*exp(3/x) - 1)**Rational(1, 3)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*f(x)*d + 2*x*f(x)**2 + 1
sol = [
Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))),
Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x)))
]
assert set(dsolve(eq, f(x), hint = 'almost_linear')) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*d + x*f(x) + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 - Ei(x))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
assert our_hint in classify_ode(eq, f(x))
eq = x*exp(f(x))*d + exp(f(x)) + 3*x
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == log(C1/x - x*Rational(3, 2))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 + Piecewise(
(x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_exact_enhancement():
f = Function('f')(x)
df = Derivative(f, x)
eq = f/x**2 + ((f*x - 1)/x)*df
sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x*f - 1) + df*(x**2 - x*f)
sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))),
Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x + 2)*sin(f) + df*x*cos(f)
sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi),
Eq(f, asin(C1*exp(-x)/x**2))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
@slow
def test_separable_reduced():
f = Function('f')
x = Symbol('x')
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
eq = x* df + f(x)* (1 / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6
assert sol.rhs == C1 + log(x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced')
# FIXME: This one hangs
#assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4
assert len(sol) == 4
eq = x*df + f(x)*(x**2*f(x))
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_homogeneous_function():
f = Function('f')
eq1 = tan(x + f(x))
eq2 = sin((3*x)/(4*f(x)))
eq3 = cos(x*f(x)*Rational(3, 4))
eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x))
eq5 = exp((2*x**2)/(3*f(x)**2))
eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2)))
eq7 = sin((3*x)/(5*f(x) + x**2))
assert homogeneous_order(eq1, x, f(x)) == None
assert homogeneous_order(eq2, x, f(x)) == 0
assert homogeneous_order(eq3, x, f(x)) == None
assert homogeneous_order(eq4, x, f(x)) == 0
assert homogeneous_order(eq5, x, f(x)) == 0
assert homogeneous_order(eq6, x, f(x)) == 0
assert homogeneous_order(eq7, x, f(x)) == None
def test_linear_coeff_match():
n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11)
rat = n/d
eq1 = sin(rat) + cos(rat.expand())
eq2 = rat
eq3 = log(sin(rat))
ans = (4, Rational(-13, 3))
assert _linear_coeff_match(eq1, f(x)) == ans
assert _linear_coeff_match(eq2, f(x)) == ans
assert _linear_coeff_match(eq3, f(x)) == ans
# no c
eq4 = (3*x)/f(x)
# not x and f(x)
eq5 = (3*x + 2)/x
# denom will be zero
eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5)
# not rational coefficient
eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5)
assert _linear_coeff_match(eq4, f(x)) is None
assert _linear_coeff_match(eq5, f(x)) is None
assert _linear_coeff_match(eq6, f(x)) is None
assert _linear_coeff_match(eq7, f(x)) is None
def test_linear_coefficients():
f = Function('f')
sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2))
eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3)
assert dsolve(eq, hint='linear_coefficients') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_constantsimp_take_problem():
c = exp(C1) + 2
assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2
def test_issue_6879():
f = Function('f')
eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x))
sol = (C1 + C2*x)*exp(x) + cos(x)/2
assert dsolve(eq).rhs == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_issue_6989():
f = Function('f')
k = Symbol('k')
eq = f(x).diff(x) - x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = -f(x).diff(x) + x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_heuristic1():
y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0")
f = Function('f')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
eq = Eq(df, x**2*f(x))
eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2)
eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
i = infinitesimals(eq, hint='abaco1_simple')
assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
{eta(x, f(x)): f(x), xi(x, f(x)): 0},
{eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
i1 = infinitesimals(eq1, hint='abaco1_simple')
assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
i2 = infinitesimals(eq2, hint='abaco1_simple')
assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
i3 = infinitesimals(eq3, hint='abaco1_simple')
assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
{eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
i4 = infinitesimals(eq4, hint='abaco1_simple')
assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
{eta(x, f(x)): 0,
xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
i5 = infinitesimals(eq5, hint='abaco1_simple')
assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
ilist = [i, i1, i2, i3, i4, i5]
for eq, i in (zip(eqlist, ilist)):
check = checkinfsol(eq, i)
assert check[0]
def test_issue_6247():
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = Eq(f(x), 2*C1/(C1*x**2 - 1))
assert dsolve(eq, hint = 'separable_reduced') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x, x) + 4*f(x)
sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=1)[0]
def test_heuristic2():
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
# This ODE can be solved by the Lie Group method, when there are
# better assumptions
eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
i = infinitesimals(eq, hint='abaco1_product')
assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
@slow
def test_heuristic3():
xi = Function('xi')
eta = Function('eta')
a, b = symbols("a b")
df = f(x).diff(x)
eq = x**2*df + x*f(x) + f(x)**2 + x**2
i = infinitesimals(eq, hint='bivariate')
assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
assert checkinfsol(eq, i)[0]
eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
i = infinitesimals(eq, hint='bivariate')
assert checkinfsol(eq, i)[0]
def test_heuristic_4():
y, a = symbols("y a")
eq = x*(f(x).diff(x)) + 1 - f(x)**2
i = infinitesimals(eq, hint='chi')
assert checkinfsol(eq, i)[0]
def test_heuristic_function_sum():
xi = Function('xi')
eta = Function('eta')
eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
(1 - 3*f(x))*(x/f(x)**2))
i = infinitesimals(eq, hint='function_sum')
assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_similar():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
eq = f(x).diff(x) - F(a*x + b*f(x))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_unique_unknown():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
x = Symbol("x", positive=True)
eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
assert checkinfsol(eq, i)[0]
eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert checkinfsol(eq, i)[0]
def test_heuristic_linear():
a, b, m, n = symbols("a b m n")
eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
i = infinitesimals(eq, hint='linear')
assert checkinfsol(eq, i)[0]
@XFAIL
def test_kamke():
a, b, alpha, c = symbols("a b alpha c")
eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
i = infinitesimals(eq, hint='sum_function')
assert checkinfsol(eq, i)[0]
def test_series():
C1 = Symbol("C1")
eq = f(x).diff(x) - f(x)
sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 +
C1*x**5/120 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - x*f(x)
sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - sin(x*f(x))
sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3))
assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol
# FIXME: The solution here should be O((x-2)**3) so is incorrect
#assert checkodesol(eq, sol, order=1)[0]
@XFAIL
@SKIP
def test_lie_group_issue17322():
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq, f(x))
assert checkodesol(eq, sol) == (True, 0)
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq)
assert checkodesol(eq, sol) == (True, 0)
eq=Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0)
sol = dsolve(eq)
assert checkodesol(eq, sol) == (True, 0)
eq=f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x)
sol = dsolve(eq)
assert checkodesol(eq, sol) == (True, 0)
@slow
def test_lie_group():
C1 = Symbol("C1")
x = Symbol("x") # assuming x is real generates an error!
a, b, c = symbols("a b c")
eq = f(x).diff(x)**2
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x), x**2*f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), C1*exp(x**3)**Rational(1, 3))
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + a*f(x) - c*exp(b*x)
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
sol = dsolve(eq, f(x), hint='lie_group')
actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), log(C1/(2*x + 1) + 2))
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x))
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), 2/(C1 + x**2))
assert checkodesol(eq, sol) == (True, 0)
eq=diff(f(x),x) + 2*x*f(x) - x*exp(-x**2)
sol = Eq(f(x), exp(-x**2)*(C1 + x**2/2))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - exp(2*x)
sol = Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2
sol = Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) + f(x) - x*sin(x)
sol = Eq(f(x), (C1 - x*cos(x) + sin(x))/x)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) - f(x) - x/log(x)
sol = Eq(f(x), x*(C1 + log(log(x))))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
eq = f(x).diff(x) * (f(x).diff(x) - f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1)]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
@XFAIL
def test_lie_group_issue15219():
eqn = exp(f(x).diff(x)-f(x))
assert 'lie_group' not in classify_ode(eqn, f(x))
def test_user_infinitesimals():
x = Symbol("x") # assuming x is real generates an error
eq = x*(f(x).diff(x)) + 1 - f(x)**2
sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0}
assert dsolve(eq, hint='lie_group', **infinitesimals) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_issue_7081():
eq = x*(f(x).diff(x)) + 1 - f(x)**2
s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))
assert dsolve(eq) == s
assert checkodesol(eq, s) == (True, 0)
@slow
def test_2nd_power_series_ordinary():
C1, C2 = symbols("C1 C2")
eq = f(x).diff(x, 2) - x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary') == sol
assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1)
+ C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2))
+ O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol
# FIXME: Solution should be O((x+2)**6)
# assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*x + C1 + O(x**2))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1)
+ C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_Airy_equation():
eq = f(x).diff(x, 2) - x*f(x)
sol = Eq(f(x), C1*airyai(x) + C2*airybi(x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
eq = f(x).diff(x, 2) + 2*x*f(x)
sol = Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
def test_2nd_power_series_regular():
C1, C2 = symbols("C1 C2")
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 +
1)*f(x)
sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + (
x**2 - 2)*f(x)
sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x +
C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x)
sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) +
C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
def test_2nd_linear_bessel_equation():
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x)
sol = Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x)
sol = Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x)
sol = Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x)
sol = Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x)
sol = Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_7093():
x = Symbol("x") # assuming x is real leads to an error
sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5),
Eq(f(x), C1 + 2*x*sqrt(x**3)/5)]
eq = Derivative(f(x), x)**2 - x**3
assert set(dsolve(eq)) == set(sol)
assert checkodesol(eq, sol) == [(True, 0)] * 2
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_issue_15056():
t = Symbol('t')
C3 = Symbol('C3')
assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3
def test_issue_10379():
t,y = symbols('t,y')
eq = f(t).diff(t)-(1-51.05*y*f(t))
sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y)
dsolve_sol = dsolve(eq, rational=False)
assert str(dsolve_sol) == str(sol)
assert checkodesol(eq, dsolve_sol)[0]
def test_issue_10867():
x = Symbol('x')
eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3)
sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)
assert dsolve(eq, g(x)) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_11290():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact')
assert sol_1.dummy_eq(Eq(Subs(
Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) +
Integral(cos(u), x), u, f(x)), C1))
assert sol_1.doit() == sol_0
assert checkodesol(eq, sol_0, order=1, solve_for_func=False)
assert checkodesol(eq, sol_1, order=1, solve_for_func=False)
def test_issue_4838():
# Issue #15999
eq = f(x).diff(x) - C1*f(x)
sol = Eq(f(x), C2*exp(C1*x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
# Issue #13691
eq = f(x).diff(x) - C1*g(x).diff(x)
sol = Eq(f(x), C2 + C1*g(x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0)
# Issue #4838
eq = f(x).diff(x) - 3*C1 - 3*x**2
sol = Eq(f(x), C2 + 3*C1*x + x**3)
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
@slow
def test_issue_14395():
eq = Derivative(f(x), x, x) + 9*f(x) - sec(x)
sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))
assert dsolve(eq, f(x)) == sol
# FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_sysode_linear_neq_order1():
from sympy.abc import t
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eq = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t),
k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t),
t), k23*Z2(t) - k30*Z3(t)))
sols_eq = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*exp(t*(-
k01 - k10)) + C4*(k10*k20 + k10*k21 - k10*k30 - k20**2 - k20*k21 - k20*k23 + k20*k30 +
k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*exp(t*(-k01 - k10)) + C4*(k01*k20 + k01*k21
- k01*k30 - k20*k21 - k21**2 - k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 -
k21 - k23))),
Eq(Z2(t), C4*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C4*exp(t*(-k20 - k21 - k23)))]
# assert dsolve(eq, simplify=False) == sols_eq
dsolved = dsolve(eq, simplify=False)
assert all(ds.args[0] == seq.args[0] for ds, seq in zip (dsolved, sols_eq))
assert all(simplify(ds.args[1] - seq.args[1]) == 0 for ds, seq in
zip (dsolved, sols_eq))
assert checksysodesol(eq, sols_eq) == (True, [0, 0, 0, 0])
@slow
def test_nth_order_reducible():
from sympy.solvers.ode.ode import _nth_order_reducible_match
eqn = Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0)
sol = Eq(f(x),
C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
assert sol == dsolve(eqn, f(x))
F = lambda eq: _nth_order_reducible_match(eq, f(x))
D = Derivative
assert F(D(y*f(x), x, y) + D(f(x), x)) is None
assert F(D(y*f(y), y, y) + D(f(y), y)) is None
assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None
assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design
assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None
assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2)
eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x))
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
eqn = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x))
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
eqn = f(x).diff(x, 2) + 2*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(-2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
sol = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
sol = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
sol = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
# These are equivalent:
sol1 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol2 = Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
assert checkodesol(eqn, sol1, order=2, solve_for_func=False) == (True, 0)
assert checkodesol(eqn, sol2, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol1, sol1s)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol2, sol2s)
# In this case the reduced ODE has two distinct solutions
eqn = f(x).diff(x, 2) - f(x).diff(x)**3
sol = [Eq(f(x), C2 - sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x))),
Eq(f(x), C2 + sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x)))]
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == [(True, 0), (True, 0)]
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
def test_nth_algebraic():
eqn = Eq(Derivative(f(x), x), Derivative(g(x), x))
sol = Eq(f(x), C1 + g(x))
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic'), dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(sol) == set(dsolve(eqn, f(x)))
eqn = (1 - sin(f(x))) * f(x).diff(x)
sol = Eq(f(x), C1)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
M, m, r, t = symbols('M m r t')
phi = Function('phi')
eqn = Eq(-M * phi(t).diff(t),
Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t))
solns = [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, phi(t), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, phi(t)))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x)
solns = [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, f(x)))
def test_nth_algebraic_issue15999():
eqn = f(x).diff(x) - C1
sol = Eq(f(x), C1*x + C2) # Correct solution
assert checkodesol(eqn, sol, order=1, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x), hint='nth_algebraic') == sol
assert dsolve(eqn, f(x)) == sol
def test_nth_algebraic_redundant_solutions():
# This one has a redundant solution that should be removed
eqn = f(x)*f(x).diff(x)
soln = Eq(f(x), C1)
assert checkodesol(eqn, soln, order=1, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x), hint='nth_algebraic')
assert soln == dsolve(eqn, f(x))
# This has two integral solutions and no algebraic solutions
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert all(c[0] for c in checkodesol(eqn, sol, order=1, solve_for_func=False))
assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(sol) == set(dsolve(eqn, f(x)))
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1 - x)]
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == set(dsolve(eqn, f(x)))
solns = [Eq(f(x), exp(x)),
Eq(f(x), C1*exp(C2*x))]
solns_final = _remove_redundant_solutions(eqn, solns, 2, x)
assert solns_final == [Eq(f(x), C1*exp(C2*x))]
# This one needs a substitution f' = g.
eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x))
#
# These tests can be combined with the above test if they get fixed
# so that dsolve actually works in all these cases.
#
# prep = True breaks this
def test_nth_algebraic_noprep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# prep = True breaks this
def test_nth_algebraic_noprep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# Needs to be a way to know how to combine derivatives in the expression
def test_factoring_ode():
from sympy import Mul
eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x)
# 2-arg Mul!
soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False))
assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x))
def test_issue_11542():
m = 96
g = 9.8
k = .2
f1 = g * m
t = Symbol('t')
v = Function('v')
v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0)
assert str(v_equation) == \
'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))'
def test_issue_15913():
eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x)
sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x)
assert checkodesol(eq, sol) == (True, 0)
sol = C1 + C2*exp(-x*y)
eq = Derivative(y*f(x), x) + f(x).diff(x, 2)
assert checkodesol(eq, sol, f(x)) == (True, 0)
def test_issue_16146():
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)]))
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)]))
def test_dsolve_remove_redundant_solutions():
eq = (f(x)-2)*f(x).diff(x)
sol = Eq(f(x), C1)
assert dsolve(eq) == sol
eq = (f(x)-sin(x))*(f(x).diff(x, 2))
sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))}
assert set(dsolve(eq)) == sol
eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3)
sol = Eq(f(x), C1 + C2*x + C3*x**2)
assert dsolve(eq) == sol
def test_factorable():
# Unable to get coverage on this without explicit testing because _desolve
# already handles Pow before we get there but that should be disabled in
# future so that factorable gets the raw ODE.
eq = f(x).diff(x)-1
assert _ode_factorable_match(eq**3, f(x), 1) == {'eqns':[eq], 'x0': 1}
eq = f(x) + f(x)*f(x).diff(x)
sols = [Eq(f(x), C1 - x), Eq(f(x), 0)]
assert set(sols) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sols) == 2*[(True, 0)]
eq = f(x)*(f(x).diff(x)+f(x)*x+2)
sols = [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2))
*exp(-x**2/2)), Eq(f(x), 0)]
assert set(sols) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sols) == 2*[(True, 0)]
eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x))
sols = [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)),
Eq(f(x), C1*exp(-x**3/3))]
assert set(sols) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sols[1]) == (True, 0)
eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x))
sols = [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))]
assert set(sols) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sols) == 2*[(True, 0)]
eq = (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4)
sols = [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)]
assert set(sols) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sols) == 4*[(True, 0)]
eq = (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x)
sol = Eq(f(x), C1)
assert sol == dsolve(eq, f(x), hint='factorable')
assert checkodesol(eq, sol) == (True, 0)
eq = (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1)
sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),
Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)]
assert set(sol) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sol) == 4*[(True, 0)]
eq = Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1
sol = [Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
assert set(sol) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
eq = f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x),
x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x),
x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x),
x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1
sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),
Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)]
assert set(sol) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sol) == 4*[(True, 0)]
eq = (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x)))
raises(NotImplementedError, lambda: dsolve(eq, hint = 'factorable'))
eq = x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x),
(x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x),
x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x),
(x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2
sol = [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3),
x) + C2*bessely(sqrt(3), x))]
assert set(sol) == set(dsolve(eq, f(x), hint='factorable'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
def test_issue_17322():
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
eq = f(x).diff(x)*(f(x).diff(x)+f(x))
sol = [Eq(f(x), C1), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
def test_2nd_2F1_hypergeometric():
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x)
sol = Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) +
C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) +
C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 -
x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x -
1), x)/4)*hyper((S(1)/2, -1), (1,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral')
assert checkodesol(eq, sol) == (True, 0)
eq = -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) +
x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2))
sol = Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) +
C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
# assert checkodesol(eq, sol) == (True, 0) #issue-https://github.com/sympy/sympy/issues/17702
def test_issue_15889():
eq = exp(f(x).diff(x))-f(x)**2
sol = Eq(Integral(1/log(y**2), (y, f(x))), C1 + x)
assert str(sol.as_dummy()) == str(dsolve(eq).as_dummy())
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x)**2 - f(x)**3
sol = Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))
assert sol == dsolve(eq)
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x)**2 - f(x)
sol = Eq(f(x), C1**2/4 - C1*x/2 + x**2/4)
assert sol == dsolve(eq)
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x)**2 - f(x)**2
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
assert sol == dsolve(eq)
assert checkodesol(eq, sol) == 2*[(True, 0)]
eq = f(x).diff(x)**2 - f(x)**3
sol = Eq(f(x), 4/(C1**2 + 2*C1*x + x**2))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
def test_issue_5096():
eq = f(x).diff(x, x) + f(x) - x*sin(x - 2)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + f(x) - x**4*sin(x-1)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) - f(x) - exp(x - 1)
sol = Eq(f(x), C1*exp(-x) + C2*exp(x) + x*exp(x - 1)/2)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2)+f(x)-(sin(x-2)+1)
sol = Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2)
sol = Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2)
sol = Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
def test_issue_15996():
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol = Eq(f(x), C1 + x**2 + (C2 - x**2/8 + x*(C3 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + I*x**2/8 + x*(C5 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2) + 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_variation_of_parameters')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x)
sol = Eq(f(x), C1 + (C2 + C3*x - x**2/8 + 5*exp(2*I*x)/16)*sin(x) + (C4 + C5*x + I*x**2/8 + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_variation_of_parameters')
assert checkodesol(eq, sol) == (True, 0)
def test_issue_18408():
eq = f(x).diff(x, 3) - f(x).diff(x) - sinh(x)
sol = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) - 49*f(x) - sinh(3*x)
sol = Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x)
sol = Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))
assert sol == dsolve(eq, hint='nth_linear_constant_coeff_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
|
8c80aaeb4632a60129460e93316aa590ebb4cfe51df379f6fe1f5cf203a55b92 | from sympy import (cos, Derivative, diff,
Eq, erf, erfi, exp, Function, I, Integral, log, pi,
Rational, sin, sqrt, Symbol, symbols, Ei)
from sympy.solvers.ode.subscheck import checkodesol, checksysodesol
from sympy.functions import besselj, bessely
from sympy.testing.pytest import raises, slow
C0, C1, C2, C3, C4 = symbols('C0:5')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
@slow
def test_checkodesol():
# For the most part, checkodesol is well tested in the tests below.
# These tests only handle cases not checked below.
raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x)))
raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y),
x), f(x, y)))
assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \
(False, -f(x).diff(x) + f(x, y).diff(x) - 1)
assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True
assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1)
sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0)
assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \
(False, 60*x**4*((log(x) + 1)**2 + log(x))*(
log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \
(True, 0)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0),
solve_for_func=False) == (True, 0)
assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \
[(True, 0), (True, 0), (False, C2)]
assert checkodesol(f(x).diff(x, 2), set([Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)])) == \
set([(True, 0), (True, 0), (False, C2)])
assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \
[(True, 0), (True, 0)]
assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0)
# Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that
# checkodesol tries back substituting f(x) when it can.
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol3 = Eq(f(x), log(log(C1/x)**(-x)))
assert not checkodesol(eq3, sol3)[1].has(f(x))
# This case was failing intermittently depending on hash-seed:
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (2*x**2 +25)*f(x)
sol = Eq(f(x), C1*besselj(5*I, sqrt(2)*x) + C2*bessely(5*I, sqrt(2)*x))
assert checkodesol(eq, sol) == (True, 0)
def test_checksysodesol():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \
Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(sqrt(1713)/2 + \
Rational(43, 2)))), Eq(y(t), C1*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + \
Rational(43, 2))) + C2*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \
Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \
C2/2)*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \
Rational(22, 3)), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \
sqrt(6))*exp(t*(sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*exp((Integral(2, t).doit())) + C2*exp(-(Integral(2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \
C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \
C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \
C2*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \
Eq(y(t), (C1*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \
C2*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
root0 = -sqrt(-sqrt(47) + 7)
root1 = sqrt(-sqrt(47) + 7)
root2 = -sqrt(sqrt(47) + 7)
root3 = sqrt(sqrt(47) + 7)
sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \
Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \
C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
root0 = -sqrt(-sqrt(109)/2 + Rational(15, 2))
root1 = sqrt(-sqrt(109)/2 + Rational(15, 2))
root2 = -sqrt(sqrt(109)/2 + Rational(15, 2))
root3 = sqrt(sqrt(109)/2 + Rational(15, 2))
sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - Rational(181, 29)), \
Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \
C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + Rational(183, 29))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + \
C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) \
+ C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
I1 = sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erfi(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t
I2 = -sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erf(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t
sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \
Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert checksysodesol(eq, sol) == (True, [0, 0])
|
f16ae8c1e2bc802f432ab32d31f19e84814fc57d5609331e05c02fd97e10efe0 | from sympy import sqrt, pi, E, exp, Rational
from sympy.core import S, symbols, I
from sympy.discrete.convolutions import (
convolution, convolution_fft, convolution_ntt, convolution_fwht,
convolution_subset, covering_product, intersecting_product)
from sympy.testing.pytest import raises
from sympy.abc import x, y
def test_convolution():
# fft
a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)]
b = [9, 5, 5, 4, 3, 2]
c = [3, 5, 3, 7, 8]
d = [1422, 6572, 3213, 5552]
assert convolution(a, b) == convolution_fft(a, b)
assert convolution(a, b, dps=9) == convolution_fft(a, b, dps=9)
assert convolution(a, d, dps=7) == convolution_fft(d, a, dps=7)
assert convolution(a, d[1:], dps=3) == convolution_fft(d[1:], a, dps=3)
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 19*2**10 + 1
# ntt
assert convolution(d, b, prime=q) == convolution_ntt(b, d, prime=q)
assert convolution(c, b, prime=p) == convolution_ntt(b, c, prime=p)
assert convolution(d, c, prime=p) == convolution_ntt(c, d, prime=p)
raises(TypeError, lambda: convolution(b, d, dps=5, prime=q))
raises(TypeError, lambda: convolution(b, d, dps=6, prime=q))
# fwht
assert convolution(a, b, dyadic=True) == convolution_fwht(a, b)
assert convolution(a, b, dyadic=False) == convolution(a, b)
raises(TypeError, lambda: convolution(b, d, dps=2, dyadic=True))
raises(TypeError, lambda: convolution(b, d, prime=p, dyadic=True))
raises(TypeError, lambda: convolution(a, b, dps=2, dyadic=True))
raises(TypeError, lambda: convolution(b, c, prime=p, dyadic=True))
# subset
assert convolution(a, b, subset=True) == convolution_subset(a, b) == \
convolution(a, b, subset=True, dyadic=False) == \
convolution(a, b, subset=True)
assert convolution(a, b, subset=False) == convolution(a, b)
raises(TypeError, lambda: convolution(a, b, subset=True, dyadic=True))
raises(TypeError, lambda: convolution(c, d, subset=True, dps=6))
raises(TypeError, lambda: convolution(a, c, subset=True, prime=q))
def test_cyclic_convolution():
# fft
a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)]
b = [9, 5, 5, 4, 3, 2]
assert convolution([1, 2, 3], [4, 5, 6], cycle=0) == \
convolution([1, 2, 3], [4, 5, 6], cycle=5) == \
convolution([1, 2, 3], [4, 5, 6])
assert convolution([1, 2, 3], [4, 5, 6], cycle=3) == [31, 31, 28]
a = [Rational(1, 3), Rational(7, 3), Rational(5, 9), Rational(2, 7), Rational(5, 8)]
b = [Rational(3, 5), Rational(4, 7), Rational(7, 8), Rational(8, 9)]
assert convolution(a, b, cycle=0) == \
convolution(a, b, cycle=len(a) + len(b) - 1)
assert convolution(a, b, cycle=4) == [Rational(87277, 26460), Rational(30521, 11340),
Rational(11125, 4032), Rational(3653, 1080)]
assert convolution(a, b, cycle=6) == [Rational(20177, 20160), Rational(676, 315), Rational(47, 24),
Rational(3053, 1080), Rational(16397, 5292), Rational(2497, 2268)]
assert convolution(a, b, cycle=9) == \
convolution(a, b, cycle=0) + [S.Zero]
# ntt
a = [2313, 5323532, S(3232), 42142, 42242421]
b = [S(33456), 56757, 45754, 432423]
assert convolution(a, b, prime=19*2**10 + 1, cycle=0) == \
convolution(a, b, prime=19*2**10 + 1, cycle=8) == \
convolution(a, b, prime=19*2**10 + 1)
assert convolution(a, b, prime=19*2**10 + 1, cycle=5) == [96, 17146, 2664,
15534, 3517]
assert convolution(a, b, prime=19*2**10 + 1, cycle=7) == [4643, 3458, 1260,
15534, 3517, 16314, 13688]
assert convolution(a, b, prime=19*2**10 + 1, cycle=9) == \
convolution(a, b, prime=19*2**10 + 1) + [0]
# fwht
u, v, w, x, y = symbols('u v w x y')
p, q, r, s, t = symbols('p q r s t')
c = [u, v, w, x, y]
d = [p, q, r, s, t]
assert convolution(a, b, dyadic=True, cycle=3) == \
[2499522285783, 19861417974796, 4702176579021]
assert convolution(a, b, dyadic=True, cycle=5) == [2718149225143,
2114320852171, 20571217906407, 246166418903, 1413262436976]
assert convolution(c, d, dyadic=True, cycle=4) == \
[p*u + p*y + q*v + r*w + s*x + t*u + t*y,
p*v + q*u + q*y + r*x + s*w + t*v,
p*w + q*x + r*u + r*y + s*v + t*w,
p*x + q*w + r*v + s*u + s*y + t*x]
assert convolution(c, d, dyadic=True, cycle=6) == \
[p*u + q*v + r*w + r*y + s*x + t*w + t*y,
p*v + q*u + r*x + s*w + s*y + t*x,
p*w + q*x + r*u + s*v,
p*x + q*w + r*v + s*u,
p*y + t*u,
q*y + t*v]
# subset
assert convolution(a, b, subset=True, cycle=7) == [18266671799811,
178235365533, 213958794, 246166418903, 1413262436976,
2397553088697, 1932759730434]
assert convolution(a[1:], b, subset=True, cycle=4) == \
[178104086592, 302255835516, 244982785880, 3717819845434]
assert convolution(a, b[:-1], subset=True, cycle=6) == [1932837114162,
178235365533, 213958794, 245166224504, 1413262436976, 2397553088697]
assert convolution(c, d, subset=True, cycle=3) == \
[p*u + p*x + q*w + r*v + r*y + s*u + t*w,
p*v + p*y + q*u + s*y + t*u + t*x,
p*w + q*y + r*u + t*v]
assert convolution(c, d, subset=True, cycle=5) == \
[p*u + q*y + t*v,
p*v + q*u + r*y + t*w,
p*w + r*u + s*y + t*x,
p*x + q*w + r*v + s*u,
p*y + t*u]
raises(ValueError, lambda: convolution([1, 2, 3], [4, 5, 6], cycle=-1))
def test_convolution_fft():
assert all(convolution_fft([], x, dps=y) == [] for x in ([], [1]) for y in (None, 3))
assert convolution_fft([1, 2, 3], [4, 5, 6]) == [4, 13, 28, 27, 18]
assert convolution_fft([1], [5, 6, 7]) == [5, 6, 7]
assert convolution_fft([1, 3], [5, 6, 7]) == [5, 21, 25, 21]
assert convolution_fft([1 + 2*I], [2 + 3*I]) == [-4 + 7*I]
assert convolution_fft([1 + 2*I, 3 + 4*I, 5 + Rational(3, 5)*I], [Rational(2, 5) + Rational(4, 7)*I]) == \
[Rational(-26, 35) + I*Rational(48, 35), Rational(-38, 35) + I*Rational(116, 35), Rational(58, 35) + I*Rational(542, 175)]
assert convolution_fft([Rational(3, 4), Rational(5, 6)], [Rational(7, 8), Rational(1, 3), Rational(2, 5)]) == \
[Rational(21, 32), Rational(47, 48), Rational(26, 45), Rational(1, 3)]
assert convolution_fft([Rational(1, 9), Rational(2, 3), Rational(3, 5)], [Rational(2, 5), Rational(3, 7), Rational(4, 9)]) == \
[Rational(2, 45), Rational(11, 35), Rational(8152, 14175), Rational(523, 945), Rational(4, 15)]
assert convolution_fft([pi, E, sqrt(2)], [sqrt(3), 1/pi, 1/E]) == \
[sqrt(3)*pi, 1 + sqrt(3)*E, E/pi + pi*exp(-1) + sqrt(6),
sqrt(2)/pi + 1, sqrt(2)*exp(-1)]
assert convolution_fft([2321, 33123], [5321, 6321, 71323]) == \
[12350041, 190918524, 374911166, 2362431729]
assert convolution_fft([312313, 31278232], [32139631, 319631]) == \
[10037624576503, 1005370659728895, 9997492572392]
raises(TypeError, lambda: convolution_fft(x, y))
raises(ValueError, lambda: convolution_fft([x, y], [y, x]))
def test_convolution_ntt():
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 19*2**10 + 1
r = 2*500000003 + 1 # only for sequences of length 1 or 2
# s = 2*3*5*7 # composite modulus
assert all(convolution_ntt([], x, prime=y) == [] for x in ([], [1]) for y in (p, q, r))
assert convolution_ntt([2], [3], r) == [6]
assert convolution_ntt([2, 3], [4], r) == [8, 12]
assert convolution_ntt([32121, 42144, 4214, 4241], [32132, 3232, 87242], p) == [33867619,
459741727, 79180879, 831885249, 381344700, 369993322]
assert convolution_ntt([121913, 3171831, 31888131, 12], [17882, 21292, 29921, 312], q) == \
[8158, 3065, 3682, 7090, 1239, 2232, 3744]
assert convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], p) == \
convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], q)
assert convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], p) == \
convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], q)
raises(ValueError, lambda: convolution_ntt([2, 3], [4, 5], r))
raises(ValueError, lambda: convolution_ntt([x, y], [y, x], q))
raises(TypeError, lambda: convolution_ntt(x, y, p))
def test_convolution_fwht():
assert convolution_fwht([], []) == []
assert convolution_fwht([], [1]) == []
assert convolution_fwht([1, 2, 3], [4, 5, 6]) == [32, 13, 18, 27]
assert convolution_fwht([Rational(5, 7), Rational(6, 8), Rational(7, 3)], [2, 4, Rational(6, 7)]) == \
[Rational(45, 7), Rational(61, 14), Rational(776, 147), Rational(419, 42)]
a = [1, Rational(5, 3), sqrt(3), Rational(7, 5), 4 + 5*I]
b = [94, 51, 53, 45, 31, 27, 13]
c = [3 + 4*I, 5 + 7*I, 3, Rational(7, 6), 8]
assert convolution_fwht(a, b) == [53*sqrt(3) + 366 + 155*I,
45*sqrt(3) + Rational(5848, 15) + 135*I,
94*sqrt(3) + Rational(1257, 5) + 65*I,
51*sqrt(3) + Rational(3974, 15),
13*sqrt(3) + 452 + 470*I,
Rational(4513, 15) + 255*I,
31*sqrt(3) + Rational(1314, 5) + 265*I,
27*sqrt(3) + Rational(3676, 15) + 225*I]
assert convolution_fwht(b, c) == [Rational(1993, 2) + 733*I, Rational(6215, 6) + 862*I,
Rational(1659, 2) + 527*I, Rational(1988, 3) + 551*I, 1019 + 313*I, Rational(3955, 6) + 325*I,
Rational(1175, 2) + 52*I, Rational(3253, 6) + 91*I]
assert convolution_fwht(a[3:], c) == [Rational(-54, 5) + I*Rational(293, 5), -1 + I*Rational(204, 5),
Rational(133, 15) + I*Rational(35, 6), Rational(409, 30) + 15*I, Rational(56, 5), 32 + 40*I, 0, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert convolution_fwht([u, v], [x, y]) == [u*x + v*y, u*y + v*x]
assert convolution_fwht([u, v, w], [x, y]) == \
[u*x + v*y, u*y + v*x, w*x, w*y]
assert convolution_fwht([u, v, w], [x, y, z]) == \
[u*x + v*y + w*z, u*y + v*x, u*z + w*x, v*z + w*y]
raises(TypeError, lambda: convolution_fwht(x, y))
raises(TypeError, lambda: convolution_fwht(x*y, u + v))
def test_convolution_subset():
assert convolution_subset([], []) == []
assert convolution_subset([], [Rational(1, 3)]) == []
assert convolution_subset([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)]
a = [1, Rational(5, 3), sqrt(3), 4 + 5*I]
b = [64, 71, 55, 47, 33, 29, 15]
c = [3 + I*Rational(2, 3), 5 + 7*I, 7, Rational(7, 5), 9]
assert convolution_subset(a, b) == [64, Rational(533, 3), 55 + 64*sqrt(3),
71*sqrt(3) + Rational(1184, 3) + 320*I, 33, 84,
15 + 33*sqrt(3), 29*sqrt(3) + 157 + 165*I]
assert convolution_subset(b, c) == [192 + I*Rational(128, 3), 533 + I*Rational(1486, 3),
613 + I*Rational(110, 3), Rational(5013, 5) + I*Rational(1249, 3),
675 + 22*I, 891 + I*Rational(751, 3),
771 + 10*I, Rational(3736, 5) + 105*I]
assert convolution_subset(a, c) == convolution_subset(c, a)
assert convolution_subset(a[:2], b) == \
[64, Rational(533, 3), 55, Rational(416, 3), 33, 84, 15, 25]
assert convolution_subset(a[:2], c) == \
[3 + I*Rational(2, 3), 10 + I*Rational(73, 9), 7, Rational(196, 15), 9, 15, 0, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert convolution_subset([u, v, w], [x, y]) == [u*x, u*y + v*x, w*x, w*y]
assert convolution_subset([u, v, w, x], [y, z]) == \
[u*y, u*z + v*y, w*y, w*z + x*y]
assert convolution_subset([u, v], [x, y, z]) == \
convolution_subset([x, y, z], [u, v])
raises(TypeError, lambda: convolution_subset(x, z))
raises(TypeError, lambda: convolution_subset(Rational(7, 3), u))
def test_covering_product():
assert covering_product([], []) == []
assert covering_product([], [Rational(1, 3)]) == []
assert covering_product([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)]
a = [1, Rational(5, 8), sqrt(7), 4 + 9*I]
b = [66, 81, 95, 49, 37, 89, 17]
c = [3 + I*Rational(2, 3), 51 + 72*I, 7, Rational(7, 15), 91]
assert covering_product(a, b) == [66, Rational(1383, 8), 95 + 161*sqrt(7),
130*sqrt(7) + 1303 + 2619*I, 37,
Rational(671, 4), 17 + 54*sqrt(7),
89*sqrt(7) + Rational(4661, 8) + 1287*I]
assert covering_product(b, c) == [198 + 44*I, 7740 + 10638*I,
1412 + I*Rational(190, 3), Rational(42684, 5) + I*Rational(31202, 3),
9484 + I*Rational(74, 3), 22163 + I*Rational(27394, 3),
10621 + I*Rational(34, 3), Rational(90236, 15) + 1224*I]
assert covering_product(a, c) == covering_product(c, a)
assert covering_product(b, c[:-1]) == [198 + 44*I, 7740 + 10638*I,
1412 + I*Rational(190, 3), Rational(42684, 5) + I*Rational(31202, 3),
111 + I*Rational(74, 3), 6693 + I*Rational(27394, 3),
429 + I*Rational(34, 3), Rational(23351, 15) + 1224*I]
assert covering_product(a, c[:-1]) == [3 + I*Rational(2, 3),
Rational(339, 4) + I*Rational(1409, 12), 7 + 10*sqrt(7) + 2*sqrt(7)*I/3,
-403 + 772*sqrt(7)/15 + 72*sqrt(7)*I + I*Rational(12658, 15)]
u, v, w, x, y, z = symbols('u v w x y z')
assert covering_product([u, v, w], [x, y]) == \
[u*x, u*y + v*x + v*y, w*x, w*y]
assert covering_product([u, v, w, x], [y, z]) == \
[u*y, u*z + v*y + v*z, w*y, w*z + x*y + x*z]
assert covering_product([u, v], [x, y, z]) == \
covering_product([x, y, z], [u, v])
raises(TypeError, lambda: covering_product(x, z))
raises(TypeError, lambda: covering_product(Rational(7, 3), u))
def test_intersecting_product():
assert intersecting_product([], []) == []
assert intersecting_product([], [Rational(1, 3)]) == []
assert intersecting_product([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)]
a = [1, sqrt(5), Rational(3, 8) + 5*I, 4 + 7*I]
b = [67, 51, 65, 48, 36, 79, 27]
c = [3 + I*Rational(2, 5), 5 + 9*I, 7, Rational(7, 19), 13]
assert intersecting_product(a, b) == [195*sqrt(5) + Rational(6979, 8) + 1886*I,
178*sqrt(5) + 520 + 910*I, Rational(841, 2) + 1344*I,
192 + 336*I, 0, 0, 0, 0]
assert intersecting_product(b, c) == [Rational(128553, 19) + I*Rational(9521, 5),
Rational(17820, 19) + 1602*I, Rational(19264, 19), Rational(336, 19), 1846, 0, 0, 0]
assert intersecting_product(a, c) == intersecting_product(c, a)
assert intersecting_product(b[1:], c[:-1]) == [Rational(64788, 19) + I*Rational(8622, 5),
Rational(12804, 19) + 1152*I, Rational(11508, 19), Rational(252, 19), 0, 0, 0, 0]
assert intersecting_product(a, c[:-2]) == \
[Rational(-99, 5) + 10*sqrt(5) + 2*sqrt(5)*I/5 + I*Rational(3021, 40),
-43 + 5*sqrt(5) + 9*sqrt(5)*I + 71*I, Rational(245, 8) + 84*I, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert intersecting_product([u, v, w], [x, y]) == \
[u*x + u*y + v*x + w*x + w*y, v*y, 0, 0]
assert intersecting_product([u, v, w, x], [y, z]) == \
[u*y + u*z + v*y + w*y + w*z + x*y, v*z + x*z, 0, 0]
assert intersecting_product([u, v], [x, y, z]) == \
intersecting_product([x, y, z], [u, v])
raises(TypeError, lambda: intersecting_product(x, z))
raises(TypeError, lambda: intersecting_product(u, Rational(8, 3)))
|
84118bce900a0f61fea353a1493f5d785c78a59f030199179cadfa4e9da7bc35 | from sympy import Rational, fibonacci
from sympy.core import S, symbols
from sympy.testing.pytest import raises
from sympy.discrete.recurrences import linrec
def test_linrec():
assert linrec(coeffs=[1, 1], init=[1, 1], n=20) == 10946
assert linrec(coeffs=[1, 2, 3, 4, 5], init=[1, 1, 0, 2], n=10) == 1040
assert linrec(coeffs=[0, 0, 11, 13], init=[23, 27], n=25) == 59628567384
assert linrec(coeffs=[0, 0, 1, 1, 2], init=[1, 5, 3], n=15) == 165
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=70) == \
56889923441670659718376223533331214868804815612050381493741233489928913241
assert linrec(coeffs=[0]*55 + [1, 1, 2, 3], init=[0]*50 + [1, 2, 3], n=4000) == \
702633573874937994980598979769135096432444135301118916539
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**4)
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**5)
assert all(linrec(coeffs=[1, 1], init=[0, 1], n=n) == fibonacci(n)
for n in range(95, 115))
assert all(linrec(coeffs=[1, 1], init=[1, 1], n=n) == fibonacci(n + 1)
for n in range(595, 615))
a = [S.Half, Rational(3, 4), Rational(5, 6), 7, Rational(8, 9), Rational(3, 5)]
b = [1, 2, 8, Rational(5, 7), Rational(3, 7), Rational(2, 9), 6]
x, y, z = symbols('x y z')
assert linrec(coeffs=a[:5], init=b[:4], n=80) == \
Rational(1726244235456268979436592226626304376013002142588105090705187189,
1960143456748895967474334873705475211264)
assert linrec(coeffs=a[:4], init=b[:4], n=50) == \
Rational(368949940033050147080268092104304441, 504857282956046106624)
assert linrec(coeffs=a[3:], init=b[:3], n=35) == \
Rational(97409272177295731943657945116791049305244422833125109,
814315512679031689453125)
assert linrec(coeffs=[0]*60 + [Rational(2, 3), Rational(4, 5)], init=b, n=3000) == \
Rational(26777668739896791448594650497024, 48084516708184142230517578125)
raises(TypeError, lambda: linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4, 5], n=1))
raises(TypeError, lambda: linrec(coeffs=a[:4], init=b[:5], n=10000))
raises(ValueError, lambda: linrec(coeffs=a[:4], init=b[:4], n=-10000))
raises(TypeError, lambda: linrec(x, b, n=10000))
raises(TypeError, lambda: linrec(a, y, n=10000))
assert linrec(coeffs=[x, y, z], init=[1, 1, 1], n=4) == \
x**2 + x*y + x*z + y + z
assert linrec(coeffs=[1, 2, 1], init=[x, y, z], n=20) == \
269542*x + 664575*y + 578949*z
assert linrec(coeffs=[0, 3, 1, 2], init=[x, y], n=30) == \
58516436*x + 56372788*y
assert linrec(coeffs=[0]*50 + [1, 2, 3], init=[x, y, z], n=1000) == \
11477135884896*x + 25999077948732*y + 41975630244216*z
assert linrec(coeffs=[], init=[1, 1], n=20) == 0
|
66b3342ae863da93afa5d8c9ac2db81a03841dc81d45ae1d5751e495e2f0f5de | from sympy import sqrt
from sympy.core import S, Symbol, symbols, I, Rational
from sympy.discrete import (fft, ifft, ntt, intt, fwht, ifwht,
mobius_transform, inverse_mobius_transform)
from sympy.testing.pytest import raises
def test_fft_ifft():
assert all(tf(ls) == ls for tf in (fft, ifft)
for ls in ([], [Rational(5, 3)]))
ls = list(range(6))
fls = [15, -7*sqrt(2)/2 - 4 - sqrt(2)*I/2 + 2*I, 2 + 3*I,
-4 + 7*sqrt(2)/2 - 2*I - sqrt(2)*I/2, -3,
-4 + 7*sqrt(2)/2 + sqrt(2)*I/2 + 2*I,
2 - 3*I, -7*sqrt(2)/2 - 4 - 2*I + sqrt(2)*I/2]
assert fft(ls) == fls
assert ifft(fls) == ls + [S.Zero]*2
ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
ifls = [Rational(9, 4) + 3*I, I*Rational(-7, 4), Rational(3, 4) + I, -2 - I/4]
assert ifft(ls) == ifls
assert fft(ifls) == ls + [S.Zero]
x = Symbol('x', real=True)
raises(TypeError, lambda: fft(x))
raises(ValueError, lambda: ifft([x, 2*x, 3*x**2, 4*x**3]))
def test_ntt_intt():
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 2*500000003 + 1 # only for sequences of length 1 or 2
r = 2*3*5*7 # composite modulus
assert all(tf(ls, p) == ls for tf in (ntt, intt)
for ls in ([], [5]))
ls = list(range(6))
nls = [15, 801133602, 738493201, 334102277, 998244350, 849020224,
259751156, 12232587]
assert ntt(ls, p) == nls
assert intt(nls, p) == ls + [0]*2
ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
x = Symbol('x', integer=True)
raises(TypeError, lambda: ntt(x, p))
raises(ValueError, lambda: intt([x, 2*x, 3*x**2, 4*x**3], p))
raises(ValueError, lambda: intt(ls, p))
raises(ValueError, lambda: ntt([1.2, 2.1, 3.5], p))
raises(ValueError, lambda: ntt([3, 5, 6], q))
raises(ValueError, lambda: ntt([4, 5, 7], r))
raises(ValueError, lambda: ntt([1.0, 2.0, 3.0], p))
def test_fwht_ifwht():
assert all(tf(ls) == ls for tf in (fwht, ifwht) \
for ls in ([], [Rational(7, 4)]))
ls = [213, 321, 43235, 5325, 312, 53]
fls = [49459, 38061, -47661, -37759, 48729, 37543, -48391, -38277]
assert fwht(ls) == fls
assert ifwht(fls) == ls + [S.Zero]*2
ls = [S.Half + 2*I, Rational(3, 7) + 4*I, Rational(5, 6) + 6*I, Rational(7, 3), Rational(9, 4)]
ifls = [Rational(533, 672) + I*Rational(3, 2), Rational(23, 224) + I/2, Rational(1, 672), Rational(107, 224) - I,
Rational(155, 672) + I*Rational(3, 2), Rational(-103, 224) + I/2, Rational(-377, 672), Rational(-19, 224) - I]
assert ifwht(ls) == ifls
assert fwht(ifls) == ls + [S.Zero]*3
x, y = symbols('x y')
raises(TypeError, lambda: fwht(x))
ls = [x, 2*x, 3*x**2, 4*x**3]
ifls = [x**3 + 3*x**2/4 + x*Rational(3, 4),
-x**3 + 3*x**2/4 - x/4,
-x**3 - 3*x**2/4 + x*Rational(3, 4),
x**3 - 3*x**2/4 - x/4]
assert ifwht(ls) == ifls
assert fwht(ifls) == ls
ls = [x, y, x**2, y**2, x*y]
fls = [x**2 + x*y + x + y**2 + y,
x**2 + x*y + x - y**2 - y,
-x**2 + x*y + x - y**2 + y,
-x**2 + x*y + x + y**2 - y,
x**2 - x*y + x + y**2 + y,
x**2 - x*y + x - y**2 - y,
-x**2 - x*y + x - y**2 + y,
-x**2 - x*y + x + y**2 - y]
assert fwht(ls) == fls
assert ifwht(fls) == ls + [S.Zero]*3
ls = list(range(6))
assert fwht(ls) == [x*8 for x in ifwht(ls)]
def test_mobius_transform():
assert all(tf(ls, subset=subset) == ls
for ls in ([], [Rational(7, 4)]) for subset in (True, False)
for tf in (mobius_transform, inverse_mobius_transform))
w, x, y, z = symbols('w x y z')
assert mobius_transform([x, y]) == [x, x + y]
assert inverse_mobius_transform([x, x + y]) == [x, y]
assert mobius_transform([x, y], subset=False) == [x + y, y]
assert inverse_mobius_transform([x + y, y], subset=False) == [x, y]
assert mobius_transform([w, x, y, z]) == [w, w + x, w + y, w + x + y + z]
assert inverse_mobius_transform([w, w + x, w + y, w + x + y + z]) == \
[w, x, y, z]
assert mobius_transform([w, x, y, z], subset=False) == \
[w + x + y + z, x + z, y + z, z]
assert inverse_mobius_transform([w + x + y + z, x + z, y + z, z], subset=False) == \
[w, x, y, z]
ls = [Rational(2, 3), Rational(6, 7), Rational(5, 8), 9, Rational(5, 3) + 7*I]
mls = [Rational(2, 3), Rational(32, 21), Rational(31, 24), Rational(1873, 168),
Rational(7, 3) + 7*I, Rational(67, 21) + 7*I, Rational(71, 24) + 7*I,
Rational(2153, 168) + 7*I]
assert mobius_transform(ls) == mls
assert inverse_mobius_transform(mls) == ls + [S.Zero]*3
mls = [Rational(2153, 168) + 7*I, Rational(69, 7), Rational(77, 8), 9, Rational(5, 3) + 7*I, 0, 0, 0]
assert mobius_transform(ls, subset=False) == mls
assert inverse_mobius_transform(mls, subset=False) == ls + [S.Zero]*3
ls = ls[:-1]
mls = [Rational(2, 3), Rational(32, 21), Rational(31, 24), Rational(1873, 168)]
assert mobius_transform(ls) == mls
assert inverse_mobius_transform(mls) == ls
mls = [Rational(1873, 168), Rational(69, 7), Rational(77, 8), 9]
assert mobius_transform(ls, subset=False) == mls
assert inverse_mobius_transform(mls, subset=False) == ls
raises(TypeError, lambda: mobius_transform(x, subset=True))
raises(TypeError, lambda: inverse_mobius_transform(y, subset=False))
|
b2e1ba0da67647be28be726b63a186ca2bbd03a163524a2e44d5053e711ccea9 | from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_E():
c = CartanType("E6")
m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
-1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
-1, 2, -1, 0, 0, 0, 0, -1, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 8
assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
assert c.roots() == 72
assert c.basis() == 78
diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
diag += "---".join("0" for i in range(1, 6))+"\n"
diag += "1 " + " ".join(str(i) for i in range(3, 7))
assert c.dynkin_diagram() == diag
posroots = c.positive_roots()
assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]
|
c94409ecbcd37a6bf809dd575bf76bdf1eca108d3b05a86c580c897d72d2d5e0 | from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
from sympy.core.backend import S
def test_type_F():
c = CartanType("F4")
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 4
assert c.simple_root(1) == [1, -1, 0, 0]
assert c.simple_root(2) == [0, 1, -1, 0]
assert c.simple_root(3) == [0, 0, 0, 1]
assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
assert c.roots() == 48
assert c.basis() == 52
diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}
|
b77384cb72555cff9d2810da766c80e64a38d80206a54c059fe75b648ec52d8b | from sympy import Symbol, Function, Derivative as D, Eq, cos, sin
from sympy.testing.pytest import raises
from sympy.calculus.euler import euler_equations as euler
def test_euler_interface():
x = Function('x')
y = Symbol('y')
t = Symbol('t')
raises(TypeError, lambda: euler())
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [x(t), y]))
raises(ValueError, lambda: euler(D(x(t), t)*x(y), [x(t), x(y)]))
raises(TypeError, lambda: euler(D(x(t), t)**2, x(0)))
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [t]))
assert euler(D(x(t), t)**2/2, {x(t)}) == [Eq(-D(x(t), t, t), 0)]
assert euler(D(x(t), t)**2/2, x(t), {t}) == [Eq(-D(x(t), t, t), 0)]
def test_euler_pendulum():
x = Function('x')
t = Symbol('t')
L = D(x(t), t)**2/2 + cos(x(t))
assert euler(L, x(t), t) == [Eq(-sin(x(t)) - D(x(t), t, t), 0)]
def test_euler_henonheiles():
x = Function('x')
y = Function('y')
t = Symbol('t')
L = sum(D(z(t), t)**2/2 - z(t)**2/2 for z in [x, y])
L += -x(t)**2*y(t) + y(t)**3/3
assert euler(L, [x(t), y(t)], t) == [Eq(-2*x(t)*y(t) - x(t) -
D(x(t), t, t), 0),
Eq(-x(t)**2 + y(t)**2 -
y(t) - D(y(t), t, t), 0)]
def test_euler_sineg():
psi = Function('psi')
t = Symbol('t')
x = Symbol('x')
L = D(psi(t, x), t)**2/2 - D(psi(t, x), x)**2/2 + cos(psi(t, x))
assert euler(L, psi(t, x), [t, x]) == [Eq(-sin(psi(t, x)) -
D(psi(t, x), t, t) +
D(psi(t, x), x, x), 0)]
def test_euler_high_order():
# an example from hep-th/0309038
m = Symbol('m')
k = Symbol('k')
x = Function('x')
y = Function('y')
t = Symbol('t')
L = (m*D(x(t), t)**2/2 + m*D(y(t), t)**2/2 -
k*D(x(t), t)*D(y(t), t, t) + k*D(y(t), t)*D(x(t), t, t))
assert euler(L, [x(t), y(t)]) == [Eq(2*k*D(y(t), t, t, t) -
m*D(x(t), t, t), 0),
Eq(-2*k*D(x(t), t, t, t) -
m*D(y(t), t, t), 0)]
w = Symbol('w')
L = D(x(t, w), t, w)**2/2
assert euler(L) == [Eq(D(x(t, w), t, t, w, w), 0)]
|
2959df51afc691c2c937669f5bbd0eeb59ad19b5d08d7bb0763b873b9568a419 | from sympy import Symbol, exp, log, oo, S, I, sqrt, Rational
from sympy.calculus.singularities import (
singularities,
is_increasing,
is_strictly_increasing,
is_decreasing,
is_strictly_decreasing,
is_monotonic
)
from sympy.sets import Interval, FiniteSet
from sympy.testing.pytest import XFAIL, raises
from sympy.abc import x, y
def test_singularities():
x = Symbol('x')
assert singularities(x**2, x) == S.EmptySet
assert singularities(x/(x**2 + 3*x + 2), x) == FiniteSet(-2, -1)
assert singularities(1/(x**2 + 1), x) == FiniteSet(I, -I)
assert singularities(x/(x**3 + 1), x) == \
FiniteSet(-1, (1 - sqrt(3) * I) / 2, (1 + sqrt(3) * I) / 2)
assert singularities(1/(y**2 + 2*I*y + 1), y) == \
FiniteSet(-I + sqrt(2)*I, -I - sqrt(2)*I)
x = Symbol('x', real=True)
assert singularities(1/(x**2 + 1), x) == S.EmptySet
@XFAIL
def test_singularities_non_rational():
x = Symbol('x', real=True)
assert singularities(exp(1/x), x) == FiniteSet(0)
assert singularities(log((x - 2)**2), x) == FiniteSet(2)
def test_is_increasing():
"""Test whether is_increasing returns correct value."""
a = Symbol('a', negative=True)
assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
assert is_increasing(-x**2, Interval(-oo, 0))
assert not is_increasing(-x**2, Interval(0, oo))
assert not is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
assert is_increasing(x**2 + y, Interval(1, oo), x)
assert is_increasing(-x**2*a, Interval(1, oo), x)
assert is_increasing(1)
assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False
def test_is_strictly_increasing():
"""Test whether is_strictly_increasing returns correct value."""
assert is_strictly_increasing(
4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
assert is_strictly_increasing(
4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
assert not is_strictly_increasing(
4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
assert not is_strictly_increasing(-x**2, Interval(0, oo))
assert not is_strictly_decreasing(1)
assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False
def test_is_decreasing():
"""Test whether is_decreasing returns correct value."""
b = Symbol('b', positive=True)
assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2)))
assert not is_decreasing(-x**2, Interval(-oo, 0))
assert not is_decreasing(-x**2*b, Interval(-oo, 0), x)
def test_is_strictly_decreasing():
"""Test whether is_strictly_decreasing returns correct value."""
assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
assert not is_strictly_decreasing(
1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2)))
assert not is_strictly_decreasing(-x**2, Interval(-oo, 0))
assert not is_strictly_decreasing(1)
assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
def test_is_monotonic():
"""Test whether is_monotonic returns correct value."""
assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
assert not is_monotonic(-x**2, S.Reals)
assert is_monotonic(x**2 + y + 1, Interval(1, 2), x)
raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1))
|
7f91eb7d35b2da1adf444791ea332fde3a5dee52c4201d73665bfd94785b1eb0 | from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos,
cot, sec, csc, Abs, symbols, I, re, simplify,
expint, Rational)
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
periodicity, lcim, AccumBounds, is_convex,
stationary_points, minimum, maximum)
from sympy.core import Add, Mul, Pow
from sympy.sets.sets import (Interval, FiniteSet, EmptySet, Complement,
Union)
from sympy.testing.pytest import raises
from sympy.abc import x
a = Symbol('a', real=True)
def test_function_range():
x, y, a, b = symbols('x y a b')
assert function_range(sin(x), x, Interval(-pi/2, pi/2)
) == Interval(-1, 1)
assert function_range(sin(x), x, Interval(0, pi)
) == Interval(0, 1)
assert function_range(tan(x), x, Interval(0, pi)
) == Interval(-oo, oo)
assert function_range(tan(x), x, Interval(pi/2, pi)
) == Interval(-oo, 0)
assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo))
assert function_range(1/(x**2), x, Interval(-1, 1)
) == Interval(1, oo)
assert function_range(exp(x), x, Interval(-1, 1)
) == Interval(exp(-1), exp(1))
assert function_range(log(x) - x, x, S.Reals
) == Interval(-oo, -1)
assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
) == Interval(0, sqrt(5))
assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
) == FiniteSet(0)
assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
) == FiniteSet(y)
assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
assert function_range(cos(x), x, Interval(-oo, -4)
) == Interval(-1, 1)
assert function_range(cos(x), x, S.EmptySet) == S.EmptySet
raises(NotImplementedError, lambda : function_range(
exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
raises(NotImplementedError, lambda : function_range(
sin(x) + x, x, S.Reals)) # issue 13273
raises(NotImplementedError, lambda : function_range(
log(x), x, S.Integers))
raises(NotImplementedError, lambda : function_range(
sin(x)/2, x, S.Naturals))
def test_continuous_domain():
x = Symbol('x')
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True),
Interval(pi*Rational(3, 2), 2*pi, True, False))
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
Interval(Rational(1, 4), oo, True, True)
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
assert continuous_domain(1/x - 2, x, S.Reals) == \
Union(Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
def test_not_empty_in():
assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
Interval(S.Half, 2, True, False)
assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
Union(Interval(-sqrt(2), -1), Interval(1, 2))
assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
Union(Interval(-sqrt(17)/2 - S.Half, -2),
Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4))
assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Interval(-oo, oo)
assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Interval(S(3)/2, 2)
assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(-1, 1))
assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
Interval(4, 5))), x) == \
Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
Interval(1, 3, True, True), Interval(4, 5))
assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
Union(Interval(-2, -1, True, False), Interval(2, oo))
raises(ValueError, lambda: not_empty_in(x))
raises(ValueError, lambda: not_empty_in(Interval(0, 1), x))
raises(NotImplementedError,
lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a))
def test_periodicity():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', real=True)
assert periodicity(sin(2*x), x) == pi
assert periodicity((-2)*tan(4*x), x) == pi/4
assert periodicity(sin(x)**2, x) == 2*pi
assert periodicity(3**tan(3*x), x) == pi/3
assert periodicity(tan(x)*cos(x), x) == 2*pi
assert periodicity(sin(x)**(tan(x)), x) == 2*pi
assert periodicity(tan(x)*sec(x), x) == 2*pi
assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
assert periodicity(tan(x) + cot(x), x) == pi
assert periodicity(sin(x) - cos(2*x), x) == 2*pi
assert periodicity(sin(x) - 1, x) == 2*pi
assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
assert periodicity(exp(sin(x)), x) == 2*pi
assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
assert periodicity(tan(sin(2*x)), x) == pi
assert periodicity(2*tan(x)**2, x) == pi
assert periodicity(sin(x%4), x) == 4
assert periodicity(sin(x)%4, x) == 2*pi
assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3)
assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
assert periodicity((x**2+1) % x, x) is None
assert periodicity(sin(re(x)), x) == 2*pi
assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero
assert periodicity(tan(x), y) is S.Zero
assert periodicity(sin(x) + I*cos(x), x) == 2*pi
assert periodicity(x - sin(2*y), y) == pi
assert periodicity(exp(x), x) is None
assert periodicity(exp(I*x), x) == 2*pi
assert periodicity(exp(I*z), z) == 2*pi
assert periodicity(exp(z), z) is None
assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi
assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi
assert periodicity(exp(sin(z)), z) == 2*pi
assert periodicity(exp(2*I*z), z) == pi
assert periodicity(exp(z + I*sin(z)), z) is None
assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi
assert periodicity(log(x), x) is None
assert periodicity(exp(x)**sin(x), x) is None
assert periodicity(sin(x)**y, y) is None
assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
assert all(periodicity(Abs(f(x)), x) == pi for f in (
cos, sin, sec, csc, tan, cot))
assert periodicity(Abs(sin(tan(x))), x) == pi
assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
assert periodicity(sin(x) > S.Half, x) == 2*pi
assert periodicity(x > 2, x) is None
assert periodicity(x**3 - x**2 + 1, x) is None
assert periodicity(Abs(x), x) is None
assert periodicity(Abs(x**2 - 1), x) is None
assert periodicity((x**2 + 4)%2, x) is None
assert periodicity((E**x)%3, x) is None
assert periodicity(sin(expint(1, x))/expint(1, x), x) is None
def test_periodicity_check():
x = Symbol('x')
y = Symbol('y')
assert periodicity(tan(x), x, check=True) == pi
assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
assert periodicity(sec(x), x) == 2*pi
assert periodicity(sin(x*y), x) == 2*pi/abs(y)
assert periodicity(Abs(sec(sec(x))), x) == pi
def test_lcim():
from sympy import pi
assert lcim([S.Half, S(2), S(3)]) == 6
assert lcim([pi/2, pi/4, pi]) == pi
assert lcim([2*pi, pi/2]) == 2*pi
assert lcim([S.One, 2*pi]) is None
assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E
def test_is_convex():
assert is_convex(1/x, x, domain=Interval(0, oo)) == True
assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
assert is_convex(x**2, x, domain=Interval(0, oo)) == True
assert is_convex(log(x), x) == False
raises(NotImplementedError, lambda: is_convex(log(x), x, a))
def test_stationary_points():
x, y = symbols('x y')
assert stationary_points(sin(x), x, Interval(-pi/2, pi/2)
) == {-pi/2, pi/2}
assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4)
) == EmptySet()
assert stationary_points(tan(x), x,
) == EmptySet()
assert stationary_points(sin(x)*cos(x), x, Interval(0, pi)
) == {pi/4, pi*Rational(3, 4)}
assert stationary_points(sec(x), x, Interval(0, pi)
) == {0, pi}
assert stationary_points((x+3)*(x-2), x
) == FiniteSet(Rational(-1, 2))
assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5)
) == EmptySet()
assert stationary_points((x**2+3)/(x-2), x
) == {2 - sqrt(7), 2 + sqrt(7)}
assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5)
) == {2 + sqrt(7)}
assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals
) == FiniteSet(-2, 0, Rational(5, 4))
assert stationary_points(exp(x), x
) == EmptySet()
assert stationary_points(log(x) - x, x, S.Reals
) == {1}
assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) == {0, -pi, pi}
assert stationary_points(y, x, S.Reals
) == S.Reals
assert stationary_points(y, x, S.EmptySet) == S.EmptySet
def test_maximum():
x, y = symbols('x y')
assert maximum(sin(x), x) is S.One
assert maximum(sin(x), x, Interval(0, 1)) == sin(1)
assert maximum(tan(x), x) is oo
assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One
assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half
assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
) == sqrt(2)/4
assert maximum((x+3)*(x-2), x) is oo
assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14)
assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7)
assert simplify(maximum(-x**4-x**3+x**2+10, x)
) == 41*sqrt(41)/512 + Rational(5419, 512)
assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2)
assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne
assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) is S.One
assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2)
assert maximum(y, x, S.Reals) == y
raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), sin(x)))
raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), S.One))
def test_minimum():
x, y = symbols('x y')
assert minimum(sin(x), x) is S.NegativeOne
assert minimum(sin(x), x, Interval(1, 4)) == sin(4)
assert minimum(tan(x), x) is -oo
assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne
assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2)
assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
) == -sqrt(2)/4
assert minimum((x+3)*(x-2), x) == Rational(-25, 4)
assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2)
assert minimum(x**4-x**3+x**2+10, x) == S(10)
assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2)
assert minimum(log(x) - x, x, S.Reals) is -oo
assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) is S.NegativeOne
assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2)
assert minimum(y, x, S.Reals) == y
raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), sin(x)))
raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), S.One))
def test_AccumBounds():
assert AccumBounds(1, 2).args == (1, 2)
assert AccumBounds(1, 2).delta is S.One
assert AccumBounds(1, 2).mid == Rational(3, 2)
assert AccumBounds(1, 3).is_real == True
assert AccumBounds(1, 1) is S.One
assert AccumBounds(1, 2) + 1 == AccumBounds(2, 3)
assert 1 + AccumBounds(1, 2) == AccumBounds(2, 3)
assert AccumBounds(1, 2) + AccumBounds(2, 3) == AccumBounds(3, 5)
assert -AccumBounds(1, 2) == AccumBounds(-2, -1)
assert AccumBounds(1, 2) - 1 == AccumBounds(0, 1)
assert 1 - AccumBounds(1, 2) == AccumBounds(-1, 0)
assert AccumBounds(2, 3) - AccumBounds(1, 2) == AccumBounds(0, 2)
assert x + AccumBounds(1, 2) == Add(AccumBounds(1, 2), x)
assert a + AccumBounds(1, 2) == AccumBounds(1 + a, 2 + a)
assert AccumBounds(1, 2) - x == Add(AccumBounds(1, 2), -x)
assert AccumBounds(-oo, 1) + oo == AccumBounds(-oo, oo)
assert AccumBounds(1, oo) + oo is oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(-1, oo)) is -oo
assert AccumBounds(-oo, 1) - oo is -oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 1) - (-oo) == AccumBounds(-oo, oo)
assert (oo - AccumBounds(1, oo)) == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(1, oo)) is -oo
assert AccumBounds(1, 2)/2 == AccumBounds(S.Half, 1)
assert 2/AccumBounds(2, 3) == AccumBounds(Rational(2, 3), 1)
assert 1/AccumBounds(-1, 1) == AccumBounds(-oo, oo)
assert abs(AccumBounds(1, 2)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, -1)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, 1)) == AccumBounds(0, 2)
assert abs(AccumBounds(-1, 2)) == AccumBounds(0, 2)
c = Symbol('c')
raises(ValueError, lambda: AccumBounds(0, c))
raises(ValueError, lambda: AccumBounds(1, -1))
def test_AccumBounds_mul():
assert AccumBounds(1, 2)*2 == AccumBounds(2, 4)
assert 2*AccumBounds(1, 2) == AccumBounds(2, 4)
assert AccumBounds(1, 2)*AccumBounds(2, 3) == AccumBounds(2, 6)
assert AccumBounds(1, 2)*0 == 0
assert AccumBounds(1, oo)*0 == AccumBounds(0, oo)
assert AccumBounds(-oo, 1)*0 == AccumBounds(-oo, 0)
assert AccumBounds(-oo, oo)*0 == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)*x == Mul(AccumBounds(1, 2), x, evaluate=False)
assert AccumBounds(0, 2)*oo == AccumBounds(0, oo)
assert AccumBounds(-2, 0)*oo == AccumBounds(-oo, 0)
assert AccumBounds(0, 2)*(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-2, 0)*(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 1)*oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 1)*(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)*oo == AccumBounds(-oo, oo)
def test_AccumBounds_div():
assert AccumBounds(-1, 3)/AccumBounds(3, 4) == AccumBounds(Rational(-1, 3), 1)
assert AccumBounds(-2, 4)/AccumBounds(-3, 4) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(-4, 0) == AccumBounds(S.Half, oo)
# these two tests can have a better answer
# after Union of AccumBounds is improved
assert AccumBounds(-3, -2)/AccumBounds(-2, 1) == AccumBounds(-oo, oo)
assert AccumBounds(2, 3)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(0, 4) == AccumBounds(-oo, Rational(-1, 2))
assert AccumBounds(2, 4)/AccumBounds(-3, 0) == AccumBounds(-oo, Rational(-2, 3))
assert AccumBounds(2, 4)/AccumBounds(0, 3) == AccumBounds(Rational(2, 3), oo)
assert AccumBounds(0, 1)/AccumBounds(0, 1) == AccumBounds(0, oo)
assert AccumBounds(-1, 0)/AccumBounds(0, 1) == AccumBounds(-oo, 0)
assert AccumBounds(-1, 2)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(-1, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(0, 2) == AccumBounds(S.Half, oo)
assert (-1)/AccumBounds(0, 2) == AccumBounds(-oo, Rational(-1, 2))
assert 1/AccumBounds(-oo, 0) == AccumBounds(-oo, 0)
assert 1/AccumBounds(-1, 0) == AccumBounds(-oo, -1)
assert (-2)/AccumBounds(-oo, 0) == AccumBounds(0, oo)
assert 1/AccumBounds(-oo, -1) == AccumBounds(-1, 0)
assert AccumBounds(1, 2)/a == Mul(AccumBounds(1, 2), 1/a, evaluate=False)
assert AccumBounds(1, 2)/0 == AccumBounds(1, 2)*zoo
assert AccumBounds(1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/(-oo) == AccumBounds(0, oo)
assert AccumBounds(-oo, oo)/oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)/(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(-1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/(-oo) == AccumBounds(0, oo)
def test_AccumBounds_func():
assert (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) == AccumBounds(-1, 4)
assert exp(AccumBounds(0, 1)) == AccumBounds(1, E)
assert exp(AccumBounds(-oo, oo)) == AccumBounds(0, oo)
assert log(AccumBounds(3, 6)) == AccumBounds(log(3), log(6))
def test_AccumBounds_pow():
assert AccumBounds(0, 2)**2 == AccumBounds(0, 4)
assert AccumBounds(-1, 1)**2 == AccumBounds(0, 1)
assert AccumBounds(1, 2)**2 == AccumBounds(1, 4)
assert AccumBounds(-1, 2)**3 == AccumBounds(-1, 8)
assert AccumBounds(-1, 1)**0 == 1
assert AccumBounds(1, 2)**Rational(5, 2) == AccumBounds(1, 4*sqrt(2))
assert AccumBounds(-1, 2)**Rational(1, 3) == AccumBounds(-1, 2**Rational(1, 3))
assert AccumBounds(0, 2)**S.Half == AccumBounds(0, sqrt(2))
assert AccumBounds(-4, 2)**Rational(2, 3) == AccumBounds(0, 2*2**Rational(1, 3))
assert AccumBounds(-1, 5)**S.Half == AccumBounds(0, sqrt(5))
assert AccumBounds(-oo, 2)**S.Half == AccumBounds(0, sqrt(2))
assert AccumBounds(-2, 3)**Rational(-1, 4) == AccumBounds(0, oo)
assert AccumBounds(1, 5)**(-2) == AccumBounds(Rational(1, 25), 1)
assert AccumBounds(-1, 3)**(-2) == AccumBounds(0, oo)
assert AccumBounds(0, 2)**(-2) == AccumBounds(Rational(1, 4), oo)
assert AccumBounds(-1, 2)**(-3) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**(-3) == AccumBounds(Rational(-1, 8), Rational(-1, 27))
assert AccumBounds(-3, -2)**(-2) == AccumBounds(Rational(1, 9), Rational(1, 4))
assert AccumBounds(0, oo)**S.Half == AccumBounds(0, oo)
assert AccumBounds(-oo, -1)**Rational(1, 3) == AccumBounds(-oo, -1)
assert AccumBounds(-2, 3)**(Rational(-1, 3)) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 0)**(-2) == AccumBounds(0, oo)
assert AccumBounds(-2, 0)**(-2) == AccumBounds(Rational(1, 4), oo)
assert AccumBounds(Rational(1, 3), S.Half)**oo is S.Zero
assert AccumBounds(0, S.Half)**oo is S.Zero
assert AccumBounds(S.Half, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(0, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(2, 3)**oo is oo
assert AccumBounds(1, 2)**oo == AccumBounds(0, oo)
assert AccumBounds(S.Half, 3)**oo == AccumBounds(0, oo)
assert AccumBounds(Rational(-1, 3), Rational(-1, 4))**oo is S.Zero
assert AccumBounds(-1, Rational(-1, 2))**oo == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**oo == FiniteSet(-oo, oo)
assert AccumBounds(-2, -1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, Rational(-1, 2))**oo == AccumBounds(-oo, oo)
assert AccumBounds(Rational(-1, 2), S.Half)**oo is S.Zero
assert AccumBounds(Rational(-1, 2), 1)**oo == AccumBounds(0, oo)
assert AccumBounds(Rational(-2, 3), 2)**oo == AccumBounds(0, oo)
assert AccumBounds(-1, 1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, S.Half)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, S.Half)**oo == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)**x == Pow(AccumBounds(1, 2), x)
assert AccumBounds(2, 3)**(-oo) is S.Zero
assert AccumBounds(0, 2)**(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 2)**(-oo) == AccumBounds(-oo, oo)
assert (tan(x)**sin(2*x)).subs(x, AccumBounds(0, pi/2)) == \
Pow(AccumBounds(-oo, oo), AccumBounds(0, 1))
def test_comparison_AccumBounds():
assert (AccumBounds(1, 3) < 4) == S.true
assert (AccumBounds(1, 3) < -1) == S.false
assert (AccumBounds(1, 3) < 2).rel_op == '<'
assert (AccumBounds(1, 3) <= 2).rel_op == '<='
assert (AccumBounds(1, 3) > 4) == S.false
assert (AccumBounds(1, 3) > -1) == S.true
assert (AccumBounds(1, 3) > 2).rel_op == '>'
assert (AccumBounds(1, 3) >= 2).rel_op == '>='
assert (AccumBounds(1, 3) < AccumBounds(4, 6)) == S.true
assert (AccumBounds(1, 3) < AccumBounds(2, 4)).rel_op == '<'
assert (AccumBounds(1, 3) < AccumBounds(-2, 0)) == S.false
assert (AccumBounds(1, 3) <= AccumBounds(4, 6)) == S.true
assert (AccumBounds(1, 3) <= AccumBounds(-2, 0)) == S.false
assert (AccumBounds(1, 3) > AccumBounds(4, 6)) == S.false
assert (AccumBounds(1, 3) > AccumBounds(-2, 0)) == S.true
assert (AccumBounds(1, 3) >= AccumBounds(4, 6)) == S.false
assert (AccumBounds(1, 3) >= AccumBounds(-2, 0)) == S.true
# issue 13499
assert (cos(x) > 0).subs(x, oo) == (AccumBounds(-1, 1) > 0)
c = Symbol('c')
raises(TypeError, lambda: (AccumBounds(0, 1) < c))
raises(TypeError, lambda: (AccumBounds(0, 1) <= c))
raises(TypeError, lambda: (AccumBounds(0, 1) > c))
raises(TypeError, lambda: (AccumBounds(0, 1) >= c))
def test_contains_AccumBounds():
assert (1 in AccumBounds(1, 2)) == S.true
raises(TypeError, lambda: a in AccumBounds(1, 2))
assert 0 in AccumBounds(-1, 0)
raises(TypeError, lambda:
(cos(1)**2 + sin(1)**2 - 1) in AccumBounds(-1, 0))
assert (-oo in AccumBounds(1, oo)) == S.true
assert (oo in AccumBounds(-oo, 0)) == S.true
# issue 13159
assert Mul(0, AccumBounds(-1, 1)) == Mul(AccumBounds(-1, 1), 0) == 0
import itertools
for perm in itertools.permutations([0, AccumBounds(-1, 1), x]):
assert Mul(*perm) == 0
def test_intersection_AccumBounds():
assert AccumBounds(0, 3).intersection(AccumBounds(1, 2)) == AccumBounds(1, 2)
assert AccumBounds(0, 3).intersection(AccumBounds(1, 4)) == AccumBounds(1, 3)
assert AccumBounds(0, 3).intersection(AccumBounds(-1, 2)) == AccumBounds(0, 2)
assert AccumBounds(0, 3).intersection(AccumBounds(-1, 4)) == AccumBounds(0, 3)
assert AccumBounds(0, 1).intersection(AccumBounds(2, 3)) == S.EmptySet
raises(TypeError, lambda: AccumBounds(0, 3).intersection(1))
def test_union_AccumBounds():
assert AccumBounds(0, 3).union(AccumBounds(1, 2)) == AccumBounds(0, 3)
assert AccumBounds(0, 3).union(AccumBounds(1, 4)) == AccumBounds(0, 4)
assert AccumBounds(0, 3).union(AccumBounds(-1, 2)) == AccumBounds(-1, 3)
assert AccumBounds(0, 3).union(AccumBounds(-1, 4)) == AccumBounds(-1, 4)
raises(TypeError, lambda: AccumBounds(0, 3).union(1))
def test_issue_16469():
x = Symbol("x", real=True)
f = abs(x)
assert function_range(f, x, S.Reals) == Interval(0, oo, False, True)
|
8e206b9f7fc381abaf78c65a2780d51feed293d3e2849f49ca7c9b0ad7ca1b56 | from itertools import product
from sympy import S, symbols, Function, exp, diff, Rational
from sympy.calculus.finite_diff import (
apply_finite_diff, differentiate_finite, finite_diff_weights,
as_finite_diff
)
from sympy.testing.pytest import raises, warns_deprecated_sympy, ignore_warnings
from sympy.utilities.exceptions import SymPyDeprecationWarning
def test_apply_finite_diff():
x, h = symbols('x h')
f = Function('f')
assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
(f(x+h)-f(x-h))/(2*h)).simplify() == 0
assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
(Rational(-3, 2)*f(5) + 2*f(6) - S.Half*f(7))).simplify() == 0
raises(ValueError, lambda: apply_finite_diff(1, [x, h], [f(x)]))
def test_finite_diff_weights():
d = finite_diff_weights(1, [5, 6, 7], 5)
assert d[1][2] == [Rational(-3, 2), 2, Rational(-1, 2)]
# Table 1, p. 702 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [0, 1, -1, 2, -2, 3, -3, 4, -4]
# d holds all coefficients
d = finite_diff_weights(4, xl, S.Zero)
# Zeroeth derivative
for i in range(5):
assert d[0][i] == [S.One] + [S.Zero]*8
# First derivative
assert d[1][0] == [S.Zero]*9
assert d[1][2] == [S.Zero, S.Half, Rational(-1, 2)] + [S.Zero]*6
assert d[1][4] == [S.Zero, Rational(2, 3), Rational(-2, 3), Rational(-1, 12), Rational(1, 12)] + [S.Zero]*4
assert d[1][6] == [S.Zero, Rational(3, 4), Rational(-3, 4), Rational(-3, 20), Rational(3, 20),
Rational(1, 60), Rational(-1, 60)] + [S.Zero]*2
assert d[1][8] == [S.Zero, Rational(4, 5), Rational(-4, 5), Rational(-1, 5), Rational(1, 5),
Rational(4, 105), Rational(-4, 105), Rational(-1, 280), Rational(1, 280)]
# Second derivative
for i in range(2):
assert d[2][i] == [S.Zero]*9
assert d[2][2] == [-S(2), S.One, S.One] + [S.Zero]*6
assert d[2][4] == [Rational(-5, 2), Rational(4, 3), Rational(4, 3), Rational(-1, 12), Rational(-1, 12)] + [S.Zero]*4
assert d[2][6] == [Rational(-49, 18), Rational(3, 2), Rational(3, 2), Rational(-3, 20), Rational(-3, 20),
Rational(1, 90), Rational(1, 90)] + [S.Zero]*2
assert d[2][8] == [Rational(-205, 72), Rational(8, 5), Rational(8, 5), Rational(-1, 5), Rational(-1, 5),
Rational(8, 315), Rational(8, 315), Rational(-1, 560), Rational(-1, 560)]
# Third derivative
for i in range(3):
assert d[3][i] == [S.Zero]*9
assert d[3][4] == [S.Zero, -S.One, S.One, S.Half, Rational(-1, 2)] + [S.Zero]*4
assert d[3][6] == [S.Zero, Rational(-13, 8), Rational(13, 8), S.One, -S.One,
Rational(-1, 8), Rational(1, 8)] + [S.Zero]*2
assert d[3][8] == [S.Zero, Rational(-61, 30), Rational(61, 30), Rational(169, 120), Rational(-169, 120),
Rational(-3, 10), Rational(3, 10), Rational(7, 240), Rational(-7, 240)]
# Fourth derivative
for i in range(4):
assert d[4][i] == [S.Zero]*9
assert d[4][4] == [S(6), -S(4), -S(4), S.One, S.One] + [S.Zero]*4
assert d[4][6] == [Rational(28, 3), Rational(-13, 2), Rational(-13, 2), S(2), S(2),
Rational(-1, 6), Rational(-1, 6)] + [S.Zero]*2
assert d[4][8] == [Rational(91, 8), Rational(-122, 15), Rational(-122, 15), Rational(169, 60), Rational(169, 60),
Rational(-2, 5), Rational(-2, 5), Rational(7, 240), Rational(7, 240)]
# Table 2, p. 703 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [[j/S(2) for j in list(range(-i*2+1, 0, 2))+list(range(1, i*2+1, 2))]
for i in range(1, 5)]
# d holds all coefficients
d = [finite_diff_weights({0: 1, 1: 2, 2: 4, 3: 4}[i], xl[i], 0) for
i in range(4)]
# Zeroth derivative
assert d[0][0][1] == [S.Half, S.Half]
assert d[1][0][3] == [Rational(-1, 16), Rational(9, 16), Rational(9, 16), Rational(-1, 16)]
assert d[2][0][5] == [Rational(3, 256), Rational(-25, 256), Rational(75, 128), Rational(75, 128),
Rational(-25, 256), Rational(3, 256)]
assert d[3][0][7] == [Rational(-5, 2048), Rational(49, 2048), Rational(-245, 2048), Rational(1225, 2048),
Rational(1225, 2048), Rational(-245, 2048), Rational(49, 2048), Rational(-5, 2048)]
# First derivative
assert d[0][1][1] == [-S.One, S.One]
assert d[1][1][3] == [Rational(1, 24), Rational(-9, 8), Rational(9, 8), Rational(-1, 24)]
assert d[2][1][5] == [Rational(-3, 640), Rational(25, 384), Rational(-75, 64),
Rational(75, 64), Rational(-25, 384), Rational(3, 640)]
assert d[3][1][7] == [Rational(5, 7168), Rational(-49, 5120),
Rational(245, 3072), Rational(-1225, 1024),
Rational(1225, 1024), Rational(-245, 3072),
Rational(49, 5120), Rational(-5, 7168)]
# Reasonably the rest of the table is also correct... (testing of that
# deemed excessive at the moment)
raises(ValueError, lambda: finite_diff_weights(-1, [1, 2]))
raises(ValueError, lambda: finite_diff_weights(1.2, [1, 2]))
x = symbols('x')
raises(ValueError, lambda: finite_diff_weights(x, [1, 2]))
def test_as_finite_diff():
x = symbols('x')
f = Function('f')
dx = Function('dx')
with warns_deprecated_sympy():
as_finite_diff(f(x).diff(x), [x-2, x-1, x, x+1, x+2])
# Use of undefined functions in ``points``
df_true = -f(x+dx(x)/2-dx(x+dx(x)/2)/2) / dx(x+dx(x)/2) \
+ f(x+dx(x)/2+dx(x+dx(x)/2)/2) / dx(x+dx(x)/2)
df_test = diff(f(x), x).as_finite_difference(points=dx(x), x0=x+dx(x)/2)
assert (df_test - df_true).simplify() == 0
def test_differentiate_finite():
x, y, h = symbols('x y h')
f = Function('f')
with ignore_warnings(SymPyDeprecationWarning):
res0 = differentiate_finite(f(x, y) + exp(42), x, y, evaluate=True)
xm, xp, ym, yp = [v + sign*S.Half for v, sign in product([x, y], [-1, 1])]
ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
assert (res0 - ref0).simplify() == 0
g = Function('g')
with ignore_warnings(SymPyDeprecationWarning):
res1 = differentiate_finite(f(x)*g(x) + 42, x, evaluate=True)
ref1 = (-f(x - S.Half) + f(x + S.Half))*g(x) + \
(-g(x - S.Half) + g(x + S.Half))*f(x)
assert (res1 - ref1).simplify() == 0
res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1])
ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
assert (res2 - ref2).simplify() == 0
raises(ValueError, lambda: differentiate_finite(f(x)*g(x), x,
pints=[x-1, x+1]))
res3 = differentiate_finite(f(x)*g(x).diff(x), x)
ref3 = (-g(x) + g(x + 1))*f(x + S.Half) - (g(x) - g(x - 1))*f(x - S.Half)
assert res3 == ref3
res4 = differentiate_finite(f(x)*g(x).diff(x).diff(x), x)
ref4 = -((g(x - Rational(3, 2)) - 2*g(x - S.Half) + g(x + S.Half))*f(x - S.Half)) \
+ (g(x - S.Half) - 2*g(x + S.Half) + g(x + Rational(3, 2)))*f(x + S.Half)
assert res4 == ref4
res5_expr = f(x).diff(x)*g(x).diff(x)
res5 = differentiate_finite(res5_expr, points=[x-h, x, x+h])
ref5 = (-2*f(x)/h + f(-h + x)/(2*h) + 3*f(h + x)/(2*h))*(-2*g(x)/h + g(-h + x)/(2*h) \
+ 3*g(h + x)/(2*h))/(2*h) - (2*f(x)/h - 3*f(-h + x)/(2*h) - \
f(h + x)/(2*h))*(2*g(x)/h - 3*g(-h + x)/(2*h) - g(h + x)/(2*h))/(2*h)
assert res5 == ref5
res6 = res5.limit(h, 0).doit()
ref6 = diff(res5_expr, x)
assert res6 == ref6
|
d4c8d6805c20485a7beef65fcb06b23748bccc0e9134359c87391a23a07ab8d9 | from sympy import S
from sympy.strategies.rl import (rm_id, glom, flatten, unpack, sort, distribute,
subs, rebuild)
from sympy import Basic
def test_rm_id():
rmzeros = rm_id(lambda x: x == 0)
assert rmzeros(Basic(0, 1)) == Basic(1)
assert rmzeros(Basic(0, 0)) == Basic(0)
assert rmzeros(Basic(2, 1)) == Basic(2, 1)
def test_glom():
from sympy import Add
from sympy.abc import x
key = lambda x: x.as_coeff_Mul()[1]
count = lambda x: x.as_coeff_Mul()[0]
newargs = lambda cnt, arg: cnt * arg
rl = glom(key, count, newargs)
result = rl(Add(x, -x, 3*x, 2, 3, evaluate=False))
expected = Add(3*x, 5)
assert set(result.args) == set(expected.args)
def test_flatten():
assert flatten(Basic(1, 2, Basic(3, 4))) == Basic(1, 2, 3, 4)
def test_unpack():
assert unpack(Basic(2)) == 2
assert unpack(Basic(2, 3)) == Basic(2, 3)
def test_sort():
assert sort(str)(Basic(3,1,2)) == Basic(1,2,3)
def test_distribute():
class T1(Basic): pass
class T2(Basic): pass
distribute_t12 = distribute(T1, T2)
assert distribute_t12(T1(1, 2, T2(3, 4), 5)) == \
T2(T1(1, 2, 3, 5),
T1(1, 2, 4, 5))
assert distribute_t12(T1(1, 2, 3)) == T1(1, 2, 3)
def test_distribute_add_mul():
from sympy import Add, Mul, symbols
x, y = symbols('x, y')
expr = Mul(2, Add(x, y), evaluate=False)
expected = Add(Mul(2, x), Mul(2, y))
distribute_mul = distribute(Mul, Add)
assert distribute_mul(expr) == expected
def test_subs():
rl = subs(1, 2)
assert rl(1) == 2
assert rl(3) == 3
def test_rebuild():
from sympy import Add
expr = Basic.__new__(Add, S(1), S(2))
assert rebuild(expr) == 3
|
43c87f55092f84e25e95725b9d6b44e309ddc31fb1e5acf79ddda0b23222f79c | from sympy.strategies.traverse import (top_down, bottom_up, sall, top_down_once,
bottom_up_once, basic_fns)
from sympy.strategies.rl import rebuild
from sympy.strategies.util import expr_fns
from sympy import Add, Basic, Symbol, S
from sympy.abc import x, y, z
def zero_symbols(expression):
return S.Zero if isinstance(expression, Symbol) else expression
def test_sall():
zero_onelevel = sall(zero_symbols)
assert zero_onelevel(Basic(x, y, Basic(x, z))) == Basic(0, 0, Basic(x, z))
def test_bottom_up():
_test_global_traversal(bottom_up)
_test_stop_on_non_basics(bottom_up)
def test_top_down():
_test_global_traversal(top_down)
_test_stop_on_non_basics(top_down)
def _test_global_traversal(trav):
zero_all_symbols = trav(zero_symbols)
assert zero_all_symbols(Basic(x, y, Basic(x, z))) == \
Basic(0, 0, Basic(0, 0))
def _test_stop_on_non_basics(trav):
def add_one_if_can(expr):
try:
return expr + 1
except TypeError:
return expr
expr = Basic(1, 'a', Basic(2, 'b'))
expected = Basic(2, 'a', Basic(3, 'b'))
rl = trav(add_one_if_can)
assert rl(expr) == expected
class Basic2(Basic):
pass
rl = lambda x: Basic2(*x.args) if isinstance(x, Basic) else x
def test_top_down_once():
top_rl = top_down_once(rl)
assert top_rl(Basic(1, 2, Basic(3, 4))) == Basic2(1, 2, Basic(3, 4))
def test_bottom_up_once():
bottom_rl = bottom_up_once(rl)
assert bottom_rl(Basic(1, 2, Basic(3, 4))) == Basic(1, 2, Basic2(3, 4))
def test_expr_fns():
expr = x + y**3
e = bottom_up(lambda v: v + 1, expr_fns)(expr)
b = bottom_up(lambda v: Basic.__new__(Add, v, S(1)), basic_fns)(expr)
assert rebuild(b) == e
|
62a5574f68335da8bd83d53d217828d248653f93fcd17f306ac8d0e7c8b7a945 | from sympy import S
from sympy.strategies.core import (null_safe, exhaust, memoize, condition,
chain, tryit, do_one, debug, switch, minimize)
from sympy.core.compatibility import get_function_name
def test_null_safe():
def rl(expr):
if expr == 1:
return 2
safe_rl = null_safe(rl)
assert rl(1) == safe_rl(1)
assert rl(3) == None
assert safe_rl(3) == 3
def posdec(x):
if x > 0:
return x-1
else:
return x
def test_exhaust():
sink = exhaust(posdec)
assert sink(5) == 0
assert sink(10) == 0
def test_memoize():
rl = memoize(posdec)
assert rl(5) == posdec(5)
assert rl(5) == posdec(5)
assert rl(-2) == posdec(-2)
def test_condition():
rl = condition(lambda x: x%2 == 0, posdec)
assert rl(5) == 5
assert rl(4) == 3
def test_chain():
rl = chain(posdec, posdec)
assert rl(5) == 3
assert rl(1) == 0
def test_tryit():
def rl(expr):
assert False
safe_rl = tryit(rl, AssertionError)
assert safe_rl(S(1)) == 1
def test_do_one():
rl = do_one(posdec, posdec)
assert rl(5) == 4
rl1 = lambda x: 2 if x == 1 else x
rl2 = lambda x: 3 if x == 2 else x
rule = do_one(rl1, rl2)
assert rule(1) == 2
assert rule(rule(1)) == 3
def test_debug():
from sympy.core.compatibility import StringIO
file = StringIO()
rl = debug(posdec, file)
rl(5)
log = file.getvalue()
file.close()
assert get_function_name(posdec) in log
assert '5' in log
assert '4' in log
def test_switch():
inc = lambda x: x + 1
dec = lambda x: x - 1
key = lambda x: x % 3
rl = switch(key, {0: inc, 1: dec})
assert rl(3) == 4
assert rl(4) == 3
assert rl(5) == 5
def test_minimize():
inc = lambda x: x + 1
dec = lambda x: x - 1
rl = minimize(inc, dec)
assert rl(4) == 3
rl = minimize(inc, dec, objective=lambda x: -x)
assert rl(4) == 5
|
4caaf29e17ce80f5ae119defc97a1299719b4808f66fb3099a138065096f28b3 | from sympy.strategies.branch.core import (exhaust, debug, multiplex,
condition, notempty, chain, onaction, sfilter, yieldify, do_one,
identity)
from sympy.core.compatibility import get_function_name
def posdec(x):
if x > 0:
yield x-1
else:
yield x
def branch5(x):
if 0 < x < 5:
yield x-1
elif 5 < x < 10:
yield x+1
elif x == 5:
yield x+1
yield x-1
else:
yield x
even = lambda x: x%2 == 0
def inc(x):
yield x + 1
def one_to_n(n):
for i in range(n):
yield i
def test_exhaust():
brl = exhaust(branch5)
assert set(brl(3)) == {0}
assert set(brl(7)) == {10}
assert set(brl(5)) == {0, 10}
def test_debug():
from sympy.core.compatibility import StringIO
file = StringIO()
rl = debug(posdec, file)
list(rl(5))
log = file.getvalue()
file.close()
assert get_function_name(posdec) in log
assert '5' in log
assert '4' in log
def test_multiplex():
brl = multiplex(posdec, branch5)
assert set(brl(3)) == {2}
assert set(brl(7)) == {6, 8}
assert set(brl(5)) == {4, 6}
def test_condition():
brl = condition(even, branch5)
assert set(brl(4)) == set(branch5(4))
assert set(brl(5)) == set([])
def test_sfilter():
brl = sfilter(even, one_to_n)
assert set(brl(10)) == {0, 2, 4, 6, 8}
def test_notempty():
def ident_if_even(x):
if even(x):
yield x
brl = notempty(ident_if_even)
assert set(brl(4)) == {4}
assert set(brl(5)) == {5}
def test_chain():
assert list(chain()(2)) == [2] # identity
assert list(chain(inc, inc)(2)) == [4]
assert list(chain(branch5, inc)(4)) == [4]
assert set(chain(branch5, inc)(5)) == {5, 7}
assert list(chain(inc, branch5)(5)) == [7]
def test_onaction():
L = []
def record(fn, input, output):
L.append((input, output))
list(onaction(inc, record)(2))
assert L == [(2, 3)]
list(onaction(identity, record)(2))
assert L == [(2, 3)]
def test_yieldify():
inc = lambda x: x + 1
yinc = yieldify(inc)
assert list(yinc(3)) == [4]
def test_do_one():
def bad(expr):
raise ValueError()
yield False
assert list(do_one(inc)(3)) == [4]
assert list(do_one(inc, bad)(3)) == [4]
assert list(do_one(inc, posdec)(3)) == [4]
|
feeccc858ff347d422fcf0c16b2c8444463d4aac4bb274d33d4c7146820574a9 | from __future__ import (absolute_import, division, print_function)
import glob
import os
import shutil
import subprocess
import sys
import tempfile
import warnings
from distutils.errors import CompileError
from distutils.sysconfig import get_config_var
from .runners import (
CCompilerRunner,
CppCompilerRunner,
FortranCompilerRunner
)
from .util import (
get_abspath, make_dirs, copy, Glob, ArbitraryDepthGlob,
glob_at_depth, import_module_from_file, pyx_is_cplus,
sha256_of_string, sha256_of_file
)
sharedext = get_config_var('EXT_SUFFIX' if sys.version_info >= (3, 3) else 'SO')
if os.name == 'posix':
objext = '.o'
elif os.name == 'nt':
objext = '.obj'
else:
warnings.warn("Unknown os.name: {}".format(os.name))
objext = '.o'
def compile_sources(files, Runner=None, destdir=None, cwd=None, keep_dir_struct=False,
per_file_kwargs=None, **kwargs):
""" Compile source code files to object files.
