hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
e32fb70185a2f8ebd29739230846ba76e6606a16fa1b5ddd7a3e60f1733ba938 | from __future__ import print_function, division
from sympy import Number
from sympy.core import Mul, Basic, sympify, S
from sympy.core.compatibility import range
from sympy.functions import adjoint
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
do_one, new)
from sympy.matrices.matrices import MatrixBase
from .inverse import Inverse
from .matexpr import \
MatrixExpr, ShapeError, Identity, ZeroMatrix, GenericIdentity
from .matpow import MatPow
from .transpose import transpose
from .permutation import PermutationMatrix
# XXX: MatMul should perhaps not subclass directly from Mul
class MatMul(MatrixExpr, Mul):
"""
A product of matrix expressions
Examples
========
>>> from sympy import MatMul, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
"""
is_MatMul = True
identity = GenericIdentity()
def __new__(cls, *args, **kwargs):
check = kwargs.get('check', True)
if not args:
return cls.identity
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericIdentity().shape
args = filter(lambda i: cls.identity != i, args)
args = list(map(sympify, args))
obj = Basic.__new__(cls, *args)
factor, matrices = obj.as_coeff_matrices()
if check:
validate(*matrices)
if not matrices:
# Should it be
#
# return Basic.__neq__(cls, factor, GenericIdentity()) ?
return factor
return obj
@property
def shape(self):
matrices = [arg for arg in self.args if arg.is_Matrix]
return (matrices[0].rows, matrices[-1].cols)
def _entry(self, i, j, expand=True, **kwargs):
from sympy import Dummy, Sum, Mul, ImmutableMatrix, Integer
coeff, matrices = self.as_coeff_matrices()
if len(matrices) == 1: # situation like 2*X, matmul is just X
return coeff * matrices[0][i, j]
indices = [None]*(len(matrices) + 1)
ind_ranges = [None]*(len(matrices) - 1)
indices[0] = i
indices[-1] = j
def f():
counter = 1
while True:
yield Dummy("i_%i" % counter)
counter += 1
dummy_generator = kwargs.get("dummy_generator", f())
for i in range(1, len(matrices)):
indices[i] = next(dummy_generator)
for i, arg in enumerate(matrices[:-1]):
ind_ranges[i] = arg.shape[1] - 1
matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
expr_in_sum = Mul.fromiter(matrices)
if any(v.has(ImmutableMatrix) for v in matrices):
expand = True
result = coeff*Sum(
expr_in_sum,
*zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
)
# Don't waste time in result.doit() if the sum bounds are symbolic
if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
expand = False
return result.doit() if expand else result
def as_coeff_matrices(self):
scalars = [x for x in self.args if not x.is_Matrix]
matrices = [x for x in self.args if x.is_Matrix]
coeff = Mul(*scalars)
if coeff.is_commutative is False:
raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
return coeff, matrices
def as_coeff_mmul(self):
coeff, matrices = self.as_coeff_matrices()
return coeff, MatMul(*matrices)
def _eval_transpose(self):
"""Transposition of matrix multiplication.
Notes
=====
The following rules are applied.