Parameters
==========
files : iterable of str
Paths to source files, if ``cwd`` is given, the paths are taken as relative.
Runner: CompilerRunner subclass (optional)
Could be e.g. ``FortranCompilerRunner``. Will be inferred from filename
extensions if missing.
destdir: str
Output directory, if cwd is given, the path is taken as relative.
cwd: str
Working directory. Specify to have compiler run in other directory.
also used as root of relative paths.
keep_dir_struct: bool
Reproduce directory structure in `destdir`. default: ``False``
per_file_kwargs: dict
Dict mapping instances in ``files`` to keyword arguments.
\\*\\*kwargs: dict
Default keyword arguments to pass to ``Runner``.
"""
_per_file_kwargs = {}
if per_file_kwargs is not None:
for k, v in per_file_kwargs.items():
if isinstance(k, Glob):
for path in glob.glob(k.pathname):
_per_file_kwargs[path] = v
elif isinstance(k, ArbitraryDepthGlob):
for path in glob_at_depth(k.filename, cwd):
_per_file_kwargs[path] = v
else:
_per_file_kwargs[k] = v
# Set up destination directory
destdir = destdir or '.'
if not os.path.isdir(destdir):
if os.path.exists(destdir):
raise IOError("{} is not a directory".format(destdir))
else:
make_dirs(destdir)
if cwd is None:
cwd = '.'
for f in files:
copy(f, destdir, only_update=True, dest_is_dir=True)
# Compile files and return list of paths to the objects
dstpaths = []
for f in files:
if keep_dir_struct:
name, ext = os.path.splitext(f)
else:
name, ext = os.path.splitext(os.path.basename(f))
file_kwargs = kwargs.copy()
file_kwargs.update(_per_file_kwargs.get(f, {}))
dstpaths.append(src2obj(f, Runner, cwd=cwd, **file_kwargs))
return dstpaths
def get_mixed_fort_c_linker(vendor=None, cplus=False, cwd=None):
vendor = vendor or os.environ.get('SYMPY_COMPILER_VENDOR', 'gnu')
if vendor.lower() == 'intel':
if cplus:
return (FortranCompilerRunner,
{'flags': ['-nofor_main', '-cxxlib']}, vendor)
else:
return (FortranCompilerRunner,
{'flags': ['-nofor_main']}, vendor)
elif vendor.lower() == 'gnu' or 'llvm':
if cplus:
return (CppCompilerRunner,
{'lib_options': ['fortran']}, vendor)
else:
return (FortranCompilerRunner,
{}, vendor)
else:
raise ValueError("No vendor found.")
def link(obj_files, out_file=None, shared=False, Runner=None,
cwd=None, cplus=False, fort=False, **kwargs):
""" Link object files.
Parameters
==========
obj_files: iterable of str
Paths to object files.
out_file: str (optional)
Path to executable/shared library, if ``None`` it will be
deduced from the last item in obj_files.
shared: bool
Generate a shared library?
Runner: CompilerRunner subclass (optional)
If not given the ``cplus`` and ``fort`` flags will be inspected
(fallback is the C compiler).
cwd: str
Path to the root of relative paths and working directory for compiler.
cplus: bool
C++ objects? default: ``False``.
fort: bool
Fortran objects? default: ``False``.
\\*\\*kwargs: dict
Keyword arguments passed to ``Runner``.
Returns
=======
The absolute path to the generated shared object / executable.
"""
if out_file is None:
out_file, ext = os.path.splitext(os.path.basename(obj_files[-1]))
if shared:
out_file += sharedext
if not Runner:
if fort:
Runner, extra_kwargs, vendor = \
get_mixed_fort_c_linker(
vendor=kwargs.get('vendor', None),
cplus=cplus,
cwd=cwd,
)
for k, v in extra_kwargs.items():
if k in kwargs:
kwargs[k].expand(v)
else:
kwargs[k] = v
else:
if cplus:
Runner = CppCompilerRunner
else:
Runner = CCompilerRunner
flags = kwargs.pop('flags', [])
if shared:
if '-shared' not in flags:
flags.append('-shared')
run_linker = kwargs.pop('run_linker', True)
if not run_linker:
raise ValueError("run_linker was set to False (nonsensical).")
out_file = get_abspath(out_file, cwd=cwd)
runner = Runner(obj_files, out_file, flags, cwd=cwd, **kwargs)
runner.run()
return out_file
def link_py_so(obj_files, so_file=None, cwd=None, libraries=None,
cplus=False, fort=False, **kwargs):
""" Link python extension module (shared object) for importing
Parameters
==========
obj_files: iterable of str
Paths to object files to be linked.
so_file: str
Name (path) of shared object file to create. If not specified it will
have the basname of the last object file in `obj_files` but with the
extension '.so' (Unix).
cwd: path string
Root of relative paths and working directory of linker.
libraries: iterable of strings
Libraries to link against, e.g. ['m'].
cplus: bool
Any C++ objects? default: ``False``.
fort: bool
Any Fortran objects? default: ``False``.
kwargs**: dict
Keyword arguments passed to ``link(...)``.
Returns
=======
Absolute path to the generate shared object.
"""
libraries = libraries or []
include_dirs = kwargs.pop('include_dirs', [])
library_dirs = kwargs.pop('library_dirs', [])
# from distutils/command/build_ext.py:
if sys.platform == "win32":
warnings.warn("Windows not yet supported.")
elif sys.platform == 'darwin':
# Don't use the default code below
pass
elif sys.platform[:3] == 'aix':
# Don't use the default code below
pass
else:
from distutils import sysconfig
if sysconfig.get_config_var('Py_ENABLE_SHARED'):
ABIFLAGS = sysconfig.get_config_var('ABIFLAGS')
pythonlib = 'python{}.{}{}'.format(
sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff,
ABIFLAGS or '')
libraries += [pythonlib]
else:
pass
flags = kwargs.pop('flags', [])
needed_flags = ('-pthread',)
for flag in needed_flags:
if flag not in flags:
flags.append(flag)
return link(obj_files, shared=True, flags=flags, cwd=cwd,
cplus=cplus, fort=fort, include_dirs=include_dirs,
libraries=libraries, library_dirs=library_dirs, **kwargs)
def simple_cythonize(src, destdir=None, cwd=None, **cy_kwargs):
""" Generates a C file from a Cython source file.
Parameters
==========
src: str
Path to Cython source.
destdir: str (optional)
Path to output directory (default: '.').
cwd: path string (optional)
Root of relative paths (default: '.').
**cy_kwargs:
Second argument passed to cy_compile. Generates a .cpp file if ``cplus=True`` in ``cy_kwargs``,
else a .c file.
"""
from Cython.Compiler.Main import (
default_options, CompilationOptions
)
from Cython.Compiler.Main import compile as cy_compile
assert src.lower().endswith('.pyx') or src.lower().endswith('.py')
cwd = cwd or '.'
destdir = destdir or '.'
ext = '.cpp' if cy_kwargs.get('cplus', False) else '.c'
c_name = os.path.splitext(os.path.basename(src))[0] + ext
dstfile = os.path.join(destdir, c_name)
if cwd:
ori_dir = os.getcwd()
else:
ori_dir = '.'
os.chdir(cwd)
try:
cy_options = CompilationOptions(default_options)
cy_options.__dict__.update(cy_kwargs)
cy_result = cy_compile([src], cy_options)
if cy_result.num_errors > 0:
raise ValueError("Cython compilation failed.")
if os.path.abspath(os.path.dirname(src)) != os.path.abspath(destdir):
if os.path.exists(dstfile):
os.unlink(dstfile)
shutil.move(os.path.join(os.path.dirname(src), c_name), destdir)
finally:
os.chdir(ori_dir)
return dstfile
extension_mapping = {
'.c': (CCompilerRunner, None),
'.cpp': (CppCompilerRunner, None),
'.cxx': (CppCompilerRunner, None),
'.f': (FortranCompilerRunner, None),
'.for': (FortranCompilerRunner, None),
'.ftn': (FortranCompilerRunner, None),
'.f90': (FortranCompilerRunner, None), # ifort only knows about .f90
'.f95': (FortranCompilerRunner, 'f95'),
'.f03': (FortranCompilerRunner, 'f2003'),
'.f08': (FortranCompilerRunner, 'f2008'),
}
def src2obj(srcpath, Runner=None, objpath=None, cwd=None, inc_py=False, **kwargs):
""" Compiles a source code file to an object file.
Files ending with '.pyx' assumed to be cython files and
are dispatched to pyx2obj.
Parameters
==========
srcpath: str
Path to source file.
Runner: CompilerRunner subclass (optional)
If ``None``: deduced from extension of srcpath.
objpath : str (optional)
Path to generated object. If ``None``: deduced from ``srcpath``.
cwd: str (optional)
Working directory and root of relative paths. If ``None``: current dir.
inc_py: bool
Add Python include path to kwarg "include_dirs". Default: False
\\*\\*kwargs: dict
keyword arguments passed to Runner or pyx2obj
"""
name, ext = os.path.splitext(os.path.basename(srcpath))
if objpath is None:
if os.path.isabs(srcpath):
objpath = '.'
else:
objpath = os.path.dirname(srcpath)
objpath = objpath or '.' # avoid objpath == ''
if os.path.isdir(objpath):
objpath = os.path.join(objpath, name + objext)
include_dirs = kwargs.pop('include_dirs', [])
if inc_py:
from distutils.sysconfig import get_python_inc
py_inc_dir = get_python_inc()
if py_inc_dir not in include_dirs:
include_dirs.append(py_inc_dir)
if ext.lower() == '.pyx':
return pyx2obj(srcpath, objpath=objpath, include_dirs=include_dirs, cwd=cwd,
**kwargs)
if Runner is None:
Runner, std = extension_mapping[ext.lower()]
if 'std' not in kwargs:
kwargs['std'] = std
flags = kwargs.pop('flags', [])
needed_flags = ('-fPIC',)
for flag in needed_flags:
if flag not in flags:
flags.append(flag)
# src2obj implies not running the linker...
run_linker = kwargs.pop('run_linker', False)
if run_linker:
raise CompileError("src2obj called with run_linker=True")
runner = Runner([srcpath], objpath, include_dirs=include_dirs,
run_linker=run_linker, cwd=cwd, flags=flags, **kwargs)
runner.run()
return objpath
def pyx2obj(pyxpath, objpath=None, destdir=None, cwd=None,
include_dirs=None, cy_kwargs=None, cplus=None, **kwargs):
"""
Convenience function
If cwd is specified, pyxpath and dst are taken to be relative
If only_update is set to `True` the modification time is checked
and compilation is only run if the source is newer than the
destination
Parameters
==========
pyxpath: str
Path to Cython source file.
objpath: str (optional)
Path to object file to generate.
destdir: str (optional)
Directory to put generated C file. When ``None``: directory of ``objpath``.
cwd: str (optional)
Working directory and root of relative paths.
include_dirs: iterable of path strings (optional)
Passed onto src2obj and via cy_kwargs['include_path']
to simple_cythonize.
cy_kwargs: dict (optional)
Keyword arguments passed onto `simple_cythonize`
cplus: bool (optional)
Indicate whether C++ is used. default: auto-detect using ``.util.pyx_is_cplus``.
compile_kwargs: dict
keyword arguments passed onto src2obj
Returns
=======
Absolute path of generated object file.
"""
assert pyxpath.endswith('.pyx')
cwd = cwd or '.'
objpath = objpath or '.'
destdir = destdir or os.path.dirname(objpath)
abs_objpath = get_abspath(objpath, cwd=cwd)
if os.path.isdir(abs_objpath):
pyx_fname = os.path.basename(pyxpath)
name, ext = os.path.splitext(pyx_fname)
objpath = os.path.join(objpath, name + objext)
cy_kwargs = cy_kwargs or {}
cy_kwargs['output_dir'] = cwd
if cplus is None:
cplus = pyx_is_cplus(pyxpath)
cy_kwargs['cplus'] = cplus
interm_c_file = simple_cythonize(pyxpath, destdir=destdir, cwd=cwd, **cy_kwargs)
include_dirs = include_dirs or []
flags = kwargs.pop('flags', [])
needed_flags = ('-fwrapv', '-pthread', '-fPIC')
for flag in needed_flags:
if flag not in flags:
flags.append(flag)
options = kwargs.pop('options', [])
if kwargs.pop('strict_aliasing', False):
raise CompileError("Cython requires strict aliasing to be disabled.")
# Let's be explicit about standard
if cplus:
std = kwargs.pop('std', 'c++98')
else:
std = kwargs.pop('std', 'c99')
return src2obj(interm_c_file, objpath=objpath, cwd=cwd,
include_dirs=include_dirs, flags=flags, std=std,
options=options, inc_py=True, strict_aliasing=False,
**kwargs)
def _any_X(srcs, cls):
for src in srcs:
name, ext = os.path.splitext(src)
key = ext.lower()
if key in extension_mapping:
if extension_mapping[key][0] == cls:
return True
return False
def any_fortran_src(srcs):
return _any_X(srcs, FortranCompilerRunner)
def any_cplus_src(srcs):
return _any_X(srcs, CppCompilerRunner)
def compile_link_import_py_ext(sources, extname=None, build_dir='.', compile_kwargs=None,
link_kwargs=None):
""" Compiles sources to a shared object (python extension) and imports it
Sources in ``sources`` which is imported. If shared object is newer than the sources, they
are not recompiled but instead it is imported.
Parameters
==========
sources : string
List of paths to sources.
extname : string
Name of extension (default: ``None``).
If ``None``: taken from the last file in ``sources`` without extension.
build_dir: str
Path to directory in which objects files etc. are generated.
compile_kwargs: dict
keyword arguments passed to ``compile_sources``
link_kwargs: dict
keyword arguments passed to ``link_py_so``
Returns
=======
The imported module from of the python extension.
Examples
========
>>> mod = compile_link_import_py_ext(['fft.f90', 'conv.cpp', '_fft.pyx']) # doctest: +SKIP
>>> Aprim = mod.fft(A) # doctest: +SKIP
"""
if extname is None:
extname = os.path.splitext(os.path.basename(sources[-1]))[0]
compile_kwargs = compile_kwargs or {}
link_kwargs = link_kwargs or {}
try:
mod = import_module_from_file(os.path.join(build_dir, extname), sources)
except ImportError:
objs = compile_sources(list(map(get_abspath, sources)), destdir=build_dir,
cwd=build_dir, **compile_kwargs)
so = link_py_so(objs, cwd=build_dir, fort=any_fortran_src(sources),
cplus=any_cplus_src(sources), **link_kwargs)
mod = import_module_from_file(so)
return mod
def _write_sources_to_build_dir(sources, build_dir):
build_dir = build_dir or tempfile.mkdtemp()
if not os.path.isdir(build_dir):
raise OSError("Non-existent directory: ", build_dir)
source_files = []
for name, src in sources:
dest = os.path.join(build_dir, name)
differs = True
sha256_in_mem = sha256_of_string(src.encode('utf-8')).hexdigest()
if os.path.exists(dest):
if os.path.exists(dest + '.sha256'):
sha256_on_disk = open(dest + '.sha256', 'rt').read()
else:
sha256_on_disk = sha256_of_file(dest).hexdigest()
differs = sha256_on_disk != sha256_in_mem
if differs:
with open(dest, 'wt') as fh:
fh.write(src)
open(dest + '.sha256', 'wt').write(sha256_in_mem)
source_files.append(dest)
return source_files, build_dir
def compile_link_import_strings(sources, build_dir=None, **kwargs):
""" Compiles, links and imports extension module from source.
Parameters
==========
sources : iterable of name/source pair tuples
build_dir : string (default: None)
Path. ``None`` implies use a temporary directory.
**kwargs:
Keyword arguments passed onto `compile_link_import_py_ext`.
Returns
=======
mod : module
The compiled and imported extension module.
info : dict
Containing ``build_dir`` as 'build_dir'.
"""
source_files, build_dir = _write_sources_to_build_dir(sources, build_dir)
mod = compile_link_import_py_ext(source_files, build_dir=build_dir, **kwargs)
info = dict(build_dir=build_dir)
return mod, info
def compile_run_strings(sources, build_dir=None, clean=False, compile_kwargs=None, link_kwargs=None):
""" Compiles, links and runs a program built from sources.
Parameters
==========
sources : iterable of name/source pair tuples
build_dir : string (default: None)
Path. ``None`` implies use a temporary directory.
clean : bool
Whether to remove build_dir after use. This will only have an
effect if ``build_dir`` is ``None`` (which creates a temporary directory).
Passing ``clean == True`` and ``build_dir != None`` raises a ``ValueError``.
This will also set ``build_dir`` in returned info dictionary to ``None``.
compile_kwargs: dict
Keyword arguments passed onto ``compile_sources``
link_kwargs: dict
Keyword arguments passed onto ``link``
Returns
=======
(stdout, stderr): pair of strings
info: dict
Containing exit status as 'exit_status' and ``build_dir`` as 'build_dir'
"""
if clean and build_dir is not None:
raise ValueError("Automatic removal of build_dir is only available for temporary directory.")
try:
source_files, build_dir = _write_sources_to_build_dir(sources, build_dir)
objs = compile_sources(list(map(get_abspath, source_files)), destdir=build_dir,
cwd=build_dir, **(compile_kwargs or {}))
prog = link(objs, cwd=build_dir,
fort=any_fortran_src(source_files),
cplus=any_cplus_src(source_files), **(link_kwargs or {}))
p = subprocess.Popen([prog], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
exit_status = p.wait()
stdout, stderr = [txt.decode('utf-8') for txt in p.communicate()]
finally:
if clean and os.path.isdir(build_dir):
shutil.rmtree(build_dir)
build_dir = None
info = dict(exit_status=exit_status, build_dir=build_dir)
return (stdout, stderr), info
|
4d557b28b15edd43c3e54f641fe3af7041165c00ed0b93a5c340de82fe117ef7 | from __future__ import print_function, division, absolute_import
from typing import Callable, Dict, Optional, Tuple, Union
from collections import OrderedDict
from distutils.errors import CompileError
import os
import re
import subprocess
import sys
from .util import (
find_binary_of_command, unique_list
)
class CompilerRunner(object):
""" CompilerRunner base class.
Parameters
==========
sources : list of str
Paths to sources.
out : str
flags : iterable of str
Compiler flags.
run_linker : bool
compiler_name_exe : (str, str) tuple
Tuple of compiler name & command to call.
cwd : str
Path of root of relative paths.
include_dirs : list of str
Include directories.
libraries : list of str
Libraries to link against.
library_dirs : list of str
Paths to search for shared libraries.
std : str
Standard string, e.g. ``'c++11'``, ``'c99'``, ``'f2003'``.
define: iterable of strings
macros to define
undef : iterable of strings
macros to undefine
preferred_vendor : string
name of preferred vendor e.g. 'gnu' or 'intel'
Methods
=======
run():
Invoke compilation as a subprocess.
"""
# Subclass to vendor/binary dict
compiler_dict = None # type: Dict[str, str]
# Standards should be a tuple of supported standards
# (first one will be the default)
standards = None # type: Tuple[Union[None, str], ...]
# Subclass to dict of binary/formater-callback
std_formater = None # type: Dict[str, Callable[[Optional[str]], str]]
# subclass to be e.g. {'gcc': 'gnu', ...}
compiler_name_vendor_mapping = None # type: Dict[str, str]
def __init__(self, sources, out, flags=None, run_linker=True, compiler=None, cwd='.',
include_dirs=None, libraries=None, library_dirs=None, std=None, define=None,
undef=None, strict_aliasing=None, preferred_vendor=None, **kwargs):
if isinstance(sources, str):
raise ValueError("Expected argument sources to be a list of strings.")
self.sources = list(sources)
self.out = out
self.flags = flags or []
self.cwd = cwd
if compiler:
self.compiler_name, self.compiler_binary = compiler
else:
# Find a compiler
if preferred_vendor is None:
preferred_vendor = os.environ.get('SYMPY_COMPILER_VENDOR', None)
self.compiler_name, self.compiler_binary, self.compiler_vendor = self.find_compiler(preferred_vendor)
if self.compiler_binary is None:
raise ValueError("No compiler found (searched: {0})".format(', '.join(self.compiler_dict.values())))
self.define = define or []
self.undef = undef or []
self.include_dirs = include_dirs or []
self.libraries = libraries or []
self.library_dirs = library_dirs or []
self.std = std or self.standards[0]
self.run_linker = run_linker
if self.run_linker:
# both gnu and intel compilers use '-c' for disabling linker
self.flags = list(filter(lambda x: x != '-c', self.flags))
else:
if '-c' not in self.flags:
self.flags.append('-c')
if self.std:
self.flags.append(self.std_formater[
self.compiler_name](self.std))
self.linkline = []
if strict_aliasing is not None:
nsa_re = re.compile("no-strict-aliasing$")
sa_re = re.compile("strict-aliasing$")
if strict_aliasing is True:
if any(map(nsa_re.match, flags)):
raise CompileError("Strict aliasing cannot be both enforced and disabled")
elif any(map(sa_re.match, flags)):
pass # already enforced
else:
flags.append('-fstrict-aliasing')
elif strict_aliasing is False:
if any(map(nsa_re.match, flags)):
pass # already disabled
else:
if any(map(sa_re.match, flags)):
raise CompileError("Strict aliasing cannot be both enforced and disabled")
else:
flags.append('-fno-strict-aliasing')
else:
msg = "Expected argument strict_aliasing to be True/False, got {}"
raise ValueError(msg.format(strict_aliasing))
@classmethod
def find_compiler(cls, preferred_vendor=None):
""" Identify a suitable C/fortran/other compiler. """
candidates = list(cls.compiler_dict.keys())
if preferred_vendor:
if preferred_vendor in candidates:
candidates = [preferred_vendor]+candidates
else:
raise ValueError("Unknown vendor {}".format(preferred_vendor))
name, path = find_binary_of_command([cls.compiler_dict[x] for x in candidates])
return name, path, cls.compiler_name_vendor_mapping[name]
def cmd(self):
""" List of arguments (str) to be passed to e.g. ``subprocess.Popen``. """
cmd = (
[self.compiler_binary] +
self.flags +
['-U'+x for x in self.undef] +
['-D'+x for x in self.define] +
['-I'+x for x in self.include_dirs] +
self.sources
)
if self.run_linker:
cmd += (['-L'+x for x in self.library_dirs] +
['-l'+x for x in self.libraries] +
self.linkline)
counted = []
for envvar in re.findall(r'\$\{(\w+)\}', ' '.join(cmd)):
if os.getenv(envvar) is None:
if envvar not in counted:
counted.append(envvar)
msg = "Environment variable '{}' undefined.".format(envvar)
raise CompileError(msg)
return cmd
def run(self):
self.flags = unique_list(self.flags)
# Append output flag and name to tail of flags
self.flags.extend(['-o', self.out])
env = os.environ.copy()
env['PWD'] = self.cwd
# NOTE: intel compilers seems to need shell=True
p = subprocess.Popen(' '.join(self.cmd()),
shell=True,
cwd=self.cwd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
env=env)
comm = p.communicate()
if sys.version_info[0] == 2:
self.cmd_outerr = comm[0]
else:
try:
self.cmd_outerr = comm[0].decode('utf-8')
except UnicodeDecodeError:
self.cmd_outerr = comm[0].decode('iso-8859-1') # win32
self.cmd_returncode = p.returncode
# Error handling
if self.cmd_returncode != 0:
msg = "Error executing '{0}' in {1} (exited status {2}):\n {3}\n".format(
' '.join(self.cmd()), self.cwd, str(self.cmd_returncode), self.cmd_outerr
)
raise CompileError(msg)
return self.cmd_outerr, self.cmd_returncode
class CCompilerRunner(CompilerRunner):
compiler_dict = OrderedDict([
('gnu', 'gcc'),
('intel', 'icc'),
('llvm', 'clang'),
])
standards = ('c89', 'c90', 'c99', 'c11') # First is default
std_formater = {
'gcc': '-std={}'.format,
'icc': '-std={}'.format,
'clang': '-std={}'.format,
}
compiler_name_vendor_mapping = {
'gcc': 'gnu',
'icc': 'intel',
'clang': 'llvm'
}
def _mk_flag_filter(cmplr_name): # helper for class initialization
not_welcome = {'g++': ("Wimplicit-interface",)} # "Wstrict-prototypes",)}
if cmplr_name in not_welcome:
def fltr(x):
for nw in not_welcome[cmplr_name]:
if nw in x:
return False
return True
else:
def fltr(x):
return True
return fltr
class CppCompilerRunner(CompilerRunner):
compiler_dict = OrderedDict([
('gnu', 'g++'),
('intel', 'icpc'),
('llvm', 'clang++'),
])
# First is the default, c++0x == c++11
standards = ('c++98', 'c++0x')
std_formater = {
'g++': '-std={}'.format,
'icpc': '-std={}'.format,
'clang++': '-std={}'.format,
}
compiler_name_vendor_mapping = {
'g++': 'gnu',
'icpc': 'intel',
'clang++': 'llvm'
}
class FortranCompilerRunner(CompilerRunner):
standards = (None, 'f77', 'f95', 'f2003', 'f2008')
std_formater = {
'gfortran': lambda x: '-std=gnu' if x is None else '-std=legacy' if x == 'f77' else '-std={}'.format(x),
'ifort': lambda x: '-stand f08' if x is None else '-stand f{}'.format(x[-2:]), # f2008 => f08
}
compiler_dict = OrderedDict([
('gnu', 'gfortran'),
('intel', 'ifort'),
])
compiler_name_vendor_mapping = {
'gfortran': 'gnu',
'ifort': 'intel',
}
|
4c181a17d08c7385ebc4dbe70b28ac4161ed721b31f700ed45ddd82b80de9268 | from __future__ import (absolute_import, division, print_function)
from collections import namedtuple
from hashlib import sha256
import os
import shutil
import sys
import tempfile
import fnmatch
from sympy.testing.pytest import XFAIL
def may_xfail(func):
if sys.platform.lower() == 'darwin' or os.name == 'nt':
# sympy.utilities._compilation needs more testing on Windows and macOS
# once those two platforms are reliably supported this xfail decorator
# may be removed.
return XFAIL(func)
else:
return func
if sys.version_info[0] == 2:
class FileNotFoundError(IOError):
pass
class TemporaryDirectory(object):
def __init__(self):
self.path = tempfile.mkdtemp()
def __enter__(self):
return self.path
def __exit__(self, exc, value, tb):
shutil.rmtree(self.path)
else:
FileNotFoundError = FileNotFoundError
TemporaryDirectory = tempfile.TemporaryDirectory
class CompilerNotFoundError(FileNotFoundError):
pass
def get_abspath(path, cwd='.'):
""" Returns the aboslute path.
Parameters
==========
path : str
(relative) path.
cwd : str
Path to root of relative path.
"""
if os.path.isabs(path):
return path
else:
if not os.path.isabs(cwd):
cwd = os.path.abspath(cwd)
return os.path.abspath(
os.path.join(cwd, path)
)
def make_dirs(path):
""" Create directories (equivalent of ``mkdir -p``). """
if path[-1] == '/':
parent = os.path.dirname(path[:-1])
else:
parent = os.path.dirname(path)
if len(parent) > 0:
if not os.path.exists(parent):
make_dirs(parent)
if not os.path.exists(path):
os.mkdir(path, 0o777)
else:
assert os.path.isdir(path)
def copy(src, dst, only_update=False, copystat=True, cwd=None,
dest_is_dir=False, create_dest_dirs=False):
""" Variation of ``shutil.copy`` with extra options.
Parameters
==========
src : str
Path to source file.
dst : str
Path to destination.
only_update : bool
Only copy if source is newer than destination
(returns None if it was newer), default: ``False``.
copystat : bool
See ``shutil.copystat``. default: ``True``.
cwd : str
Path to working directory (root of relative paths).
dest_is_dir : bool
Ensures that dst is treated as a directory. default: ``False``
create_dest_dirs : bool
Creates directories if needed.
Returns
=======
Path to the copied file.
"""
if cwd: # Handle working directory
if not os.path.isabs(src):
src = os.path.join(cwd, src)
if not os.path.isabs(dst):
dst = os.path.join(cwd, dst)
if not os.path.exists(src): # Make sure source file extists
raise FileNotFoundError("Source: `{}` does not exist".format(src))
# We accept both (re)naming destination file _or_
# passing a (possible non-existent) destination directory
if dest_is_dir:
if not dst[-1] == '/':
dst = dst+'/'
else:
if os.path.exists(dst) and os.path.isdir(dst):
dest_is_dir = True
if dest_is_dir:
dest_dir = dst
dest_fname = os.path.basename(src)
dst = os.path.join(dest_dir, dest_fname)
else:
dest_dir = os.path.dirname(dst)
dest_fname = os.path.basename(dst)
if not os.path.exists(dest_dir):
if create_dest_dirs:
make_dirs(dest_dir)
else:
raise FileNotFoundError("You must create directory first.")
if only_update:
# This function is not defined:
# XXX: This branch is clearly not tested!
if not missing_or_other_newer(dst, src): # noqa
return
if os.path.islink(dst):
dst = os.path.abspath(os.path.realpath(dst), cwd=cwd)
shutil.copy(src, dst)
if copystat:
shutil.copystat(src, dst)
return dst
Glob = namedtuple('Glob', 'pathname')
ArbitraryDepthGlob = namedtuple('ArbitraryDepthGlob', 'filename')
def glob_at_depth(filename_glob, cwd=None):
if cwd is not None:
cwd = '.'
globbed = []
for root, dirs, filenames in os.walk(cwd):
for fn in filenames:
# This is not tested:
if fnmatch.fnmatch(fn, filename_glob):
globbed.append(os.path.join(root, fn))
return globbed
def sha256_of_file(path, nblocks=128):
""" Computes the SHA256 hash of a file.
Parameters
==========
path : string
Path to file to compute hash of.
nblocks : int
Number of blocks to read per iteration.
Returns
=======
hashlib sha256 hash object. Use ``.digest()`` or ``.hexdigest()``
on returned object to get binary or hex encoded string.
"""
sh = sha256()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(nblocks*sh.block_size), b''):
sh.update(chunk)
return sh
def sha256_of_string(string):
""" Computes the SHA256 hash of a string. """
sh = sha256()
sh.update(string)
return sh
def pyx_is_cplus(path):
"""
Inspect a Cython source file (.pyx) and look for comment line like:
# distutils: language = c++
Returns True if such a file is present in the file, else False.
"""
for line in open(path, 'rt'):
if line.startswith('#') and '=' in line:
splitted = line.split('=')
if len(splitted) != 2:
continue
lhs, rhs = splitted
if lhs.strip().split()[-1].lower() == 'language' and \
rhs.strip().split()[0].lower() == 'c++':
return True
return False
def import_module_from_file(filename, only_if_newer_than=None):
""" Imports python extension (from shared object file)
Provide a list of paths in `only_if_newer_than` to check
timestamps of dependencies. import_ raises an ImportError
if any is newer.
Word of warning: The OS may cache shared objects which makes
reimporting same path of an shared object file very problematic.
It will not detect the new time stamp, nor new checksum, but will
instead silently use old module. Use unique names for this reason.
Parameters
==========
filename : str
Path to shared object.
only_if_newer_than : iterable of strings
Paths to dependencies of the shared object.
Raises
======
``ImportError`` if any of the files specified in ``only_if_newer_than`` are newer
than the file given by filename.
"""
path, name = os.path.split(filename)
name, ext = os.path.splitext(name)
name = name.split('.')[0]
if sys.version_info[0] == 2:
from imp import find_module, load_module
fobj, filename, data = find_module(name, [path])
if only_if_newer_than:
for dep in only_if_newer_than:
if os.path.getmtime(filename) < os.path.getmtime(dep):
raise ImportError("{} is newer than {}".format(dep, filename))
mod = load_module(name, fobj, filename, data)
else:
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
if spec is None:
raise ImportError("Failed to import: '%s'" % filename)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
return mod
def find_binary_of_command(candidates):
""" Finds binary first matching name among candidates.
Calls `find_executable` from distuils for provided candidates and returns
first hit.
Parameters
==========
candidates : iterable of str
Names of candidate commands
Raises
======
CompilerNotFoundError if no candidates match.
"""
from distutils.spawn import find_executable
for c in candidates:
binary_path = find_executable(c)
if c and binary_path:
return c, binary_path
raise CompilerNotFoundError('No binary located for candidates: {}'.format(candidates))
def unique_list(l):
""" Uniquify a list (skip duplicate items). """
result = []
for x in l:
if x not in result:
result.append(x)
return result
|
15bbae0f5f160629979cbac173b5d15b52760ce07b72c0c94cbab0c44b2c6b95 | # Tests that require installed backends go into
# sympy/test_external/test_autowrap
import os
import tempfile
import shutil
from sympy.core import symbols, Eq
from sympy.core.compatibility import StringIO
from sympy.utilities.autowrap import (autowrap, binary_function,
CythonCodeWrapper, UfuncifyCodeWrapper, CodeWrapper)
from sympy.utilities.codegen import (
CCodeGen, C99CodeGen, CodeGenArgumentListError, make_routine
)
from sympy.testing.pytest import raises
from sympy.testing.tmpfiles import TmpFileManager
def get_string(dump_fn, routines, prefix="file", **kwargs):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generator to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, **kwargs)
source = output.getvalue()
output.close()
return source
def test_cython_wrapper_scalar_function():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" double test(double x, double y, double z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" return test(x, y, z)")
assert source == expected
def test_cython_wrapper_outarg():
from sympy import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y):\n"
"\n"
" cdef double z = 0\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_inoutarg():
from sympy import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y + z))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_compile_flags():
from sympy import Equality
x, y, z = symbols('x,y,z')
routine = make_routine("test", Equality(z, x + y))
code_gen = CythonCodeWrapper(CCodeGen())
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=[],
library_dirs=[],
libraries=[],
extra_compile_args=['-std=c99'],
extra_link_args=[]
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
temp_dir = tempfile.mkdtemp()
TmpFileManager.tmp_folder(temp_dir)
setup_file_path = os.path.join(temp_dir, 'setup.py')
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
code_gen = CythonCodeWrapper(CCodeGen(),
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math'],
extra_link_args=['-lswamp', '-ltrident'],
cythonize_options={'compiler_directives': {'boundscheck': False}}
)
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
import numpy as np
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include', np.get_include()],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._need_numpy = True
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
TmpFileManager.cleanup()
def test_cython_wrapper_unique_dummyvars():
from sympy import Dummy, Equality
x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
x_id, y_id, z_id = [str(d.dummy_index) for d in [x, y, z]]
expr = Equality(z, x + y)
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected_template = (
"cdef extern from 'file.h':\n"
" void test(double x_{x_id}, double y_{y_id}, double *z_{z_id})\n"
"\n"
"def test_c(double x_{x_id}, double y_{y_id}):\n"
"\n"
" cdef double z_{z_id} = 0\n"
" test(x_{x_id}, y_{y_id}, &z_{z_id})\n"
" return z_{z_id}")
expected = expected_template.format(x_id=x_id, y_id=y_id, z_id=z_id)
assert source == expected
def test_autowrap_dummy():
x, y, z = symbols('x y z')
# Uses DummyWrapper to test that codegen works as expected
f = autowrap(x + y, backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "nameless"
f = autowrap(Eq(z, x + y), backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy')
assert f() == str(x + y + z)
assert f.args == "x, y, z"
assert f.returns == "z"
def test_autowrap_args():
x, y, z = symbols('x y z')
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y),
backend='dummy', args=[x]))
f = autowrap(Eq(z, x + y), backend='dummy', args=[y, x])
assert f() == str(x + y)
assert f.args == "y, x"
assert f.returns == "z"
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y + z),
backend='dummy', args=[x, y]))
f = autowrap(Eq(z, x + y + z), backend='dummy', args=[y, x, z])
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy', args=(y, x, z))
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
def test_autowrap_store_files():
x, y = symbols('x y')
tmp = tempfile.mkdtemp()
TmpFileManager.tmp_folder(tmp)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
TmpFileManager.cleanup()
def test_autowrap_store_files_issue_gh12939():
x, y = symbols('x y')
tmp = './tmp'
try:
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
finally:
shutil.rmtree(tmp)
def test_binary_function():
x, y = symbols('x y')
f = binary_function('f', x + y, backend='dummy')
assert f._imp_() == str(x + y)
def test_ufuncify_source():
x, y, z = symbols('x,y,z')
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routine = make_routine("test", x + y + z)
source = get_string(code_wrapper.dump_c, [routine])
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void test_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
for (i = 0; i < n; i++) {
*((double *)out0) = test(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
}
}
PyUFuncGenericFunction test_funcs[1] = {&test_ufunc};
static char test_types[4] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *test_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
def test_ufuncify_source_multioutput():
x, y, z = symbols('x,y,z')
var_symbols = (x, y, z)
expr = x + y**3 + 10*z**2
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routines = [make_routine("func{}".format(i), expr.diff(var_symbols[i]), var_symbols) for i in range(len(var_symbols))]
source = get_string(code_wrapper.dump_c, routines, funcname='multitest')
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void multitest_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
char *out1 = args[4];
char *out2 = args[5];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
npy_intp out1_step = steps[4];
npy_intp out2_step = steps[5];
for (i = 0; i < n; i++) {
*((double *)out0) = func0(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out1) = func1(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out2) = func2(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
out1 += out1_step;
out2 += out2_step;
}
}
PyUFuncGenericFunction multitest_funcs[1] = {&multitest_ufunc};
static char multitest_types[6] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *multitest_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
|
d0bf0fb587e4b1ba682ee5665aded500d7815ad0ba1f4fb597c41f19aff829b1 | from textwrap import dedent
import sys
from subprocess import Popen, PIPE
import os
from sympy.utilities.misc import translate, replace, ordinal, rawlines, strlines
def test_translate():
abc = 'abc'
translate(abc, None, 'a') == 'bc'
translate(abc, None, '') == 'abc'
translate(abc, {'a': 'x'}, 'c') == 'xb'
assert translate(abc, {'a': 'bc'}, 'c') == 'bcb'
assert translate(abc, {'ab': 'x'}, 'c') == 'x'
assert translate(abc, {'ab': ''}, 'c') == ''
assert translate(abc, {'bc': 'x'}, 'c') == 'ab'
assert translate(abc, {'abc': 'x', 'a': 'y'}) == 'x'
u = chr(4096)
assert translate(abc, 'a', 'x', u) == 'xbc'
assert (u in translate(abc, 'a', u, u)) is True
def test_replace():
assert replace('abc', ('a', 'b')) == 'bbc'
assert replace('abc', {'a': 'Aa'}) == 'Aabc'
assert replace('abc', ('a', 'b'), ('c', 'C')) == 'bbC'
def test_ordinal():
assert ordinal(-1) == '-1st'
assert ordinal(0) == '0th'
assert ordinal(1) == '1st'
assert ordinal(2) == '2nd'
assert ordinal(3) == '3rd'
assert all(ordinal(i).endswith('th') for i in range(4, 21))
assert ordinal(100) == '100th'
assert ordinal(101) == '101st'
assert ordinal(102) == '102nd'
assert ordinal(103) == '103rd'
assert ordinal(104) == '104th'
assert ordinal(200) == '200th'
assert all(ordinal(i) == str(i) + 'th' for i in range(-220, -203))
def test_rawlines():
assert rawlines('a a\na') == "dedent('''\\\n a a\n a''')"
assert rawlines('a a') == "'a a'"
assert rawlines(strlines('\\le"ft')) == (
'(\n'
" '(\\n'\n"
' \'r\\\'\\\\le"ft\\\'\\n\'\n'
" ')'\n"
')')
def test_strlines():
q = 'this quote (") is in the middle'
# the following assert rhs was prepared with
# print(rawlines(strlines(q, 10)))
assert strlines(q, 10) == dedent('''\
(
'this quo'
'te (") i'
's in the'
' middle'
)''')
assert q == (
'this quo'
'te (") i'
's in the'
' middle'
)
q = "this quote (') is in the middle"
assert strlines(q, 20) == dedent('''\
(
"this quote (') is "
"in the middle"
)''')
assert strlines('\\left') == (
'(\n'
"r'\\left'\n"
')')
assert strlines('\\left', short=True) == r"r'\left'"
assert strlines('\\le"ft') == (
'(\n'
'r\'\\le"ft\'\n'
')')
q = 'this\nother line'
assert strlines(q) == rawlines(q)
def test_translate_args():
try:
translate(None, None, None, 'not_none')
except ValueError:
pass # Exception raised successfully
else:
assert False
assert translate('s', None, None, None) == 's'
try:
translate('s', 'a', 'bc')
except ValueError:
pass # Exception raised successfully
else:
assert False
def test_debug_output():
env = os.environ.copy()
env['SYMPY_DEBUG'] = 'True'
cmd = 'from sympy import *; x = Symbol("x"); print(integrate((1-cos(x))/x, x))'
cmdline = [sys.executable, '-c', cmd]
proc = Popen(cmdline, env=env, stdout=PIPE, stderr=PIPE)
out, err = proc.communicate()
out = out.decode('ascii') # utf-8?
err = err.decode('ascii')
expected = 'substituted: -x*(cos(x) - 1), u: 1/x, u_var: _u'
assert expected in err, err
|
4fe16957be17812a38c6d5de922c46619e2b3e5c952fc0e389ec6faa51e5682b | from sympy.core import S, symbols, Eq, pi, Catalan, EulerGamma, Function
from sympy.core.compatibility import StringIO
from sympy import Piecewise
from sympy import Equality
from sympy.matrices import Matrix, MatrixSymbol
from sympy.utilities.codegen import OctaveCodeGen, codegen, make_routine
from sympy.testing.pytest import raises
from sympy.testing.pytest import XFAIL
import sympy
x, y, z = symbols('x,y,z')
def test_empty_m_code():
code_gen = OctaveCodeGen()
output = StringIO()
code_gen.dump_m([], output, "file", header=False, empty=False)
source = output.getvalue()
assert source == ""
def test_m_simple_code():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Octave", header=False, empty=False)
assert result[0] == "test.m"
source = result[1]
expected = (
"function out1 = test(x, y, z)\n"
" out1 = z.*(x + y);\n"
"end\n"
)
assert source == expected
def test_m_simple_code_with_header():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Octave", header=True, empty=False)
assert result[0] == "test.m"
source = result[1]
expected = (
"function out1 = test(x, y, z)\n"
" %TEST Autogenerated by sympy\n"
" % Code generated with sympy " + sympy.__version__ + "\n"
" %\n"
" % See http://www.sympy.org/ for more information.\n"
" %\n"
" % This file is part of 'project'\n"
" out1 = z.*(x + y);\n"
"end\n"
)
assert source == expected
def test_m_simple_code_nameout():
expr = Equality(z, (x + y))
name_expr = ("test", expr)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function z = test(x, y)\n"
" z = x + y;\n"
"end\n"
)
assert source == expected
def test_m_numbersymbol():
name_expr = ("test", pi**Catalan)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function out1 = test()\n"
" out1 = pi^%s;\n"
"end\n"
) % Catalan.evalf(17)
assert source == expected
@XFAIL
def test_m_numbersymbol_no_inline():
# FIXME: how to pass inline=False to the OctaveCodePrinter?
name_expr = ("test", [pi**Catalan, EulerGamma])
result, = codegen(name_expr, "Octave", header=False,
empty=False, inline=False)
source = result[1]
expected = (
"function [out1, out2] = test()\n"
" Catalan = 0.915965594177219; % constant\n"
" EulerGamma = 0.5772156649015329; % constant\n"
" out1 = pi^Catalan;\n"
" out2 = EulerGamma;\n"
"end\n"
)
assert source == expected
def test_m_code_argument_order():
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y], language="octave")
code_gen = OctaveCodeGen()
output = StringIO()
code_gen.dump_m([routine], output, "test", header=False, empty=False)
source = output.getvalue()
expected = (
"function out1 = test(z, x, y)\n"
" out1 = x + y;\n"
"end\n"
)
assert source == expected
def test_multiple_results_m():
# Here the output order is the input order
expr1 = (x + y)*z
expr2 = (x - y)*z
name_expr = ("test", [expr1, expr2])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [out1, out2] = test(x, y, z)\n"
" out1 = z.*(x + y);\n"
" out2 = z.*(x - y);\n"
"end\n"
)
assert source == expected
def test_results_named_unordered():
# Here output order is based on name_expr
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [C, A, B] = test(x, y, z)\n"
" C = z.*(x + y);\n"
" A = z.*(x - y);\n"
" B = 2*x;\n"
"end\n"
)
assert source == expected
def test_results_named_ordered():
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "Octave", header=False, empty=False,
argument_sequence=(x, z, y))
assert result[0][0] == "test.m"
source = result[0][1]
expected = (
"function [C, A, B] = test(x, z, y)\n"
" C = z.*(x + y);\n"
" A = z.*(x - y);\n"
" B = 2*x;\n"
"end\n"
)
assert source == expected
def test_complicated_m_codegen():
from sympy import sin, cos, tan
name_expr = ("testlong",
[ ((sin(x) + cos(y) + tan(z))**3).expand(),
cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))
])
result = codegen(name_expr, "Octave", header=False, empty=False)
assert result[0][0] == "testlong.m"
source = result[0][1]
expected = (
"function [out1, out2] = testlong(x, y, z)\n"
" out1 = sin(x).^3 + 3*sin(x).^2.*cos(y) + 3*sin(x).^2.*tan(z)"
" + 3*sin(x).*cos(y).^2 + 6*sin(x).*cos(y).*tan(z) + 3*sin(x).*tan(z).^2"
" + cos(y).^3 + 3*cos(y).^2.*tan(z) + 3*cos(y).*tan(z).^2 + tan(z).^3;\n"
" out2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n"
"end\n"
)
assert source == expected
def test_m_output_arg_mixed_unordered():
# named outputs are alphabetical, unnamed output appear in the given order
from sympy import sin, cos
a = symbols("a")
name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))])
result, = codegen(name_expr, "Octave", header=False, empty=False)
assert result[0] == "foo.m"
source = result[1];
expected = (
'function [out1, y, out3, a] = foo(x)\n'
' out1 = cos(2*x);\n'
' y = sin(x);\n'
' out3 = cos(x);\n'
' a = sin(2*x);\n'
'end\n'
)
assert source == expected
def test_m_piecewise_():
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False)
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function out1 = pwtest(x)\n"
" out1 = ((x < -1).*(0) + (~(x < -1)).*( ...\n"
" (x <= 1).*(x.^2) + (~(x <= 1)).*( ...\n"
" (x > 1).*(2 - x) + (~(x > 1)).*(1))));\n"
"end\n"
)
assert source == expected
@XFAIL
def test_m_piecewise_no_inline():
# FIXME: how to pass inline=False to the OctaveCodePrinter?
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True))
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Octave", header=False, empty=False,
inline=False)
source = result[1]
expected = (
"function out1 = pwtest(x)\n"
" if (x < -1)\n"
" out1 = 0;\n"
" elseif (x <= 1)\n"
" out1 = x.^2;\n"
" elseif (x > 1)\n"
" out1 = -x + 2;\n"
" else\n"
" out1 = 1;\n"
" end\n"
"end\n"
)
assert source == expected
def test_m_multifcns_per_file():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Octave", header=False, empty=False)
assert result[0][0] == "foo.m"
source = result[0][1];
expected = (
"function [out1, out2] = foo(x, y)\n"
" out1 = 2*x;\n"
" out2 = 3*y;\n"
"end\n"
"function [out1, out2] = bar(y)\n"
" out1 = y.^2;\n"
" out2 = 4*y;\n"
"end\n"
)
assert source == expected
def test_m_multifcns_per_file_w_header():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Octave", header=True, empty=False)
assert result[0][0] == "foo.m"
source = result[0][1];
expected = (
"function [out1, out2] = foo(x, y)\n"
" %FOO Autogenerated by sympy\n"
" % Code generated with sympy " + sympy.__version__ + "\n"
" %\n"
" % See http://www.sympy.org/ for more information.\n"
" %\n"
" % This file is part of 'project'\n"
" out1 = 2*x;\n"
" out2 = 3*y;\n"
"end\n"
"function [out1, out2] = bar(y)\n"
" out1 = y.^2;\n"
" out2 = 4*y;\n"
"end\n"
)
assert source == expected
def test_m_filename_match_first_fcn():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
raises(ValueError, lambda: codegen(name_expr,
"Octave", prefix="bar", header=False, empty=False))
def test_m_matrix_named():
e2 = Matrix([[x, 2*y, pi*z]])
name_expr = ("test", Equality(MatrixSymbol('myout1', 1, 3), e2))
result = codegen(name_expr, "Octave", header=False, empty=False)
assert result[0][0] == "test.m"
source = result[0][1]
expected = (
"function myout1 = test(x, y, z)\n"
" myout1 = [x 2*y pi*z];\n"
"end\n"
)
assert source == expected
def test_m_matrix_named_matsym():
myout1 = MatrixSymbol('myout1', 1, 3)
e2 = Matrix([[x, 2*y, pi*z]])
name_expr = ("test", Equality(myout1, e2, evaluate=False))
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function myout1 = test(x, y, z)\n"
" myout1 = [x 2*y pi*z];\n"
"end\n"
)
assert source == expected
def test_m_matrix_output_autoname():
expr = Matrix([[x, x+y, 3]])
name_expr = ("test", expr)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function out1 = test(x, y)\n"
" out1 = [x x + y 3];\n"
"end\n"
)
assert source == expected
def test_m_matrix_output_autoname_2():
e1 = (x + y)
e2 = Matrix([[2*x, 2*y, 2*z]])
e3 = Matrix([[x], [y], [z]])
e4 = Matrix([[x, y], [z, 16]])
name_expr = ("test", (e1, e2, e3, e4))
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [out1, out2, out3, out4] = test(x, y, z)\n"
" out1 = x + y;\n"
" out2 = [2*x 2*y 2*z];\n"
" out3 = [x; y; z];\n"
" out4 = [x y; z 16];\n"
"end\n"
)
assert source == expected
def test_m_results_matrix_named_ordered():
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, Matrix([[1, 2, x]]))
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result, = codegen(name_expr, "Octave", header=False, empty=False,
argument_sequence=(x, z, y))
source = result[1]
expected = (
"function [C, A, B] = test(x, z, y)\n"
" C = z.*(x + y);\n"
" A = [1 2 x];\n"
" B = 2*x;\n"
"end\n"
)
assert source == expected
def test_m_matrixsymbol_slice():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 2, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [B, C, D] = test(A)\n"
" B = A(1, :);\n"
" C = A(2, :);\n"
" D = A(:, 3);\n"
"end\n"
)
assert source == expected
def test_m_matrixsymbol_slice2():
A = MatrixSymbol('A', 3, 4)
B = MatrixSymbol('B', 2, 2)
C = MatrixSymbol('C', 2, 2)
name_expr = ("test", [Equality(B, A[0:2, 0:2]),
Equality(C, A[0:2, 1:3])])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [B, C] = test(A)\n"
" B = A(1:2, 1:2);\n"
" C = A(1:2, 2:3);\n"
"end\n"
)
assert source == expected
def test_m_matrixsymbol_slice3():
A = MatrixSymbol('A', 8, 7)
B = MatrixSymbol('B', 2, 2)
C = MatrixSymbol('C', 4, 2)
name_expr = ("test", [Equality(B, A[6:, 1::3]),
Equality(C, A[::2, ::3])])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [B, C] = test(A)\n"
" B = A(7:end, 2:3:end);\n"
" C = A(1:2:end, 1:3:end);\n"
"end\n"
)
assert source == expected
def test_m_matrixsymbol_slice_autoname():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
name_expr = ("test", [Equality(B, A[0,:]), A[1,:], A[:,0], A[:,1]])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [B, out2, out3, out4] = test(A)\n"
" B = A(1, :);\n"
" out2 = A(2, :);\n"
" out3 = A(:, 1);\n"
" out4 = A(:, 2);\n"
"end\n"
)
assert source == expected
def test_m_loops():
# Note: an Octave programmer would probably vectorize this across one or
# more dimensions. Also, size(A) would be used rather than passing in m
# and n. Perhaps users would expect us to vectorize automatically here?
# Or is it possible to represent such things using IndexedBase?
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
result, = codegen(('mat_vec_mult', Eq(y[i], A[i, j]*x[j])), "Octave",
header=False, empty=False)
source = result[1]
expected = (
'function y = mat_vec_mult(A, m, n, x)\n'
' for i = 1:m\n'
' y(i) = 0;\n'
' end\n'
' for i = 1:m\n'
' for j = 1:n\n'
' y(i) = %(rhs)s + y(i);\n'
' end\n'
' end\n'
'end\n'
)
assert (source == expected % {'rhs': 'A(%s, %s).*x(j)' % (i, j)} or
source == expected % {'rhs': 'x(j).*A(%s, %s)' % (i, j)})
def test_m_tensor_loops_multiple_contractions():
# see comments in previous test about vectorizing
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A')
B = IndexedBase('B')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
result, = codegen(('tensorthing', Eq(y[i], B[j, k, l]*A[i, j, k, l])),
"Octave", header=False, empty=False)
source = result[1]
expected = (
'function y = tensorthing(A, B, m, n, o, p)\n'
' for i = 1:m\n'
' y(i) = 0;\n'
' end\n'
' for i = 1:m\n'
' for j = 1:n\n'
' for k = 1:o\n'
' for l = 1:p\n'
' y(i) = A(i, j, k, l).*B(j, k, l) + y(i);\n'
' end\n'
' end\n'
' end\n'
' end\n'
'end\n'
)
assert source == expected
def test_m_InOutArgument():
expr = Equality(x, x**2)
name_expr = ("mysqr", expr)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function x = mysqr(x)\n"
" x = x.^2;\n"
"end\n"
)
assert source == expected
def test_m_InOutArgument_order():
# can specify the order as (x, y)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Octave", header=False,
empty=False, argument_sequence=(x,y))
source = result[1]
expected = (
"function x = test(x, y)\n"
" x = x.^2 + y;\n"
"end\n"
)
assert source == expected
# make sure it gives (x, y) not (y, x)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function x = test(x, y)\n"
" x = x.^2 + y;\n"
"end\n"
)
assert source == expected
def test_m_not_supported():
f = Function('f')
name_expr = ("test", [f(x).diff(x), S.ComplexInfinity])
result, = codegen(name_expr, "Octave", header=False, empty=False)
source = result[1]
expected = (
"function [out1, out2] = test(x)\n"
" % unsupported: Derivative(f(x), x)\n"
" % unsupported: zoo\n"
" out1 = Derivative(f(x), x);\n"
" out2 = zoo;\n"
"end\n"
)
assert source == expected
def test_global_vars_octave():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "Octave", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"function out1 = f(x)\n"
" global y\n"
" out1 = x.*y;\n"
"end\n"
)
assert source == expected
result = codegen(('f', x*y+z), "Octave", header=False, empty=False,
argument_sequence=(x, y), global_vars=(z, t))
source = result[0][1]
expected = (
"function out1 = f(x, y)\n"
" global t z\n"
" out1 = x.*y + z;\n"
"end\n"
)
assert source == expected
|
1531799362794b3791280897164811bbb23df42efd13050c57ff8914c290e175 | import sys
import inspect
import copy
import pickle
from sympy.physics.units import meter
from sympy.testing.pytest import XFAIL
from sympy.core.basic import Atom, Basic
from sympy.core.core import BasicMeta
from sympy.core.singleton import SingletonRegistry
from sympy.core.symbol import Dummy, Symbol, Wild
from sympy.core.numbers import (E, I, pi, oo, zoo, nan, Integer,
Rational, Float)
from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational,
StrictGreaterThan, StrictLessThan, Unequality)
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.function import Derivative, Function, FunctionClass, Lambda, \
WildFunction
from sympy.sets.sets import Interval
from sympy.core.multidimensional import vectorize
from sympy.core.compatibility import HAS_GMPY
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy import symbols, S
from sympy.external import import_module
cloudpickle = import_module('cloudpickle')
excluded_attrs = set([
'_assumptions', # This is a local cache that isn't automatically filled on creation
'_mhash', # Cached after __hash__ is called but set to None after creation
'message', # This is an exception attribute that is present but deprecated in Py2 (can be removed when Py2 support is dropped
'is_EmptySet', # Deprecated from SymPy 1.5. This can be removed when is_EmptySet is removed.
])
def check(a, exclude=[], check_attr=True):
""" Check that pickling and copying round-trips.
"""
protocols = [0, 1, 2, copy.copy, copy.deepcopy]
# Python 2.x doesn't support the third pickling protocol
if sys.version_info >= (3,):
protocols.extend([3, 4])
if cloudpickle:
protocols.extend([cloudpickle])
for protocol in protocols:
if protocol in exclude:
continue
if callable(protocol):
if isinstance(a, BasicMeta):
# Classes can't be copied, but that's okay.
continue
b = protocol(a)
elif inspect.ismodule(protocol):
b = protocol.loads(protocol.dumps(a))
else:
b = pickle.loads(pickle.dumps(a, protocol))
d1 = dir(a)
d2 = dir(b)
assert set(d1) == set(d2)
if not check_attr:
continue
def c(a, b, d):
for i in d:
if i in excluded_attrs:
continue
if not hasattr(a, i):
continue
attr = getattr(a, i)
if not hasattr(attr, "__call__"):
assert hasattr(b, i), i
assert getattr(b, i) == attr, "%s != %s, protocol: %s" % (getattr(b, i), attr, protocol)
c(a, b, d1)
c(b, a, d2)
#================== core =========================
def test_core_basic():
for c in (Atom, Atom(),
Basic, Basic(),
# XXX: dynamically created types are not picklable
# BasicMeta, BasicMeta("test", (), {}),
SingletonRegistry, S):
check(c)
def test_core_symbol():
# make the Symbol a unique name that doesn't class with any other
# testing variable in this file since after this test the symbol
# having the same name will be cached as noncommutative
for c in (Dummy, Dummy("x", commutative=False), Symbol,
Symbol("_issue_3130", commutative=False), Wild, Wild("x")):
check(c)
def test_core_numbers():
for c in (Integer(2), Rational(2, 3), Float("1.2")):
check(c)
def test_core_float_copy():
# See gh-7457
y = Symbol("x") + 1.0
check(y) # does not raise TypeError ("argument is not an mpz")
def test_core_relational():
x = Symbol("x")
y = Symbol("y")
for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x, y),
LessThan, LessThan(x, y), Relational, Relational(x, y),
StrictGreaterThan, StrictGreaterThan(x, y), StrictLessThan,
StrictLessThan(x, y), Unequality, Unequality(x, y)):
check(c)
def test_core_add():
x = Symbol("x")
for c in (Add, Add(x, 4)):
check(c)
def test_core_mul():
x = Symbol("x")
for c in (Mul, Mul(x, 4)):
check(c)
def test_core_power():
x = Symbol("x")
for c in (Pow, Pow(x, 4)):
check(c)
def test_core_function():
x = Symbol("x")
for f in (Derivative, Derivative(x), Function, FunctionClass, Lambda,
WildFunction):
check(f)
def test_core_undefinedfunctions():
f = Function("f")
# Full XFAILed test below
exclude = list(range(5))
# https://github.com/cloudpipe/cloudpickle/issues/65
# https://github.com/cloudpipe/cloudpickle/issues/190
exclude.append(cloudpickle)
check(f, exclude=exclude)
@XFAIL
def test_core_undefinedfunctions_fail():
# This fails because f is assumed to be a class at sympy.basic.function.f
f = Function("f")
check(f)
def test_core_interval():
for c in (Interval, Interval(0, 2)):
check(c)
def test_core_multidimensional():
for c in (vectorize, vectorize(0)):
check(c)
def test_Singletons():
protocols = [0, 1, 2]
if sys.version_info >= (3,):
protocols.extend([3, 4])
copiers = [copy.copy, copy.deepcopy]
copiers += [lambda x: pickle.loads(pickle.dumps(x, proto))
for proto in protocols]
if cloudpickle:
copiers += [lambda x: cloudpickle.loads(cloudpickle.dumps(x))]
for obj in (Integer(-1), Integer(0), Integer(1), Rational(1, 2), pi, E, I,
oo, -oo, zoo, nan, S.GoldenRatio, S.TribonacciConstant,
S.EulerGamma, S.Catalan, S.EmptySet, S.IdentityFunction):
for func in copiers:
assert func(obj) is obj
#================== functions ===================
from sympy.functions import (Piecewise, lowergamma, acosh, chebyshevu,
chebyshevt, ln, chebyshevt_root, legendre, Heaviside, bernoulli, coth,
tanh, assoc_legendre, sign, arg, asin, DiracDelta, re, rf, Abs,
uppergamma, binomial, sinh, cos, cot, acos, acot, gamma, bell,
hermite, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh,
dirichlet_eta, Eijk, loggamma, erf, ceiling, im, fibonacci,
tribonacci, conjugate, tan, chebyshevu_root, floor, atanh, sqrt, sin,
atan, ff, lucas, atan2, polygamma, exp)
def test_functions():
one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh,
sign, arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot,
gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh,
acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im, fibonacci,
tribonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp)
two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial,
atan2, polygamma, hermite, legendre, uppergamma)
x, y, z = symbols("x,y,z")
others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z),
Piecewise( (0, x < -1), (x**2, x <= 1), (x**3, True)),
assoc_legendre)
for cls in one_var:
check(cls)
c = cls(x)
check(c)
for cls in two_var:
check(cls)
c = cls(x, y)
check(c)
for cls in others:
check(cls)
#================== geometry ====================
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
from sympy.geometry.ellipse import Circle, Ellipse
from sympy.geometry.line import Line, LinearEntity, Ray, Segment
from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle
def test_geometry():
p1 = Point(1, 2)
p2 = Point(2, 3)
p3 = Point(0, 0)
p4 = Point(0, 1)
for c in (
GeometryEntity, GeometryEntity(), Point, p1, Circle, Circle(p1, 2),
Ellipse, Ellipse(p1, 3, 4), Line, Line(p1, p2), LinearEntity,
LinearEntity(p1, p2), Ray, Ray(p1, p2), Segment, Segment(p1, p2),
Polygon, Polygon(p1, p2, p3, p4), RegularPolygon,
RegularPolygon(p1, 4, 5), Triangle, Triangle(p1, p2, p3)):
check(c, check_attr=False)
#================== integrals ====================
from sympy.integrals.integrals import Integral
def test_integrals():
x = Symbol("x")
for c in (Integral, Integral(x)):
check(c)
#==================== logic =====================
from sympy.core.logic import Logic
def test_logic():
for c in (Logic, Logic(1)):
check(c)
#================== matrices ====================
from sympy.matrices import Matrix, SparseMatrix
def test_matrices():
for c in (Matrix, Matrix([1, 2, 3]), SparseMatrix, SparseMatrix([[1, 2], [3, 4]])):
check(c)
#================== ntheory =====================
from sympy.ntheory.generate import Sieve
def test_ntheory():
for c in (Sieve, Sieve()):
check(c)
#================== physics =====================
from sympy.physics.paulialgebra import Pauli
from sympy.physics.units import Unit
def test_physics():
for c in (Unit, meter, Pauli, Pauli(1)):
check(c)
#================== plotting ====================
# XXX: These tests are not complete, so XFAIL them
@XFAIL
def test_plotting():
from sympy.plotting.pygletplot.color_scheme import ColorGradient, ColorScheme
from sympy.plotting.pygletplot.managed_window import ManagedWindow
from sympy.plotting.plot import Plot, ScreenShot
from sympy.plotting.pygletplot.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate
from sympy.plotting.pygletplot.plot_camera import PlotCamera
from sympy.plotting.pygletplot.plot_controller import PlotController
from sympy.plotting.pygletplot.plot_curve import PlotCurve
from sympy.plotting.pygletplot.plot_interval import PlotInterval
from sympy.plotting.pygletplot.plot_mode import PlotMode
from sympy.plotting.pygletplot.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \
ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical
from sympy.plotting.pygletplot.plot_object import PlotObject
from sympy.plotting.pygletplot.plot_surface import PlotSurface
from sympy.plotting.pygletplot.plot_window import PlotWindow
for c in (
ColorGradient, ColorGradient(0.2, 0.4), ColorScheme, ManagedWindow,
ManagedWindow, Plot, ScreenShot, PlotAxes, PlotAxesBase,
PlotAxesFrame, PlotAxesOrdinate, PlotCamera, PlotController,
PlotCurve, PlotInterval, PlotMode, Cartesian2D, Cartesian3D,
Cylindrical, ParametricCurve2D, ParametricCurve3D,
ParametricSurface, Polar, Spherical, PlotObject, PlotSurface,
PlotWindow):
check(c)
@XFAIL
def test_plotting2():
#from sympy.plotting.color_scheme import ColorGradient
from sympy.plotting.pygletplot.color_scheme import ColorScheme
#from sympy.plotting.managed_window import ManagedWindow
from sympy.plotting.plot import Plot
#from sympy.plotting.plot import ScreenShot
from sympy.plotting.pygletplot.plot_axes import PlotAxes
#from sympy.plotting.plot_axes import PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate
#from sympy.plotting.plot_camera import PlotCamera
#from sympy.plotting.plot_controller import PlotController
#from sympy.plotting.plot_curve import PlotCurve
#from sympy.plotting.plot_interval import PlotInterval
#from sympy.plotting.plot_mode import PlotMode
#from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \
# ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical
#from sympy.plotting.plot_object import PlotObject
#from sympy.plotting.plot_surface import PlotSurface
# from sympy.plotting.plot_window import PlotWindow
check(ColorScheme("rainbow"))
check(Plot(1, visible=False))
check(PlotAxes())
#================== polys =======================
from sympy import Poly, ZZ, QQ, lex
def test_pickling_polys_polytools():
from sympy.polys.polytools import PurePoly
# from sympy.polys.polytools import GroebnerBasis
x = Symbol('x')
for c in (Poly, Poly(x, x)):
check(c)
for c in (PurePoly, PurePoly(x)):
check(c)
# TODO: fix pickling of Options class (see GroebnerBasis._options)
# for c in (GroebnerBasis, GroebnerBasis([x**2 - 1], x, order=lex)):
# check(c)
def test_pickling_polys_polyclasses():
from sympy.polys.polyclasses import DMP, DMF, ANP
for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)):
check(c)
for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)):
check(c)
for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)):
check(c)
@XFAIL
def test_pickling_polys_rings():
# NOTE: can't use protocols < 2 because we have to execute __new__ to
# make sure caching of rings works properly.
from sympy.polys.rings import PolyRing
ring = PolyRing("x,y,z", ZZ, lex)
for c in (PolyRing, ring):
check(c, exclude=[0, 1])
for c in (ring.dtype, ring.one):
check(c, exclude=[0, 1], check_attr=False) # TODO: Py3k
def test_pickling_polys_fields():
pass
# NOTE: can't use protocols < 2 because we have to execute __new__ to
# make sure caching of fields works properly.
# from sympy.polys.fields import FracField
# field = FracField("x,y,z", ZZ, lex)
# TODO: AssertionError: assert id(obj) not in self.memo
# for c in (FracField, field):
# check(c, exclude=[0, 1])
# TODO: AssertionError: assert id(obj) not in self.memo
# for c in (field.dtype, field.one):
# check(c, exclude=[0, 1])
def test_pickling_polys_elements():
from sympy.polys.domains.pythonrational import PythonRational
#from sympy.polys.domains.pythonfinitefield import PythonFiniteField
#from sympy.polys.domains.mpelements import MPContext
for c in (PythonRational, PythonRational(1, 7)):
check(c)
#gf = PythonFiniteField(17)
# TODO: fix pickling of ModularInteger
# for c in (gf.dtype, gf(5)):
# check(c)
#mp = MPContext()
# TODO: fix pickling of RealElement
# for c in (mp.mpf, mp.mpf(1.0)):
# check(c)
# TODO: fix pickling of ComplexElement
# for c in (mp.mpc, mp.mpc(1.0, -1.5)):
# check(c)
def test_pickling_polys_domains():
# from sympy.polys.domains.pythonfinitefield import PythonFiniteField
from sympy.polys.domains.pythonintegerring import PythonIntegerRing
from sympy.polys.domains.pythonrationalfield import PythonRationalField
# TODO: fix pickling of ModularInteger
# for c in (PythonFiniteField, PythonFiniteField(17)):
# check(c)
for c in (PythonIntegerRing, PythonIntegerRing()):
check(c, check_attr=False)
for c in (PythonRationalField, PythonRationalField()):
check(c, check_attr=False)
if HAS_GMPY:
# from sympy.polys.domains.gmpyfinitefield import GMPYFiniteField
from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing
from sympy.polys.domains.gmpyrationalfield import GMPYRationalField
# TODO: fix pickling of ModularInteger
# for c in (GMPYFiniteField, GMPYFiniteField(17)):
# check(c)
for c in (GMPYIntegerRing, GMPYIntegerRing()):
check(c, check_attr=False)
for c in (GMPYRationalField, GMPYRationalField()):
check(c, check_attr=False)
#from sympy.polys.domains.realfield import RealField
#from sympy.polys.domains.complexfield import ComplexField
from sympy.polys.domains.algebraicfield import AlgebraicField
#from sympy.polys.domains.polynomialring import PolynomialRing
#from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.expressiondomain import ExpressionDomain
# TODO: fix pickling of RealElement
# for c in (RealField, RealField(100)):
# check(c)
# TODO: fix pickling of ComplexElement
# for c in (ComplexField, ComplexField(100)):
# check(c)
for c in (AlgebraicField, AlgebraicField(QQ, sqrt(3))):
check(c, check_attr=False)
# TODO: AssertionError
# for c in (PolynomialRing, PolynomialRing(ZZ, "x,y,z")):
# check(c)
# TODO: AttributeError: 'PolyElement' object has no attribute 'ring'
# for c in (FractionField, FractionField(ZZ, "x,y,z")):
# check(c)
for c in (ExpressionDomain, ExpressionDomain()):
check(c, check_attr=False)
def test_pickling_polys_numberfields():
from sympy.polys.numberfields import AlgebraicNumber
for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))):
check(c, check_attr=False)
def test_pickling_polys_orderings():
from sympy.polys.orderings import (LexOrder, GradedLexOrder,
ReversedGradedLexOrder, InverseOrder)
# from sympy.polys.orderings import ProductOrder
for c in (LexOrder, LexOrder()):
check(c)
for c in (GradedLexOrder, GradedLexOrder()):
check(c)
for c in (ReversedGradedLexOrder, ReversedGradedLexOrder()):
check(c)
# TODO: Argh, Python is so naive. No lambdas nor inner function support in
# pickling module. Maybe someone could figure out what to do with this.
#
# for c in (ProductOrder, ProductOrder((LexOrder(), lambda m: m[:2]),
# (GradedLexOrder(), lambda m: m[2:]))):
# check(c)
for c in (InverseOrder, InverseOrder(LexOrder())):
check(c)
def test_pickling_polys_monomials():
from sympy.polys.monomials import MonomialOps, Monomial
x, y, z = symbols("x,y,z")
for c in (MonomialOps, MonomialOps(3)):
check(c)
for c in (Monomial, Monomial((1, 2, 3), (x, y, z))):
check(c)
def test_pickling_polys_errors():
from sympy.polys.polyerrors import (HeuristicGCDFailed,
HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,
EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible,
NotReversible, NotAlgebraic, DomainError, PolynomialError,
UnificationFailed, GeneratorsError, GeneratorsNeeded,
UnivariatePolynomialError, MultivariatePolynomialError, OptionError,
FlagError)
# from sympy.polys.polyerrors import (ExactQuotientFailed,
# OperationNotSupported, ComputationFailed, PolificationFailed)
# x = Symbol('x')
# TODO: TypeError: __init__() takes at least 3 arguments (1 given)
# for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)):
# check(c)
# TODO: TypeError: can't pickle instancemethod objects
# for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)):
# check(c)
for c in (HeuristicGCDFailed, HeuristicGCDFailed()):
check(c)
for c in (HomomorphismFailed, HomomorphismFailed()):
check(c)
for c in (IsomorphismFailed, IsomorphismFailed()):
check(c)
for c in (ExtraneousFactors, ExtraneousFactors()):
check(c)
for c in (EvaluationFailed, EvaluationFailed()):
check(c)
for c in (RefinementFailed, RefinementFailed()):
check(c)
for c in (CoercionFailed, CoercionFailed()):
check(c)
for c in (NotInvertible, NotInvertible()):
check(c)
for c in (NotReversible, NotReversible()):
check(c)
for c in (NotAlgebraic, NotAlgebraic()):
check(c)
for c in (DomainError, DomainError()):
check(c)
for c in (PolynomialError, PolynomialError()):
check(c)
for c in (UnificationFailed, UnificationFailed()):
check(c)
for c in (GeneratorsError, GeneratorsError()):
check(c)
for c in (GeneratorsNeeded, GeneratorsNeeded()):
check(c)
# TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda>
# for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)):
# check(c)
for c in (UnivariatePolynomialError, UnivariatePolynomialError()):
check(c)
for c in (MultivariatePolynomialError, MultivariatePolynomialError()):
check(c)
# TODO: TypeError: __init__() takes at least 3 arguments (1 given)
# for c in (PolificationFailed, PolificationFailed({}, x, x, False)):
# check(c)
for c in (OptionError, OptionError()):
check(c)
for c in (FlagError, FlagError()):
check(c)
#def test_pickling_polys_options():
#from sympy.polys.polyoptions import Options
# TODO: fix pickling of `symbols' flag
# for c in (Options, Options((), dict(domain='ZZ', polys=False))):
# check(c)
# TODO: def test_pickling_polys_rootisolation():
# RealInterval
# ComplexInterval
def test_pickling_polys_rootoftools():
from sympy.polys.rootoftools import CRootOf, RootSum
x = Symbol('x')
f = x**3 + x + 3
for c in (CRootOf, CRootOf(f, 0)):
check(c)
for c in (RootSum, RootSum(f, exp)):
check(c)
#================== printing ====================
from sympy.printing.latex import LatexPrinter
from sympy.printing.mathml import MathMLContentPrinter, MathMLPresentationPrinter
from sympy.printing.pretty.pretty import PrettyPrinter
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.printer import Printer
from sympy.printing.python import PythonPrinter
def test_printing():
for c in (LatexPrinter, LatexPrinter(), MathMLContentPrinter,
MathMLPresentationPrinter, PrettyPrinter, prettyForm, stringPict,
stringPict("a"), Printer, Printer(), PythonPrinter,
PythonPrinter()):
check(c)
@XFAIL
def test_printing1():
check(MathMLContentPrinter())
@XFAIL
def test_printing2():
check(MathMLPresentationPrinter())
@XFAIL
def test_printing3():
check(PrettyPrinter())
#================== series ======================
from sympy.series.limits import Limit
from sympy.series.order import Order
def test_series():
e = Symbol("e")
x = Symbol("x")
for c in (Limit, Limit(e, x, 1), Order, Order(e)):
check(c)
#================== concrete ==================
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
def test_concrete():
x = Symbol("x")
for c in (Product, Product(x, (x, 2, 4)), Sum, Sum(x, (x, 2, 4))):
check(c)
def test_deprecation_warning():
w = SymPyDeprecationWarning('value', 'feature', issue=12345, deprecated_since_version='1.0')
check(w)
|
782f6eb21a1d579c99f1d8e1bb652607cefac1c017fdcdd7bc7c1d715a8f6809 | from sympy.core import S, symbols, pi, Catalan, EulerGamma, Function
from sympy.core.compatibility import StringIO
from sympy import Piecewise
from sympy import Equality
from sympy.utilities.codegen import RustCodeGen, codegen, make_routine
from sympy.testing.pytest import XFAIL
import sympy
x, y, z = symbols('x,y,z')
def test_empty_rust_code():
code_gen = RustCodeGen()
output = StringIO()
code_gen.dump_rs([], output, "file", header=False, empty=False)
source = output.getvalue()
assert source == ""
def test_simple_rust_code():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Rust", header=False, empty=False)
assert result[0] == "test.rs"
source = result[1]
expected = (
"fn test(x: f64, y: f64, z: f64) -> f64 {\n"
" let out1 = z*(x + y);\n"
" out1\n"
"}\n"
)
assert source == expected
def test_simple_code_with_header():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Rust", header=True, empty=False)
assert result[0] == "test.rs"
source = result[1]
version_str = "Code generated with sympy %s" % sympy.__version__
version_line = version_str.center(76).rstrip()
expected = (
"/*\n"
" *%(version_line)s\n"
" *\n"
" * See http://www.sympy.org/ for more information.\n"
" *\n"
" * This file is part of 'project'\n"
" */\n"
"fn test(x: f64, y: f64, z: f64) -> f64 {\n"
" let out1 = z*(x + y);\n"
" out1\n"
"}\n"
) % {'version_line': version_line}
assert source == expected
def test_simple_code_nameout():
expr = Equality(z, (x + y))
name_expr = ("test", expr)
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test(x: f64, y: f64) -> f64 {\n"
" let z = x + y;\n"
" z\n"
"}\n"
)
assert source == expected
def test_numbersymbol():
name_expr = ("test", pi**Catalan)
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test() -> f64 {\n"
" const Catalan: f64 = %s;\n"
" let out1 = PI.powf(Catalan);\n"
" out1\n"
"}\n"
) % Catalan.evalf(17)
assert source == expected
@XFAIL
def test_numbersymbol_inline():
# FIXME: how to pass inline to the RustCodePrinter?
name_expr = ("test", [pi**Catalan, EulerGamma])
result, = codegen(name_expr, "Rust", header=False,
empty=False, inline=True)
source = result[1]
expected = (
"fn test() -> (f64, f64) {\n"
" const Catalan: f64 = %s;\n"
" const EulerGamma: f64 = %s;\n"
" let out1 = PI.powf(Catalan);\n"
" let out2 = EulerGamma);\n"
" (out1, out2)\n"
"}\n"
) % (Catalan.evalf(17), EulerGamma.evalf(17))
assert source == expected
def test_argument_order():
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y], language="rust")
code_gen = RustCodeGen()
output = StringIO()
code_gen.dump_rs([routine], output, "test", header=False, empty=False)
source = output.getvalue()
expected = (
"fn test(z: f64, x: f64, y: f64) -> f64 {\n"
" let out1 = x + y;\n"
" out1\n"
"}\n"
)
assert source == expected
def test_multiple_results_rust():
# Here the output order is the input order
expr1 = (x + y)*z
expr2 = (x - y)*z
name_expr = ("test", [expr1, expr2])
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test(x: f64, y: f64, z: f64) -> (f64, f64) {\n"
" let out1 = z*(x + y);\n"
" let out2 = z*(x - y);\n"
" (out1, out2)\n"
"}\n"
)
assert source == expected
def test_results_named_unordered():
# Here output order is based on name_expr
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test(x: f64, y: f64, z: f64) -> (f64, f64, f64) {\n"
" let C = z*(x + y);\n"
" let A = z*(x - y);\n"
" let B = 2*x;\n"
" (C, A, B)\n"
"}\n"
)
assert source == expected
def test_results_named_ordered():
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "Rust", header=False, empty=False,
argument_sequence=(x, z, y))
assert result[0][0] == "test.rs"
source = result[0][1]
expected = (
"fn test(x: f64, z: f64, y: f64) -> (f64, f64, f64) {\n"
" let C = z*(x + y);\n"
" let A = z*(x - y);\n"
" let B = 2*x;\n"
" (C, A, B)\n"
"}\n"
)
assert source == expected
def test_complicated_rs_codegen():
from sympy import sin, cos, tan
name_expr = ("testlong",
[ ((sin(x) + cos(y) + tan(z))**3).expand(),
cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))
])
result = codegen(name_expr, "Rust", header=False, empty=False)
assert result[0][0] == "testlong.rs"
source = result[0][1]
expected = (
"fn testlong(x: f64, y: f64, z: f64) -> (f64, f64) {\n"
" let out1 = x.sin().powi(3) + 3*x.sin().powi(2)*y.cos()"
" + 3*x.sin().powi(2)*z.tan() + 3*x.sin()*y.cos().powi(2)"
" + 6*x.sin()*y.cos()*z.tan() + 3*x.sin()*z.tan().powi(2)"
" + y.cos().powi(3) + 3*y.cos().powi(2)*z.tan()"
" + 3*y.cos()*z.tan().powi(2) + z.tan().powi(3);\n"
" let out2 = (x + y + z).cos().cos().cos().cos()"
".cos().cos().cos().cos();\n"
" (out1, out2)\n"
"}\n"
)
assert source == expected
def test_output_arg_mixed_unordered():
# named outputs are alphabetical, unnamed output appear in the given order
from sympy import sin, cos
a = symbols("a")
name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))])
result, = codegen(name_expr, "Rust", header=False, empty=False)
assert result[0] == "foo.rs"
source = result[1];
expected = (
"fn foo(x: f64) -> (f64, f64, f64, f64) {\n"
" let out1 = (2*x).cos();\n"
" let y = x.sin();\n"
" let out3 = x.cos();\n"
" let a = (2*x).sin();\n"
" (out1, y, out3, a)\n"
"}\n"
)
assert source == expected
def test_piecewise_():
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False)
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn pwtest(x: f64) -> f64 {\n"
" let out1 = if (x < -1) {\n"
" 0\n"
" } else if (x <= 1) {\n"
" x.powi(2)\n"
" } else if (x > 1) {\n"
" 2 - x\n"
" } else {\n"
" 1\n"
" };\n"
" out1\n"
"}\n"
)
assert source == expected
@XFAIL
def test_piecewise_inline():
# FIXME: how to pass inline to the RustCodePrinter?
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True))
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Rust", header=False, empty=False,
inline=True)
source = result[1]
expected = (
"fn pwtest(x: f64) -> f64 {\n"
" let out1 = if (x < -1) { 0 } else if (x <= 1) { x.powi(2) }"
" else if (x > 1) { -x + 2 } else { 1 };\n"
" out1\n"
"}\n"
)
assert source == expected
def test_multifcns_per_file():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Rust", header=False, empty=False)
assert result[0][0] == "foo.rs"
source = result[0][1];
expected = (
"fn foo(x: f64, y: f64) -> (f64, f64) {\n"
" let out1 = 2*x;\n"
" let out2 = 3*y;\n"
" (out1, out2)\n"
"}\n"
"fn bar(y: f64) -> (f64, f64) {\n"
" let out1 = y.powi(2);\n"
" let out2 = 4*y;\n"
" (out1, out2)\n"
"}\n"
)
assert source == expected
def test_multifcns_per_file_w_header():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Rust", header=True, empty=False)
assert result[0][0] == "foo.rs"
source = result[0][1];
version_str = "Code generated with sympy %s" % sympy.__version__
version_line = version_str.center(76).rstrip()
expected = (
"/*\n"
" *%(version_line)s\n"
" *\n"
" * See http://www.sympy.org/ for more information.\n"
" *\n"
" * This file is part of 'project'\n"
" */\n"
"fn foo(x: f64, y: f64) -> (f64, f64) {\n"
" let out1 = 2*x;\n"
" let out2 = 3*y;\n"
" (out1, out2)\n"
"}\n"
"fn bar(y: f64) -> (f64, f64) {\n"
" let out1 = y.powi(2);\n"
" let out2 = 4*y;\n"
" (out1, out2)\n"
"}\n"
) % {'version_line': version_line}
assert source == expected
def test_filename_match_prefix():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result, = codegen(name_expr, "Rust", prefix="baz", header=False,
empty=False)
assert result[0] == "baz.rs"
def test_InOutArgument():
expr = Equality(x, x**2)
name_expr = ("mysqr", expr)
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn mysqr(x: f64) -> f64 {\n"
" let x = x.powi(2);\n"
" x\n"
"}\n"
)
assert source == expected
def test_InOutArgument_order():
# can specify the order as (x, y)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Rust", header=False,
empty=False, argument_sequence=(x,y))
source = result[1]
expected = (
"fn test(x: f64, y: f64) -> f64 {\n"
" let x = x.powi(2) + y;\n"
" x\n"
"}\n"
)
assert source == expected
# make sure it gives (x, y) not (y, x)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test(x: f64, y: f64) -> f64 {\n"
" let x = x.powi(2) + y;\n"
" x\n"
"}\n"
)
assert source == expected
def test_not_supported():
f = Function('f')
name_expr = ("test", [f(x).diff(x), S.ComplexInfinity])
result, = codegen(name_expr, "Rust", header=False, empty=False)
source = result[1]
expected = (
"fn test(x: f64) -> (f64, f64) {\n"
" // unsupported: Derivative(f(x), x)\n"
" // unsupported: zoo\n"
" let out1 = Derivative(f(x), x);\n"
" let out2 = zoo;\n"
" (out1, out2)\n"
"}\n"
)
assert source == expected
def test_global_vars_rust():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "Rust", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"fn f(x: f64) -> f64 {\n"
" let out1 = x*y;\n"
" out1\n"
"}\n"
)
assert source == expected
result = codegen(('f', x*y+z), "Rust", header=False, empty=False,
argument_sequence=(x, y), global_vars=(z, t))
source = result[0][1]
expected = (
"fn f(x: f64, y: f64) -> f64 {\n"
" let out1 = x*y + z;\n"
" out1\n"
"}\n"
)
assert source == expected
|
ff37cbc6daf09d3053cf43dd143b957b54c8ad09c8a2db0c39abda8e9e22ccdf | from itertools import zip_longest
from sympy.utilities.enumerative import (
list_visitor,
MultisetPartitionTraverser,
multiset_partitions_taocp
)
from sympy.utilities.iterables import _set_partitions
# first some functions only useful as test scaffolding - these provide
# straightforward, but slow reference implementations against which to
# compare the real versions, and also a comparison to verify that
# different versions are giving identical results.
def part_range_filter(partition_iterator, lb, ub):
"""
Filters (on the number of parts) a multiset partition enumeration
Arguments
=========
lb, and ub are a range (in the python slice sense) on the lpart
variable returned from a multiset partition enumeration. Recall
that lpart is 0-based (it points to the topmost part on the part
stack), so if you want to return parts of sizes 2,3,4,5 you would
use lb=1 and ub=5.
"""
for state in partition_iterator:
f, lpart, pstack = state
if lpart >= lb and lpart < ub:
yield state
def multiset_partitions_baseline(multiplicities, components):
"""Enumerates partitions of a multiset
Parameters
==========
multiplicities
list of integer multiplicities of the components of the multiset.
components
the components (elements) themselves
Returns
=======
Set of partitions. Each partition is tuple of parts, and each
part is a tuple of components (with repeats to indicate
multiplicity)
Notes
=====
Multiset partitions can be created as equivalence classes of set
partitions, and this function does just that. This approach is
slow and memory intensive compared to the more advanced algorithms
available, but the code is simple and easy to understand. Hence
this routine is strictly for testing -- to provide a
straightforward baseline against which to regress the production
versions. (This code is a simplified version of an earlier
production implementation.)
"""
canon = [] # list of components with repeats
for ct, elem in zip(multiplicities, components):
canon.extend([elem]*ct)
# accumulate the multiset partitions in a set to eliminate dups
cache = set()
n = len(canon)
for nc, q in _set_partitions(n):
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(canon[i])
canonical = tuple(
sorted([tuple(p) for p in rv]))
cache.add(canonical)
return cache
def compare_multiset_w_baseline(multiplicities):
"""
Enumerates the partitions of multiset with AOCP algorithm and
baseline implementation, and compare the results.
"""
letters = "abcdefghijklmnopqrstuvwxyz"
bl_partitions = multiset_partitions_baseline(multiplicities, letters)
# The partitions returned by the different algorithms may have
# their parts in different orders. Also, they generate partitions
# in different orders. Hence the sorting, and set comparison.
aocp_partitions = set()
for state in multiset_partitions_taocp(multiplicities):
p1 = tuple(sorted(
[tuple(p) for p in list_visitor(state, letters)]))
aocp_partitions.add(p1)
assert bl_partitions == aocp_partitions
def compare_multiset_states(s1, s2):
"""compare for equality two instances of multiset partition states
This is useful for comparing different versions of the algorithm
to verify correctness."""
# Comparison is physical, the only use of semantics is to ignore
# trash off the top of the stack.
f1, lpart1, pstack1 = s1
f2, lpart2, pstack2 = s2
if (lpart1 == lpart2) and (f1[0:lpart1+1] == f2[0:lpart2+1]):
if pstack1[0:f1[lpart1+1]] == pstack2[0:f2[lpart2+1]]:
return True
return False
def test_multiset_partitions_taocp():
"""Compares the output of multiset_partitions_taocp with a baseline
(set partition based) implementation."""
# Test cases should not be too large, since the baseline
# implementation is fairly slow.
multiplicities = [2,2]
compare_multiset_w_baseline(multiplicities)
multiplicities = [4,3,1]
compare_multiset_w_baseline(multiplicities)
def test_multiset_partitions_versions():
"""Compares Knuth-based versions of multiset_partitions"""
multiplicities = [5,2,2,1]
m = MultisetPartitionTraverser()
for s1, s2 in zip_longest(m.enum_all(multiplicities),
multiset_partitions_taocp(multiplicities)):
assert compare_multiset_states(s1, s2)
def subrange_exercise(mult, lb, ub):
"""Compare filter-based and more optimized subrange implementations
Helper for tests, called with both small and larger multisets.
"""
m = MultisetPartitionTraverser()
assert m.count_partitions(mult) == \
m.count_partitions_slow(mult)
# Note - multiple traversals from the same
# MultisetPartitionTraverser object cannot execute at the same
# time, hence make several instances here.
ma = MultisetPartitionTraverser()
mc = MultisetPartitionTraverser()
md = MultisetPartitionTraverser()
# Several paths to compute just the size two partitions
a_it = ma.enum_range(mult, lb, ub)
b_it = part_range_filter(multiset_partitions_taocp(mult), lb, ub)
c_it = part_range_filter(mc.enum_small(mult, ub), lb, sum(mult))
d_it = part_range_filter(md.enum_large(mult, lb), 0, ub)
for sa, sb, sc, sd in zip_longest(a_it, b_it, c_it, d_it):
assert compare_multiset_states(sa, sb)
assert compare_multiset_states(sa, sc)
assert compare_multiset_states(sa, sd)
def test_subrange():
# Quick, but doesn't hit some of the corner cases
mult = [4,4,2,1] # mississippi
lb = 1
ub = 2
subrange_exercise(mult, lb, ub)
def test_subrange_large():
# takes a second or so, depending on cpu, Python version, etc.
mult = [6,3,2,1]
lb = 4
ub = 7
subrange_exercise(mult, lb, ub)
|
11707b8e54709b40c7247c4cb663925ef7dcc96b9bab068f5c8bca381efd3948 | from sympy.testing.pytest import warns_deprecated_sympy, XFAIL
# See https://github.com/sympy/sympy/pull/18095
def test_deprecated_utilities():
with warns_deprecated_sympy():
import sympy.utilities.pytest # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.runtests # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.randtest # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.tmpfiles # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.quality_unicode # noqa:F401
# This fails because benchmarking isn't importable...
@XFAIL
def test_deprecated_benchmarking():
with warns_deprecated_sympy():
import sympy.utilities.benchmarking # noqa:F401
|
d1ad571a8815a1998e78ebfd0b6e6e470b00a1b88fe233997a1305533922eb60 | from itertools import product
import math
import inspect
import mpmath
from sympy.testing.pytest import raises
from sympy import (
symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational,
Float, Matrix, Lambda, Piecewise, exp, E, Integral, oo, I, Abs, Function,
true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum,
DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma,
digamma, RisingFactorial, besselj, bessely, besseli, besselk, S, beta,
MatrixSymbol, fresnelc, fresnels)
from sympy.functions.elementary.complexes import re, im, arg
from sympy.functions.special.polynomials import \
chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \
assoc_legendre, assoc_laguerre, jacobi
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import NumPyPrinter
from sympy.utilities.lambdify import implemented_function, lambdastr
from sympy.testing.pytest import skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.external import import_module
from sympy.functions.special.gamma_functions import uppergamma, lowergamma
import sympy
MutableDenseMatrix = Matrix
numpy = import_module('numpy')
scipy = import_module('scipy')
numexpr = import_module('numexpr')
tensorflow = import_module('tensorflow')
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w, x, y, z = symbols('w,x,y,z')
#================== Test different arguments =======================
def test_no_args():
f = lambdify([], 1)
raises(TypeError, lambda: f(-1))
assert f() == 1
def test_single_arg():
f = lambdify(x, 2*x)
assert f(1) == 2
def test_list_args():
f = lambdify([x, y], x + y)
assert f(1, 2) == 3
def test_nested_args():
f1 = lambdify([[w, x]], [w, x])
assert f1([91, 2]) == [91, 2]
raises(TypeError, lambda: f1(1, 2))
f2 = lambdify([(w, x), (y, z)], [w, x, y, z])
assert f2((18, 12), (73, 4)) == [18, 12, 73, 4]
raises(TypeError, lambda: f2(3, 4))
f3 = lambdify([w, [[[x]], y], z], [w, x, y, z])
assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44]
def test_str_args():
f = lambdify('x,y,z', 'z,y,x')
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_own_namespace_1():
myfunc = lambda x: 1
f = lambdify(x, sin(x), {"sin": myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_namespace_2():
def myfunc(x):
return 1
f = lambdify(x, sin(x), {'sin': myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0) == 0.0
def test_bad_args():
# no vargs given
raises(TypeError, lambda: lambdify(1))
# same with vector exprs
raises(TypeError, lambda: lambdify([1, 2]))
def test_atoms():
# Non-Symbol atoms should not be pulled out from the expression namespace
f = lambdify(x, pi + x, {"pi": 3.14})
assert f(0) == 3.14
f = lambdify(x, I + x, {"I": 1j})
assert f(1) == 1 + 1j
#================== Test different modules =========================
# high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted
@conserve_mpmath_dps
def test_sympy_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "sympy")
assert f(x) == sin(x)
prec = 1e-15
assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec
# arctan is in numpy module and should not be available
# The arctan below gives NameError. What is this supposed to test?
# raises(NameError, lambda: lambdify(x, arctan(x), "sympy"))
@conserve_mpmath_dps
def test_math_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "math")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a python math function
@conserve_mpmath_dps
def test_mpmath_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a mpmath function
@conserve_mpmath_dps
def test_number_precision():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin02, "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(0) - sin02 < prec
@conserve_mpmath_dps
def test_mpmath_precision():
mpmath.mp.dps = 100
assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
#================== Test Translations ==============================
# We can only check if all translated functions are valid. It has to be checked
# by hand if they are complete.
def test_math_transl():
from sympy.utilities.lambdify import MATH_TRANSLATIONS
for sym, mat in MATH_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in math.__dict__
def test_mpmath_transl():
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
for sym, mat in MPMATH_TRANSLATIONS.items():
assert sym in sympy.__dict__ or sym == 'Matrix'
assert mat in mpmath.__dict__
def test_numpy_transl():
if not numpy:
skip("numpy not installed.")
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, nump in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert nump in numpy.__dict__
def test_scipy_transl():
if not scipy:
skip("scipy not installed.")
from sympy.utilities.lambdify import SCIPY_TRANSLATIONS
for sym, scip in SCIPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert scip in scipy.__dict__ or scip in scipy.special.__dict__
def test_numpy_translation_abs():
if not numpy:
skip("numpy not installed.")
f = lambdify(x, Abs(x), "numpy")
assert f(-1) == 1
assert f(1) == 1
def test_numexpr_printer():
if not numexpr:
skip("numexpr not installed.")
# if translation/printing is done incorrectly then evaluating
# a lambdified numexpr expression will throw an exception
from sympy.printing.lambdarepr import NumExprPrinter
blacklist = ('where', 'complex', 'contains')
arg_tuple = (x, y, z) # some functions take more than one argument
for sym in NumExprPrinter._numexpr_functions.keys():
if sym in blacklist:
continue
ssym = S(sym)
if hasattr(ssym, '_nargs'):
nargs = ssym._nargs[0]
else:
nargs = 1
args = arg_tuple[:nargs]
f = lambdify(args, ssym(*args), modules='numexpr')
assert f(*(1, )*nargs) is not None
def test_issue_9334():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
expr = S('b*a - sqrt(a**2)')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)
foo, bar = numpy.random.random((2, 4))
func_numexpr(foo, bar)
def test_issue_12984():
import warnings
if not numexpr:
skip("numexpr not installed.")
func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr)
assert func_numexpr(1, 24, 42) == 24
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
assert str(func_numexpr(-1, 24, 42)) == 'nan'
#================== Test some functions ============================
def test_exponentiation():
f = lambdify(x, x**2)
assert f(-1) == 1
assert f(0) == 0
assert f(1) == 1
assert f(-2) == 4
assert f(2) == 4
assert f(2.5) == 6.25
def test_sqrt():
f = lambdify(x, sqrt(x))
assert f(0) == 0.0
assert f(1) == 1.0
assert f(4) == 2.0
assert abs(f(2) - 1.414) < 0.001
assert f(6.25) == 2.5
def test_trig():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
prec = 1e-11
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
d = f(3.14159)
prec = 1e-5
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
#================== Test vectors ===================================
def test_vector_simple():
f = lambdify((x, y, z), (z, y, x))
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_vector_discontinuous():
f = lambdify(x, (-1/x, 1/x))
raises(ZeroDivisionError, lambda: f(0))
assert f(1) == (-1.0, 1.0)
assert f(2) == (-0.5, 0.5)
assert f(-2) == (0.5, -0.5)
def test_trig_symbolic():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_trig_float():
f = lambdify([x], [cos(x), sin(x)])
d = f(3.14159)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_docs():
f = lambdify(x, x**2)
assert f(2) == 4
f = lambdify([x, y, z], [z, y, x])
assert f(1, 2, 3) == [3, 2, 1]
f = lambdify(x, sqrt(x))
assert f(4) == 2.0
f = lambdify((x, y), sin(x*y)**2)
assert f(0, 5) == 0
def test_math():
f = lambdify((x, y), sin(x), modules="math")
assert f(0, 5) == 0
def test_sin():
f = lambdify(x, sin(x)**2)
assert isinstance(f(2), float)
f = lambdify(x, sin(x)**2, modules="math")
assert isinstance(f(2), float)
def test_matrix():
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol = Matrix([[1, 2], [sin(3) + 4, 1]])
f = lambdify((x, y, z), A, modules="sympy")
assert f(1, 2, 3) == sol
f = lambdify((x, y, z), (A, [A]), modules="sympy")
assert f(1, 2, 3) == (sol, [sol])
J = Matrix((x, x + y)).jacobian((x, y))
v = Matrix((x, y))
sol = Matrix([[1, 0], [1, 1]])
assert lambdify(v, J, modules='sympy')(1, 2) == sol
assert lambdify(v.T, J, modules='sympy')(1, 2) == sol
def test_numpy_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
#Lambdify array first, to ensure return to array as default
f = lambdify((x, y, z), A, ['numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
#Check that the types are arrays and matrices
assert isinstance(f(1, 2, 3), numpy.ndarray)
# gh-15071
class dot(Function):
pass
x_dot_mtx = dot(x, Matrix([[2], [1], [0]]))
f_dot1 = lambdify(x, x_dot_mtx)
inp = numpy.zeros((17, 3))
assert numpy.all(f_dot1(inp) == 0)
strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False)
p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw))
f_dot2 = lambdify(x, x_dot_mtx, printer=p2)
assert numpy.all(f_dot2(inp) == 0)
p3 = NumPyPrinter(strict_kw)
# The line below should probably fail upon construction (before calling with "(inp)"):
raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp))
def test_numpy_transpose():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A.T, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]]))
def test_numpy_dotproduct():
if not numpy:
skip("numpy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
numpy.array([14])
def test_numpy_inverse():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A**-1, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]]))
def test_numpy_old_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
assert isinstance(f(1, 2, 3), numpy.matrix)
def test_python_div_zero_issue_11306():
if not numpy:
skip("numpy not installed.")
p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True))
f = lambdify([x, y], p, modules='numpy')
numpy.seterr(divide='ignore')
assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0
assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf'
numpy.seterr(divide='warn')
def test_issue9474():
mods = [None, 'math']
if numpy:
mods.append('numpy')
if mpmath:
mods.append('mpmath')
for mod in mods:
f = lambdify(x, S.One/x, modules=mod)
assert f(2) == 0.5
f = lambdify(x, floor(S.One/x), modules=mod)
assert f(2) == 0
for absfunc, modules in product([Abs, abs], mods):
f = lambdify(x, absfunc(x), modules=modules)
assert f(-1) == 1
assert f(1) == 1
assert f(3+4j) == 5
def test_issue_9871():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
r = sqrt(x**2 + y**2)
expr = diff(1/r, x)
xn = yn = numpy.linspace(1, 10, 16)
# expr(xn, xn) = -xn/(sqrt(2)*xn)^3
fv_exact = -numpy.sqrt(2.)**-3 * xn**-2
fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn)
fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn)
numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10)
numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10)
def test_numpy_piecewise():
if not numpy:
skip("numpy not installed.")
pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True))
f = lambdify(x, pieces, modules="numpy")
numpy.testing.assert_array_equal(f(numpy.arange(10)),
numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81]))
# If we evaluate somewhere all conditions are False, we should get back NaN
nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0)))
numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])),
numpy.array([1, numpy.nan, 1]))
def test_numpy_logical_ops():
if not numpy:
skip("numpy not installed.")
and_func = lambdify((x, y), And(x, y), modules="numpy")
and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy")
or_func = lambdify((x, y), Or(x, y), modules="numpy")
or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy")
not_func = lambdify((x), Not(x), modules="numpy")
arr1 = numpy.array([True, True])
arr2 = numpy.array([False, True])
arr3 = numpy.array([True, False])
numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True]))
numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False]))
numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True]))
numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True]))
numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False]))
def test_numpy_matmul():
if not numpy:
skip("numpy not installed.")
xmat = Matrix([[x, y], [z, 1+z]])
ymat = Matrix([[x**2], [Abs(x)]])
mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
# Multiple matrices chained together in multiplication
f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
[159, 251]]))
def test_numpy_numexpr():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b, c = numpy.random.randn(3, 128, 128)
# ensure that numpy and numexpr return same value for complicated expression
expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \
Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2)
npfunc = lambdify((x, y, z), expr, modules='numpy')
nefunc = lambdify((x, y, z), expr, modules='numexpr')
assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
def test_numexpr_userfunctions():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b = numpy.random.randn(2, 10)
uf = type('uf', (Function, ),
{'eval' : classmethod(lambda x, y : y**2+1)})
func = lambdify(x, 1-uf(x), modules='numexpr')
assert numpy.allclose(func(a), -(a**2))
uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1)
func = lambdify((x, y), uf(x, y), modules='numexpr')
assert numpy.allclose(func(a, b), 2*a*b+1)
def test_tensorflow_basic_math():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.constant(0, dtype=tensorflow.float32)
assert func(a).eval(session=s) == 0.5
def test_tensorflow_placeholders():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_variables():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.Variable(0, dtype=tensorflow.float32)
s.run(a.initializer)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_logical_operations():
if not tensorflow:
skip("tensorflow not installed.")
expr = Not(And(Or(x, y), y))
func = lambdify([x, y], expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(False, True).eval(session=s) == False
def test_tensorflow_piecewise():
if not tensorflow:
skip("tensorflow not installed.")
expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-1).eval(session=s) == -1
assert func(0).eval(session=s) == 0
assert func(1).eval(session=s) == 1
def test_tensorflow_multi_max():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == 4
def test_tensorflow_multi_min():
if not tensorflow:
skip("tensorflow not installed.")
expr = Min(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == -2
def test_tensorflow_relational():
if not tensorflow:
skip("tensorflow not installed.")
expr = x >= 0
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(1).eval(session=s) == True
def test_tensorflow_complexes():
if not tensorflow:
skip("tensorflow not installed")
func1 = lambdify(x, re(x), modules="tensorflow")
func2 = lambdify(x, im(x), modules="tensorflow")
func3 = lambdify(x, Abs(x), modules="tensorflow")
func4 = lambdify(x, arg(x), modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
# For versions before
# https://github.com/tensorflow/tensorflow/issues/30029
# resolved, using python numeric types may not work
a = tensorflow.constant(1+2j)
assert func1(a).eval(session=s) == 1
assert func2(a).eval(session=s) == 2
tensorflow_result = func3(a).eval(session=s)
sympy_result = Abs(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
tensorflow_result = func4(a).eval(session=s)
sympy_result = arg(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
def test_tensorflow_array_arg():
# Test for issue 14655 (tensorflow part)
if not tensorflow:
skip("tensorflow not installed.")
f = lambdify([[x, y]], x*x + y, 'tensorflow')
with tensorflow.compat.v1.Session() as s:
fcall = f(tensorflow.constant([2.0, 1.0]))
assert fcall.eval(session=s) == 5.0
#================== Test symbolic ==================================
def test_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(x) == Integral(exp(-x**2), (x, -oo, oo))
def test_sym_single_arg():
f = lambdify(x, x * y)
assert f(z) == z * y
def test_sym_list_args():
f = lambdify([x, y], x + y + z)
assert f(1, 2) == 3 + z
def test_sym_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(y).doit() == sqrt(pi)
def test_namespace_order():
# lambdify had a bug, such that module dictionaries or cached module
# dictionaries would pull earlier namespaces into themselves.
# Because the module dictionaries form the namespace of the
# generated lambda, this meant that the behavior of a previously
# generated lambda function could change as a result of later calls
# to lambdify.
n1 = {'f': lambda x: 'first f'}
n2 = {'f': lambda x: 'second f',
'g': lambda x: 'function g'}
f = sympy.Function('f')
g = sympy.Function('g')
if1 = lambdify(x, f(x), modules=(n1, "sympy"))
assert if1(1) == 'first f'
if2 = lambdify(x, g(x), modules=(n2, "sympy"))
# previously gave 'second f'
assert if1(1) == 'first f'
assert if2(1) == 'function g'
def test_namespace_type():
# lambdify had a bug where it would reject modules of type unicode
# on Python 2.
x = sympy.Symbol('x')
lambdify(x, x, modules=u'math')
def test_imps():
# Here we check if the default returned functions are anonymous - in
# the sense that we can have more than one function with the same name
f = implemented_function('f', lambda x: 2*x)
g = implemented_function('f', lambda x: math.sqrt(x))
l1 = lambdify(x, f(x))
l2 = lambdify(x, g(x))
assert str(f(x)) == str(g(x))
assert l1(3) == 6
assert l2(3) == math.sqrt(3)
# check that we can pass in a Function as input
func = sympy.Function('myfunc')
assert not hasattr(func, '_imp_')
my_f = implemented_function(func, lambda x: 2*x)
assert hasattr(my_f, '_imp_')
# Error for functions with same name and different implementation
f2 = implemented_function("f", lambda x: x + 101)
raises(ValueError, lambda: lambdify(x, f(f2(x))))
def test_imps_errors():
# Test errors that implemented functions can return, and still be able to
# form expressions.
# See: https://github.com/sympy/sympy/issues/10810
#
# XXX: Removed AttributeError here. This test was added due to issue 10810
# but that issue was about ValueError. It doesn't seem reasonable to
# "support" catching AttributeError in the same context...
for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)):
def myfunc(a):
if a == 0:
raise error_class
return 1
f = implemented_function('f', myfunc)
expr = f(val)
assert expr == f(val)
def test_imps_wrong_args():
raises(ValueError, lambda: implemented_function(sin, lambda x: x))
def test_lambdify_imps():
# Test lambdify with implemented functions
# first test basic (sympy) lambdify
f = sympy.cos
assert lambdify(x, f(x))(0) == 1
assert lambdify(x, 1 + f(x))(0) == 2
assert lambdify((x, y), y + f(x))(0, 1) == 2
# make an implemented function and test
f = implemented_function("f", lambda x: x + 100)
assert lambdify(x, f(x))(0) == 100
assert lambdify(x, 1 + f(x))(0) == 101
assert lambdify((x, y), y + f(x))(0, 1) == 101
# Can also handle tuples, lists, dicts as expressions
lam = lambdify(x, (f(x), x))
assert lam(3) == (103, 3)
lam = lambdify(x, [f(x), x])
assert lam(3) == [103, 3]
lam = lambdify(x, [f(x), (f(x), x)])
assert lam(3) == [103, (103, 3)]
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {x: f(x)})
assert lam(3) == {3: 103}
# Check that imp preferred to other namespaces by default
d = {'f': lambda x: x + 99}
lam = lambdify(x, f(x), d)
assert lam(3) == 103
# Unless flag passed
lam = lambdify(x, f(x), d, use_imps=False)
assert lam(3) == 102
def test_dummification():
t = symbols('t')
F = Function('F')
G = Function('G')
#"\alpha" is not a valid python variable name
#lambdify should sub in a dummy for it, and return
#without a syntax error
alpha = symbols(r'\alpha')
some_expr = 2 * F(t)**2 / G(t)
lam = lambdify((F(t), G(t)), some_expr)
assert lam(3, 9) == 2
lam = lambdify(sin(t), 2 * sin(t)**2)
assert lam(F(t)) == 2 * F(t)**2
#Test that \alpha was properly dummified
lam = lambdify((alpha, t), 2*alpha + t)
assert lam(2, 1) == 5
raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5))
def test_curly_matrix_symbol():
# Issue #15009
curlyv = sympy.MatrixSymbol("{v}", 2, 1)
lam = lambdify(curlyv, curlyv)
assert lam(1)==1
lam = lambdify(curlyv, curlyv, dummify=True)
assert lam(1)==1
def test_python_keywords():
# Test for issue 7452. The automatic dummification should ensure use of
# Python reserved keywords as symbol names will create valid lambda
# functions. This is an additional regression test.
python_if = symbols('if')
expr = python_if / 2
f = lambdify(python_if, expr)
assert f(4.0) == 2.0
def test_lambdify_docstring():
func = lambdify((w, x, y, z), w + x + y + z)
ref = (
"Created with lambdify. Signature:\n\n"
"func(w, x, y, z)\n\n"
"Expression:\n\n"
"w + x + y + z"
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
syms = symbols('a1:26')
func = lambdify(syms, sum(syms))
ref = (
"Created with lambdify. Signature:\n\n"
"func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n"
" a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n"
"Expression:\n\n"
"a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..."
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
#================== Test special printers ==========================
def test_special_printers():
from sympy.polys.numberfields import IntervalPrinter
def intervalrepr(expr):
return IntervalPrinter().doprint(expr)
expr = sqrt(sqrt(2) + sqrt(3)) + S.Half
func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())
mpi = type(mpmath.mpi(1, 2))
assert isinstance(func0(), mpi)
assert isinstance(func1(), mpi)
assert isinstance(func2(), mpi)
def test_true_false():
# We want exact is comparison here, not just ==
assert lambdify([], true)() is True
assert lambdify([], false)() is False
def test_issue_2790():
assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3
assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10
assert lambdify(x, x + 1, dummify=False)(1) == 2
def test_issue_12092():
f = implemented_function('f', lambda x: x**2)
assert f(f(2)).evalf() == Float(16)
def test_issue_14911():
class Variable(sympy.Symbol):
def _sympystr(self, printer):
return printer.doprint(self.name)
_lambdacode = _sympystr
_numpycode = _sympystr
x = Variable('x')
y = 2 * x
code = LambdaPrinter().doprint(y)
assert code.replace(' ', '') == '2*x'
def test_ITE():
assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5
assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3
def test_Min_Max():
# see gh-10375
assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1
assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
def test_Indexed():
# Issue #10934
if not numpy:
skip("numpy not installed")
a = IndexedBase('a')
i, j = symbols('i j')
b = numpy.array([[1, 2], [3, 4]])
assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10
def test_issue_12173():
#test for issue 12173
exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
assert exp1 == uppergamma(1, 2).evalf()
assert exp2 == lowergamma(1, 2).evalf()
def test_issue_13642():
if not numpy:
skip("numpy not installed")
f = lambdify(x, sinc(x))
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_sinc_mpmath():
f = lambdify(x, sinc(x), "mpmath")
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_lambdify_dummy_arg():
d1 = Dummy()
f1 = lambdify(d1, d1 + 1, dummify=False)
assert f1(2) == 3
f1b = lambdify(d1, d1 + 1)
assert f1b(2) == 3
d2 = Dummy('x')
f2 = lambdify(d2, d2 + 1)
assert f2(2) == 3
f3 = lambdify([[d2]], d2 + 1)
assert f3([2]) == 3
def test_lambdify_mixed_symbol_dummy_args():
d = Dummy()
# Contrived example of name clash
dsym = symbols(str(d))
f = lambdify([d, dsym], d - dsym)
assert f(4, 1) == 3
def test_numpy_array_arg():
# Test for issue 14655 (numpy part)
if not numpy:
skip("numpy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
assert f(numpy.array([2.0, 1.0])) == 5
def test_scipy_fns():
if not scipy:
skip("scipy not installed")
single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma]
single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc,
scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln,
scipy.special.psi]
numpy.random.seed(0)
for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns):
f = lambdify(x, sympy_fn(x), modules="scipy")
for i in range(20):
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy thinks that factorial(z) is 0 when re(z) < 0 and
# does not support complex numbers.
# SymPy does not think so.
if sympy_fn == factorial:
tv = numpy.abs(tv)
# SciPy supports gammaln for real arguments only,
# and there is also a branch cut along the negative real axis
if sympy_fn == loggamma:
tv = numpy.abs(tv)
# SymPy's digamma evaluates as polygamma(0, z)
# which SciPy supports for real arguments only
if sympy_fn == digamma:
tv = numpy.real(tv)
sympy_result = sympy_fn(tv).evalf()
assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result))
double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli,
besselk]
double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv,
scipy.special.yv, scipy.special.iv, scipy.special.kv]
for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns):
f = lambdify((x, y), sympy_fn(x, y), modules="scipy")
for i in range(20):
# SciPy supports only real orders of Bessel functions
tv1 = numpy.random.uniform(-10, 10)
tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports poch for real arguments only
if sympy_fn == RisingFactorial:
tv2 = numpy.real(tv2)
sympy_result = sympy_fn(tv1, tv2).evalf()
assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result))
def test_scipy_polys():
if not scipy:
skip("scipy not installed")
numpy.random.seed(0)
params = symbols('n k a b')
# list polynomials with the number of parameters
polys = [
(chebyshevt, 1),
(chebyshevu, 1),
(legendre, 1),
(hermite, 1),
(laguerre, 1),
(gegenbauer, 2),
(assoc_legendre, 2),
(assoc_laguerre, 2),
(jacobi, 3)
]
msg = \
"The random test of the function {func} with the arguments " \
"{args} had failed because the SymPy result {sympy_result} " \
"and SciPy result {scipy_result} had failed to converge " \
"within the tolerance {tol} " \
"(Actual absolute difference : {diff})"
for sympy_fn, num_params in polys:
args = params[:num_params] + (x,)
f = lambdify(args, sympy_fn(*args))
for _ in range(10):
tn = numpy.random.randint(3, 10)
tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1))
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports hermite for real arguments only
if sympy_fn == hermite:
tv = numpy.real(tv)
# assoc_legendre needs x in (-1, 1) and integer param at most n
if sympy_fn == assoc_legendre:
tv = numpy.random.uniform(-1, 1)
tparams = tuple(numpy.random.randint(1, tn, size=1))
vals = (tn,) + tparams + (tv,)
scipy_result = f(*vals)
sympy_result = sympy_fn(*vals).evalf()
atol = 1e-9*(1 + abs(sympy_result))
diff = abs(scipy_result - sympy_result)
try:
assert diff < atol
except TypeError:
raise AssertionError(
msg.format(
func=repr(sympy_fn),
args=repr(vals),
sympy_result=repr(sympy_result),
scipy_result=repr(scipy_result),
diff=diff,
tol=atol)
)
def test_lambdify_inspect():
f = lambdify(x, x**2)
# Test that inspect.getsource works but don't hard-code implementation
# details
assert 'x**2' in inspect.getsource(f)
def test_issue_14941():
x, y = Dummy(), Dummy()
# test dict
f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy')
assert f1(2, 3) == {2: 3, 3: 3}
# test tuple
f2 = lambdify([x, y], (y, x), 'sympy')
assert f2(2, 3) == (3, 2)
# test list
f3 = lambdify([x, y], [y, x], 'sympy')
assert f3(2, 3) == [3, 2]
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
def test_imag_real():
f_re = lambdify([z], sympy.re(z))
val = 3+2j
assert f_re(val) == val.real
f_im = lambdify([z], sympy.im(z)) # see #15400
assert f_im(val) == val.imag
def test_MatrixSymbol_issue_15578():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol('A', 2, 2)
A0 = numpy.array([[1, 2], [3, 4]])
f = lambdify(A, A**(-1))
assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]]))
g = lambdify(A, A**3)
assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]]))
def test_issue_15654():
if not scipy:
skip("scipy not installed")
from sympy.abc import n, l, r, Z
from sympy.physics import hydrogen
nv, lv, rv, Zv = 1, 0, 3, 1
sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf()
f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z))
scipy_value = f(nv, lv, rv, Zv)
assert abs(sympy_value - scipy_value) < 1e-15
def test_issue_15827():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 2, 3)
C = MatrixSymbol("C", 3, 4)
D = MatrixSymbol("D", 4, 5)
k=symbols("k")
f = lambdify(A, (2*k)*A)
g = lambdify(A, (2+k)*A)
h = lambdify(A, 2*A)
i = lambdify((B, C, D), 2*B*C*D)
assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object))
assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \
[k + 2, 2*k + 4, 3*k + 6]], dtype=object))
assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]]))
assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \
numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \
[ 120, 240, 360, 480, 600]]))
def test_issue_16930():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f = lambda x: S.GoldenRatio * x**2
f_ = lambdify(x, f(x), modules='scipy')
assert f_(1) == scipy.constants.golden_ratio
def test_issue_17898():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy')
assert f_(0.1) == mpmath.lambertw(0.1, -1)
def test_single_e():
f = lambdify(x, E)
assert f(23) == exp(1.0)
def test_issue_16536():
if not scipy:
skip("scipy not installed")
a = symbols('a')
f1 = lowergamma(a, x)
F = lambdify((a, x), f1, modules='scipy')
assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10
f2 = uppergamma(a, x)
F = lambdify((a, x), f2, modules='scipy')
assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10
def test_fresnel_integrals_scipy():
if not scipy:
skip("scipy not installed")
f1 = fresnelc(x)
f2 = fresnels(x)
F1 = lambdify(x, f1, modules='scipy')
F2 = lambdify(x, f2, modules='scipy')
assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10
assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10
def test_beta_scipy():
if not scipy:
skip("scipy not installed")
f = beta(x, y)
F = lambdify((x, y), f, modules='scipy')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
def test_beta_math():
f = beta(x, y)
F = lambdify((x, y), f, modules='math')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
|
bb43e17fa86652f4deebc1cef61ab58a79ac5089a67055483125cb1778890368 | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Lt, Min, ask, refine, AlgebraicNumber,
continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p,
continued_fraction_convergents as cf_c, continued_fraction_reduce as cf_r,
FiniteSet, elliptic_e, elliptic_f, powsimp, hessian, wronskian, fibonacci,
sign, Lambda, Piecewise, Subs, residue, Derivative, logcombine, Symbol,
Intersection, Union, EmptySet, Interval, idiff, ImageSet, acos, Max,
MatMul, conjugate)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.testing.pytest import (XFAIL, slow, SKIP, skip, ON_TRAVIS,
raises, nocache_fail)
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import PolyRing
from sympy.polys.fields import FracField
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l})
# Previous output below. Not sure why that should be the expected output.
# There should probably be a way to rewrite Intersections that way but I
# don't see why an Intersection should evaluate like that:
#
# == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l}))))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 is oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
R(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
def test_I1():
assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
# This should fail or return nan or something.
res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
assert res is nan # trigsimp(res) gives nan
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S.Half, S.Half], [R(3, 2)], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
@XFAIL
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
# x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
@nocache_fail
def test_M15():
n = Dummy('n')
# This test fails when running with the cache off:
assert solveset(sin(x) - S.Half) in (Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers)))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)]
@XFAIL
def test_M28():
assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2))
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
a, b, c = symbols('a, b, c')
domain = FracField([a, b, c], ZZ).to_domain()
ring = PolyRing('k1:50', domain)
(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10,
k11, k12, k13, k14, k15, k16, k17, k18, k19, k20,
k21, k22, k23, k24, k25, k26, k27, k28, k29, k30,
k31, k32, k33, k34, k35, k36, k37, k38, k39, k40,
k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, ring) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(Q.is_true(E**pi > pi**E))
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(Q.is_true(x**4 - x + 1 > 0)) is True
assert ask(Q.is_true(x**4 - x + 1 > 1)) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 ))
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True
@XFAIL
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Q.is_true((x == y) & (y == z)),
Q.is_true((x >= y) & (y >= z) & (z >= x)))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
# assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
@XFAIL
def test_O5():
#assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[R(23, 19)],
[R(63, 19)],
[R(-47, 19)]]),
Matrix([
[R(1692, 353)],
[R(-1551, 706)],
[R(-423, 706)]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', nonzero=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
# This test was changed to inverse method ADJ because it depended on the
# specific form of inverse returned from the 'GE' method which has changed.
M = Matrix([[x, y], [1, x*y]]).inv('ADJ')
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[x*y, -y],
[ -1, x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
assert (Matrix(sorted(MF.eigenvals())) - Matrix(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [(a, 3, [Matrix([[1],
[0],
[0],
[0],
[0]]),
Matrix([[0],
[0],
[1],
[0],
[0]]),
Matrix([[0],
[0],
[0],
[1],
[0]])]),
(1 - I, 1, [Matrix([[ 0],
[S(1)/2 + I/2],
[ 0],
[ 0],
[ 1]])]),
(1 + I, 1, [Matrix([[ 0],
[S(1)/2 - I/2],
[ 0],
[ 0],
[ 1]])])]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**S.Half == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises ValueError: Matrix det == 0; not invertible
M**S.Half
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == R(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == S.Half
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
@XFAIL
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4)
@XFAIL
def test_U11():
# assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
raise NotImplementedError
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + R(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3)))
@XFAIL
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
# Correct result in python2.7.4, wrong result in python3.5
# https://github.com/sympy/sympy/issues/7157
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo
@XFAIL
@slow
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3)
@XFAIL
@slow
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3)
@XFAIL
@slow
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3)
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12)
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == R(36, 35)
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - R(17, 108) + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi) == pi*(-a + b)
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == R(46, 15)
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 +
(x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2))))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, sympy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n),
{r(1): 1, r(2): 2}).simplify()
== 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) +
(-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10)
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
8d277264359d74873f334bed2e042e7678a812b848eac6fc2537ef4fc24e5f9f | from __future__ import print_function
from textwrap import dedent
from itertools import islice, product
from sympy import (
symbols, Integer, Integral, Tuple, Dummy, Basic, default_sort_key, Matrix,
factorial, true)
from sympy.combinatorics import RGS_enum, RGS_unrank, Permutation
from sympy.core.compatibility import iterable
from sympy.utilities.iterables import (
_partition, _set_partitions, binary_partitions, bracelets, capture,
cartes, common_prefix, common_suffix, connected_components, dict_merge,
filter_symbols, flatten, generate_bell, generate_derangements,
generate_involutions, generate_oriented_forest, group, has_dups, ibin,
iproduct, kbins, minlex, multiset, multiset_combinations,
multiset_partitions, multiset_permutations, necklaces, numbered_symbols,
ordered, partitions, permutations, postfixes, postorder_traversal,
prefixes, reshape, rotate_left, rotate_right, runs, sift,
strongly_connected_components, subsets, take, topological_sort, unflatten,
uniq, variations, ordered_partitions, rotations)
from sympy.utilities.enumerative import (
factoring_visitor, multiset_partitions_taocp )
from sympy.core.singleton import S
from sympy.functions.elementary.piecewise import Piecewise, ExprCondPair
from sympy.testing.pytest import raises
w, x, y, z = symbols('w,x,y,z')
def test_postorder_traversal():
expr = z + w*(x + y)
expected = [z, w, x, y, x + y, w*(x + y), w*(x + y) + z]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(expr, keys=True)) == expected
expr = Piecewise((x, x < 1), (x**2, True))
expected = [
x, 1, x, x < 1, ExprCondPair(x, x < 1),
2, x, x**2, true,
ExprCondPair(x**2, True), Piecewise((x, x < 1), (x**2, True))
]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(
[expr], keys=default_sort_key)) == expected + [[expr]]
assert list(postorder_traversal(Integral(x**2, (x, 0, 1)),
keys=default_sort_key)) == [
2, x, x**2, 0, 1, x, Tuple(x, 0, 1),
Integral(x**2, Tuple(x, 0, 1))
]
assert list(postorder_traversal(('abc', ('d', 'ef')))) == [
'abc', 'd', 'ef', ('d', 'ef'), ('abc', ('d', 'ef'))]
def test_flatten():
assert flatten((1, (1,))) == [1, 1]
assert flatten((x, (x,))) == [x, x]
ls = [[(-2, -1), (1, 2)], [(0, 0)]]
assert flatten(ls, levels=0) == ls
assert flatten(ls, levels=1) == [(-2, -1), (1, 2), (0, 0)]
assert flatten(ls, levels=2) == [-2, -1, 1, 2, 0, 0]
assert flatten(ls, levels=3) == [-2, -1, 1, 2, 0, 0]
raises(ValueError, lambda: flatten(ls, levels=-1))
class MyOp(Basic):
pass
assert flatten([MyOp(x, y), z]) == [MyOp(x, y), z]
assert flatten([MyOp(x, y), z], cls=MyOp) == [x, y, z]
assert flatten({1, 11, 2}) == list({1, 11, 2})
def test_iproduct():
assert list(iproduct()) == [()]
assert list(iproduct([])) == []
assert list(iproduct([1,2,3])) == [(1,),(2,),(3,)]
assert sorted(iproduct([1, 2], [3, 4, 5])) == [
(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)]
assert sorted(iproduct([0,1],[0,1],[0,1])) == [
(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)]
assert iterable(iproduct(S.Integers)) is True
assert iterable(iproduct(S.Integers, S.Integers)) is True
assert (3,) in iproduct(S.Integers)
assert (4, 5) in iproduct(S.Integers, S.Integers)
assert (1, 2, 3) in iproduct(S.Integers, S.Integers, S.Integers)
triples = set(islice(iproduct(S.Integers, S.Integers, S.Integers), 1000))
for n1, n2, n3 in triples:
assert isinstance(n1, Integer)
assert isinstance(n2, Integer)
assert isinstance(n3, Integer)
for t in set(product(*([range(-2, 3)]*3))):
assert t in iproduct(S.Integers, S.Integers, S.Integers)
def test_group():
assert group([]) == []
assert group([], multiple=False) == []
assert group([1]) == [[1]]
assert group([1], multiple=False) == [(1, 1)]
assert group([1, 1]) == [[1, 1]]
assert group([1, 1], multiple=False) == [(1, 2)]
assert group([1, 1, 1]) == [[1, 1, 1]]
assert group([1, 1, 1], multiple=False) == [(1, 3)]
assert group([1, 2, 1]) == [[1], [2], [1]]
assert group([1, 2, 1], multiple=False) == [(1, 1), (2, 1), (1, 1)]
assert group([1, 1, 2, 2, 2, 1, 3, 3]) == [[1, 1], [2, 2, 2], [1], [3, 3]]
assert group([1, 1, 2, 2, 2, 1, 3, 3], multiple=False) == [(1, 2),
(2, 3), (1, 1), (3, 2)]
def test_subsets():
# combinations
assert list(subsets([1, 2, 3], 0)) == [()]
assert list(subsets([1, 2, 3], 1)) == [(1,), (2,), (3,)]
assert list(subsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 3)) == [(1, 2, 3)]
l = list(range(4))
assert list(subsets(l, 0, repetition=True)) == [()]
assert list(subsets(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(subsets(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3),
(3, 3)]
assert list(subsets(l, 3, repetition=True)) == [(0, 0, 0), (0, 0, 1),
(0, 0, 2), (0, 0, 3),
(0, 1, 1), (0, 1, 2),
(0, 1, 3), (0, 2, 2),
(0, 2, 3), (0, 3, 3),
(1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 2, 2),
(1, 2, 3), (1, 3, 3),
(2, 2, 2), (2, 2, 3),
(2, 3, 3), (3, 3, 3)]
assert len(list(subsets(l, 4, repetition=True))) == 35
assert list(subsets(l[:2], 3, repetition=False)) == []
assert list(subsets(l[:2], 3, repetition=True)) == [(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(1, 1, 1)]
assert list(subsets([1, 2], repetition=True)) == \
[(), (1,), (2,), (1, 1), (1, 2), (2, 2)]
assert list(subsets([1, 2], repetition=False)) == \
[(), (1,), (2,), (1, 2)]
assert list(subsets([1, 2, 3], 2)) == \
[(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 2, repetition=True)) == \
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
def test_variations():
# permutations
l = list(range(4))
assert list(variations(l, 0, repetition=False)) == [()]
assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
assert list(variations(l, 0, repetition=True)) == [()]
assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2),
(3, 3)]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
]
def test_cartes():
assert list(cartes([1, 2], [3, 4, 5])) == \
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
assert list(cartes()) == [()]
assert list(cartes('a')) == [('a',)]
assert list(cartes('a', repeat=2)) == [('a', 'a')]
assert list(cartes(list(range(2)))) == [(0,), (1,)]
def test_filter_symbols():
s = numbered_symbols()
filtered = filter_symbols(s, symbols("x0 x2 x3"))
assert take(filtered, 3) == list(symbols("x1 x4 x5"))
def test_numbered_symbols():
s = numbered_symbols(cls=Dummy)
assert isinstance(next(s), Dummy)
assert next(numbered_symbols('C', start=1, exclude=[symbols('C1')])) == \
symbols('C2')
def test_sift():
assert sift(list(range(5)), lambda _: _ % 2) == {1: [1, 3], 0: [0, 2, 4]}
assert sift([x, y], lambda _: _.has(x)) == {False: [y], True: [x]}
assert sift([S.One], lambda _: _.has(x)) == {False: [1]}
assert sift([0, 1, 2, 3], lambda x: x % 2, binary=True) == (
[1, 3], [0, 2])
assert sift([0, 1, 2, 3], lambda x: x % 3 == 1, binary=True) == (
[1], [0, 2, 3])
raises(ValueError, lambda:
sift([0, 1, 2, 3], lambda x: x % 3, binary=True))
def test_take():
X = numbered_symbols()
assert take(X, 5) == list(symbols('x0:5'))
assert take(X, 5) == list(symbols('x5:10'))
assert take([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5]
def test_dict_merge():
assert dict_merge({}, {1: x, y: z}) == {1: x, y: z}
assert dict_merge({1: x, y: z}, {}) == {1: x, y: z}
assert dict_merge({2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {2: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: y, 2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {1: y, 2: z}) == {1: y, 2: z, y: z}
def test_prefixes():
assert list(prefixes([])) == []
assert list(prefixes([1])) == [[1]]
assert list(prefixes([1, 2])) == [[1], [1, 2]]
assert list(prefixes([1, 2, 3, 4, 5])) == \
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
def test_postfixes():
assert list(postfixes([])) == []
assert list(postfixes([1])) == [[1]]
assert list(postfixes([1, 2])) == [[2], [1, 2]]
assert list(postfixes([1, 2, 3, 4, 5])) == \
[[5], [4, 5], [3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]]
def test_topological_sort():
V = [2, 3, 5, 7, 8, 9, 10, 11]
E = [(7, 11), (7, 8), (5, 11),
(3, 8), (3, 10), (11, 2),
(11, 9), (11, 10), (8, 9)]
assert topological_sort((V, E)) == [3, 5, 7, 8, 11, 2, 9, 10]
assert topological_sort((V, E), key=lambda v: -v) == \
[7, 5, 11, 3, 10, 8, 9, 2]
raises(ValueError, lambda: topological_sort((V, E + [(10, 7)])))
def test_strongly_connected_components():
assert strongly_connected_components(([], [])) == []
assert strongly_connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert strongly_connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert strongly_connected_components((V, E)) == [[4], [2, 3], [1]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 1), (3, 4), (4, 3)]
assert strongly_connected_components((V, E)) == [[1, 2], [3, 4]]
def test_connected_components():
assert connected_components(([], [])) == []
assert connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2, 3, 4]]
V = [1, 2, 3, 4]
E = [(1, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2], [3, 4]]
def test_rotate():
A = [0, 1, 2, 3, 4]
assert rotate_left(A, 2) == [2, 3, 4, 0, 1]
assert rotate_right(A, 1) == [4, 0, 1, 2, 3]
A = []
B = rotate_right(A, 1)
assert B == []
B.append(1)
assert A == []
B = rotate_left(A, 1)
assert B == []
B.append(1)
assert A == []
def test_multiset_partitions():
A = [0, 1, 2, 3, 4]
assert list(multiset_partitions(A, 5)) == [[[0], [1], [2], [3], [4]]]
assert len(list(multiset_partitions(A, 4))) == 10
assert len(list(multiset_partitions(A, 3))) == 25
assert list(multiset_partitions([1, 1, 1, 2, 2], 2)) == [
[[1, 1, 1, 2], [2]], [[1, 1, 1], [2, 2]], [[1, 1, 2, 2], [1]],
[[1, 1, 2], [1, 2]], [[1, 1], [1, 2, 2]]]
assert list(multiset_partitions([1, 1, 2, 2], 2)) == [
[[1, 1, 2], [2]], [[1, 1], [2, 2]], [[1, 2, 2], [1]],
[[1, 2], [1, 2]]]
assert list(multiset_partitions([1, 2, 3, 4], 2)) == [
[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
assert list(multiset_partitions([1, 2, 2], 2)) == [
[[1, 2], [2]], [[1], [2, 2]]]
assert list(multiset_partitions(3)) == [
[[0, 1, 2]], [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]],
[[0], [1], [2]]]
assert list(multiset_partitions(3, 2)) == [
[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]]
assert list(multiset_partitions([1] * 3, 2)) == [[[1], [1, 1]]]
assert list(multiset_partitions([1] * 3)) == [
[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
a = [3, 2, 1]
assert list(multiset_partitions(a)) == \
list(multiset_partitions(sorted(a)))
assert list(multiset_partitions(a, 5)) == []
assert list(multiset_partitions(a, 1)) == [[[1, 2, 3]]]
assert list(multiset_partitions(a + [4], 5)) == []
assert list(multiset_partitions(a + [4], 1)) == [[[1, 2, 3, 4]]]
assert list(multiset_partitions(2, 5)) == []
assert list(multiset_partitions(2, 1)) == [[[0, 1]]]
assert list(multiset_partitions('a')) == [[['a']]]
assert list(multiset_partitions('a', 2)) == []
assert list(multiset_partitions('ab')) == [[['a', 'b']], [['a'], ['b']]]
assert list(multiset_partitions('ab', 1)) == [[['a', 'b']]]
assert list(multiset_partitions('aaa', 1)) == [['aaa']]
assert list(multiset_partitions([1, 1], 1)) == [[[1, 1]]]
ans = [('mpsyy',), ('mpsy', 'y'), ('mps', 'yy'), ('mps', 'y', 'y'),
('mpyy', 's'), ('mpy', 'sy'), ('mpy', 's', 'y'), ('mp', 'syy'),
('mp', 'sy', 'y'), ('mp', 's', 'yy'), ('mp', 's', 'y', 'y'),
('msyy', 'p'), ('msy', 'py'), ('msy', 'p', 'y'), ('ms', 'pyy'),
('ms', 'py', 'y'), ('ms', 'p', 'yy'), ('ms', 'p', 'y', 'y'),
('myy', 'ps'), ('myy', 'p', 's'), ('my', 'psy'), ('my', 'ps', 'y'),
('my', 'py', 's'), ('my', 'p', 'sy'), ('my', 'p', 's', 'y'),
('m', 'psyy'), ('m', 'psy', 'y'), ('m', 'ps', 'yy'),
('m', 'ps', 'y', 'y'), ('m', 'pyy', 's'), ('m', 'py', 'sy'),
('m', 'py', 's', 'y'), ('m', 'p', 'syy'),
('m', 'p', 'sy', 'y'), ('m', 'p', 's', 'yy'),
('m', 'p', 's', 'y', 'y')]
assert list(tuple("".join(part) for part in p)
for p in multiset_partitions('sympy')) == ans
factorings = [[24], [8, 3], [12, 2], [4, 6], [4, 2, 3],
[6, 2, 2], [2, 2, 2, 3]]
assert list(factoring_visitor(p, [2,3]) for
p in multiset_partitions_taocp([3, 1])) == factorings
def test_multiset_combinations():
ans = ['iii', 'iim', 'iip', 'iis', 'imp', 'ims', 'ipp', 'ips',
'iss', 'mpp', 'mps', 'mss', 'pps', 'pss', 'sss']
assert [''.join(i) for i in
list(multiset_combinations('mississippi', 3))] == ans
M = multiset('mississippi')
assert [''.join(i) for i in
list(multiset_combinations(M, 3))] == ans
assert [''.join(i) for i in multiset_combinations(M, 30)] == []
assert list(multiset_combinations([[1], [2, 3]], 2)) == [[[1], [2, 3]]]
assert len(list(multiset_combinations('a', 3))) == 0
assert len(list(multiset_combinations('a', 0))) == 1
assert list(multiset_combinations('abc', 1)) == [['a'], ['b'], ['c']]
def test_multiset_permutations():
ans = ['abby', 'abyb', 'aybb', 'baby', 'bayb', 'bbay', 'bbya', 'byab',
'byba', 'yabb', 'ybab', 'ybba']
assert [''.join(i) for i in multiset_permutations('baby')] == ans
assert [''.join(i) for i in multiset_permutations(multiset('baby'))] == ans
assert list(multiset_permutations([0, 0, 0], 2)) == [[0, 0]]
assert list(multiset_permutations([0, 2, 1], 2)) == [
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]
assert len(list(multiset_permutations('a', 0))) == 1
assert len(list(multiset_permutations('a', 3))) == 0
def test():
for i in range(1, 7):
print(i)
for p in multiset_permutations([0, 0, 1, 0, 1], i):
print(p)
assert capture(lambda: test()) == dedent('''\
1
[0]
[1]
2
[0, 0]
[0, 1]
[1, 0]
[1, 1]
3
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
4
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 1, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[1, 0, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
5
[0, 0, 0, 1, 1]
[0, 0, 1, 0, 1]
[0, 0, 1, 1, 0]
[0, 1, 0, 0, 1]
[0, 1, 0, 1, 0]
[0, 1, 1, 0, 0]
[1, 0, 0, 0, 1]
[1, 0, 0, 1, 0]
[1, 0, 1, 0, 0]
[1, 1, 0, 0, 0]
6\n''')
def test_partitions():
ans = [[{}], [(0, {})]]
for i in range(2):
assert list(partitions(0, size=i)) == ans[i]
assert list(partitions(1, 0, size=i)) == ans[i]
assert list(partitions(6, 2, 2, size=i)) == ans[i]
assert list(partitions(6, 2, None, size=i)) != ans[i]
assert list(partitions(6, None, 2, size=i)) != ans[i]
assert list(partitions(6, 2, 0, size=i)) == ans[i]
assert [p.copy() for p in partitions(6, k=2)] == [
{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
assert [p.copy() for p in partitions(6, k=3)] == [
{3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
{1: 4, 2: 1}, {1: 6}]
assert [p.copy() for p in partitions(8, k=4, m=3)] == [
{4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
i.copy() for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
and sum(i.values()) <=3]
assert [p.copy() for p in partitions(S(3), m=2)] == [
{3: 1}, {1: 1, 2: 1}]
assert [i.copy() for i in partitions(4, k=3)] == [
{1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
i.copy() for i in partitions(4) if all(k <= 3 for k in i)]
# Consistency check on output of _partitions and RGS_unrank.
# This provides a sanity test on both routines. Also verifies that
# the total number of partitions is the same in each case.
# (from pkrathmann2)
for n in range(2, 6):
i = 0
for m, q in _set_partitions(n):
assert q == RGS_unrank(i, n)
i += 1
assert i == RGS_enum(n)
def test_binary_partitions():
assert [i[:] for i in binary_partitions(10)] == [[8, 2], [8, 1, 1],
[4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1],
[4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1],
[2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
assert len([j[:] for j in binary_partitions(16)]) == 36
def test_bell_perm():
assert [len(set(generate_bell(i))) for i in range(1, 7)] == [
factorial(i) for i in range(1, 7)]
assert list(generate_bell(3)) == [
(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
# generate_bell and trotterjohnson are advertised to return the same
# permutations; this is not technically necessary so this test could
# be removed
for n in range(1, 5):
p = Permutation(range(n))
b = generate_bell(n)
for bi in b:
assert bi == tuple(p.array_form)
p = p.next_trotterjohnson()
raises(ValueError, lambda: list(generate_bell(0))) # XXX is this consistent with other permutation algorithms?
def test_involutions():
lengths = [1, 2, 4, 10, 26, 76]
for n, N in enumerate(lengths):
i = list(generate_involutions(n + 1))
assert len(i) == N
assert len({Permutation(j)**2 for j in i}) == 1
def test_derangements():
assert len(list(generate_derangements(list(range(6))))) == 265
assert ''.join(''.join(i) for i in generate_derangements('abcde')) == (
'badecbaecdbcaedbcdeabceadbdaecbdeacbdecabeacdbedacbedcacabedcadebcaebd'
'cdaebcdbeacdeabcdebaceabdcebadcedabcedbadabecdaebcdaecbdcaebdcbeadceab'
'dcebadeabcdeacbdebacdebcaeabcdeadbceadcbecabdecbadecdabecdbaedabcedacb'
'edbacedbca')
assert list(generate_derangements([0, 1, 2, 3])) == [
[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0]]
assert list(generate_derangements([0, 1, 2, 2])) == [
[2, 2, 0, 1], [2, 2, 1, 0]]
def test_necklaces():
def count(n, k, f):
return len(list(necklaces(n, k, f)))
m = []
for i in range(1, 8):
m.append((
i, count(i, 2, 0), count(i, 2, 1), count(i, 3, 1)))
assert Matrix(m) == Matrix([
[1, 2, 2, 3],
[2, 3, 3, 6],
[3, 4, 4, 10],
[4, 6, 6, 21],
[5, 8, 8, 39],
[6, 14, 13, 92],
[7, 20, 18, 198]])
def test_bracelets():
bc = [i for i in bracelets(2, 4)]
assert Matrix(bc) == Matrix([
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]
])
bc = [i for i in bracelets(4, 2)]
assert Matrix(bc) == Matrix([
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[0, 1, 1, 1],
[1, 1, 1, 1]
])
def test_generate_oriented_forest():
assert list(generate_oriented_forest(5)) == [[0, 1, 2, 3, 4],
[0, 1, 2, 3, 3], [0, 1, 2, 3, 2], [0, 1, 2, 3, 1], [0, 1, 2, 3, 0],
[0, 1, 2, 2, 2], [0, 1, 2, 2, 1], [0, 1, 2, 2, 0], [0, 1, 2, 1, 2],
[0, 1, 2, 1, 1], [0, 1, 2, 1, 0], [0, 1, 2, 0, 1], [0, 1, 2, 0, 0],
[0, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 1, 1, 0, 0],
[0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]]
assert len(list(generate_oriented_forest(10))) == 1842
def test_unflatten():
r = list(range(10))
assert unflatten(r) == list(zip(r[::2], r[1::2]))
assert unflatten(r, 5) == [tuple(r[:5]), tuple(r[5:])]
raises(ValueError, lambda: unflatten(list(range(10)), 3))
raises(ValueError, lambda: unflatten(list(range(10)), -2))
def test_common_prefix_suffix():
assert common_prefix([], [1]) == []
assert common_prefix(list(range(3))) == [0, 1, 2]
assert common_prefix(list(range(3)), list(range(4))) == [0, 1, 2]
assert common_prefix([1, 2, 3], [1, 2, 5]) == [1, 2]
assert common_prefix([1, 2, 3], [1, 3, 5]) == [1]
assert common_suffix([], [1]) == []
assert common_suffix(list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(4))) == []
assert common_suffix([1, 2, 3], [9, 2, 3]) == [2, 3]
assert common_suffix([1, 2, 3], [9, 7, 3]) == [3]
def test_minlex():
assert minlex([1, 2, 0]) == (0, 1, 2)
assert minlex((1, 2, 0)) == (0, 1, 2)
assert minlex((1, 0, 2)) == (0, 2, 1)
assert minlex((1, 0, 2), directed=False) == (0, 1, 2)
assert minlex('aba') == 'aab'
def test_ordered():
assert list(ordered((x, y), hash, default=False)) in [[x, y], [y, x]]
assert list(ordered((x, y), hash, default=False)) == \
list(ordered((y, x), hash, default=False))
assert list(ordered((x, y))) == [x, y]
seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]],
(lambda x: len(x), lambda x: sum(x))]
assert list(ordered(seq, keys, default=False, warn=False)) == \
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
raises(ValueError, lambda:
list(ordered(seq, keys, default=False, warn=True)))
def test_runs():
assert runs([]) == []
assert runs([1]) == [[1]]
assert runs([1, 1]) == [[1], [1]]
assert runs([1, 1, 2]) == [[1], [1, 2]]
assert runs([1, 2, 1]) == [[1, 2], [1]]
assert runs([2, 1, 1]) == [[2], [1], [1]]
from operator import lt
assert runs([2, 1, 1], lt) == [[2, 1], [1]]
def test_reshape():
seq = list(range(1, 9))
assert reshape(seq, [4]) == \
[[1, 2, 3, 4], [5, 6, 7, 8]]
assert reshape(seq, (4,)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, 2)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, [2])) == \
[(1, 2, [3, 4]), (5, 6, [7, 8])]
assert reshape(seq, ((2,), [2])) == \
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
assert reshape(seq, (1, [2], 1)) == \
[(1, [2, 3], 4), (5, [6, 7], 8)]
assert reshape(tuple(seq), ([[1], 1, (2,)],)) == \
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
assert reshape(tuple(seq), ([1], 1, (2,))) == \
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
assert reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) == \
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
raises(ValueError, lambda: reshape([0, 1], [-1]))
raises(ValueError, lambda: reshape([0, 1], [3]))
def test_uniq():
assert list(uniq(p.copy() for p in partitions(4))) == \
[{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
assert list(uniq(x % 2 for x in range(5))) == [0, 1]
assert list(uniq('a')) == ['a']
assert list(uniq('ababc')) == list('abc')
assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
[([1], 2, 2), (2, [1], 2), (2, 2, [1])]
assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
[2, 3, 4, [2], [1], [3]]
def test_kbins():
assert len(list(kbins('1123', 2, ordered=1))) == 24
assert len(list(kbins('1123', 2, ordered=11))) == 36
assert len(list(kbins('1123', 2, ordered=10))) == 10
assert len(list(kbins('1123', 2, ordered=0))) == 5
assert len(list(kbins('1123', 2, ordered=None))) == 3
def test1():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins([0, 0, 1], 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test1()) == dedent('''\
ordered = None
[[0], [0, 1]]
[[0, 0], [1]]
ordered = 0
[[0, 0], [1]]
[[0, 1], [0]]
ordered = 1
[[0], [0, 1]]
[[0], [1, 0]]
[[1], [0, 0]]
ordered = 10
[[0, 0], [1]]
[[1], [0, 0]]
[[0, 1], [0]]
[[0], [0, 1]]
ordered = 11
[[0], [0, 1]]
[[0, 0], [1]]
[[0], [1, 0]]
[[0, 1], [0]]
[[1], [0, 0]]
[[1, 0], [0]]\n''')
def test2():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins(list(range(3)), 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test2()) == dedent('''\
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]\n''')
def test_has_dups():
assert has_dups(set()) is False
assert has_dups(list(range(3))) is False
assert has_dups([1, 2, 1]) is True
def test__partition():
assert _partition('abcde', [1, 0, 1, 2, 0]) == [
['b', 'e'], ['a', 'c'], ['d']]
assert _partition('abcde', [1, 0, 1, 2, 0], 3) == [
['b', 'e'], ['a', 'c'], ['d']]
output = (3, [1, 0, 1, 2, 0])
assert _partition('abcde', *output) == [['b', 'e'], ['a', 'c'], ['d']]
def test_ordered_partitions():
from sympy.functions.combinatorial.numbers import nT
f = ordered_partitions
assert list(f(0, 1)) == [[]]
assert list(f(1, 0)) == [[]]
for i in range(1, 7):
for j in [None] + list(range(1, i)):
assert (
sum(1 for p in f(i, j, 1)) ==
sum(1 for p in f(i, j, 0)) ==
nT(i, j))
def test_rotations():
assert list(rotations('ab')) == [['a', 'b'], ['b', 'a']]
assert list(rotations(range(3))) == [[0, 1, 2], [1, 2, 0], [2, 0, 1]]
assert list(rotations(range(3), dir=-1)) == [[0, 1, 2], [2, 0, 1], [1, 2, 0]]
def test_ibin():
assert ibin(3) == [1, 1]
assert ibin(3, 3) == [0, 1, 1]
assert ibin(3, str=True) == '11'
assert ibin(3, 3, str=True) == '011'
assert list(ibin(2, 'all')) == [(0, 0), (0, 1), (1, 0), (1, 1)]
assert list(ibin(2, 'all', str=True)) == ['00', '01', '10', '11']
|
6e417f7f5c983f448be8dffaee62b78b23620f16a7145c05ad813b70c8b25e30 | import sys
from sympy.utilities.source import get_mod_func, get_class, source
from sympy.testing.pytest import warns_deprecated_sympy
from sympy.geometry import point
def test_source():
# Dummy stdout
class StdOut(object):
def write(self, x):
pass
# Test SymPyDeprecationWarning from source()
with warns_deprecated_sympy():
# Redirect stdout temporarily so print out is not seen
stdout = sys.stdout
try:
sys.stdout = StdOut()
source(point)
finally:
sys.stdout = stdout
def test_get_mod_func():
assert get_mod_func(
'sympy.core.basic.Basic') == ('sympy.core.basic', 'Basic')
def test_get_class():
_basic = get_class('sympy.core.basic.Basic')
assert _basic.__name__ == 'Basic'
|
7a9b7407bbce05c16c485b5b10fe2b5bd92c0422a79909a3fe3b8789560444ec | from sympy.core import S, symbols, Eq, pi, Catalan, EulerGamma, Function
from sympy.core.compatibility import StringIO
from sympy import Piecewise
from sympy import Equality
from sympy.matrices import Matrix, MatrixSymbol
from sympy.utilities.codegen import JuliaCodeGen, codegen, make_routine
from sympy.testing.pytest import XFAIL
import sympy
x, y, z = symbols('x,y,z')
def test_empty_jl_code():
code_gen = JuliaCodeGen()
output = StringIO()
code_gen.dump_jl([], output, "file", header=False, empty=False)
source = output.getvalue()
assert source == ""
def test_jl_simple_code():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Julia", header=False, empty=False)
assert result[0] == "test.jl"
source = result[1]
expected = (
"function test(x, y, z)\n"
" out1 = z.*(x + y)\n"
" return out1\n"
"end\n"
)
assert source == expected
def test_jl_simple_code_with_header():
name_expr = ("test", (x + y)*z)
result, = codegen(name_expr, "Julia", header=True, empty=False)
assert result[0] == "test.jl"
source = result[1]
expected = (
"# Code generated with sympy " + sympy.__version__ + "\n"
"#\n"
"# See http://www.sympy.org/ for more information.\n"
"#\n"
"# This file is part of 'project'\n"
"function test(x, y, z)\n"
" out1 = z.*(x + y)\n"
" return out1\n"
"end\n"
)
assert source == expected
def test_jl_simple_code_nameout():
expr = Equality(z, (x + y))
name_expr = ("test", expr)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y)\n"
" z = x + y\n"
" return z\n"
"end\n"
)
assert source == expected
def test_jl_numbersymbol():
name_expr = ("test", pi**Catalan)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test()\n"
" out1 = pi^catalan\n"
" return out1\n"
"end\n"
)
assert source == expected
@XFAIL
def test_jl_numbersymbol_no_inline():
# FIXME: how to pass inline=False to the JuliaCodePrinter?
name_expr = ("test", [pi**Catalan, EulerGamma])
result, = codegen(name_expr, "Julia", header=False,
empty=False, inline=False)
source = result[1]
expected = (
"function test()\n"
" Catalan = 0.915965594177219\n"
" EulerGamma = 0.5772156649015329\n"
" out1 = pi^Catalan\n"
" out2 = EulerGamma\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_jl_code_argument_order():
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y], language="julia")
code_gen = JuliaCodeGen()
output = StringIO()
code_gen.dump_jl([routine], output, "test", header=False, empty=False)
source = output.getvalue()
expected = (
"function test(z, x, y)\n"
" out1 = x + y\n"
" return out1\n"
"end\n"
)
assert source == expected
def test_multiple_results_m():
# Here the output order is the input order
expr1 = (x + y)*z
expr2 = (x - y)*z
name_expr = ("test", [expr1, expr2])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y, z)\n"
" out1 = z.*(x + y)\n"
" out2 = z.*(x - y)\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_results_named_unordered():
# Here output order is based on name_expr
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y, z)\n"
" C = z.*(x + y)\n"
" A = z.*(x - y)\n"
" B = 2*x\n"
" return C, A, B\n"
"end\n"
)
assert source == expected
def test_results_named_ordered():
A, B, C = symbols('A,B,C')
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, (x - y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "Julia", header=False, empty=False,
argument_sequence=(x, z, y))
assert result[0][0] == "test.jl"
source = result[0][1]
expected = (
"function test(x, z, y)\n"
" C = z.*(x + y)\n"
" A = z.*(x - y)\n"
" B = 2*x\n"
" return C, A, B\n"
"end\n"
)
assert source == expected
def test_complicated_jl_codegen():
from sympy import sin, cos, tan
name_expr = ("testlong",
[ ((sin(x) + cos(y) + tan(z))**3).expand(),
cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))
])
result = codegen(name_expr, "Julia", header=False, empty=False)
assert result[0][0] == "testlong.jl"
source = result[0][1]
expected = (
"function testlong(x, y, z)\n"
" out1 = sin(x).^3 + 3*sin(x).^2.*cos(y) + 3*sin(x).^2.*tan(z)"
" + 3*sin(x).*cos(y).^2 + 6*sin(x).*cos(y).*tan(z) + 3*sin(x).*tan(z).^2"
" + cos(y).^3 + 3*cos(y).^2.*tan(z) + 3*cos(y).*tan(z).^2 + tan(z).^3\n"
" out2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_jl_output_arg_mixed_unordered():
# named outputs are alphabetical, unnamed output appear in the given order
from sympy import sin, cos
a = symbols("a")
name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))])
result, = codegen(name_expr, "Julia", header=False, empty=False)
assert result[0] == "foo.jl"
source = result[1];
expected = (
'function foo(x)\n'
' out1 = cos(2*x)\n'
' y = sin(x)\n'
' out3 = cos(x)\n'
' a = sin(2*x)\n'
' return out1, y, out3, a\n'
'end\n'
)
assert source == expected
def test_jl_piecewise_():
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False)
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function pwtest(x)\n"
" out1 = ((x < -1) ? (0) :\n"
" (x <= 1) ? (x.^2) :\n"
" (x > 1) ? (2 - x) : (1))\n"
" return out1\n"
"end\n"
)
assert source == expected
@XFAIL
def test_jl_piecewise_no_inline():
# FIXME: how to pass inline=False to the JuliaCodePrinter?
pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True))
name_expr = ("pwtest", pw)
result, = codegen(name_expr, "Julia", header=False, empty=False,
inline=False)
source = result[1]
expected = (
"function pwtest(x)\n"
" if (x < -1)\n"
" out1 = 0\n"
" elseif (x <= 1)\n"
" out1 = x.^2\n"
" elseif (x > 1)\n"
" out1 = -x + 2\n"
" else\n"
" out1 = 1\n"
" end\n"
" return out1\n"
"end\n"
)
assert source == expected
def test_jl_multifcns_per_file():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Julia", header=False, empty=False)
assert result[0][0] == "foo.jl"
source = result[0][1];
expected = (
"function foo(x, y)\n"
" out1 = 2*x\n"
" out2 = 3*y\n"
" return out1, out2\n"
"end\n"
"function bar(y)\n"
" out1 = y.^2\n"
" out2 = 4*y\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_jl_multifcns_per_file_w_header():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result = codegen(name_expr, "Julia", header=True, empty=False)
assert result[0][0] == "foo.jl"
source = result[0][1];
expected = (
"# Code generated with sympy " + sympy.__version__ + "\n"
"#\n"
"# See http://www.sympy.org/ for more information.\n"
"#\n"
"# This file is part of 'project'\n"
"function foo(x, y)\n"
" out1 = 2*x\n"
" out2 = 3*y\n"
" return out1, out2\n"
"end\n"
"function bar(y)\n"
" out1 = y.^2\n"
" out2 = 4*y\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_jl_filename_match_prefix():
name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ]
result, = codegen(name_expr, "Julia", prefix="baz", header=False,
empty=False)
assert result[0] == "baz.jl"
def test_jl_matrix_named():
e2 = Matrix([[x, 2*y, pi*z]])
name_expr = ("test", Equality(MatrixSymbol('myout1', 1, 3), e2))
result = codegen(name_expr, "Julia", header=False, empty=False)
assert result[0][0] == "test.jl"
source = result[0][1]
expected = (
"function test(x, y, z)\n"
" myout1 = [x 2*y pi*z]\n"
" return myout1\n"
"end\n"
)
assert source == expected
def test_jl_matrix_named_matsym():
myout1 = MatrixSymbol('myout1', 1, 3)
e2 = Matrix([[x, 2*y, pi*z]])
name_expr = ("test", Equality(myout1, e2, evaluate=False))
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y, z)\n"
" myout1 = [x 2*y pi*z]\n"
" return myout1\n"
"end\n"
)
assert source == expected
def test_jl_matrix_output_autoname():
expr = Matrix([[x, x+y, 3]])
name_expr = ("test", expr)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y)\n"
" out1 = [x x + y 3]\n"
" return out1\n"
"end\n"
)
assert source == expected
def test_jl_matrix_output_autoname_2():
e1 = (x + y)
e2 = Matrix([[2*x, 2*y, 2*z]])
e3 = Matrix([[x], [y], [z]])
e4 = Matrix([[x, y], [z, 16]])
name_expr = ("test", (e1, e2, e3, e4))
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y, z)\n"
" out1 = x + y\n"
" out2 = [2*x 2*y 2*z]\n"
" out3 = [x, y, z]\n"
" out4 = [x y;\n"
" z 16]\n"
" return out1, out2, out3, out4\n"
"end\n"
)
assert source == expected
def test_jl_results_matrix_named_ordered():
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(C, (x + y)*z)
expr2 = Equality(A, Matrix([[1, 2, x]]))
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result, = codegen(name_expr, "Julia", header=False, empty=False,
argument_sequence=(x, z, y))
source = result[1]
expected = (
"function test(x, z, y)\n"
" C = z.*(x + y)\n"
" A = [1 2 x]\n"
" B = 2*x\n"
" return C, A, B\n"
"end\n"
)
assert source == expected
def test_jl_matrixsymbol_slice():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 2, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(A)\n"
" B = A[1,:]\n"
" C = A[2,:]\n"
" D = A[:,3]\n"
" return B, C, D\n"
"end\n"
)
assert source == expected
def test_jl_matrixsymbol_slice2():
A = MatrixSymbol('A', 3, 4)
B = MatrixSymbol('B', 2, 2)
C = MatrixSymbol('C', 2, 2)
name_expr = ("test", [Equality(B, A[0:2, 0:2]),
Equality(C, A[0:2, 1:3])])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(A)\n"
" B = A[1:2,1:2]\n"
" C = A[1:2,2:3]\n"
" return B, C\n"
"end\n"
)
assert source == expected
def test_jl_matrixsymbol_slice3():
A = MatrixSymbol('A', 8, 7)
B = MatrixSymbol('B', 2, 2)
C = MatrixSymbol('C', 4, 2)
name_expr = ("test", [Equality(B, A[6:, 1::3]),
Equality(C, A[::2, ::3])])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(A)\n"
" B = A[7:end,2:3:end]\n"
" C = A[1:2:end,1:3:end]\n"
" return B, C\n"
"end\n"
)
assert source == expected
def test_jl_matrixsymbol_slice_autoname():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
name_expr = ("test", [Equality(B, A[0,:]), A[1,:], A[:,0], A[:,1]])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(A)\n"
" B = A[1,:]\n"
" out2 = A[2,:]\n"
" out3 = A[:,1]\n"
" out4 = A[:,2]\n"
" return B, out2, out3, out4\n"
"end\n"
)
assert source == expected
def test_jl_loops():