Transposition for matrix multiplied with another matrix:
`\\left(A B\\right)^{T} = B^{T} A^{T}`
Transposition for matrix multiplied with scalar:
`\\left(c A\\right)^{T} = c A^{T}`
References
==========
.. [1] https://en.wikipedia.org/wiki/Transpose
"""
coeff, matrices = self.as_coeff_matrices()
return MatMul(
coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
def _eval_adjoint(self):
return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
def _eval_trace(self):
factor, mmul = self.as_coeff_mmul()
if factor != 1:
from .trace import trace
return factor * trace(mmul.doit())
else:
raise NotImplementedError("Can't simplify any further")
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import Determinant
factor, matrices = self.as_coeff_matrices()
square_matrices = only_squares(*matrices)
return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
def _eval_inverse(self):
try:
return MatMul(*[
arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
for arg in self.args[::-1]]).doit()
except ShapeError:
return Inverse(self)
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
# treat scalar*MatrixSymbol or scalar*MatPow separately
expr = canonicalize(MatMul(*args))
return expr
# Needed for partial compatibility with Mul
def args_cnc(self, **kwargs):
coeff_c = [x for x in self.args if x.is_commutative]
coeff_nc = [x for x in self.args if not x.is_commutative]
return [coeff_c, coeff_nc]
def _eval_derivative_matrix_lines(self, x):
from .transpose import Transpose
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
if right_args:
right_mat = MatMul.fromiter(right_args)
else:
right_mat = Identity(self.shape[1])
if left_args:
left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
else:
left_rev = Identity(self.shape[0])
d = self.args[ind]._eval_derivative_matrix_lines(x)
for i in d:
i.append_first(left_rev)
i.append_second(right_mat)
lines.append(i)
return lines
def validate(*matrices):
""" Checks for valid shapes for args of MatMul """
for i in range(len(matrices)-1):
A, B = matrices[i:i+2]
if A.cols != B.rows:
raise ShapeError("Matrices %s and %s are not aligned"%(A, B))
# Rules
def newmul(*args):
if args[0] == 1:
args = args[1:]
return new(MatMul, *args)
def any_zeros(mul):
if any([arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
for arg in mul.args]):
matrices = [arg for arg in mul.args if arg.is_Matrix]
return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
return mul
def merge_explicit(matmul):
""" Merge explicit MatrixBase arguments
>>> from sympy import MatrixSymbol, eye, Matrix, MatMul, pprint
>>> from sympy.matrices.expressions.matmul import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = Matrix([[1, 1], [1, 1]])
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatMul(A, B, C)
>>> pprint(X)
[1 1] [1 2]
A*[ ]*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[4 6]
A*[ ]
[4 6]
>>> X = MatMul(B, A, C)
>>> pprint(X)
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
"""
if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
return matmul
newargs = []
last = matmul.args[0]
for arg in matmul.args[1:]:
if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
last = last * arg
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
def remove_ids(mul):
""" Remove Identities from a MatMul
This is a modified version of sympy.strategies.rm_id.
This is necesssary because MatMul may contain both MatrixExprs and Exprs
as args.
See Also
========
sympy.strategies.rm_id
"""
# Separate Exprs from MatrixExprs in args
factor, mmul = mul.as_coeff_mmul()
# Apply standard rm_id for MatMuls
result = rm_id(lambda x: x.is_Identity is True)(mmul)
if result != mmul:
return newmul(factor, *result.args) # Recombine and return
else:
return mul
def factor_in_front(mul):
factor, matrices = mul.as_coeff_matrices()
if factor != 1:
return newmul(factor, *matrices)
return mul
def combine_powers(mul):
"""Combine consecutive powers with the same base into one
e.g. A*A**2 -> A**3
This also cancels out the possible matrix inverses using the
knowledgebase of ``Inverse``.
e.g. Y * X * X.I -> Y
"""
factor, args = mul.as_coeff_matrices()
new_args = [args[0]]
for B in args[1:]:
A = new_args[-1]
if A.is_square == False or B.is_square == False:
new_args.append(B)
continue
if isinstance(A, MatPow):
A_base, A_exp = A.args
else:
A_base, A_exp = A, S.One
if isinstance(B, MatPow):
B_base, B_exp = B.args
else:
B_base, B_exp = B, S.One
if A_base == B_base:
new_exp = A_exp + B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
elif not isinstance(B_base, MatrixBase) and \
A_base == B_base.inverse():
new_exp = A_exp - B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
else:
new_args.append(B)
return newmul(factor, *new_args)
def combine_permutations(mul):
"""Refine products of permutation matrices as the products of cycles.
"""
args = mul.args
l = len(args)
if l < 2:
return mul
result = [args[0]]
for i in range(1, l):
A = result[-1]
B = args[i]
if isinstance(A, PermutationMatrix) and \
isinstance(B, PermutationMatrix):
cycle_1 = A.args[0]
cycle_2 = B.args[0]
result[-1] = PermutationMatrix(cycle_1 * cycle_2)
else:
result.append(B)
return MatMul(*result)
rules = (
any_zeros, remove_ids, combine_powers, unpack, rm_id(lambda x: x == 1),
merge_explicit, factor_in_front, flatten, combine_permutations)
canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
def only_squares(*matrices):
"""factor matrices only if they are square"""
if matrices[0].rows != matrices[-1].cols:
raise RuntimeError("Invalid matrices being multiplied")
out = []
start = 0
for i, M in enumerate(matrices):
if M.cols == matrices[start].rows:
out.append(MatMul(*matrices[start:i+1]).doit())
start = i+1
return out
from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
def refine_MatMul(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> expr = X * X.T
>>> print(expr)
X*X.T
>>> with assuming(Q.orthogonal(X)):
... print(refine(expr))
I
"""
newargs = []
exprargs = []
for args in expr.args:
if args.is_Matrix:
exprargs.append(args)
else:
newargs.append(args)
last = exprargs[0]
for arg in exprargs[1:]:
if arg == last.T and ask(Q.orthogonal(arg), assumptions):
last = Identity(arg.shape[0])
elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
last = Identity(arg.shape[0])
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
handlers_dict['MatMul'] = refine_MatMul
|
7f998c47c839d698545790c6425b9a073d99d16b1220fd99bd67e6d7d3451d14 | from __future__ import print_function, division
from sympy.core import S
from sympy.core.sympify import _sympify
from sympy.functions import KroneckerDelta
from .matexpr import MatrixExpr, Identity, ZeroMatrix, OneMatrix
class PermutationMatrix(MatrixExpr):
"""A Permutation Matrix
Parameters
==========
perm : Permutation
The permutation the matrix uses.