# Note: an Julia programmer would probably vectorize this across one or
# more dimensions. Also, size(A) would be used rather than passing in m
# and n. Perhaps users would expect us to vectorize automatically here?
# Or is it possible to represent such things using IndexedBase?
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
result, = codegen(('mat_vec_mult', Eq(y[i], A[i, j]*x[j])), "Julia",
header=False, empty=False)
source = result[1]
expected = (
'function mat_vec_mult(y, A, m, n, x)\n'
' for i = 1:m\n'
' y[i] = 0\n'
' end\n'
' for i = 1:m\n'
' for j = 1:n\n'
' y[i] = %(rhs)s + y[i]\n'
' end\n'
' end\n'
' return y\n'
'end\n'
)
assert (source == expected % {'rhs': 'A[%s,%s].*x[j]' % (i, j)} or
source == expected % {'rhs': 'x[j].*A[%s,%s]' % (i, j)})
def test_jl_tensor_loops_multiple_contractions():
# see comments in previous test about vectorizing
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A')
B = IndexedBase('B')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
result, = codegen(('tensorthing', Eq(y[i], B[j, k, l]*A[i, j, k, l])),
"Julia", header=False, empty=False)
source = result[1]
expected = (
'function tensorthing(y, A, B, m, n, o, p)\n'
' for i = 1:m\n'
' y[i] = 0\n'
' end\n'
' for i = 1:m\n'
' for j = 1:n\n'
' for k = 1:o\n'
' for l = 1:p\n'
' y[i] = A[i,j,k,l].*B[j,k,l] + y[i]\n'
' end\n'
' end\n'
' end\n'
' end\n'
' return y\n'
'end\n'
)
assert source == expected
def test_jl_InOutArgument():
expr = Equality(x, x**2)
name_expr = ("mysqr", expr)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function mysqr(x)\n"
" x = x.^2\n"
" return x\n"
"end\n"
)
assert source == expected
def test_jl_InOutArgument_order():
# can specify the order as (x, y)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Julia", header=False,
empty=False, argument_sequence=(x,y))
source = result[1]
expected = (
"function test(x, y)\n"
" x = x.^2 + y\n"
" return x\n"
"end\n"
)
assert source == expected
# make sure it gives (x, y) not (y, x)
expr = Equality(x, x**2 + y)
name_expr = ("test", expr)
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x, y)\n"
" x = x.^2 + y\n"
" return x\n"
"end\n"
)
assert source == expected
def test_jl_not_supported():
f = Function('f')
name_expr = ("test", [f(x).diff(x), S.ComplexInfinity])
result, = codegen(name_expr, "Julia", header=False, empty=False)
source = result[1]
expected = (
"function test(x)\n"
" # unsupported: Derivative(f(x), x)\n"
" # unsupported: zoo\n"
" out1 = Derivative(f(x), x)\n"
" out2 = zoo\n"
" return out1, out2\n"
"end\n"
)
assert source == expected
def test_global_vars_octave():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "Julia", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"function f(x)\n"
" out1 = x.*y\n"
" return out1\n"
"end\n"
)
assert source == expected
result = codegen(('f', x*y+z), "Julia", header=False, empty=False,
argument_sequence=(x, y), global_vars=(z, t))
source = result[0][1]
expected = (
"function f(x, y)\n"
" out1 = x.*y + z\n"
" return out1\n"
"end\n"
)
assert source == expected
|
49946731b4713aba86a46668ee391ece9ba27fdd8f927e9210d2e9df69253c19 | from sympy.core import symbols, Eq, pi, Catalan, Lambda, Dummy
from sympy.core.compatibility import StringIO
from sympy import erf, Integral, Symbol
from sympy import Equality
from sympy.matrices import Matrix, MatrixSymbol
from sympy.utilities.codegen import (
codegen, make_routine, CCodeGen, C89CodeGen, C99CodeGen, InputArgument,
CodeGenError, FCodeGen, CodeGenArgumentListError, OutputArgument,
InOutArgument)
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
#FIXME: Fails due to circular import in with core
# from sympy import codegen
def get_string(dump_fn, routines, prefix="file", header=False, empty=False):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generated to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, header, empty)
source = output.getvalue()
output.close()
return source
def test_Routine_argument_order():
a, x, y, z = symbols('a x y z')
expr = (x + y)*z
raises(CodeGenArgumentListError, lambda: make_routine("test", expr,
argument_sequence=[z, x]))
raises(CodeGenArgumentListError, lambda: make_routine("test", Eq(a,
expr), argument_sequence=[z, x, y]))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
assert [ type(arg) for arg in r.arguments ] == [
InputArgument, InputArgument, OutputArgument, InputArgument ]
r = make_routine('test', Eq(z, expr), argument_sequence=[z, x, y])
assert [ type(arg) for arg in r.arguments ] == [
InOutArgument, InputArgument, InputArgument ]
from sympy.tensor import IndexedBase, Idx
A, B = map(IndexedBase, ['A', 'B'])
m = symbols('m', integer=True)
i = Idx('i', m)
r = make_routine('test', Eq(A[i], B[i]), argument_sequence=[B, A, m])
assert [ arg.name for arg in r.arguments ] == [B.label, A.label, m]
expr = Integral(x*y*z, (x, 1, 2), (y, 1, 3))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
def test_empty_c_code():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [])
assert source == "#include \"file.h\"\n#include <math.h>\n"
def test_empty_c_code_with_comment():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [], header=True)
assert source[:82] == (
"/******************************************************************************\n *"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
" * *\n"
" * See http://www.sympy.org/ for more information. *\n"
" * *\n"
" * This file is part of 'project' *\n"
" ******************************************************************************/\n"
"#include \"file.h\"\n"
"#include <math.h>\n"
)
def test_empty_c_header():
code_gen = C99CodeGen()
source = get_string(code_gen.dump_h, [])
assert source == "#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n#endif\n"
def test_simple_c_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_c_code_reserved_words():
x, y, z = symbols('if, typedef, while')
expr = (x + y) * z
routine = make_routine("test", expr)
code_gen = C99CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double if_, double typedef_, double while_) {\n"
" double test_result;\n"
" test_result = while_*(if_ + typedef_);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_numbersymbol_c_code():
routine = make_routine("test", pi**Catalan)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test() {\n"
" double test_result;\n"
" double const Catalan = %s;\n"
" test_result = pow(M_PI, Catalan);\n"
" return test_result;\n"
"}\n"
) % Catalan.evalf(17)
assert source == expected
def test_c_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double z, double x, double y) {\n"
" double test_result;\n"
" test_result = x + y;\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_simple_c_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n"
)
assert source == expected
def test_simple_c_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
expected = [
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n")
]
result = codegen(("test", expr), "C", "file", header=False, empty=False)
assert result == expected
def test_multiple_results_c():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = C99CodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_c():
raises(ValueError, lambda: make_routine("test", []))
def test_ansi_math1_codegen():
# not included: log10
from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
sin, sinh, sqrt, tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_fabs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_ceil", ceiling(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_floor", floor(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_fabs(double x) {\n double test_fabs_result;\n test_fabs_result = fabs(x);\n return test_fabs_result;\n}\n'
'double test_acos(double x) {\n double test_acos_result;\n test_acos_result = acos(x);\n return test_acos_result;\n}\n'
'double test_asin(double x) {\n double test_asin_result;\n test_asin_result = asin(x);\n return test_asin_result;\n}\n'
'double test_atan(double x) {\n double test_atan_result;\n test_atan_result = atan(x);\n return test_atan_result;\n}\n'
'double test_ceil(double x) {\n double test_ceil_result;\n test_ceil_result = ceil(x);\n return test_ceil_result;\n}\n'
'double test_cos(double x) {\n double test_cos_result;\n test_cos_result = cos(x);\n return test_cos_result;\n}\n'
'double test_cosh(double x) {\n double test_cosh_result;\n test_cosh_result = cosh(x);\n return test_cosh_result;\n}\n'
'double test_floor(double x) {\n double test_floor_result;\n test_floor_result = floor(x);\n return test_floor_result;\n}\n'
'double test_log(double x) {\n double test_log_result;\n test_log_result = log(x);\n return test_log_result;\n}\n'
'double test_ln(double x) {\n double test_ln_result;\n test_ln_result = log(x);\n return test_ln_result;\n}\n'
'double test_sin(double x) {\n double test_sin_result;\n test_sin_result = sin(x);\n return test_sin_result;\n}\n'
'double test_sinh(double x) {\n double test_sinh_result;\n test_sinh_result = sinh(x);\n return test_sinh_result;\n}\n'
'double test_sqrt(double x) {\n double test_sqrt_result;\n test_sqrt_result = sqrt(x);\n return test_sqrt_result;\n}\n'
'double test_tan(double x) {\n double test_tan_result;\n test_tan_result = tan(x);\n return test_tan_result;\n}\n'
'double test_tanh(double x) {\n double test_tanh_result;\n test_tanh_result = tanh(x);\n return test_tanh_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_fabs(double x);\ndouble test_acos(double x);\n'
'double test_asin(double x);\ndouble test_atan(double x);\n'
'double test_ceil(double x);\ndouble test_cos(double x);\n'
'double test_cosh(double x);\ndouble test_floor(double x);\n'
'double test_log(double x);\ndouble test_ln(double x);\n'
'double test_sin(double x);\ndouble test_sinh(double x);\n'
'double test_sqrt(double x);\ndouble test_tan(double x);\n'
'double test_tanh(double x);\n#endif\n'
)
def test_ansi_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_atan2(double x, double y) {\n double test_atan2_result;\n test_atan2_result = atan2(x, y);\n return test_atan2_result;\n}\n'
'double test_pow(double x, double y) {\n double test_pow_result;\n test_pow_result = pow(x, y);\n return test_pow_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_atan2(double x, double y);\n'
'double test_pow(double x, double y);\n'
'#endif\n'
)
def test_complicated_codegen():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test1(double x, double y, double z) {\n'
' double test1_result;\n'
' test1_result = '
'pow(sin(x), 7) + '
'7*pow(sin(x), 6)*cos(y) + '
'7*pow(sin(x), 6)*tan(z) + '
'21*pow(sin(x), 5)*pow(cos(y), 2) + '
'42*pow(sin(x), 5)*cos(y)*tan(z) + '
'21*pow(sin(x), 5)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(cos(y), 3) + '
'105*pow(sin(x), 4)*pow(cos(y), 2)*tan(z) + '
'105*pow(sin(x), 4)*cos(y)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(cos(y), 4) + '
'140*pow(sin(x), 3)*pow(cos(y), 3)*tan(z) + '
'210*pow(sin(x), 3)*pow(cos(y), 2)*pow(tan(z), 2) + '
'140*pow(sin(x), 3)*cos(y)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(cos(y), 5) + '
'105*pow(sin(x), 2)*pow(cos(y), 4)*tan(z) + '
'210*pow(sin(x), 2)*pow(cos(y), 3)*pow(tan(z), 2) + '
'210*pow(sin(x), 2)*pow(cos(y), 2)*pow(tan(z), 3) + '
'105*pow(sin(x), 2)*cos(y)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(tan(z), 5) + '
'7*sin(x)*pow(cos(y), 6) + '
'42*sin(x)*pow(cos(y), 5)*tan(z) + '
'105*sin(x)*pow(cos(y), 4)*pow(tan(z), 2) + '
'140*sin(x)*pow(cos(y), 3)*pow(tan(z), 3) + '
'105*sin(x)*pow(cos(y), 2)*pow(tan(z), 4) + '
'42*sin(x)*cos(y)*pow(tan(z), 5) + '
'7*sin(x)*pow(tan(z), 6) + '
'pow(cos(y), 7) + '
'7*pow(cos(y), 6)*tan(z) + '
'21*pow(cos(y), 5)*pow(tan(z), 2) + '
'35*pow(cos(y), 4)*pow(tan(z), 3) + '
'35*pow(cos(y), 3)*pow(tan(z), 4) + '
'21*pow(cos(y), 2)*pow(tan(z), 5) + '
'7*cos(y)*pow(tan(z), 6) + '
'pow(tan(z), 7);\n'
' return test1_result;\n'
'}\n'
'double test2(double x, double y, double z) {\n'
' double test2_result;\n'
' test2_result = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n'
' return test2_result;\n'
'}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'double test1(double x, double y, double z);\n'
'double test2(double x, double y, double z);\n'
'#endif\n'
)
def test_loops_c():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y) {\n'
' for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
)
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*n + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*n)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*n + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*n)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y);\n'
'#endif\n'
)
def test_dummy_loops_c():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void test_dummies(int m_%(mno)i, double *x, double *y) {\n'
' for (int i_%(ino)i=0; i_%(ino)i<m_%(mno)i; i_%(ino)i++){\n'
' y[i_%(ino)i] = x[i_%(ino)i];\n'
' }\n'
'}\n'
) % {'ino': i.label.dummy_index, 'mno': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c89 = C89CodeGen()
c99 = C99CodeGen()
code = get_string(c99.dump_c, [r])
assert code == expected
with raises(NotImplementedError):
get_string(c89.dump_c, [r])
def test_partial_loops_c():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y) {\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
) % {'upperi': m - 4, 'rhs': '%(rhs)s'}
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*p + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*p)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*p + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*p)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y);\n'
'#endif\n'
)
def test_output_arg_c():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double x, double *y) {\n'
' (*y) = sin(x);\n'
' double foo_result;\n'
' foo_result = cos(x);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_output_arg_c_reserved_words():
from sympy import sin, cos, Equality
x, y, z = symbols("if, while, z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double if_, double *while_) {\n'
' (*while_) = sin(if_);\n'
' double foo_result;\n'
' foo_result = cos(if_);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_ccode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double x, double *C, double z, double y, double *A, double *B) {\n'
' (*C) = z*(x + y);\n'
' A[0] = 1;\n'
' A[1] = 2;\n'
' A[2] = x;\n'
' (*B) = 2*x;\n'
'}\n'
)
result = codegen(name_expr, "c", "test", header=False, empty=False,
argument_sequence=(x, C, z, y, A, B))
source = result[0][1]
assert source == expected
def test_ccode_matrixsymbol_slice():
A = MatrixSymbol('A', 5, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 5, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "c99", "test", header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double *A, double *B, double *C, double *D) {\n'
' B[0] = A[0];\n'
' B[1] = A[1];\n'
' B[2] = A[2];\n'
' C[0] = A[3];\n'
' C[1] = A[4];\n'
' C[2] = A[5];\n'
' D[0] = A[2];\n'
' D[1] = A[5];\n'
' D[2] = A[8];\n'
' D[3] = A[11];\n'
' D[4] = A[14];\n'
'}\n'
)
assert source == expected
def test_ccode_cse():
a, b, c, d = symbols('a b c d')
e = MatrixSymbol('e', 3, 1)
name_expr = ("test", [Equality(e, Matrix([[a*b], [a*b + c*d], [a*b*c*d]]))])
generator = CCodeGen(cse=True)
result = codegen(name_expr, code_gen=generator, header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double a, double b, double c, double d, double *e) {\n'
' const double x0 = a*b;\n'
' const double x1 = c*d;\n'
' e[0] = x0;\n'
' e[1] = x0 + x1;\n'
' e[2] = x0*x1;\n'
'}\n'
)
assert source == expected
def test_ccode_unused_array_arg():
x = MatrixSymbol('x', 2, 1)
# x does not appear in output
name_expr = ("test", 1.0)
generator = CCodeGen()
result = codegen(name_expr, code_gen=generator, header=False, empty=False, argument_sequence=(x,))
source = result[0][1]
# note: x should appear as (double *)
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double test(double *x) {\n'
' double test_result;\n'
' test_result = 1.0;\n'
' return test_result;\n'
'}\n'
)
assert source == expected
def test_empty_f_code():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [])
assert source == ""
def test_empty_f_code_with_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [], header=True)
assert source[:82] == (
"!******************************************************************************\n!*"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
"!* *\n"
"!* See http://www.sympy.org/ for more information. *\n"
"!* *\n"
"!* This file is part of 'project' *\n"
"!******************************************************************************\n"
)
def test_empty_f_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [])
assert source == ""
def test_simple_f_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"
)
assert source == expected
def test_numbersymbol_f_code():
routine = make_routine("test", pi**Catalan)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test()\n"
"implicit none\n"
"REAL*8, parameter :: Catalan = %sd0\n"
"REAL*8, parameter :: pi = %sd0\n"
"test = pi**Catalan\n"
"end function\n"
) % (Catalan.evalf(17), pi.evalf(17))
assert source == expected
def test_erf_f_code():
x = symbols('x')
routine = make_routine("test", erf(x) - erf(-2 * x))
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"test = erf(x) + erf(2.0d0*x)\n"
"end function\n"
)
assert source == expected, source
def test_f_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(z, x, y)\n"
"implicit none\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n"
)
assert source == expected
def test_simple_f_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n"
)
assert source == expected
def test_simple_f_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
result = codegen(
("test", expr), "F95", "file", header=False, empty=False)
expected = [
("file.f90",
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"),
("file.h",
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n")
]
assert result == expected
def test_multiple_results_f():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = FCodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_f():
raises(ValueError, lambda: make_routine("test", []))
def test_intrinsic_math_codegen():
# not included: log10
from sympy import (acos, asin, atan, cos, cosh, log, ln, sin, sinh, sqrt,
tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_abs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_abs = abs(x)\n'
'end function\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_acos = acos(x)\n'
'end function\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_asin = asin(x)\n'
'end function\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_atan = atan(x)\n'
'end function\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cos = cos(x)\n'
'end function\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cosh = cosh(x)\n'
'end function\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_log = log(x)\n'
'end function\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_ln = log(x)\n'
'end function\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sin = sin(x)\n'
'end function\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sinh = sinh(x)\n'
'end function\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sqrt = sqrt(x)\n'
'end function\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tan = tan(x)\n'
'end function\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tanh = tanh(x)\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_intrinsic_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_atan2 = atan2(x, y)\n'
'end function\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_pow = x**y\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_complicated_codegen_f95():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n'
' **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n'
' **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n'
' 105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n'
' x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n'
' cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n'
' **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n'
' tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n'
' **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n'
' (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n'
' sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n'
' *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n'
' x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n'
' z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n'
' y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n'
'end function\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_loops():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n,m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' y(i) = 0\n'
'end do\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_dummy_loops_f95():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'subroutine test_dummies(m_%(mcount)i, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m_%(mcount)i\n'
'REAL*8, intent(in), dimension(1:m_%(mcount)i) :: x\n'
'REAL*8, intent(out), dimension(1:m_%(mcount)i) :: y\n'
'INTEGER*4 :: i_%(icount)i\n'
'do i_%(icount)i = 1, m_%(mcount)i\n'
' y(i_%(icount)i) = x(i_%(icount)i)\n'
'end do\n'
'end subroutine\n'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c = FCodeGen()
code = get_string(c.dump_f95, [r])
assert code == expected
def test_loops_InOut():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
i, j, n, m = symbols('i,j,n,m', integer=True)
A, x, y = symbols('A,x,y')
A = IndexedBase(A)[Idx(i, m), Idx(j, n)]
x = IndexedBase(x)[Idx(j, n)]
y = IndexedBase(y)[Idx(i, m)]
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y, y + A*x)), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert (code == expected % {'rhs': 'A(i, j)*x(j)'} or
code == expected % {'rhs': 'x(j)*A(i, j)'})
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_partial_loops_f():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
expected = (
'subroutine matrix_vector(A, m, n, o, p, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'INTEGER*4, intent(in) :: o\n'
'INTEGER*4, intent(in) :: p\n'
'REAL*8, intent(in), dimension(1:m, 1:p) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:%(iup-ilow)s) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = %(ilow)s, %(iup)s\n'
' y(i) = 0\n'
'end do\n'
'do i = %(ilow)s, %(iup)s\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
) % {
'rhs': '%(rhs)s',
'iup': str(m - 4),
'ilow': str(1 + o),
'iup-ilow': str(m - 4 - o)
}
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
def test_output_arg_f():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = FCodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.f90"
assert result[0][1] == (
'REAL*8 function foo(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(out) :: y\n'
'y = sin(x)\n'
'foo = cos(x)\n'
'end function\n'
)
def test_inline_function():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
p = FCodeGen()
func = implemented_function('func', Lambda(n, n*(n + 1)))
routine = make_routine('test_inline', Eq(y[i], func(x[i])))
code = get_string(p.dump_f95, [routine])
expected = (
'subroutine test_inline(m, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'REAL*8, intent(in), dimension(1:m) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'do i = 1, m\n'
' y(i) = %s*%s\n'
'end do\n'
'end subroutine\n'
)
args = ('x(i)', '(x(i) + 1)')
assert code == expected % args or\
code == expected % args[::-1]
def test_f_code_call_signature_wrap():
# Issue #7934
x = symbols('x:20')
expr = 0
for sym in x:
expr += sym
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = """\
REAL*8 function test(x0, x1, x10, x11, x12, x13, x14, x15, x16, x17, x18, &
x19, x2, x3, x4, x5, x6, x7, x8, x9)
implicit none
REAL*8, intent(in) :: x0
REAL*8, intent(in) :: x1
REAL*8, intent(in) :: x10
REAL*8, intent(in) :: x11
REAL*8, intent(in) :: x12
REAL*8, intent(in) :: x13
REAL*8, intent(in) :: x14
REAL*8, intent(in) :: x15
REAL*8, intent(in) :: x16
REAL*8, intent(in) :: x17
REAL*8, intent(in) :: x18
REAL*8, intent(in) :: x19
REAL*8, intent(in) :: x2
REAL*8, intent(in) :: x3
REAL*8, intent(in) :: x4
REAL*8, intent(in) :: x5
REAL*8, intent(in) :: x6
REAL*8, intent(in) :: x7
REAL*8, intent(in) :: x8
REAL*8, intent(in) :: x9
test = x0 + x1 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + &
x19 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
end function
"""
assert source == expected
def test_check_case():
x, X = symbols('x,X')
raises(CodeGenError, lambda: codegen(('test', x*X), 'f95', 'prefix'))
def test_check_case_false_positive():
# The upper case/lower case exception should not be triggered by SymPy
# objects that differ only because of assumptions. (It may be useful to
# have a check for that as well, but here we only want to test against
# false positives with respect to case checking.)
x1 = symbols('x')
x2 = symbols('x', my_assumption=True)
try:
codegen(('test', x1*x2), 'f95', 'prefix')
except CodeGenError as e:
if e.args[0].startswith("Fortran ignores case."):
raise AssertionError("This exception should not be raised!")
def test_c_fortran_omit_routine_name():
x, y = symbols("x,y")
name_expr = [("foo", 2*x)]
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", x*y)
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", Matrix([[x, y], [x+y, x-y]]))
result = codegen(name_expr, "C89", header=False, empty=False)
expresult = codegen(name_expr, "C89", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
def test_fcode_matrix_output():
x, y, z = symbols('x,y,z')
e1 = x + y
e2 = Matrix([[x, y], [z, 16]])
name_expr = ("test", (e1, e2))
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"REAL*8 function test(x, y, z, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(out), dimension(1:2, 1:2) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = x\n"
"out_%(hash)s(2, 1) = z\n"
"out_%(hash)s(1, 2) = y\n"
"out_%(hash)s(2, 2) = 16\n"
"test = x + y\n"
"end function\n"
)
# look for the magic number
a = source.splitlines()[5]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_fcode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "f95", "test", header=False, empty=False,
argument_sequence=(x, z, y, C, A, B))
source = result[0][1]
expected = (
"subroutine test(x, z, y, C, A, B)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(out) :: C\n"
"REAL*8, intent(out) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: A\n"
"C = z*(x + y)\n"
"A(1, 1) = 1\n"
"A(1, 2) = 2\n"
"A(1, 3) = x\n"
"B = 2*x\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 2, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, B, C, D)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: C\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: D\n"
"B(1, 1) = A(1, 1)\n"
"B(1, 2) = A(1, 2)\n"
"B(1, 3) = A(1, 3)\n"
"C(1, 1) = A(2, 1)\n"
"C(1, 2) = A(2, 2)\n"
"C(1, 3) = A(2, 3)\n"
"D(1, 1) = A(1, 3)\n"
"D(2, 1) = A(2, 3)\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice_autoname():
# see issue #8093
A = MatrixSymbol('A', 2, 3)
name_expr = ("test", A[:, 1])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = A(1, 2)\n"
"out_%(hash)s(2, 1) = A(2, 2)\n"
"end subroutine\n"
)
# look for the magic number
a = source.splitlines()[3]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_global_vars():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "F95", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"REAL*8 function f(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"f = x*y\n"
"end function\n"
)
assert source == expected
expected = (
'#include "f.h"\n'
'#include <math.h>\n'
'double f(double x, double y) {\n'
' double f_result;\n'
' f_result = x*y + z;\n'
' return f_result;\n'
'}\n'
)
result = codegen(('f', x*y+z), "C", header=False, empty=False,
global_vars=(z, t))
source = result[0][1]
assert source == expected
def test_custom_codegen():
from sympy.printing.ccode import C99CodePrinter
from sympy.functions.elementary.exponential import exp
printer = C99CodePrinter(settings={'user_functions': {'exp': 'fastexp'}})
x, y = symbols('x y')
expr = exp(x + y)
# replace math.h with a different header
gen = C99CodeGen(printer=printer,
preprocessor_statements=['#include "fastexp.h"'])
expected = (
'#include "expr.h"\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
# use both math.h and an external header
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "fastexp.h"')
expected = (
'#include "expr.h"\n'
'#include <math.h>\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
def test_c_with_printer():
#issue 13586
from sympy.printing.ccode import C99CodePrinter
class CustomPrinter(C99CodePrinter):
def _print_Pow(self, expr):
return "fastpow({}, {})".format(self._print(expr.base),
self._print(expr.exp))
x = symbols('x')
expr = x**3
expected =[
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x) {\n"
" double test_result;\n"
" test_result = fastpow(x, 3);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x);\n"
"#endif\n")
]
result = codegen(("test", expr), "C","file", header=False, empty=False, printer = CustomPrinter())
assert result == expected
def test_fcode_complex():
import sympy.utilities.codegen
sympy.utilities.codegen.COMPLEX_ALLOWED = True
x = Symbol('x', real=True)
y = Symbol('y',real=True)
result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False)
source = (result[0][1])
expected = (
"REAL*8 function test(x, y)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n")
assert source == expected
x = Symbol('x')
y = Symbol('y',real=True)
result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False)
source = (result[0][1])
expected = (
"COMPLEX*16 function test(x, y)\n"
"implicit none\n"
"COMPLEX*16, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n"
)
assert source==expected
sympy.utilities.codegen.COMPLEX_ALLOWED = False
|
f27d9edc09964f9519a5354d437e31c55c1e7866bbebb2e8f9b3b0b0519375b4 | from __future__ import absolute_import
import shutil
from sympy.external import import_module
from sympy.testing.pytest import skip
from sympy.utilities._compilation.compilation import compile_link_import_strings
numpy = import_module('numpy')
cython = import_module('cython')
_sources1 = [
('sigmoid.c', r"""
#include <math.h>
void sigmoid(int n, const double * const restrict in,
double * const restrict out, double lim){
for (int i=0; i<n; ++i){
const double x = in[i];
out[i] = x*pow(pow(x/lim, 8)+1, -1./8.);
}
}
"""),
('_sigmoid.pyx', r"""
import numpy as np
cimport numpy as cnp
cdef extern void c_sigmoid "sigmoid" (int, const double * const,
double * const, double)
def sigmoid(double [:] inp, double lim=350.0):
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.empty(
inp.size, dtype=np.float64)
c_sigmoid(inp.size, &inp[0], &out[0], lim)
return out
""")
]
def npy(data, lim=350.0):
return data/((data/lim)**8+1)**(1/8.)
def test_compile_link_import_strings():
if not numpy:
skip("numpy not installed.")
if not cython:
skip("cython not installed.")
from sympy.utilities._compilation import has_c
if not has_c():
skip("No C compiler found.")
compile_kw = dict(std='c99', include_dirs=[numpy.get_include()])
info = None
try:
mod, info = compile_link_import_strings(_sources1, compile_kwargs=compile_kw)
data = numpy.random.random(1024*1024*8) # 64 MB of RAM needed..
res_mod = mod.sigmoid(data)
res_npy = npy(data)
assert numpy.allclose(res_mod, res_npy)
finally:
if info and info['build_dir']:
shutil.rmtree(info['build_dir'])
|
3c8b0e7aa0d1313b0ae6fe77ac2d86a4c4266cd6ceead95abb6709906d37ac8f | from __future__ import print_function, division
import itertools
from sympy.core import S
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import xstr, hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"perm_cyclic": True
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], str):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
self.emptyPrinter = lambda x: prettyForm(xstr(x))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Rationals = _print_Atom
_print_Complexes = _print_Atom
_print_EmptySequence = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(u' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv.expr) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(Cycle(expr))
lower = expr.array_form
upper = list(range(len(lower)))
result = stringPict('')
first = True
for u, l in zip(upper, lower):
s1 = self._print(u)
s2 = self._print(l)
col = prettyForm(*s1.below(s2))
if first:
first = False
else:
col = prettyForm(*col.left(" "))
result = prettyForm(*result.right(col))
return prettyForm(*result.parens())
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def __print_SumProduct_Limits(self, lim):
def print_start(lhs, rhs):
op = prettyForm(' ' + xsym("==") + ' ')
l = self._print(lhs)
r = self._print(rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
prettyUpper = self._print(lim[2])
prettyLower = print_start(lim[0], lim[1])
return prettyLower, prettyUpper
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
_print_ImmutableMatrix = _print_MatrixBase
_print_Matrix = _print_MatrixBase
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = u"\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
prettyFunc = self._print(m.parent)
def ppslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice),
ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm(u'\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_Identity(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
else:
return prettyForm('I')
def _print_ZeroMatrix(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
else:
return prettyForm('0')
def _print_OneMatrix(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
else:
return prettyForm('1')
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul, HadamardProduct
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
def _print_HadamardPower(self, expr):
# from sympy import MatAdd, MatMul
if self._use_unicode:
circ = pretty_atom('Ring')
else:
circ = self._print('.')
pretty_base = self._print(expr.base)
pretty_exp = self._print(expr.exp)
if precedence(expr.exp) < PRECEDENCE["Mul"]:
pretty_exp = prettyForm(*pretty_exp.parens())
pretty_circ_exp = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(circ, pretty_exp)
)
return pretty_base**pretty_circ_exp
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append(u"" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append(u"(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(u" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == u'\N{right parenthesis extension}':
tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}',
u'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}',
u'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm(u'\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if len(deriv.variables) > 1:
pform = pform**self._print(len(deriv.variables))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _print_mathieuc(self, e):
return self._print_Function(e, func_name='C')
def _print_mathieus(self, e):
return self._print_Function(e, func_name='S')
def _print_mathieucprime(self, e):
return self._print_Function(e, func_name="C'")
def _print_mathieusprime(self, e):
return self._print_Function(e, func_name="S'")
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name and hasattr(func, "__name__"):
func_name = func.__name__
if func_name:
prettyFunc = self._print(Symbol(func_name))
else:
prettyFunc = prettyForm(*self._print(func).parens())
if elementwise:
if self._use_unicode:
circ = pretty_atom('Modifier Letter Low Ring')
else:
circ = '.'
circ = self._print(circ)
prettyFunc = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(prettyFunc, circ)
)
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg]
return self._helper_print_function(func, args, delimiter="", elementwise=True)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_dirichlet_eta(self, e):
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
return self._print_Function(e, func_name=func_name)
def _print_Heaviside(self, e):
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
return self._print_Function(e, func_name=func_name)
def _print_fresnels(self, e):
return self._print_Function(e, func_name="S")
def _print_fresnelc(self, e):
return self._print_Function(e, func_name="C")
def _print_airyai(self, e):
return self._print_Function(e, func_name="Ai")
def _print_airybi(self, e):
return self._print_Function(e, func_name="Bi")
def _print_airyaiprime(self, e):
return self._print_Function(e, func_name="Ai'")
def _print_airybiprime(self, e):
return self._print_Function(e, func_name="Bi'")
def _print_LambertW(self, e):
return self._print_Function(e, func_name="W")
def _print_Lambda(self, e):
expr = e.expr
sig = e.signature
if self._use_unicode:
arrow = u" \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
var_form = self._print(sig)
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
pform = self._print(Mul(-coeff, *other, evaluate=False))
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) >= 1 and not has_variety(p.sets):
from sympy import Pow
return self._print(Pow(p.sets[0], len(p.sets), evaluate=False))
else:
prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
fun = ts.lamda
sets = ts.base_sets
signature = fun.signature
expr = self._print(fun.expr)
bar = self._print("|")
if len(signature) == 1:
return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = u"\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print(cond)
cond = prettyForm(*cond.parens())
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = u" \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
try:
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
# XXX: Under the tests from #15686 this raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm(u"\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
pform = prettyForm(name)
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_euler(self, e):
return self._print_number_function(e, "E")
def _print_catalan(self, e):
return self._print_number_function(e, "C")
def _print_bernoulli(self, e):
return self._print_number_function(e, "B")
_print_bell = _print_bernoulli
def _print_lucas(self, e):
return self._print_number_function(e, "L")
def _print_fibonacci(self, e):
return self._print_number_function(e, "F")
def _print_tribonacci(self, e):
return self._print_number_function(e, "T")
def _print_stieltjes(self, e):
if self._use_unicode:
return self._print_number_function(e, u'\N{GREEK SMALL LETTER GAMMA}')
else:
return self._print_number_function(e, "stieltjes")
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right((prettyForm(','))))
pform = prettyForm(*pform.right((self._print(e.args[1]))))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index]
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print(u"\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, **kwargs):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, **kwargs))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
c1373e8ad6f23a82cc7ad52ddec7a90402830bdbed36cc03d9093866be7026b5 | """Symbolic primitives + unicode/ASCII abstraction for pretty.py"""
from __future__ import print_function, division
import sys
import warnings
from string import ascii_lowercase, ascii_uppercase
unicode_warnings = ''
from sympy.core.compatibility import unicode
# first, setup unicodedate environment
try:
import unicodedata
def U(name):
"""unicode character by name or None if not found"""
try:
u = unicodedata.lookup(name)
except KeyError:
u = None
global unicode_warnings
unicode_warnings += 'No \'%s\' in unicodedata\n' % name
return u
except ImportError:
unicode_warnings += 'No unicodedata available\n'
U = lambda name: None
from sympy.printing.conventions import split_super_sub
from sympy.core.alphabets import greeks
# prefix conventions when constructing tables
# L - LATIN i
# G - GREEK beta
# D - DIGIT 0
# S - SYMBOL +
__all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol',
'annotated']
_use_unicode = False
def pretty_use_unicode(flag=None):
"""Set whether pretty-printer should use unicode by default"""
global _use_unicode
global unicode_warnings
if flag is None:
return _use_unicode
# we know that some letters are not supported in Python 2.X so
# ignore those warnings. Remove this when 2.X support is dropped.
if unicode_warnings:
known = ['LATIN SUBSCRIPT SMALL LETTER %s' % i for i in 'HKLMNPST']
unicode_warnings = '\n'.join([
l for l in unicode_warnings.splitlines() if not any(
i in l for i in known)])
# ------------ end of 2.X warning filtering
if flag and unicode_warnings:
# print warnings (if any) on first unicode usage
warnings.warn(unicode_warnings)
unicode_warnings = ''
use_unicode_prev = _use_unicode
_use_unicode = flag
return use_unicode_prev
def pretty_try_use_unicode():
"""See if unicode output is available and leverage it if possible"""
try:
symbols = []
# see, if we can represent greek alphabet
symbols.extend(greek_unicode.values())
# and atoms
symbols += atoms_table.values()
for s in symbols:
if s is None:
return # common symbols not present!
encoding = getattr(sys.stdout, 'encoding', None)
# this happens when e.g. stdout is redirected through a pipe, or is
# e.g. a cStringIO.StringO
if encoding is None:
return # sys.stdout has no encoding
# try to encode
s.encode(encoding)
except UnicodeEncodeError:
pass
else:
pretty_use_unicode(True)
def xstr(*args):
"""call str or unicode depending on current mode"""
if _use_unicode:
return unicode(*args)
else:
return str(*args)
# GREEK
g = lambda l: U('GREEK SMALL LETTER %s' % l.upper())
G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper())
greek_letters = list(greeks) # make a copy
# deal with Unicode's funny spelling of lambda
greek_letters[greek_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_unicode = dict((L, g(L)) for L in greek_letters)
greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters)
# aliases
greek_unicode['lambda'] = greek_unicode['lamda']
greek_unicode['Lambda'] = greek_unicode['Lamda']
greek_unicode['varsigma'] = u'\N{GREEK SMALL LETTER FINAL SIGMA}'
# BOLD
b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
bold_unicode = dict((l, b(l)) for l in ascii_lowercase)
bold_unicode.update((L, B(L)) for L in ascii_uppercase)
# GREEK BOLD
gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
greek_bold_letters = list(greeks) # make a copy, not strictly required here
# deal with Unicode's funny spelling of lambda
greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_bold_unicode = dict((L, g(L)) for L in greek_bold_letters)
greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters)
greek_bold_unicode['lambda'] = greek_unicode['lamda']
greek_bold_unicode['Lambda'] = greek_unicode['Lamda']
greek_bold_unicode['varsigma'] = u'\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}'
digit_2txt = {
'0': 'ZERO',
'1': 'ONE',
'2': 'TWO',
'3': 'THREE',
'4': 'FOUR',
'5': 'FIVE',
'6': 'SIX',
'7': 'SEVEN',
'8': 'EIGHT',
'9': 'NINE',
}
symb_2txt = {
'+': 'PLUS SIGN',
'-': 'MINUS',
'=': 'EQUALS SIGN',
'(': 'LEFT PARENTHESIS',
')': 'RIGHT PARENTHESIS',
'[': 'LEFT SQUARE BRACKET',
']': 'RIGHT SQUARE BRACKET',
'{': 'LEFT CURLY BRACKET',
'}': 'RIGHT CURLY BRACKET',
# non-std
'{}': 'CURLY BRACKET',
'sum': 'SUMMATION',
'int': 'INTEGRAL',
}
# SUBSCRIPT & SUPERSCRIPT
LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper())
GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper())
DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit])
SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb])
LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper())
DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit])
SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb])
sub = {} # symb -> subscript symbol
sup = {} # symb -> superscript symbol
# latin subscripts
for l in 'aeioruvxhklmnpst':
sub[l] = LSUB(l)
for l in 'in':
sup[l] = LSUP(l)
for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']:
sub[gl] = GSUB(gl)
for d in [str(i) for i in range(10)]:
sub[d] = DSUB(d)
sup[d] = DSUP(d)
for s in '+-=()':
sub[s] = SSUB(s)
sup[s] = SSUP(s)
# Variable modifiers
# TODO: Make brackets adjust to height of contents
modifier_dict = {
# Accents
'mathring': lambda s: center_accent(s, u'\N{COMBINING RING ABOVE}'),
'ddddot': lambda s: center_accent(s, u'\N{COMBINING FOUR DOTS ABOVE}'),
'dddot': lambda s: center_accent(s, u'\N{COMBINING THREE DOTS ABOVE}'),
'ddot': lambda s: center_accent(s, u'\N{COMBINING DIAERESIS}'),
'dot': lambda s: center_accent(s, u'\N{COMBINING DOT ABOVE}'),
'check': lambda s: center_accent(s, u'\N{COMBINING CARON}'),
'breve': lambda s: center_accent(s, u'\N{COMBINING BREVE}'),
'acute': lambda s: center_accent(s, u'\N{COMBINING ACUTE ACCENT}'),
'grave': lambda s: center_accent(s, u'\N{COMBINING GRAVE ACCENT}'),
'tilde': lambda s: center_accent(s, u'\N{COMBINING TILDE}'),
'hat': lambda s: center_accent(s, u'\N{COMBINING CIRCUMFLEX ACCENT}'),
'bar': lambda s: center_accent(s, u'\N{COMBINING OVERLINE}'),
'vec': lambda s: center_accent(s, u'\N{COMBINING RIGHT ARROW ABOVE}'),
'prime': lambda s: s+u'\N{PRIME}',
'prm': lambda s: s+u'\N{PRIME}',
# # Faces -- these are here for some compatibility with latex printing
# 'bold': lambda s: s,
# 'bm': lambda s: s,
# 'cal': lambda s: s,
# 'scr': lambda s: s,
# 'frak': lambda s: s,
# Brackets
'norm': lambda s: u'\N{DOUBLE VERTICAL LINE}'+s+u'\N{DOUBLE VERTICAL LINE}',
'avg': lambda s: u'\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+u'\N{MATHEMATICAL RIGHT ANGLE BRACKET}',
'abs': lambda s: u'\N{VERTICAL LINE}'+s+u'\N{VERTICAL LINE}',
'mag': lambda s: u'\N{VERTICAL LINE}'+s+u'\N{VERTICAL LINE}',
}
# VERTICAL OBJECTS
HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb])
CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb])
MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb])
EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb])
HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb])
CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb])
TOP = lambda symb: U('%s TOP' % symb_2txt[symb])
BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb])
# {} '(' -> (extension, start, end, middle) 1-character
_xobj_unicode = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( EXT('('), HUP('('), HLO('(') ), '('),
')': (( EXT(')'), HUP(')'), HLO(')') ), ')'),
'[': (( EXT('['), CUP('['), CLO('[') ), '['),
']': (( EXT(']'), CUP(']'), CLO(']') ), ']'),
'{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'),
'}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'),
'|': U('BOX DRAWINGS LIGHT VERTICAL'),
'<': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'),
'>': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'),
'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')),
'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')),
'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')),
'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')),
'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')),
'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')),
# horizontal objects
#'-': '-',
'-': U('BOX DRAWINGS LIGHT HORIZONTAL'),
'_': U('LOW LINE'),
# We used to use this, but LOW LINE looks better for roots, as it's a
# little lower (i.e., it lines up with the / perfectly. But perhaps this
# one would still be wanted for some cases?
# '_': U('HORIZONTAL SCAN LINE-9'),
# diagonal objects '\' & '/' ?
'/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
'\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
}
_xobj_ascii = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( '|', '/', '\\' ), '('),
')': (( '|', '\\', '/' ), ')'),
# XXX this looks ugly
# '[': (( '|', '-', '-' ), '['),
# ']': (( '|', '-', '-' ), ']'),
# XXX not so ugly :(
'[': (( '[', '[', '[' ), '['),
']': (( ']', ']', ']' ), ']'),
'{': (( '|', '/', '\\', '<' ), '{'),
'}': (( '|', '\\', '/', '>' ), '}'),
'|': '|',
'<': (( '|', '/', '\\' ), '<'),
'>': (( '|', '\\', '/' ), '>'),
'int': ( ' | ', ' /', '/ ' ),
# horizontal objects
'-': '-',
'_': '_',
# diagonal objects '\' & '/' ?
'/': '/',
'\\': '\\',
}
def xobj(symb, length):
"""Construct spatial object of given length.
return: [] of equal-length strings
"""
if length <= 0:
raise ValueError("Length should be greater than 0")
# TODO robustify when no unicodedat available
if _use_unicode:
_xobj = _xobj_unicode
else:
_xobj = _xobj_ascii
vinfo = _xobj[symb]
c1 = top = bot = mid = None
if not isinstance(vinfo, tuple): # 1 entry
ext = vinfo
else:
if isinstance(vinfo[0], tuple): # (vlong), c1
vlong = vinfo[0]
c1 = vinfo[1]
else: # (vlong), c1
vlong = vinfo
ext = vlong[0]
try:
top = vlong[1]
bot = vlong[2]
mid = vlong[3]
except IndexError:
pass
if c1 is None:
c1 = ext
if top is None:
top = ext
if bot is None:
bot = ext
if mid is not None:
if (length % 2) == 0:
# even height, but we have to print it somehow anyway...
# XXX is it ok?
length += 1
else:
mid = ext
if length == 1:
return c1
res = []
next = (length - 2)//2
nmid = (length - 2) - next*2
res += [top]
res += [ext]*next
res += [mid]*nmid
res += [ext]*next
res += [bot]
return res
def vobj(symb, height):
"""Construct vertical object of a given height
see: xobj
"""
return '\n'.join( xobj(symb, height) )
def hobj(symb, width):
"""Construct horizontal object of a given width
see: xobj
"""
return ''.join( xobj(symb, width) )
# RADICAL
# n -> symbol
root = {
2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM')
3: U('CUBE ROOT'),
4: U('FOURTH ROOT'),
}
# RATIONAL
VF = lambda txt: U('VULGAR FRACTION %s' % txt)
# (p,q) -> symbol
frac = {
(1, 2): VF('ONE HALF'),
(1, 3): VF('ONE THIRD'),
(2, 3): VF('TWO THIRDS'),
(1, 4): VF('ONE QUARTER'),
(3, 4): VF('THREE QUARTERS'),
(1, 5): VF('ONE FIFTH'),
(2, 5): VF('TWO FIFTHS'),
(3, 5): VF('THREE FIFTHS'),
(4, 5): VF('FOUR FIFTHS'),
(1, 6): VF('ONE SIXTH'),
(5, 6): VF('FIVE SIXTHS'),
(1, 8): VF('ONE EIGHTH'),
(3, 8): VF('THREE EIGHTHS'),
(5, 8): VF('FIVE EIGHTHS'),
(7, 8): VF('SEVEN EIGHTHS'),
}
# atom symbols
_xsym = {
'==': ('=', '='),
'<': ('<', '<'),
'>': ('>', '>'),
'<=': ('<=', U('LESS-THAN OR EQUAL TO')),
'>=': ('>=', U('GREATER-THAN OR EQUAL TO')),
'!=': ('!=', U('NOT EQUAL TO')),
':=': (':=', ':='),
'+=': ('+=', '+='),
'-=': ('-=', '-='),
'*=': ('*=', '*='),
'/=': ('/=', '/='),
'%=': ('%=', '%='),
'*': ('*', U('DOT OPERATOR')),
'-->': ('-->', U('EM DASH') + U('EM DASH') +
U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH')
and U('BLACK RIGHT-POINTING TRIANGLE') else None),
'==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BLACK RIGHT-POINTING TRIANGLE') if
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BLACK RIGHT-POINTING TRIANGLE') else None),
'.': ('*', U('RING OPERATOR')),
}
def xsym(sym):
"""get symbology for a 'character'"""
op = _xsym[sym]
if _use_unicode:
return op[1]
else:
return op[0]
# SYMBOLS
atoms_table = {
# class how-to-display
'Exp1': U('SCRIPT SMALL E'),
'Pi': U('GREEK SMALL LETTER PI'),
'Infinity': U('INFINITY'),
'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here
#'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'),
#'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'),
'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'),
'EmptySet': U('EMPTY SET'),
'Naturals': U('DOUBLE-STRUCK CAPITAL N'),
'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and
(U('DOUBLE-STRUCK CAPITAL N') +
U('SUBSCRIPT ZERO'))),
'Integers': U('DOUBLE-STRUCK CAPITAL Z'),
'Rationals': U('DOUBLE-STRUCK CAPITAL Q'),
'Reals': U('DOUBLE-STRUCK CAPITAL R'),
'Complexes': U('DOUBLE-STRUCK CAPITAL C'),
'Union': U('UNION'),
'SymmetricDifference': U('INCREMENT'),
'Intersection': U('INTERSECTION'),
'Ring': U('RING OPERATOR'),
'Modifier Letter Low Ring':U('Modifier Letter Low Ring'),
'EmptySequence': 'EmptySequence',
}
def pretty_atom(atom_name, default=None, printer=None):
"""return pretty representation of an atom"""
if _use_unicode:
if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j':
return U('DOUBLE-STRUCK ITALIC SMALL J')
else:
return atoms_table[atom_name]
else:
if default is not None:
return default
raise KeyError('only unicode') # send it default printer
def pretty_symbol(symb_name, bold_name=False):
"""return pretty representation of a symbol"""
# let's split symb_name into symbol + index
# UC: beta1
# UC: f_beta
if not _use_unicode:
return symb_name
name, sups, subs = split_super_sub(symb_name)
def translate(s, bold_name) :
if bold_name:
gG = greek_bold_unicode.get(s)
else:
gG = greek_unicode.get(s)
if gG is not None:
return gG
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) :
if s.lower().endswith(key) and len(s)>len(key):
return modifier_dict[key](translate(s[:-len(key)], bold_name))
if bold_name:
return ''.join([bold_unicode[c] for c in s])
return s
name = translate(name, bold_name)
# Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are
# not used at all.
def pretty_list(l, mapping):
result = []
for s in l:
pretty = mapping.get(s)
if pretty is None:
try: # match by separate characters
pretty = ''.join([mapping[c] for c in s])
except (TypeError, KeyError):
return None
result.append(pretty)
return result
pretty_sups = pretty_list(sups, sup)
if pretty_sups is not None:
pretty_subs = pretty_list(subs, sub)
else:
pretty_subs = None
# glue the results into one string
if pretty_subs is None: # nice formatting of sups/subs did not work
if subs:
name += '_'+'_'.join([translate(s, bold_name) for s in subs])
if sups:
name += '__'+'__'.join([translate(s, bold_name) for s in sups])
return name
else:
sups_result = ' '.join(pretty_sups)
subs_result = ' '.join(pretty_subs)
return ''.join([name, sups_result, subs_result])
def annotated(letter):
"""
Return a stylised drawing of the letter ``letter``, together with
information on how to put annotations (super- and subscripts to the
left and to the right) on it.
See pretty.py functions _print_meijerg, _print_hyper on how to use this
information.
"""
ucode_pics = {
'F': (2, 0, 2, 0, u'\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
u'\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
u'\N{BOX DRAWINGS LIGHT UP}'),
'G': (3, 0, 3, 1, u'\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n'
u'\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n'
u'\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}')
}
ascii_pics = {
'F': (3, 0, 3, 0, ' _\n|_\n|\n'),
'G': (3, 0, 3, 1, ' __\n/__\n\\_|')
}
if _use_unicode:
return ucode_pics[letter]
else:
return ascii_pics[letter]
def is_combining(sym):
"""Check whether symbol is a unicode modifier.
See stringPict.width on usage.
"""
return True if (u'\N{COMBINING GRAVE ACCENT}' <= sym <=
u'\N{COMBINING LATIN SMALL LETTER X}' or
u'\N{COMBINING LEFT HARPOON ABOVE}' <= sym <=
u'\N{COMBINING ASTERISK ABOVE}') else False
def center_accent(string, accent):
"""
Returns a string with accent inserted on the middle character. Useful to
put combining accents on symbol names, including multi-character names.
Parameters
==========
string : string
The string to place the accent in.
accent : string
The combining accent to insert
References
==========
.. [1] https://en.wikipedia.org/wiki/Combining_character
.. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
"""
# Accent is placed on the previous character, although it may not always look
# like that depending on console
midpoint = len(string) // 2 + 1
firstpart = string[:midpoint]
secondpart = string[midpoint:]
return firstpart + accent + secondpart
|
00bee68507eb28fd5d041f9ab28bccbfa0ca1b48d2edcd30c602f3c11b03cfb6 | """Prettyprinter by Jurjen Bos.
(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay).
All objects have a method that create a "stringPict",
that can be used in the str method for pretty printing.
Updates by Jason Gedge (email <my last name> at cs mun ca)
- terminal_string() method
- minor fixes and changes (mostly to prettyForm)
TODO:
- Allow left/center/right alignment options for above/below and
top/center/bottom alignment options for left/right
"""
from __future__ import print_function, division
from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, is_combining
from sympy.core.compatibility import unicode
class stringPict(object):
"""An ASCII picture.
The pictures are represented as a list of equal length strings.
"""
#special value for stringPict.below
LINE = 'line'
def __init__(self, s, baseline=0):
"""Initialize from string.
Multiline strings are centered.
"""
self.s = s
#picture is a string that just can be printed
self.picture = stringPict.equalLengths(s.splitlines())
#baseline is the line number of the "base line"
self.baseline = baseline
self.binding = None
@staticmethod
def line_width(line):
"""Unicode combining symbols (modifiers) are not ever displayed as
separate symbols and thus shouldn't be counted
"""
return sum(1 for sym in line if not is_combining(sym))
@staticmethod
def equalLengths(lines):
# empty lines
if not lines:
return ['']
width = max(stringPict.line_width(line) for line in lines)
return [line.center(width) for line in lines]
def height(self):
"""The height of the picture in characters."""
return len(self.picture)
def width(self):
"""The width of the picture in characters."""
return stringPict.line_width(self.picture[0])
@staticmethod
def next(*args):
"""Put a string of stringPicts next to each other.
Returns string, baseline arguments for stringPict.
"""
#convert everything to stringPicts
objects = []
for arg in args:
if isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#make a list of pictures, with equal height and baseline
newBaseline = max(obj.baseline for obj in objects)
newHeightBelowBaseline = max(
obj.height() - obj.baseline
for obj in objects)
newHeight = newBaseline + newHeightBelowBaseline
pictures = []
for obj in objects:
oneEmptyLine = [' '*obj.width()]
basePadding = newBaseline - obj.baseline
totalPadding = newHeight - obj.height()
pictures.append(
oneEmptyLine * basePadding +
obj.picture +
oneEmptyLine * (totalPadding - basePadding))
result = [''.join(lines) for lines in zip(*pictures)]
return '\n'.join(result), newBaseline
def right(self, *args):
r"""Put pictures next to this one.
Returns string, baseline arguments for stringPict.
(Multiline) strings are allowed, and are given a baseline of 0.
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
1
10 + -
2
"""
return stringPict.next(self, *args)
def left(self, *args):
"""Put pictures (left to right) at left.
Returns string, baseline arguments for stringPict.
"""
return stringPict.next(*(args + (self,)))
@staticmethod
def stack(*args):
"""Put pictures on top of each other,
from top to bottom.
Returns string, baseline arguments for stringPict.
The baseline is the baseline of the second picture.
Everything is centered.
Baseline is the baseline of the second picture.
Strings are allowed.
The special value stringPict.LINE is a row of '-' extended to the width.
"""
#convert everything to stringPicts; keep LINE
objects = []
for arg in args:
if arg is not stringPict.LINE and isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#compute new width
newWidth = max(
obj.width()
for obj in objects
if obj is not stringPict.LINE)
lineObj = stringPict(hobj('-', newWidth))
#replace LINE with proper lines
for i, obj in enumerate(objects):
if obj is stringPict.LINE:
objects[i] = lineObj
#stack the pictures, and center the result
newPicture = []
for obj in objects:
newPicture.extend(obj.picture)
newPicture = [line.center(newWidth) for line in newPicture]
newBaseline = objects[0].height() + objects[1].baseline
return '\n'.join(newPicture), newBaseline
def below(self, *args):
"""Put pictures under this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of top picture
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("x+3").below(
... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE
x+3
---
3
"""
s, baseline = stringPict.stack(self, *args)
return s, self.baseline
def above(self, *args):
"""Put pictures above this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of bottom picture.
"""
string, baseline = stringPict.stack(*(args + (self,)))
baseline = len(string.splitlines()) - self.height() + self.baseline
return string, baseline
def parens(self, left='(', right=')', ifascii_nougly=False):
"""Put parentheses around self.
Returns string, baseline arguments for stringPict.
left or right can be None or empty string which means 'no paren from
that side'
"""
h = self.height()
b = self.baseline
# XXX this is a hack -- ascii parens are ugly!
if ifascii_nougly and not pretty_use_unicode():
h = 1
b = 0
res = self
if left:
lparen = stringPict(vobj(left, h), baseline=b)
res = stringPict(*lparen.right(self))
if right:
rparen = stringPict(vobj(right, h), baseline=b)
res = stringPict(*res.right(rparen))
return ('\n'.join(res.picture), res.baseline)
def leftslash(self):
"""Precede object by a slash of the proper size.
"""
# XXX not used anywhere ?
height = max(
self.baseline,
self.height() - 1 - self.baseline)*2 + 1
slash = '\n'.join(
' '*(height - i - 1) + xobj('/', 1) + ' '*i
for i in range(height)
)
return self.left(stringPict(slash, height//2))
def root(self, n=None):
"""Produce a nice root symbol.
Produces ugly results for big n inserts.
"""
# XXX not used anywhere
# XXX duplicate of root drawing in pretty.py
#put line over expression
result = self.above('_'*self.width())
#construct right half of root symbol
height = self.height()
slash = '\n'.join(
' ' * (height - i - 1) + '/' + ' ' * i
for i in range(height)
)
slash = stringPict(slash, height - 1)
#left half of root symbol
if height > 2:
downline = stringPict('\\ \n \\', 1)
else:
downline = stringPict('\\')
#put n on top, as low as possible
if n is not None and n.width() > downline.width():
downline = downline.left(' '*(n.width() - downline.width()))
downline = downline.above(n)
#build root symbol
root = downline.right(slash)
#glue it on at the proper height
#normally, the root symbel is as high as self
#which is one less than result
#this moves the root symbol one down
#if the root became higher, the baseline has to grow too
root.baseline = result.baseline - result.height() + root.height()
return result.left(root)
def render(self, * args, **kwargs):
"""Return the string form of self.
Unless the argument line_break is set to False, it will
break the expression in a form that can be printed
on the terminal without being broken up.
"""
if kwargs["wrap_line"] is False:
return "\n".join(self.picture)
if kwargs["num_columns"] is not None:
# Read the argument num_columns if it is not None
ncols = kwargs["num_columns"]
else:
# Attempt to get a terminal width
ncols = self.terminal_width()
ncols -= 2
if ncols <= 0:
ncols = 78
# If smaller than the terminal width, no need to correct
if self.width() <= ncols:
return type(self.picture[0])(self)
# for one-line pictures we don't need v-spacers. on the other hand, for
# multiline-pictures, we need v-spacers between blocks, compare:
#
# 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323
# 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795
# | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b |
# 3 4 4 | | *d*f |
# 4*y*x + x + y | + b*c*f + b*d*e + b | |
# | | |
# | *d*f
i = 0
svals = []
do_vspacers = (self.height() > 1)
while i < self.width():
svals.extend([ sval[i:i + ncols] for sval in self.picture ])
if do_vspacers:
svals.append("") # a vertical spacer
i += ncols
if svals[-1] == '':
del svals[-1] # Get rid of the last spacer
return "\n".join(svals)
def terminal_width(self):
"""Return the terminal width if possible, otherwise return 0.
"""
ncols = 0
try:
import curses
import io
try:
curses.setupterm()
ncols = curses.tigetnum('cols')
except AttributeError:
# windows curses doesn't implement setupterm or tigetnum
# code below from
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/440694
from ctypes import windll, create_string_buffer
# stdin handle is -10
# stdout handle is -11
# stderr handle is -12
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(bufx, bufy, curx, cury, wattr,
left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw)
ncols = right - left + 1
except curses.error:
pass
except io.UnsupportedOperation:
pass
except (ImportError, TypeError):
pass
return ncols
def __eq__(self, o):
if isinstance(o, str):
return '\n'.join(self.picture) == o
elif isinstance(o, stringPict):
return o.picture == self.picture
return False
def __hash__(self):
return super(stringPict, self).__hash__()
def __str__(self):
return str.join('\n', self.picture)
def __unicode__(self):
return unicode.join(u'\n', self.picture)
def __repr__(self):
return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline)
def __getitem__(self, index):
return self.picture[index]
def __len__(self):
return len(self.s)
class prettyForm(stringPict):
"""
Extension of the stringPict class that knows about basic math applications,
optimizing double minus signs.
"Binding" is interpreted as follows::
ATOM this is an atom: never needs to be parenthesized
FUNC this is a function application: parenthesize if added (?)
DIV this is a division: make wider division if divided
POW this is a power: only parenthesize if exponent
MUL this is a multiplication: parenthesize if powered
ADD this is an addition: parenthesize if multiplied or powered
NEG this is a negative number: optimize if added, parenthesize if
multiplied or powered
OPEN this is an open object: parenthesize if added, multiplied, or
powered (example: Piecewise)
"""
ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8)
def __init__(self, s, baseline=0, binding=0, unicode=None):
"""Initialize from stringPict and binding power."""
stringPict.__init__(self, s, baseline)
self.binding = binding
self.unicode = unicode or s
# Note: code to handle subtraction is in _print_Add
def __add__(self, *others):
"""Make a pretty addition.
Addition of negative numbers is simplified.
"""
arg = self
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
result = [arg]
for arg in others:
#add parentheses for weak binders
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
#use existing minus sign if available
if arg.binding != prettyForm.NEG:
result.append(' + ')
result.append(arg)
return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result))
def __div__(self, den, slashed=False):
"""Make a pretty division; stacked or slashed.
"""
if slashed:
raise NotImplementedError("Can't do slashed fraction yet")
num = self
if num.binding == prettyForm.DIV:
num = stringPict(*num.parens())
if den.binding == prettyForm.DIV:
den = stringPict(*den.parens())
if num.binding==prettyForm.NEG:
num = num.right(" ")[0]
return prettyForm(binding=prettyForm.DIV, *stringPict.stack(
num,
stringPict.LINE,
den))
def __truediv__(self, o):
return self.__div__(o)
def __mul__(self, *others):
"""Make a pretty multiplication.
Parentheses are needed around +, - and neg.
"""
quantity = {
'degree': u"\N{DEGREE SIGN}"
}
if len(others) == 0:
return self # We aren't actually multiplying... So nothing to do here.
args = self
if args.binding > prettyForm.MUL:
arg = stringPict(*args.parens())
result = [args]
for arg in others:
if arg.picture[0] not in quantity.values():
result.append(xsym('*'))
#add parentheses for weak binders
if arg.binding > prettyForm.MUL:
arg = stringPict(*arg.parens())
result.append(arg)
len_res = len(result)
for i in range(len_res):
if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'):
# substitute -1 by -, like in -1*x -> -x
result.pop(i)
result.pop(i)
result.insert(i, '-')
if result[0][0] == '-':
# if there is a - sign in front of all
# This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative
bin = prettyForm.NEG
if result[0] == '-':
right = result[1]
if right.picture[right.baseline][0] == '-':
result[0] = '- '
else:
bin = prettyForm.MUL
return prettyForm(binding=bin, *stringPict.next(*result))
def __repr__(self):
return "prettyForm(%r,%d,%d)" % (
'\n'.join(self.picture),
self.baseline,
self.binding)
def __pow__(self, b):
"""Make a pretty power.
"""
a = self
use_inline_func_form = False
if b.binding == prettyForm.POW:
b = stringPict(*b.parens())
if a.binding > prettyForm.FUNC:
a = stringPict(*a.parens())
elif a.binding == prettyForm.FUNC:
# heuristic for when to use inline power
if b.height() > 1:
a = stringPict(*a.parens())
else:
use_inline_func_form = True
if use_inline_func_form:
# 2
# sin + + (x)
b.baseline = a.prettyFunc.baseline + b.height()
func = stringPict(*a.prettyFunc.right(b))
return prettyForm(*func.right(a.prettyArgs))
else:
# 2 <-- top
# (x+y) <-- bot
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.above(top))
simpleFunctions = ["sin", "cos", "tan"]
@staticmethod
def apply(function, *args):
"""Functions of one or more variables.
"""
if function in prettyForm.simpleFunctions:
#simple function: use only space if possible
assert len(
args) == 1, "Simple function %s must have 1 argument" % function
arg = args[0].__pretty__()
if arg.binding <= prettyForm.DIV:
#optimization: no parentheses necessary
return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' '))
argumentList = []
for arg in args:
argumentList.append(',')
argumentList.append(arg.__pretty__())
argumentList = stringPict(*stringPict.next(*argumentList[1:]))
argumentList = stringPict(*argumentList.parens())
return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
|
039ee071956c0468a6e3aa82e24c452391352a5cc2eeef6a1e9c94298a8a2427 | from typing import Any, Dict
from sympy.testing.pytest import raises
from sympy import (symbols, Function, Integer, Matrix, Abs,
Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones,
sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild, MatrixSymbol)
from sympy.combinatorics import Cycle, Permutation
from sympy.core.compatibility import exec_
from sympy.geometry import Point, Ellipse
from sympy.printing import srepr
from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly
from sympy.polys.polyclasses import DMP
from sympy.polys.agca.extensions import FiniteExtension
x, y = symbols('x,y')
# eval(srepr(expr)) == expr has to succeed in the right environment. The right
# environment is the scope of "from sympy import *" for most cases.
ENV = {} # type: Dict[str, Any]
exec_("from sympy import *", ENV)
def sT(expr, string, import_stmt=None):
"""
sT := sreprTest
Tests that srepr delivers the expected string and that
the condition eval(srepr(expr))==expr holds.
"""
if import_stmt is None:
ENV2 = ENV
else:
ENV2 = ENV.copy()
exec_(import_stmt, ENV2)
assert srepr(expr) == string
assert eval(string, ENV2) == expr
def test_printmethod():
class R(Abs):
def _sympyrepr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert srepr(R(x)) == "foo(Symbol('x'))"
def test_Add():
sT(x + y, "Add(Symbol('x'), Symbol('y'))")
assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))"
assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))"
def test_more_than_255_args_issue_10259():
from sympy import Add, Mul
for op in (Add, Mul):
expr = op(*symbols('x:256'))
assert eval(srepr(expr)) == expr
def test_Function():
sT(Function("f")(x), "Function('f')(Symbol('x'))")
# test unapplied Function
sT(Function('f'), "Function('f')")
sT(sin(x), "sin(Symbol('x'))")
sT(sin, "sin")
def test_Geometry():
sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
sT(Ellipse(Point(0, 0), 5, 1),
"Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
# TODO more tests
def test_Singletons():
sT(S.Catalan, 'Catalan')
sT(S.ComplexInfinity, 'zoo')
sT(S.EulerGamma, 'EulerGamma')
sT(S.Exp1, 'E')
sT(S.GoldenRatio, 'GoldenRatio')
sT(S.TribonacciConstant, 'TribonacciConstant')
sT(S.Half, 'Rational(1, 2)')
sT(S.ImaginaryUnit, 'I')
sT(S.Infinity, 'oo')
sT(S.NaN, 'nan')
sT(S.NegativeInfinity, '-oo')
sT(S.NegativeOne, 'Integer(-1)')
sT(S.One, 'Integer(1)')
sT(S.Pi, 'pi')
sT(S.Zero, 'Integer(0)')
def test_Integer():
sT(Integer(4), "Integer(4)")
def test_list():
sT([x, Integer(4)], "[Symbol('x'), Integer(4)]")
def test_Matrix():
for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]:
sT(cls([[x**+1, 1], [y, x + y]]),
"%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
sT(cls(), "%s([])" % name)
sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
def test_empty_Matrix():
sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])")
sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])")
sT(ones(0, 0), "MutableDenseMatrix([])")
def test_Rational():
sT(Rational(1, 3), "Rational(1, 3)")
sT(Rational(-1, 3), "Rational(-1, 3)")
def test_Float():
sT(Float('1.23', dps=3), "Float('1.22998', precision=13)")
sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', dps=19),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', dps=15),
"Float('0.60038617995049726', precision=53)")
sT(Float('1.23', precision=13), "Float('1.22998', precision=13)")
sT(Float('1.23456789', precision=33),
"Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', precision=66),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', precision=53),
"Float('0.60038617995049726', precision=53)")
sT(Float('0.60038617995049726', 15),
"Float('0.60038617995049726', precision=53)")
def test_Symbol():
sT(x, "Symbol('x')")
sT(y, "Symbol('y')")
sT(Symbol('x', negative=True), "Symbol('x', negative=True)")
def test_Symbol_two_assumptions():
x = Symbol('x', negative=0, integer=1)
# order could vary
s1 = "Symbol('x', integer=True, negative=False)"
s2 = "Symbol('x', negative=False, integer=True)"
assert srepr(x) in (s1, s2)
assert eval(srepr(x), ENV) == x
def test_Symbol_no_special_commutative_treatment():
sT(Symbol('x'), "Symbol('x')")
sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)")
sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)")
def test_Wild():
sT(Wild('x', even=True), "Wild('x', even=True)")
def test_Dummy():
d = Dummy('d')
sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index))
def test_Dummy_assumption():
d = Dummy('d', nonzero=True)
assert d == eval(srepr(d))
s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index)
s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index)
assert srepr(d) in (s1, s2)
def test_Dummy_from_Symbol():
# should not get the full dictionary of assumptions
n = Symbol('n', integer=True)
d = n.as_dummy()
assert srepr(d
) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index)
def test_tuple():
sT((x,), "(Symbol('x'),)")
sT((x, y), "(Symbol('x'), Symbol('y'))")
def test_WildFunction():
sT(WildFunction('w'), "WildFunction('w')")
def test_settins():
raises(TypeError, lambda: srepr(x, method="garbage"))
def test_Mul():
sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))")
assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))"
def test_AlgebraicNumber():
a = AlgebraicNumber(sqrt(2))
sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])")
a = AlgebraicNumber(root(-2, 3))
sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])")
def test_PolyRing():
assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)"
assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_FracField():
assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)"
assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_PolyElement():
R, x, y = ring("x,y", ZZ)
assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])"
def test_FracElement():
F, x, y = field("x,y", ZZ)
assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])"
def test_FractionField():
assert srepr(QQ.frac_field(x)) == \
"FractionField(FracField((Symbol('x'),), QQ, lex))"
assert srepr(QQ.frac_field(x, y, order=grlex)) == \
"FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))"
def test_PolynomialRingBase():
assert srepr(ZZ.old_poly_ring(x)) == \
"GlobalPolynomialRing(ZZ, Symbol('x'))"
assert srepr(ZZ[x].old_poly_ring(y)) == \
"GlobalPolynomialRing(ZZ[x], Symbol('y'))"
assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \
"GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
def test_DMP():
assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)'
assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \
"DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
def test_FiniteExtension():
assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \
"FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))"
def test_ExtensionElement():
A = FiniteExtension(Poly(x**2 + 1, x))
assert srepr(A.generator) == \
"ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))"
def test_BooleanAtom():
assert srepr(true) == "true"
assert srepr(false) == "false"
def test_Integers():
sT(S.Integers, "Integers")
def test_Naturals():
sT(S.Naturals, "Naturals")
def test_Naturals0():
sT(S.Naturals0, "Naturals0")
def test_Reals():
sT(S.Reals, "Reals")
def test_matrix_expressions():
n = symbols('n', integer=True)
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
sT(A, "MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True))")
sT(A*B, "MatMul(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
sT(A + B, "MatAdd(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
def test_Cycle():
# FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2))
# adds keys to the Cycle dict (GH-17661)
#import_stmt = "from sympy.combinatorics import Cycle"
#sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt)
assert srepr(Cycle(1, 2)) == "Cycle(1, 2)"
def test_Permutation():
import_stmt = "from sympy.combinatorics import Permutation"
sT(Permutation(1, 2), "Permutation(1, 2)", import_stmt)
|
f994472880c2699cfff1abb5c9d953e3819fa03003498ab52a45ed7dd41284d0 | from __future__ import absolute_import
from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter,
SymPyPrinter
)
from sympy.testing.pytest import raises
from sympy.tensor import IndexedBase
x, y, z = symbols('x y z')
p = IndexedBase("p")
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
assert prntr.module_imports == {'math': {'pi', 'sqrt'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)'
def test_PythonCodePrinter_standard():
import sys
prntr = PythonCodePrinter({'standard':None})
python_version = sys.version_info.major
if python_version == 2:
assert prntr.standard == 'python2'
if python_version == 3:
assert prntr.standard == 'python3'
raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
assert p.doprint(S.Exp1) == 'mpmath.e'
assert p.doprint(S.Pi) == 'mpmath.pi'
assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
assert p.doprint(S.EulerGamma) == 'mpmath.euler'
assert p.doprint(S.NaN) == 'mpmath.nan'
assert p.doprint(S.Infinity) == 'mpmath.inf'
assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
def test_NumPyPrinter():
from sympy import (Lambda, ZeroMatrix, OneMatrix, FunctionMatrix,
HadamardProduct, KroneckerProduct, Adjoint, DiagonalOf,
DiagMatrix, DiagonalMatrix)
from sympy.abc import a, b
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
B = MatrixSymbol("B", 2, 2)
C = MatrixSymbol("C", 1, 5)
D = MatrixSymbol("D", 3, 4)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
assert p.doprint(Identity(3)) == "numpy.eye(3)"
u = MatrixSymbol('x', 2, 1)
v = MatrixSymbol('y', 2, 1)
assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
"numpy.fromfunction(lambda a, b: a + b, (4, 5))"
assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"
# Workaround for numpy negative integer power errors
assert p.doprint(x**-1) == 'x**(-1.0)'
assert p.doprint(x**-2) == 'x**(-2.0)'
assert p.doprint(S.Exp1) == 'numpy.e'
assert p.doprint(S.Pi) == 'numpy.pi'
assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
assert p.doprint(S.NaN) == 'numpy.nan'
assert p.doprint(S.Infinity) == 'numpy.PINF'
assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == 'scipy.sparse.coo_matrix([3], ([0], [1]), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio'
assert p.doprint(S.Pi) == 'scipy.constants.pi'
assert p.doprint(S.Exp1) == 'numpy.e'
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
def test_sqrt():
prntr = PythonCodePrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'
prntr = PythonCodePrinter({'standard' : 'python2'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1./2.)'
prntr = PythonCodePrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'
prntr = MpmathPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == \
"x**(mpmath.mpf(1)/mpmath.mpf(2))"
prntr = NumPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SciPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SymPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
def test_NumPyPrinter_print_seq():
n = NumPyPrinter()
assert n._print_seq(range(2)) == '(0, 1,)'
def test_issue_16535_16536():
from sympy import lowergamma, uppergamma
a = symbols('a')
expr1 = lowergamma(a, x)
expr2 = uppergamma(a, x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # uppergamma\nuppergamma(a, x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # uppergamma\nuppergamma(a, x)'
def test_fresnel_integrals():
from sympy import fresnelc, fresnels
expr1 = fresnelc(x)
expr2 = fresnels(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]'
assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # fresnels\nfresnels(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # fresnels\nfresnels(x)'
prntr = MpmathPrinter()
assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)'
assert prntr.doprint(expr2) == 'mpmath.fresnels(x)'
def test_beta():
from sympy import beta
expr = beta(x, y)
prntr = SciPyPrinter()
assert prntr.doprint(expr) == 'scipy.special.beta(x, y)'
prntr = NumPyPrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter({'allow_unknown_functions': True})
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = MpmathPrinter()
assert prntr.doprint(expr) == 'mpmath.beta(x, y)'
|
a7ecac91eef6552b89ae7bd4e0af62d72b343e957d903d2c420bcab378b47dcc | from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol)
from sympy.core import Expr, Mul
from sympy.physics.units import second, joule
from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex
from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle
from sympy.testing.pytest import raises
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)"
assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert sstr(p) == s
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert sstr(p, perm_cyclic=False) == s
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert sstr(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr(set([1])) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr(set([1, 2, 3])) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == (
'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,'
' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,'
' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)'
)
assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \
"2*(X + Y)"
def test_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]'
assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "x ^ y"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-(A + B) + A*B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert str(X) == "X"
Y = X[1:2:3, 4:5:6]
assert str(Y) == "X[1:3, 4:6]"
Z = X[1:10:2]
assert str(Z) == "X[1:10:2, :n]"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)'
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
assert str(expr) == 'Lambda(_d, 1/_d).(n*X)'
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
|
8a984add7cfd671c97f481f3623a0b43d02c0bfb48c1011582a44f0acfe75bde | from sympy import (sin, cos, atan2, log, exp, gamma, conjugate, sqrt,
factorial, Integral, Piecewise, Add, diff, symbols, S,
Float, Dummy, Eq, Range, Catalan, EulerGamma, E,
GoldenRatio, I, pi, Function, Rational, Integer, Lambda,
sign, Mod)
from sympy.codegen import For, Assignment, aug_assign
from sympy.codegen.ast import Declaration, Variable, float32, float64, \
value_const, real, bool_, While, FunctionPrototype, FunctionDefinition, \
integer, Return
from sympy.core.relational import Relational
from sympy.logic.boolalg import And, Or, Not, Equivalent, Xor
from sympy.matrices import Matrix, MatrixSymbol
from sympy.printing.fcode import fcode, FCodePrinter
from sympy.tensor import IndexedBase, Idx
from sympy.utilities.lambdify import implemented_function
from sympy.testing.pytest import raises
def test_printmethod():
x = symbols('x')
class nint(Function):
def _fcode(self, printer):
return "nint(%s)" % printer._print(self.args[0])
assert fcode(nint(x)) == " nint(x)"
def test_fcode_sign(): #issue 12267
x=symbols('x')
y=symbols('y', integer=True)
z=symbols('z', complex=True)
assert fcode(sign(x), standard=95, source_format='free') == "merge(0d0, dsign(1d0, x), x == 0d0)"
assert fcode(sign(y), standard=95, source_format='free') == "merge(0, isign(1, y), y == 0)"
assert fcode(sign(z), standard=95, source_format='free') == "merge(cmplx(0d0, 0d0), z/abs(z), abs(z) == 0d0)"
raises(NotImplementedError, lambda: fcode(sign(x)))
def test_fcode_Pow():
x, y = symbols('x,y')
n = symbols('n', integer=True)
assert fcode(x**3) == " x**3"
assert fcode(x**(y**3)) == " x**(y**3)"
assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \
" (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)"
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(n)) == ' sqrt(dble(n))'
assert fcode(x**0.5) == ' sqrt(x)'
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(10)) == ' sqrt(10.0d0)'
assert fcode(x**-1.0) == ' 1d0/x'
assert fcode(x**-2.0, 'y', source_format='free') == 'y = x**(-2.0d0)' # 2823
assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)'
def test_fcode_Rational():
x = symbols('x')
assert fcode(Rational(3, 7)) == " 3.0d0/7.0d0"
assert fcode(Rational(18, 9)) == " 2"
assert fcode(Rational(3, -7)) == " -3.0d0/7.0d0"
assert fcode(Rational(-3, -7)) == " 3.0d0/7.0d0"
assert fcode(x + Rational(3, 7)) == " x + 3.0d0/7.0d0"
assert fcode(Rational(3, 7)*x) == " (3.0d0/7.0d0)*x"
def test_fcode_Integer():
assert fcode(Integer(67)) == " 67"
assert fcode(Integer(-1)) == " -1"
def test_fcode_Float():
assert fcode(Float(42.0)) == " 42.0000000000000d0"
assert fcode(Float(-1e20)) == " -1.00000000000000d+20"
def test_fcode_functions():
x, y = symbols('x,y')
assert fcode(sin(x) ** cos(y)) == " sin(x)**cos(y)"
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66))
raises(NotImplementedError, lambda: fcode(x % y, standard=66))
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77))
raises(NotImplementedError, lambda: fcode(x % y, standard=77))
for standard in [90, 95, 2003, 2008]:
assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)"
assert fcode(x % y, standard=standard) == " modulo(x, y)"
def test_case():
ob = FCodePrinter()
x,x_,x__,y,X,X_,Y = symbols('x,x_,x__,y,X,X_,Y')
assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \
' exp(x_) + sin(x*y) + cos(X__*Y_)'
assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \
' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)'
assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \
' exp(x_) + sin(x*y) + cos(X*Y)'
assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)'
assert ob.doprint(X*sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__'
assert ob.doprint(X*sin(x), assign_to='mu') == ' mu = X*sin(x_)'
assert ob.doprint(x_, assign_to='ad') == ' ad = x__'
n, m = symbols('n,m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
I = Idx('I', n)
assert fcode(A[i, I]*x[I], assign_to=y[i], source_format='free') == (
"do i = 1, m\n"
" y(i) = 0\n"
"end do\n"
"do i = 1, m\n"
" do I_ = 1, n\n"
" y(i) = A(i, I_)*x(I_) + y(i)\n"
" end do\n"
"end do" )
#issue 6814
def test_fcode_functions_with_integers():
x= symbols('x')
log10_17 = log(10).evalf(17)
loglog10_17 = '0.8340324452479558d0'
assert fcode(x * log(10)) == " x*%sd0" % log10_17
assert fcode(x * log(10)) == " x*%sd0" % log10_17
assert fcode(x * log(S(10))) == " x*%sd0" % log10_17
assert fcode(log(S(10))) == " %sd0" % log10_17
assert fcode(exp(10)) == " %sd0" % exp(10).evalf(17)
assert fcode(x * log(log(10))) == " x*%s" % loglog10_17
assert fcode(x * log(log(S(10)))) == " x*%s" % loglog10_17
def test_fcode_NumberSymbol():
prec = 17
p = FCodePrinter()
assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec)
assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec)
assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec)
assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec)
assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec)
assert fcode(
pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5)
assert fcode(Catalan, human=False) == (set(
[(Catalan, p._print(Catalan.evalf(prec)))]), set([]), ' Catalan')
assert fcode(EulerGamma, human=False) == (set([(EulerGamma, p._print(
EulerGamma.evalf(prec)))]), set([]), ' EulerGamma')
assert fcode(E, human=False) == (
set([(E, p._print(E.evalf(prec)))]), set([]), ' E')
assert fcode(GoldenRatio, human=False) == (set([(GoldenRatio, p._print(
GoldenRatio.evalf(prec)))]), set([]), ' GoldenRatio')
assert fcode(pi, human=False) == (
set([(pi, p._print(pi.evalf(prec)))]), set([]), ' pi')
assert fcode(pi, precision=5, human=False) == (
set([(pi, p._print(pi.evalf(5)))]), set([]), ' pi')
def test_fcode_complex():
assert fcode(I) == " cmplx(0,1)"
x = symbols('x')
assert fcode(4*I) == " cmplx(0,4)"
assert fcode(3 + 4*I) == " cmplx(3,4)"
assert fcode(3 + 4*I + x) == " cmplx(3,4) + x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + 4*I - x) == " cmplx(3,4) - x"
x = symbols('x', imaginary=True)
assert fcode(5*x) == " 5*x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + x) == " x + 3"
def test_implicit():
x, y = symbols('x,y')
assert fcode(sin(x)) == " sin(x)"
assert fcode(atan2(x, y)) == " atan2(x, y)"
assert fcode(conjugate(x)) == " conjg(x)"
def test_not_fortran():
x = symbols('x')
g = Function('g')
gamma_f = fcode(gamma(x))
assert gamma_f == "C Not supported in Fortran:\nC gamma\n gamma(x)"
assert fcode(Integral(sin(x))) == "C Not supported in Fortran:\nC Integral\n Integral(sin(x), x)"
assert fcode(g(x)) == "C Not supported in Fortran:\nC g\n g(x)"
def test_user_functions():
x = symbols('x')
assert fcode(sin(x), user_functions={"sin": "zsin"}) == " zsin(x)"
x = symbols('x')
assert fcode(
gamma(x), user_functions={"gamma": "mygamma"}) == " mygamma(x)"
g = Function('g')
assert fcode(g(x), user_functions={"g": "great"}) == " great(x)"
n = symbols('n', integer=True)
assert fcode(
factorial(n), user_functions={"factorial": "fct"}) == " fct(n)"
def test_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert fcode(g(x)) == " 2*x"
g = implemented_function('g', Lambda(x, 2*pi/x))
assert fcode(g(x)) == (
" parameter (pi = %sd0)\n"
" 2*pi/x"
) % pi.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert fcode(g(A[i]), assign_to=A[i]) == (
" do i = 1, n\n"
" A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
" end do"
)
def test_assign_to():
x = symbols('x')
assert fcode(sin(x), assign_to="s") == " s = sin(x)"
def test_line_wrapping():
x, y = symbols('x,y')
assert fcode(((x + y)**10).expand(), assign_to="var") == (
" var = x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*\n"
" @ y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y\n"
" @ **8 + 10*x*y**9 + y**10"
)
e = [x**i for i in range(11)]
assert fcode(Add(*e)) == (
" x**10 + x**9 + x**8 + x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x\n"
" @ + 1"
)
def test_fcode_precedence():
x, y = symbols("x y")
assert fcode(And(x < y, y < x + 1), source_format="free") == \
"x < y .and. y < x + 1"
assert fcode(Or(x < y, y < x + 1), source_format="free") == \
"x < y .or. y < x + 1"
assert fcode(Xor(x < y, y < x + 1, evaluate=False),
source_format="free") == "x < y .neqv. y < x + 1"
assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \
"x < y .eqv. y < x + 1"
def test_fcode_Logical():
x, y, z = symbols("x y z")
# unary Not
assert fcode(Not(x), source_format="free") == ".not. x"
# binary And
assert fcode(And(x, y), source_format="free") == "x .and. y"
assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y"
assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x"
assert fcode(And(Not(x), Not(y)), source_format="free") == \
".not. x .and. .not. y"
assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \
".not. (x .and. y)"
# binary Or
assert fcode(Or(x, y), source_format="free") == "x .or. y"
assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y"
assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x"
assert fcode(Or(Not(x), Not(y)), source_format="free") == \
".not. x .or. .not. y"
assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \
".not. (x .or. y)"
# mixed And/Or
assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)"
assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)"
assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)"
assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z"
assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z"
assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y"
# trinary And
assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z"
assert fcode(And(x, y, Not(z)), source_format="free") == \
"x .and. y .and. .not. z"
assert fcode(And(x, Not(y), z), source_format="free") == \
"x .and. z .and. .not. y"
assert fcode(And(Not(x), y, z), source_format="free") == \
"y .and. z .and. .not. x"
assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \
".not. (x .and. y .and. z)"
# trinary Or
assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z"
assert fcode(Or(x, y, Not(z)), source_format="free") == \
"x .or. y .or. .not. z"
assert fcode(Or(x, Not(y), z), source_format="free") == \
"x .or. z .or. .not. y"
assert fcode(Or(Not(x), y, z), source_format="free") == \
"y .or. z .or. .not. x"
assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \
".not. (x .or. y .or. z)"
def test_fcode_Xlogical():
x, y, z = symbols("x y z")
# binary Xor
assert fcode(Xor(x, y, evaluate=False), source_format="free") == \
"x .neqv. y"
assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \
"x .neqv. .not. y"
assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \
"y .neqv. .not. x"
assert fcode(Xor(Not(x), Not(y), evaluate=False),
source_format="free") == ".not. x .neqv. .not. y"
assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
source_format="free") == ".not. (x .neqv. y)"
# binary Equivalent
assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y"
assert fcode(Equivalent(x, Not(y)), source_format="free") == \
"x .eqv. .not. y"
assert fcode(Equivalent(Not(x), y), source_format="free") == \
"y .eqv. .not. x"
assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \
".not. x .eqv. .not. y"
assert fcode(Not(Equivalent(x, y), evaluate=False),
source_format="free") == ".not. (x .eqv. y)"
# mixed And/Equivalent
assert fcode(Equivalent(And(y, z), x), source_format="free") == \
"x .eqv. y .and. z"
assert fcode(Equivalent(And(z, x), y), source_format="free") == \
"y .eqv. x .and. z"
assert fcode(Equivalent(And(x, y), z), source_format="free") == \
"z .eqv. x .and. y"
assert fcode(And(Equivalent(y, z), x), source_format="free") == \
"x .and. (y .eqv. z)"
assert fcode(And(Equivalent(z, x), y), source_format="free") == \
"y .and. (x .eqv. z)"
assert fcode(And(Equivalent(x, y), z), source_format="free") == \
"z .and. (x .eqv. y)"
# mixed Or/Equivalent
assert fcode(Equivalent(Or(y, z), x), source_format="free") == \
"x .eqv. y .or. z"
assert fcode(Equivalent(Or(z, x), y), source_format="free") == \
"y .eqv. x .or. z"
assert fcode(Equivalent(Or(x, y), z), source_format="free") == \
"z .eqv. x .or. y"
assert fcode(Or(Equivalent(y, z), x), source_format="free") == \
"x .or. (y .eqv. z)"
assert fcode(Or(Equivalent(z, x), y), source_format="free") == \
"y .or. (x .eqv. z)"
assert fcode(Or(Equivalent(x, y), z), source_format="free") == \
"z .or. (x .eqv. y)"
# mixed Xor/Equivalent
assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
source_format="free") == "x .eqv. (y .neqv. z)"
assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
source_format="free") == "y .eqv. (x .neqv. z)"
assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
source_format="free") == "z .eqv. (x .neqv. y)"
assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
source_format="free") == "x .neqv. (y .eqv. z)"
assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
source_format="free") == "y .neqv. (x .eqv. z)"
assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
source_format="free") == "z .neqv. (x .eqv. y)"
# mixed And/Xor
assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \
"x .neqv. y .and. z"
assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \
"y .neqv. x .and. z"
assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \
"z .neqv. x .and. y"
assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \
"x .and. (y .neqv. z)"
assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \
"y .and. (x .neqv. z)"
assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \
"z .and. (x .neqv. y)"
# mixed Or/Xor
assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \
"x .neqv. y .or. z"
assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \
"y .neqv. x .or. z"
assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \
"z .neqv. x .or. y"
assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \
"x .or. (y .neqv. z)"
assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \
"y .or. (x .neqv. z)"
assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \
"z .or. (x .neqv. y)"
# trinary Xor
assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \
"x .neqv. y .neqv. z"
assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \
"x .neqv. y .neqv. .not. z"
assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \
"x .neqv. z .neqv. .not. y"
assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \
"y .neqv. z .neqv. .not. x"
def test_fcode_Relational():
x, y = symbols("x y")
assert fcode(Relational(x, y, "=="), source_format="free") == "x == y"
assert fcode(Relational(x, y, "!="), source_format="free") == "x /= y"
assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y"
assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y"
assert fcode(Relational(x, y, ">"), source_format="free") == "x > y"
assert fcode(Relational(x, y, "<"), source_format="free") == "x < y"
def test_fcode_Piecewise():
x = symbols('x')
expr = Piecewise((x, x < 1), (x**2, True))
# Check that inline conditional (merge) fails if standard isn't 95+
raises(NotImplementedError, lambda: fcode(expr))
code = fcode(expr, standard=95)
expected = " merge(x, x**2, x < 1)"
assert code == expected
assert fcode(Piecewise((x, x < 1), (x**2, True)), assign_to="var") == (
" if (x < 1) then\n"
" var = x\n"
" else\n"
" var = x**2\n"
" end if"
)
a = cos(x)/x
b = sin(x)/x
for i in range(10):
a = diff(a, x)
b = diff(b, x)
expected = (
" if (x < 0) then\n"
" weird_name = -cos(x)/x + 10*sin(x)/x**2 + 90*cos(x)/x**3 - 720*\n"
" @ sin(x)/x**4 - 5040*cos(x)/x**5 + 30240*sin(x)/x**6 + 151200*cos(x\n"
" @ )/x**7 - 604800*sin(x)/x**8 - 1814400*cos(x)/x**9 + 3628800*sin(x\n"
" @ )/x**10 + 3628800*cos(x)/x**11\n"
" else\n"
" weird_name = -sin(x)/x - 10*cos(x)/x**2 + 90*sin(x)/x**3 + 720*\n"
" @ cos(x)/x**4 - 5040*sin(x)/x**5 - 30240*cos(x)/x**6 + 151200*sin(x\n"
" @ )/x**7 + 604800*cos(x)/x**8 - 1814400*sin(x)/x**9 - 3628800*cos(x\n"
" @ )/x**10 + 3628800*sin(x)/x**11\n"
" end if"
)
code = fcode(Piecewise((a, x < 0), (b, True)), assign_to="weird_name")
assert code == expected
code = fcode(Piecewise((x, x < 1), (x**2, x > 1), (sin(x), True)), standard=95)
expected = " merge(x, merge(x**2, sin(x), x > 1), x < 1)"
assert code == expected
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: fcode(expr))
def test_wrap_fortran():
# "########################################################################"
printer = FCodePrinter()
lines = [
"C This is a long comment on a single line that must be wrapped properly to produce nice output",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
]
wrapped_lines = printer._wrap_fortran(lines)
expected_lines = [
"C This is a long comment on a single line that must be wrapped",
"C properly to produce nice output",
" this = is + a + long + and + nasty + fortran + statement + that *",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that *",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ *must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement +",
" @ that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ **must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ **must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement +",
" @ that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)",
" @ /must + be + wrapped + properly",
]
for line in wrapped_lines:
assert len(line) <= 72
for w, e in zip(wrapped_lines, expected_lines):
assert w == e
assert len(wrapped_lines) == len(expected_lines)
def test_wrap_fortran_keep_d0():
printer = FCodePrinter()
lines = [
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0'
]
expected = [
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 10.0d0'
]
assert printer._wrap_fortran(lines) == expected
def test_settings():
raises(TypeError, lambda: fcode(S(4), method="garbage"))
def test_free_form_code_line():
x, y = symbols('x,y')
assert fcode(cos(x) + sin(y), source_format='free') == "sin(y) + cos(x)"
def test_free_form_continuation_line():
x, y = symbols('x,y')
result = fcode(((cos(x) + sin(y))**(7)).expand(), source_format='free')
expected = (
'sin(y)**7 + 7*sin(y)**6*cos(x) + 21*sin(y)**5*cos(x)**2 + 35*sin(y)**4* &\n'
' cos(x)**3 + 35*sin(y)**3*cos(x)**4 + 21*sin(y)**2*cos(x)**5 + 7* &\n'
' sin(y)*cos(x)**6 + cos(x)**7'
)
assert result == expected
def test_free_form_comment_line():
printer = FCodePrinter({'source_format': 'free'})
lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"]
expected = [
'! This is a long comment on a single line that must be wrapped properly',
'! to produce nice output']
assert printer._wrap_fortran(lines) == expected
def test_loops():
n, m = symbols('n,m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
expected = (
'do i = 1, m\n'
' y(i) = 0\n'
'end do\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s\n'
' end do\n'
'end do'
)
code = fcode(A[i, j]*x[j], assign_to=y[i], source_format='free')
assert (code == expected % {'rhs': 'y(i) + A(i, j)*x(j)'} or
code == expected % {'rhs': 'y(i) + x(j)*A(i, j)'} or
code == expected % {'rhs': 'x(j)*A(i, j) + y(i)'} or
code == expected % {'rhs': 'A(i, j)*x(j) + y(i)'})
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'do i_%(icount)i = 1, m_%(mcount)i\n'
' y(i_%(icount)i) = x(i_%(icount)i)\n'
'end do'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = fcode(x[i], assign_to=y[i], source_format='free')
assert code == expected
def test_fcode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = fcode(e.rhs, assign_to=e.lhs, contract=False)
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
def test_derived_classes():
class MyFancyFCodePrinter(FCodePrinter):
_default_settings = FCodePrinter._default_settings.copy()
printer = MyFancyFCodePrinter()
x = symbols('x')
assert printer.doprint(sin(x), "bork") == " bork = sin(x)"
def test_indent():
codelines = (
'subroutine test(a)\n'
'integer :: a, i, j\n'
'\n'
'do\n'
'do \n'
'do j = 1, 5\n'
'if (a>b) then\n'
'if(b>0) then\n'
'a = 3\n'
'donot_indent_me = 2\n'
'do_not_indent_me_either = 2\n'
'ifIam_indented_something_went_wrong = 2\n'
'if_I_am_indented_something_went_wrong = 2\n'
'end should not be unindented here\n'
'end if\n'
'endif\n'
'end do\n'
'end do\n'
'enddo\n'
'end subroutine\n'
'\n'
'subroutine test2(a)\n'
'integer :: a\n'
'do\n'
'a = a + 1\n'
'end do \n'
'end subroutine\n'
)
expected = (
'subroutine test(a)\n'
'integer :: a, i, j\n'
'\n'
'do\n'
' do \n'
' do j = 1, 5\n'
' if (a>b) then\n'
' if(b>0) then\n'
' a = 3\n'
' donot_indent_me = 2\n'
' do_not_indent_me_either = 2\n'
' ifIam_indented_something_went_wrong = 2\n'
' if_I_am_indented_something_went_wrong = 2\n'
' end should not be unindented here\n'
' end if\n'
' endif\n'
' end do\n'
' end do\n'
'enddo\n'
'end subroutine\n'
'\n'
'subroutine test2(a)\n'
'integer :: a\n'
'do\n'
' a = a + 1\n'
'end do \n'
'end subroutine\n'
)
p = FCodePrinter({'source_format': 'free'})
result = p.indent_code(codelines)
assert result == expected
def test_Matrix_printing():
x, y, z = symbols('x,y,z')
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert fcode(mat, A) == (
" A(1, 1) = x*y\n"
" if (y > 0) then\n"
" A(2, 1) = x + 2\n"
" else\n"
" A(2, 1) = y\n"
" end if\n"
" A(3, 1) = sin(z)")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert fcode(expr, standard=95) == (
" merge(2*A(3, 1), A(3, 1), x > 0) + sin(A(2, 1)) + A(1, 1)")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert fcode(m, M) == (
" M(1, 1) = sin(q(2, 1))\n"
" M(2, 1) = q(2, 1) + q(3, 1)\n"
" M(3, 1) = 2*q(5, 1)/q(2, 1)\n"
" M(1, 2) = 0\n"
" M(2, 2) = q(4, 1)\n"
" M(3, 2) = sqrt(q(1, 1)) + 4\n"
" M(1, 3) = cos(q(3, 1))\n"
" M(2, 3) = 5\n"
" M(3, 3) = 0")
def test_fcode_For():
x, y = symbols('x y')
f = For(x, Range(0, 10, 2), [Assignment(y, x * y)])
sol = fcode(f)
assert sol == (" do x = 0, 10, 2\n"
" y = x*y\n"
" end do")
def test_fcode_Declaration():
def check(expr, ref, **kwargs):
assert fcode(expr, standard=95, source_format='free', **kwargs) == ref
i = symbols('i', integer=True)
var1 = Variable.deduced(i)
dcl1 = Declaration(var1)
check(dcl1, "integer*4 :: i")
x, y = symbols('x y')
var2 = Variable(x, float32, value=42, attrs={value_const})
dcl2b = Declaration(var2)
check(dcl2b, 'real*4, parameter :: x = 42')
var3 = Variable(y, type=bool_)
dcl3 = Declaration(var3)
check(dcl3, 'logical :: y')
check(float32, "real*4")
check(float64, "real*8")
check(real, "real*4", type_aliases={real: float32})
check(real, "real*8", type_aliases={real: float64})
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(fcode(A[0, 0]) == " A(1, 1)")
assert(fcode(3 * A[0, 0]) == " 3*A(1, 1)")
F = C[0, 0].subs(C, A - B)
assert(fcode(F) == " (A - B)(1, 1)")
def test_aug_assign():
x = symbols('x')
assert fcode(aug_assign(x, '+', 1), source_format='free') == 'x = x + 1'
def test_While():
x = symbols('x')
assert fcode(While(abs(x) > 1, [aug_assign(x, '-', 1)]), source_format='free') == (
'do while (abs(x) > 1)\n'
' x = x - 1\n'
'end do'
)
def test_FunctionPrototype_print():
x = symbols('x')
n = symbols('n', integer=True)
vx = Variable(x, type=real)
vn = Variable(n, type=integer)
fp1 = FunctionPrototype(real, 'power', [vx, vn])
# Should be changed to proper test once multi-line generation is working
# see https://github.com/sympy/sympy/issues/15824
raises(NotImplementedError, lambda: fcode(fp1))
def test_FunctionDefinition_print():
x = symbols('x')
n = symbols('n', integer=True)
vx = Variable(x, type=real)
vn = Variable(n, type=integer)
body = [Assignment(x, x**n), Return(x)]
fd1 = FunctionDefinition(real, 'power', [vx, vn], body)
# Should be changed to proper test once multi-line generation is working
# see https://github.com/sympy/sympy/issues/15824
raises(NotImplementedError, lambda: fcode(fd1))
|
efae39c37691924c1edbaa23e29d95aaa7e54b01678c48f0e42108944bfd5b8b | from sympy import symbols, sin, Matrix, Interval, Piecewise, Sum, lambdify, \
Expr, sqrt
from sympy.testing.pytest import raises
from sympy.printing.tensorflow import TensorflowPrinter
from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter
x, y, z = symbols("x,y,z")
i, a, b = symbols("i,a,b")
j, c, d = symbols("j,c,d")
def test_basic():
assert lambdarepr(x*y) == "x*y"
assert lambdarepr(x + y) in ["y + x", "x + y"]
assert lambdarepr(x**y) == "x**y"
def test_matrix():
A = Matrix([[x, y], [y*x, z**2]])
# assert lambdarepr(A) == "ImmutableDenseMatrix([[x, y], [x*y, z**2]])"
# Test printing a Matrix that has an element that is printed differently
# with the LambdaPrinter than in the StrPrinter.
p = Piecewise((x, True), evaluate=False)
A = Matrix([p])
assert lambdarepr(A) == "ImmutableDenseMatrix([[((x))]])"
def test_piecewise():
# In each case, test eval() the lambdarepr() to make sure there are a
# correct number of parentheses. It will give a SyntaxError if there aren't.
h = "lambda x: "
p = Piecewise((x, True), evaluate=False)
l = lambdarepr(p)
eval(h + l)
assert l == "((x))"
p = Piecewise((x, x < 0))
l = lambdarepr(p)
eval(h + l)
assert l == "((x) if (x < 0) else None)"
p = Piecewise(
(1, x < 1),
(2, x < 2),
(0, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))"
p = Piecewise(
(1, x < 1),
(2, x < 2),
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else None)"
p = Piecewise(
(x, x < 1),
(x**2, Interval(3, 4, True, False).contains(x)),
(0, True),
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))"
p = Piecewise(
(x**2, x < 0),
(x, x < 1),
(2 - x, x >= 1),
(0, True), evaluate=False
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
" else (2 - x) if (x >= 1) else (0))"
p = Piecewise(
(x**2, x < 0),
(x, x < 1),
(2 - x, x >= 1), evaluate=False
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
" else (2 - x) if (x >= 1) else None)"
p = Piecewise(
(1, x >= 1),
(2, x >= 2),
(3, x >= 3),
(4, x >= 4),
(5, x >= 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\
" else (4) if (x >= 4) else (5) if (x >= 5) else (6))"
p = Piecewise(
(1, x <= 1),
(2, x <= 2),
(3, x <= 3),
(4, x <= 4),
(5, x <= 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\
" else (4) if (x <= 4) else (5) if (x <= 5) else (6))"
p = Piecewise(
(1, x > 1),
(2, x > 2),
(3, x > 3),
(4, x > 4),
(5, x > 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\
" else (4) if (x > 4) else (5) if (x > 5) else (6))"
p = Piecewise(
(1, x < 1),
(2, x < 2),
(3, x < 3),
(4, x < 4),
(5, x < 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\
" else (4) if (x < 4) else (5) if (x < 5) else (6))"
p = Piecewise(
(Piecewise(
(1, x > 0),
(2, True)
), y > 0),
(3, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))"
def test_sum__1():
# In each case, test eval() the lambdarepr() to make sure that
# it evaluates to the same results as the symbolic expression
s = Sum(x ** i, (i, a, b))
l = lambdarepr(s)
assert l == "(builtins.sum(x**i for i in range(a, b+1)))"
args = x, a, b
f = lambdify(args, s)
v = 2, 3, 8
assert f(*v) == s.subs(zip(args, v)).doit()
def test_sum__2():
s = Sum(i * x, (i, a, b))
l = lambdarepr(s)
assert l == "(builtins.sum(i*x for i in range(a, b+1)))"
args = x, a, b
f = lambdify(args, s)
v = 2, 3, 8
assert f(*v) == s.subs(zip(args, v)).doit()
def test_multiple_sums():
s = Sum(i * x + j, (i, a, b), (j, c, d))
l = lambdarepr(s)
assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))"
args = x, a, b, c, d
f = lambdify(args, s)
vals = 2, 3, 4, 5, 6
f_ref = s.subs(zip(args, vals)).doit()
f_res = f(*vals)
assert f_res == f_ref
def test_sqrt():
prntr = LambdaPrinter({'standard' : 'python2'})
assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)'
prntr = LambdaPrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
def test_settings():
raises(TypeError, lambda: lambdarepr(sin(x), method="garbage"))
class CustomPrintedObject(Expr):
def _lambdacode(self, printer):
return 'lambda'
def _tensorflowcode(self, printer):
return 'tensorflow'
def _numpycode(self, printer):
return 'numpy'
def _numexprcode(self, printer):
return 'numexpr'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
# In each case, printmethod is called to test
# its working
obj = CustomPrintedObject()
assert LambdaPrinter().doprint(obj) == 'lambda'
assert TensorflowPrinter().doprint(obj) == 'tensorflow'
assert NumExprPrinter().doprint(obj) == "evaluate('numexpr', truediv=True)"
assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \
"evaluate('where((x >= 0), y, z)', truediv=True)"
|
16737e28fd3ea8febe4eb1fce378d0296dcd513f7695dbb2dafa309262521777 | from sympy.core import (
S, pi, oo, symbols, Rational, Integer, Float, Mod, GoldenRatio, EulerGamma, Catalan,
Lambda, Dummy, Eq, nan, Mul, Pow
)
from sympy.functions import (
Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf,
erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh,
sqrt, tan, tanh
)
from sympy.sets import Range
from sympy.logic import ITE
from sympy.codegen import For, aug_assign, Assignment
from sympy.testing.pytest import raises, XFAIL
from sympy.printing.ccode import C89CodePrinter, C99CodePrinter, get_math_macros
from sympy.codegen.ast import (
AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const,
While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return,
real, float32, float64, float80, float128, intc, Comment, CodeBlock
)
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt
from sympy.codegen.cnodes import restrict
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy import ccode
x, y, z = symbols('x,y,z')
def test_printmethod():
class fabs(Abs):
def _ccode(self, printer):
return "fabs(%s)" % printer._print(self.args[0])
assert ccode(fabs(x)) == "fabs(x)"
def test_ccode_sqrt():
assert ccode(sqrt(x)) == "sqrt(x)"
assert ccode(x**0.5) == "sqrt(x)"
assert ccode(sqrt(x)) == "sqrt(x)"
def test_ccode_Pow():
assert ccode(x**3) == "pow(x, 3)"
assert ccode(x**(y**3)) == "pow(x, pow(y, 3))"
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)"
assert ccode(x**-1.0) == '1.0/x'
assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)'
assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)'
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
(lambda base, exp: not exp.is_integer, "pow")]
assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)'
assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)'
_cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp),
(lambda base, exp: base != 2, 'pow')]
# Related to gh-11353
assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)'
assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)'
# For issue 14160
assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
def test_ccode_Max():
# Test for gh-11926
assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
def test_ccode_Min_performance():
#Shouldn't take more than a few seconds
big_min = Min(*symbols('a[0:50]'))
for curr_standard in ('c89', 'c99', 'c11'):
output = ccode(big_min, standard=curr_standard)
assert output.count('(') == output.count(')')
def test_ccode_constants_mathh():
assert ccode(exp(1)) == "M_E"
assert ccode(pi) == "M_PI"
assert ccode(oo, standard='c89') == "HUGE_VAL"
assert ccode(-oo, standard='c89') == "-HUGE_VAL"
assert ccode(oo) == "INFINITY"
assert ccode(-oo, standard='c99') == "-INFINITY"
assert ccode(pi, type_aliases={real: float80}) == "M_PIl"
def test_ccode_constants_other():
assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert ccode(
2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_ccode_Rational():
assert ccode(Rational(3, 7)) == "3.0/7.0"
assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(Rational(18, 9)) == "2"
assert ccode(Rational(3, -7)) == "-3.0/7.0"
assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L"
assert ccode(Rational(-3, -7)) == "3.0/7.0"
assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0"
assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L"
assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x"
assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x"
def test_ccode_Integer():
assert ccode(Integer(67)) == "67"
assert ccode(Integer(-1)) == "-1"
def test_ccode_functions():
assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
def test_ccode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert ccode(
g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert ccode(g(A[i]), assign_to=A[i]) == (
"for (int i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_ccode_exceptions():
assert ccode(gamma(x), standard='C99') == "tgamma(x)"
gamma_c89 = ccode(gamma(x), standard='C89')
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=False)
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=True)
assert not 'not supported in c' in gamma_c89.lower()
assert ccode(ceiling(x)) == "ceil(x)"
assert ccode(Abs(x)) == "fabs(x)"
assert ccode(gamma(x)) == "tgamma(x)"
r, s = symbols('r,s', real=True)
assert ccode(Mod(ceiling(r), ceiling(s))) == "((ceil(r)) % (ceil(s)))"
assert ccode(Mod(r, s)) == "fmod(r, s)"
def test_ccode_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "ceil",
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
}
assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)"
assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)"
def test_ccode_boolean():
assert ccode(True) == "true"
assert ccode(S.true) == "true"
assert ccode(False) == "false"
assert ccode(S.false) == "false"
assert ccode(x & y) == "x && y"
assert ccode(x | y) == "x || y"
assert ccode(~x) == "!x"
assert ccode(x & y & z) == "x && y && z"
assert ccode(x | y | z) == "x || y || z"
assert ccode((x & y) | z) == "z || x && y"
assert ccode((x | y) & z) == "z && (x || y)"
def test_ccode_Relational():
from sympy import Eq, Ne, Le, Lt, Gt, Ge
assert ccode(Eq(x, y)) == "x == y"
assert ccode(Ne(x, y)) == "x != y"
assert ccode(Le(x, y)) == "x <= y"
assert ccode(Lt(x, y)) == "x < y"
assert ccode(Gt(x, y)) == "x > y"
assert ccode(Ge(x, y)) == "x >= y"
def test_ccode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": (\n"
" pow(x, 2)\n"
"))")
assert ccode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
assert ccode(expr, assign_to='c') == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else if (x < 2) {\n"
" c = x + 1;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: ccode(expr))
def test_ccode_sinc():
from sympy import sinc
expr = sinc(x)
assert ccode(expr) == (
"((x != 0) ? (\n"
" sin(x)/x\n"
")\n"
": (\n"
" 1\n"
"))")
def test_ccode_Piecewise_deep():
p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
assert p == (
"2*((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
assert ccode(expr) == (
"pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1")
assert ccode(expr, assign_to='c') == (
"c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1;")
def test_ccode_ITE():
expr = ITE(x < 1, y, z)
assert ccode(expr) == (
"((x < 1) ? (\n"
" y\n"
")\n"
": (\n"
" z\n"
"))")
def test_ccode_settings():
raises(TypeError, lambda: ccode(sin(x), method="garbage"))
def test_ccode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
s, n, m, o = symbols('s n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
x = IndexedBase('x')[j]
A = IndexedBase('A')[i, j]
B = IndexedBase('B')[i, j, k]
p = C99CodePrinter()
assert p._print_Indexed(x) == 'x[j]'
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
A = IndexedBase('A', shape=(5,3))[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (3*i + j)
A = IndexedBase('A', shape=(5,3), strides='F')[i, j]
assert ccode(A) == 'A[%s]' % (i + 5*j)
A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j]
assert ccode(A) == 'A[o + s*j + i]'
Abase = IndexedBase('A', strides=(s, m, n), offset=o)
assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]'
assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]'
def test_Element():
assert ccode(Element('x', 'ij')) == 'x[i][j]'
assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]'
assert ccode(Element('x', (3,))) == 'x[3]'
assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]'
def test_ccode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = ccode(e.rhs, assign_to=e.lhs, contract=False)
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
def test_ccode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j], assign_to=y[i]) == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
assert ccode(x[i], assign_to=y[i]) == expected
def test_ccode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s
def test_ccode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s
def test_ccode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s
def test_ccode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (int i=0; i<m; i++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_dereference_printing():
expr = x + y + sin(z) + z
assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert ccode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert ccode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert ccode(m, M) == (
"M[0] = sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_ccode_reserved_words():
x, y = symbols('x, if')
with raises(ValueError):
ccode(y**2, error_on_reserved=True, standard='C99')
assert ccode(y**2) == 'pow(if_, 2)'
assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x'
assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)'
def test_ccode_sign():
expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
assert ccode(expr1) == ref1
assert ccode(expr1, 'z') == 'z = %s;' % ref1
assert ccode(expr2) == ref2
assert ccode(expr3) == ref3
def test_ccode_Assignment():
assert ccode(Assignment(x, y + z)) == 'x = y + z;'
assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;'
def test_ccode_For():
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n"
" y *= x;\n"
"}")
def test_ccode_Max_Min():
assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)'
assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)'
assert ccode(Min(x, 0, sqrt(x)), standard='c89') == (
'((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))'
)
def test_ccode_standard():
assert ccode(expm1(x), standard='c99') == 'expm1(x)'
assert ccode(nan, standard='c99') == 'NAN'
assert ccode(float('nan'), standard='c99') == 'NAN'
def test_C89CodePrinter():
c89printer = C89CodePrinter()
assert c89printer.language == 'C'
assert c89printer.standard == 'C89'
assert 'void' in c89printer.reserved_words
assert 'template' not in c89printer.reserved_words
def test_C99CodePrinter():
assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)'
assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)'
assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)'
assert C99CodePrinter().doprint(log2(x)) == 'log2(x)'
assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)'
assert C99CodePrinter().doprint(log10(x)) == 'log10(x)'
assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken.
assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)'
assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)'
assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))'
assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)'
c99printer = C99CodePrinter()
assert c99printer.language == 'C'
assert c99printer.standard == 'C99'
assert 'restrict' in c99printer.reserved_words
assert 'using' not in c99printer.reserved_words
@XFAIL
def test_C99CodePrinter__precision_f80():
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)'
def test_C99CodePrinter__precision():
n = symbols('n', integer=True)
f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'
for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
def check(expr, ref):
assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
check(Abs(n), 'abs(n)')
check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
check(exp2(x), 'exp2{s}(x)')
check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
check(Mod(n, 2), '((n) % (2))')
check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
check(log1p(x), 'log1p{s}(x)')
check(2**x, 'pow{s}(2, x)')
check(2.0**x, 'pow{s}(2.0{S}, x)')
check(x**3, 'pow{s}(x, 3)')
check(x**4.0, 'pow{s}(x, 4.0{S})')
check(sqrt(3+x), 'sqrt{s}(x + 3)')
check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
check(hypot(x, y), 'hypot{s}(x, y)')
check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')
check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
check(erf(42.*x), 'erf{s}(42.0{S}*x)')
check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
check(gamma(x), 'tgamma{s}(x)')
check(loggamma(x), 'lgamma{s}(x)')
check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
check(floor(x + 2.), "floor{s}(x + 2.0{S})")
check(fma(x, y, -z), 'fma{s}(x, y, -z)')
check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
def test_get_math_macros():
macros = get_math_macros()
assert macros[exp(1)] == 'M_E'
assert macros[1/Sqrt(2)] == 'M_SQRT1_2'
def test_ccode_Declaration():
i = symbols('i', integer=True)
var1 = Variable(i, type=Type.from_expr(i))
dcl1 = Declaration(var1)
assert ccode(dcl1) == 'int i'
var2 = Variable(x, type=float32, attrs={value_const})
dcl2a = Declaration(var2)
assert ccode(dcl2a) == 'const float x'
dcl2b = var2.as_Declaration(value=pi)
assert ccode(dcl2b) == 'const float x = M_PI'
var3 = Variable(y, type=Type('bool'))
dcl3 = Declaration(var3)
printer = C89CodePrinter()
assert 'stdbool.h' not in printer.headers
assert printer.doprint(dcl3) == 'bool y'
assert 'stdbool.h' in printer.headers
u = symbols('u', real=True)
ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict})
dcl4 = Declaration(ptr4)
assert ccode(dcl4) == 'double * const restrict u'
var5 = Variable(x, Type('__float128'), attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const __float128 x'
var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs)
dcl5b = Declaration(var5b)
assert ccode(dcl5b) == 'const __float128 x = M_PI'
def test_C99CodePrinter_custom_type():
# We will look at __float128 (new in glibc 2.26)
f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp)
p128 = C99CodePrinter(dict(
type_aliases={real: f128},
type_literal_suffixes={f128: 'Q'},
type_func_suffixes={f128: 'f128'},
type_math_macro_suffixes={
real: 'f128',
f128: 'f128'
},
type_macros={
f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',)
}
))
assert p128.doprint(x) == 'x'
assert not p128.headers
assert not p128.libraries
assert not p128.macros
assert p128.doprint(2.0) == '2.0Q'
assert not p128.headers
assert not p128.libraries
assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'}
assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q'
assert p128.doprint(sin(x)) == 'sinf128(x)'
assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)'
var5 = Variable(x, f128, attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const _Float128 x'
var5b = Variable(x, f128, pi, attrs={value_const})
dcl5b = Declaration(var5b)
assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128'
var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const})
dcl5c = Declaration(var5b)
assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig)
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(ccode(A[0, 0]) == "A[0]")
assert(ccode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(ccode(F) == "(A - B)[0]")
def test_ccode_math_macros():
assert ccode(z + exp(1)) == 'z + M_E'
assert ccode(z + log2(exp(1))) == 'z + M_LOG2E'
assert ccode(z + 1/log(2)) == 'z + M_LOG2E'
assert ccode(z + log(2)) == 'z + M_LN2'
assert ccode(z + log(10)) == 'z + M_LN10'
assert ccode(z + pi) == 'z + M_PI'
assert ccode(z + pi/2) == 'z + M_PI_2'
assert ccode(z + pi/4) == 'z + M_PI_4'
assert ccode(z + 1/pi) == 'z + M_1_PI'
assert ccode(z + 2/pi) == 'z + M_2_PI'
assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + Sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2'
assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2'
def test_ccode_Type():
assert ccode(Type('float')) == 'float'
assert ccode(intc) == 'int'
def test_ccode_codegen_ast():
assert ccode(Comment("this is a comment")) == "// this is a comment"
assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == (
'while (fabs(x) > 1) {\n'
' x -= 1;\n'
'}'
)
assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == (
'{\n'
' x += 1;\n'
'}'
)
inp_x = Declaration(Variable(x, type=real))
assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)'
assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == (
'double pwer(double x){\n'
' x = pow(x, 2);\n'
'}'
)
# Elements of CodeBlock are formatted as statements:
block = CodeBlock(
x,
Print([x, y], "%d %d"),
FunctionCall('pwer', [x]),
Return(x),
)
assert ccode(block) == '\n'.join([
'x;',
'printf("%d %d", x, y);',
'pwer(x);',
'return x;',
])
|
9d4ea81ef85da2aa795429eb1b2feee6d5c9aa1b02416f86764c0643f68e3421 | from sympy import symbols, Derivative, Integral, exp, cos, oo, Function
from sympy.functions.special.bessel import besselj
from sympy.functions.special.polynomials import legendre
from sympy.functions.combinatorial.numbers import bell
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.testing.pytest import XFAIL
def test_super_sub():
assert split_super_sub("beta_13_2") == ("beta", [], ["13", "2"])
assert split_super_sub("beta_132_20") == ("beta", [], ["132", "20"])
assert split_super_sub("beta_13") == ("beta", [], ["13"])
assert split_super_sub("x_a_b") == ("x", [], ["a", "b"])
assert split_super_sub("x_1_2_3") == ("x", [], ["1", "2", "3"])
assert split_super_sub("x_a_b1") == ("x", [], ["a", "b1"])
assert split_super_sub("x_a_1") == ("x", [], ["a", "1"])
assert split_super_sub("x_1_a") == ("x", [], ["1", "a"])
assert split_super_sub("x_1^aa") == ("x", ["aa"], ["1"])
assert split_super_sub("x_1__aa") == ("x", ["aa"], ["1"])
assert split_super_sub("x_11^a") == ("x", ["a"], ["11"])
assert split_super_sub("x_11__a") == ("x", ["a"], ["11"])
assert split_super_sub("x_a_b_c_d") == ("x", [], ["a", "b", "c", "d"])
assert split_super_sub("x_a_b^c^d") == ("x", ["c", "d"], ["a", "b"])
assert split_super_sub("x_a_b__c__d") == ("x", ["c", "d"], ["a", "b"])
assert split_super_sub("x_a^b_c^d") == ("x", ["b", "d"], ["a", "c"])
assert split_super_sub("x_a__b_c__d") == ("x", ["b", "d"], ["a", "c"])
assert split_super_sub("x^a^b_c_d") == ("x", ["a", "b"], ["c", "d"])
assert split_super_sub("x__a__b_c_d") == ("x", ["a", "b"], ["c", "d"])
assert split_super_sub("x^a^b^c^d") == ("x", ["a", "b", "c", "d"], [])
assert split_super_sub("x__a__b__c__d") == ("x", ["a", "b", "c", "d"], [])
assert split_super_sub("alpha_11") == ("alpha", [], ["11"])
assert split_super_sub("alpha_11_11") == ("alpha", [], ["11", "11"])
assert split_super_sub("") == ("", [], [])
def test_requires_partial():
x, y, z, t, nu = symbols('x y z t nu')
n = symbols('n', integer=True)
f = x * y
assert requires_partial(Derivative(f, x)) is True
assert requires_partial(Derivative(f, y)) is True
## integrating out one of the variables
assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
## bessel function with smooth parameter
f = besselj(nu, x)
assert requires_partial(Derivative(f, x)) is True
assert requires_partial(Derivative(f, nu)) is True
## bessel function with integer parameter
f = besselj(n, x)
assert requires_partial(Derivative(f, x)) is False
# this is not really valid (differentiating with respect to an integer)
# but there's no reason to use the partial derivative symbol there. make
# sure we don't throw an exception here, though
assert requires_partial(Derivative(f, n)) is False
## bell polynomial
f = bell(n, x)
assert requires_partial(Derivative(f, x)) is False
# again, invalid
assert requires_partial(Derivative(f, n)) is False
## legendre polynomial
f = legendre(0, x)
assert requires_partial(Derivative(f, x)) is False
f = legendre(n, x)
assert requires_partial(Derivative(f, x)) is False
# again, invalid
assert requires_partial(Derivative(f, n)) is False
f = x ** n
assert requires_partial(Derivative(f, x)) is False
assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
# parametric equation
f = (exp(t), cos(t))
g = sum(f)
assert requires_partial(Derivative(g, t)) is False
f = symbols('f', cls=Function)
assert requires_partial(Derivative(f(x), x)) is False
assert requires_partial(Derivative(f(x), y)) is False
assert requires_partial(Derivative(f(x, y), x)) is True
assert requires_partial(Derivative(f(x, y), y)) is True
assert requires_partial(Derivative(f(x, y), z)) is True
assert requires_partial(Derivative(f(x, y), x, y)) is True
@XFAIL
def test_requires_partial_unspecified_variables():
x, y = symbols('x y')
# function of unspecified variables
f = symbols('f', cls=Function)
assert requires_partial(Derivative(f, x)) is False
assert requires_partial(Derivative(f, x, y)) is True
|
463120e548e586fb9e0a9bc8bd56fae494828a30e587c97730eb271208023ef5 | from sympy.tensor.toperators import PartialDerivative
from sympy import (
Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform, Derivative,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SeqPer, SeqFormula,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.testing.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.combinatorics.permutations import \
Cycle, Permutation, AppliedPermutation
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
from sympy.sets.sets import \
Union, Intersection, Complement, SymmetricDifference, ProductSet
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, a, b, c = symbols('x y z t a b c')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
assert latex(Permutation(0, 1), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
assert latex(Permutation(), perm_cyclic=False) == \
r"\left( \right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
r"10000.0"
assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
r"9.99990000000000 \cdot 10^{-2}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = set(l.capitalize() for l in greek_letters_set)
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
assert latex(Range(oo, -oo, -1)) == \
r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
a, b, c = symbols('a:c')
assert latex(Range(a, b, c)) == r'Range\left(a, b, c\right)'
assert latex(Range(a, 10, 1)) == r'Range\left(a, 10, 1\right)'
assert latex(Range(0, b, 1)) == r'Range\left(0, b, 1\right)'
assert latex(Range(0, 10, c)) == r'Range\left(0, 10, c\right)'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_set_operators_parenthesis():
a, b, c, d = symbols('a:d')
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(A, B, evaluate=False)
D2 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert latex(Intersection(A, U2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cap ' \
'\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Intersection(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Intersection(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Union(A, I2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cup ' \
'\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Union(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Union(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(A, C2, evaluate=False)) == \
'\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Complement(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\setminus ' \
'\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)'
assert latex(Complement(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\
'\\setminus \\left(\\left\\{c\\right\\} \\times '\
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
'\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\triangle ' \
'\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
# XXX This can be incorrect since cartesian product is not associative
assert latex(ProductSet(A, P2).flatten()) == \
'\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}'
assert latex(ProductSet(U1, U2)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(I1, I2)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(C1, C2)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(ProductSet(D1, D2)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}"
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
assert latex(imgset) == \
r"\left\{x + y\; |\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \
r'X\left[:5, 1:9:2\right]'
assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \
r'X\left[5, :5:2\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
assert latex(HadamardPower(X, n+1)) == \
r'X^{\circ \left({n + 1}\right)}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
expr = X.applyfunc(Lambda(x, 1/x))
assert latex(expr) == r'{\left( d \mapsto \frac{1}{d} \right)}_{\circ}\left({X}\right)'
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
def test_fancyset_symbols():
assert latex(S.Rationals) == '\\mathbb{Q}'
assert latex(S.Naturals) == '\\mathbb{N}'
assert latex(S.Naturals0) == '\\mathbb{N}_0'
assert latex(S.Integers) == '\\mathbb{Z}'
assert latex(S.Reals) == '\\mathbb{R}'
assert latex(S.Complexes) == '\\mathbb{C}'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.Half, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_14041():
import sympy.physics.mechanics as me
A_frame = me.ReferenceFrame('A')
thetad, phid = me.dynamicsymbols('theta, phi', 1)
L = Symbol('L')
assert latex(L*(phid + thetad)**2*A_frame.x) == \
r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid + thetad)**2*A_frame.x) == \
r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid*thetad)**a*A_frame.x) == \
r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
K = TensorHead("K", [L, L, L, L])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
expr = PartialDerivative(A(i), A(i))
assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
expr = PartialDerivative(A(-i), A(-j))
assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(
Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in ' \
r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
r'\cos{\left(a x \right)} = 0 \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A = MatrixSymbol("A_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}"
def test_AppliedPermutation():
p = Permutation(0, 1, 2)
x = Symbol('x')
assert latex(AppliedPermutation(p, x)) == \
r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
def test_PermutationMatrix():
p = Permutation(0, 1, 2)
assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
p = Permutation(0, 3)(1, 2)
assert latex(PermutationMatrix(p)) == \
r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_DiffGeomMethods():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p)
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{rect_{0}}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987')
assert(latex(.3, decimal_separator='comma')== r'0{,}3')
assert(latex(S(.3), decimal_separator='comma')== r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8e-07')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
|
6518f9cd1f0839a256d64c306385ef72c23c4f82e73ccfef51137c32dbdeae1c | from sympy.core import (S, pi, oo, symbols, Rational, Integer,
GoldenRatio, EulerGamma, Catalan, Lambda, Dummy,
Eq, Ne, Le, Lt, Gt, Ge)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
sign)
from sympy.logic import ITE
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import MatrixSymbol
from sympy import rust_code
x, y, z = symbols('x,y,z')
def test_Integer():
assert rust_code(Integer(42)) == "42"
assert rust_code(Integer(-56)) == "-56"
def test_Relational():
assert rust_code(Eq(x, y)) == "x == y"
assert rust_code(Ne(x, y)) == "x != y"
assert rust_code(Le(x, y)) == "x <= y"
assert rust_code(Lt(x, y)) == "x < y"
assert rust_code(Gt(x, y)) == "x > y"
assert rust_code(Ge(x, y)) == "x >= y"
def test_Rational():
assert rust_code(Rational(3, 7)) == "3_f64/7.0"
assert rust_code(Rational(18, 9)) == "2"
assert rust_code(Rational(3, -7)) == "-3_f64/7.0"
assert rust_code(Rational(-3, -7)) == "3_f64/7.0"
assert rust_code(x + Rational(3, 7)) == "x + 3_f64/7.0"
assert rust_code(Rational(3, 7)*x) == "(3_f64/7.0)*x"
def test_basic_ops():
assert rust_code(x + y) == "x + y"
assert rust_code(x - y) == "x - y"
assert rust_code(x * y) == "x*y"
assert rust_code(x / y) == "x/y"
assert rust_code(-x) == "-x"
def test_printmethod():
class fabs(Abs):
def _rust_code(self, printer):
return "%s.fabs()" % printer._print(self.args[0])
assert rust_code(fabs(x)) == "x.fabs()"
a = MatrixSymbol("a", 1 ,3)
assert rust_code(a[0,0]) == 'a[0]'
def test_Functions():
assert rust_code(sin(x) ** cos(x)) == "x.sin().powf(x.cos())"
assert rust_code(abs(x)) == "x.abs()"
assert rust_code(ceiling(x)) == "x.ceil()"
def test_Pow():
assert rust_code(1/x) == "x.recip()"
assert rust_code(x**-1) == rust_code(x**-1.0) == "x.recip()"
assert rust_code(sqrt(x)) == "x.sqrt()"
assert rust_code(x**S.Half) == rust_code(x**0.5) == "x.sqrt()"
assert rust_code(1/sqrt(x)) == "x.sqrt().recip()"
assert rust_code(x**-S.Half) == rust_code(x**-0.5) == "x.sqrt().recip()"
assert rust_code(1/pi) == "PI.recip()"
assert rust_code(pi**-1) == rust_code(pi**-1.0) == "PI.recip()"
assert rust_code(pi**-0.5) == "PI.sqrt().recip()"
assert rust_code(x**Rational(1, 3)) == "x.cbrt()"
assert rust_code(2**x) == "x.exp2()"
assert rust_code(exp(x)) == "x.exp()"
assert rust_code(x**3) == "x.powi(3)"
assert rust_code(x**(y**3)) == "x.powf(y.powi(3))"
assert rust_code(x**Rational(2, 3)) == "x.powf(2_f64/3.0)"
g = implemented_function('g', Lambda(x, 2*x))
assert rust_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).powf(-x + y.powf(x))/(x.powi(2) + y)"
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi", 1),
(lambda base, exp: not exp.is_integer, "pow", 1)]
assert rust_code(x**3, user_functions={'Pow': _cond_cfunc}) == 'x.dpowi(3)'
assert rust_code(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'x.pow(3.2)'
def test_constants():
assert rust_code(pi) == "PI"
assert rust_code(oo) == "INFINITY"
assert rust_code(S.Infinity) == "INFINITY"
assert rust_code(-oo) == "NEG_INFINITY"
assert rust_code(S.NegativeInfinity) == "NEG_INFINITY"
assert rust_code(S.NaN) == "NAN"
assert rust_code(exp(1)) == "E"
assert rust_code(S.Exp1) == "E"
def test_constants_other():
assert rust_code(2*GoldenRatio) == "const GoldenRatio: f64 = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert rust_code(
2*Catalan) == "const Catalan: f64 = %s;\n2*Catalan" % Catalan.evalf(17)
assert rust_code(2*EulerGamma) == "const EulerGamma: f64 = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_boolean():
assert rust_code(True) == "true"
assert rust_code(S.true) == "true"
assert rust_code(False) == "false"
assert rust_code(S.false) == "false"
assert rust_code(x & y) == "x && y"
assert rust_code(x | y) == "x || y"
assert rust_code(~x) == "!x"
assert rust_code(x & y & z) == "x && y && z"
assert rust_code(x | y | z) == "x || y || z"
assert rust_code((x & y) | z) == "z || x && y"
assert rust_code((x | y) & z) == "z && (x || y)"
def test_Piecewise():
expr = Piecewise((x, x < 1), (x + 2, True))
assert rust_code(expr) == (
"if (x < 1) {\n"
" x\n"
"} else {\n"
" x + 2\n"
"}")
assert rust_code(expr, assign_to="r") == (
"r = if (x < 1) {\n"
" x\n"
"} else {\n"
" x + 2\n"
"};")
assert rust_code(expr, assign_to="r", inline=True) == (
"r = if (x < 1) { x } else { x + 2 };")
expr = Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True))
assert rust_code(expr, inline=True) == (
"if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }")
assert rust_code(expr, assign_to="r", inline=True) == (
"r = if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 };")
assert rust_code(expr, assign_to="r") == (
"r = if (x < 1) {\n"
" x\n"
"} else if (x < 5) {\n"
" x + 1\n"
"} else {\n"
" x + 2\n"
"};")
expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True))
assert rust_code(expr, inline=True) == (
"2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }")
expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True)) - 42
assert rust_code(expr, inline=True) == (
"2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 } - 42")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: rust_code(expr))
def test_dereference_printing():
expr = x + y + sin(z) + z
assert rust_code(expr, dereference=[z]) == "x + y + (*z) + (*z).sin()"
def test_sign():
expr = sign(x) * y
assert rust_code(expr) == "y*x.signum()"
assert rust_code(expr, assign_to='r') == "r = y*x.signum();"
expr = sign(x + y) + 42
assert rust_code(expr) == "(x + y).signum() + 42"
assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;"
expr = sign(cos(x))
assert rust_code(expr) == "x.cos().signum()"
def test_reserved_words():
x, y = symbols("x if")
expr = sin(y)
assert rust_code(expr) == "if_.sin()"
assert rust_code(expr, dereference=[y]) == "(*if_).sin()"
assert rust_code(expr, reserved_word_suffix='_unreserved') == "if_unreserved.sin()"
with raises(ValueError):
rust_code(expr, error_on_reserved=True)
def test_ITE():
expr = ITE(x < 1, y, z)
assert rust_code(expr) == (
"if (x < 1) {\n"
" y\n"
"} else {\n"
" z\n"
"}")
def test_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
x = IndexedBase('x')[j]
assert rust_code(x) == "x[j]"
A = IndexedBase('A')[i, j]
assert rust_code(A) == "A[m*i + j]"
B = IndexedBase('B')[i, j, k]
assert rust_code(B) == "B[m*o*i + o*j + k]"
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
assert rust_code(x[i], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = x[i];\n"
"}")
def test_loops():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
m, n = symbols('m n', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
assert rust_code(A[i, j]*x[j], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" y[i] = A[n*i + j]*x[j] + y[i];\n"
" }\n"
"}")
assert rust_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = x[i] + z[i];\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" y[i] = A[n*i + j]*x[j] + y[i];\n"
" }\n"
"}")
def test_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
assert rust_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" for k in 0..o {\n"
" for l in 0..p {\n"
" y[i] = a[%s]*b[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
" }\n"
" }\n"
" }\n"
"}")
def test_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
m, n, o, p = symbols('m n o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
code = rust_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert code == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" for k in 0..o {\n"
" for l in 0..p {\n"
" y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
" }\n"
" }\n"
" }\n"
"}")
def test_settings():
raises(TypeError, lambda: rust_code(sin(x), method="garbage"))
def test_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert rust_code(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert rust_code(g(x)) == (
"const Catalan: f64 = %s;\n2*x/Catalan" % Catalan.evalf(17))
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert rust_code(g(A[i]), assign_to=A[i]) == (
"for i in 0..n {\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}")
def test_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "ceil",
"Abs": [(lambda x: not x.is_integer, "fabs", 4), (lambda x: x.is_integer, "abs", 4)],
}
assert rust_code(ceiling(x), user_functions=custom_functions) == "x.ceil()"
assert rust_code(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert rust_code(Abs(n), user_functions=custom_functions) == "abs(n)"
|
959854af6022d18c0fc3956152452e007a03132c5dbd94d7b0edfc8c6b032fc3 | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
besselk, hankel1, hankel2, airyai,
airybi, airyaiprime, airybiprime)
from sympy.testing.pytest import XFAIL
from sympy import julia_code
x, y, z = symbols('x,y,z')
def test_Integer():
assert julia_code(Integer(67)) == "67"
assert julia_code(Integer(-1)) == "-1"
def test_Rational():
assert julia_code(Rational(3, 7)) == "3/7"
assert julia_code(Rational(18, 9)) == "2"
assert julia_code(Rational(3, -7)) == "-3/7"
assert julia_code(Rational(-3, -7)) == "3/7"
assert julia_code(x + Rational(3, 7)) == "x + 3/7"
assert julia_code(Rational(3, 7)*x) == "3*x/7"
def test_Relational():
assert julia_code(Eq(x, y)) == "x == y"
assert julia_code(Ne(x, y)) == "x != y"
assert julia_code(Le(x, y)) == "x <= y"
assert julia_code(Lt(x, y)) == "x < y"
assert julia_code(Gt(x, y)) == "x > y"
assert julia_code(Ge(x, y)) == "x >= y"
def test_Function():
assert julia_code(sin(x) ** cos(x)) == "sin(x).^cos(x)"
assert julia_code(abs(x)) == "abs(x)"
assert julia_code(ceiling(x)) == "ceil(x)"
def test_Pow():
assert julia_code(x**3) == "x.^3"
assert julia_code(x**(y**3)) == "x.^(y.^3)"
assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)'
g = implemented_function('g', Lambda(x, 2*x))
assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
# For issue 14160
assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x./(y.*y)'
def test_basic_ops():
assert julia_code(x*y) == "x.*y"
assert julia_code(x + y) == "x + y"
assert julia_code(x - y) == "x - y"
assert julia_code(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert julia_code(1/x) == '1./x'
assert julia_code(x**-1) == julia_code(x**-1.0) == '1./x'
assert julia_code(1/sqrt(x)) == '1./sqrt(x)'
assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1./sqrt(x)'
assert julia_code(sqrt(x)) == 'sqrt(x)'
assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)'
assert julia_code(1/pi) == '1/pi'
assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1/pi'
assert julia_code(pi**-0.5) == '1/sqrt(pi)'
def test_mix_number_mult_symbols():
assert julia_code(3*x) == "3*x"
assert julia_code(pi*x) == "pi*x"
assert julia_code(3/x) == "3./x"
assert julia_code(pi/x) == "pi./x"
assert julia_code(x/3) == "x/3"
assert julia_code(x/pi) == "x/pi"
assert julia_code(x*y) == "x.*y"
assert julia_code(3*x*y) == "3*x.*y"
assert julia_code(3*pi*x*y) == "3*pi*x.*y"
assert julia_code(x/y) == "x./y"
assert julia_code(3*x/y) == "3*x./y"
assert julia_code(x*y/z) == "x.*y./z"
assert julia_code(x/y*z) == "x.*z./y"
assert julia_code(1/x/y) == "1./(x.*y)"
assert julia_code(2*pi*x/y/z) == "2*pi*x./(y.*z)"
assert julia_code(3*pi/x) == "3*pi./x"
assert julia_code(S(3)/5) == "3/5"
assert julia_code(S(3)/5*x) == "3*x/5"
assert julia_code(x/y/z) == "x./(y.*z)"
assert julia_code((x+y)/z) == "(x + y)./z"
assert julia_code((x+y)/(z+x)) == "(x + y)./(x + z)"
assert julia_code((x+y)/EulerGamma) == "(x + y)/eulergamma"
assert julia_code(x/3/pi) == "x/(3*pi)"
assert julia_code(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_mix_number_pow_symbols():
assert julia_code(pi**3) == 'pi^3'
assert julia_code(x**2) == 'x.^2'
assert julia_code(x**(pi**3)) == 'x.^(pi^3)'
assert julia_code(x**y) == 'x.^y'
assert julia_code(x**(y**z)) == 'x.^(y.^z)'
assert julia_code((x**y)**z) == '(x.^y).^z'
def test_imag():
I = S('I')
assert julia_code(I) == "im"
assert julia_code(5*I) == "5im"
assert julia_code((S(3)/2)*I) == "3*im/2"
assert julia_code(3+4*I) == "3 + 4im"
def test_constants():
assert julia_code(pi) == "pi"
assert julia_code(oo) == "Inf"
assert julia_code(-oo) == "-Inf"
assert julia_code(S.NegativeInfinity) == "-Inf"
assert julia_code(S.NaN) == "NaN"
assert julia_code(S.Exp1) == "e"
assert julia_code(exp(1)) == "e"
def test_constants_other():
assert julia_code(2*GoldenRatio) == "2*golden"
assert julia_code(2*Catalan) == "2*catalan"
assert julia_code(2*EulerGamma) == "2*eulergamma"
def test_boolean():
assert julia_code(x & y) == "x && y"
assert julia_code(x | y) == "x || y"
assert julia_code(~x) == "!x"
assert julia_code(x & y & z) == "x && y && z"
assert julia_code(x | y | z) == "x || y || z"
assert julia_code((x & y) | z) == "z || x && y"
assert julia_code((x | y) & z) == "z && (x || y)"
def test_Matrices():
assert julia_code(Matrix(1, 1, [10])) == "[10]"
A = Matrix([[1, sin(x/2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]]);
expected = ("[1 sin(x/2) abs(x);\n"
"0 1 pi;\n"
"0 e ceil(x)]")
assert julia_code(A) == expected
# row and columns
assert julia_code(A[:,0]) == "[1, 0, 0]"
assert julia_code(A[0,:]) == "[1 sin(x/2) abs(x)]"
# empty matrices
assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)'
assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)'
# annoying to read but correct
assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
assert julia_code(A) == "[1 sin(2./x) 3*pi./(5*x)]"
assert julia_code(A.T) == "[1, sin(2./x), 3*pi./(5*x)]"
@XFAIL
def test_Matrices_entries_not_hadamard():
# For Matrix with col >= 2, row >= 2, they need to be scalars
# FIXME: is it worth worrying about this? Its not wrong, just
# leave it user's responsibility to put scalar data for x.
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
"1 2 x*y]") # <- we give x.*y
assert julia_code(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert julia_code(A*B) == "A*B"
assert julia_code(B*A) == "B*A"
assert julia_code(2*A*B) == "2*A*B"
assert julia_code(B*2*A) == "2*B*A"
assert julia_code(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)"
assert julia_code(A**(x**2)) == "A^(x.^2)"
assert julia_code(A**3) == "A^3"
assert julia_code(A**S.Half) == "A^(1/2)"
def test_special_matrices():
assert julia_code(6*Identity(3)) == "6*eye(3)"
def test_containers():
assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
assert julia_code([1]) == "Any[1]"
assert julia_code((1,)) == "(1,)"
assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
assert julia_code((1, x*y, (3, x**2))) == "(1, x.*y, (3, x.^2))"
# scalar, matrix, empty matrix and empty list
assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
def test_julia_noninline():
source = julia_code((x+y)/Catalan, assign_to='me', inline=False)
expected = (
"const Catalan = %s\n"
"me = (x + y)/Catalan"
) % Catalan.evalf(17)
assert source == expected
def test_julia_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert julia_code(expr) == "((x < 1) ? (x) : (x.^2))"
assert julia_code(expr, assign_to="r") == (
"r = ((x < 1) ? (x) : (x.^2))")
assert julia_code(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x\n"
"else\n"
" r = x.^2\n"
"end")
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
expected = ("((x < 1) ? (x.^2) :\n"
"(x < 2) ? (x.^3) :\n"
"(x < 3) ? (x.^4) : (x.^5))")
assert julia_code(expr) == expected
assert julia_code(expr, assign_to="r") == "r = " + expected
assert julia_code(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x.^2\n"
"elseif (x < 2)\n"
" r = x.^3\n"
"elseif (x < 3)\n"
" r = x.^4\n"
"else\n"
" r = x.^5\n"
"end")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: julia_code(expr))
def test_julia_piecewise_times_const():
pw = Piecewise((x, x < 1), (x**2, True))
assert julia_code(2*pw) == "2*((x < 1) ? (x) : (x.^2))"
assert julia_code(pw/x) == "((x < 1) ? (x) : (x.^2))./x"
assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x.^2))./(x.*y)"
assert julia_code(pw/3) == "((x < 1) ? (x) : (x.^2))/3"
def test_julia_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert julia_code(A, assign_to='a') == "a = [1 2 3]"
A = Matrix([[1, 2], [3, 4]])
assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"
def test_julia_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert julia_code(A, assign_to=B) == "B = [1 2 3]"
raises(ValueError, lambda: julia_code(A, assign_to=x))
raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_matrix_1x1():
A = Matrix([[3]])
B = MatrixSymbol('B', 1, 1)
C = MatrixSymbol('C', 1, 2)
assert julia_code(A, assign_to=B) == "B = [3]"
# FIXME?
#assert julia_code(A, assign_to=x) == "x = [3]"
raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_matrix_elements():
A = Matrix([[x, 2, x*y]])
assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2"
A = MatrixSymbol('AA', 1, 3)
assert julia_code(A) == "AA"
assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
"sin(AA[1,2]) + AA[1,1].^2 + AA[1,3]"
assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
def test_julia_boolean():
assert julia_code(True) == "true"
assert julia_code(S.true) == "true"
assert julia_code(False) == "false"
assert julia_code(S.false) == "false"
def test_julia_not_supported():
assert julia_code(S.ComplexInfinity) == (
"# Not supported in Julia:\n"
"# ComplexInfinity\n"
"zoo"
)
f = Function('f')
assert julia_code(f(x).diff(x)) == (
"# Not supported in Julia:\n"
"# Derivative\n"
"Derivative(f(x), x)"
)
def test_trick_indent_with_end_else_words():
# words starting with "end" or "else" do not confuse the indenter
t1 = S('endless');
t2 = S('elsewhere');
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
assert julia_code(pw, inline=False) == (
"if (x < 0)\n"
" endless\n"
"elseif (x <= 1)\n"
" elsewhere\n"
"else\n"
" 1\n"
"end")
def test_haramard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
assert julia_code(C) == "A.*B"
assert julia_code(C*v) == "(A.*B)*v"
assert julia_code(h*C*v) == "h*(A.*B)*v"
assert julia_code(C*A) == "(A.*B)*A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert julia_code(C*x*y) == "(x.*y)*(A.*B)"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10;
M[1, 2] = 20;
M[1, 3] = 22;
M[0, 3] = 30;
M[3, 0] = x*y;
assert julia_code(M) == (
"sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x.*y, 20, 10, 30, 22], 5, 6)"
)
def test_specfun():
n = Symbol('n')
for f in [besselj, bessely, besseli, besselk]:
assert julia_code(f(n, x)) == f.__name__ + '(n, x)'
for f in [airyai, airyaiprime, airybi, airybiprime]:
assert julia_code(f(x)) == f.__name__ + '(x)'
assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)'
assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)'
assert julia_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
assert julia_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(julia_code(A[0, 0]) == "A[1,1]")
assert(julia_code(3 * A[0, 0]) == "3*A[1,1]")
F = C[0, 0].subs(C, A - B)
assert(julia_code(F) == "(A - B)[1,1]")
|
d8738a7f7601e75892ad51672cbf56dc48298502d22dd2e4a0e9bd6d63a7a7c7 | from sympy.core import (S, pi, oo, Symbol, symbols, Rational, Integer,
GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, Eq)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
gamma, sign, Max, Min, factorial, beta)
from sympy.sets import Range
from sympy.logic import ITE
from sympy.codegen import For, aug_assign, Assignment
from sympy.testing.pytest import raises
from sympy.printing.rcode import RCodePrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy import rcode
x, y, z = symbols('x,y,z')
def test_printmethod():
class fabs(Abs):
def _rcode(self, printer):
return "abs(%s)" % printer._print(self.args[0])
assert rcode(fabs(x)) == "abs(x)"
def test_rcode_sqrt():
assert rcode(sqrt(x)) == "sqrt(x)"
assert rcode(x**0.5) == "sqrt(x)"
assert rcode(sqrt(x)) == "sqrt(x)"
def test_rcode_Pow():
assert rcode(x**3) == "x^3"
assert rcode(x**(y**3)) == "x^(y^3)"
g = implemented_function('g', Lambda(x, 2*x))
assert rcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x)^(-x + y^x)/(x^2 + y)"
assert rcode(x**-1.0) == '1.0/x'
assert rcode(x**Rational(2, 3)) == 'x^(2.0/3.0)'
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
(lambda base, exp: not exp.is_integer, "pow")]
assert rcode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
assert rcode(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 3.2)'
def test_rcode_Max():
# Test for gh-11926
assert rcode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
def test_rcode_constants_mathh():
assert rcode(exp(1)) == "exp(1)"
assert rcode(pi) == "pi"
assert rcode(oo) == "Inf"
assert rcode(-oo) == "-Inf"
def test_rcode_constants_other():
assert rcode(2*GoldenRatio) == "GoldenRatio = 1.61803398874989;\n2*GoldenRatio"
assert rcode(
2*Catalan) == "Catalan = 0.915965594177219;\n2*Catalan"
assert rcode(2*EulerGamma) == "EulerGamma = 0.577215664901533;\n2*EulerGamma"
def test_rcode_Rational():
assert rcode(Rational(3, 7)) == "3.0/7.0"
assert rcode(Rational(18, 9)) == "2"
assert rcode(Rational(3, -7)) == "-3.0/7.0"
assert rcode(Rational(-3, -7)) == "3.0/7.0"
assert rcode(x + Rational(3, 7)) == "x + 3.0/7.0"
assert rcode(Rational(3, 7)*x) == "(3.0/7.0)*x"
def test_rcode_Integer():
assert rcode(Integer(67)) == "67"
assert rcode(Integer(-1)) == "-1"
def test_rcode_functions():
assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)"
assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)"
assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))"
def test_rcode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert rcode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert rcode(
g(x)) == "Catalan = %s;\n2*x/Catalan" % Catalan.n()
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
res=rcode(g(A[i]), assign_to=A[i])
ref=(
"for (i in 1:n){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
assert res == ref
def test_rcode_exceptions():
assert rcode(ceiling(x)) == "ceiling(x)"
assert rcode(Abs(x)) == "abs(x)"
assert rcode(gamma(x)) == "gamma(x)"
def test_rcode_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "myceil",
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
}
assert rcode(ceiling(x), user_functions=custom_functions) == "myceil(x)"
assert rcode(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert rcode(Abs(n), user_functions=custom_functions) == "abs(n)"
def test_rcode_boolean():
assert rcode(True) == "True"
assert rcode(S.true) == "True"
assert rcode(False) == "False"
assert rcode(S.false) == "False"
assert rcode(x & y) == "x & y"
assert rcode(x | y) == "x | y"
assert rcode(~x) == "!x"
assert rcode(x & y & z) == "x & y & z"
assert rcode(x | y | z) == "x | y | z"
assert rcode((x & y) | z) == "z | x & y"
assert rcode((x | y) & z) == "z & (x | y)"
def test_rcode_Relational():
from sympy import Eq, Ne, Le, Lt, Gt, Ge
assert rcode(Eq(x, y)) == "x == y"
assert rcode(Ne(x, y)) == "x != y"
assert rcode(Le(x, y)) == "x <= y"
assert rcode(Lt(x, y)) == "x < y"
assert rcode(Gt(x, y)) == "x > y"
assert rcode(Ge(x, y)) == "x >= y"
def test_rcode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
res=rcode(expr)
ref="ifelse(x < 1,x,x^2)"
assert res == ref
tau=Symbol("tau")
res=rcode(expr,tau)
ref="tau = ifelse(x < 1,x,x^2);"
assert res == ref
expr = 2*Piecewise((x, x < 1), (x**2, x<2), (x**3,True))
assert rcode(expr) == "2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3))"
res = rcode(expr, assign_to='c')
assert res == "c = 2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3));"
# Check that Piecewise without a True (default) condition error
#expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
#raises(ValueError, lambda: rcode(expr))
expr = 2*Piecewise((x, x < 1), (x**2, x<2))
assert(rcode(expr))== "2*ifelse(x < 1,x,ifelse(x < 2,x^2,NA))"
def test_rcode_sinc():
from sympy import sinc
expr = sinc(x)
res = rcode(expr)
ref = "ifelse(x != 0,sin(x)/x,1)"
assert res == ref
def test_rcode_Piecewise_deep():
p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))"
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
p = rcode(expr)
ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1"
assert p == ref
ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;"
p = rcode(expr, assign_to='c')
assert p == ref
def test_rcode_ITE():
expr = ITE(x < 1, y, z)
p = rcode(expr)
ref="ifelse(x < 1,y,z)"
assert p == ref
def test_rcode_settings():
raises(TypeError, lambda: rcode(sin(x), method="garbage"))
def test_rcode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = RCodePrinter()
p._not_r = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[i, j]'
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[i, j, k]'
assert p._not_r == set()
def test_rcode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = rcode(e.rhs, assign_to=e.lhs, contract=False)
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
def test_rcode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (i in 1:m){\n'
' y[i] = 0;\n'
'}\n'
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' y[i] = A[i, j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = rcode(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
# the following line could also be
# [Dummy(s, integer=True) for s in 'im']
# or [Dummy(integer=True) for s in 'im']
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (i_%(icount)i in 1:m_%(mcount)i){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = rcode(x[i], assign_to=y[i])
assert code == expected
def test_rcode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (i in 1:m){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' y[i] = A[i, j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = rcode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_rcode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (i in 1:m){\n'
' y[i] = 0;\n'
'}\n'
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' for (k in 1:o){\n'
' for (l in 1:p){\n'
' y[i] = a[i, j, k, l]*b[j, k, l] + y[i];\n'
' }\n'
' }\n'
' }\n'
'}'
)
c = rcode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_rcode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (i in 1:m){\n'
' y[i] = 0;\n'
'}\n'
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' for (k in 1:o){\n'
' for (l in 1:p){\n'
' y[i] = (a[i, j, k, l] + b[i, j, k, l])*c[j, k, l] + y[i];\n'
' }\n'
' }\n'
' }\n'
'}'
)
c = rcode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_rcode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (i in 1:m){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' for (k in 1:o){\n'
' y[i] = b[j]*b[k]*c[i, j, k] + y[i];\n'
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (i in 1:m){\n'
' for (k in 1:o){\n'
' y[i] = a[i, k]*b[k] + y[i];\n'
' }\n'
'}\n'
)
s3 = (
'for (i in 1:m){\n'
' for (j in 1:n){\n'
' y[i] = a[i, j]*b[j] + y[i];\n'
' }\n'
'}\n'
)
c = rcode(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
ref=dict()
ref[0] = s0 + s1 + s2 + s3[:-1]
ref[1] = s0 + s1 + s3 + s2[:-1]
ref[2] = s0 + s2 + s1 + s3[:-1]
ref[3] = s0 + s2 + s3 + s1[:-1]
ref[4] = s0 + s3 + s1 + s2[:-1]
ref[5] = s0 + s3 + s2 + s1[:-1]
assert (c == ref[0] or
c == ref[1] or
c == ref[2] or
c == ref[3] or
c == ref[4] or
c == ref[5])
def test_dereference_printing():
expr = x + y + sin(z) + z
assert rcode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
p = rcode(mat, A)
assert p == (
"A[0] = x*y;\n"
"A[1] = ifelse(y > 0,x + 2,y);\n"
"A[2] = sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
p = rcode(expr)
assert p == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert rcode(m, M) == (
"M[0] = sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_rcode_sgn():
expr = sign(x) * y
assert rcode(expr) == 'y*sign(x)'
p = rcode(expr, 'z')
assert p == 'z = y*sign(x);'
p = rcode(sign(2 * x + x**2) * x + x**2)
assert p == "x^2 + x*sign(x^2 + 2*x)"
expr = sign(cos(x))
p = rcode(expr)
assert p == 'sign(cos(x))'
def test_rcode_Assignment():
assert rcode(Assignment(x, y + z)) == 'x = y + z;'
assert rcode(aug_assign(x, '+', y + z)) == 'x += y + z;'
def test_rcode_For():
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
sol = rcode(f)
assert sol == ("for (x = 0; x < 10; x += 2) {\n"
" y *= x;\n"
"}")
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(rcode(A[0, 0]) == "A[0]")
assert(rcode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(rcode(F) == "(A - B)[0]")
|
1d354f9ca3e2543056596087d04e2a60433f5867fe8d6b56b44ad79860db6a31 | from sympy.printing.tree import tree
from sympy.testing.pytest import XFAIL
# Remove this flag after making _assumptions cache deterministic.
@XFAIL
def test_print_tree_MatAdd():
from sympy.matrices.expressions import MatrixSymbol
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
test_str = [
'MatAdd: A + B\n',
'algebraic: False\n',
'commutative: False\n',
'complex: False\n',
'composite: False\n',
'even: False\n',
'extended_negative: False\n',
'extended_nonnegative: False\n',
'extended_nonpositive: False\n',
'extended_nonzero: False\n',
'extended_positive: False\n',
'extended_real: False\n',
'imaginary: False\n',
'integer: False\n',
'irrational: False\n',
'negative: False\n',
'noninteger: False\n',
'nonnegative: False\n',
'nonpositive: False\n',
'nonzero: False\n',
'odd: False\n',
'positive: False\n',
'prime: False\n',
'rational: False\n',
'real: False\n',
'transcendental: False\n',
'zero: False\n',
'+-MatrixSymbol: A\n',
'| algebraic: False\n',
'| commutative: False\n',
'| complex: False\n',
'| composite: False\n',
'| even: False\n',
'| extended_negative: False\n',
'| extended_nonnegative: False\n',
'| extended_nonpositive: False\n',
'| extended_nonzero: False\n',
'| extended_positive: False\n',
'| extended_real: False\n',
'| imaginary: False\n',
'| integer: False\n',
'| irrational: False\n',
'| negative: False\n',
'| noninteger: False\n',
'| nonnegative: False\n',
'| nonpositive: False\n',
'| nonzero: False\n',
'| odd: False\n',
'| positive: False\n',
'| prime: False\n',
'| rational: False\n',
'| real: False\n',
'| transcendental: False\n',
'| zero: False\n',
'| +-Symbol: A\n',
'| | commutative: True\n',
'| +-Integer: 3\n',
'| | algebraic: True\n',
'| | commutative: True\n',
'| | complex: True\n',
'| | extended_negative: False\n',
'| | extended_nonnegative: True\n',
'| | extended_real: True\n',
'| | finite: True\n',
'| | hermitian: True\n',
'| | imaginary: False\n',
'| | infinite: False\n',
'| | integer: True\n',
'| | irrational: False\n',
'| | negative: False\n',
'| | noninteger: False\n',
'| | nonnegative: True\n',
'| | rational: True\n',
'| | real: True\n',
'| | transcendental: False\n',
'| +-Integer: 3\n',
'| algebraic: True\n',
'| commutative: True\n',
'| complex: True\n',
'| extended_negative: False\n',
'| extended_nonnegative: True\n',
'| extended_real: True\n',
'| finite: True\n',
'| hermitian: True\n',
'| imaginary: False\n',
'| infinite: False\n',
'| integer: True\n',
'| irrational: False\n',
'| negative: False\n',
'| noninteger: False\n',
'| nonnegative: True\n',
'| rational: True\n',
'| real: True\n',
'| transcendental: False\n',
'+-MatrixSymbol: B\n',
' algebraic: False\n',
' commutative: False\n',
' complex: False\n',
' composite: False\n',
' even: False\n',
' extended_negative: False\n',
' extended_nonnegative: False\n',
' extended_nonpositive: False\n',
' extended_nonzero: False\n',
' extended_positive: False\n',
' extended_real: False\n',
' imaginary: False\n',
' integer: False\n',
' irrational: False\n',
' negative: False\n',
' noninteger: False\n',
' nonnegative: False\n',
' nonpositive: False\n',
' nonzero: False\n',
' odd: False\n',
' positive: False\n',
' prime: False\n',
' rational: False\n',
' real: False\n',
' transcendental: False\n',
' zero: False\n',
' +-Symbol: B\n',
' | commutative: True\n',
' +-Integer: 3\n',
' | algebraic: True\n',
' | commutative: True\n',
' | complex: True\n',
' | extended_negative: False\n',
' | extended_nonnegative: True\n',
' | extended_real: True\n',
' | finite: True\n',
' | hermitian: True\n',
' | imaginary: False\n',
' | infinite: False\n',
' | integer: True\n',
' | irrational: False\n',
' | negative: False\n',
' | noninteger: False\n',
' | nonnegative: True\n',
' | rational: True\n',
' | real: True\n',
' | transcendental: False\n',
' +-Integer: 3\n',
' algebraic: True\n',
' commutative: True\n',
' complex: True\n',
' extended_negative: False\n',
' extended_nonnegative: True\n',
' extended_real: True\n',
' finite: True\n',
' hermitian: True\n',
' imaginary: False\n',
' infinite: False\n',
' integer: True\n',
' irrational: False\n',
' negative: False\n',
' noninteger: False\n',
' nonnegative: True\n',
' rational: True\n',
' real: True\n',
' transcendental: False\n'
]
assert tree(A + B) == "".join(test_str)
def test_print_tree_MatAdd_noassumptions():
from sympy.matrices.expressions import MatrixSymbol
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
test_str = \
"""MatAdd: A + B
+-MatrixSymbol: A
| +-Symbol: A
| +-Integer: 3
| +-Integer: 3
+-MatrixSymbol: B
+-Symbol: B
+-Integer: 3
+-Integer: 3
"""
assert tree(A + B, assumptions=False) == test_str
|
5e9346c876fe695c9a1e9a669e531461711e29f42406d80fc55652b8e013218b | from sympy import (Symbol, symbols, oo, limit, Rational, Integral, Derivative,
log, exp, sqrt, pi, Function, sin, Eq, Ge, Le, Gt, Lt, Ne, Abs, conjugate,
I, Matrix)
from sympy.printing.python import python
from sympy.testing.pytest import raises, XFAIL
x, y = symbols('x,y')
th = Symbol('theta')
ph = Symbol('phi')
def test_python_basic():
# Simple numbers/symbols
assert python(-Rational(1)/2) == "e = Rational(-1, 2)"
assert python(-Rational(13)/22) == "e = Rational(-13, 22)"
assert python(oo) == "e = oo"
# Powers
assert python((x**2)) == "x = Symbol(\'x\')\ne = x**2"
assert python(1/x) == "x = Symbol('x')\ne = 1/x"
assert python(y*x**-2) == "y = Symbol('y')\nx = Symbol('x')\ne = y/x**2"
assert python(
x**Rational(-5, 2)) == "x = Symbol('x')\ne = x**Rational(-5, 2)"
# Sums of terms
assert python((x**2 + x + 1)) in [
"x = Symbol('x')\ne = 1 + x + x**2",
"x = Symbol('x')\ne = x + x**2 + 1",
"x = Symbol('x')\ne = x**2 + x + 1", ]
assert python(1 - x) in [
"x = Symbol('x')\ne = 1 - x",
"x = Symbol('x')\ne = -x + 1"]
assert python(1 - 2*x) in [
"x = Symbol('x')\ne = 1 - 2*x",
"x = Symbol('x')\ne = -2*x + 1"]
assert python(1 - Rational(3, 2)*y/x) in [
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3/2*y/x",
"y = Symbol('y')\nx = Symbol('x')\ne = -3/2*y/x + 1",
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3*y/(2*x)"]
# Multiplication
assert python(x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = x/y"
assert python(-x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = -x/y"
assert python((x + 2)/y) in [
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(2 + x)",
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(x + 2)",
"x = Symbol('x')\ny = Symbol('y')\ne = 1/y*(2 + x)",
"x = Symbol('x')\ny = Symbol('y')\ne = (2 + x)/y",
"x = Symbol('x')\ny = Symbol('y')\ne = (x + 2)/y"]
assert python((1 + x)*y) in [
"y = Symbol('y')\nx = Symbol('x')\ne = y*(1 + x)",
"y = Symbol('y')\nx = Symbol('x')\ne = y*(x + 1)", ]
# Check for proper placement of negative sign
assert python(-5*x/(x + 10)) == "x = Symbol('x')\ne = -5*x/(x + 10)"
assert python(1 - Rational(3, 2)*(x + 1)) in [
"x = Symbol('x')\ne = Rational(-3, 2)*x + Rational(-1, 2)",
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)",
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)"
]
def test_python_keyword_symbol_name_escaping():
# Check for escaping of keywords
assert python(
5*Symbol("lambda")) == "lambda_ = Symbol('lambda')\ne = 5*lambda_"
assert (python(5*Symbol("lambda") + 7*Symbol("lambda_")) ==
"lambda__ = Symbol('lambda')\nlambda_ = Symbol('lambda_')\ne = 7*lambda_ + 5*lambda__")
assert (python(5*Symbol("for") + Function("for_")(8)) ==
"for__ = Symbol('for')\nfor_ = Function('for_')\ne = 5*for__ + for_(8)")
def test_python_keyword_function_name_escaping():
assert python(
5*Function("for")(8)) == "for_ = Function('for')\ne = 5*for_(8)"
def test_python_relational():
assert python(Eq(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = Eq(x, y)"
assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y"
assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y"
assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y"
assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y"
assert python(Ne(x/(y + 1), y**2)) in [
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(1 + y), y**2)",
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(y + 1), y**2)"]
def test_python_functions():
# Simple
assert python((2*x + exp(x))) in "x = Symbol('x')\ne = 2*x + exp(x)"
assert python(sqrt(2)) == 'e = sqrt(2)'
assert python(2**Rational(1, 3)) == 'e = 2**Rational(1, 3)'
assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)'
assert python((2 + pi)**Rational(1, 3)) == 'e = (2 + pi)**Rational(1, 3)'
assert python(2**Rational(1, 4)) == 'e = 2**Rational(1, 4)'
assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)"
assert python(
Abs(x/(x**2 + 1))) in ["x = Symbol('x')\ne = Abs(x/(1 + x**2))",
"x = Symbol('x')\ne = Abs(x/(x**2 + 1))"]
# Univariate/Multivariate functions
f = Function('f')
assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)"
assert python(f(x, y)) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)"
assert python(f(x/(y + 1), y)) in [
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)",
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"]
# Nesting of square roots
assert python(sqrt((sqrt(x + 1)) + 1)) in [
"x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))",
"x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"]
# Nesting of powers
assert python((((x + 1)**Rational(1, 3)) + 1)**Rational(1, 3)) in [
"x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)",
"x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"]
# Function powers
assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2"
@XFAIL
def test_python_functions_conjugates():
a, b = map(Symbol, 'ab')
assert python( conjugate(a + b*I) ) == '_ _\na - I*b'
assert python( conjugate(exp(a + b*I)) ) == ' _ _\n a - I*b\ne '
def test_python_derivatives():
# Simple
f_1 = Derivative(log(x), x, evaluate=False)
assert python(f_1) == "x = Symbol('x')\ne = Derivative(log(x), x)"
f_2 = Derivative(log(x), x, evaluate=False) + x
assert python(f_2) == "x = Symbol('x')\ne = x + Derivative(log(x), x)"
# Multiple symbols
f_3 = Derivative(log(x) + x**2, x, y, evaluate=False)
assert python(f_3) == \
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(x**2 + log(x), x, y)"
f_4 = Derivative(2*x*y, y, x, evaluate=False) + x**2
assert python(f_4) in [
"x = Symbol('x')\ny = Symbol('y')\ne = x**2 + Derivative(2*x*y, y, x)",
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(2*x*y, y, x) + x**2"]
def test_python_integrals():
# Simple
f_1 = Integral(log(x), x)
assert python(f_1) == "x = Symbol('x')\ne = Integral(log(x), x)"
f_2 = Integral(x**2, x)
assert python(f_2) == "x = Symbol('x')\ne = Integral(x**2, x)"
# Double nesting of pow
f_3 = Integral(x**(2**x), x)
assert python(f_3) == "x = Symbol('x')\ne = Integral(x**(2**x), x)"
# Definite integrals
f_4 = Integral(x**2, (x, 1, 2))
assert python(f_4) == "x = Symbol('x')\ne = Integral(x**2, (x, 1, 2))"
f_5 = Integral(x**2, (x, Rational(1, 2), 10))
assert python(
f_5) == "x = Symbol('x')\ne = Integral(x**2, (x, Rational(1, 2), 10))"
# Nested integrals
f_6 = Integral(x**2*y**2, x, y)
assert python(f_6) == "x = Symbol('x')\ny = Symbol('y')\ne = Integral(x**2*y**2, x, y)"
def test_python_matrix():
p = python(Matrix([[x**2+1, 1], [y, x+y]]))
s = "x = Symbol('x')\ny = Symbol('y')\ne = MutableDenseMatrix([[x**2 + 1, 1], [y, x + y]])"
assert p == s
def test_python_limits():
assert python(limit(x, x, oo)) == 'e = oo'
assert python(limit(x**2, x, 0)) == 'e = 0'
def test_settings():
raises(TypeError, lambda: python(x, method="garbage"))
|
652cccced7a0f7da209800b9e06153df0d942c28f559c45d6afa8aafaf53d73f |
from sympy import TableForm, S
from sympy.printing.latex import latex
from sympy.abc import x
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.testing.pytest import raises
from textwrap import dedent
def test_TableForm():
s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]],
headings="automatic"))
assert s == (
' | 1 2\n'
'-------\n'
'1 | a b\n'
'2 | c d\n'
'3 | e '
)
s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]],
headings="automatic", wipe_zeros=False))
assert s == dedent('''\
| 1 2
-------
1 | a b
2 | c d
3 | e 0''')
s = str(TableForm([[x**2, "b"], ["c", x**2], ["e", "f"]],
headings=("automatic", None)))
assert s == (
'1 | x**2 b \n'
'2 | c x**2\n'
'3 | e f '
)
s = str(TableForm([["a", "b"], ["c", "d"], ["e", "f"]],
headings=(None, "automatic")))
assert s == dedent('''\
1 2
---
a b
c d
e f''')
s = str(TableForm([[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]]))
assert s == (
' | y1 y2\n'
'---------------\n'
'Group A | 5 7 \n'
'Group B | 4 2 \n'
'Group C | 10 3 '
)
raises(
ValueError,
lambda:
TableForm(
[[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]],
alignments="middle")
)
s = str(TableForm([[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]],
alignments="right"))
assert s == dedent('''\
| y1 y2
---------------
Group A | 5 7
Group B | 4 2
Group C | 10 3''')
# other alignment permutations
d = [[1, 100], [100, 1]]
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='l')
assert str(s) == (
'xxx | 1 100\n'
' x | 100 1 '
)
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='lr')
assert str(s) == dedent('''\
xxx | 1 100
x | 100 1''')
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='clr')
assert str(s) == dedent('''\
xxx | 1 100
x | 100 1''')
s = TableForm(d, headings=(('xxx', 'x'), None))
assert str(s) == (
'xxx | 1 100\n'
' x | 100 1 '
)
raises(ValueError, lambda: TableForm(d, alignments='clr'))
#pad
s = str(TableForm([[None, "-", 2], [1]], pad='?'))
assert s == dedent('''\
? - 2
1 ? ?''')