The size of the permutation determines the matrix size.
See the documentation of
:class:`sympy.combinatorics.permutations.Permutation` for
the further information of how to create a permutation object.
Examples
========
>>> from sympy.matrices import Matrix, PermutationMatrix
>>> from sympy.combinatorics import Permutation
Creating a permutation matrix:
>>> p = Permutation(1, 2, 0)
>>> P = PermutationMatrix(p)
>>> P = P.as_explicit()
>>> P
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Permuting a matrix row and column:
>>> M = Matrix([0, 1, 2])
>>> Matrix(P*M)
Matrix([
[1],
[2],
[0]])
>>> Matrix(M.T*P)
Matrix([[2, 0, 1]])
See Also
========
sympy.combinatorics.permutations.Permutation
"""
def __new__(cls, perm):
from sympy.combinatorics.permutations import Permutation
perm = _sympify(perm)
if not isinstance(perm, Permutation):
raise ValueError(
"{} must be a SymPy Permutation instance.".format(perm))
return super(PermutationMatrix, cls).__new__(cls, perm)
@property
def shape(self):
size = self.args[0].size
return (size, size)
@property
def is_Identity(self):
return self.args[0].is_Identity
def doit(self):
if self.is_Identity:
return Identity(self.rows)
return self
def _entry(self, i, j, **kwargs):
perm = self.args[0]
return KroneckerDelta(perm.apply(i), j)
def _eval_inverse(self):
return PermutationMatrix(self.args[0] ** -1)
_eval_transpose = _eval_adjoint = _eval_inverse
def _eval_determinant(self):
sign = self.args[0].signature()
if sign == 1:
return S.One
elif sign == -1:
return S.NegativeOne
raise NotImplementedError
def _eval_rewrite_as_BlockDiagMatrix(self, *args, **kwargs):
from sympy.combinatorics.permutations import Permutation
from .blockmatrix import BlockDiagMatrix
perm = self.args[0]
full_cyclic_form = perm.full_cyclic_form
cycles_picks = []
# Stage 1. Decompose the cycles into the blockable form.
a, b, c = 0, 0, 0
flag = False
for cycle in full_cyclic_form:
l = len(cycle)
m = max(cycle)
if not flag:
if m + 1 > a + l:
flag = True
temp = [cycle]
b = m
c = l
else:
cycles_picks.append([cycle])
a += l
else:
if m > b:
if m + 1 == a + c + l:
temp.append(cycle)
cycles_picks.append(temp)
flag = False
a = m+1
else:
b = m
temp.append(cycle)
c += l
else:
if b + 1 == a + c + l:
temp.append(cycle)
cycles_picks.append(temp)
flag = False
a = b+1
else:
temp.append(cycle)
c += l
# Stage 2. Normalize each decomposed cycles and build matrix.
p = 0
args = []
for pick in cycles_picks:
new_cycles = []
l = 0
for cycle in pick:
new_cycle = [i - p for i in cycle]
new_cycles.append(new_cycle)
l += len(cycle)
p += l
perm = Permutation(new_cycles)
mat = PermutationMatrix(perm)
args.append(mat)
return BlockDiagMatrix(*args)
class MatrixPermute(MatrixExpr):
r"""Symbolic representation for permuting matrix rows or columns.
Parameters
==========
perm : Permutation, PermutationMatrix
The permutation to use for permuting the matrix.
The permutation can be resized to the suitable one,
axis : 0 or 1
The axis to permute alongside.
If `0`, it will permute the matrix rows.
If `1`, it will permute the matrix columns.
Notes
=====
This follows the same notation used in
:meth:`sympy.matrices.common.MatrixCommon.permute`.
Examples
========
>>> from sympy.matrices import Matrix, MatrixPermute
>>> from sympy.combinatorics import Permutation
Permuting the matrix rows:
>>> p = Permutation(1, 2, 0)
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> B = MatrixPermute(A, p, axis=0)
>>> B.as_explicit()
Matrix([
[4, 5, 6],
[7, 8, 9],
[1, 2, 3]])
Permuting the matrix columns:
>>> B = MatrixPermute(A, p, axis=1)
>>> B.as_explicit()
Matrix([
[2, 3, 1],
[5, 6, 4],
[8, 9, 7]])
See Also
========
sympy.matrices.common.MatrixCommon.permute
"""
def __new__(cls, mat, perm, axis=S.Zero):
from sympy.combinatorics.permutations import Permutation
mat = _sympify(mat)
if not mat.is_Matrix:
raise ValueError(
"{} must be a SymPy matrix instance.".format(perm))
perm = _sympify(perm)
if isinstance(perm, PermutationMatrix):
perm = perm.args[0]
if not isinstance(perm, Permutation):
raise ValueError(
"{} must be a SymPy Permutation or a PermutationMatrix " \
"instance".format(perm))
axis = _sympify(axis)
if axis not in (0, 1):
raise ValueError("The axis must be 0 or 1.")
mat_size = mat.shape[axis]
if mat_size != perm.size:
try:
perm = perm.resize(mat_size)
except ValueError:
raise ValueError(
"Size does not match between the permutation {} "
"and the matrix {} threaded over the axis {} "
"and cannot be converted."
.format(perm, mat, axis))
return super(MatrixPermute, cls).__new__(cls, mat, perm, axis)
def doit(self, deep=True):
mat, perm, axis = self.args
if deep:
mat = mat.doit(deep=deep)
perm = perm.doit(deep=deep)
if perm.is_Identity:
return mat
if mat.is_Identity:
if axis is S.Zero:
return PermutationMatrix(perm)
elif axis is S.One:
return PermutationMatrix(perm**-1)
if isinstance(mat, (ZeroMatrix, OneMatrix)):
return mat
if isinstance(mat, MatrixPermute) and mat.args[2] == axis:
return MatrixPermute(mat.args[0], perm * mat.args[1], axis)
return self
@property
def shape(self):
return self.args[0].shape
def _entry(self, i, j, **kwargs):
mat, perm, axis = self.args
if axis == 0:
return mat[perm.apply(i), j]
elif axis == 1:
return mat[i, perm.apply(j)]
def _eval_rewrite_as_MatMul(self, *args, **kwargs):
from .matmul import MatMul
mat, perm, axis = self.args
deep = kwargs.get("deep", True)
if deep:
mat = mat.rewrite(MatMul)
if axis == 0:
return MatMul(PermutationMatrix(perm), mat)
elif axis == 1:
return MatMul(mat, PermutationMatrix(perm**-1))
|
ea0649f7b2df2581f6b3d29d0160f7a185cce0d3322e6c2ccc1f05130f1b0a4a | from sympy.combinatorics import Permutation
from sympy.core.expr import unchanged
from sympy.matrices import Matrix
from sympy.matrices.expressions import \
MatMul, BlockDiagMatrix, Determinant, Inverse
from sympy.matrices.expressions.matexpr import \
MatrixSymbol, Identity, ZeroMatrix, OneMatrix
from sympy.matrices.expressions.permutation import \
MatrixPermute, PermutationMatrix
from sympy.utilities.pytest import raises
from sympy import Symbol
def test_PermutationMatrix_basic():
p = Permutation([1, 0])
assert unchanged(PermutationMatrix, p)
raises(ValueError, lambda: PermutationMatrix((0, 1, 2)))
assert PermutationMatrix(p).as_explicit() == Matrix([[0, 1], [1, 0]])
assert isinstance(PermutationMatrix(p) * MatrixSymbol('A', 2, 2), MatMul)
def test_PermutationMatrix_matmul():
p = Permutation([1, 2, 0])
P = PermutationMatrix(p)
M = Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
assert (P * M).as_explicit() == P.as_explicit() * M
assert (M * P).as_explicit() == M * P.as_explicit()