def test_TableForm_latex():
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic"), alignments='l'))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic"), alignments='l'*3))
assert s == (
'\\begin{tabular}{l l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & $a$ & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
formats=['(%s)', None], headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & (a) & $x^{3}$ \\\\\n'
'2 & (c) & $\\frac{1}{4}$ \\\\\n'
'3 & (sqrt(x)) & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
def neg_in_paren(x, i, j):
if i % 2:
return ('(%s)' if x < 0 else '%s') % x
else:
pass # use default print
s = latex(TableForm([[-1, 2], [-3, 4]],
formats=[neg_in_paren]*2, headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & -1 & 2 \\\\\n'
'2 & (-3) & 4 \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]]))
assert s == (
'\\begin{tabular}{l l}\n'
'$a$ & $x^{3}$ \\\\\n'
'$c$ & $\\frac{1}{4}$ \\\\\n'
'$\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
|
b9e8b08f1a1e531b4bc4ed2d1c8dae7ab59994ff30b2a52c0454a4c503c4bae9 | from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \
tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \
pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \
S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \
Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \
expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \
laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \
mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \
cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech
from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \
fresnelc, fresnels, Heaviside
from sympy.calculus.util import AccumBounds
from sympy.core.containers import Tuple
from sympy.functions.combinatorial.factorials import factorial, factorial2, \
binomial
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci, catalan
from sympy.functions.elementary.complexes import re, im, Abs, conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta
from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not
from sympy.matrices.expressions.determinant import Determinant
from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger
from sympy.printing.mathml import mathml, MathMLContentPrinter, \
MathMLPresentationPrinter, MathMLPrinter
from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \
SymmetricDifference, Interval, EmptySet, ProductSet
from sympy.stats.rv import RandomSymbol
from sympy.testing.pytest import raises
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
x, y, z, a, b, c, d, e, n = symbols('x:z a:e n')
mp = MathMLContentPrinter()
mpp = MathMLPresentationPrinter()
def test_mathml_printer():
m = MathMLPrinter()
assert m.doprint(1+x) == mp.doprint(1+x)
def test_content_printmethod():
assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>'
def test_content_mathml_core():
mml_1 = mp._print(1 + x)
assert mml_1.nodeName == 'apply'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName == 'plus'
assert nodes[0].hasChildNodes() is False
assert nodes[0].nodeValue is None
assert nodes[1].nodeName in ['cn', 'ci']
if nodes[1].nodeName == 'cn':
assert nodes[1].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(x**2)
assert mml_2.nodeName == 'apply'
nodes = mml_2.childNodes
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '2'
mml_3 = mp._print(2*x)
assert mml_3.nodeName == 'apply'
nodes = mml_3.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '2'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'apply'
nodes = mml.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '1.0'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_content_mathml_functions():
mml_1 = mp._print(sin(x))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'sin'
assert mml_1.childNodes[1].nodeName == 'ci'
mml_2 = mp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'diff'
assert mml_2.childNodes[1].nodeName == 'bvar'
assert mml_2.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
mml_3 = mp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'partialdiff'
assert mml_3.childNodes[1].nodeName == 'bvar'
assert mml_3.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
def test_content_mathml_limits():
# XXX No unevaluated limits
lim_fun = sin(x)/x
mml_1 = mp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'limit'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml()
def test_content_mathml_integrals():
integrand = x
mml_1 = mp._print(Integral(integrand, (x, 0, 1)))
assert mml_1.childNodes[0].nodeName == 'int'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml()
def test_content_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mp._print(A)
assert mll_1.childNodes[0].nodeName == 'matrixrow'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[1].nodeName == 'matrixrow'
assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[2].nodeName == 'matrixrow'
assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mp._print(B)
assert mll_2.childNodes[0].nodeName == 'matrixrow'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[1].nodeName == 'matrixrow'
assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[2].nodeName == 'matrixrow'
assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9'
def test_content_mathml_sums():
summand = x
mml_1 = mp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'sum'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml()
def test_content_mathml_tuples():
mml_1 = mp._print([2])
assert mml_1.nodeName == 'list'
assert mml_1.childNodes[0].nodeName == 'cn'
assert len(mml_1.childNodes) == 1
mml_2 = mp._print([2, Integer(1)])
assert mml_2.nodeName == 'list'
assert mml_2.childNodes[0].nodeName == 'cn'
assert mml_2.childNodes[1].nodeName == 'cn'
assert len(mml_2.childNodes) == 2
def test_content_mathml_add():
mml = mp._print(x**5 - x**4 + x)
assert mml.childNodes[0].nodeName == 'plus'
assert mml.childNodes[1].childNodes[0].nodeName == 'minus'
assert mml.childNodes[1].childNodes[1].nodeName == 'apply'
def test_content_mathml_Rational():
mml_1 = mp._print(Rational(1, 1))
"""should just return a number"""
assert mml_1.nodeName == 'cn'
mml_2 = mp._print(Rational(2, 5))
assert mml_2.childNodes[0].nodeName == 'divide'
def test_content_mathml_constants():
mml = mp._print(I)
assert mml.nodeName == 'imaginaryi'
mml = mp._print(E)
assert mml.nodeName == 'exponentiale'
mml = mp._print(oo)
assert mml.nodeName == 'infinity'
mml = mp._print(pi)
assert mml.nodeName == 'pi'
assert mathml(GoldenRatio) == '<cn>φ</cn>'
mml = mathml(EulerGamma)
assert mml == '<eulergamma/>'
mml = mathml(EmptySet())
assert mml == '<emptyset/>'
mml = mathml(S.true)
assert mml == '<true/>'
mml = mathml(S.false)
assert mml == '<false/>'
mml = mathml(S.NaN)
assert mml == '<notanumber/>'
def test_content_mathml_trig():
mml = mp._print(sin(x))
assert mml.childNodes[0].nodeName == 'sin'
mml = mp._print(cos(x))
assert mml.childNodes[0].nodeName == 'cos'
mml = mp._print(tan(x))
assert mml.childNodes[0].nodeName == 'tan'
mml = mp._print(cot(x))
assert mml.childNodes[0].nodeName == 'cot'
mml = mp._print(csc(x))
assert mml.childNodes[0].nodeName == 'csc'
mml = mp._print(sec(x))
assert mml.childNodes[0].nodeName == 'sec'
mml = mp._print(asin(x))
assert mml.childNodes[0].nodeName == 'arcsin'
mml = mp._print(acos(x))
assert mml.childNodes[0].nodeName == 'arccos'
mml = mp._print(atan(x))
assert mml.childNodes[0].nodeName == 'arctan'
mml = mp._print(acot(x))
assert mml.childNodes[0].nodeName == 'arccot'
mml = mp._print(acsc(x))
assert mml.childNodes[0].nodeName == 'arccsc'
mml = mp._print(asec(x))
assert mml.childNodes[0].nodeName == 'arcsec'
mml = mp._print(sinh(x))
assert mml.childNodes[0].nodeName == 'sinh'
mml = mp._print(cosh(x))
assert mml.childNodes[0].nodeName == 'cosh'
mml = mp._print(tanh(x))
assert mml.childNodes[0].nodeName == 'tanh'
mml = mp._print(coth(x))
assert mml.childNodes[0].nodeName == 'coth'
mml = mp._print(csch(x))
assert mml.childNodes[0].nodeName == 'csch'
mml = mp._print(sech(x))
assert mml.childNodes[0].nodeName == 'sech'
mml = mp._print(asinh(x))
assert mml.childNodes[0].nodeName == 'arcsinh'
mml = mp._print(atanh(x))
assert mml.childNodes[0].nodeName == 'arctanh'
mml = mp._print(acosh(x))
assert mml.childNodes[0].nodeName == 'arccosh'
mml = mp._print(acoth(x))
assert mml.childNodes[0].nodeName == 'arccoth'
mml = mp._print(acsch(x))
assert mml.childNodes[0].nodeName == 'arccsch'
mml = mp._print(asech(x))
assert mml.childNodes[0].nodeName == 'arcsech'
def test_content_mathml_relational():
mml_1 = mp._print(Eq(x, 1))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'eq'
assert mml_1.childNodes[1].nodeName == 'ci'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[2].nodeName == 'cn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(Ne(1, x))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'neq'
assert mml_2.childNodes[1].nodeName == 'cn'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[2].nodeName == 'ci'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mp._print(Ge(1, x))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'geq'
assert mml_3.childNodes[1].nodeName == 'cn'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[2].nodeName == 'ci'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mp._print(Lt(1, x))
assert mml_4.nodeName == 'apply'
assert mml_4.childNodes[0].nodeName == 'lt'
assert mml_4.childNodes[1].nodeName == 'cn'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[2].nodeName == 'ci'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_content_symbol():
mml = mp._print(x)
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mp._print(Symbol("x^2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x__2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x^3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x__3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x_2_a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x^2^a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x__2__a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
def test_content_mathml_greek():
mml = mp._print(Symbol('alpha'))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>'
assert mp.doprint(Symbol('beta')) == '<ci>β</ci>'
assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>'
assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>'
assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>'
assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>'
assert mp.doprint(Symbol('eta')) == '<ci>η</ci>'
assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>'
assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>'
assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>'
assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>'
assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>'
assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>'
assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>'
assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>'
assert mp.doprint(Symbol('pi')) == '<ci>π</ci>'
assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>'
assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>'
assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>'
assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>'
assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>'
assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>'
assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>'
assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>'
assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>'
assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>'
assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>'
assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>'
assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>'
assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>'
assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>'
assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>'
assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>'
assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>'
assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>'
assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>'
assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>'
assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>'
assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>'
assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>'
assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>'
assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>'
assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>'
assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>'
assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>'
assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>'
assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>'
assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>'
assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>'
def test_content_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLContentPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4'
mp = MathMLContentPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3'
def test_content_settings():
raises(TypeError, lambda: mathml(x, method="garbage"))
def test_content_mathml_logic():
assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>'
def test_content_finite_sets():
assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>'
assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>'
assert mathml(FiniteSet(FiniteSet(a, b), c)) == \
'<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>'
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert mathml(U1) == \
'<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
assert mathml(I1) == \
'<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \
'</apply>'
assert mathml(C1) == \
'<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
assert mathml(P1) == \
'<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \
'</set></apply>'
assert mathml(Intersection(A, U2, evaluate=False)) == \
'<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Intersection(U1, U2, evaluate=False)) == \
'<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
# XXX Does the parenthesis appear correctly for these examples in mathjax?
assert mathml(Intersection(C1, C2, evaluate=False)) == \
'<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Intersection(P1, P2, evaluate=False)) == \
'<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Union(A, I2, evaluate=False)) == \
'<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Union(I1, I2, evaluate=False)) == \
'<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Union(C1, C2, evaluate=False)) == \
'<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Union(P1, P2, evaluate=False)) == \
'<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(A, C2, evaluate=False)) == \
'<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(U1, U2, evaluate=False)) == \
'<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(I1, I2, evaluate=False)) == \
'<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(P1, P2, evaluate=False)) == \
'<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(A, P2)) == \
'<apply><cartesianproduct/><set><ci>a</ci></set>' \
'<apply><cartesianproduct/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(U1, U2)) == \
'<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(I1, I2)) == \
'<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><intersect/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(C1, C2)) == \
'<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><setdiff/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
def test_presentation_printmethod():
assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>'
assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>'
assert mpp.doprint(x**-2) == \
'<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>'
assert mpp.doprint(2*x) == \
'<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>'
def test_presentation_mathml_core():
mml_1 = mpp._print(1 + x)
assert mml_1.nodeName == 'mrow'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName in ['mi', 'mn']
assert nodes[1].nodeName == 'mo'
if nodes[0].nodeName == 'mn':
assert nodes[0].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(x**2)
assert mml_2.nodeName == 'msup'
nodes = mml_2.childNodes
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[1].childNodes[0].nodeValue == '2'
mml_3 = mpp._print(2*x)
assert mml_3.nodeName == 'mrow'
nodes = mml_3.childNodes
assert nodes[0].childNodes[0].nodeValue == '2'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mpp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'mrow'
nodes = mml.childNodes
assert nodes[0].childNodes[0].nodeValue == '1.0'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_functions():
mml_1 = mpp._print(sin(x))
assert mml_1.childNodes[0].childNodes[0
].nodeValue == 'sin'
assert mml_1.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'x'
mml_2 = mpp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'mrow'
assert mml_2.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
assert mml_2.childNodes[1].childNodes[1
].nodeName == 'mfenced'
assert mml_2.childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.childNodes[0].nodeName == 'mfrac'
assert mml_3.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '∂'
assert mml_3.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'cos'
def test_print_derivative():
f = Function('f')
d = Derivative(f(x, y, z), x, z, x, z, z, y)
assert mathml(d) == \
'<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>'
assert mathml(d, printer='presentation') == \
'<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>'
def test_presentation_mathml_limits():
lim_fun = sin(x)/x
mml_1 = mpp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'munder'
assert mml_1.childNodes[0].childNodes[0
].childNodes[0].nodeValue == 'lim'
assert mml_1.childNodes[0].childNodes[1
].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml_1.childNodes[0].childNodes[1
].childNodes[1].childNodes[0
].nodeValue == '→'
assert mml_1.childNodes[0].childNodes[1
].childNodes[2].childNodes[0
].nodeValue == '0'
def test_presentation_mathml_integrals():
assert mpp.doprint(Integral(x, (x, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(log(x), x)) == \
'<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y, x, y)) == \
'<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
z, w = symbols('z w')
assert mpp.doprint(Integral(x*y*z, x, y, z)) == \
'<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\
'<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \
'<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\
'<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\
'<mi>x</mi><mo>⁢</mo><mi>y</mi>'\
'<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\
'<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\
'<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, (x, 0))) == \
'<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\
'<mi>x</mi></mrow>'
def test_presentation_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mpp._print(A)
assert mll_1.childNodes[0].nodeName == 'mtable'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_1.childNodes[0].childNodes) == 3
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1
assert mll_1.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mpp._print(B)
assert mll_2.childNodes[0].nodeName == 'mtable'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_2.childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[0].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[0].childNodes[1].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[0].childNodes[1].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[0].childNodes[2].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[0].childNodes[2].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '9'
def test_presentation_mathml_sums():
summand = x
mml_1 = mpp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'munderover'
assert len(mml_1.childNodes[0].childNodes) == 3
assert mml_1.childNodes[0].childNodes[0].childNodes[0
].nodeValue == '∑'
assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3
assert mml_1.childNodes[0].childNodes[2].childNodes[0
].nodeValue == '10'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_add():
mml = mpp._print(x**5 - x**4 + x)
assert len(mml.childNodes) == 5
assert mml.childNodes[0].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0
].nodeValue == '5'
assert mml.childNodes[1].childNodes[0].nodeValue == '-'
assert mml.childNodes[2].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[2].childNodes[1].childNodes[0
].nodeValue == '4'
assert mml.childNodes[3].childNodes[0].nodeValue == '+'
assert mml.childNodes[4].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_Rational():
mml_1 = mpp._print(Rational(1, 1))
assert mml_1.nodeName == 'mn'
mml_2 = mpp._print(Rational(2, 5))
assert mml_2.nodeName == 'mfrac'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '2'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '5'
def test_presentation_mathml_constants():
mml = mpp._print(I)
assert mml.childNodes[0].nodeValue == 'ⅈ'
mml = mpp._print(E)
assert mml.childNodes[0].nodeValue == 'ⅇ'
mml = mpp._print(oo)
assert mml.childNodes[0].nodeValue == '∞'
mml = mpp._print(pi)
assert mml.childNodes[0].nodeValue == 'π'
assert mathml(GoldenRatio, printer='presentation') == '<mi>Φ</mi>'
assert mathml(zoo, printer='presentation') == \
'<mover><mo>∞</mo><mo>~</mo></mover>'
assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>'
def test_presentation_mathml_trig():
mml = mpp._print(sin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sin'
mml = mpp._print(cos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cos'
mml = mpp._print(tan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tan'
mml = mpp._print(asin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin'
mml = mpp._print(acos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos'
mml = mpp._print(atan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan'
mml = mpp._print(sinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh'
mml = mpp._print(cosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh'
mml = mpp._print(tanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh'
mml = mpp._print(asinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh'
mml = mpp._print(atanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh'
mml = mpp._print(acosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh'
def test_presentation_mathml_relational():
mml_1 = mpp._print(Eq(x, 1))
assert len(mml_1.childNodes) == 3
assert mml_1.childNodes[0].nodeName == 'mi'
assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[1].nodeName == 'mo'
assert mml_1.childNodes[1].childNodes[0].nodeValue == '='
assert mml_1.childNodes[2].nodeName == 'mn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(Ne(1, x))
assert len(mml_2.childNodes) == 3
assert mml_2.childNodes[0].nodeName == 'mn'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[1].nodeName == 'mo'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠'
assert mml_2.childNodes[2].nodeName == 'mi'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mpp._print(Ge(1, x))
assert len(mml_3.childNodes) == 3
assert mml_3.childNodes[0].nodeName == 'mn'
assert mml_3.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[1].nodeName == 'mo'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥'
assert mml_3.childNodes[2].nodeName == 'mi'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mpp._print(Lt(1, x))
assert len(mml_4.childNodes) == 3
assert mml_4.childNodes[0].nodeName == 'mn'
assert mml_4.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[1].nodeName == 'mo'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '<'
assert mml_4.childNodes[2].nodeName == 'mi'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_symbol():
mml = mpp._print(x)
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mpp._print(Symbol("x^2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x__2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x_2"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x^3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x__3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x_2_a"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x^2^a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x__2__a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
def test_presentation_mathml_greek():
mml = mpp._print(Symbol('alpha'))
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>'
assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>'
assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>'
assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>'
assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>'
assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>'
assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>'
assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>'
assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>'
assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>'
assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>'
assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>'
assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>'
assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>'
assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>'
assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>'
assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>'
assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>'
assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>'
assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>'
assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>'
assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>'
assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>'
assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>'
assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>'
assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>'
assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>'
assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>'
assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>'
assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>'
assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>'
assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>'
assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>'
assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>'
assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>'
assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>'
assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>'
assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>'
assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>'
assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>'
assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>'
assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>'
assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>'
assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>'
assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>'
assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>'
assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>'
assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>'
assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>'
def test_presentation_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLPresentationPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4'
mp = MathMLPresentationPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3'
def test_print_intervals():
a = Symbol('a', real=True)
assert mpp.doprint(Interval(0, a)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, False)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, False)) == \
'<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, True)) == \
'<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, True)) == \
'<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
def test_print_tuples():
assert mpp.doprint(Tuple(0,)) == \
'<mrow><mfenced><mn>0</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\
'</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>'
def test_print_re_im():
assert mpp.doprint(re(x)) == \
'<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(im(x)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(re(x + 1)) == \
'<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(im(x + 1)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_Abs():
assert mpp.doprint(Abs(x)) == \
'<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Abs(x + 1)) == \
'<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>'
def test_print_Determinant():
assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \
'<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>'
def test_presentation_settings():
raises(TypeError, lambda: mathml(x, printer='presentation',
method="garbage"))
def test_toprettyxml_hooking():
# test that the patch doesn't influence the behavior of the standard
# library
import xml.dom.minidom
doc1 = xml.dom.minidom.parseString(
"<apply><plus/><ci>x</ci><cn>1</cn></apply>")
doc2 = xml.dom.minidom.parseString(
"<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>")
prettyxml_old1 = doc1.toprettyxml()
prettyxml_old2 = doc2.toprettyxml()
mp.apply_patch()
mp.restore_patch()
assert prettyxml_old1 == doc1.toprettyxml()
assert prettyxml_old2 == doc2.toprettyxml()
def test_print_domains():
from sympy import Complexes, Integers, Naturals, Naturals0, Reals
assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>'
assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>'
assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>'
assert mpp.doprint(Naturals0) == \
'<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>'
assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>'
def test_print_expression_with_minus():
assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>'
assert mpp.doprint(-x/y) == \
'<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>'
assert mpp.doprint(-Rational(1, 2)) == \
'<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>'
def test_print_AssocOp():
from sympy.core.operations import AssocOp
class TestAssocOp(AssocOp):
identity = 0
expr = TestAssocOp(1, 2)
mpp.doprint(expr) == \
'<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>'
def test_print_basic():
expr = Basic(1, 2)
assert mpp.doprint(expr) == \
'<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>'
assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>'
def test_mat_delim_print():
expr = Matrix([[1, 2], [3, 4]])
assert mathml(expr, printer='presentation', mat_delim='[') == \
'<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\
'<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\
'</mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='(') == \
'<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\
'</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='') == \
'<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\
'<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>'
def test_ln_notation_print():
expr = log(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=False) == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=True) == \
'<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mul_symbol_print():
expr = x * y
assert mathml(expr, printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol=None) == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='dot') == \
'<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='ldot') == \
'<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='times') == \
'<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>'
def test_print_lerchphi():
assert mpp.doprint(lerchphi(1, 2, 3)) == \
'<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>'
def test_print_polylog():
assert mp.doprint(polylog(x, y)) == \
'<apply><polylog/><ci>x</ci><ci>y</ci></apply>'
assert mpp.doprint(polylog(x, y)) == \
'<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
def test_print_set_frozenset():
f = frozenset({1, 5, 3})
assert mpp.doprint(f) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>'
s = set({1, 2, 3})
assert mpp.doprint(s) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
def test_print_FiniteSet():
f1 = FiniteSet(x, 1, 3)
assert mpp.doprint(f1) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>'
def test_print_LambertW():
assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_EmptySet():
assert mpp.doprint(EmptySet()) == '<mo>∅</mo>'
def test_print_UniversalSet():
assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>'
def test_print_spaces():
assert mpp.doprint(HilbertSpace()) == '<mi>ℋ</mi>'
assert mpp.doprint(ComplexSpace(2)) == '<msup>𝒞<mn>2</mn></msup>'
assert mpp.doprint(FockSpace()) == '<mi>ℱ</mi>'
def test_print_constants():
assert mpp.doprint(hbar) == '<mi>ℏ</mi>'
assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>'
assert mpp.doprint(EulerGamma) == '<mi>γ</mi>'
def test_print_Contains():
assert mpp.doprint(Contains(x, S.Naturals)) == \
'<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></mrow>'
def test_print_Dagger():
assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>†</msup>'
def test_print_SetOp():
f1 = FiniteSet(x, 1, 3)
f2 = FiniteSet(y, 2, 4)
prntr = lambda x: mathml(x, printer='presentation')
assert prntr(Union(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(Intersection(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(Complement(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
A = FiniteSet(a)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(C, D, evaluate=False)
I1 = Intersection(C, D, evaluate=False)
C1 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(C, D)
assert prntr(Union(A, I1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∪</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∩</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(Intersection(A, C1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∩</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∖</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(Complement(A, D1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∖</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∆</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∆</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>×</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(ProductSet(A, U1)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>×</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∪</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
def test_print_logic():
assert mpp.doprint(And(x, y)) == \
'<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>'
assert mpp.doprint(Or(x, y)) == \
'<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>'
assert mpp.doprint(Xor(x, y)) == \
'<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>'
assert mpp.doprint(Implies(x, y)) == \
'<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>'
assert mpp.doprint(Equivalent(x, y)) == \
'<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>'
assert mpp.doprint(And(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\
'</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>'
assert mpp.doprint(Or(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\
'<mn>3</mn></mrow></mrow></mfenced></mrow>'
assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>'
assert mpp.doprint(Not(And(x, y))) == \
'<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\
'<mi>y</mi></mrow></mfenced></mrow>'
def test_root_notation_print():
assert mathml(x**(S.One/3), printer='presentation') == \
'<mroot><mi>x</mi><mn>3</mn></mroot>'
assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\
'<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>'
assert mathml(x**(S.One/3), printer='content') == \
'<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>'
assert mathml(x**(S.One/3), printer='content', root_notation=False) == \
'<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>'
assert mathml(x**(Rational(-1, 3)), printer='presentation') == \
'<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>'
assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \
== '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>'
def test_fold_frac_powers_print():
expr = x ** Rational(5, 2)
assert mathml(expr, printer='presentation') == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=True) == \
'<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=False) == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
def test_fold_short_frac_print():
expr = Rational(2, 5)
assert mathml(expr, printer='presentation') == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=True) == \
'<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=False) == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
def test_print_factorials():
assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>'
assert mpp.doprint(factorial(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>'
assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>'
assert mpp.doprint(factorial2(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>'
assert mpp.doprint(binomial(x, y)) == \
'<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>'
assert mpp.doprint(binomial(4, x + y)) == \
'<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\
'<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>'
def test_print_floor():
expr = floor(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>'
def test_print_ceiling():
expr = ceiling(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>'
def test_print_Lambda():
expr = Lambda(x, x+1)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow></mfenced>'
expr = Lambda((x, y), x + y)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\
'<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>'
def test_print_conjugate():
assert mpp.doprint(conjugate(x)) == \
'<menclose notation="top"><mi>x</mi></menclose>'
assert mpp.doprint(conjugate(x + 1)) == \
'<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>'
def test_print_AccumBounds():
a = Symbol('a', real=True)
assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>'
assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>'
assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>'
def test_print_Float():
assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>'
assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>'
assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>'
def test_print_different_functions():
assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_builtins():
assert mpp.doprint(None) == '<mi>None</mi>'
assert mpp.doprint(true) == '<mi>True</mi>'
assert mpp.doprint(false) == '<mi>False</mi>'
def test_mathml_Range():
assert mpp.doprint(Range(1, 51)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>'
assert mpp.doprint(Range(1, 4)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
assert mpp.doprint(Range(0, 3, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, 30, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>'
assert mpp.doprint(Range(30, 1, -1)) == \
'<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\
'<mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, oo, 2)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>'
assert mpp.doprint(Range(oo, -2, -2)) == \
'<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>'
assert mpp.doprint(Range(-2, -oo, -1)) == \
'<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>'
def test_print_exp():
assert mpp.doprint(exp(x)) == \
'<msup><mi>ⅇ</mi><mi>x</mi></msup>'
assert mpp.doprint(exp(1) + exp(2)) == \
'<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>'
def test_print_MinMax():
assert mpp.doprint(Min(x, y)) == \
'<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Min(x, 2, x**3)) == \
'<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
assert mpp.doprint(Max(x, y)) == \
'<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Max(x, 2, x**3)) == \
'<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
def test_mathml_presentation_numbers():
n = Symbol('n')
assert mathml(catalan(n), printer='presentation') == \
'<msub><mi>C</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(bell(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(euler(n), printer='presentation') == \
'<msub><mi>E</mi><mi>n</mi></msub>'
assert mathml(fibonacci(n), printer='presentation') == \
'<msub><mi>F</mi><mi>n</mi></msub>'
assert mathml(lucas(n), printer='presentation') == \
'<msub><mi>L</mi><mi>n</mi></msub>'
assert mathml(tribonacci(n), printer='presentation') == \
'<msub><mi>T</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(bell(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(euler(n, x), printer='presentation') == \
'<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(fibonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(tribonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_presentation_mathieu():
assert mathml(mathieuc(x, y, z), printer='presentation') == \
'<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieus(x, y, z), printer='presentation') == \
'<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieucprime(x, y, z), printer='presentation') == \
'<mrow><mi>C′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieusprime(x, y, z), printer='presentation') == \
'<mrow><mi>S′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_mathml_presentation_stieltjes():
assert mathml(stieltjes(n), printer='presentation') == \
'<msub><mi>γ</mi><mi>n</mi></msub>'
assert mathml(stieltjes(n, x), printer='presentation') == \
'<mrow><msub><mi>γ</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_matrix_symbol():
A = MatrixSymbol('A', 1, 2)
assert mpp.doprint(A) == '<mi>A</mi>'
assert mp.doprint(A) == '<ci>A</ci>'
assert mathml(A, printer='presentation', mat_symbol_style="bold") == \
'<mi mathvariant="bold">A</mi>'
# No effect in content printer
assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>'
def test_print_hadamard():
from sympy.matrices.expressions import HadamardProduct
from sympy.matrices.expressions import Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi>' \
'<mo>∘</mo>' \
'<msup><mi>Y</mi><mn>2</mn></msup>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \
'<mrow>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>⁢</mo><mi>Y</mi>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi><mo>∘</mo>' \
'<mi>Y</mi><mo>∘</mo>' \
'<mi>Y</mi>' \
'</mrow>'
assert mathml(
Transpose(HadamardProduct(X, Y)), printer="presentation") == \
'<msup>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>T</mo>' \
'</msup>'
def test_print_random_symbol():
R = RandomSymbol(Symbol('R'))
assert mpp.doprint(R) == '<mi>R</mi>'
assert mp.doprint(R) == '<ci>R</ci>'
def test_print_IndexedBase():
assert mathml(IndexedBase(a)[b], printer='presentation') == \
'<msub><mi>a</mi><mi>b</mi></msub>'
assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \
'<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>'
assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e),
printer='presentation') == \
'<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\
'</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>'
def test_print_Indexed():
assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>'
assert mathml(IndexedBase(a/b), printer='presentation') == \
'<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>'
assert mathml(IndexedBase((a, b)), printer='presentation') == \
'<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>'
def test_print_MatrixElement():
i, j = symbols('i j')
A = MatrixSymbol('A', i, j)
assert mathml(A[0,0],printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>'
assert mathml(A[i,j], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>'
assert mathml(A[i*j,0], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>'
def test_print_Vector():
ACS = CoordSys3D('A')
assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\
'A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\
'<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Gradient(ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Gradient(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Gradient(x*ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \
'<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>'
assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\
'<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Laplacian(ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Laplacian(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∆</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Laplacian(x*ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
def test_print_elliptic_f():
assert mathml(elliptic_f(x, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_e():
assert mathml(elliptic_e(x), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>'
assert mathml(elliptic_e(x, y), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_pi():
assert mathml(elliptic_pi(x, y), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_print_Ei():
assert mathml(Ei(x), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(Ei(x**y), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>'
def test_print_expint():
assert mathml(expint(x, y), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>'
def test_print_jacobi():
assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_gegenbauer():
assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevt():
assert mathml(chebyshevt(n, x), printer = 'presentation') == \
'<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevu():
assert mathml(chebyshevu(n, x), printer = 'presentation') == \
'<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_legendre():
assert mathml(legendre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_legendre():
assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_laguerre():
assert mathml(laguerre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_laguerre():
assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_hermite():
assert mathml(hermite(n, x), printer = 'presentation') == \
'<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_SingularityFunction():
assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>'
assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>'
assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \
'<mn>4</mn></msup>'
assert mathml(SingularityFunction(x, a, n), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \
'<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \
'<mi>n</mi></msup>'
assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>'
assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>'
def test_mathml_matrix_functions():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(Adjoint(X), printer='presentation') == \
'<msup><mi>X</mi><mo>†</mo></msup>'
assert mathml(Adjoint(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \
'<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \
'<mi>Y</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X*Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \
'<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \
'<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \
'</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X**2), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X)**2, printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>'
assert mathml(Adjoint(Inverse(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Inverse(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>'
assert mathml(Adjoint(Transpose(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>'
assert mathml(Transpose(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \
'<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \
'<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(X), printer='presentation') == \
'<msup><mi>X</mi><mo>T</mo></msup>'
assert mathml(Transpose(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
def test_mathml_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>'
assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>'
assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>𝟙</mn>'
def test_mathml_piecewise():
from sympy import Piecewise
# Content MathML
assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \
'<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>'
raises(ValueError, lambda: mathml(Piecewise((x, x <= 1))))
def test_issue_17857():
assert mathml(Range(-oo, oo), printer='presentation') == \
'<mfenced close="}" open="{"><mi>…</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>…</mi></mfenced>'
assert mathml(Range(oo, -oo, -1), printer='presentation') == \
'<mfenced close="}" open="{"><mi>…</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>…</mi></mfenced>'
|
7c87437c7000428b999972468e50797d035b1f9e6c10f8ad56b3c22bf7de4e34 | from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio,
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le,
Lt, Gt, Ge)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
sinh, cosh, tanh, asin, acos, acosh, Max, Min)
from sympy.testing.pytest import raises
from sympy.printing.jscode import JavascriptCodePrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy import jscode
x, y, z = symbols('x,y,z')
def test_printmethod():
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_sqrt():
assert jscode(sqrt(x)) == "Math.sqrt(x)"
assert jscode(x**0.5) == "Math.sqrt(x)"
assert jscode(x**(S.One/3)) == "Math.cbrt(x)"
def test_jscode_Pow():
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(x**3) == "Math.pow(x, 3)"
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))"
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)"
assert jscode(x**-1.0) == '1/x'
def test_jscode_constants_mathh():
assert jscode(exp(1)) == "Math.E"
assert jscode(pi) == "Math.PI"
assert jscode(oo) == "Number.POSITIVE_INFINITY"
assert jscode(-oo) == "Number.NEGATIVE_INFINITY"
def test_jscode_constants_other():
assert jscode(
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert jscode(
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_jscode_Rational():
assert jscode(Rational(3, 7)) == "3/7"
assert jscode(Rational(18, 9)) == "2"
assert jscode(Rational(3, -7)) == "-3/7"
assert jscode(Rational(-3, -7)) == "3/7"
def test_Relational():
assert jscode(Eq(x, y)) == "x == y"
assert jscode(Ne(x, y)) == "x != y"
assert jscode(Le(x, y)) == "x <= y"
assert jscode(Lt(x, y)) == "x < y"
assert jscode(Gt(x, y)) == "x > y"
assert jscode(Ge(x, y)) == "x >= y"
def test_jscode_Integer():
assert jscode(Integer(67)) == "67"
assert jscode(Integer(-1)) == "-1"
def test_jscode_functions():
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
def test_jscode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert jscode(g(A[i]), assign_to=A[i]) == (
"for (var i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_jscode_exceptions():
assert jscode(ceiling(x)) == "Math.ceil(x)"
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_boolean():
assert jscode(x & y) == "x && y"
assert jscode(x | y) == "x || y"
assert jscode(~x) == "!x"
assert jscode(x & y & z) == "x && y && z"
assert jscode(x | y | z) == "x || y || z"
assert jscode((x & y) | z) == "z || x && y"
assert jscode((x | y) & z) == "z && (x || y)"
def test_jscode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
p = jscode(expr)
s = \
"""\
((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
assert jscode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = Math.pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: jscode(expr))
def test_jscode_Piecewise_deep():
p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
s = \
"""\
2*((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
def test_jscode_settings():
raises(TypeError, lambda: jscode(sin(x), method="garbage"))
def test_jscode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = JavascriptCodePrinter()
p._not_c = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
assert p._not_c == set()
def test_jscode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = jscode(x[i], assign_to=y[i])
assert code == expected
def test_jscode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (var i=0; i<m; i++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = jscode(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert jscode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = Math.sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert jscode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + Math.sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert jscode(m, M) == (
"M[0] = Math.sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = Math.cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = Math.sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(jscode(A[0, 0]) == "A[0]")
assert(jscode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(jscode(F) == "(A - B)[0]")
|
2c0d57647fbbbbcf33f4e73f23f3032d9cfd2eeba6b79557522dcd463aa1668e | """
Important note on tests in this module - the Theano printing functions use a
global cache by default, which means that tests using it will modify global
state and thus not be independent from each other. Instead of using the "cache"
keyword argument each time, this module uses the theano_code_ and
theano_function_ functions defined below which default to using a new, empty
cache instead.
"""
import logging
from sympy.external import import_module
from sympy.testing.pytest import raises, SKIP
theanologger = logging.getLogger('theano.configdefaults')
theanologger.setLevel(logging.CRITICAL)
theano = import_module('theano')
theanologger.setLevel(logging.WARNING)
if theano:
import numpy as np
ts = theano.scalar
tt = theano.tensor
xt, yt, zt = [tt.scalar(name, 'floatX') for name in 'xyz']
Xt, Yt, Zt = [tt.tensor('floatX', (False, False), name=n) for n in 'XYZ']
else:
#bin/test will not execute any tests now
disabled = True
import sympy as sy
from sympy import S
from sympy.abc import x, y, z, t
from sympy.printing.theanocode import (theano_code, dim_handling,
theano_function)
# Default set of matrix symbols for testing - make square so we can both
# multiply and perform elementwise operations between them.
X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ']
# For testing AppliedUndef
f_t = sy.Function('f')(t)
def theano_code_(expr, **kwargs):
""" Wrapper for theano_code that uses a new, empty cache by default. """
kwargs.setdefault('cache', {})
return theano_code(expr, **kwargs)
def theano_function_(inputs, outputs, **kwargs):
""" Wrapper for theano_function that uses a new, empty cache by default. """
kwargs.setdefault('cache', {})
return theano_function(inputs, outputs, **kwargs)
def fgraph_of(*exprs):
""" Transform SymPy expressions into Theano Computation.
Parameters
==========
exprs
Sympy expressions
Returns
=======
theano.gof.FunctionGraph
"""
outs = list(map(theano_code_, exprs))
ins = theano.gof.graph.inputs(outs)
ins, outs = theano.gof.graph.clone(ins, outs)
return theano.gof.FunctionGraph(ins, outs)
def theano_simplify(fgraph):
""" Simplify a Theano Computation.
Parameters
==========
fgraph : theano.gof.FunctionGraph
Returns
=======
theano.gof.FunctionGraph
"""
mode = theano.compile.get_default_mode().excluding("fusion")
fgraph = fgraph.clone()
mode.optimizer.optimize(fgraph)
return fgraph
def theq(a, b):
""" Test two Theano objects for equality.
Also accepts numeric types and lists/tuples of supported types.
Note - debugprint() has a bug where it will accept numeric types but does
not respect the "file" argument and in this case and instead prints the number
to stdout and returns an empty string. This can lead to tests passing where
they should fail because any two numbers will always compare as equal. To
prevent this we treat numbers as a separate case.
"""
numeric_types = (int, float, np.number)
a_is_num = isinstance(a, numeric_types)
b_is_num = isinstance(b, numeric_types)
# Compare numeric types using regular equality
if a_is_num or b_is_num:
if not (a_is_num and b_is_num):
return False
return a == b
# Compare sequences element-wise
a_is_seq = isinstance(a, (tuple, list))
b_is_seq = isinstance(b, (tuple, list))
if a_is_seq or b_is_seq:
if not (a_is_seq and b_is_seq) or type(a) != type(b):
return False
return list(map(theq, a)) == list(map(theq, b))
# Otherwise, assume debugprint() can handle it
astr = theano.printing.debugprint(a, file='str')
bstr = theano.printing.debugprint(b, file='str')
# Check for bug mentioned above
for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]:
if argstr == '':
raise TypeError(
'theano.printing.debugprint(%s) returned empty string '
'(%s is instance of %r)'
% (argname, argname, type(argval))
)
return astr == bstr
def test_example_symbols():
"""
Check that the example symbols in this module print to their Theano
equivalents, as many of the other tests depend on this.
"""
assert theq(xt, theano_code_(x))
assert theq(yt, theano_code_(y))
assert theq(zt, theano_code_(z))
assert theq(Xt, theano_code_(X))
assert theq(Yt, theano_code_(Y))
assert theq(Zt, theano_code_(Z))
def test_Symbol():
""" Test printing a Symbol to a theano variable. """
xx = theano_code_(x)
assert isinstance(xx, (tt.TensorVariable, ts.ScalarVariable))
assert xx.broadcastable == ()
assert xx.name == x.name
xx2 = theano_code_(x, broadcastables={x: (False,)})
assert xx2.broadcastable == (False,)
assert xx2.name == x.name
def test_MatrixSymbol():
""" Test printing a MatrixSymbol to a theano variable. """
XX = theano_code_(X)
assert isinstance(XX, tt.TensorVariable)
assert XX.broadcastable == (False, False)
@SKIP # TODO - this is currently not checked but should be implemented
def test_MatrixSymbol_wrong_dims():
""" Test MatrixSymbol with invalid broadcastable. """
bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)]
for bc in bcs:
with raises(ValueError):
theano_code_(X, broadcastables={X: bc})
def test_AppliedUndef():
""" Test printing AppliedUndef instance, which works similarly to Symbol. """
ftt = theano_code_(f_t)
assert isinstance(ftt, tt.TensorVariable)
assert ftt.broadcastable == ()
assert ftt.name == 'f_t'
def test_add():
expr = x + y
comp = theano_code_(expr)
assert comp.owner.op == theano.tensor.add
def test_trig():
assert theq(theano_code_(sy.sin(x)), tt.sin(xt))
assert theq(theano_code_(sy.tan(x)), tt.tan(xt))
def test_many():
""" Test printing a complex expression with multiple symbols. """
expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z)
comp = theano_code_(expr)
expected = tt.exp(xt**2 + tt.cos(yt)) * tt.log(2*zt)
assert theq(comp, expected)
def test_dtype():
""" Test specifying specific data types through the dtype argument. """
for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']:
assert theano_code_(x, dtypes={x: dtype}).type.dtype == dtype
# "floatX" type
assert theano_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64')
# Type promotion
assert theano_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32'
assert theano_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64'
def test_broadcastables():
""" Test the "broadcastables" argument when printing symbol-like objects. """
# No restrictions on shape
for s in [x, f_t]:
for bc in [(), (False,), (True,), (False, False), (True, False)]:
assert theano_code_(s, broadcastables={s: bc}).broadcastable == bc
# TODO - matrix broadcasting?
def test_broadcasting():
""" Test "broadcastable" attribute after applying element-wise binary op. """
expr = x + y
cases = [
[(), (), ()],
[(False,), (False,), (False,)],
[(True,), (False,), (False,)],
[(False, True), (False, False), (False, False)],
[(True, False), (False, False), (False, False)],
]
for bc1, bc2, bc3 in cases:
comp = theano_code_(expr, broadcastables={x: bc1, y: bc2})
assert comp.broadcastable == bc3
def test_MatMul():
expr = X*Y*Z
expr_t = theano_code_(expr)
assert isinstance(expr_t.owner.op, tt.Dot)
assert theq(expr_t, Xt.dot(Yt).dot(Zt))
def test_Transpose():
assert isinstance(theano_code_(X.T).owner.op, tt.DimShuffle)
def test_MatAdd():
expr = X+Y+Z
assert isinstance(theano_code_(expr).owner.op, tt.Elemwise)
def test_Rationals():
assert theq(theano_code_(sy.Integer(2) / 3), tt.true_div(2, 3))
assert theq(theano_code_(S.Half), tt.true_div(1, 2))
def test_Integers():
assert theano_code_(sy.Integer(3)) == 3
def test_factorial():
n = sy.Symbol('n')
assert theano_code_(sy.factorial(n))
def test_Derivative():
simp = lambda expr: theano_simplify(fgraph_of(expr))
assert theq(simp(theano_code_(sy.Derivative(sy.sin(x), x, evaluate=False))),
simp(theano.grad(tt.sin(xt), xt)))
def test_theano_function_simple():
""" Test theano_function() with single output. """
f = theano_function_([x, y], [x+y])
assert f(2, 3) == 5
def test_theano_function_multi():
""" Test theano_function() with multiple outputs. """
f = theano_function_([x, y], [x+y, x-y])
o1, o2 = f(2, 3)
assert o1 == 5
assert o2 == -1
def test_theano_function_numpy():
""" Test theano_function() vs Numpy implementation. """
f = theano_function_([x, y], [x+y], dim=1,
dtypes={x: 'float64', y: 'float64'})
assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9
f = theano_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'},
dim=1)
xx = np.arange(3).astype('float64')
yy = 2*np.arange(3).astype('float64')
assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9
def test_theano_function_matrix():
m = sy.Matrix([[x, y], [z, x + y + z]])
expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]])
f = theano_function_([x, y, z], [m])
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
f = theano_function_([x, y, z], [m], scalar=True)
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
f = theano_function_([x, y, z], [m, m])
assert isinstance(f(1.0, 2.0, 3.0), type([]))
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected)
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected)
def test_dim_handling():
assert dim_handling([x], dim=2) == {x: (False, False)}
assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True),
y: (False, False)}
assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)}
def test_theano_function_kwargs():
"""
Test passing additional kwargs from theano_function() to theano.function().
"""
import numpy as np
f = theano_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore',
dtypes={x: 'float64', y: 'float64', z: 'float64'})
assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9
f = theano_function_([x, y, z], [x+y],
dtypes={x: 'float64', y: 'float64', z: 'float64'},
dim=1, on_unused_input='ignore')
xx = np.arange(3).astype('float64')
yy = 2*np.arange(3).astype('float64')
zz = 2*np.arange(3).astype('float64')
assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9
def test_theano_function_scalar():
""" Test the "scalar" argument to theano_function(). """
args = [
([x, y], [x + y], None, [0]), # Single 0d output
([X, Y], [X + Y], None, [2]), # Single 2d output
([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output
([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs
([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d
]
# Create and test functions with and without the scalar setting
for inputs, outputs, in_dims, out_dims in args:
for scalar in [False, True]:
f = theano_function_(inputs, outputs, dims=in_dims, scalar=scalar)
# Check the theano_function attribute is set whether wrapped or not
assert isinstance(f.theano_function, theano.compile.function_module.Function)
# Feed in inputs of the appropriate size and get outputs
in_values = [
np.ones([1 if bc else 5 for bc in i.type.broadcastable])
for i in f.theano_function.input_storage
]
out_values = f(*in_values)
if not isinstance(out_values, list):
out_values = [out_values]
# Check output types and shapes
assert len(out_dims) == len(out_values)
for d, value in zip(out_dims, out_values):
if scalar and d == 0:
# Should have been converted to a scalar value
assert isinstance(value, np.number)
else:
# Otherwise should be an array
assert isinstance(value, np.ndarray)
assert value.ndim == d
def test_theano_function_bad_kwarg():
"""
Passing an unknown keyword argument to theano_function() should raise an
exception.
"""
raises(Exception, lambda : theano_function_([x], [x+1], foobar=3))
def test_slice():
assert theano_code_(slice(1, 2, 3)) == slice(1, 2, 3)
def theq_slice(s1, s2):
for attr in ['start', 'stop', 'step']:
a1 = getattr(s1, attr)
a2 = getattr(s2, attr)
if a1 is None or a2 is None:
if not (a1 is None or a2 is None):
return False
elif not theq(a1, a2):
return False
return True
dtypes = {x: 'int32', y: 'int32'}
assert theq_slice(theano_code_(slice(x, y), dtypes=dtypes), slice(xt, yt))
assert theq_slice(theano_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3))
def test_MatrixSlice():
from theano import Constant
cache = {}
n = sy.Symbol('n', integer=True)
X = sy.MatrixSymbol('X', n, n)
Y = X[1:2:3, 4:5:6]
Yt = theano_code_(Y, cache=cache)
s = ts.Scalar('int64')
assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s))
assert Yt.owner.inputs[0] == theano_code_(X, cache=cache)
# == doesn't work in theano like it does in SymPy. You have to use
# equals.
assert all(Yt.owner.inputs[i].equals(Constant(s, i)) for i in range(1, 7))
k = sy.Symbol('k')
theano_code_(k, dtypes={k: 'int32'})
start, stop, step = 4, k, 2
Y = X[start:stop:step]
Yt = theano_code_(Y, dtypes={n: 'int32', k: 'int32'})
# assert Yt.owner.op.idx_list[0].stop == kt
def test_BlockMatrix():
n = sy.Symbol('n', integer=True)
A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD']
At, Bt, Ct, Dt = map(theano_code_, (A, B, C, D))
Block = sy.BlockMatrix([[A, B], [C, D]])
Blockt = theano_code_(Block)
solutions = [tt.join(0, tt.join(1, At, Bt), tt.join(1, Ct, Dt)),
tt.join(1, tt.join(0, At, Ct), tt.join(0, Bt, Dt))]
assert any(theq(Blockt, solution) for solution in solutions)
@SKIP
def test_BlockMatrix_Inverse_execution():
k, n = 2, 4
dtype = 'float32'
A = sy.MatrixSymbol('A', n, k)
B = sy.MatrixSymbol('B', n, n)
inputs = A, B
output = B.I*A
cutsizes = {A: [(n//2, n//2), (k//2, k//2)],
B: [(n//2, n//2), (n//2, n//2)]}
cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs]
cutoutput = output.subs(dict(zip(inputs, cutinputs)))
dtypes = dict(zip(inputs, [dtype]*len(inputs)))
f = theano_function_(inputs, [output], dtypes=dtypes, cache={})
fblocked = theano_function_(inputs, [sy.block_collapse(cutoutput)],
dtypes=dtypes, cache={})
ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs]
ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype),
np.eye(n).astype(dtype)]
ninputs[1] += np.ones(B.shape)*1e-5
assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5)
def test_DenseMatrix():
t = sy.Symbol('theta')
for MatrixType in [sy.Matrix, sy.ImmutableMatrix]:
X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]])
tX = theano_code_(X)
assert isinstance(tX, tt.TensorVariable)
assert tX.owner.op == tt.join_
def test_cache_basic():
""" Test single symbol-like objects are cached when printed by themselves. """
# Pairs of objects which should be considered equivalent with respect to caching
pairs = [
(x, sy.Symbol('x')),
(X, sy.MatrixSymbol('X', *X.shape)),
(f_t, sy.Function('f')(sy.Symbol('t'))),
]
for s1, s2 in pairs:
cache = {}
st = theano_code_(s1, cache=cache)
# Test hit with same instance
assert theano_code_(s1, cache=cache) is st
# Test miss with same instance but new cache
assert theano_code_(s1, cache={}) is not st
# Test hit with different but equivalent instance
assert theano_code_(s2, cache=cache) is st
def test_global_cache():
""" Test use of the global cache. """
from sympy.printing.theanocode import global_cache
backup = dict(global_cache)
try:
# Temporarily empty global cache
global_cache.clear()
for s in [x, X, f_t]:
st = theano_code(s)
assert theano_code(s) is st
finally:
# Restore global cache
global_cache.update(backup)
def test_cache_types_distinct():
"""
Test that symbol-like objects of different types (Symbol, MatrixSymbol,
AppliedUndef) are distinguished by the cache even if they have the same
name.
"""
symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t]
cache = {} # Single shared cache
printed = {}
for s in symbols:
st = theano_code_(s, cache=cache)
assert st not in printed.values()
printed[s] = st
# Check all printed objects are distinct
assert len(set(map(id, printed.values()))) == len(symbols)
# Check retrieving
for s, st in printed.items():
assert theano_code(s, cache=cache) is st
def test_symbols_are_created_once():
"""
Test that a symbol is cached and reused when it appears in an expression
more than once.
"""
expr = sy.Add(x, x, evaluate=False)
comp = theano_code_(expr)
assert theq(comp, xt + xt)
assert not theq(comp, xt + theano_code_(x))
def test_cache_complex():
"""
Test caching on a complicated expression with multiple symbols appearing
multiple times.
"""
expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y)
symbol_names = {s.name for s in expr.free_symbols}
expr_t = theano_code_(expr)
# Iterate through variables in the Theano computational graph that the
# printed expression depends on
seen = set()
for v in theano.gof.graph.ancestors([expr_t]):
# Owner-less, non-constant variables should be our symbols
if v.owner is None and not isinstance(v, theano.gof.graph.Constant):
# Check it corresponds to a symbol and appears only once
assert v.name in symbol_names
assert v.name not in seen
seen.add(v.name)
# Check all were present
assert seen == symbol_names
def test_Piecewise():
# A piecewise linear
expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III
result = theano_code_(expr)
assert result.owner.op == tt.switch
expected = tt.switch(xt<0, 0, tt.switch(xt<2, xt, 1))
assert theq(result, expected)
expr = sy.Piecewise((x, x < 0))
result = theano_code_(expr)
expected = tt.switch(xt < 0, xt, np.nan)
assert theq(result, expected)
expr = sy.Piecewise((0, sy.And(x>0, x<2)), \
(x, sy.Or(x>2, x<0)))
result = theano_code_(expr)
expected = tt.switch(tt.and_(xt>0,xt<2), 0, \
tt.switch(tt.or_(xt>2, xt<0), xt, np.nan))
assert theq(result, expected)
def test_Relationals():
assert theq(theano_code_(sy.Eq(x, y)), tt.eq(xt, yt))
# assert theq(theano_code_(sy.Ne(x, y)), tt.neq(xt, yt)) # TODO - implement
assert theq(theano_code_(x > y), xt > yt)
assert theq(theano_code_(x < y), xt < yt)
assert theq(theano_code_(x >= y), xt >= yt)
assert theq(theano_code_(x <= y), xt <= yt)
def test_complexfunctions():
xt, yt = theano_code(x, dtypes={x:'complex128'}), theano_code(y, dtypes={y: 'complex128'})
from sympy import conjugate
from theano.tensor import as_tensor_variable as atv
from theano.tensor import complex as cplx
assert theq(theano_code(y*conjugate(x)), yt*(xt.conj()))
assert theq(theano_code((1+2j)*x), xt*(atv(1.0)+atv(2.0)*cplx(0,1)))
def test_constantfunctions():
tf = theano_function([],[1+1j])
assert(tf()==1+1j)
|
9f56acd7c29a684dc2fd1232374d133a694500afd06663c5e5cb3883427c92a3 | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, EulerGamma, GoldenRatio, Catalan,
Lambda, Mul, Pow, Mod, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.functions import (arg, atan2, bernoulli, beta, ceiling, chebyshevu,
chebyshevt, conjugate, DiracDelta, exp, expint,
factorial, floor, harmonic, Heaviside, im,
laguerre, LambertW, log, Max, Min, Piecewise,
polylog, re, RisingFactorial, sign, sinc, sqrt,
zeta, binomial, legendre)
from sympy.functions import (sin, cos, tan, cot, sec, csc, asin, acos, acot,
atan, asec, acsc, sinh, cosh, tanh, coth, csch,
sech, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.testing.pytest import raises, XFAIL
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix, HadamardPower)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
besselk, hankel1, hankel2, airyai,
airybi, airyaiprime, airybiprime)
from sympy.functions.special.gamma_functions import (gamma, lowergamma,
uppergamma, loggamma,
polygamma)
from sympy.functions.special.error_functions import (Chi, Ci, erf, erfc, erfi,
erfcinv, erfinv, fresnelc,
fresnels, li, Shi, Si, Li,
erf2)
from sympy import octave_code
from sympy import octave_code as mcode
x, y, z = symbols('x,y,z')
def test_Integer():
assert mcode(Integer(67)) == "67"
assert mcode(Integer(-1)) == "-1"
def test_Rational():
assert mcode(Rational(3, 7)) == "3/7"
assert mcode(Rational(18, 9)) == "2"
assert mcode(Rational(3, -7)) == "-3/7"
assert mcode(Rational(-3, -7)) == "3/7"
assert mcode(x + Rational(3, 7)) == "x + 3/7"
assert mcode(Rational(3, 7)*x) == "3*x/7"
def test_Relational():
assert mcode(Eq(x, y)) == "x == y"
assert mcode(Ne(x, y)) == "x != y"
assert mcode(Le(x, y)) == "x <= y"
assert mcode(Lt(x, y)) == "x < y"
assert mcode(Gt(x, y)) == "x > y"
assert mcode(Ge(x, y)) == "x >= y"
def test_Function():
assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
assert mcode(sign(x)) == "sign(x)"
assert mcode(exp(x)) == "exp(x)"
assert mcode(log(x)) == "log(x)"
assert mcode(factorial(x)) == "factorial(x)"
assert mcode(floor(x)) == "floor(x)"
assert mcode(atan2(y, x)) == "atan2(y, x)"
assert mcode(beta(x, y)) == 'beta(x, y)'
assert mcode(polylog(x, y)) == 'polylog(x, y)'
assert mcode(harmonic(x)) == 'harmonic(x)'
assert mcode(bernoulli(x)) == "bernoulli(x)"
assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
assert mcode(legendre(x, y)) == "legendre(x, y)"
def test_Function_change_name():
assert mcode(abs(x)) == "abs(x)"
assert mcode(ceiling(x)) == "ceil(x)"
assert mcode(arg(x)) == "angle(x)"
assert mcode(im(x)) == "imag(x)"
assert mcode(re(x)) == "real(x)"
assert mcode(conjugate(x)) == "conj(x)"
assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
assert mcode(Chi(x)) == "coshint(x)"
assert mcode(Shi(x)) == "sinhint(x)"
assert mcode(Ci(x)) == "cosint(x)"
assert mcode(Si(x)) == "sinint(x)"
assert mcode(li(x)) == "logint(x)"
assert mcode(loggamma(x)) == "gammaln(x)"
assert mcode(polygamma(x, y)) == "psi(x, y)"
assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
assert mcode(DiracDelta(x)) == "dirac(x)"
assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
assert mcode(Heaviside(x)) == "heaviside(x)"
assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
assert mcode(binomial(x, y)) == "bincoeff(x, y)"
assert mcode(Mod(x, y)) == "mod(x, y)"
def test_minmax():
assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)"
assert mcode(Max(x, y, z)) == "max(x, max(y, z))"
assert mcode(Min(x, y, z)) == "min(x, min(y, z))"
def test_Pow():
assert mcode(x**3) == "x.^3"
assert mcode(x**(y**3)) == "x.^(y.^3)"
assert mcode(x**Rational(2, 3)) == 'x.^(2/3)'
g = implemented_function('g', Lambda(x, 2*x))
assert mcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
# For issue 14160
assert mcode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x./(y.*y)'
def test_basic_ops():
assert mcode(x*y) == "x.*y"
assert mcode(x + y) == "x + y"
assert mcode(x - y) == "x - y"
assert mcode(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert mcode(1/x) == '1./x'
assert mcode(x**-1) == mcode(x**-1.0) == '1./x'
assert mcode(1/sqrt(x)) == '1./sqrt(x)'
assert mcode(x**-S.Half) == mcode(x**-0.5) == '1./sqrt(x)'
assert mcode(sqrt(x)) == 'sqrt(x)'
assert mcode(x**S.Half) == mcode(x**0.5) == 'sqrt(x)'
assert mcode(1/pi) == '1/pi'
assert mcode(pi**-1) == mcode(pi**-1.0) == '1/pi'
assert mcode(pi**-0.5) == '1/sqrt(pi)'
def test_mix_number_mult_symbols():
assert mcode(3*x) == "3*x"
assert mcode(pi*x) == "pi*x"
assert mcode(3/x) == "3./x"
assert mcode(pi/x) == "pi./x"
assert mcode(x/3) == "x/3"
assert mcode(x/pi) == "x/pi"
assert mcode(x*y) == "x.*y"
assert mcode(3*x*y) == "3*x.*y"
assert mcode(3*pi*x*y) == "3*pi*x.*y"
assert mcode(x/y) == "x./y"
assert mcode(3*x/y) == "3*x./y"
assert mcode(x*y/z) == "x.*y./z"
assert mcode(x/y*z) == "x.*z./y"
assert mcode(1/x/y) == "1./(x.*y)"
assert mcode(2*pi*x/y/z) == "2*pi*x./(y.*z)"
assert mcode(3*pi/x) == "3*pi./x"
assert mcode(S(3)/5) == "3/5"
assert mcode(S(3)/5*x) == "3*x/5"
assert mcode(x/y/z) == "x./(y.*z)"
assert mcode((x+y)/z) == "(x + y)./z"
assert mcode((x+y)/(z+x)) == "(x + y)./(x + z)"
assert mcode((x+y)/EulerGamma) == "(x + y)/%s" % EulerGamma.evalf(17)
assert mcode(x/3/pi) == "x/(3*pi)"
assert mcode(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_mix_number_pow_symbols():
assert mcode(pi**3) == 'pi^3'
assert mcode(x**2) == 'x.^2'
assert mcode(x**(pi**3)) == 'x.^(pi^3)'
assert mcode(x**y) == 'x.^y'
assert mcode(x**(y**z)) == 'x.^(y.^z)'
assert mcode((x**y)**z) == '(x.^y).^z'
def test_imag():
I = S('I')
assert mcode(I) == "1i"
assert mcode(5*I) == "5i"
assert mcode((S(3)/2)*I) == "3*1i/2"
assert mcode(3+4*I) == "3 + 4i"
assert mcode(sqrt(3)*I) == "sqrt(3)*1i"
def test_constants():
assert mcode(pi) == "pi"
assert mcode(oo) == "inf"
assert mcode(-oo) == "-inf"
assert mcode(S.NegativeInfinity) == "-inf"
assert mcode(S.NaN) == "NaN"
assert mcode(S.Exp1) == "exp(1)"
assert mcode(exp(1)) == "exp(1)"
def test_constants_other():
assert mcode(2*GoldenRatio) == "2*(1+sqrt(5))/2"
assert mcode(2*Catalan) == "2*%s" % Catalan.evalf(17)
assert mcode(2*EulerGamma) == "2*%s" % EulerGamma.evalf(17)
def test_boolean():
assert mcode(x & y) == "x & y"
assert mcode(x | y) == "x | y"
assert mcode(~x) == "~x"
assert mcode(x & y & z) == "x & y & z"
assert mcode(x | y | z) == "x | y | z"
assert mcode((x & y) | z) == "z | x & y"
assert mcode((x | y) & z) == "z & (x | y)"
def test_KroneckerDelta():
from sympy.functions import KroneckerDelta
assert mcode(KroneckerDelta(x, y)) == "double(x == y)"
assert mcode(KroneckerDelta(x, y + 1)) == "double(x == (y + 1))"
assert mcode(KroneckerDelta(2**x, y)) == "double((2.^x) == y)"
def test_Matrices():
assert mcode(Matrix(1, 1, [10])) == "10"
A = Matrix([[1, sin(x/2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]]);
expected = "[1 sin(x/2) abs(x); 0 1 pi; 0 exp(1) ceil(x)]"
assert mcode(A) == expected
# row and columns
assert mcode(A[:,0]) == "[1; 0; 0]"
assert mcode(A[0,:]) == "[1 sin(x/2) abs(x)]"
# empty matrices
assert mcode(Matrix(0, 0, [])) == '[]'
assert mcode(Matrix(0, 3, [])) == 'zeros(0, 3)'
# annoying to read but correct
assert mcode(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
assert mcode(A) == "[1 sin(2./x) 3*pi./(5*x)]"
assert mcode(A.T) == "[1; sin(2./x); 3*pi./(5*x)]"
@XFAIL
def test_Matrices_entries_not_hadamard():
# For Matrix with col >= 2, row >= 2, they need to be scalars
# FIXME: is it worth worrying about this? Its not wrong, just
# leave it user's responsibility to put scalar data for x.
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
"1 2 x*y]") # <- we give x.*y
assert mcode(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert mcode(A*B) == "A*B"
assert mcode(B*A) == "B*A"
assert mcode(2*A*B) == "2*A*B"
assert mcode(B*2*A) == "2*B*A"
assert mcode(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)"
assert mcode(A**(x**2)) == "A^(x.^2)"
assert mcode(A**3) == "A^3"
assert mcode(A**S.Half) == "A^(1/2)"
def test_MatrixSolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
assert mcode(MatrixSolve(A, x)) == "A \\ x"
def test_special_matrices():
assert mcode(6*Identity(3)) == "6*eye(3)"
def test_containers():
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
assert mcode([1]) == "{1}"
assert mcode((1,)) == "{1}"
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
assert mcode((1, x*y, (3, x**2))) == "{1, x.*y, {3, x.^2}}"
# scalar, matrix, empty matrix and empty list
assert mcode((1, eye(3), Matrix(0, 0, []), [])) == "{1, [1 0 0; 0 1 0; 0 0 1], [], {}}"
def test_octave_noninline():
source = mcode((x+y)/Catalan, assign_to='me', inline=False)
expected = (
"Catalan = %s;\n"
"me = (x + y)/Catalan;"
) % Catalan.evalf(17)
assert source == expected
def test_octave_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(expr, assign_to="r") == (
"r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));")
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x;\n"
"else\n"
" r = x.^2;\n"
"end")
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n"
"(x < 2).*(x.^3) + (~(x < 2)).*( ...\n"
"(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))")
assert mcode(expr) == expected
assert mcode(expr, assign_to="r") == "r = " + expected + ";"
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x.^2;\n"
"elseif (x < 2)\n"
" r = x.^3;\n"
"elseif (x < 3)\n"
" r = x.^4;\n"
"else\n"
" r = x.^5;\n"
"end")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: mcode(expr))
def test_octave_piecewise_times_const():
pw = Piecewise((x, x < 1), (x**2, True))
assert mcode(2*pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(pw/x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x"
assert mcode(pw/(x*y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)"
assert mcode(pw/3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3"
def test_octave_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert mcode(A, assign_to='a') == "a = [1 2 3];"
A = Matrix([[1, 2], [3, 4]])
assert mcode(A, assign_to='A') == "A = [1 2; 3 4];"
def test_octave_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert mcode(A, assign_to=B) == "B = [1 2 3];"
raises(ValueError, lambda: mcode(A, assign_to=x))
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_1x1():
A = Matrix([[3]])
B = MatrixSymbol('B', 1, 1)
C = MatrixSymbol('C', 1, 2)
assert mcode(A, assign_to=B) == "B = 3;"
# FIXME?
#assert mcode(A, assign_to=x) == "x = 3;"
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_elements():
A = Matrix([[x, 2, x*y]])
assert mcode(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2"
A = MatrixSymbol('AA', 1, 3)
assert mcode(A) == "AA"
assert mcode(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
"sin(AA(1, 2)) + AA(1, 1).^2 + AA(1, 3)"
assert mcode(sum(A)) == "AA(1, 1) + AA(1, 2) + AA(1, 3)"
def test_octave_boolean():
assert mcode(True) == "true"
assert mcode(S.true) == "true"
assert mcode(False) == "false"
assert mcode(S.false) == "false"
def test_octave_not_supported():
assert mcode(S.ComplexInfinity) == (
"% Not supported in Octave:\n"
"% ComplexInfinity\n"
"zoo"
)
f = Function('f')
assert mcode(f(x).diff(x)) == (
"% Not supported in Octave:\n"
"% Derivative\n"
"Derivative(f(x), x)"
)
def test_octave_not_supported_not_on_whitelist():
from sympy import assoc_laguerre
assert mcode(assoc_laguerre(x, y, z)) == (
"% Not supported in Octave:\n"
"% assoc_laguerre\n"
"assoc_laguerre(x, y, z)"
)
def test_octave_expint():
assert mcode(expint(1, x)) == "expint(x)"
assert mcode(expint(2, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(2, x)"
)
assert mcode(expint(y, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(y, x)"
)
def test_trick_indent_with_end_else_words():
# words starting with "end" or "else" do not confuse the indenter
t1 = S('endless');
t2 = S('elsewhere');
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
assert mcode(pw, inline=False) == (
"if (x < 0)\n"
" endless\n"
"elseif (x <= 1)\n"
" elsewhere\n"
"else\n"
" 1\n"
"end")
def test_hadamard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
n = Symbol('n')
assert mcode(C) == "A.*B"
assert mcode(C*v) == "(A.*B)*v"
assert mcode(h*C*v) == "h*(A.*B)*v"
assert mcode(C*A) == "(A.*B)*A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert mcode(C*x*y) == "(x.*y)*(A.*B)"
# Testing HadamardPower:
assert mcode(HadamardPower(A, n)) == "A.**n"
assert mcode(HadamardPower(A, 1+n)) == "A.**(n + 1)"
assert mcode(HadamardPower(A*B.T, 1+n)) == "(A*B.T).**(n + 1)"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10;
M[1, 2] = 20;
M[1, 3] = 22;
M[0, 3] = 30;
M[3, 0] = x*y;
assert mcode(M) == (
"sparse([4 2 3 1 2], [1 3 3 4 4], [x.*y 20 10 30 22], 5, 6)"
)
def test_sinc():
assert mcode(sinc(x)) == 'sinc(x/pi)'
assert mcode(sinc((x + 3))) == 'sinc((x + 3)/pi)'
assert mcode(sinc(pi*(x + 3))) == 'sinc(x + 3)'
def test_trigfun():
for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc,
sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth,
asech, acsch):
assert octave_code(f(x) == f.__name__ + '(x)')
def test_specfun():
n = Symbol('n')
for f in [besselj, bessely, besseli, besselk]:
assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
assert octave_code(f(x)) == f.__name__ + '(x)'
assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
assert octave_code(airyai(x)) == 'airy(0, x)'
assert octave_code(airyaiprime(x)) == 'airy(1, x)'
assert octave_code(airybi(x)) == 'airy(2, x)'
assert octave_code(airybiprime(x)) == 'airy(3, x)'
assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
assert octave_code(LambertW(x)) == 'lambertw(x)'
assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert mcode(A[0, 0]) == "A(1, 1)"
assert mcode(3 * A[0, 0]) == "3*A(1, 1)"
F = C[0, 0].subs(C, A - B)
assert mcode(F) == "(A - B)(1, 1)"
def test_zeta_printing_issue_14820():
assert octave_code(zeta(x)) == 'zeta(x)'
assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
def test_automatic_rewrite():
assert octave_code(Li(x)) == 'logint(x) - logint(2)'
assert octave_code(erf2(x, y)) == '-erf(x) + erf(y)'
|
b6d2f2d5757ede003cc821d066683cf2cbbd8fa347f2a3b6fb258fe37be299f7 | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import besseli
from sympy import maple_code
x, y, z = symbols('x,y,z')
def test_Integer():
assert maple_code(Integer(67)) == "67"
assert maple_code(Integer(-1)) == "-1"
def test_Rational():
assert maple_code(Rational(3, 7)) == "3/7"
assert maple_code(Rational(18, 9)) == "2"
assert maple_code(Rational(3, -7)) == "-3/7"
assert maple_code(Rational(-3, -7)) == "3/7"
assert maple_code(x + Rational(3, 7)) == "x + 3/7"
assert maple_code(Rational(3, 7) * x) == '(3/7)*x'
def test_Relational():
assert maple_code(Eq(x, y)) == "x = y"
assert maple_code(Ne(x, y)) == "x <> y"
assert maple_code(Le(x, y)) == "x <= y"
assert maple_code(Lt(x, y)) == "x < y"
assert maple_code(Gt(x, y)) == "x > y"
assert maple_code(Ge(x, y)) == "x >= y"
def test_Function():
assert maple_code(sin(x) ** cos(x)) == "sin(x)^cos(x)"
assert maple_code(abs(x)) == "abs(x)"
assert maple_code(ceiling(x)) == "ceil(x)"
def test_Pow():
assert maple_code(x ** 3) == "x^3"
assert maple_code(x ** (y ** 3)) == "x^(y^3)"
assert maple_code((x ** 3) ** y) == "(x^3)^y"
assert maple_code(x ** Rational(2, 3)) == 'x^(2/3)'
g = implemented_function('g', Lambda(x, 2 * x))
assert maple_code(1 / (g(x) * 3.5) ** (x - y ** x) / (x ** 2 + y)) == \
"(3.5*2*x)^(-x + y^x)/(x^2 + y)"
# For issue 14160
assert maple_code(Mul(-2, x, Pow(Mul(y, y, evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
def test_basic_ops():
assert maple_code(x * y) == "x*y"
assert maple_code(x + y) == "x + y"
assert maple_code(x - y) == "x - y"
assert maple_code(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert maple_code(1 / x) == '1/x'
assert maple_code(x ** -1) == maple_code(x ** -1.0) == '1/x'
assert maple_code(1 / sqrt(x)) == '1/sqrt(x)'
assert maple_code(x ** -S.Half) == maple_code(x ** -0.5) == '1/sqrt(x)'
assert maple_code(sqrt(x)) == 'sqrt(x)'
assert maple_code(x ** S.Half) == maple_code(x ** 0.5) == 'sqrt(x)'
assert maple_code(1 / pi) == '1/Pi'
assert maple_code(pi ** -1) == maple_code(pi ** -1.0) == '1/Pi'
assert maple_code(pi ** -0.5) == '1/sqrt(Pi)'
def test_mix_number_mult_symbols():
assert maple_code(3 * x) == "3*x"
assert maple_code(pi * x) == "Pi*x"
assert maple_code(3 / x) == "3/x"
assert maple_code(pi / x) == "Pi/x"
assert maple_code(x / 3) == '(1/3)*x'
assert maple_code(x / pi) == "x/Pi"
assert maple_code(x * y) == "x*y"
assert maple_code(3 * x * y) == "3*x*y"
assert maple_code(3 * pi * x * y) == "3*Pi*x*y"
assert maple_code(x / y) == "x/y"
assert maple_code(3 * x / y) == "3*x/y"
assert maple_code(x * y / z) == "x*y/z"
assert maple_code(x / y * z) == "x*z/y"
assert maple_code(1 / x / y) == "1/(x*y)"
assert maple_code(2 * pi * x / y / z) == "2*Pi*x/(y*z)"
assert maple_code(3 * pi / x) == "3*Pi/x"
assert maple_code(S(3) / 5) == "3/5"
assert maple_code(S(3) / 5 * x) == '(3/5)*x'
assert maple_code(x / y / z) == "x/(y*z)"
assert maple_code((x + y) / z) == "(x + y)/z"
assert maple_code((x + y) / (z + x)) == "(x + y)/(x + z)"
assert maple_code((x + y) / EulerGamma) == '(x + y)/gamma'
assert maple_code(x / 3 / pi) == '(1/3)*x/Pi'
assert maple_code(S(3) / 5 * x * y / pi) == '(3/5)*x*y/Pi'
def test_mix_number_pow_symbols():
assert maple_code(pi ** 3) == 'Pi^3'
assert maple_code(x ** 2) == 'x^2'
assert maple_code(x ** (pi ** 3)) == 'x^(Pi^3)'
assert maple_code(x ** y) == 'x^y'
assert maple_code(x ** (y ** z)) == 'x^(y^z)'
assert maple_code((x ** y) ** z) == '(x^y)^z'
def test_imag():
I = S('I')
assert maple_code(I) == "I"
assert maple_code(5 * I) == "5*I"
assert maple_code((S(3) / 2) * I) == "(3/2)*I"
assert maple_code(3 + 4 * I) == "3 + 4*I"
def test_constants():
assert maple_code(pi) == "Pi"
assert maple_code(oo) == "infinity"
assert maple_code(-oo) == "-infinity"
assert maple_code(S.NegativeInfinity) == "-infinity"
assert maple_code(S.NaN) == "undefined"
assert maple_code(S.Exp1) == "exp(1)"
assert maple_code(exp(1)) == "exp(1)"
def test_constants_other():
assert maple_code(2 * GoldenRatio) == '2*(1/2 + (1/2)*sqrt(5))'
assert maple_code(2 * Catalan) == '2*Catalan'
assert maple_code(2 * EulerGamma) == "2*gamma"
def test_boolean():
assert maple_code(x & y) == "x && y"
assert maple_code(x | y) == "x || y"
assert maple_code(~x) == "!x"
assert maple_code(x & y & z) == "x && y && z"
assert maple_code(x | y | z) == "x || y || z"
assert maple_code((x & y) | z) == "z || x && y"
assert maple_code((x | y) & z) == "z && (x || y)"
def test_Matrices():
assert maple_code(Matrix(1, 1, [10])) == \
'Matrix([[10]], storage = rectangular)'
A = Matrix([[1, sin(x / 2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]])
expected = \
'Matrix(' \
'[[1, sin((1/2)*x), abs(x)],' \
' [0, 1, Pi],' \
' [0, exp(1), ceil(x)]], ' \
'storage = rectangular)'
assert maple_code(A) == expected
# row and columns
assert maple_code(A[:, 0]) == \
'Matrix([[1], [0], [0]], storage = rectangular)'
assert maple_code(A[0, :]) == \
'Matrix([[1, sin((1/2)*x), abs(x)]], storage = rectangular)'
assert maple_code(Matrix([[x, x - y, -y]])) == \
'Matrix([[x, x - y, -y]], storage = rectangular)'
# empty matrices
assert maple_code(Matrix(0, 0, [])) == \
'Matrix([], storage = rectangular)'
assert maple_code(Matrix(0, 3, [])) == \
'Matrix([], storage = rectangular)'
def test_SparseMatrices():
assert maple_code(SparseMatrix(Identity(2))) == 'Matrix([[1, 0], [0, 1]], storage = sparse)'
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2 / x), 3 * pi / x / 5]])
assert maple_code(A) == \
'Matrix([[1, sin(2/x), (3/5)*Pi/x]], storage = rectangular)'
assert maple_code(A.T) == \
'Matrix([[1], [sin(2/x)], [(3/5)*Pi/x]], storage = rectangular)'
def test_Matrices_entries_not_hadamard():
A = Matrix([[1, sin(2 / x), 3 * pi / x / 5], [1, 2, x * y]])
expected = \
'Matrix([[1, sin(2/x), (3/5)*Pi/x], [1, 2, x*y]], ' \
'storage = rectangular)'
assert maple_code(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert maple_code(A * B) == "A.B"
assert maple_code(B * A) == "B.A"
assert maple_code(2 * A * B) == "2*A.B"
assert maple_code(B * 2 * A) == "2*B.A"
assert maple_code(
A * (B + 3 * Identity(n))) == "A.(3*Matrix(n, shape = identity) + B)"
assert maple_code(A ** (x ** 2)) == "MatrixPower(A, x^2)"
assert maple_code(A ** 3) == "MatrixPower(A, 3)"
assert maple_code(A ** (S.Half)) == "MatrixPower(A, 1/2)"
def test_special_matrices():
assert maple_code(6 * Identity(3)) == "6*Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = sparse)"
assert maple_code(Identity(x)) == 'Matrix(x, shape = identity)'
def test_containers():
assert maple_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"[1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]"
assert maple_code((1, 2, (3, 4))) == "[1, 2, [3, 4]]"
assert maple_code([1]) == "[1]"
assert maple_code((1,)) == "[1]"
assert maple_code(Tuple(*[1, 2, 3])) == "[1, 2, 3]"
assert maple_code((1, x * y, (3, x ** 2))) == "[1, x*y, [3, x^2]]"
# scalar, matrix, empty matrix and empty list
assert maple_code((1, eye(3), Matrix(0, 0, []), [])) == \
"[1, Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = rectangular), Matrix([], storage = rectangular), []]"
def test_maple_noninline():
source = maple_code((x + y)/Catalan, assign_to='me', inline=False)
expected = "me := (x + y)/Catalan"
assert source == expected
def test_maple_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert maple_code(A, assign_to='a') == "a := Matrix([[1, 2, 3]], storage = rectangular)"
A = Matrix([[1, 2], [3, 4]])
assert maple_code(A, assign_to='A') == "A := Matrix([[1, 2], [3, 4]], storage = rectangular)"
def test_maple_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert maple_code(A, assign_to=B) == "B := Matrix([[1, 2, 3]], storage = rectangular)"
raises(ValueError, lambda: maple_code(A, assign_to=x))
raises(ValueError, lambda: maple_code(A, assign_to=C))
def test_maple_matrix_1x1():
A = Matrix([[3]])
assert maple_code(A, assign_to='B') == "B := Matrix([[3]], storage = rectangular)"
def test_maple_matrix_elements():
A = Matrix([[x, 2, x * y]])
assert maple_code(A[0, 0] ** 2 + A[0, 1] + A[0, 2]) == "x^2 + x*y + 2"
AA = MatrixSymbol('AA', 1, 3)
assert maple_code(AA) == "AA"
assert maple_code(AA[0, 0] ** 2 + sin(AA[0, 1]) + AA[0, 2]) == \
"sin(AA[1, 2]) + AA[1, 1]^2 + AA[1, 3]"
assert maple_code(sum(AA)) == "AA[1, 1] + AA[1, 2] + AA[1, 3]"
def test_maple_boolean():
assert maple_code(True) == "true"
assert maple_code(S.true) == "true"
assert maple_code(False) == "false"
assert maple_code(S.false) == "false"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10
M[1, 2] = 20
M[1, 3] = 22
M[0, 3] = 30
M[3, 0] = x * y
assert maple_code(M) == \
'Matrix([[0, 0, 0, 30, 0, 0],' \
' [0, 0, 20, 22, 0, 0],' \
' [0, 0, 10, 0, 0, 0],' \
' [x*y, 0, 0, 0, 0, 0],' \
' [0, 0, 0, 0, 0, 0]], ' \
'storage = sparse)'
# Not an important point.
def test_maple_not_supported():
assert maple_code(S.ComplexInfinity) == (
"# Not supported in maple:\n"
"# ComplexInfinity\n"
"zoo"
) # PROBLEM
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
assert (maple_code(A[0, 0]) == "A[1, 1]")
assert (maple_code(3 * A[0, 0]) == "3*A[1, 1]")
F = A-B
assert (maple_code(F[0,0]) == "A[1, 1] - B[1, 1]")
def test_hadamard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
assert maple_code(C) == "A*B"
assert maple_code(C * v) == "(A*B).v"
# HadamardProduct is higher than dot product.
assert maple_code(h * C * v) == "h.(A*B).v"
assert maple_code(C * A) == "(A*B).A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert maple_code(C * x * y) == "x*y*(A*B)"
def test_maple_piecewise():
expr = Piecewise((x, x < 1), (x ** 2, True))
assert maple_code(expr) == "piecewise(x < 1, x, x^2)"
assert maple_code(expr, assign_to="r") == (
"r := piecewise(x < 1, x, x^2)")
expr = Piecewise((x ** 2, x < 1), (x ** 3, x < 2), (x ** 4, x < 3), (x ** 5, True))
expected = "piecewise(x < 1, x^2, x < 2, x^3, x < 3, x^4, x^5)"
assert maple_code(expr) == expected
assert maple_code(expr, assign_to="r") == "r := " + expected
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x ** 2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: maple_code(expr))
def test_maple_piecewise_times_const():
pw = Piecewise((x, x < 1), (x ** 2, True))
assert maple_code(2 * pw) == "2*piecewise(x < 1, x, x^2)"
assert maple_code(pw / x) == "piecewise(x < 1, x, x^2)/x"
assert maple_code(pw / (x * y)) == "piecewise(x < 1, x, x^2)/(x*y)"
assert maple_code(pw / 3) == "(1/3)*piecewise(x < 1, x, x^2)"
def test_maple_derivatives():
f = Function('f')
assert maple_code(f(x).diff(x)) == 'diff(f(x), x)'
assert maple_code(f(x).diff(x, 2)) == 'diff(f(x), x$2)'
def test_specfun():
assert maple_code('asin(x)') == 'arcsin(x)'
assert maple_code(besseli(x, y)) == 'BesselI(x, y)'
|
dfadb45a172253ac487e3695627887c10155083b47d0c782c8a5939207424639 | from sympy import print_gtk, sin
from sympy.testing.pytest import XFAIL, raises
# this test fails if python-lxml isn't installed. We don't want to depend on
# anything with SymPy
@XFAIL
def test_1():
from sympy.abc import x
print_gtk(x**2, start_viewer=False)
print_gtk(x**2 + sin(x)/4, start_viewer=False)
def test_settings():
from sympy.abc import x
raises(TypeError, lambda: print_gtk(x, method="garbage"))
|
548917040884ac2ce519d5129ca04ff9f48b4ed04eb2fabfc53f57502621e3d7 | from sympy.printing.codeprinter import CodePrinter
from sympy.printing.str import StrPrinter
from sympy.core import symbols
from sympy.core.symbol import Dummy
from sympy.testing.pytest import raises
def setup_test_printer(**kwargs):
p = CodePrinter(settings=kwargs)
p._not_supported = set()
p._number_symbols = set()
return p
def test_print_Dummy():
d = Dummy('d')
p = setup_test_printer()
assert p._print_Dummy(d) == "d_%i" % d.dummy_index
def test_print_Symbol():
x, y = symbols('x, if')
p = setup_test_printer()
assert p._print(x) == 'x'
assert p._print(y) == 'if'
p.reserved_words.update(['if'])
assert p._print(y) == 'if_'
p = setup_test_printer(error_on_reserved=True)
p.reserved_words.update(['if'])
with raises(ValueError):
p._print(y)
p = setup_test_printer(reserved_word_suffix='_He_Man')
p.reserved_words.update(['if'])
assert p._print(y) == 'if_He_Man'
def test_issue_15791():
assert (CodePrinter._print_MutableSparseMatrix.__name__ ==
CodePrinter._print_not_supported.__name__)
assert (CodePrinter._print_ImmutableSparseMatrix.__name__ ==
CodePrinter._print_not_supported.__name__)
assert (CodePrinter._print_MutableSparseMatrix.__name__ !=
StrPrinter._print_MatrixBase.__name__)
assert (CodePrinter._print_ImmutableSparseMatrix.__name__ !=
StrPrinter._print_MatrixBase.__name__)
|
5e5cc3d0322ea99fed15a809689596bc84677a954f86a0a533271dea92718653 | from sympy.core import (pi, symbols, Rational, Integer, GoldenRatio, EulerGamma,
Catalan, Lambda, Dummy, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.functions import Piecewise, sin, cos, Abs, exp, ceiling, sqrt
from sympy.testing.pytest import raises
from sympy.printing.glsl import GLSLPrinter
from sympy.printing.str import StrPrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy.core import Tuple
from sympy import glsl_code
x, y, z = symbols('x,y,z')
def test_printmethod():
assert glsl_code(Abs(x)) == "abs(x)"
def test_print_without_operators():
assert glsl_code(x*y,use_operators = False) == 'mul(x, y)'
assert glsl_code(x**y+z,use_operators = False) == 'add(pow(x, y), z)'
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
assert glsl_code(x*(y+z**y**0.5),use_operators = False) == 'mul(x, add(y, pow(z, sqrt(y))))'
def test_glsl_code_sqrt():
assert glsl_code(sqrt(x)) == "sqrt(x)"
assert glsl_code(x**0.5) == "sqrt(x)"
assert glsl_code(sqrt(x)) == "sqrt(x)"
def test_glsl_code_Pow():
g = implemented_function('g', Lambda(x, 2*x))
assert glsl_code(x**3) == "pow(x, 3.0)"
assert glsl_code(x**(y**3)) == "pow(x, pow(y, 3.0))"
assert glsl_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2.0) + y)"
assert glsl_code(x**-1.0) == '1.0/x'
def test_glsl_code_Relational():
assert glsl_code(Eq(x, y)) == "x == y"
assert glsl_code(Ne(x, y)) == "x != y"
assert glsl_code(Le(x, y)) == "x <= y"
assert glsl_code(Lt(x, y)) == "x < y"
assert glsl_code(Gt(x, y)) == "x > y"
assert glsl_code(Ge(x, y)) == "x >= y"
def test_glsl_code_constants_mathh():
assert glsl_code(exp(1)) == "float E = 2.71828183;\nE"
assert glsl_code(pi) == "float pi = 3.14159265;\npi"
# assert glsl_code(oo) == "Number.POSITIVE_INFINITY"
# assert glsl_code(-oo) == "Number.NEGATIVE_INFINITY"
def test_glsl_code_constants_other():
assert glsl_code(2*GoldenRatio) == "float GoldenRatio = 1.61803399;\n2*GoldenRatio"
assert glsl_code(2*Catalan) == "float Catalan = 0.915965594;\n2*Catalan"
assert glsl_code(2*EulerGamma) == "float EulerGamma = 0.577215665;\n2*EulerGamma"
def test_glsl_code_Rational():
assert glsl_code(Rational(3, 7)) == "3.0/7.0"
assert glsl_code(Rational(18, 9)) == "2"
assert glsl_code(Rational(3, -7)) == "-3.0/7.0"
assert glsl_code(Rational(-3, -7)) == "3.0/7.0"
def test_glsl_code_Integer():
assert glsl_code(Integer(67)) == "67"
assert glsl_code(Integer(-1)) == "-1"
def test_glsl_code_functions():
assert glsl_code(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
def test_glsl_code_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert glsl_code(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert glsl_code(g(x)) == "float Catalan = 0.915965594;\n2*x/Catalan"
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert glsl_code(g(A[i]), assign_to=A[i]) == (
"for (int i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_glsl_code_exceptions():
assert glsl_code(ceiling(x)) == "ceil(x)"
assert glsl_code(Abs(x)) == "abs(x)"
def test_glsl_code_boolean():
assert glsl_code(x & y) == "x && y"
assert glsl_code(x | y) == "x || y"
assert glsl_code(~x) == "!x"
assert glsl_code(x & y & z) == "x && y && z"
assert glsl_code(x | y | z) == "x || y || z"
assert glsl_code((x & y) | z) == "z || x && y"
assert glsl_code((x | y) & z) == "z && (x || y)"
def test_glsl_code_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
p = glsl_code(expr)
s = \
"""\
((x < 1) ? (
x
)
: (
pow(x, 2.0)
))\
"""
assert p == s
assert glsl_code(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = pow(x, 2.0);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: glsl_code(expr))
def test_glsl_code_Piecewise_deep():
p = glsl_code(2*Piecewise((x, x < 1), (x**2, True)))
s = \
"""\
2*((x < 1) ? (
x
)
: (
pow(x, 2.0)
))\
"""
assert p == s
def test_glsl_code_settings():
raises(TypeError, lambda: glsl_code(sin(x), method="garbage"))
def test_glsl_code_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = GLSLPrinter()
p._not_c = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
assert p._not_c == set()
def test_glsl_code_list_tuple_Tuple():
assert glsl_code([1,2,3,4]) == 'vec4(1, 2, 3, 4)'
assert glsl_code([1,2,3],glsl_types=False) == 'float[3](1, 2, 3)'
assert glsl_code([1,2,3]) == glsl_code((1,2,3))
assert glsl_code([1,2,3]) == glsl_code(Tuple(1,2,3))
m = MatrixSymbol('A',3,4)
assert glsl_code([m[0],m[1]])
def test_glsl_code_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = glsl_code(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = glsl_code(x[i], assign_to=y[i])
assert code == expected
def test_glsl_code_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = glsl_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_glsl_code_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = glsl_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_glsl_code_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = glsl_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_glsl_code_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
)
s1 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (int i=0; i<m; i++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = glsl_code(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert glsl_code(mat, assign_to=A) == (
'''A[0][0] = x*y;
if (y > 0) {
A[1][0] = x + 2;
}
else {
A[1][0] = y;
}
A[2][0] = sin(z);''' )
assert glsl_code(Matrix([A[0],A[1]]))
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert glsl_code(expr) == (
'''((x > 0) ? (
2*A[2][0]
)
: (
A[2][0]
)) + sin(A[1][0]) + A[0][0]''' )
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert glsl_code(m,M) == (
'''M[0][0] = sin(q[1]);
M[0][1] = 0;
M[0][2] = cos(q[2]);
M[1][0] = q[1] + q[2];
M[1][1] = q[3];
M[1][2] = 5;
M[2][0] = 2*q[4]/q[1];
M[2][1] = sqrt(q[0]) + 4;
M[2][2] = 0;'''
)
def test_Matrices_1x7():
gl = glsl_code
A = Matrix([1,2,3,4,5,6,7])
assert gl(A) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
assert gl(A.transpose()) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
def test_1xN_vecs():
gl = glsl_code
for i in range(1,10):
A = Matrix(range(i))
assert gl(A.transpose()) == gl(A)
assert gl(A,mat_transpose=True) == gl(A)
if i > 1:
if i <= 4:
assert gl(A) == 'vec%s(%s)' % (i,', '.join(str(s) for s in range(i)))
else:
assert gl(A) == 'float[%s](%s)' % (i,', '.join(str(s) for s in range(i)))
def test_MxN_mats():
generatedAssertions='def test_misc_mats():\n'
for i in range(1,6):
for j in range(1,6):
A = Matrix([[x + y*j for x in range(j)] for y in range(i)])
gl = glsl_code(A)
glTransposed = glsl_code(A,mat_transpose=True)
generatedAssertions+=' mat = '+StrPrinter()._print(A)+'\n\n'
generatedAssertions+=' gl = \'\'\''+gl+'\'\'\'\n'
generatedAssertions+=' glTransposed = \'\'\''+glTransposed+'\'\'\'\n\n'
generatedAssertions+=' assert glsl_code(mat) == gl\n'
generatedAssertions+=' assert glsl_code(mat,mat_transpose=True) == glTransposed\n'
if i == 1 and j == 1:
assert gl == '0'
elif i <= 4 and j <= 4 and i>1 and j>1:
assert gl.startswith('mat%s' % j)
assert glTransposed.startswith('mat%s' % i)
elif i == 1 and j <= 4:
assert gl.startswith('vec')
elif j == 1 and i <= 4:
assert gl.startswith('vec')
elif i == 1:
assert gl.startswith('float[%s]('% j*i)
assert glTransposed.startswith('float[%s]('% j*i)
elif j == 1:
assert gl.startswith('float[%s]('% i*j)
assert glTransposed.startswith('float[%s]('% i*j)
else:
assert gl.startswith('float[%s](' % (i*j))
assert glTransposed.startswith('float[%s](' % (i*j))
glNested = glsl_code(A,mat_nested=True)
glNestedTransposed = glsl_code(A,mat_transpose=True,mat_nested=True)
assert glNested.startswith('float[%s][%s]' % (i,j))
assert glNestedTransposed.startswith('float[%s][%s]' % (j,i))
generatedAssertions+=' glNested = \'\'\''+glNested+'\'\'\'\n'
generatedAssertions+=' glNestedTransposed = \'\'\''+glNestedTransposed+'\'\'\'\n\n'
generatedAssertions+=' assert glsl_code(mat,mat_nested=True) == glNested\n'
generatedAssertions+=' assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed\n\n'
generateAssertions = False # set this to true to write bake these generated tests to a file
if generateAssertions:
gen = open('test_glsl_generated_matrices.py','w')
gen.write(generatedAssertions)
gen.close()
# these assertions were generated from the previous function
# glsl has complicated rules and this makes it easier to look over all the cases
def test_misc_mats():
mat = Matrix([[0]])
gl = '''0'''
glTransposed = '''0'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1]])
gl = '''vec2(0, 1)'''
glTransposed = '''vec2(0, 1)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2]])
gl = '''vec3(0, 1, 2)'''
glTransposed = '''vec3(0, 1, 2)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2, 3]])
gl = '''vec4(0, 1, 2, 3)'''
glTransposed = '''vec4(0, 1, 2, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2, 3, 4]])
gl = '''float[5](0, 1, 2, 3, 4)'''
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0],
[1]])
gl = '''vec2(0, 1)'''
glTransposed = '''vec2(0, 1)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3]])
gl = '''mat2(0, 1, 2, 3)'''
glTransposed = '''mat2(0, 2, 1, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5]])
gl = '''mat3x2(0, 1, 2, 3, 4, 5)'''
glTransposed = '''mat2x3(0, 3, 1, 4, 2, 5)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7]])
gl = '''mat4x2(0, 1, 2, 3, 4, 5, 6, 7)'''
glTransposed = '''mat2x4(0, 4, 1, 5, 2, 6, 3, 7)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
gl = '''float[10](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9
) /* a 2x5 matrix */'''
glTransposed = '''float[10](
0, 5,
1, 6,
2, 7,
3, 8,
4, 9
) /* a 5x2 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[2][5](
float[](0, 1, 2, 3, 4),
float[](5, 6, 7, 8, 9)
)'''
glNestedTransposed = '''float[5][2](
float[](0, 5),
float[](1, 6),
float[](2, 7),
float[](3, 8),
float[](4, 9)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2]])
gl = '''vec3(0, 1, 2)'''
glTransposed = '''vec3(0, 1, 2)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5]])
gl = '''mat2x3(0, 1, 2, 3, 4, 5)'''
glTransposed = '''mat3x2(0, 2, 4, 1, 3, 5)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
gl = '''mat3(0, 1, 2, 3, 4, 5, 6, 7, 8)'''
glTransposed = '''mat3(0, 3, 6, 1, 4, 7, 2, 5, 8)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])
gl = '''mat4x3(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
glTransposed = '''mat3x4(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
gl = '''float[15](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14
) /* a 3x5 matrix */'''
glTransposed = '''float[15](
0, 5, 10,
1, 6, 11,
2, 7, 12,
3, 8, 13,
4, 9, 14
) /* a 5x3 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[3][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14)
)'''
glNestedTransposed = '''float[5][3](
float[](0, 5, 10),
float[](1, 6, 11),
float[](2, 7, 12),
float[](3, 8, 13),
float[](4, 9, 14)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2],
[3]])
gl = '''vec4(0, 1, 2, 3)'''
glTransposed = '''vec4(0, 1, 2, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5],
[6, 7]])
gl = '''mat2x4(0, 1, 2, 3, 4, 5, 6, 7)'''
glTransposed = '''mat4x2(0, 2, 4, 6, 1, 3, 5, 7)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
gl = '''mat3x4(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
glTransposed = '''mat4x3(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
gl = '''mat4( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)'''
glTransposed = '''mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
gl = '''float[20](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19
) /* a 4x5 matrix */'''
glTransposed = '''float[20](
0, 5, 10, 15,
1, 6, 11, 16,
2, 7, 12, 17,
3, 8, 13, 18,
4, 9, 14, 19
) /* a 5x4 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[4][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14),
float[](15, 16, 17, 18, 19)
)'''
glNestedTransposed = '''float[5][4](
float[](0, 5, 10, 15),
float[](1, 6, 11, 16),
float[](2, 7, 12, 17),
float[](3, 8, 13, 18),
float[](4, 9, 14, 19)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2],
[3],
[4]])
gl = '''float[5](0, 1, 2, 3, 4)'''
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
gl = '''float[10](
0, 1,
2, 3,
4, 5,
6, 7,
8, 9
) /* a 5x2 matrix */'''
glTransposed = '''float[10](
0, 2, 4, 6, 8,
1, 3, 5, 7, 9
) /* a 2x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][2](
float[](0, 1),
float[](2, 3),
float[](4, 5),
float[](6, 7),
float[](8, 9)
)'''
glNestedTransposed = '''float[2][5](
float[](0, 2, 4, 6, 8),
float[](1, 3, 5, 7, 9)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
gl = '''float[15](
0, 1, 2,
3, 4, 5,
6, 7, 8,
9, 10, 11,
12, 13, 14
) /* a 5x3 matrix */'''
glTransposed = '''float[15](
0, 3, 6, 9, 12,
1, 4, 7, 10, 13,
2, 5, 8, 11, 14
) /* a 3x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][3](
float[]( 0, 1, 2),
float[]( 3, 4, 5),
float[]( 6, 7, 8),
float[]( 9, 10, 11),
float[](12, 13, 14)
)'''
glNestedTransposed = '''float[3][5](
float[](0, 3, 6, 9, 12),
float[](1, 4, 7, 10, 13),
float[](2, 5, 8, 11, 14)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
gl = '''float[20](
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19
) /* a 5x4 matrix */'''
glTransposed = '''float[20](
0, 4, 8, 12, 16,
1, 5, 9, 13, 17,
2, 6, 10, 14, 18,
3, 7, 11, 15, 19
) /* a 4x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][4](
float[]( 0, 1, 2, 3),
float[]( 4, 5, 6, 7),
float[]( 8, 9, 10, 11),
float[](12, 13, 14, 15),
float[](16, 17, 18, 19)
)'''
glNestedTransposed = '''float[4][5](
float[](0, 4, 8, 12, 16),
float[](1, 5, 9, 13, 17),
float[](2, 6, 10, 14, 18),
float[](3, 7, 11, 15, 19)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
gl = '''float[25](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19,
20, 21, 22, 23, 24
) /* a 5x5 matrix */'''
glTransposed = '''float[25](
0, 5, 10, 15, 20,
1, 6, 11, 16, 21,
2, 7, 12, 17, 22,
3, 8, 13, 18, 23,
4, 9, 14, 19, 24
) /* a 5x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14),
float[](15, 16, 17, 18, 19),
float[](20, 21, 22, 23, 24)
)'''
glNestedTransposed = '''float[5][5](
float[](0, 5, 10, 15, 20),
float[](1, 6, 11, 16, 21),
float[](2, 7, 12, 17, 22),
float[](3, 8, 13, 18, 23),
float[](4, 9, 14, 19, 24)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
d9ee2f7e186c484a25281d48a3a6edec8e3c565f981a36a3591741eca357dcfc | import random
from sympy import symbols, Derivative
from sympy.codegen.array_utils import (CodegenArrayContraction,
CodegenArrayTensorProduct, CodegenArrayElementwiseAdd,
CodegenArrayPermuteDims, CodegenArrayDiagonal)
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.external import import_module
from sympy.functions import \
Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \
acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \
re, im, arg, erf, loggamma, log
from sympy.matrices import Matrix, MatrixBase, eye, randMatrix
from sympy.matrices.expressions import \
Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace
from sympy.printing.tensorflow import tensorflow_code
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import skip
from sympy.testing.pytest import XFAIL
tf = tensorflow = import_module("tensorflow")
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
P = MatrixSymbol("P", 3, 3)
Q = MatrixSymbol("Q", 3, 3)
x, y, z, t = symbols("x y z t")
if tf is not None:
llo = [[j for j in range(i, i+3)] for i in range(0, 9, 3)]
m3x3 = tf.constant(llo)
m3x3sympy = Matrix(llo)
def _compare_tensorflow_matrix(variables, expr, use_float=False):
f = lambdify(variables, expr, 'tensorflow')
if not use_float:
random_matrices = [randMatrix(v.rows, v.cols) for v in variables]
else:
random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs({k: v for k, v in zip(variables, random_matrices)})
e = e.doit()
if e.is_Matrix:
if not isinstance(e, MatrixBase):
e = e.as_explicit()
e = e.tolist()
if not use_float:
assert (r == e).all()
else:
r = [i for row in r for i in row]
e = [i for row in e for i in row]
assert all(
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e))