P1 = PermutationMatrix(Permutation([1, 2, 0]))
P2 = PermutationMatrix(Permutation([2, 1, 0]))
P3 = PermutationMatrix(Permutation([1, 0, 2]))
assert P1 * P2 == P3
def test_PermutationMatrix_matpow():
p1 = Permutation([1, 2, 0])
P1 = PermutationMatrix(p1)
p2 = Permutation([2, 0, 1])
P2 = PermutationMatrix(p2)
assert P1**2 == P2
assert P1**3 == Identity(3)
def test_PermutationMatrix_identity():
p = Permutation([0, 1])
assert PermutationMatrix(p).is_Identity
p = Permutation([1, 0])
assert not PermutationMatrix(p).is_Identity
def test_PermutationMatrix_determinant():
P = PermutationMatrix(Permutation([0, 1, 2]))
assert Determinant(P).doit() == 1
P = PermutationMatrix(Permutation([0, 2, 1]))
assert Determinant(P).doit() == -1
P = PermutationMatrix(Permutation([2, 0, 1]))
assert Determinant(P).doit() == 1
def test_PermutationMatrix_inverse():
P = PermutationMatrix(Permutation(0, 1, 2))
assert Inverse(P).doit() == PermutationMatrix(Permutation(0, 2, 1))
def test_PermutationMatrix_rewrite_BlockDiagMatrix():
P = PermutationMatrix(Permutation([0, 1, 2, 3, 4, 5]))
P0 = PermutationMatrix(Permutation([0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P0, P0, P0, P0)
P = PermutationMatrix(Permutation([0, 1, 3, 2, 4, 5]))
P10 = PermutationMatrix(Permutation(0, 1))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P10, P0, P0)
P = PermutationMatrix(Permutation([1, 0, 3, 2, 5, 4]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P10, P10, P10)
P = PermutationMatrix(Permutation([0, 4, 3, 2, 1, 5]))
P3210 = PermutationMatrix(Permutation([3, 2, 1, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3210, P0)
P = PermutationMatrix(Permutation([0, 4, 2, 3, 1, 5]))
P3120 = PermutationMatrix(Permutation([3, 1, 2, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3120, P0)
P = PermutationMatrix(Permutation(0, 3)(1, 4)(2, 5))
assert P.rewrite(BlockDiagMatrix) == BlockDiagMatrix(P)
def test_MartrixPermute_basic():
p = Permutation(0, 1)
P = PermutationMatrix(p)
A = MatrixSymbol('A', 2, 2)
raises(ValueError, lambda: MatrixPermute(Symbol('x'), p))
raises(ValueError, lambda: MatrixPermute(A, Symbol('x')))
assert MatrixPermute(A, P) == MatrixPermute(A, p)
raises(ValueError, lambda: MatrixPermute(A, p, 2))
pp = Permutation(0, 1, size=3)
assert MatrixPermute(A, pp) == MatrixPermute(A, p)
pp = Permutation(0, 1, 2)
raises(ValueError, lambda: MatrixPermute(A, pp))
def test_MatrixPermute_shape():
p = Permutation(0, 1)
A = MatrixSymbol('A', 2, 3)
assert MatrixPermute(A, p).shape == (2, 3)
def test_MatrixPermute_explicit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
AA = A.as_explicit()
assert MatrixPermute(A, p, 0).as_explicit() == \
AA.permute(p, orientation='rows')
assert MatrixPermute(A, p, 1).as_explicit() == \
AA.permute(p, orientation='cols')
def test_MatrixPermute_rewrite_MatMul():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p, 0).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
def test_MatrixPermute_doit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit() == MatrixPermute(A, p)
p = Permutation(0, size=3)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit().as_explicit() == \
MatrixPermute(A, p).as_explicit()
p = Permutation(0, 1, 2)
A = Identity(3)
assert MatrixPermute(A, p, 0).doit().as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).doit().as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
A = ZeroMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = OneMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = MatrixSymbol('A', 4, 4)
p1 = Permutation(0, 1, 2, 3)
p2 = Permutation(0, 2, 3, 1)
expr = MatrixPermute(MatrixPermute(A, p1, 0), p2, 0)