# Creating a custom inverse test.
# See https://github.com/sympy/sympy/issues/18469
def _compare_tensorflow_matrix_inverse(variables, expr, use_float=False):
f = lambdify(variables, expr, 'tensorflow')
if not use_float:
random_matrices = [eye(v.rows, v.cols)*4 for v in variables]
else:
random_matrices = [eye(v.rows, v.cols)*3.14 for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs({k: v for k, v in zip(variables, random_matrices)})
e = e.doit()
if e.is_Matrix:
if not isinstance(e, MatrixBase):
e = e.as_explicit()
e = e.tolist()
if not use_float:
assert (r == e).all()
else:
r = [i for row in r for i in row]
e = [i for row in e for i in row]
assert all(
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e))
def _compare_tensorflow_matrix_scalar(variables, expr):
f = lambdify(variables, expr, 'tensorflow')
random_matrices = [
randMatrix(v.rows, v.cols).evalf() / 100 for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs({k: v for k, v in zip(variables, random_matrices)})
e = e.doit()
assert abs(r-e) < 10**-6
def _compare_tensorflow_scalar(
variables, expr, rng=lambda: random.randint(0, 10)):
f = lambdify(variables, expr, 'tensorflow')
rvs = [rng() for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
tf_rvs = [eval(tensorflow_code(i)) for i in rvs]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*tf_rvs))
e = expr.subs({k: v for k, v in zip(variables, rvs)}).evalf().doit()
assert abs(r-e) < 10**-6
def _compare_tensorflow_relational(
variables, expr, rng=lambda: random.randint(0, 10)):
f = lambdify(variables, expr, 'tensorflow')
rvs = [rng() for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
tf_rvs = [eval(tensorflow_code(i)) for i in rvs]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*tf_rvs))
e = expr.subs({k: v for k, v in zip(variables, rvs)}).doit()
assert r == e
def test_tensorflow_printing():
assert tensorflow_code(eye(3)) == \
"tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])"
expr = Matrix([[x, sin(y)], [exp(z), -t]])
assert tensorflow_code(expr) == \
"tensorflow.Variable(" \
"[[x, tensorflow.math.sin(y)]," \
" [tensorflow.math.exp(z), -t]])"
# This (random) test is XFAIL because it fails occasionally
# See https://github.com/sympy/sympy/issues/18469
@XFAIL
def test_tensorflow_math():
if not tf:
skip("TensorFlow not installed")
expr = Abs(x)
assert tensorflow_code(expr) == "tensorflow.math.abs(x)"
_compare_tensorflow_scalar((x,), expr)
expr = sign(x)
assert tensorflow_code(expr) == "tensorflow.math.sign(x)"
_compare_tensorflow_scalar((x,), expr)
expr = ceiling(x)
assert tensorflow_code(expr) == "tensorflow.math.ceil(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = floor(x)
assert tensorflow_code(expr) == "tensorflow.math.floor(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = exp(x)
assert tensorflow_code(expr) == "tensorflow.math.exp(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = sqrt(x)
assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = x ** 4
assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = cos(x)
assert tensorflow_code(expr) == "tensorflow.math.cos(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = acos(x)
assert tensorflow_code(expr) == "tensorflow.math.acos(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(0, 0.95))
expr = sin(x)
assert tensorflow_code(expr) == "tensorflow.math.sin(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = asin(x)
assert tensorflow_code(expr) == "tensorflow.math.asin(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = tan(x)
assert tensorflow_code(expr) == "tensorflow.math.tan(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = atan(x)
assert tensorflow_code(expr) == "tensorflow.math.atan(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = atan2(y, x)
assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)"
_compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random())
expr = cosh(x)
assert tensorflow_code(expr) == "tensorflow.math.cosh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = acosh(x)
assert tensorflow_code(expr) == "tensorflow.math.acosh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = sinh(x)
assert tensorflow_code(expr) == "tensorflow.math.sinh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = asinh(x)
assert tensorflow_code(expr) == "tensorflow.math.asinh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = tanh(x)
assert tensorflow_code(expr) == "tensorflow.math.tanh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = atanh(x)
assert tensorflow_code(expr) == "tensorflow.math.atanh(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.uniform(-.5, .5))
expr = erf(x)
assert tensorflow_code(expr) == "tensorflow.math.erf(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.random())
expr = loggamma(x)
assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.random())
def test_tensorflow_complexes():
assert tensorflow_code(re(x)) == "tensorflow.math.real(x)"
assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)"
assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)"
def test_tensorflow_relational():
if not tf:
skip("TensorFlow not installed")
expr = Eq(x, y)
assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Ne(x, y)
assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Ge(x, y)
assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Gt(x, y)
assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Le(x, y)
assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Lt(x, y)
assert tensorflow_code(expr) == "tensorflow.math.less(x, y)"
_compare_tensorflow_relational((x, y), expr)
# This (random) test is XFAIL because it fails occasionally
# See https://github.com/sympy/sympy/issues/18469
@XFAIL
def test_tensorflow_matrices():
if not tf:
skip("TensorFlow not installed")
expr = M
assert tensorflow_code(expr) == "M"
_compare_tensorflow_matrix((M,), expr)
expr = M + N
assert tensorflow_code(expr) == "tensorflow.math.add(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = M * N
assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = HadamardProduct(M, N)
assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = M*N*P*Q
assert tensorflow_code(expr) == \
"tensorflow.linalg.matmul(" \
"tensorflow.linalg.matmul(" \
"tensorflow.linalg.matmul(M, N), P), Q)"
_compare_tensorflow_matrix((M, N, P, Q), expr)
expr = M**3
assert tensorflow_code(expr) == \
"tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)"
_compare_tensorflow_matrix((M,), expr)
expr = Trace(M)
assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)"
_compare_tensorflow_matrix((M,), expr)
expr = Determinant(M)
assert tensorflow_code(expr) == "tensorflow.linalg.det(M)"
_compare_tensorflow_matrix_scalar((M,), expr)
expr = Inverse(M)
assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)"
_compare_tensorflow_matrix_inverse((M,), expr, use_float=True)
expr = M.T
assert tensorflow_code(expr, tensorflow_version='1.14') == \
"tensorflow.linalg.matrix_transpose(M)"
assert tensorflow_code(expr, tensorflow_version='1.13') == \
"tensorflow.matrix_transpose(M)"
_compare_tensorflow_matrix((M,), expr)
def test_codegen_einsum():
if not tf:
skip("TensorFlow not installed")
graph = tf.Graph()
with graph.as_default():
session = tf.compat.v1.Session(graph=graph)
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = CodegenArrayContraction.from_MatMul(M*N)
f = lambdify((M, N), cg, 'tensorflow')
ma = tf.constant([[1, 2], [3, 4]])
mb = tf.constant([[1,-2], [-1, 3]])
y = session.run(f(ma, mb))
c = session.run(tf.matmul(ma, mb))
assert (y == c).all()
def test_codegen_extra():
if not tf:
skip("TensorFlow not installed")
graph = tf.Graph()
with graph.as_default():
session = tf.compat.v1.Session()
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = tf.constant([[1, 2], [3, 4]])
mb = tf.constant([[1,-2], [-1, 3]])
mc = tf.constant([[2, 0], [1, 2]])
md = tf.constant([[1,-1], [4, 7]])
cg = CodegenArrayTensorProduct(M, N)
assert tensorflow_code(cg) == \
'tensorflow.linalg.einsum("ab,cd", M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.einsum("ij,kl", ma, mb))
assert (y == c).all()
cg = CodegenArrayElementwiseAdd(M, N)
assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(ma + mb)
assert (y == c).all()
cg = CodegenArrayElementwiseAdd(M, N, P)
assert tensorflow_code(cg) == \
'tensorflow.math.add(tensorflow.math.add(M, N), P)'
f = lambdify((M, N, P), cg, 'tensorflow')
y = session.run(f(ma, mb, mc))
c = session.run(ma + mb + mc)
assert (y == c).all()
cg = CodegenArrayElementwiseAdd(M, N, P, Q)
assert tensorflow_code(cg) == \
'tensorflow.math.add(' \
'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)'
f = lambdify((M, N, P, Q), cg, 'tensorflow')
y = session.run(f(ma, mb, mc, md))
c = session.run(ma + mb + mc + md)
assert (y == c).all()
cg = CodegenArrayPermuteDims(M, [1, 0])
assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])'
f = lambdify((M,), cg, 'tensorflow')
y = session.run(f(ma))
c = session.run(tf.transpose(ma))
assert (y == c).all()
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0])
assert tensorflow_code(cg) == \
'tensorflow.transpose(' \
'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0]))
assert (y == c).all()
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2))
assert tensorflow_code(cg) == \
'tensorflow.linalg.einsum("ab,bc->acb", M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.einsum("ab,bc->acb", ma, mb))
assert (y == c).all()
def test_MatrixElement_printing():
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert tensorflow_code(A[0, 0]) == "A[0, 0]"
assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]"
F = C[0, 0].subs(C, A - B)
assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]"
def test_tensorflow_Derivative():
expr = Derivative(sin(x), x)
assert tensorflow_code(expr) == \
"tensorflow.gradients(tensorflow.math.sin(x), x)[0]"
|
829a62d0462bc66951021b1452b0b141e0be50e49b52f8363848981aead82196 | from sympy import (
Piecewise, lambdify, Equality, Unequality, Sum, Mod, sqrt,
MatrixSymbol, BlockMatrix, Identity
)
from sympy import eye
from sympy.abc import x, i, j, a, b, c, d
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
from sympy.codegen.array_utils import (CodegenArrayContraction,
CodegenArrayTensorProduct, CodegenArrayDiagonal,
CodegenArrayPermuteDims, CodegenArrayElementwiseAdd)
from sympy.printing.lambdarepr import NumPyPrinter
from sympy.testing.pytest import warns_deprecated_sympy
from sympy.testing.pytest import skip, raises
from sympy.external import import_module
np = import_module('numpy')
def test_numpy_piecewise_regression():
"""
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
See gh-9747 and gh-9749 for details.
"""
printer = NumPyPrinter()
p = Piecewise((1, x < 0), (0, True))
assert printer.doprint(p) == \
'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)'
assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}}
def test_sum():
if not np:
skip("NumPy not installed")
s = Sum(x ** i, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
s = Sum(i * x, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
def test_multiple_sums():
if not np:
skip("NumPy not installed")
s = Sum((x + j) * i, (i, a, b), (j, c, d))
f = lambdify((a, b, c, d, x), s, 'numpy')
a_, b_ = 0, 10
c_, d_ = 11, 21
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, c_, d_, x_),
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
def test_codegen_einsum():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = CodegenArrayContraction.from_MatMul(M*N)
f = lambdify((M, N), cg, 'numpy')
ma = np.matrix([[1, 2], [3, 4]])
mb = np.matrix([[1,-2], [-1, 3]])
assert (f(ma, mb) == ma*mb).all()
def test_codegen_extra():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = np.matrix([[1, 2], [3, 4]])
mb = np.matrix([[1,-2], [-1, 3]])
mc = np.matrix([[2, 0], [1, 2]])
md = np.matrix([[1,-1], [4, 7]])
cg = CodegenArrayTensorProduct(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all()
cg = CodegenArrayElementwiseAdd(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == ma+mb).all()
cg = CodegenArrayElementwiseAdd(M, N, P)
f = lambdify((M, N, P), cg, 'numpy')
assert (f(ma, mb, mc) == ma+mb+mc).all()
cg = CodegenArrayElementwiseAdd(M, N, P, Q)
f = lambdify((M, N, P, Q), cg, 'numpy')
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
cg = CodegenArrayPermuteDims(M, [1, 0])
f = lambdify((M,), cg, 'numpy')
assert (f(ma) == ma.T).all()
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0])
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2))
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
def test_relational():
if not np:
skip("NumPy not installed")
e = Equality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, False])
e = Unequality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, True])
e = (x < 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, False])
e = (x <= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, True, False])
e = (x > 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, False, True])
e = (x >= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, True])
def test_mod():
if not np:
skip("NumPy not installed")
e = Mod(a, b)
f = lambdify((a, b), e)
a_ = np.array([0, 1, 2, 3])
b_ = 2
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([0, 1, 2, 3])
b_ = np.array([2, 2, 2, 2])
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([2, 3, 4, 5])
b_ = np.array([2, 3, 4, 5])
assert np.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_expm1():
if not np:
skip("NumPy not installed")
f = lambdify((a,), expm1(a), 'numpy')
assert abs(f(1e-10) - 1e-10 - 5e-21) < 1e-22
def test_log1p():
if not np:
skip("NumPy not installed")
f = lambdify((a,), log1p(a), 'numpy')
assert abs(f(1e-99) - 1e-99) < 1e-100
def test_hypot():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) < 1e-16
def test_log10():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) < 1e-16
def test_exp2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) < 1e-16
def test_log2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) < 1e-16
def test_Sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) < 1e-16
def test_sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) < 1e-16
def test_matsolve():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 3, 3)
x = MatrixSymbol("x", 3, 1)
expr = M**(-1) * x + x
matsolve_expr = MatrixSolve(M, x) + x
f = lambdify((M, x), expr)
f_matsolve = lambdify((M, x), matsolve_expr)
m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
assert np.linalg.matrix_rank(m0) == 3
x0 = np.array([3, 4, 5])
assert np.allclose(f_matsolve(m0, x0), f(m0, x0))
def test_issue_15601():
if not np:
skip("Numpy not installed")
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
expr = M*N
f = lambdify((M, N), expr, "numpy")
with warns_deprecated_sympy():
ans = f(eye(3), eye(3))
assert np.array_equal(ans, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]))
def test_16857():
if not np:
skip("NumPy not installed")
a_1 = MatrixSymbol('a_1', 10, 3)
a_2 = MatrixSymbol('a_2', 10, 3)
a_3 = MatrixSymbol('a_3', 10, 3)
a_4 = MatrixSymbol('a_4', 10, 3)
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
assert A.shape == (20, 6)
printer = NumPyPrinter()
assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])'
def test_issue_17006():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
f = lambdify(M, M + Identity(2))
ma = np.array([[1, 2], [3, 4]])
mr = np.array([[2, 2], [3, 5]])
assert (f(ma) == mr).all()
from sympy import symbols
n = symbols('n', integer=True)
N = MatrixSymbol("M", n, n)
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n)))
|
e029ad6d542fa88394da02af423358ce110555b093186ed987ade630386f2ec7 |
from sympy.external import import_module
from sympy.testing.pytest import raises
import ctypes
if import_module('llvmlite'):
import sympy.printing.llvmjitcode as g
else:
disabled = True
import sympy
from sympy.abc import a, b, n
# copied from numpy.isclose documentation
def isclose(a, b):
rtol = 1e-5
atol = 1e-8
return abs(a-b) <= atol + rtol*abs(b)
def test_simple_expr():
e = a + 1.0
f = g.llvm_callable([a], e)
res = float(e.subs({a: 4.0}).evalf())
jit_res = f(4.0)
assert isclose(jit_res, res)
def test_two_arg():
e = 4.0*a + b + 3.0
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 4.0, b: 3.0}).evalf())
jit_res = f(4.0, 3.0)
assert isclose(jit_res, res)
def test_func():
e = 4.0*sympy.exp(-a)
f = g.llvm_callable([a], e)
res = float(e.subs({a: 1.5}).evalf())
jit_res = f(1.5)
assert isclose(jit_res, res)
def test_two_func():
e = 4.0*sympy.exp(-a) + sympy.exp(b)
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_two_sqrt():
e = 4.0*sympy.sqrt(a) + sympy.sqrt(b)
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_two_pow():
e = a**1.5 + b**7
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_callback():
e = a + 1.2
f = g.llvm_callable([a], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
inp = {a: 2.2}
array = array_type(inp[a])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_callback_cubature():
e = a + 1.2
f = g.llvm_callable([a], e, callback_type='cubature')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
inp = {a: 2.2}
array = array_type(inp[a])
out_array = array_type(0.0)
jit_ret = f(m, array, None, m, out_array)
assert jit_ret == 0
res = float(e.subs(inp).evalf())
assert isclose(out_array[0], res)
def test_callback_two():
e = 3*a*b
f = g.llvm_callable([a, b], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(2)
array_type = ctypes.c_double * 2
inp = {a: 0.2, b: 1.7}
array = array_type(inp[a], inp[b])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_callback_alt_two():
d = sympy.IndexedBase('d')
e = 3*d[0]*d[1]
f = g.llvm_callable([n, d], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(2)
array_type = ctypes.c_double * 2
inp = {d[0]: 0.2, d[1]: 1.7}
array = array_type(inp[d[0]], inp[d[1]])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_multiple_statements():
# Match return from CSE
e = [[(b, 4.0*a)], [b + 5]]
f = g.llvm_callable([a], e)
b_val = e[0][0][1].subs({a: 1.5})
res = float(e[1][0].subs({b: b_val}).evalf())
jit_res = f(1.5)
assert isclose(jit_res, res)
f_callback = g.llvm_callable([a], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
array = array_type(1.5)
jit_callback_res = f_callback(m, array)
assert isclose(jit_callback_res, res)
def test_cse():
e = a*a + b*b + sympy.exp(-a*a - b*b)
e2 = sympy.cse(e)
f = g.llvm_callable([a, b], e2)
res = float(e.subs({a: 2.3, b: 0.1}).evalf())
jit_res = f(2.3, 0.1)
assert isclose(jit_res, res)
def eval_cse(e, sub_dict):
tmp_dict = dict()
for tmp_name, tmp_expr in e[0]:
e2 = tmp_expr.subs(sub_dict)
e3 = e2.subs(tmp_dict)
tmp_dict[tmp_name] = e3
return [e.subs(sub_dict).subs(tmp_dict) for e in e[1]]
def test_cse_multiple():
e1 = a*a
e2 = a*a + b*b
e3 = sympy.cse([e1, e2])
raises(NotImplementedError,
lambda: g.llvm_callable([a, b], e3, callback_type='scipy.integrate'))
f = g.llvm_callable([a, b], e3)
jit_res = f(0.1, 1.5)
assert len(jit_res) == 2
res = eval_cse(e3, {a: 0.1, b: 1.5})
assert isclose(res[0], jit_res[0])
assert isclose(res[1], jit_res[1])
def test_callback_cubature_multiple():
e1 = a*a
e2 = a*a + b*b
e3 = sympy.cse([e1, e2, 4*e2])
f = g.llvm_callable([a, b], e3, callback_type='cubature')
# Number of input variables
ndim = 2
# Number of output expression values
outdim = 3
m = ctypes.c_int(ndim)
fdim = ctypes.c_int(outdim)
array_type = ctypes.c_double * ndim
out_array_type = ctypes.c_double * outdim
inp = {a: 0.2, b: 1.5}
array = array_type(inp[a], inp[b])
out_array = out_array_type()
jit_ret = f(m, array, None, fdim, out_array)
assert jit_ret == 0
res = eval_cse(e3, inp)
assert isclose(out_array[0], res[0])
assert isclose(out_array[1], res[1])
assert isclose(out_array[2], res[2])
def test_symbol_not_found():
e = a*a + b
raises(LookupError, lambda: g.llvm_callable([a], e))
def test_bad_callback():
e = a
raises(ValueError, lambda: g.llvm_callable([a], e, callback_type='bad_callback'))
|
f39db3ffcae74103abb8a82f421c4ca62efa4ea15a7f81a6bb6271d8f297b053 | # -*- coding: utf-8 -*-
from sympy import (
And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio,
LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels,
Heaviside, dirichlet_eta, diag)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.compatibility import u_decode as u
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
mathieusprime, mathieucprime)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.matrices.expressions import hadamard_power
from sympy.physics import mechanics
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent, is_combining
from sympy import ConditionSet
from sympy.sets import ImageSet, ProductSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead,
TensorElement, tensor_heads)
from sympy.testing.pytest import raises
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx'
assert pretty( u'xxx"xxx' ) == u'xxx\"xxx'
assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx'
assert pretty( u"xxx'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx'
assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx'
assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == u'∞'
assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁'
assert upretty( Symbol('beta') ) == u'β'
assert upretty(Symbol('lambda')) == u'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == u'β₁₂'
assert upretty( Symbol('Y00') ) == u'Y₀₀'
assert upretty( Symbol('Y_00') ) == u'Y₀₀'
assert upretty( Symbol('F^+-') ) == u'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == u'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == u'β²₁'
assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == u'Fᵦ'
assert upretty( Symbol('F_gamma') ) == u'Fᵧ'
assert upretty( Symbol('F_rho') ) == u'Fᵨ'
assert upretty( Symbol('F_phi') ) == u'Fᵩ'
assert upretty( Symbol('F_chi') ) == u'Fᵪ'
assert upretty( Symbol('F_a') ) == u'Fₐ'
assert upretty( Symbol('F_e') ) == u'Fₑ'
assert upretty( Symbol('F_i') ) == u'Fᵢ'
assert upretty( Symbol('F_o') ) == u'Fₒ'
assert upretty( Symbol('F_u') ) == u'Fᵤ'
assert upretty( Symbol('F_r') ) == u'Fᵣ'
assert upretty( Symbol('F_v') ) == u'Fᵥ'
assert upretty( Symbol('F_x') ) == u'Fₓ'
def test_missing_in_2X_issue_9047():
assert upretty( Symbol('F_h') ) == u'Fₕ'
assert upretty( Symbol('F_k') ) == u'Fₖ'
assert upretty( Symbol('F_l') ) == u'Fₗ'
assert upretty( Symbol('F_m') ) == u'Fₘ'
assert upretty( Symbol('F_n') ) == u'Fₙ'
assert upretty( Symbol('F_p') ) == u'Fₚ'
assert upretty( Symbol('F_s') ) == u'Fₛ'
assert upretty( Symbol('F_t') ) == u'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == u'F̊'
assert upretty( Symbol('Fddddot') ) == u'F⃜'
assert upretty( Symbol('Fdddot') ) == u'F⃛'
assert upretty( Symbol('Fddot') ) == u'F̈'
assert upretty( Symbol('Fdot') ) == u'Ḟ'
assert upretty( Symbol('Fcheck') ) == u'F̌'
assert upretty( Symbol('Fbreve') ) == u'F̆'
assert upretty( Symbol('Facute') ) == u'F́'
assert upretty( Symbol('Fgrave') ) == u'F̀'
assert upretty( Symbol('Ftilde') ) == u'F̃'
assert upretty( Symbol('Fhat') ) == u'F̂'
assert upretty( Symbol('Fbar') ) == u'F̅'
assert upretty( Symbol('Fvec') ) == u'F⃗'
assert upretty( Symbol('Fprime') ) == u'F′'
assert upretty( Symbol('Fprm') ) == u'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == u'Fbold'
assert upretty( Symbol('Fbm') ) == u'Fbm'
assert upretty( Symbol('Fcal') ) == u'Fcal'
assert upretty( Symbol('Fscr') ) == u'Fscr'
assert upretty( Symbol('Ffrak') ) == u'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == u'‖F‖'
assert upretty( Symbol('Favg') ) == u'⟨F⟩'
assert upretty( Symbol('Fabs') ) == u'|F|'
assert upretty( Symbol('Fmag') ) == u'|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == u'x⃗̇'
assert upretty( Symbol('xDotVec') ) == u'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == u'x_dot'
assert upretty( Symbol('x__dot') ) == u'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_Permutation():
from sympy.combinatorics.permutations import Permutation
p1 = Permutation(1, 2)(3, 4)
assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \
u'⎛0 1 2 3 4⎞\n'\
u'⎝0 2 1 4 3⎠'
assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \
"/0 1 2 3 4\\\n"\
"\\0 2 1 4 3/"
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
u("""\
∞\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
u("""\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
("""\
-1.0\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
("""\
-1.0\n\
2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
u("""\
1/3\n\
x \
""")
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
1 \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
u("""\
x\n\
(-2) \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
u("""\
1\n\
3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
u("""\
2\n\
1 + x + x \
""")
ucode_str_2 = \
u("""\
2 \n\
x + x + 1\
""")
ucode_str_3 = \
u("""\
2 \n\
x + 1 + x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
u("""\
1 - x\
""")
ucode_str_2 = \
u("""\
-x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
u("""\
1 - 2⋅x\
""")
ucode_str_2 = \
u("""\
-2⋅x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
u("""\
x\n\
─\n\
y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
u("""\
2 + x\n\
─────\n\
y \
""")
ucode_str_2 = \
u("""\
x + 2\n\
─────\n\
y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
u("""\
y⋅(1 + x)\
""")
ucode_str_2 = \
u("""\
(1 + x)⋅y\
""")
ucode_str_3 = \
u("""\
y⋅(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
u("""\
-5⋅x \n\
──────\n\
10 + x\
""")
ucode_str_2 = \
u("""\
-5⋅x \n\
──────\n\
x + 10\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S.Half - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
u("""\
-3⋅x - 1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
u("""\
1/2 - 3⋅x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S.Half - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
u("""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
u("""\
1 3⋅x\n\
─ - ───\n\
2 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
u("""\
-x⋅z \n\
─────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
u("""\
2\n\
x \n\
──\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
u("""\
2 \n\
-x \n\
────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
u("""\
-x \n\
───\n\
y⋅z\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
b \n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-1 \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
u("""\
-10 \n\
────\n\
2 \n\
b \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
u("""\
-200 \n\
─────\n\
37 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
u("""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
""")
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
u("""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
""")
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == u"γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == u"φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
u("""\
x = y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
u("""\
x < y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
u("""\
x > y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
u("""\
x ≤ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
u("""\
x ≥ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
u("""\
x 2\n\
───── ≠ y \n\
1 + y \
""")
ucode_str_2 = \
u("""\
x 2\n\
───── ≠ y \n\
y + 1 \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
u("""\
x := y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
u("""\
x += y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
u("""\
x -= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
u("""\
x *= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
u("""\
x /= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
u("""\
x %= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
u("""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
u("""\
x\n\
2⋅x + ℯ \
""")
ucode_str_2 = \
u("""\
x \n\
ℯ + 2⋅x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
u("""\
│x│\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
u("""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
""")
ucode_str_2 = \
u("""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
1 \n\
---------\n\
|y - |x||\
"""
ucode_str = \
u("""\
1 \n\
─────────\n\
│y - │x││\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
u("""\
n!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
u("""\
(2⋅n)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
u("""\
((n!)!)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
u("""\
(1 + n)!\
""")
ucode_str_2 = \
u("""\
(n + 1)!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
u("""\
!n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
u("""\
!(2⋅n)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
u("""\
n!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
u("""\
(2⋅n)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
u("""\
((n!!)!!)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
u("""\
(1 + n)!!\
""")
ucode_str_2 = \
u("""\
(n + 1)!!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
u("""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
u("""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
u("""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n, x)
ascii_str = \
"""\
B (x)\n\
n \
"""
ucode_str = \
u("""\
B (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
u("""\
F \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
u("""\
L \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
u("""\
T \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n)
ascii_str = \
"""\
stieltjes \n\
n\
"""
ucode_str = \
u("""\
γ \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n, x)
ascii_str = \
"""\
stieltjes (x)\n\
n \
"""
ucode_str = \
u("""\
γ (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieuc(x, y, z)
ascii_str = 'C(x, y, z)'
ucode_str = u('C(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieus(x, y, z)
ascii_str = 'S(x, y, z)'
ucode_str = u('S(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieucprime(x, y, z)
ascii_str = "C'(x, y, z)"
ucode_str = u("C'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieusprime(x, y, z)
ascii_str = "S'(x, y, z)"
ucode_str = u("S'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
u("""\
_\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
u("""\
________\n\
f(1 + x)\
""")
ucode_str_2 = \
u("""\
________\n\
f(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
u("""\
f(x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
u("""\
f(x, y)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
u("""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
u("""\
2 \n\
sin (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
u("""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
""")
ucode_str_2 = \
u("""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
u("""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
u("""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
u("""\
E \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
u("""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
u("""\
E (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
u("""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
u"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
3 ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
1000___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
u("""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
u("""\
3 ________\n\
╲╱ 1 + √5 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
x ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
u("""\
_______\n\
╲╱ 2 + π \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
u("""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
u("""\
___\n\
╲╱ 2 \
""")
ucode_str2 = \
u"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
u("""\
____\n\
╲╱ C₁ \
""")
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
u("""\
δ \n\
x,y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
u("""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """)
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
u("""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """)
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_Lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == u"x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == u"x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
u("""\
2\n\
x ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
u("""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = u"(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
u("""\
2\n\
(x, y) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(((x, y),), x**2)
ascii_str = \
"""\
2\n\
((x, y),) -> x \
"""
ucode_str = \
u("""\
2\n\
((x, y),) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
u("""\
O(1)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
u("""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
u("""\
O(1; x → ∞)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
u("""\
d \n\
──(log(x))\n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
u("""\
d \n\
x + ──(log(x))\n\
dx \
""")
ucode_str_2 = \
u("""\
d \n\
──(log(x)) + x\n\
dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
u("""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
""")
ucode_str_2 = \
u("""\
∂ \n\
──(x + log(x + y))\n\
∂x \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
u("""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
""")
ucode_str_2 = \
u("""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
u("""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
""")
ucode_str_2 = \
u("""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
u("""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
u("""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
u("""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
u("""\
d \n\
──(β(α))\n\
dα \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
u("""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
u("""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
u("""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
u("""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
u("""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
u("""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
ucode_str_2 = \
u("""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
u("""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
unicode_str = \
u("""\
⎡v̇_msc_00 0 0 ⎤
⎢ ⎥
⎢ 0 v̇_msc_01 0 ⎥
⎢ ⎥
⎣ 0 0 v̇_msc_02⎦\
""")
expr = diag(*MatrixSymbol('vdot_msc',1,3))
assert upretty(expr) == unicode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
""")
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
""")
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
u("""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
""")
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
u("""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
""")
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
u("""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
""")
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
u("""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
""")
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
u("""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
""")
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == u("ⅆ x∧ⅆ y")
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == u" †\nX "
assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y "
assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
u" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
u" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
u" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
u" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
u" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
u" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
u("""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
""")
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
u("""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
""")
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
Y = X[1:2:3, 4:5:6]
ascii_str = ucode_str = "X[1:3, 4:6]"
assert pretty(Y) == ascii_str
assert upretty(Y) == ucode_str
Z = X[1:10:2]
ascii_str = ucode_str = "X[1:10:2, :n]"
assert pretty(Z) == ascii_str
assert upretty(Z) == ucode_str
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
(d -> sin(d)).\\X *X/\
"""
ucode_str = u("""\
⎛ T ⎞\n\
(d ↦ sin(d))˳⎝X ⋅X⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
ascii_str = """\
/ 1\\ \n\
|d -> -|.(n*X)\n\
\\ d/ \
"""
ucode_str = u("""\
⎛ 1⎞ \n\
⎜d ↦ ─⎟˳(n⋅X)\n\
⎝ d⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == u"A*B"
assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == u"A⋅B"
assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
u("""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
u("""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ 1 \n\
| 0 for --- < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
u("""\
⎧ 1 \n\
⎪ 0 for ─── < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
u("""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == u("""\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
""")
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
u("""\
()\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
u("""\
[]\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
u("""\
{}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
u("""\
{x: sin(x)}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
u("""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
u("""\
⎡ 2⎤\n\
⎣x ⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
u("""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == u"[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == u"{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == u'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == u'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
u"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
u"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(set([x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = u'{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = u('{30, 29, …, 2}')
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = u'{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = u('{…, 2, 0}')
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = u('{-2, -3, …}')
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = u("SetExpr([1, 3])")
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}'
ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}'
ucode_str = u('{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = \
' 2 \n'\
'{x | x in Naturals}'
ucode_str = u('''\
⎧ 2 ⎫\n\
⎨x | x ∊ ℕ⎬\n\
⎩ ⎭''')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = u'{x | x ∊ ℝ ∧ (sin(x) = 0)}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}'
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}'
assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str
ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = u'[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = u'[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_exponent():
ucode_str = ' 1\n[0, 1] '
assert upretty(Interval(0, 1)**1) == ucode_str
ucode_str = ' 2\n[0, 1] '
assert upretty(Interval(0, 1)**2) == ucode_str
def test_ProductSet_parenthesis():
ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b = Interval(2, 3), Interval(4, 7)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = u'[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = u'[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = u'[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = u'[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = u'[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = u'[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = u'[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = u'[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = u'[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = u'[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = u'[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = u'[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = u'[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = u'[0, b, 4*b]'
ucode_str = u'[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
u("""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
u("""\
lim x\n\
x─→∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
u("""\
2\n\
lim x \n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
u("""\
1\n\
lim ─\n\
x─→0⁺x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
u("""\
lim (x + sin(x))\n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
u("""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
u("""\
lim sin(x)\n\
x─→0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
u("""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
u("""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == u'𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == u"¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == u"x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == u"x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == u"x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == u"x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == u"x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == u"x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == u"y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == u"ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == u"ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == u"ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == u"ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == u"ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == u"ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == u"ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == u"ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == u"ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == u"ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from sympy.core.compatibility import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D(object):
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
u("""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
""")
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
u("""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
""")
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
u("""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
u("""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
""")
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
u("""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
""")
from sympy.physics.units import kg, m, s
assert upretty(expr) == u("joule")
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
u("""\
(f(x))│ 2\n\
│x=φ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == u"γ(x, y)"
assert upretty(uppergamma(x, y)) == u"Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)'
assert xpretty(gamma, use_unicode=True) == u'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)'
assert xpretty(beta, use_unicode=True) == u'Β'
assert xpretty(beta, use_unicode=False) == u'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == u'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == u'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
δ (x)\
""")
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
x⋅δ (x)\
""")
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
u("""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
u("""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
u("""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
""")
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
""")
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
u("""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
""")
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
""")
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
u("""\
-1\n\
A⋅B⋅C \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
u("""\
-1 \n\
C ⋅A⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
u("""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = u"E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
u("""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
""")
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
u("""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
""")
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == u"x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == u"x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
u("""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
""")
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
u("""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
""")
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
u("""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
""")
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
u("""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
""")
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
u("""\
1 \n\
──\n\
√x\
""")
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == u"A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == u"f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == u"id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == u"K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet"
assert upretty(d) == u"∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}")
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}")
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == u"A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
u("""\
2\n\
ℚ[x, y] \
""")
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
u("""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
u("""\
╱ 2 ╲\n\
╲x , y╱\
""")
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
u("""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
u("""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
""")
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
u("""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
""")
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
u("""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
""")
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
u("""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
""")
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
u("""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
""")
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
u("""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
""")
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == u'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y'
assert upretty(Not(Implies(x, y))) == u'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == u'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.testing.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == u'[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
u("""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
""")
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
u("""\
d \n\
-──(y(x))\n\
dx \
""")
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
u("""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
""")
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
u("""\
3\n\
2 \n\
───\n\
2\n\
10 \
""")
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
u("""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
""")
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
u("""\
11\n\
──\n\
13\n\
(sin(x)) \
""")
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
u("""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
""")
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = u("ν(n)")
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = u("Ω(n)")
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = u("x mod 7")
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = u("(x + 1) mod 7")
ascii_str3 = "2*x mod 7"
ucode_str3 = u("2⋅x mod 7")
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = u("(x mod 7) + 1")
ascii_str5 = "2*(x mod 7)"
ucode_str5 = u("2⋅(x mod 7)")
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert upretty(he) == ucode_str
ucode_str = \
u("""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
""")
assert upretty(he**2) == ucode_str
ucode_str = \
u("""\
1\n\
1 + ─\n\
x\
""")
assert upretty(he + 1) == ucode_str
ucode_str = \
u('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
u("""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
""")
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = u("A₀₀")
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = u("3⋅A₀₀")
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = u("(-B + A)[0, 0]")
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
u("""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
""")
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
u("""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
""")
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == u'90°'
expr2 = x*degree
assert pretty(expr2) == u'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == u'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)')
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)")
assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)")
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
u("""\
-i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
u("""\
i\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
u("""\
i₀\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
u("""\
\n\
A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
u("""\
\n\
-3⋅A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
u("""\
i \n\
H \n\
j\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
u("""\
L₀ \n\
H \n\
L₀\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
u("""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
u("""\
i\n\
(x + 1)⋅A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
3*B + A \n\
\
"""
ucode_str = \
u("""\
i i\n\
3⋅B + A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
u("""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|3*H + B *C |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜3⋅H + B ⋅C ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(j), D(j))
ascii_str = \
"""\
/ i i\\ d / L_0\\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ /\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ i i⎞ ∂ ⎛ L₀⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ ⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
ucode_str = u("""\
2 \n\
∂ ⎛ ⎞\n\
───────⎜A + B ⎟\n\
⎝ i i⎠\n\
∂A ∂A \n\
n j \
""")
assert upretty(expr) == ucode_str
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
ucode_str = u("""\
2 \n\
∂ ⎛ ⎞\n\
───────⎜3⋅A ⎟\n\
⎝ i⎠\n\
∂A ∂A \n\
n j \
""")
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i: 1, j: 1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j: 1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i: 1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = u'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == u'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == u'-𝐀'
assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == u'𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == u'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == u'‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == u'𝐀₂'
def test_center_accent():
assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã'
assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã'
assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa'
assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa'
assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa'
assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert pretty(Identity(4)) == 'I'
assert upretty(Identity(4)) == u'𝕀'
assert pretty(ZeroMatrix(2, 2)) == '0'
assert upretty(ZeroMatrix(2, 2)) == u'𝟘'
assert pretty(OneMatrix(2, 2)) == '1'
assert upretty(OneMatrix(2, 2)) == u'𝟙'
def test_pretty_misc_functions():
assert pretty(LambertW(x)) == 'W(x)'
assert upretty(LambertW(x)) == u'W(x)'
assert pretty(LambertW(x, y)) == 'W(x, y)'
assert upretty(LambertW(x, y)) == u'W(x, y)'
assert pretty(airyai(x)) == 'Ai(x)'
assert upretty(airyai(x)) == u'Ai(x)'
assert pretty(airybi(x)) == 'Bi(x)'
assert upretty(airybi(x)) == u'Bi(x)'
assert pretty(airyaiprime(x)) == "Ai'(x)"
assert upretty(airyaiprime(x)) == u"Ai'(x)"
assert pretty(airybiprime(x)) == "Bi'(x)"
assert upretty(airybiprime(x)) == u"Bi'(x)"
assert pretty(fresnelc(x)) == 'C(x)'
assert upretty(fresnelc(x)) == u'C(x)'
assert pretty(fresnels(x)) == 'S(x)'
assert upretty(fresnels(x)) == u'S(x)'
assert pretty(Heaviside(x)) == 'Heaviside(x)'
assert upretty(Heaviside(x)) == u'θ(x)'
assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
assert upretty(Heaviside(x, y)) == u'θ(x, y)'
assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
assert upretty(dirichlet_eta(x)) == u'η(x)'
def test_hadamard_power():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
B = MatrixSymbol('B', m, n)
# Testing printer:
expr = hadamard_power(A, n)
ascii_str = \
"""\
.n\n\
A \
"""
ucode_str = \
u("""\
∘n\n\
A \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
A \
"""
ucode_str = \
u("""\
∘(n + 1)\n\
A \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A*B.T, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
/ T\\ \n\
\\A*B / \
"""
ucode_str = \
u("""\
∘(n + 1)\n\
⎛ T⎞ \n\
⎝A⋅B ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_17258():
n = Symbol('n', integer=True)
assert pretty(Sum(n, (n, -oo, 1))) == \
' 1 \n'\
' __ \n'\
' \\ ` \n'\
' ) n\n'\
' /_, \n'\
'n = -oo '
assert upretty(Sum(n, (n, -oo, 1))) == \
u("""\
1 \n\
___ \n\
╲ \n\
╲ \n\
╱ n\n\
╱ \n\
‾‾‾ \n\
n = -∞ \
""")
def test_is_combining():
line = u("v̇_m")
assert [is_combining(sym) for sym in line] == \
[False, True, False, False]
def test_issue_17857():
assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}'
assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
def test_issue_18272():
x = Symbol('x')
n = Symbol('n')
assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \
'⎧ ⎛ x ⎞⎫\n'\
'⎨x | x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\
'⎩ ⎭'
assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \
'⎧ ⎧-n n⎫ ⎛n ⎞⎫\n'\
'⎨x | x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\
'⎩ ⎩ 2 2⎭ ⎝2 ⎠⎭'
assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1),
(x/2, True)) - 1/2, 0), Interval(0, 3))) == \
'⎧ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\
'⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪x ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪2 ⎟ ⎟⎪\n'\
'⎨x | x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\
'⎪ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ x ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\
'⎩ ⎝⎝⎩ 2 ⎠ ⎠⎭'
|
0edcae3c39edc4b83a566aa5c659afe57aff5880b1a422b28632b64bc0a406ea | from sympy import cos, DiracDelta, Heaviside, Function, pi, S, sin, symbols, Rational
from sympy.integrals.deltafunctions import change_mul, deltaintegrate
f = Function("f")
x_1, x_2, x, y, z = symbols("x_1 x_2 x y z")
def test_change_mul():
assert change_mul(x, x) == (None, None)
assert change_mul(x*y, x) == (None, None)
assert change_mul(x*y*DiracDelta(x), x) == (DiracDelta(x), x*y)
assert change_mul(x*y*DiracDelta(x)*DiracDelta(y), x) == \
(DiracDelta(x), x*y*DiracDelta(y))
assert change_mul(DiracDelta(x)**2, x) == \
(DiracDelta(x), DiracDelta(x))
assert change_mul(y*DiracDelta(x)**2, x) == \
(DiracDelta(x), y*DiracDelta(x))
def test_deltaintegrate():
assert deltaintegrate(x, x) is None
assert deltaintegrate(x + DiracDelta(x), x) is None
assert deltaintegrate(DiracDelta(x, 0), x) == Heaviside(x)
for n in range(10):
assert deltaintegrate(DiracDelta(x, n + 1), x) == DiracDelta(x, n)
assert deltaintegrate(DiracDelta(x), x) == Heaviside(x)
assert deltaintegrate(DiracDelta(-x), x) == Heaviside(x)
assert deltaintegrate(DiracDelta(x - y), x) == Heaviside(x - y)
assert deltaintegrate(DiracDelta(y - x), x) == Heaviside(x - y)
assert deltaintegrate(x*DiracDelta(x), x) == 0
assert deltaintegrate((x - y)*DiracDelta(x - y), x) == 0
assert deltaintegrate(DiracDelta(x)**2, x) == DiracDelta(0)*Heaviside(x)
assert deltaintegrate(y*DiracDelta(x)**2, x) == \
y*DiracDelta(0)*Heaviside(x)
assert deltaintegrate(DiracDelta(x, 1), x) == DiracDelta(x, 0)
assert deltaintegrate(y*DiracDelta(x, 1), x) == y*DiracDelta(x, 0)
assert deltaintegrate(DiracDelta(x, 1)**2, x) == -DiracDelta(0, 2)*Heaviside(x)
assert deltaintegrate(y*DiracDelta(x, 1)**2, x) == -y*DiracDelta(0, 2)*Heaviside(x)
assert deltaintegrate(DiracDelta(x) * f(x), x) == f(0) * Heaviside(x)
assert deltaintegrate(DiracDelta(-x) * f(x), x) == f(0) * Heaviside(x)
assert deltaintegrate(DiracDelta(x - 1) * f(x), x) == f(1) * Heaviside(x - 1)
assert deltaintegrate(DiracDelta(1 - x) * f(x), x) == f(1) * Heaviside(x - 1)
assert deltaintegrate(DiracDelta(x**2 + x - 2), x) == \
Heaviside(x - 1)/3 + Heaviside(x + 2)/3
p = cos(x)*(DiracDelta(x) + DiracDelta(x**2 - 1))*sin(x)*(x - pi)
assert deltaintegrate(p, x) - (-pi*(cos(1)*Heaviside(-1 + x)*sin(1)/2 - \
cos(1)*Heaviside(1 + x)*sin(1)/2) + \
cos(1)*Heaviside(1 + x)*sin(1)/2 + \
cos(1)*Heaviside(-1 + x)*sin(1)/2) == 0
p = x_2*DiracDelta(x - x_2)*DiracDelta(x_2 - x_1)
assert deltaintegrate(p, x_2) == x*DiracDelta(x - x_1)*Heaviside(x_2 - x)
p = x*y**2*z*DiracDelta(y - x)*DiracDelta(y - z)*DiracDelta(x - z)
assert deltaintegrate(p, y) == x**3*z*DiracDelta(x - z)**2*Heaviside(y - x)
assert deltaintegrate((x + 1)*DiracDelta(2*x), x) == S.Half * Heaviside(x)
assert deltaintegrate((x + 1)*DiracDelta(x*Rational(2, 3) + Rational(4, 9)), x) == \
S.Half * Heaviside(x + Rational(2, 3))
a, b, c = symbols('a b c', commutative=False)
assert deltaintegrate(DiracDelta(x - y)*f(x - b)*f(x - a), x) == \
f(y - b)*f(y - a)*Heaviside(x - y)
p = f(x - a)*DiracDelta(x - y)*f(x - c)*f(x - b)
assert deltaintegrate(p, x) == f(y - a)*f(y - c)*f(y - b)*Heaviside(x - y)
p = DiracDelta(x - z)*f(x - b)*f(x - a)*DiracDelta(x - y)
assert deltaintegrate(p, x) == DiracDelta(y - z)*f(y - b)*f(y - a) * \
Heaviside(x - y)
|
a4703b4af738fa6ba59f5cf335a972ce20da3c9ce6220fedd05dc08174e1d742 | """Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, symbols, oo, I, Rational
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
normal_denom, special_denom, bound_degree, spde, solve_poly_rde,
no_cancel_equal, cancel_primitive, cancel_exp, rischDE)
from sympy.testing.pytest import raises
from sympy.abc import x, t, z, n
t0, t1, t2, k = symbols('t:3 k')
def test_order_at():
a = Poly(t**4, t)
b = Poly((t**2 + 1)**3*t, t)
c = Poly((t**2 + 1)**6*t, t)
d = Poly((t**2 + 1)**10*t**10, t)
e = Poly((t**2 + 1)**100*t**37, t)
p1 = Poly(t, t)
p2 = Poly(1 + t**2, t)
assert order_at(a, p1, t) == 4
assert order_at(b, p1, t) == 1
assert order_at(c, p1, t) == 1
assert order_at(d, p1, t) == 10
assert order_at(e, p1, t) == 37
assert order_at(a, p2, t) == 0
assert order_at(b, p2, t) == 3
assert order_at(c, p2, t) == 6
assert order_at(d, p1, t) == 10
assert order_at(e, p2, t) == 100
assert order_at(Poly(0, t), Poly(t, t), t) is oo
assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
assert order_at_oo(Poly(0, t), Poly(1, t), t) is oo
def test_weak_normalizer():
a = Poly((1 + x)*t**5 + 4*t**4 + (-1 - 3*x)*t**3 - 4*t**2 + (-2 + 2*x)*t, t)
d = Poly(t**4 - 3*t**2 + 2, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
r = weak_normalizer(a, d, DE, z)
assert r == (Poly(t**5 - t**4 - 4*t**3 + 4*t**2 + 4*t - 4, t, domain='ZZ[x]'),
(Poly((1 + x)*t**2 + x*t, t, domain='ZZ[x]'),
Poly(t + 1, t, domain='ZZ[x]')))
assert weak_normalizer(r[1][0], r[1][1], DE) == (Poly(1, t), r[1])
r = weak_normalizer(Poly(1 + t**2), Poly(t**2 - 1, t), DE, z)
assert r == (Poly(t**4 - 2*t**2 + 1, t), (Poly(-3*t**2 + 1, t), Poly(t**2 - 1, t)))
assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1])
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2)]})
r = weak_normalizer(Poly(1 + t**2), Poly(t, t), DE, z)
assert r == (Poly(t, t), (Poly(0, t), Poly(1, t)))
assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1])
def test_normal_denom():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
raises(NonElementaryIntegralException, lambda: normal_denom(Poly(1, x), Poly(1, x),
Poly(1, x), Poly(x, x), DE))
fa, fd = Poly(t**2 + 1, t), Poly(1, t)
ga, gd = Poly(1, t), Poly(t**2, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert normal_denom(fa, fd, ga, gd, DE) == \
(Poly(t, t), (Poly(t**3 - t**2 + t - 1, t), Poly(1, t)), (Poly(1, t),
Poly(1, t)), Poly(t, t))
def test_special_denom():
# TODO: add more tests here
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
Poly(t, t), DE) == \
(Poly(1, t), Poly(t**2 - 1, t), Poly(t**2 - 1, t), Poly(t, t))
# assert special_denom(Poly(1, t), Poly(2*x, t), Poly((1 + 2*x)*t, t), DE) == 1
# issue 3940
# Note, this isn't a very good test, because the denominator is just 1,
# but at least it tests the exp cancellation case
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0),
Poly(I*k*t1, t1)]})
DE.decrement_level()
assert special_denom(Poly(1, t0), Poly(I*k, t0), Poly(1, t0), Poly(t0, t0),
Poly(1, t0), DE) == \
(Poly(1, t0), Poly(I*k, t0), Poly(t0, t0), Poly(1, t0))
assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
Poly(t, t), DE, case='tan') == \
(Poly(1, t, t0, domain='ZZ'), Poly(t**2, t0, t, domain='ZZ[x]'),
Poly(t, t, t0, domain='ZZ'), Poly(1, t0, domain='ZZ'))
raises(ValueError, lambda: special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
Poly(t, t), DE, case='unrecognized_case'))
def test_bound_degree_fail():
# Primitive
DE = DifferentialExtension(extension={'D': [Poly(1, x),
Poly(t0/x**2, t0), Poly(1/x, t)]})
assert bound_degree(Poly(t**2, t), Poly(-(1/x**2*t**2 + 1/x), t),
Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/2*x*t**2 + x*t,
t), DE) == 3
def test_bound_degree():
# Base
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert bound_degree(Poly(1, x), Poly(-2*x, x), Poly(1, x), DE) == 0
# Primitive (see above test_bound_degree_fail)
# TODO: Add test for when the degree bound becomes larger after limited_integrate
# TODO: Add test for db == da - 1 case
# Exp
# TODO: Add tests
# TODO: Add test for when the degree becomes larger after parametric_log_deriv()
# Nonlinear
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert bound_degree(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), DE) == 0
def test_spde():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t),
Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \
(Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t, domain='ZZ(x)'))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]})
assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t),
Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \
(Poly(0, t), Poly(0, t), 0, Poly(0, t),
Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t, domain='ZZ(x,t0)'))
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \
(Poly(0, x, domain='QQ'), Poly(x/2 - Rational(1, 4), x), 2, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x))
assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \
(Poly(0, x, domain='QQ'), Poly(x/2 - Rational(1, 4), x), -2 + n, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert spde(Poly(x**2 - x, x), Poly(1, x), Poly(9*x**4 - 10*x**3 + 2*x**2, x), 4, DE) == \
(Poly(0, x, domain='ZZ'), Poly(0, x), 0, Poly(0, x), Poly(3*x**3 - 2*x**2, x, domain='QQ'))
assert spde(Poly(x**2 - x, x), Poly(x**2 - 5*x + 3, x), Poly(x**7 - x**6 - 2*x**4 + 3*x**3 - x**2, x), 5, DE) == \
(Poly(1, x, domain='QQ'), Poly(x + 1, x, domain='QQ'), 1, Poly(x**4 - x**3, x), Poly(x**3 - x**2, x, domain='QQ'))
def test_solve_poly_rde_no_cancel():
# deg(b) large
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
oo, DE) == Poly(t + x, t)
# deg(b) small
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert solve_poly_rde(Poly(0, x), Poly(x/2 - Rational(1, 4), x), oo, DE) == \
Poly(x**2/4 - x/4, x)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
Poly(t + 1, t, x)
# deg(b) == deg(D) - 1
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert no_cancel_equal(Poly(1 - t, t),
Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \
(Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t))
def test_solve_poly_rde_cancel():
# exp
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert cancel_exp(Poly(2*x, t), Poly(2*x, t), 0, DE) == \
Poly(1, t)
assert cancel_exp(Poly(2*x, t), Poly((1 + 2*x)*t, t), 1, DE) == \
Poly(t, t)
# TODO: Add more exp tests, including tests that require is_deriv_in_field()
# primitive
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
# If the DecrementLevel context manager is working correctly, this shouldn't
# cause any problems with the further tests.
raises(NonElementaryIntegralException, lambda: cancel_primitive(Poly(1, t), Poly(t, t), oo, DE))
assert cancel_primitive(Poly(1, t), Poly(t + 1/x, t), 2, DE) == \
Poly(t, t)
assert cancel_primitive(Poly(4*x, t), Poly(4*x*t**2 + 2*t/x, t), 3, DE) == \
Poly(t**2, t)
# TODO: Add more primitive tests, including tests that require is_deriv_in_field()
def test_rischDE():
# TODO: Add more tests for rischDE, including ones from the text
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
DE.decrement_level()
assert rischDE(Poly(-2*x, x), Poly(1, x), Poly(1 - 2*x - 2*x**2, x),
Poly(1, x), DE) == \
(Poly(x + 1, x), Poly(1, x))
|
eb5b48abdd86342dfaad6c726b148e7cdf6f677a2613713e15cd558ff83f4152 | from sympy import sqrt, Abs
from sympy.core import S, Rational
from sympy.integrals.intpoly import (decompose, best_origin, distance_to_side,
polytope_integrate, point_sort,
hyperplane_parameters, main_integrate3d,
main_integrate, polygon_integrate,
lineseg_integrate, integration_reduction,
integration_reduction_dynamic, is_vertex)
from sympy.geometry.line import Segment2D
from sympy.geometry.polygon import Polygon
from sympy.geometry.point import Point, Point2D
from sympy.abc import x, y, z
from sympy.testing.pytest import slow
def test_decompose():
assert decompose(x) == {1: x}
assert decompose(x**2) == {2: x**2}
assert decompose(x*y) == {2: x*y}
assert decompose(x + y) == {1: x + y}
assert decompose(x**2 + y) == {1: y, 2: x**2}
assert decompose(8*x**2 + 4*y + 7) == {0: 7, 1: 4*y, 2: 8*x**2}
assert decompose(x**2 + 3*y*x) == {2: x**2 + 3*x*y}
assert decompose(9*x**2 + y + 4*x + x**3 + y**2*x + 3) ==\
{0: 3, 1: 4*x + y, 2: 9*x**2, 3: x**3 + x*y**2}
assert decompose(x, True) == {x}
assert decompose(x ** 2, True) == {x**2}
assert decompose(x * y, True) == {x * y}
assert decompose(x + y, True) == {x, y}
assert decompose(x ** 2 + y, True) == {y, x ** 2}
assert decompose(8 * x ** 2 + 4 * y + 7, True) == {7, 4*y, 8*x**2}
assert decompose(x ** 2 + 3 * y * x, True) == {x ** 2, 3 * x * y}
assert decompose(9 * x ** 2 + y + 4 * x + x ** 3 + y ** 2 * x + 3, True) == \
{3, y, 4*x, 9*x**2, x*y**2, x**3}
def test_best_origin():
expr1 = y ** 2 * x ** 5 + y ** 5 * x ** 7 + 7 * x + x ** 12 + y ** 7 * x
l1 = Segment2D(Point(0, 3), Point(1, 1))
l2 = Segment2D(Point(S(3) / 2, 0), Point(S(3) / 2, 3))
l3 = Segment2D(Point(0, S(3) / 2), Point(3, S(3) / 2))
l4 = Segment2D(Point(0, 2), Point(2, 0))
l5 = Segment2D(Point(0, 2), Point(1, 1))
l6 = Segment2D(Point(2, 0), Point(1, 1))
assert best_origin((2, 1), 3, l1, expr1) == (0, 3)
assert best_origin((2, 0), 3, l2, x ** 7) == (S(3) / 2, 0)
assert best_origin((0, 2), 3, l3, x ** 7) == (0, S(3) / 2)
assert best_origin((1, 1), 2, l4, x ** 7 * y ** 3) == (0, 2)
assert best_origin((1, 1), 2, l4, x ** 3 * y ** 7) == (2, 0)
assert best_origin((1, 1), 2, l5, x ** 2 * y ** 9) == (0, 2)
assert best_origin((1, 1), 2, l6, x ** 9 * y ** 2) == (2, 0)
@slow
def test_polytope_integrate():
# Convex 2-Polytopes
# Vertex representation
assert polytope_integrate(Polygon(Point(0, 0), Point(0, 2),
Point(4, 0)), 1, dims=(x, y)) == 4
assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1),
Point(1, 1), Point(1, 0)), x * y) ==\
Rational(1, 4)
assert polytope_integrate(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)),
6*x**2 - 40*y) == Rational(-935, 3)
assert polytope_integrate(Polygon(Point(0, 0), Point(0, sqrt(3)),
Point(sqrt(3), sqrt(3)),
Point(sqrt(3), 0)), 1) == 3
hexagon = Polygon(Point(0, 0), Point(-sqrt(3) / 2, S.Half),
Point(-sqrt(3) / 2, S(3) / 2), Point(0, 2),
Point(sqrt(3) / 2, S(3) / 2), Point(sqrt(3) / 2, S.Half))
assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2
# Hyperplane representation
assert polytope_integrate([((-1, 0), 0), ((1, 2), 4),
((0, -1), 0)], 1, dims=(x, y)) == 4
assert polytope_integrate([((-1, 0), 0), ((0, 1), 1),
((1, 0), 1), ((0, -1), 0)], x * y) == Rational(1, 4)
assert polytope_integrate([((0, 1), 3), ((1, -2), -1),
((-2, -1), -3)], 6*x**2 - 40*y) == Rational(-935, 3)
assert polytope_integrate([((-1, 0), 0), ((0, sqrt(3)), 3),
((sqrt(3), 0), 3), ((0, -1), 0)], 1) == 3
hexagon = [((Rational(-1, 2), -sqrt(3) / 2), 0),
((-1, 0), sqrt(3) / 2),
((Rational(-1, 2), sqrt(3) / 2), sqrt(3)),
((S.Half, sqrt(3) / 2), sqrt(3)),
((1, 0), sqrt(3) / 2),
((S.Half, -sqrt(3) / 2), 0)]
assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2
# Non-convex polytopes
# Vertex representation
assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1),
Point(1, 1), Point(0, 0),
Point(1, -1)), 1) == 3
assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1),
Point(0, 0), Point(1, 1),
Point(1, -1), Point(0, 0)), 1) == 2
# Hyperplane representation
assert polytope_integrate([((-1, 0), 1), ((0, 1), 1), ((1, -1), 0),
((1, 1), 0), ((0, -1), 1)], 1) == 3
assert polytope_integrate([((-1, 0), 1), ((1, 1), 0), ((-1, 1), 0),
((1, 0), 1), ((-1, -1), 0),
((1, -1), 0)], 1) == 2
# Tests for 2D polytopes mentioned in Chin et al(Page 10):
# http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf
fig1 = Polygon(Point(1.220, -0.827), Point(-1.490, -4.503),
Point(-3.766, -1.622), Point(-4.240, -0.091),
Point(-3.160, 4), Point(-0.981, 4.447),
Point(0.132, 4.027))
assert polytope_integrate(fig1, x**2 + x*y + y**2) ==\
S(2031627344735367)/(8*10**12)
fig2 = Polygon(Point(4.561, 2.317), Point(1.491, -1.315),
Point(-3.310, -3.164), Point(-4.845, -3.110),
Point(-4.569, 1.867))
assert polytope_integrate(fig2, x**2 + x*y + y**2) ==\
S(517091313866043)/(16*10**11)
fig3 = Polygon(Point(-2.740, -1.888), Point(-3.292, 4.233),
Point(-2.723, -0.697), Point(-0.643, -3.151))
assert polytope_integrate(fig3, x**2 + x*y + y**2) ==\
S(147449361647041)/(8*10**12)
fig4 = Polygon(Point(0.211, -4.622), Point(-2.684, 3.851),
Point(0.468, 4.879), Point(4.630, -1.325),
Point(-0.411, -1.044))
assert polytope_integrate(fig4, x**2 + x*y + y**2) ==\
S(180742845225803)/(10**12)
# Tests for many polynomials with maximum degree given(2D case).
tri = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
polys = []
expr1 = x**9*y + x**7*y**3 + 2*x**2*y**8
expr2 = x**6*y**4 + x**5*y**5 + 2*y**10
expr3 = x**10 + x**9*y + x**8*y**2 + x**5*y**5
polys.extend((expr1, expr2, expr3))
result_dict = polytope_integrate(tri, polys, max_degree=10)
assert result_dict[expr1] == Rational(615780107, 594)
assert result_dict[expr2] == Rational(13062161, 27)
assert result_dict[expr3] == Rational(1946257153, 924)
# Tests when all integral of all monomials up to a max_degree is to be
# calculated.
assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1),
Point(1, 1), Point(1, 0)),
max_degree=4) == {0: 0, 1: 1, x: S.Half,
x ** 2 * y ** 2: S.One / 9,
x ** 4: S.One / 5,
y ** 4: S.One / 5,
y: S.Half,
x * y ** 2: S.One / 6,
y ** 2: S.One / 3,
x ** 3: S.One / 4,
x ** 2 * y: S.One / 6,
x ** 3 * y: S.One / 8,
x * y: S.One / 4,
y ** 3: S.One / 4,
x ** 2: S.One / 3,
x * y ** 3: S.One / 8}
# Tests for 3D polytopes
cube1 = [[(0, 0, 0), (0, 6, 6), (6, 6, 6), (3, 6, 0),
(0, 6, 0), (6, 0, 6), (3, 0, 0), (0, 0, 6)],
[1, 2, 3, 4], [3, 2, 5, 6], [1, 7, 5, 2], [0, 6, 5, 7],
[1, 4, 0, 7], [0, 4, 3, 6]]
assert polytope_integrate(cube1, 1) == S(162)
# 3D Test cases in Chin et al(2015)
cube2 = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),
(5, 0, 5), (5, 5, 0), (5, 5, 5)],
[3, 7, 6, 2], [1, 5, 7, 3], [5, 4, 6, 7], [0, 4, 5, 1],
[2, 0, 1, 3], [2, 6, 4, 0]]
cube3 = [[(0, 0, 0), (5, 0, 0), (5, 4, 0), (3, 2, 0), (3, 5, 0),
(0, 5, 0), (0, 0, 5), (5, 0, 5), (5, 4, 5), (3, 2, 5),
(3, 5, 5), (0, 5, 5)],
[6, 11, 5, 0], [1, 7, 6, 0], [5, 4, 3, 2, 1, 0], [11, 10, 4, 5],
[10, 9, 3, 4], [9, 8, 2, 3], [8, 7, 1, 2], [7, 8, 9, 10, 11, 6]]
cube4 = [[(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(S.One / 4, S.One / 4, S.One / 4)],
[0, 2, 1], [1, 3, 0], [4, 2, 3], [4, 3, 1],
[0, 1, 2], [2, 4, 1], [0, 3, 2]]
assert polytope_integrate(cube2, x ** 2 + y ** 2 + x * y + z ** 2) ==\
Rational(15625, 4)
assert polytope_integrate(cube3, x ** 2 + y ** 2 + x * y + z ** 2) ==\
S(33835) / 12
assert polytope_integrate(cube4, x ** 2 + y ** 2 + x * y + z ** 2) ==\
S(37) / 960
# Test cases from Mathematica's PolyhedronData library
octahedron = [[(S.NegativeOne / sqrt(2), 0, 0), (0, S.One / sqrt(2), 0),
(0, 0, S.NegativeOne / sqrt(2)), (0, 0, S.One / sqrt(2)),
(0, S.NegativeOne / sqrt(2), 0), (S.One / sqrt(2), 0, 0)],
[3, 4, 5], [3, 5, 1], [3, 1, 0], [3, 0, 4], [4, 0, 2],
[4, 2, 5], [2, 0, 1], [5, 2, 1]]
assert polytope_integrate(octahedron, 1) == sqrt(2) / 3
great_stellated_dodecahedron =\
[[(-0.32491969623290634095, 0, 0.42532540417601993887),
(0.32491969623290634095, 0, -0.42532540417601993887),
(-0.52573111211913359231, 0, 0.10040570794311363956),
(0.52573111211913359231, 0, -0.10040570794311363956),
(-0.10040570794311363956, -0.3090169943749474241, 0.42532540417601993887),
(-0.10040570794311363956, 0.30901699437494742410, 0.42532540417601993887),
(0.10040570794311363956, -0.3090169943749474241, -0.42532540417601993887),
(0.10040570794311363956, 0.30901699437494742410, -0.42532540417601993887),
(-0.16245984811645317047, -0.5, 0.10040570794311363956),
(-0.16245984811645317047, 0.5, 0.10040570794311363956),
(0.16245984811645317047, -0.5, -0.10040570794311363956),
(0.16245984811645317047, 0.5, -0.10040570794311363956),
(-0.42532540417601993887, -0.3090169943749474241, -0.10040570794311363956),
(-0.42532540417601993887, 0.30901699437494742410, -0.10040570794311363956),
(-0.26286555605956679615, 0.1909830056250525759, -0.42532540417601993887),
(-0.26286555605956679615, -0.1909830056250525759, -0.42532540417601993887),
(0.26286555605956679615, 0.1909830056250525759, 0.42532540417601993887),
(0.26286555605956679615, -0.1909830056250525759, 0.42532540417601993887),
(0.42532540417601993887, -0.3090169943749474241, 0.10040570794311363956),
(0.42532540417601993887, 0.30901699437494742410, 0.10040570794311363956)],
[12, 3, 0, 6, 16], [17, 7, 0, 3, 13],
[9, 6, 0, 7, 8], [18, 2, 1, 4, 14],
[15, 5, 1, 2, 19], [11, 4, 1, 5, 10],
[8, 19, 2, 18, 9], [10, 13, 3, 12, 11],
[16, 14, 4, 11, 12], [13, 10, 5, 15, 17],
[14, 16, 6, 9, 18], [19, 8, 7, 17, 15]]
# Actual volume is : 0.163118960624632
assert Abs(polytope_integrate(great_stellated_dodecahedron, 1) -\
0.163118960624632) < 1e-12
expr = x **2 + y ** 2 + z ** 2
octahedron_five_compound = [[(0, -0.7071067811865475244, 0),
(0, 0.70710678118654752440, 0),
(0.1148764602736805918,
-0.35355339059327376220, -0.60150095500754567366),
(0.1148764602736805918, 0.35355339059327376220,
-0.60150095500754567366),
(0.18587401723009224507,
-0.57206140281768429760, 0.37174803446018449013),
(0.18587401723009224507, 0.57206140281768429760,
0.37174803446018449013),
(0.30075047750377283683, -0.21850801222441053540,
0.60150095500754567366),
(0.30075047750377283683, 0.21850801222441053540,
0.60150095500754567366),
(0.48662449473386508189, -0.35355339059327376220,
-0.37174803446018449013),
(0.48662449473386508189, 0.35355339059327376220,
-0.37174803446018449013),
(-0.60150095500754567366, 0, -0.37174803446018449013),
(-0.30075047750377283683, -0.21850801222441053540,
-0.60150095500754567366),
(-0.30075047750377283683, 0.21850801222441053540,
-0.60150095500754567366),
(0.60150095500754567366, 0, 0.37174803446018449013),
(0.4156269377774534286, -0.57206140281768429760, 0),
(0.4156269377774534286, 0.57206140281768429760, 0),
(0.37174803446018449013, 0, -0.60150095500754567366),
(-0.4156269377774534286, -0.57206140281768429760, 0),
(-0.4156269377774534286, 0.57206140281768429760, 0),
(-0.67249851196395732696, -0.21850801222441053540, 0),
(-0.67249851196395732696, 0.21850801222441053540, 0),
(0.67249851196395732696, -0.21850801222441053540, 0),
(0.67249851196395732696, 0.21850801222441053540, 0),
(-0.37174803446018449013, 0, 0.60150095500754567366),
(-0.48662449473386508189, -0.35355339059327376220,
0.37174803446018449013),
(-0.48662449473386508189, 0.35355339059327376220,
0.37174803446018449013),
(-0.18587401723009224507, -0.57206140281768429760,
-0.37174803446018449013),
(-0.18587401723009224507, 0.57206140281768429760,
-0.37174803446018449013),
(-0.11487646027368059176, -0.35355339059327376220,
0.60150095500754567366),
(-0.11487646027368059176, 0.35355339059327376220,
0.60150095500754567366)],
[0, 10, 16], [23, 10, 0], [16, 13, 0],
[0, 13, 23], [16, 10, 1], [1, 10, 23],
[1, 13, 16], [23, 13, 1], [2, 4, 19],
[22, 4, 2], [2, 19, 27], [27, 22, 2],
[20, 5, 3], [3, 5, 21], [26, 20, 3],
[3, 21, 26], [29, 19, 4], [4, 22, 29],
[5, 20, 28], [28, 21, 5], [6, 8, 15],
[17, 8, 6], [6, 15, 25], [25, 17, 6],
[14, 9, 7], [7, 9, 18], [24, 14, 7],
[7, 18, 24], [8, 12, 15], [17, 12, 8],
[14, 11, 9], [9, 11, 18], [11, 14, 24],
[24, 18, 11], [25, 15, 12], [12, 17, 25],
[29, 27, 19], [20, 26, 28], [28, 26, 21],
[22, 27, 29]]
assert Abs(polytope_integrate(octahedron_five_compound, expr)) - 0.353553\
< 1e-6
cube_five_compound = [[(-0.1624598481164531631, -0.5, -0.6881909602355867691),
(-0.1624598481164531631, 0.5, -0.6881909602355867691),
(0.1624598481164531631, -0.5, 0.68819096023558676910),
(0.1624598481164531631, 0.5, 0.68819096023558676910),
(-0.52573111211913359231, 0, -0.6881909602355867691),
(0.52573111211913359231, 0, 0.68819096023558676910),
(-0.26286555605956679615, -0.8090169943749474241,
-0.1624598481164531631),
(-0.26286555605956679615, 0.8090169943749474241,
-0.1624598481164531631),
(0.26286555605956680301, -0.8090169943749474241,
0.1624598481164531631),
(0.26286555605956680301, 0.8090169943749474241,
0.1624598481164531631),
(-0.42532540417601993887, -0.3090169943749474241,
0.68819096023558676910),
(-0.42532540417601993887, 0.30901699437494742410,
0.68819096023558676910),
(0.42532540417601996609, -0.3090169943749474241,
-0.6881909602355867691),
(0.42532540417601996609, 0.30901699437494742410,
-0.6881909602355867691),
(-0.6881909602355867691, -0.5, 0.1624598481164531631),
(-0.6881909602355867691, 0.5, 0.1624598481164531631),
(0.68819096023558676910, -0.5, -0.1624598481164531631),
(0.68819096023558676910, 0.5, -0.1624598481164531631),
(-0.85065080835203998877, 0, -0.1624598481164531631),
(0.85065080835203993218, 0, 0.1624598481164531631)],
[18, 10, 3, 7], [13, 19, 8, 0], [18, 0, 8, 10],
[3, 19, 13, 7], [18, 7, 13, 0], [8, 19, 3, 10],
[6, 2, 11, 18], [1, 9, 19, 12], [11, 9, 1, 18],
[6, 12, 19, 2], [1, 12, 6, 18], [11, 2, 19, 9],
[4, 14, 11, 7], [17, 5, 8, 12], [4, 12, 8, 14],
[11, 5, 17, 7], [4, 7, 17, 12], [8, 5, 11, 14],
[6, 10, 15, 4], [13, 9, 5, 16], [15, 9, 13, 4],
[6, 16, 5, 10], [13, 16, 6, 4], [15, 10, 5, 9],
[14, 15, 1, 0], [16, 17, 3, 2], [14, 2, 3, 15],
[1, 17, 16, 0], [14, 0, 16, 2], [3, 17, 1, 15]]
assert Abs(polytope_integrate(cube_five_compound, expr) - 1.25) < 1e-12
echidnahedron = [[(0, 0, -2.4898982848827801995),
(0, 0, 2.4898982848827802734),
(0, -4.2360679774997896964, -2.4898982848827801995),
(0, -4.2360679774997896964, 2.4898982848827802734),
(0, 4.2360679774997896964, -2.4898982848827801995),
(0, 4.2360679774997896964, 2.4898982848827802734),
(-4.0287400534704067567, -1.3090169943749474241, -2.4898982848827801995),
(-4.0287400534704067567, -1.3090169943749474241, 2.4898982848827802734),
(-4.0287400534704067567, 1.3090169943749474241, -2.4898982848827801995),
(-4.0287400534704067567, 1.3090169943749474241, 2.4898982848827802734),
(4.0287400534704069747, -1.3090169943749474241, -2.4898982848827801995),
(4.0287400534704069747, -1.3090169943749474241, 2.4898982848827802734),
(4.0287400534704069747, 1.3090169943749474241, -2.4898982848827801995),
(4.0287400534704069747, 1.3090169943749474241, 2.4898982848827802734),
(-2.4898982848827801995, -3.4270509831248422723, -2.4898982848827801995),
(-2.4898982848827801995, -3.4270509831248422723, 2.4898982848827802734),
(-2.4898982848827801995, 3.4270509831248422723, -2.4898982848827801995),
(-2.4898982848827801995, 3.4270509831248422723, 2.4898982848827802734),
(2.4898982848827802734, -3.4270509831248422723, -2.4898982848827801995),
(2.4898982848827802734, -3.4270509831248422723, 2.4898982848827802734),
(2.4898982848827802734, 3.4270509831248422723, -2.4898982848827801995),
(2.4898982848827802734, 3.4270509831248422723, 2.4898982848827802734),
(-4.7169310137059934362, -0.8090169943749474241, -1.1135163644116066184),
(-4.7169310137059934362, 0.8090169943749474241, -1.1135163644116066184),
(4.7169310137059937438, -0.8090169943749474241, 1.11351636441160673519),
(4.7169310137059937438, 0.8090169943749474241, 1.11351636441160673519),
(-4.2916056095299737777, -2.1180339887498948482, 1.11351636441160673519),
(-4.2916056095299737777, 2.1180339887498948482, 1.11351636441160673519),
(4.2916056095299737777, -2.1180339887498948482, -1.1135163644116066184),
(4.2916056095299737777, 2.1180339887498948482, -1.1135163644116066184),
(-3.6034146492943870399, 0, -3.3405490932348205213),
(3.6034146492943870399, 0, 3.3405490932348202056),
(-3.3405490932348205213, -3.4270509831248422723, 1.11351636441160673519),
(-3.3405490932348205213, 3.4270509831248422723, 1.11351636441160673519),
(3.3405490932348202056, -3.4270509831248422723, -1.1135163644116066184),
(3.3405490932348202056, 3.4270509831248422723, -1.1135163644116066184),
(-2.9152236890588002395, -2.1180339887498948482, 3.3405490932348202056),
(-2.9152236890588002395, 2.1180339887498948482, 3.3405490932348202056),
(2.9152236890588002395, -2.1180339887498948482, -3.3405490932348205213),
(2.9152236890588002395, 2.1180339887498948482, -3.3405490932348205213),
(-2.2270327288232132368, 0, -1.1135163644116066184),
(-2.2270327288232132368, -4.2360679774997896964, -1.1135163644116066184),
(-2.2270327288232132368, 4.2360679774997896964, -1.1135163644116066184),
(2.2270327288232134704, 0, 1.11351636441160673519),
(2.2270327288232134704, -4.2360679774997896964, 1.11351636441160673519),
(2.2270327288232134704, 4.2360679774997896964, 1.11351636441160673519),
(-1.8017073246471935200, -1.3090169943749474241, 1.11351636441160673519),
(-1.8017073246471935200, 1.3090169943749474241, 1.11351636441160673519),
(1.8017073246471935043, -1.3090169943749474241, -1.1135163644116066184),
(1.8017073246471935043, 1.3090169943749474241, -1.1135163644116066184),
(-1.3763819204711735382, 0, -4.7169310137059934362),
(-1.3763819204711735382, 0, 0.26286555605956679615),
(1.37638192047117353821, 0, 4.7169310137059937438),
(1.37638192047117353821, 0, -0.26286555605956679615),
(-1.1135163644116066184, -3.4270509831248422723, -3.3405490932348205213),
(-1.1135163644116066184, -0.8090169943749474241, 4.7169310137059937438),
(-1.1135163644116066184, -0.8090169943749474241, -0.26286555605956679615),
(-1.1135163644116066184, 0.8090169943749474241, 4.7169310137059937438),
(-1.1135163644116066184, 0.8090169943749474241, -0.26286555605956679615),
(-1.1135163644116066184, 3.4270509831248422723, -3.3405490932348205213),
(1.11351636441160673519, -3.4270509831248422723, 3.3405490932348202056),
(1.11351636441160673519, -0.8090169943749474241, -4.7169310137059934362),
(1.11351636441160673519, -0.8090169943749474241, 0.26286555605956679615),
(1.11351636441160673519, 0.8090169943749474241, -4.7169310137059934362),
(1.11351636441160673519, 0.8090169943749474241, 0.26286555605956679615),
(1.11351636441160673519, 3.4270509831248422723, 3.3405490932348202056),
(-0.85065080835203998877, 0, 1.11351636441160673519),
(0.85065080835203993218, 0, -1.1135163644116066184),
(-0.6881909602355867691, -0.5, -1.1135163644116066184),
(-0.6881909602355867691, 0.5, -1.1135163644116066184),
(-0.6881909602355867691, -4.7360679774997896964, -1.1135163644116066184),
(-0.6881909602355867691, -2.1180339887498948482, -1.1135163644116066184),
(-0.6881909602355867691, 2.1180339887498948482, -1.1135163644116066184),
(-0.6881909602355867691, 4.7360679774997896964, -1.1135163644116066184),
(0.68819096023558676910, -0.5, 1.11351636441160673519),
(0.68819096023558676910, 0.5, 1.11351636441160673519),
(0.68819096023558676910, -4.7360679774997896964, 1.11351636441160673519),
(0.68819096023558676910, -2.1180339887498948482, 1.11351636441160673519),
(0.68819096023558676910, 2.1180339887498948482, 1.11351636441160673519),
(0.68819096023558676910, 4.7360679774997896964, 1.11351636441160673519),
(-0.42532540417601993887, -1.3090169943749474241, -4.7169310137059934362),
(-0.42532540417601993887, -1.3090169943749474241, 0.26286555605956679615),
(-0.42532540417601993887, 1.3090169943749474241, -4.7169310137059934362),
(-0.42532540417601993887, 1.3090169943749474241, 0.26286555605956679615),
(-0.26286555605956679615, -0.8090169943749474241, 1.11351636441160673519),
(-0.26286555605956679615, 0.8090169943749474241, 1.11351636441160673519),
(0.26286555605956679615, -0.8090169943749474241, -1.1135163644116066184),
(0.26286555605956679615, 0.8090169943749474241, -1.1135163644116066184),
(0.42532540417601996609, -1.3090169943749474241, 4.7169310137059937438),
(0.42532540417601996609, -1.3090169943749474241, -0.26286555605956679615),
(0.42532540417601996609, 1.3090169943749474241, 4.7169310137059937438),
(0.42532540417601996609, 1.3090169943749474241, -0.26286555605956679615)],
[9, 66, 47], [44, 62, 77], [20, 91, 49], [33, 47, 83],
[3, 77, 84], [12, 49, 53], [36, 84, 66], [28, 53, 62],
[73, 83, 91], [15, 84, 46], [25, 64, 43], [16, 58, 72],
[26, 46, 51], [11, 43, 74], [4, 72, 91], [60, 74, 84],
[35, 91, 64], [23, 51, 58], [19, 74, 77], [79, 83, 78],
[6, 56, 40], [76, 77, 81], [21, 78, 75], [8, 40, 58],
[31, 75, 74], [42, 58, 83], [41, 81, 56], [13, 75, 43],
[27, 51, 47], [2, 89, 71], [24, 43, 62], [17, 47, 85],
[14, 71, 56], [65, 85, 75], [22, 56, 51], [34, 62, 89],
[5, 85, 78], [32, 81, 46], [10, 53, 48], [45, 78, 64],
[7, 46, 66], [18, 48, 89], [37, 66, 85], [70, 89, 81],
[29, 64, 53], [88, 74, 1], [38, 67, 48], [42, 83, 72],
[57, 1, 85], [34, 48, 62], [59, 72, 87], [19, 62, 74],
[63, 87, 67], [17, 85, 83], [52, 75, 1], [39, 87, 49],
[22, 51, 40], [55, 1, 66], [29, 49, 64], [30, 40, 69],
[13, 64, 75], [82, 69, 87], [7, 66, 51], [90, 85, 1],
[59, 69, 72], [70, 81, 71], [88, 1, 84], [73, 72, 83],
[54, 71, 68], [5, 83, 85], [50, 68, 69], [3, 84, 81],
[57, 66, 1], [30, 68, 40], [28, 62, 48], [52, 1, 74],
[23, 40, 51], [38, 48, 86], [9, 51, 66], [80, 86, 68],
[11, 74, 62], [55, 84, 1], [54, 86, 71], [35, 64, 49],
[90, 1, 75], [41, 71, 81], [39, 49, 67], [15, 81, 84],
[61, 67, 86], [21, 75, 64], [24, 53, 43], [50, 69, 0],
[37, 85, 47], [31, 43, 75], [61, 0, 67], [27, 47, 58],
[10, 67, 53], [8, 58, 69], [90, 75, 85], [45, 91, 78],
[80, 68, 0], [36, 66, 46], [65, 78, 85], [63, 0, 87],
[32, 46, 56], [20, 87, 91], [14, 56, 68], [57, 85, 66],
[33, 58, 47], [61, 86, 0], [60, 84, 77], [37, 47, 66],
[82, 0, 69], [44, 77, 89], [16, 69, 58], [18, 89, 86],
[55, 66, 84], [26, 56, 46], [63, 67, 0], [31, 74, 43],
[36, 46, 84], [50, 0, 68], [25, 43, 53], [6, 68, 56],
[12, 53, 67], [88, 84, 74], [76, 89, 77], [82, 87, 0],
[65, 75, 78], [60, 77, 74], [80, 0, 86], [79, 78, 91],
[2, 86, 89], [4, 91, 87], [52, 74, 75], [21, 64, 78],
[18, 86, 48], [23, 58, 40], [5, 78, 83], [28, 48, 53],
[6, 40, 68], [25, 53, 64], [54, 68, 86], [33, 83, 58],
[17, 83, 47], [12, 67, 49], [41, 56, 71], [9, 47, 51],
[35, 49, 91], [2, 71, 86], [79, 91, 83], [38, 86, 67],
[26, 51, 56], [7, 51, 46], [4, 87, 72], [34, 89, 48],
[15, 46, 81], [42, 72, 58], [10, 48, 67], [27, 58, 51],
[39, 67, 87], [76, 81, 89], [3, 81, 77], [8, 69, 40],
[29, 53, 49], [19, 77, 62], [22, 40, 56], [20, 49, 87],
[32, 56, 81], [59, 87, 69], [24, 62, 53], [11, 62, 43],
[14, 68, 71], [73, 91, 72], [13, 43, 64], [70, 71, 89],
[16, 72, 69], [44, 89, 62], [30, 69, 68], [45, 64, 91]]
# Actual volume is : 51.405764746872634
assert Abs(polytope_integrate(echidnahedron, 1) - 51.4057647468726) < 1e-12
assert Abs(polytope_integrate(echidnahedron, expr) - 253.569603474519) <\
1e-12
# Tests for many polynomials with maximum degree given(2D case).
assert polytope_integrate(cube2, [x**2, y*z], max_degree=2) == \
{y * z: 3125 / S(4), x ** 2: 3125 / S(3)}
assert polytope_integrate(cube2, max_degree=2) == \
{1: 125, x: 625 / S(2), x * z: 3125 / S(4), y: 625 / S(2),
y * z: 3125 / S(4), z ** 2: 3125 / S(3), y ** 2: 3125 / S(3),
z: 625 / S(2), x * y: 3125 / S(4), x ** 2: 3125 / S(3)}
def test_point_sort():
assert point_sort([Point(0, 0), Point(1, 0), Point(1, 1)]) == \
[Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)]
fig6 = Polygon((0, 0), (1, 0), (1, 1))
assert polytope_integrate(fig6, x*y) == Rational(-1, 8)
assert polytope_integrate(fig6, x*y, clockwise = True) == Rational(1, 8)
def test_polytopes_intersecting_sides():
fig5 = Polygon(Point(-4.165, -0.832), Point(-3.668, 1.568),
Point(-3.266, 1.279), Point(-1.090, -2.080),
Point(3.313, -0.683), Point(3.033, -4.845),
Point(-4.395, 4.840), Point(-1.007, -3.328))
assert polytope_integrate(fig5, x**2 + x*y + y**2) ==\
S(1633405224899363)/(24*10**12)
fig6 = Polygon(Point(-3.018, -4.473), Point(-0.103, 2.378),
Point(-1.605, -2.308), Point(4.516, -0.771),
Point(4.203, 0.478))
assert polytope_integrate(fig6, x**2 + x*y + y**2) ==\
S(88161333955921)/(3*10**12)
def test_max_degree():
polygon = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
polys = [1, x, y, x*y, x**2*y, x*y**2]
assert polytope_integrate(polygon, polys, max_degree=3) == \
{1: 1, x: S.Half, y: S.Half, x*y: Rational(1, 4), x**2*y: Rational(1, 6), x*y**2: Rational(1, 6)}
def test_main_integrate3d():
cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
vertices = cube[0]
faces = cube[1:]
hp_params = hyperplane_parameters(faces, vertices)
assert main_integrate3d(1, faces, vertices, hp_params) == -125
assert main_integrate3d(1, faces, vertices, hp_params, max_degree=1) == \
{1: -125, y: Rational(-625, 2), z: Rational(-625, 2), x: Rational(-625, 2)}
def test_main_integrate():
triangle = Polygon((0, 3), (5, 3), (1, 1))
facets = triangle.sides
hp_params = hyperplane_parameters(triangle)
assert main_integrate(x**2 + y**2, facets, hp_params) == Rational(325, 6)
assert main_integrate(x**2 + y**2, facets, hp_params, max_degree=1) == \
{0: 0, 1: 5, y: Rational(35, 3), x: 10}
def test_polygon_integrate():
cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
facet = cube[1]
facets = cube[1:]
vertices = cube[0]
assert polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0) == -25
def test_distance_to_side():
point = (0, 0, 0)
assert distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0)) == -sqrt(2)/2
def test_lineseg_integrate():
polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)]
line_seg = [(0, 5, 0), (5, 5, 0)]
assert lineseg_integrate(polygon, 0, line_seg, 1, 0) == 5
assert lineseg_integrate(polygon, 0, line_seg, 0, 0) == 0
def test_integration_reduction():
triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
facets = triangle.sides
a, b = hyperplane_parameters(triangle)[0]
assert integration_reduction(facets, 0, a, b, 1, (x, y), 0) == 5
assert integration_reduction(facets, 0, a, b, 0, (x, y), 0) == 0
def test_integration_reduction_dynamic():
triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
facets = triangle.sides
a, b = hyperplane_parameters(triangle)[0]
x0 = facets[0].points[0]
monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\
[y, 0, 1, 15], [x, 1, 0, None]]
assert integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1,\
0, 1, x0, monomial_values, 3) == Rational(25, 2)
assert integration_reduction_dynamic(facets, 0, a, b, 0, 1, (x, y), 1,\
0, 1, x0, monomial_values, 3) == 0
def test_is_vertex():
assert is_vertex(2) is False
assert is_vertex((2, 3)) is True
assert is_vertex(Point(2, 3)) is True
assert is_vertex((2, 3, 4)) is True
assert is_vertex((2, 3, 4, 5)) is False
|
2467bf4070f6b92c47c8fa9fd1ca4e044005ef370419a52dec0697850ddba8af | from sympy import Rational, sqrt, symbols, sin, exp, log, sinh, cosh, cos, pi, \
I, erf, tan, asin, asinh, acos, atan, Function, Derivative, diff, simplify, \
LambertW, Ne, Piecewise, Symbol, Add, ratsimp, Integral, Sum, \
besselj, besselk, bessely, jn, tanh
from sympy.integrals.heurisch import components, heurisch, heurisch_wrapper
from sympy.testing.pytest import XFAIL, skip, slow, ON_TRAVIS
from sympy.integrals.integrals import integrate
x, y, z, nu = symbols('x,y,z,nu')
f = Function('f')
def test_components():
assert components(x*y, x) == {x}
assert components(1/(x + y), x) == {x}
assert components(sin(x), x) == {sin(x), x}
assert components(sin(x)*sqrt(log(x)), x) == \
{log(x), sin(x), sqrt(log(x)), x}
assert components(x*sin(exp(x)*y), x) == \
{sin(y*exp(x)), x, exp(x)}
assert components(x**Rational(17, 54)/sqrt(sin(x)), x) == \
{sin(x), x**Rational(1, 54), sqrt(sin(x)), x}
assert components(f(x), x) == \
{x, f(x)}
assert components(Derivative(f(x), x), x) == \
{x, f(x), Derivative(f(x), x)}
assert components(f(x)*diff(f(x), x), x) == \
{x, f(x), Derivative(f(x), x), Derivative(f(x), x)}
def test_issue_10680():
assert isinstance(integrate(x**log(x**log(x**log(x))),x), Integral)
def test_heurisch_polynomials():
assert heurisch(1, x) == x
assert heurisch(x, x) == x**2/2
assert heurisch(x**17, x) == x**18/18
# For coverage
assert heurisch_wrapper(y, x) == y*x
def test_heurisch_fractions():
assert heurisch(1/x, x) == log(x)
assert heurisch(1/(2 + x), x) == log(x + 2)
assert heurisch(1/(x + sin(y)), x) == log(x + sin(y))
# Up to a constant, where C = pi*I*Rational(5, 12), Mathematica gives identical
# result in the first case. The difference is because sympy changes
# signs of expressions without any care.
# XXX ^ ^ ^ is this still correct?
assert heurisch(5*x**5/(
2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12]
assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12
assert heurisch(1/x**2, x) == -1/x
assert heurisch(-1/x**5, x) == 1/(4*x**4)
def test_heurisch_log():
assert heurisch(log(x), x) == x*log(x) - x
assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x)
assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x]
def test_heurisch_exp():
assert heurisch(exp(x), x) == exp(x)
assert heurisch(exp(-x), x) == -exp(-x)
assert heurisch(exp(17*x), x) == exp(17*x) / 17
assert heurisch(x*exp(x), x) == x*exp(x) - exp(x)
assert heurisch(x*exp(x**2), x) == exp(x**2) / 2
assert heurisch(exp(-x**2), x) is None
assert heurisch(2**x, x) == 2**x/log(2)
assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2)
assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1)
assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x)
def test_heurisch_trigonometric():
assert heurisch(sin(x), x) == -cos(x)
assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)
assert heurisch(cos(x), x) == sin(x)
assert heurisch(tan(x), x) in [
log(1 + tan(x)**2)/2,
log(tan(x) + I) + I*x,
log(tan(x) - I) - I*x,
]
assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)
# gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
assert heurisch(cos(x)/sin(x), x) == log(sin(x))
assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
2*sin(x) + 2*x*cos(x))
assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
+ (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723
assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3
assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x)
- 1) - atan(sqrt(2)*sin(x) + 1)
assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2))
def test_heurisch_hyperbolic():
assert heurisch(sinh(x), x) == cosh(x)
assert heurisch(cosh(x), x) == sinh(x)
assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x)
assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x)
assert heurisch(
x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4
def test_heurisch_mixed():
assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2
def test_heurisch_radicals():
assert heurisch(1/sqrt(x), x) == 2*sqrt(x)
assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x)
assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3
y = Symbol('y')
assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise(
(-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, Ne(y, 0)),
(0, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
def test_heurisch_special():
assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi)
assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4
def test_heurisch_symbolic_coeffs():
assert heurisch(1/(x + y), x) == log(x + y)
assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2))
assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)
def test_heurisch_symbolic_coeffs_1130():
y = Symbol('y')
assert heurisch_wrapper(1/(x**2 + y), x) == Piecewise(
(-I*log(x - I*sqrt(y))/(2*sqrt(y))
+ I*log(x + I*sqrt(y))/(2*sqrt(y)), Ne(y, 0)),
(-1/x, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(1/(x**2 + y), x) == (atan(x/sqrt(y))/sqrt(y))
def test_heurisch_hacking():
assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14
assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
sqrt(7)*asinh(sqrt(7)*x)/7
assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
sqrt(7)*asin(sqrt(7)*x)/7
assert heurisch(exp(-7*x**2), x, hints=[]) == \
sqrt(7*pi)*erf(sqrt(7)*x)/14
assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
asin(x*Rational(2, 3))/2
assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
asinh(x*Rational(2, 3))/2
def test_heurisch_function():
assert heurisch(f(x), x) is None
@XFAIL
def test_heurisch_function_derivative():
# TODO: it looks like this used to work just by coincindence and
# thanks to sloppy implementation. Investigate why this used to
# work at all and if support for this can be restored.
df = diff(f(x), x)
assert heurisch(f(x)*df, x) == f(x)**2/2
assert heurisch(f(x)**2*df, x) == f(x)**3/3
assert heurisch(df/f(x), x) == log(f(x))
def test_heurisch_wrapper():
f = 1/(y + x)
assert heurisch_wrapper(f, x) == log(x + y)
f = 1/(y - x)
assert heurisch_wrapper(f, x) == -log(x - y)
f = 1/((y - x)*(y + x))
assert heurisch_wrapper(f, x) == Piecewise(
(-log(x - y)/(2*y) + log(x + y)/(2*y), Ne(y, 0)), (1/x, True))
# issue 6926
f = sqrt(x**2/((y - x)*(y + x)))
assert heurisch_wrapper(f, x) == x*sqrt(x**2)*sqrt(1/(-x**2 + y**2)) \
- y**2*sqrt(x**2)*sqrt(1/(-x**2 + y**2))/x
def test_issue_3609():
assert heurisch(1/(x * (1 + log(x)**2)), x) == atan(log(x))
### These are examples from the Poor Man's Integrator
### http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples/
def test_pmint_rat():
# TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
# would give the optimal result?
def drop_const(expr, x):
if expr.is_Add:
return Add(*[ arg for arg in expr.args if arg.has(x) ])
else:
return expr
f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)
assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_pmint_trig():
f = (x - tan(x)) / tan(x)**2 + tan(x)
g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2
assert heurisch(f, x) == g
@slow # 8 seconds on 3.4 GHz
def test_pmint_logexp():
if ON_TRAVIS:
# See https://github.com/sympy/sympy/pull/12795
skip("Too slow for travis.")
f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))
assert ratsimp(heurisch(f, x)) == g
@XFAIL # there's a hash dependent failure lurking here
def test_pmint_erf():
f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1)
g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4)
assert ratsimp(heurisch(f, x)) == g
def test_pmint_LambertW():
f = LambertW(x)
g = x*LambertW(x) - x + x/LambertW(x)
assert heurisch(f, x) == g
def test_pmint_besselj():
f = besselj(nu + 1, x)/besselj(nu, x)
g = nu*log(x) - log(besselj(nu, x))
assert heurisch(f, x) == g
f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x
g = besselj(nu, x)
assert heurisch(f, x) == g
f = jn(nu + 1, x)/jn(nu, x)
g = nu*log(x) - log(jn(nu, x))
assert heurisch(f, x) == g
@slow
def test_pmint_bessel_products():
# Note: Derivatives of Bessel functions have many forms.
# Recurrence relations are needed for comparisons.
if ON_TRAVIS:
skip("Too slow for travis.")
f = x*besselj(nu, x)*bessely(nu, 2*x)
g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3
assert heurisch(f, x) == g
f = x*besselj(nu, x)*besselk(nu, 2*x)
g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5
assert heurisch(f, x) == g
@slow # 110 seconds on 3.4 GHz
def test_pmint_WrightOmega():
if ON_TRAVIS:
skip("Too slow for travis.")
def omega(x):
return LambertW(exp(x))
f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x))
g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x)))
assert heurisch(f, x) == g
def test_RR():
# Make sure the algorithm does the right thing if the ring is RR. See
# issue 8685.
assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \
0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x)
# TODO: convert the rest of PMINT tests:
# Airy functions
# f = (x - AiryAi(x)*AiryAi(1, x)) / (x**2 - AiryAi(x)**2)
# g = Rational(1,2)*ln(x + AiryAi(x)) + Rational(1,2)*ln(x - AiryAi(x))
# f = x**2 * AiryAi(x)
# g = -AiryAi(x) + AiryAi(1, x)*x
# Whittaker functions
# f = WhittakerW(mu + 1, nu, x) / (WhittakerW(mu, nu, x) * x)
# g = x/2 - mu*ln(x) - ln(WhittakerW(mu, nu, x))
|
742686ad052964dff15292550f8f7cbb320f15a433945173f36a98ec80eb7bd3 | from sympy import (
Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh,
tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi,
EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase,
integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan,
Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign,
simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol, summation,
symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar, li, hyper
)
from sympy.core.expr import unchanged
from sympy.functions.elementary.complexes import periodic_argument
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import Integral
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.testing.pytest import (raises, slow, skip, ON_TRAVIS,
warns_deprecated_sympy)
from sympy.testing.randtest import verify_numerically
x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b')
n = Symbol('n', integer=True)
f = Function('f')
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_poly_deprecated():
p = Poly(2*x, x)
assert p.integrate(x) == Poly(x**2, x, domain='QQ')
with warns_deprecated_sympy():
integrate(p, x)
with warns_deprecated_sympy():
Integral(p, (x,))
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() is oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) is S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2)
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_issue_18038():
raises(AttributeError, lambda: integrate((x, x)))
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
with warns_deprecated_sympy():
qx = integrate(p, x)
with warns_deprecated_sympy():
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_defined():
p = Poly(x + x**2*y + y**3, x, y)
with warns_deprecated_sympy():
Qx = integrate(p, (x, 0, 1))
with warns_deprecated_sympy():
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == S.Half + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in sympy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2.0*cos(pi*n)/(pi*n)
assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == Rational(-1, 2)
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_18133():
assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x)
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
i = Integral(x, (x, a, b))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2))
raises(ValueError, lambda: i.transform(x, 1))
raises(ValueError, lambda: i.transform(x, s*t))
raises(ValueError, lambda: i.transform(x, -s))
raises(ValueError, lambda: i.transform(x, (s, t)))
raises(ValueError, lambda: i.transform(2*x, 2*s))
i = Integral(x**2, (x, 1, 2))
raises(ValueError, lambda: i.transform(x**2, s))
am = Symbol('a', negative=True)
bp = Symbol('b', positive=True)
i = Integral(x, (x, bp, am))
i.transform(x, 2*s)
assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2))
i = Integral(x, (x, a))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2))
def test_issue_4052():
f = S.Half*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
def test_double_previously_failing_integrals():
# Double integrals not implemented <- Sure it is!
res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1))
# Old numerical test
assert NS(res, 15) == '2.43790283299492'
# Symbolic test
assert res == Rational(-4, 3) + 8*sqrt(2)/3
# double integral + zero detection
assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert unchanged(Integral, in_3, (x,))
assert Integral(in_3, x) == Integral(in_3, (x,))
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12)
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', extended_real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2)
assert integrate(Abs(x), (x, 0, 1)) == S.Half
assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2)
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3)
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2
assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2
assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2
assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + Rational(1, 3) - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2
assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2
assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2
assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2
assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8)
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54)
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32)
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + Rational(1, 3) + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == Rational(1, 4)
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_issue_18153():
assert integrate(x**n*log(x),x) == \
Piecewise(
(n*x*x**n*log(x)/(n**2 + 2*n + 1) +
x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1)
, Ne(n, -1)), (log(x)**2/2, True)
)
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
{x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
-z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4551():
assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral)
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \
Piecewise((0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))),
(pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))),
(0, True))
# Should be possible to further simplify to:
# Piecewise(
# (0, Eq(k, 0) | Eq(m, 0)),
# (-pi/2, Eq(k, -m)),
# (pi/2, Eq(k, m)),
# (0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
@slow
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True, finite=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy import meijerg
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \
(log(z) + EulerGamma + log(pi))/z - Ci(pi**2*z)/z + log(pi)/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
from sympy import Si
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
from sympy import simplify
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
assert integrate(sin(x)/x, x) == Si(x)
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy import simplify, expand_func, polygamma, gamma
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy import lowergamma, simplify
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) is oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R))
assert not e.has(nan)
# See that it evaluates
assert not e.has(Integral)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == (
-128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 +
(16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
(8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368():
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S.Half,), (0, 0)),
((0, S.Half), (0,)),
polar_lift(s)**2),
True)
),
And(
Abs(periodic_argument(polar_lift(s)**2, oo)) < pi,
cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0,
Ne(s**2, 1))
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Ne(1/s, 1),
Abs(periodic_argument(s, oo)) < pi/2,
Abs(periodic_argument(s, oo)) <= pi/2,
cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_TRAVIS:
skip("Too slow for travis.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
@slow
def test_issue_11876():
assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) is oo
assert integrate(1/x**2, (x, -1, 1)) is oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo
assert integrate(1/x**2, (x, 1, -1)) is -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6)
def test_issue_14078():
assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \
x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) is S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == \
log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1))
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
@slow
def test_issue_14782_slow():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16
def test_issue_12081():
f = x**(Rational(-3, 2))*exp(-x)
assert integrate(f, [x, 0, oo]) is oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
with warns_deprecated_sympy():
Integral(Eq(x, y))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
with warns_deprecated_sympy():
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
# These are not deprecated because they are definite integrals
assert integrate(Eq(x, y), (x, 0, 1)) == Eq(S.Half, y)
assert Eq(x, y).integrate((x, 0, 1)) == Eq(S.Half, y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
def test_issue_4311_fast():
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3),
(x**4/4 - 9*x**2/2, True))
def test_integrate_with_complex_constants():
K = Symbol('K', real=True, positive=True)
x = Symbol('x', real=True)
m = Symbol('m', real=True)
assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2
/(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K))
assert integrate(1/(1 + I*x**2), x) == -sqrt(I)*log(x - sqrt(I))/2 +\
sqrt(I)*log(x + sqrt(I))/2
assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I))
def test_issue_14241():
x = Symbol('x')
n = Symbol('n', positive=True, integer=True)
assert integrate(n * x ** (n - 1) / (x + 1), x) == \
n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1)
def test_issue_13112():
assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4
def test_issue_14709b():
h = Symbol('h', positive=True)
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert i == 5*h**2*pi/16
def test_issue_8614():
x = Symbol('x')
t = Symbol('t')
assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x)
assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2)
def test_issue_15494():
s = symbols('s', real=True, positive=True)
integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s)
solution = integrate(integrand, s)
assert solution != S.NaN
# Not sure how to test this properly as it is a symbolic expression with floats
# assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)'
# Maybe
assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8
integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s)
assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2
def test_li_integral():
y = Symbol('y')
assert Integral(li(y*x**2), x).doit() == Piecewise(
(x*li(x**2*y) - x*Ei(3*log(x) + 3*log(y)/2)/(sqrt(y)*sqrt(x**2)), Ne(y, 0)),
(0, True))
def test_issue_17473():
x = Symbol('x')
n = Symbol('n')
assert integrate(sin(x**n), x) == \
x*x**n*gamma(S(1)/2 + 1/(2*n))*hyper((S(1)/2 + 1/(2*n),),
(S(3)/2, S(3)/2 + 1/(2*n)),
-x**(2*n)/4)/(2*n*gamma(S(3)/2 + 1/(2*n)))
def test_issue_17671():
assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma
assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2
assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -2*log(3)/9 - EulerGamma/9
def test_issue_2975():
w = Symbol('w')
C = Symbol('C')
y = Symbol('y')
assert integrate(1/(y**2+C)**(S(3)/2), (y, -w/2, w/2)) == w/(C**(S(3)/2)*sqrt(1 + w**2/(4*C)))
def test_issue_7827():
x, n, M = symbols('x n M')
N = Symbol('N', integer=True)
assert integrate(summation(x*n, (n, 1, N)), x) == x**2*(N**2/4 + N/4)
assert integrate(summation(x*sin(n), (n,1,N)), x) == \
Sum(x**2*sin(n)/2, (n, 1, N))
assert integrate(summation(sin(n*x), (n,1,N)), x) == \
Sum(Piecewise((-cos(n*x)/n, Ne(n, 0)), (0, True)), (n, 1, N))
assert integrate(integrate(summation(sin(n*x), (n,1,N)), x), x) == \
Piecewise((Sum(Piecewise((-sin(n*x)/n**2, Ne(n, 0)), (-x/n, True)),
(n, 1, N)), (n > -oo) & (n < oo) & Ne(n, 0)), (0, True))
assert integrate(Sum(x, (n, 1, M)), x) == M*x**2/2
raises(ValueError, lambda: integrate(Sum(x, (x, y, n)), y))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, n)), n))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, y)), x))
def test_issue_4231():
f = (1 + 2*x + sqrt(x + log(x))*(1 + 3*x) + x**2)/(x*(x + sqrt(x + log(x)))*sqrt(x + log(x)))
assert integrate(f, x) == 2*sqrt(x + log(x)) + 2*log(x + sqrt(x + log(x)))
def test_issue_17841():
f = diff(1/(x**2+x+I), x)
assert integrate(f, x) == 1/(x**2 + x + I)
|
86c86fe47761e0a8391155084bca9af85b1a7e1fcc3adcdd05a77187021906c6 | """Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, Ne, Piecewise, factor, expand_log, cancel,
diff, pi, atan, Rational)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
hermite_reduce, polynomial_reduce, residue_reduce, residue_reduce_to_basic,
integrate_primitive, integrate_hyperexponential_polynomial,
integrate_hyperexponential, integrate_hypertangent_polynomial,
integrate_nonlinear_no_specials, integer_powers, DifferentialExtension,
risch_integrate, DecrementLevel, NonElementaryIntegral, recognize_log_derivative,
recognize_derivative, laurent_series)
from sympy.testing.pytest import raises
from sympy.abc import x, t, nu, z, a, y
t0, t1, t2 = symbols('t:3')
i = Symbol('i')
def test_gcdex_diophantine():
assert gcdex_diophantine(Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15),
Poly(x**3 + x**2 - 4*x - 4), Poly(x**2 - 1)) == \
(Poly((-x**2 + 4*x - 3)/5), Poly((x**3 - 7*x**2 + 16*x - 10)/5))
assert gcdex_diophantine(Poly(x**3 + 6*x + 7), Poly(x**2 + 3*x + 2), Poly(x + 1)) == \
(Poly(1/13, x, domain='QQ'), Poly(-1/13*x + 3/13, x, domain='QQ'))
def test_frac_in():
assert frac_in(Poly((x + 1)/x*t, t), x) == \
(Poly(t*x + t, x), Poly(x, x))
assert frac_in((x + 1)/x*t, x) == \
(Poly(t*x + t, x), Poly(x, x))
assert frac_in((Poly((x + 1)/x*t, t), Poly(t + 1, t)), x) == \
(Poly(t*x + t, x), Poly((1 + t)*x, x))
raises(ValueError, lambda: frac_in((x + 1)/log(x)*t, x))
assert frac_in(Poly((2 + 2*x + x*(1 + x))/(1 + x)**2, t), x, cancel=True) == \
(Poly(x + 2, x), Poly(x + 1, x))
def test_as_poly_1t():
assert as_poly_1t(2/t + t, t, z) in [
Poly(t + 2*z, t, z), Poly(t + 2*z, z, t)]
assert as_poly_1t(2/t + 3/t**2, t, z) in [
Poly(2*z + 3*z**2, t, z), Poly(2*z + 3*z**2, z, t)]
assert as_poly_1t(2/((exp(2) + 1)*t), t, z) in [
Poly(2/(exp(2) + 1)*z, t, z), Poly(2/(exp(2) + 1)*z, z, t)]
assert as_poly_1t(2/((exp(2) + 1)*t) + t, t, z) in [
Poly(t + 2/(exp(2) + 1)*z, t, z), Poly(t + 2/(exp(2) + 1)*z, z, t)]
assert as_poly_1t(S.Zero, t, z) == Poly(0, t, z)
def test_derivation():
p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
(2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
(21*x**2 + 12*x**3)*t**4 + (x*Rational(7, 2) - 25*x**2 - 12*x**3)*t**3 +
(-5 - x*Rational(15, 2) + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
(1 - 4*x**2)/(2*x), t)
assert derivation(Poly(1, t), DE) == Poly(0, t)
assert derivation(Poly(t, t), DE) == DE.d
assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})
assert derivation(Poly(x*t*t1, t), DE) == Poly(t*t1 + x*t*t1 + t, t)
assert derivation(Poly(x*t*t1, t), DE, coefficientD=True) == \
Poly((1 + t1)*t, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert derivation(Poly(x, x), DE) == Poly(1, x)
# Test basic option
assert derivation((x + 1)/(x - 1), DE, basic=True) == -2/(1 - 2*x + x**2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert derivation((t + 1)/(t - 1), DE, basic=True) == -2*t/(1 - 2*t + t**2)
assert derivation(t + 1, DE, basic=True) == t
def test_splitfactor():
p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
(2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t, field=True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
assert splitfactor(p, DE) == (Poly(4*x**4*t**3 + (-8*x**3 - 4*x**4)*t**2 +
(4*x**2 + 8*x**3)*t - 4*x**2, t, domain='ZZ(x)'),
Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t, domain='ZZ(x)'))
assert splitfactor(Poly(x, t), DE) == (Poly(x, t), Poly(1, t))
r = Poly(-4*x**4*z**2 + 4*x**6*z**2 - z*x**3 - 4*x**5*z**3 + 4*x**3*z**3 + x**4 + z*x**5 - x**6, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert splitfactor(r, DE, coefficientD=True) == \
(Poly(x*z - x**2 - z*x**3 + x**4, t), Poly(-x**2 + 4*x**2*z**2, t))
assert splitfactor_sqf(r, DE, coefficientD=True) == \
(((Poly(x*z - x**2 - z*x**3 + x**4, t), 1),), ((Poly(-x**2 + 4*x**2*z**2, t), 1),))
assert splitfactor(Poly(0, t), DE) == (Poly(0, t), Poly(1, t))
assert splitfactor_sqf(Poly(0, t), DE) == (((Poly(0, t), 1),), ())
def test_canonical_representation():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert canonical_representation(Poly(x - t, t), Poly(t**2, t), DE) == \
(Poly(0, t, domain='ZZ[x]'), (Poly(0, t, domain='QQ[x]'),
Poly(1, t, domain='ZZ')), (Poly(-t + x, t, domain='QQ[x]'),
Poly(t**2, t)))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert canonical_representation(Poly(t**5 + t**3 + x**2*t + 1, t),
Poly((t**2 + 1)**3, t), DE) == \
(Poly(0, t, domain='ZZ[x]'), (Poly(t**5 + t**3 + x**2*t + 1, t, domain='QQ[x]'),
Poly(t**6 + 3*t**4 + 3*t**2 + 1, t, domain='QQ')),
(Poly(0, t, domain='QQ[x]'), Poly(1, t, domain='QQ')))
def test_hermite_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert hermite_reduce(Poly(x - t, t), Poly(t**2, t), DE) == \
((Poly(-x, t, domain='QQ[x]'), Poly(t, t, domain='QQ[x]')),
(Poly(0, t, domain='QQ[x]'), Poly(1, t, domain='QQ[x]')),
(Poly(-x, t, domain='QQ[x]'), Poly(1, t, domain='QQ[x]')))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})
assert hermite_reduce(
Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 - nu**2)*t - x**5/4, t),
Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t), DE) == \
((Poly(-x**2 - 4, t, domain='ZZ(x,nu)'), Poly(4*t**2 + 2*x**2 + 4, t, domain='ZZ(x,nu)')),
(Poly((-2*nu**2 - x**4)*t - (2*x**3 + 2*x), t, domain='ZZ(x,nu)'),
Poly(2*x**2*t**2 + x**4 + 2*x**2, t, domain='ZZ(x,nu)')),
(Poly(x*t + 1, t, domain='ZZ(x,nu)'), Poly(x, t, domain='ZZ(x,nu)')))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
a = Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t)
d = Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t)
assert hermite_reduce(a, d, DE) == \
((Poly(3*t**2 + t + 3*x, t, domain='ZZ(x)'),
Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')))
assert hermite_reduce(
Poly(-t**2 + 2*t + 2, t, domain='ZZ(x)'),
Poly(-x*t**2 + 2*x*t - x, t, domain='ZZ(x)'), DE) == \
((Poly(3, t, domain='ZZ(x)'), Poly(t - 1, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')),
(Poly(1, t, domain='ZZ(x)'), Poly(x, t, domain='ZZ(x)')))
assert hermite_reduce(
Poly(-x**2*t**6 + (-1 - 2*x**3 + x**4)*t**3 + (-3 - 3*x**4)*t**2 -
2*x*t - x - 3*x**2, t, domain='ZZ(x)'),
Poly(x**4*t**6 - 2*x**2*t**3 + 1, t, domain='ZZ(x)'), DE) == \
((Poly(x**3*t + x**4 + 1, t, domain='ZZ(x)'), Poly(x**3*t**3 - x, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')),
(Poly(-1, t, domain='ZZ(x)'), Poly(x**2, t, domain='ZZ(x)')))
assert hermite_reduce(
Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t),
Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t), DE) == \
((Poly(3*t**2 + t + 3*x, t, domain='ZZ(x)'),
Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')),
(Poly(0, t, domain='ZZ(x)'), Poly(1, t, domain='ZZ(x)')))
def test_polynomial_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert polynomial_reduce(Poly(1 + x*t + t**2, t), DE) == \
(Poly(t, t), Poly(x*t, t))
assert polynomial_reduce(Poly(0, t), DE) == \
(Poly(0, t), Poly(0, t))
def test_laurent_series():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
a = Poly(36, t)
d = Poly((t - 2)*(t**2 - 1)**2, t)
F = Poly(t**2 - 1, t)
n = 2
assert laurent_series(a, d, F, n, DE) == \
(Poly(-3*t**3 + 3*t**2 - 6*t - 8, t), Poly(t**5 + t**4 - 2*t**3 - 2*t**2 + t + 1, t),
[Poly(-3*t**3 - 6*t**2, t, domain='QQ'), Poly(2*t**6 + 6*t**5 - 8*t**3, t, domain='QQ')])
def test_recognize_derivative():
DE = DifferentialExtension(extension={'D': [Poly(1, t)]})
a = Poly(36, t)
d = Poly((t - 2)*(t**2 - 1)**2, t)
assert recognize_derivative(a, d, DE) == False
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
a = Poly(2, t)
d = Poly(t**2 - 1, t)
assert recognize_derivative(a, d, DE) == False
assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert recognize_derivative(Poly(t, t), Poly(1, t), DE) == True
def test_recognize_log_derivative():
a = Poly(2*x**2 + 4*x*t - 2*t - x**2*t, t)
d = Poly((2*x + t)*(t + x**2), t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert recognize_log_derivative(a, d, DE, z) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert recognize_log_derivative(Poly(t + 1, t), Poly(t + x, t), DE) == True
assert recognize_log_derivative(Poly(2, t), Poly(t**2 - 1, t), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert recognize_log_derivative(Poly(1, x), Poly(x**2 - 2, x), DE) == False
assert recognize_log_derivative(Poly(1, x), Poly(x**2 + x, x), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert recognize_log_derivative(Poly(1, t), Poly(t**2 - 2, t), DE) == False
assert recognize_log_derivative(Poly(1, t), Poly(t**2 + t, t), DE) == False
def test_residue_reduce():
a = Poly(2*t**2 - t - x**2, t)
d = Poly(t**3 - x**2*t, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]})
assert residue_reduce(a, d, DE, z, invert=False) == \
([(Poly(z**2 - Rational(1, 4), z, domain='ZZ(x)'),
Poly((1 + 3*x*z - 6*z**2 - 2*x**2 + 4*x**2*z**2)*t - x*z + x**2 +
2*x**2*z**2 - 2*z*x**3, t, domain='ZZ(z, x)'))], False)
assert residue_reduce(a, d, DE, z, invert=True) == \
([(Poly(z**2 - Rational(1, 4), z, domain='ZZ(x)'), Poly(t + 2*x*z, t))], False)
assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
([(Poly(z**2 - 1, z, domain='QQ'), Poly(-2*z*t/x - 2/x, t, domain='ZZ(z,x)'))], True)
ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
assert ans == ([(Poly(z**2 - 1, z, domain='QQ'), Poly(t + z, t))], True)
assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})
# TODO: Skip or make faster
assert residue_reduce(Poly((-2*nu**2 - x**4)/(2*x**2)*t - (1 + x**2)/x, t),
Poly(t**2 + 1 + x**2/2, t), DE, z) == \
([(Poly(z + S.Half, z, domain='QQ'), Poly(t**2 + 1 + x**2/2, t,
domain='ZZ(x,nu)'))], True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert residue_reduce(Poly(-2*x*t + 1 - x**2, t),
Poly(t**2 + 2*x*t + 1 + x**2, t), DE, z) == \
([(Poly(z**2 + Rational(1, 4), z), Poly(t + x + 2*z, t))], True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert residue_reduce(Poly(t, t), Poly(t + sqrt(2), t), DE, z) == \
([(Poly(z - 1, z, domain='QQ'), Poly(t + sqrt(2), t))], True)
def test_integrate_hyperexponential():
# TODO: Add tests for integrate_hyperexponential() from the book
a = Poly((1 + 2*t1 + t1**2 + 2*t1**3)*t**2 + (1 + t1**2)*t + 1 + t1**2, t)
d = Poly(1, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1),
Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]})
assert integrate_hyperexponential(a, d, DE) == \
(exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True)
a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t)
assert integrate_hyperexponential(a, d, DE) == \
((x + tan(x))*exp(tan(x)), 0, True)
a = Poly(t, t)
d = Poly(1, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*x*t, t)],
'Tfuncs': [Lambda(i, exp(x**2))]})
assert integrate_hyperexponential(a, d, DE) == \
(0, NonElementaryIntegral(exp(x**2), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True)
a = Poly(25*t**6 - 10*t**5 + 7*t**4 - 8*t**3 + 13*t**2 + 2*t - 1, t)
d = Poly(25*t**6 + 35*t**4 + 11*t**2 + 1, t)
assert integrate_hyperexponential(a, d, DE) == \
(-(11 - 10*exp(x))/(5 + 25*exp(2*x)) + log(1 + exp(2*x)), -1, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(t0*t, t)],
'Tfuncs': [exp, Lambda(i, exp(exp(i)))]})
assert integrate_hyperexponential(Poly(2*t0*t**2, t), Poly(1, t), DE) == (exp(2*exp(x)), 0, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(-t0*t, t)],
'Tfuncs': [exp, Lambda(i, exp(-exp(i)))]})
assert integrate_hyperexponential(Poly(-27*exp(9) - 162*t0*exp(9) +
27*x*t0*exp(9), t), Poly((36*exp(18) + x**2*exp(18) - 12*x*exp(18))*t, t), DE) == \
(27*exp(exp(x))/(-6*exp(9) + x*exp(9)), 0, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(Poly(x**2/2*t, t), Poly(1, t), DE) == \
((2 - 2*x + x**2)*exp(x)/2, 0, True)
assert integrate_hyperexponential(Poly(1 + t, t), Poly(t, t), DE) == \
(-exp(-x), 1, True) # x - exp(-x)
assert integrate_hyperexponential(Poly(x, t), Poly(t + 1, t), DE) == \
(0, NonElementaryIntegral(x/(1 + exp(x)), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)],
'Tfuncs': [log, Lambda(i, exp(i**2))]})
elem, nonelem, b = integrate_hyperexponential(Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 +
(8*t0*x**7 - 8*t0*x**6 - 4*t0*x**5 + 2*t0*x**3 + 2*t0*x**2 - t0*x +
24*x**8 - 36*x**6 - 4*x**5 + 22*x**4 + 4*x**3 - 7*x**2 - x + 1)*t1**3
+ (8*t0*x**8 - 4*t0*x**6 - 16*t0*x**5 - 2*t0*x**4 + 12*t0*x**3 +
t0*x**2 - 2*t0*x + 24*x**9 - 36*x**7 - 8*x**6 + 22*x**5 + 12*x**4 -
7*x**3 - 6*x**2 + x + 1)*t1**2 + (8*t0*x**8 - 8*t0*x**6 - 16*t0*x**5 +
6*t0*x**4 + 10*t0*x**3 - 2*t0*x**2 - t0*x + 8*x**10 - 12*x**8 - 4*x**7
+ 2*x**6 + 12*x**5 + 3*x**4 - 9*x**3 - x**2 + 2*x)*t1 + 8*t0*x**7 -
12*t0*x**6 - 4*t0*x**5 + 8*t0*x**4 - t0*x**2 - 4*x**7 + 4*x**6 +
4*x**5 - 4*x**4 - x**3 + x**2, t1), Poly((8*x**7 - 12*x**5 + 6*x**3 -
x)*t1**4 + (24*x**8 + 8*x**7 - 36*x**6 - 12*x**5 + 18*x**4 + 6*x**3 -
3*x**2 - x)*t1**3 + (24*x**9 + 24*x**8 - 36*x**7 - 36*x**6 + 18*x**5 +
18*x**4 - 3*x**3 - 3*x**2)*t1**2 + (8*x**10 + 24*x**9 - 12*x**8 -
36*x**7 + 6*x**6 + 18*x**5 - x**4 - 3*x**3)*t1 + 8*x**10 - 12*x**8 +
6*x**6 - x**4, t1), DE)
assert factor(elem) == -((x - 1)*log(x)/((x + exp(x**2))*(2*x**2 - 1)))
assert (nonelem, b) == (NonElementaryIntegral(exp(x**2)/(exp(x**2) + 1), x), False)
def test_integrate_hyperexponential_polynomial():
# Without proper cancellation within integrate_hyperexponential_polynomial(),
# this will take a long time to complete, and will return a complicated
# expression
p = Poly((-28*x**11*t0 - 6*x**8*t0 + 6*x**9*t0 - 15*x**8*t0**2 +
15*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 20*x**6*t0**3 +
20*x**7*t0**3 - 15*x**6*t0**4 + 15*x**5*t0**4 + 140*x**8*t0**4 -
84*x**7*t0**5 - 6*x**4*t0**5 + 6*x**5*t0**5 + x**3*t0**6 - x**4*t0**6 +
28*x**6*t0**6 - 4*x**5*t0**7 + x**9 - x**10 + 4*x**12)/(-8*x**11*t0 +
28*x**10*t0**2 - 56*x**9*t0**3 + 70*x**8*t0**4 - 56*x**7*t0**5 +
28*x**6*t0**6 - 8*x**5*t0**7 + x**4*t0**8 + x**12)*t1**2 +
(-28*x**11*t0 - 12*x**8*t0 + 12*x**9*t0 - 30*x**8*t0**2 +
30*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 40*x**6*t0**3 +
40*x**7*t0**3 - 30*x**6*t0**4 + 30*x**5*t0**4 + 140*x**8*t0**4 -
84*x**7*t0**5 - 12*x**4*t0**5 + 12*x**5*t0**5 - 2*x**4*t0**6 +
2*x**3*t0**6 + 28*x**6*t0**6 - 4*x**5*t0**7 + 2*x**9 - 2*x**10 +
4*x**12)/(-8*x**11*t0 + 28*x**10*t0**2 - 56*x**9*t0**3 +
70*x**8*t0**4 - 56*x**7*t0**5 + 28*x**6*t0**6 - 8*x**5*t0**7 +
x**4*t0**8 + x**12)*t1 + (-2*x**2*t0 + 2*x**3*t0 + x*t0**2 -
x**2*t0**2 + x**3 - x**4)/(-4*x**5*t0 + 6*x**4*t0**2 - 4*x**3*t0**3 +
x**2*t0**4 + x**6), t1, z, expand=False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)]})
assert integrate_hyperexponential_polynomial(p, DE, z) == (
Poly((x - t0)*t1**2 + (-2*t0 + 2*x)*t1, t1), Poly(-2*x*t0 + x**2 +
t0**2, t1), True)
DE = DifferentialExtension(extension={'D':[Poly(1, x), Poly(t0, t0)]})
assert integrate_hyperexponential_polynomial(Poly(0, t0), DE, z) == (
Poly(0, t0), Poly(1, t0), True)
def test_integrate_hyperexponential_returns_piecewise():
a, b = symbols('a b')
DE = DifferentialExtension(a**x, x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(x*log(a))/log(a), Ne(log(a), 0)), (x, True)), 0, True)
DE = DifferentialExtension(a**(b*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(b*x*log(a))/(b*log(a)), Ne(b*log(a), 0)), (x, True)), 0, True)
DE = DifferentialExtension(exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(a*x)/a, Ne(a, 0)), (x, True)), 0, True)
DE = DifferentialExtension(x*exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((a*x - 1)*exp(a*x)/a**2, Ne(a**2, 0)), (x**2/2, True)), 0, True)
DE = DifferentialExtension(x**2*exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((x**2*a**2 - 2*a*x + 2)*exp(a*x)/a**3, Ne(a**3, 0)),
(x**3/3, True)), 0, True)
DE = DifferentialExtension(x**y + z, y)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(log(x)*y)/log(x), Ne(log(x), 0)), (y, True)), z, True)
DE = DifferentialExtension(x**y + z + x**(2*y), y)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((exp(2*log(x)*y)*log(x) +
2*exp(log(x)*y)*log(x))/(2*log(x)**2), Ne(2*log(x)**2, 0)),
(2*y, True),
), z, True)
# TODO: Add a test where two different parts of the extension use a
# Piecewise, like y**x + z**x.
def test_issue_13947():
a, t, s = symbols('a t s')
assert risch_integrate(2**(-pi)/(2**t + 1), t) == \
2**(-pi)*t - 2**(-pi)*log(2**t + 1)/log(2)
assert risch_integrate(a**(t - s)/(a**t + 1), t) == \
exp(-s*log(a))*log(a**t + 1)/log(a)
def test_integrate_primitive():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)],
'Tfuncs': [log]})
assert integrate_primitive(Poly(t, t), Poly(1, t), DE) == (x*log(x), -1, True)
assert integrate_primitive(Poly(x, t), Poly(t, t), DE) == (0, NonElementaryIntegral(x/log(x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)],
'Tfuncs': [log, Lambda(i, log(i + 1))]})
assert integrate_primitive(Poly(t1, t2), Poly(t2, t2), DE) == \
(0, NonElementaryIntegral(log(x)/log(1 + x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x*t1), t2)],
'Tfuncs': [log, Lambda(i, log(log(i)))]})
assert integrate_primitive(Poly(t2, t2), Poly(t1, t2), DE) == \
(0, NonElementaryIntegral(log(log(x))/log(x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0)],
'Tfuncs': [log]})
assert integrate_primitive(Poly(x**2*t0**3 + (3*x**2 + x)*t0**2 + (3*x**2
+ 2*x)*t0 + x**2 + x, t0), Poly(x**2*t0**4 + 4*x**2*t0**3 + 6*x**2*t0**2 +
4*x**2*t0 + x**2, t0), DE) == \
(-1/(log(x) + 1), NonElementaryIntegral(1/(log(x) + 1), x), False)
def test_integrate_hypertangent_polynomial():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert integrate_hypertangent_polynomial(Poly(t**2 + x*t + 1, t), DE) == \
(Poly(t, t), Poly(x/2, t))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(a*(t**2 + 1), t)]})
assert integrate_hypertangent_polynomial(Poly(t**5, t), DE) == \
(Poly(1/(4*a)*t**4 - 1/(2*a)*t**2, t), Poly(1/(2*a), t))
def test_integrate_nonlinear_no_specials():
a, d, = Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 -
nu**2)*t - x**5/4, t), Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t)
# f(x) == phi_nu(x), the logarithmic derivative of J_v, the Bessel function,
# which has no specials (see Chapter 5, note 4 of Bronstein's book).
f = Function('phi_nu')
DE = DifferentialExtension(extension={'D': [Poly(1, x),
Poly(-t**2 - t/x - (1 - nu**2/x**2), t)], 'Tfuncs': [f]})
assert integrate_nonlinear_no_specials(a, d, DE) == \
(-log(1 + f(x)**2 + x**2/2)/2 - (4 + x**2)/(4 + 2*x**2 + 4*f(x)**2), True)
assert integrate_nonlinear_no_specials(Poly(t, t), Poly(1, t), DE) == \
(0, False)
def test_integer_powers():
assert integer_powers([x, x/2, x**2 + 1, x*Rational(2, 3)]) == [
(x/6, [(x, 6), (x/2, 3), (x*Rational(2, 3), 4)]),
(1 + x**2, [(1 + x**2, 1)])]
def test_DifferentialExtension_exp():
assert DifferentialExtension(exp(x) + exp(x**2), x)._important_attrs == \
(Poly(t1 + t0, t1), Poly(1, t1), [Poly(1, x,), Poly(t0, t0),
Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(2*x), x)._important_attrs == \
(Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0, t0)], [x, t0],
[Lambda(i, exp(i))], [], [None, 'exp'], [None, x])
assert DifferentialExtension(exp(x) + exp(x/2), x)._important_attrs == \
(Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)],
[x, t0], [Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2), x)._important_attrs == \
(Poly((1 + t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0),
Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2 + 1), x)._important_attrs == \
(Poly((1 + S.Exp1*t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x),
Poly(t0, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2), x)._important_attrs == \
(Poly((t0 + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x),
Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1],
[Lambda(i, exp(i/2)), Lambda(i, exp(i**2))],
[(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'], [None, x/2, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2 + 3), x)._important_attrs == \
(Poly((t0*exp(3) + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x),
Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i/2)),
Lambda(i, exp(i**2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'],
[None, x/2, x**2])
assert DifferentialExtension(sqrt(exp(x)), x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0],
[Lambda(i, exp(i/2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp'], [None, x/2])
assert DifferentialExtension(exp(x/2), x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0],
[Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2])
def test_DifferentialExtension_log():
assert DifferentialExtension(log(x)*log(x + 1)*log(2*x**2 + 2*x), x)._important_attrs == \
(Poly(t0*t1**2 + (t0*log(2) + t0**2)*t1, t1), Poly(1, t1),
[Poly(1, x), Poly(1/x, t0),
Poly(1/(x + 1), t1, expand=False)], [x, t0, t1],
[Lambda(i, log(i)), Lambda(i, log(i + 1))], [], [None, 'log', 'log'],
[None, x, x + 1])
assert DifferentialExtension(x**x*log(x), x)._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0),
Poly((1 + t0)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)),
Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)], [None, 'log', 'exp'],
[None, x, t0*x])
def test_DifferentialExtension_symlog():
# See comment on test_risch_integrate below
assert DifferentialExtension(log(x**x), x)._important_attrs == \
(Poly(t0*x, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly((t0 +
1)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i*t0))],
[(exp(x*log(x)), x**x)], [None, 'log', 'exp'], [None, x, t0*x])
assert DifferentialExtension(log(x**y), x)._important_attrs == \
(Poly(y*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [(y*log(x), log(x**y))], [None, 'log'],
[None, x])
assert DifferentialExtension(log(sqrt(x)), x)._important_attrs == \
(Poly(t0, t0), Poly(2, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [(log(x)/2, log(sqrt(x)))], [None, 'log'],
[None, x])
def test_DifferentialExtension_handle_first():
assert DifferentialExtension(exp(x)*log(x), x, handle_first='log')._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0),
Poly(t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i))],
[], [None, 'log', 'exp'], [None, x, x])
assert DifferentialExtension(exp(x)*log(x), x, handle_first='exp')._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0),
Poly(1/x, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, log(i))],
[], [None, 'exp', 'log'], [None, x, x])
# This one must have the log first, regardless of what we set it to
# (because the log is inside of the exponential: x**x == exp(x*log(x)))
assert DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x,
handle_first='exp')._important_attrs == \
DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x,
handle_first='log')._important_attrs == \
(Poly((-1 + x - x*t0**2)*t1, t1), Poly(x, t1),
[Poly(1, x), Poly(1/x, t0), Poly((1 + t0)*t1, t1)], [x, t0, t1],
[Lambda(i, log(i)), Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)],
[None, 'log', 'exp'], [None, x, t0*x])
def test_DifferentialExtension_all_attrs():
# Test 'unimportant' attributes
DE = DifferentialExtension(exp(x)*log(x), x, handle_first='exp')
assert DE.f == exp(x)*log(x)
assert DE.newf == t0*t1
assert DE.x == x
assert DE.cases == ['base', 'exp', 'primitive']
assert DE.case == 'primitive'
assert DE.level == -1
assert DE.t == t1 == DE.T[DE.level]
assert DE.d == Poly(1/x, t1) == DE.D[DE.level]
raises(ValueError, lambda: DE.increment_level())
DE.decrement_level()
assert DE.level == -2
assert DE.t == t0 == DE.T[DE.level]
assert DE.d == Poly(t0, t0) == DE.D[DE.level]
assert DE.case == 'exp'
DE.decrement_level()
assert DE.level == -3
assert DE.t == x == DE.T[DE.level] == DE.x
assert DE.d == Poly(1, x) == DE.D[DE.level]
assert DE.case == 'base'
raises(ValueError, lambda: DE.decrement_level())
DE.increment_level()
DE.increment_level()
assert DE.level == -1
assert DE.t == t1 == DE.T[DE.level]
assert DE.d == Poly(1/x, t1) == DE.D[DE.level]
assert DE.case == 'primitive'
# Test methods
assert DE.indices('log') == [2]
assert DE.indices('exp') == [1]
def test_DifferentialExtension_extension_flag():
raises(ValueError, lambda: DifferentialExtension(extension={'T': [x, t]}))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t],
None, None, None, None)
assert DE.d == Poly(t, t)
assert DE.t == t
assert DE.level == -1
assert DE.cases == ['base', 'exp']
assert DE.x == x
assert DE.case == 'exp'
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)],
'exts': [None, 'exp'], 'extargs': [None, x]})
assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t],
None, None, [None, 'exp'], [None, x])
raises(ValueError, lambda: DifferentialExtension())
def test_DifferentialExtension_misc():
# Odd ends
assert DifferentialExtension(sin(y)*exp(x), x)._important_attrs == \
(Poly(sin(y)*t0, t0, domain='ZZ[sin(y)]'), Poly(1, t0, domain='ZZ'),
[Poly(1, x, domain='ZZ'), Poly(t0, t0, domain='ZZ')], [x, t0],
[Lambda(i, exp(i))], [], [None, 'exp'], [None, x])
raises(NotImplementedError, lambda: DifferentialExtension(sin(x), x))
assert DifferentialExtension(10**x, x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(log(10)*t0, t0)], [x, t0],
[Lambda(i, exp(i*log(10)))], [(exp(x*log(10)), 10**x)], [None, 'exp'],
[None, x*log(10)])
assert DifferentialExtension(log(x) + log(x**2), x)._important_attrs in [
(Poly(3*t0, t0), Poly(2, t0), [Poly(1, x), Poly(2/x, t0)], [x, t0],
[Lambda(i, log(i**2))], [], [None, ], [], [1], [x**2]),
(Poly(3*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [], [None, 'log'], [None, x])]
assert DifferentialExtension(S.Zero, x)._important_attrs == \
(Poly(0, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None])
assert DifferentialExtension(tan(atan(x).rewrite(log)), x)._important_attrs == \
(Poly(x, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None])
def test_DifferentialExtension_Rothstein():
# Rothstein's integral
f = (2581284541*exp(x) + 1757211400)/(39916800*exp(3*x) +
119750400*exp(x)**2 + 119750400*exp(x) + 39916800)*exp(1/(exp(x) + 1) - 10*x)
assert DifferentialExtension(f, x)._important_attrs == \
(Poly((1757211400 + 2581284541*t0)*t1, t1), Poly(39916800 +
119750400*t0 + 119750400*t0**2 + 39916800*t0**3, t1),
[Poly(1, x), Poly(t0, t0), Poly(-(10 + 21*t0 + 10*t0**2)/(1 + 2*t0 +
t0**2)*t1, t1, domain='ZZ(t0)')], [x, t0, t1],
[Lambda(i, exp(i)), Lambda(i, exp(1/(t0 + 1) - 10*i))], [],
[None, 'exp', 'exp'], [None, x, 1/(t0 + 1) - 10*x])
class _TestingException(Exception):
"""Dummy Exception class for testing."""
pass
def test_DecrementLevel():
DE = DifferentialExtension(x*log(exp(x) + 1), x)
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
with DecrementLevel(DE):
assert DE.level == -2
assert DE.t == t0
assert DE.d == Poly(t0, t0)
assert DE.case == 'exp'
with DecrementLevel(DE):
assert DE.level == -3
assert DE.t == x
assert DE.d == Poly(1, x)
assert DE.case == 'base'
assert DE.level == -2
assert DE.t == t0
assert DE.d == Poly(t0, t0)
assert DE.case == 'exp'
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
# Test that __exit__ is called after an exception correctly
try:
with DecrementLevel(DE):
raise _TestingException
except _TestingException:
pass
else:
raise AssertionError("Did not raise.")
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
def test_risch_integrate():
assert risch_integrate(t0*exp(x), x) == t0*exp(x)
assert risch_integrate(sin(x), x, rewrite_complex=True) == -exp(I*x)/2 - exp(-I*x)/2
# From my GSoC writeup
assert risch_integrate((1 + 2*x**2 + x**4 + 2*x**3*exp(2*x**2))/
(x**4*exp(x**2) + 2*x**2*exp(x**2) + exp(x**2)), x) == \
NonElementaryIntegral(exp(-x**2), x) + exp(x**2)/(1 + x**2)
assert risch_integrate(0, x) == 0
# also tests prde_cancel()
e1 = log(x/exp(x) + 1)
ans1 = risch_integrate(e1, x)
assert ans1 == (x*log(x*exp(-x) + 1) + NonElementaryIntegral((x**2 - x)/(x + exp(x)), x))
assert cancel(diff(ans1, x) - e1) == 0
# also tests issue #10798
e2 = (log(-1/y)/2 - log(1/y)/2)/y - (log(1 - 1/y)/2 - log(1 + 1/y)/2)/y
ans2 = risch_integrate(e2, y)
assert ans2 == log(1/y)*log(1 - 1/y)/2 - log(1/y)*log(1 + 1/y)/2 + \
NonElementaryIntegral((I*pi*y**2 - 2*y*log(1/y) - I*pi)/(2*y**3 - 2*y), y)
assert expand_log(cancel(diff(ans2, y) - e2), force=True) == 0
# These are tested here in addition to in test_DifferentialExtension above
# (symlogs) to test that backsubs works correctly. The integrals should be
# written in terms of the original logarithms in the integrands.
# XXX: Unfortunately, making backsubs work on this one is a little
# trickier, because x**x is converted to exp(x*log(x)), and so log(x**x)
# is converted to x*log(x). (x**2*log(x)).subs(x*log(x), log(x**x)) is
# smart enough, the issue is that these splits happen at different places
# in the algorithm. Maybe a heuristic is in order
assert risch_integrate(log(x**x), x) == x**2*log(x)/2 - x**2/4
assert risch_integrate(log(x**y), x) == x*log(x**y) - x*y
assert risch_integrate(log(sqrt(x)), x) == x*log(sqrt(x)) - x/2
def test_risch_integrate_float():
assert risch_integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) == -2.4*exp(8*x) - 12.0*exp(5*x)
def test_NonElementaryIntegral():
assert isinstance(risch_integrate(exp(x**2), x), NonElementaryIntegral)
assert isinstance(risch_integrate(x**x*log(x), x), NonElementaryIntegral)
# Make sure methods of Integral still give back a NonElementaryIntegral
assert isinstance(NonElementaryIntegral(x**x*t0, x).subs(t0, log(x)), NonElementaryIntegral)
def test_xtothex():
a = risch_integrate(x**x, x)
assert a == NonElementaryIntegral(x**x, x)
assert isinstance(a, NonElementaryIntegral)
def test_DifferentialExtension_equality():
DE1 = DE2 = DifferentialExtension(log(x), x)
assert DE1 == DE2
def test_DifferentialExtension_printing():
DE = DifferentialExtension(exp(2*x**2) + log(exp(x**2) + 1), x)
assert repr(DE) == ("DifferentialExtension(dict([('f', exp(2*x**2) + log(exp(x**2) + 1)), "
"('x', x), ('T', [x, t0, t1]), ('D', [Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), "
"Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]), ('fa', Poly(t1 + t0**2, t1, domain='ZZ[t0]')), "
"('fd', Poly(1, t1, domain='ZZ')), ('Tfuncs', [Lambda(i, exp(i**2)), Lambda(i, log(t0 + 1))]), "
"('backsubs', []), ('exts', [None, 'exp', 'log']), ('extargs', [None, x**2, t0 + 1]), "
"('cases', ['base', 'exp', 'primitive']), ('case', 'primitive'), ('t', t1), "
"('d', Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')), ('newf', t0**2 + t1), ('level', -1), "
"('dummy', False)]))")
assert str(DE) == ("DifferentialExtension({fa=Poly(t1 + t0**2, t1, domain='ZZ[t0]'), "
"fd=Poly(1, t1, domain='ZZ'), D=[Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), "
"Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]})")
|
1dc74e7f02d0e872ef93022a413151193421934d67e984d59402a6e0f7bfaf6f | from sympy import (sin, cos, tan, sec, csc, cot, log, exp, atan, asin, acos,
Symbol, Integral, integrate, pi, Dummy, Derivative,
diff, I, sqrt, erf, Piecewise, Ne, symbols, Rational,
And, Heaviside, S, asinh, acosh, atanh, acoth, expand,
Function, jacobi, gegenbauer, chebyshevt, chebyshevu,
legendre, hermite, laguerre, assoc_laguerre, uppergamma, li,
Ei, Ci, Si, Chi, Shi, fresnels, fresnelc, polylog, erfi,
sinh, cosh, elliptic_f, elliptic_e)
from sympy.integrals.manualintegrate import (manualintegrate, find_substitutions,
_parts_rule, integral_steps, contains_dont_know, manual_subs)
from sympy.testing.pytest import raises, slow
x, y, z, u, n, a, b, c = symbols('x y z u n a b c')
f = Function('f')
def test_find_substitutions():
assert find_substitutions((cot(x)**2 + 1)**2*csc(x)**2*cot(x)**2, x, u) == \
[(cot(x), 1, -u**6 - 2*u**4 - u**2)]
assert find_substitutions((sec(x)**2 + tan(x) * sec(x)) / (sec(x) + tan(x)),
x, u) == [(sec(x) + tan(x), 1, 1/u)]
assert find_substitutions(x * exp(-x**2), x, u) == [(-x**2, Rational(-1, 2), exp(u))]
def test_manualintegrate_polynomials():
assert manualintegrate(y, x) == x*y
assert manualintegrate(exp(2), x) == x * exp(2)
assert manualintegrate(x**2, x) == x**3 / 3
assert manualintegrate(3 * x**2 + 4 * x**3, x) == x**3 + x**4
assert manualintegrate((x + 2)**3, x) == (x + 2)**4 / 4
assert manualintegrate((3*x + 4)**2, x) == (3*x + 4)**3 / 9
assert manualintegrate((u + 2)**3, u) == (u + 2)**4 / 4
assert manualintegrate((3*u + 4)**2, u) == (3*u + 4)**3 / 9
def test_manualintegrate_exponentials():
assert manualintegrate(exp(2*x), x) == exp(2*x) / 2
assert manualintegrate(2**x, x) == (2 ** x) / log(2)
assert manualintegrate(1 / x, x) == log(x)
assert manualintegrate(1 / (2*x + 3), x) == log(2*x + 3) / 2
assert manualintegrate(log(x)**2 / x, x) == log(x)**3 / 3
def test_manualintegrate_parts():
assert manualintegrate(exp(x) * sin(x), x) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x)
assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4
assert manualintegrate(log(x), x) == x * log(x) - x
assert manualintegrate((3*x**2 + 5) * exp(x), x) == \
3*x**2*exp(x) - 6*x*exp(x) + 11*exp(x)
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
# Make sure _parts_rule does not go into an infinite loop here
assert manualintegrate(log(1/x)/(x + 1), x).has(Integral)
# Make sure _parts_rule doesn't pick u = constant but can pick dv =
# constant if necessary, e.g. for integrate(atan(x))
assert _parts_rule(cos(x), x) == None
assert _parts_rule(exp(x), x) == None
assert _parts_rule(x**2, x) == None
result = _parts_rule(atan(x), x)
assert result[0] == atan(x) and result[1] == 1
def test_manualintegrate_trigonometry():
assert manualintegrate(sin(x), x) == -cos(x)
assert manualintegrate(tan(x), x) == -log(cos(x))
assert manualintegrate(sec(x), x) == log(sec(x) + tan(x))
assert manualintegrate(csc(x), x) == -log(csc(x) + cot(x))
assert manualintegrate(sin(x) * cos(x), x) in [sin(x) ** 2 / 2, -cos(x)**2 / 2]
assert manualintegrate(-sec(x) * tan(x), x) == -sec(x)
assert manualintegrate(csc(x) * cot(x), x) == -csc(x)
assert manualintegrate(sec(x)**2, x) == tan(x)
assert manualintegrate(csc(x)**2, x) == -cot(x)
assert manualintegrate(x * sec(x**2), x) == log(tan(x**2) + sec(x**2))/2
assert manualintegrate(cos(x)*csc(sin(x)), x) == -log(cot(sin(x)) + csc(sin(x)))
assert manualintegrate(cos(3*x)*sec(x), x) == -x + sin(2*x)
assert manualintegrate(sin(3*x)*sec(x), x) == \
-3*log(cos(x)) + 2*log(cos(x)**2) - 2*cos(x)**2
def test_manualintegrate_trigpowers():
assert manualintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3
assert manualintegrate(sin(x)**2 * cos(x) **2, x) == \
x / 8 - sin(4*x) / 32
assert manualintegrate(sin(x) * cos(x)**3, x) == -cos(x)**4 / 4
assert manualintegrate(sin(x)**3 * cos(x)**2, x) == \
cos(x)**5 / 5 - cos(x)**3 / 3
assert manualintegrate(tan(x)**3 * sec(x), x) == sec(x)**3/3 - sec(x)
assert manualintegrate(tan(x) * sec(x) **2, x) == sec(x)**2/2
assert manualintegrate(cot(x)**5 * csc(x), x) == \
-csc(x)**5/5 + 2*csc(x)**3/3 - csc(x)
assert manualintegrate(cot(x)**2 * csc(x)**6, x) == \
-cot(x)**7/7 - 2*cot(x)**5/5 - cot(x)**3/3
def test_manualintegrate_inversetrig():
# atan
assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x))
assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6
assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(1/(ra + rb*x**2), x) == \
Piecewise((atan(x/sqrt(ra/rb))/(rb*sqrt(ra/rb)), ra/rb > 0),
(-acoth(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 > -ra/rb)),
(-atanh(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 < -ra/rb)))
assert manualintegrate(1/(4 + rb*x**2), x) == \
Piecewise((atan(x/(2*sqrt(1/rb)))/(2*rb*sqrt(1/rb)), 4/rb > 0),
(-acoth(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 > -4/rb)),
(-atanh(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 < -4/rb)))
assert manualintegrate(1/(ra + 4*x**2), x) == \
Piecewise((atan(2*x/sqrt(ra))/(2*sqrt(ra)), ra/4 > 0),
(-acoth(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 > -ra/4)),
(-atanh(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 < -ra/4)))
assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
# asin
assert manualintegrate(1/sqrt(1-x**2), x) == asin(x)
assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2
assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x)
assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(x*Rational(3, 2))/3
# asinh
assert manualintegrate(1/sqrt(x**2 + 1), x) == \
asinh(x)
assert manualintegrate(1/sqrt(x**2 + 4), x) == \
asinh(x/2)
assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
asinh(x)/2
assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
asinh(2*x)/2
assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \
Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0))
assert manualintegrate(1/sqrt(a + x**2), x) == \
Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0))
# acosh
assert manualintegrate(1/sqrt(x**2 - 1), x) == \
acosh(x)
assert manualintegrate(1/sqrt(x**2 - 4), x) == \
acosh(x/2)
assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
acosh(x)/2
assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
acosh(3*x)/3
assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \
Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0))
assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \
Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0))
# piecewise
assert manualintegrate(1/sqrt(a-b*x**2), x) == \
Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)),
(sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)),
(sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0)))
assert manualintegrate(1/sqrt(a + b*x**2), x) == \
Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)),
(sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)),
(sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0)))
def test_manualintegrate_trig_substitution():
assert manualintegrate(sqrt(16*x**2 - 9)/x, x) == \
Piecewise((sqrt(16*x**2 - 9) - 3*acos(3/(4*x)),
And(x < Rational(3, 4), x > Rational(-3, 4))))
assert manualintegrate(1/(x**4 * sqrt(25-x**2)), x) == \
Piecewise((-sqrt(-x**2/25 + 1)/(125*x) -
(-x**2/25 + 1)**(3*S.Half)/(15*x**3), And(x < 5, x > -5)))
assert manualintegrate(x**7/(49*x**2 + 1)**(3 * S.Half), x) == \
((49*x**2 + 1)**(5*S.Half)/28824005 -
(49*x**2 + 1)**(3*S.Half)/5764801 +
3*sqrt(49*x**2 + 1)/5764801 + 1/(5764801*sqrt(49*x**2 + 1)))
def test_manualintegrate_trivial_substitution():
assert manualintegrate((exp(x) - exp(-x))/x, x) == -Ei(-x) + Ei(x)
f = Function('f')
assert manualintegrate((f(x) - f(-x))/x, x) == \
-Integral(f(-x)/x, x) + Integral(f(x)/x, x)
def test_manualintegrate_rational():
assert manualintegrate(1/(4 - x**2), x) == Piecewise((acoth(x/2)/2, x**2 > 4), (atanh(x/2)/2, x**2 < 4))
assert manualintegrate(1/(-1 + x**2), x) == Piecewise((-acoth(x), x**2 > 1), (-atanh(x), x**2 < 1))
def test_manualintegrate_special():
f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(2*x)/x, Ei(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f = sin(x**2 + 4*x + 1)
F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cosh(x/2)/x, Chi(x/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(x**2)/x, Ci(x**2)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 1/log(2*x + 1), li(2*x + 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
def test_manualintegrate_derivative():
assert manualintegrate(pi * Derivative(x**2 + 2*x + 3), x) == \
pi * ((x**2 + 2*x + 3))
assert manualintegrate(Derivative(x**2 + 2*x + 3, y), x) == \
Integral(Derivative(x**2 + 2*x + 3, y))
assert manualintegrate(Derivative(sin(x), x, x, x, y), x) == \
Derivative(sin(x), x, x, y)
def test_manualintegrate_Heaviside():
assert manualintegrate(Heaviside(x), x) == x*Heaviside(x)
assert manualintegrate(x*Heaviside(2), x) == x**2/2
assert manualintegrate(x*Heaviside(-2), x) == 0
assert manualintegrate(x*Heaviside( x), x) == x**2*Heaviside( x)/2
assert manualintegrate(x*Heaviside(-x), x) == x**2*Heaviside(-x)/2
assert manualintegrate(Heaviside(2*x + 4), x) == (x+2)*Heaviside(2*x + 4)
assert manualintegrate(x*Heaviside(x), x) == x**2*Heaviside(x)/2
assert manualintegrate(Heaviside(x + 1)*Heaviside(1 - x)*x**2, x) == \
((x**3/3 + Rational(1, 3))*Heaviside(x + 1) - Rational(2, 3))*Heaviside(-x + 1)
y = Symbol('y')
assert manualintegrate(sin(7 + x)*Heaviside(3*x - 7), x) == \
(- cos(x + 7) + cos(Rational(28, 3)))*Heaviside(3*x - S(7))
assert manualintegrate(sin(y + x)*Heaviside(3*x - y), x) == \
(cos(y*Rational(4, 3)) - cos(x + y))*Heaviside(3*x - y)
def test_manualintegrate_orthogonal_poly():
n = symbols('n')
a, b = 7, Rational(5, 3)
polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
assoc_laguerre(n, a, x)]
for p in polys:
integral = manualintegrate(p, x)
for deg in [-2, -1, 0, 1, 3, 5, 8]:
# some accept negative "degree", some do not
try:
p_subbed = p.subs(n, deg)
except ValueError:
continue
assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0
# can also integrate simple expressions with these polynomials
q = x*p.subs(x, 2*x + 1)
integral = manualintegrate(q, x)
for deg in [2, 4, 7]:
assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0
# cannot integrate with respect to any other parameter
t = symbols('t')
for i in range(len(p.args) - 1):
new_args = list(p.args)
new_args[i] = t
assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
def test_issue_6799():
r, x, phi = map(Symbol, 'r x phi'.split())
n = Symbol('n', integer=True, positive=True)
integrand = (cos(n*(x-phi))*cos(n*x))
limits = (x, -pi, pi)
assert manualintegrate(integrand, x) == \
((n*x/2 + sin(2*n*x)/4)*cos(n*phi) - sin(n*phi)*cos(n*x)**2/2)/n
assert r * integrate(integrand, limits).trigsimp() / pi == r * cos(n * phi)
assert not integrate(integrand, limits).has(Dummy)
def test_issue_12251():
assert manualintegrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
def test_issue_3796():
assert manualintegrate(diff(exp(x + x**2)), x) == exp(x + x**2)
assert integrate(x * exp(x**4), x, risch=False) == -I*sqrt(pi)*erf(I*x**2)/4
def test_manual_true():
assert integrate(exp(x) * sin(x), x, manual=True) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert integrate(sin(x) * cos(x), x, manual=True) in \
[sin(x) ** 2 / 2, -cos(x)**2 / 2]
def test_issue_6746():
y = Symbol('y')
n = Symbol('n')
assert manualintegrate(y**x, x) == Piecewise(
(y**x/log(y), Ne(log(y), 0)), (x, True))
assert manualintegrate(y**(n*x), x) == Piecewise(
(Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)),
(n*x, True)
)/n, Ne(n, 0)),
(x, True))
assert manualintegrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1)
y = Symbol('y', zero=True)
assert manualintegrate((y + 1)**x, x) == x
y = Symbol('y')
n = Symbol('n', nonzero=True)
assert manualintegrate(y**(n*x), x) == Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True))/n
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**(n*x), x) == \
(y + 1)**(n*x)/(n*log(y + 1))
a = Symbol('a', negative=True)
b = Symbol('b')
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
b = Symbol('b', negative=True)
assert manualintegrate(1/(a + b*x**2), x) == \
atan(x/(sqrt(-a)*sqrt(-1/b)))/(b*sqrt(-a)*sqrt(-1/b))
assert manualintegrate(1/((x**a + y**b + 4)*sqrt(a*x**2 + 1)), x) == \
y**(-b)*Integral(x**(-a)/(y**(-b)*sqrt(a*x**2 + 1) +
x**(-a)*sqrt(a*x**2 + 1) + 4*x**(-a)*y**(-b)*sqrt(a*x**2 + 1)), x)
assert manualintegrate(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) == \
Integral(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x)
assert manualintegrate(1/(x - a**x + x*b**2), x) == \
Integral(1/(-a**x + b**2*x + x), x)
@slow
def test_issue_2850():
assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \
+ (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \
(x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \
log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2
def test_issue_9462():
assert manualintegrate(sin(2*x)*exp(x), x) == exp(x)*sin(2*x)/5 - 2*exp(x)*cos(2*x)/5
assert not contains_dont_know(integral_steps(sin(2*x)*exp(x), x))
assert manualintegrate((x - 3) / (x**2 - 2*x + 2)**2, x) == \
Integral(x/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) \
- 3*Integral(1/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x)
def test_cyclic_parts():
f = cos(x)*exp(x/4)
F = 16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17
assert manualintegrate(f, x) == F and F.diff(x) == f
f = x*cos(x)*exp(x/4)
F = (x*(16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17) -
128*exp(x/4)*sin(x)/289 + 240*exp(x/4)*cos(x)/289)
assert manualintegrate(f, x) == F and F.diff(x) == f
@slow
def test_issue_10847_slow():
assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8)
/ (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \
2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1)
def test_issue_10847():
assert manualintegrate(x**2 / (x**2 - c), x) == c*atan(x/sqrt(-c))/sqrt(-c) + x
rc = Symbol('c', real=True)
assert manualintegrate(x**2 / (x**2 - rc), x) == \
rc*Piecewise((atan(x/sqrt(-rc))/sqrt(-rc), -rc > 0),
(-acoth(x/sqrt(rc))/sqrt(rc), And(-rc < 0, x**2 > rc)),
(-atanh(x/sqrt(rc))/sqrt(rc), And(-rc < 0, x**2 < rc))) + x
assert manualintegrate(sqrt(x - y) * log(z / x), x) == \
4*y**Rational(3, 2)*atan(sqrt(x - y)/sqrt(y))/3 - 4*y*sqrt(x - y)/3 +\
2*(x - y)**Rational(3, 2)*log(z/x)/3 + 4*(x - y)**Rational(3, 2)/9
ry = Symbol('y', real=True)
rz = Symbol('z', real=True)
assert manualintegrate(sqrt(x - ry) * log(rz / x), x) == \
4*ry**2*Piecewise((atan(sqrt(x - ry)/sqrt(ry))/sqrt(ry), ry > 0),
(-acoth(sqrt(x - ry)/sqrt(-ry))/sqrt(-ry), And(x - ry > -ry, ry < 0)),
(-atanh(sqrt(x - ry)/sqrt(-ry))/sqrt(-ry), And(x - ry < -ry, ry < 0)))/3 \
- 4*ry*sqrt(x - ry)/3 + 2*(x - ry)**Rational(3, 2)*log(rz/x)/3 \
+ 4*(x - ry)**Rational(3, 2)/9
assert manualintegrate(sqrt(x) * log(x), x) == 2*x**Rational(3, 2)*log(x)/3 - 4*x**Rational(3, 2)/9
assert manualintegrate(sqrt(a*x + b) / x, x) == \
2*b*atan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b) + 2*sqrt(a*x + b)
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(sqrt(ra*x + rb) / x, x) == \
-2*rb*Piecewise((-atan(sqrt(ra*x + rb)/sqrt(-rb))/sqrt(-rb), -rb > 0),
(acoth(sqrt(ra*x + rb)/sqrt(rb))/sqrt(rb), And(-rb < 0, ra*x + rb > rb)),
(atanh(sqrt(ra*x + rb)/sqrt(rb))/sqrt(rb), And(-rb < 0, ra*x + rb < rb))) \
+ 2*sqrt(ra*x + rb)
assert expand(manualintegrate(sqrt(ra*x + rb) / (x + rc), x)) == -2*ra*rc*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), \
ra*rc - rb > 0), (-acoth(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb > -ra*rc + rb)), \
(-atanh(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb < -ra*rc + rb))) \
+ 2*rb*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), ra*rc - rb > 0), \
(-acoth(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb > -ra*rc + rb)), \
(-atanh(sqrt(ra*x + rb)/sqrt(-ra*rc + rb))/sqrt(-ra*rc + rb), And(ra*rc - rb < 0, ra*x + rb < -ra*rc + rb))) + 2*sqrt(ra*x + rb)
assert manualintegrate(sqrt(2*x + 3) / (x + 1), x) == 2*sqrt(2*x + 3) - log(sqrt(2*x + 3) + 1) + log(sqrt(2*x + 3) - 1)
assert manualintegrate(sqrt(2*x + 3) / 2 * x, x) == (2*x + 3)**Rational(5, 2)/20 - (2*x + 3)**Rational(3, 2)/4
assert manualintegrate(x**Rational(3,2) * log(x), x) == 2*x**Rational(5,2)*log(x)/5 - 4*x**Rational(5,2)/25
assert manualintegrate(x**(-3) * log(x), x) == -log(x)/(2*x**2) - 1/(4*x**2)
assert manualintegrate(log(y)/(y**2*(1 - 1/y)), y) == \
log(y)*log(-1 + 1/y) - Integral(log(-1 + 1/y)/y, y)
def test_issue_12899():
assert manualintegrate(f(x,y).diff(x),y) == Integral(Derivative(f(x,y),x),y)
assert manualintegrate(f(x,y).diff(y).diff(x),y) == Derivative(f(x,y),x)
def test_constant_independent_of_symbol():
assert manualintegrate(Integral(y, (x, 1, 2)), x) == \
x*Integral(y, (x, 1, 2))
def test_issue_12641():
assert manualintegrate(sin(2*x), x) == -cos(2*x)/2
assert manualintegrate(cos(x)*sin(2*x), x) == -2*cos(x)**3/3
assert manualintegrate((sin(2*x)*cos(x))/(1 + cos(x)), x) == \
-2*log(cos(x) + 1) - cos(x)**2 + 2*cos(x)
def test_issue_13297():
assert manualintegrate(sin(x) * cos(x)**5, x) == -cos(x)**6 / 6
def test_issue_14470():
assert manualintegrate(1/(x*sqrt(x + 1)), x) == \
log(-1 + 1/sqrt(x + 1)) - log(1 + 1/sqrt(x + 1))
@slow
def test_issue_9858():
assert manualintegrate(exp(x)*cos(exp(x)), x) == sin(exp(x))
assert manualintegrate(exp(2*x)*cos(exp(x)), x) == \
exp(x)*sin(exp(x)) + cos(exp(x))
res = manualintegrate(exp(10*x)*sin(exp(x)), x)
assert not res.has(Integral)
assert res.diff(x) == exp(10*x)*sin(exp(x))
# an example with many similar integrations by parts
assert manualintegrate(sum([x*exp(k*x) for k in range(1, 8)]), x) == (
x*exp(7*x)/7 + x*exp(6*x)/6 + x*exp(5*x)/5 + x*exp(4*x)/4 +
x*exp(3*x)/3 + x*exp(2*x)/2 + x*exp(x) - exp(7*x)/49 -exp(6*x)/36 -
exp(5*x)/25 - exp(4*x)/16 - exp(3*x)/9 - exp(2*x)/4 - exp(x))
def test_issue_8520():
assert manualintegrate(x/(x**4 + 1), x) == atan(x**2)/2
assert manualintegrate(x**2/(x**6 + 25), x) == atan(x**3/5)/15
f = x/(9*x**4 + 4)**2
assert manualintegrate(f, x).diff(x).factor() == f
def test_manual_subs():
x, y = symbols('x y')
expr = log(x) + exp(x)
# if log(x) is y, then exp(y) is x
assert manual_subs(expr, log(x), y) == y + exp(exp(y))
# if exp(x) is y, then log(y) need not be x
assert manual_subs(expr, exp(x), y) == log(x) + y
raises(ValueError, lambda: manual_subs(expr, x))
raises(ValueError, lambda: manual_subs(expr, exp(x), x, y))
def test_issue_15471():
f = log(x)*cos(log(x))/x**Rational(3, 4)
F = -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
def test_quadratic_denom():
f = (5*x + 2)/(3*x**2 - 2*x + 8)
assert manualintegrate(f, x) == 5*log(3*x**2 - 2*x + 8)/6 + 11*sqrt(23)*atan(3*sqrt(23)*(x - Rational(1, 3))/23)/69
g = 3/(2*x**2 + 3*x + 1)
assert manualintegrate(g, x) == 3*log(4*x + 2) - 3*log(4*x + 4)
|
09e3f4663a432dd0bd494d7b430150e2dd04b07d6a2cd58119d3c71fee34d733 | # A collection of failing integrals from the issues.
from sympy import (
integrate, I, Integral, exp, oo, pi, sign, sqrt, sin, cos, Piecewise,
tan, S, log, gamma, sinh, sec, acos, atan, sech, csch, DiracDelta, Rational
)
from sympy.testing.pytest import XFAIL, SKIP, slow, skip, ON_TRAVIS
from sympy.abc import x, k, c, y, b, h, a, m, z, n, t
@SKIP("Too slow for @slow")
@XFAIL
def test_issue_3880():
# integrate_hyperexponential(Poly(t*2*(1 - t0**2)*t0*(x**3 + x**2), t), Poly((1 + t0**2)**2*2*(x**2 + x + 1), t), [Poly(1, x), Poly(1 + t0**2, t0), Poly(t, t)], [x, t0, t], [exp, tan])
assert not integrate(exp(x)*cos(2*x)*sin(2*x) * (x**3 + x**2)/(2*(x**2 + x + 1)), x).has(Integral)
@XFAIL
def test_issue_4212():
assert not integrate(sign(x), x).has(Integral)
@XFAIL
def test_issue_4491():
# Can be solved via variable transformation x = y - 1
assert not integrate(x*sqrt(x**2 + 2*x + 4), x).has(Integral)
@XFAIL
def test_issue_4511():
# This works, but gives a complicated answer. The correct answer is x - cos(x).
# If current answer is simplified, 1 - cos(x) + x is obtained.
# The last one is what Maple gives. It is also quite slow.
assert integrate(cos(x)**2 / (1 - sin(x))) in [x - cos(x), 1 - cos(x) + x,
-2/(tan((S.Half)*x)**2 + 1) + x]
@XFAIL
def test_integrate_DiracDelta_fails():
# issue 6427
assert integrate(integrate(integrate(
DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S.Half
@XFAIL
@slow
def test_issue_4525():
# Warning: takes a long time
assert not integrate((x**m * (1 - x)**n * (a + b*x + c*x**2))/(1 + x**2), (x, 0, 1)).has(Integral)
@XFAIL
@slow
def test_issue_4540():
if ON_TRAVIS:
skip("Too slow for travis.")
# Note, this integral is probably nonelementary
assert not integrate(
(sin(1/x) - x*exp(x)) /
((-sin(1/x) + x*exp(x))*x + x*sin(1/x)), x).has(Integral)
@XFAIL
@slow
def test_issue_4891():
# Requires the hypergeometric function.
assert not integrate(cos(x)**y, x).has(Integral)
@XFAIL
@slow
def test_issue_1796a():
assert not integrate(exp(2*b*x)*exp(-a*x**2), x).has(Integral)
@XFAIL
def test_issue_4895b():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, 0)).has(Integral)
@XFAIL
def test_issue_4895c():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, oo)).has(Integral)
@XFAIL
def test_issue_4895d():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, 0, oo)).has(Integral)
@XFAIL
@slow
def test_issue_4941():
if ON_TRAVIS:
skip("Too slow for travis.")
assert not integrate(sqrt(1 + sinh(x/20)**2), (x, -25, 25)).has(Integral)
@XFAIL
def test_issue_4992():
# Nonelementary integral. Requires hypergeometric/Meijer-G handling.
assert not integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)).has(Integral)
@XFAIL
def test_issue_16396a():
i = integrate(1/(1+sqrt(tan(x))), (x, pi/3, pi/6))
assert not i.has(Integral)
@XFAIL
def test_issue_16396b():
i = integrate(x*sin(x)/(1+cos(x)**2), (x, 0, pi))
assert not i.has(Integral)
@XFAIL
def test_issue_16161():
i = integrate(x*sec(x)**2, x)
assert not i.has(Integral)
# assert i == x*tan(x) + log(cos(x))
@XFAIL
def test_issue_16046():
assert integrate(exp(exp(I*x)), [x, 0, 2*pi]) == 2*pi
@XFAIL
def test_issue_15925a():
assert not integrate(sqrt((1+sin(x))**2+(cos(x))**2), (x, -pi/2, pi/2)).has(Integral)
@XFAIL
@slow
def test_issue_15925b():
if ON_TRAVIS:
skip("Too slow for travis.")
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6)).has(Integral)
@XFAIL
def test_issue_15925b_manual():
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6), manual=True).has(Integral)
@XFAIL
@slow
def test_issue_15227():
if ON_TRAVIS:
skip("Too slow for travis.")
i = integrate(log(1-x)*log((1+x)**2)/x, (x, 0, 1))
assert not i.has(Integral)
# assert i == -5*zeta(3)/4
@XFAIL
@slow
def test_issue_14716():
i = integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1))
assert not i.has(Integral)
# Mathematica can not solve it either, but
# integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1)).transform(x, y - 5).doit()
# works
# assert i == -log(Rational(11, 2))/pi - Si(pi*Rational(11, 2))/pi + Si(6*pi)/pi
@XFAIL
def test_issue_14709a():
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert not i.has(Integral)
# assert i == 5*h**2*pi/16
@slow
@XFAIL
def test_issue_14398():
assert not integrate(exp(x**2)*cos(x), x).has(Integral)
@XFAIL
def test_issue_14074():
i = integrate(log(sin(x)), (x, 0, pi/2))
assert not i.has(Integral)
# assert i == -pi*log(2)/2
@XFAIL
@slow
def test_issue_14078b():
i = integrate((atan(4*x)-atan(2*x))/x, (x, 0, oo))
assert not i.has(Integral)
# assert i == pi*log(2)/2
@XFAIL
def test_issue_13792():
i = integrate(log(1/x) / (1 - x), (x, 0, 1))
assert not i.has(Integral)
# assert i in [polylog(2, -exp_polar(I*pi)), pi**2/6]
@XFAIL
def test_issue_11845a():
assert not integrate(exp(y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11845b():
assert not integrate(exp(-y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11813():
assert not integrate((a - x)**Rational(-1, 2)*x, (x, 0, a)).has(Integral)
@XFAIL
def test_issue_11742():
i = integrate(sqrt(-x**2 + 8*x + 48), (x, 4, 12))
assert not i.has(Integral)
# assert i == 16*pi
@XFAIL
def test_issue_11254a():
assert not integrate(sech(x), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11254b():
assert not integrate(csch(x), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_10584():
assert not integrate(sqrt(x**2 + 1/x**2), x).has(Integral)
@XFAIL
def test_issue_9723():
assert not integrate(sqrt(x + sqrt(x))).has(Integral)
@XFAIL
def test_issue_9101():
assert not integrate(log(x + sqrt(x**2 + y**2 + z**2)), z).has(Integral)
@XFAIL
def test_issue_7264():
assert not integrate(exp(x)*sqrt(1 + exp(2*x))).has(Integral)
@XFAIL
def test_issue_7147():
assert not integrate(x/sqrt(a*x**2 + b*x + c)**3, x).has(Integral)
@XFAIL
def test_issue_7109():
assert not integrate(sqrt(a**2/(a**2 - x**2)), x).has(Integral)
@XFAIL
def test_integrate_Piecewise_rational_over_reals():
f = Piecewise(
(0, t - 478.515625*pi < 0),
(13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0))
assert abs((integrate(f, (t, 0, oo)) - 15235.9375*pi).evalf()) <= 1e-7
@XFAIL
def test_issue_4311_slow():
# Not slow when bypassing heurish
assert not integrate(x*abs(9-x**2), x).has(Integral)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.