assert expr.as_explicit() == expr.doit().as_explicit()
expr = MatrixPermute(MatrixPermute(A, p1, 1), p2, 1)
assert expr.as_explicit() == expr.doit().as_explicit()
|
38c7c74b1327707632c0551a886d4088c008d364047cdca57709242950a2839d | from sympy import (S, Dummy, Lambda, symbols, Interval, Intersection, Set,
EmptySet, FiniteSet, Union, ComplexRegion)
from sympy.multipledispatch import dispatch
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import (Integers, Naturals, Reals, Range,
ImageSet, Rationals)
from sympy.sets.sets import UniversalSet, imageset, ProductSet
@dispatch(ConditionSet, ConditionSet)
def intersection_sets(a, b): # noqa:F811
return None
@dispatch(ConditionSet, Set)
def intersection_sets(a, b): # noqa:F811
return ConditionSet(a.sym, a.condition, Intersection(a.base_set, b))
@dispatch(Naturals, Integers)
def intersection_sets(a, b): # noqa:F811
return a
@dispatch(Naturals, Naturals)
def intersection_sets(a, b): # noqa:F811
return a if a is S.Naturals else b
@dispatch(Interval, Naturals)
def intersection_sets(a, b): # noqa:F811
return intersection_sets(b, a)
@dispatch(ComplexRegion, Set)
def intersection_sets(self, other): # noqa:F811
if other.is_ComplexRegion:
# self in rectangular form
if (not self.polar) and (not other.polar):
return ComplexRegion(Intersection(self.sets, other.sets))
# self in polar form
elif self.polar and other.polar:
r1, theta1 = self.a_interval, self.b_interval
r2, theta2 = other.a_interval, other.b_interval
new_r_interval = Intersection(r1, r2)
new_theta_interval = Intersection(theta1, theta2)
# 0 and 2*Pi means the same
if ((2*S.Pi in theta1 and S.Zero in theta2) or
(2*S.Pi in theta2 and S.Zero in theta1)):
new_theta_interval = Union(new_theta_interval,
FiniteSet(0))
return ComplexRegion(new_r_interval*new_theta_interval,
polar=True)
if other.is_subset(S.Reals):
new_interval = []
x = symbols("x", cls=Dummy, real=True)
# self in rectangular form
if not self.polar:
for element in self.psets:
if S.Zero in element.args[1]:
new_interval.append(element.args[0])
new_interval = Union(*new_interval)
return Intersection(new_interval, other)
# self in polar form
elif self.polar:
for element in self.psets:
if S.Zero in element.args[1]:
new_interval.append(element.args[0])
if S.Pi in element.args[1]:
new_interval.append(ImageSet(Lambda(x, -x), element.args[0]))
if S.Zero in element.args[0]:
new_interval.append(FiniteSet(0))
new_interval = Union(*new_interval)
return Intersection(new_interval, other)
@dispatch(Integers, Reals)
def intersection_sets(a, b): # noqa:F811
return a
@dispatch(Range, Interval)
def intersection_sets(a, b): # noqa:F811
from sympy.functions.elementary.integers import floor, ceiling
if not all(i.is_number for i in b.args[:2]):
return
# In case of null Range, return an EmptySet.
if a.size == 0:
return S.EmptySet
# trim down to self's size, and represent
# as a Range with step 1.
start = ceiling(max(b.inf, a.inf))
if start not in b:
start += 1
end = floor(min(b.sup, a.sup))
if end not in b:
end -= 1
return intersection_sets(a, Range(start, end + 1))
@dispatch(Range, Naturals)
def intersection_sets(a, b): # noqa:F811
return intersection_sets(a, Interval(b.inf, S.Infinity))
@dispatch(Range, Range)
def intersection_sets(a, b): # noqa:F811
from sympy.solvers.diophantine import diop_linear
from sympy.core.numbers import ilcm
from sympy import sign
# non-overlap quick exits
if not b:
return S.EmptySet
if not a:
return S.EmptySet
if b.sup < a.inf:
return S.EmptySet
if b.inf > a.sup:
return S.EmptySet
# work with finite end at the start
r1 = a
if r1.start.is_infinite:
r1 = r1.reversed
r2 = b
if r2.start.is_infinite:
r2 = r2.reversed
# If both ends are infinite then it means that one Range is just the set
# of all integers (the step must be 1).
if r1.start.is_infinite:
return b
if r2.start.is_infinite:
return a
# this equation represents the values of the Range;
# it's a linear equation
eq = lambda r, i: r.start + i*r.step
# we want to know when the two equations might
# have integer solutions so we use the diophantine
# solver
va, vb = diop_linear(eq(r1, Dummy('a')) - eq(r2, Dummy('b')))
# check for no solution
no_solution = va is None and vb is None
if no_solution:
return S.EmptySet
# there is a solution
# -------------------
# find the coincident point, c
a0 = va.as_coeff_Add()[0]
c = eq(r1, a0)
# find the first point, if possible, in each range
# since c may not be that point
def _first_finite_point(r1, c):
if c == r1.start:
return c
# st is the signed step we need to take to
# get from c to r1.start
st = sign(r1.start - c)*step
# use Range to calculate the first point:
# we want to get as close as possible to
# r1.start; the Range will not be null since
# it will at least contain c
s1 = Range(c, r1.start + st, st)[-1]
if s1 == r1.start:
pass
else:
# if we didn't hit r1.start then, if the
# sign of st didn't match the sign of r1.step
# we are off by one and s1 is not in r1
if sign(r1.step) != sign(st):
s1 -= st
if s1 not in r1:
return
return s1
# calculate the step size of the new Range
step = abs(ilcm(r1.step, r2.step))
s1 = _first_finite_point(r1, c)
if s1 is None:
return S.EmptySet
s2 = _first_finite_point(r2, c)
if s2 is None:
return S.EmptySet
# replace the corresponding start or stop in
# the original Ranges with these points; the
# result must have at least one point since
# we know that s1 and s2 are in the Ranges
def _updated_range(r, first):
st = sign(r.step)*step
if r.start.is_finite:
rv = Range(first, r.stop, st)
else:
rv = Range(r.start, first + st, st)
return rv
r1 = _updated_range(a, s1)
r2 = _updated_range(b, s2)
# work with them both in the increasing direction
if sign(r1.step) < 0:
r1 = r1.reversed
if sign(r2.step) < 0:
r2 = r2.reversed
# return clipped Range with positive step; it
# can't be empty at this point
start = max(r1.start, r2.start)
stop = min(r1.stop, r2.stop)
return Range(start, stop, step)
@dispatch(Range, Integers)
def intersection_sets(a, b): # noqa:F811
return a
@dispatch(ImageSet, Set)
def intersection_sets(self, other): # noqa:F811
from sympy.solvers.diophantine import diophantine
# Only handle the straight-forward univariate case
if (len(self.lamda.variables) > 1
or self.lamda.signature != self.lamda.variables):
return None
base_set = self.base_sets[0]
# Intersection between ImageSets with Integers as base set
# For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
# diophantine equations f(n)=g(m).
# If the solutions for n are {h(t) : t in Integers} then we return
# {f(h(t)) : t in integers}.
# If the solutions for n are {n_1, n_2, ..., n_k} then we return
# {f(n_i) : 1 <= i <= k}.
if base_set is S.Integers:
gm = None
if isinstance(other, ImageSet) and other.base_sets == (S.Integers,):
gm = other.lamda.expr
var = other.lamda.variables[0]
# Symbol of second ImageSet lambda must be distinct from first
m = Dummy('m')
gm = gm.subs(var, m)
elif other is S.Integers:
m = gm = Dummy('m')
if gm is not None:
fn = self.lamda.expr
n = self.lamda.variables[0]
try:
solns = list(diophantine(fn - gm, syms=(n, m), permute=True))
except (TypeError, NotImplementedError):
# TypeError if equation not polynomial with rational coeff.
# NotImplementedError if correct format but no solver.
return
# 3 cases are possible for solns:
# - empty set,
# - one or more parametric (infinite) solutions,
# - a finite number of (non-parametric) solution couples.
# Among those, there is one type of solution set that is
# not helpful here: multiple parametric solutions.
if len(solns) == 0:
return EmptySet
elif any(not isinstance(s, int) and s.free_symbols
for tupl in solns for s in tupl):
if len(solns) == 1:
soln, solm = solns[0]
(t,) = soln.free_symbols
expr = fn.subs(n, soln.subs(t, n)).expand()
return imageset(Lambda(n, expr), S.Integers)
else:
return
else:
return FiniteSet(*(fn.subs(n, s[0]) for s in solns))
if other == S.Reals:
from sympy.solvers.solveset import solveset_real
from sympy.core.function import expand_complex
f = self.lamda.expr
n = self.lamda.variables[0]
n_ = Dummy(n.name, real=True)
f_ = f.subs(n, n_)
re, im = f_.as_real_imag()
im = expand_complex(im)
re = re.subs(n_, n)
im = im.subs(n_, n)
ifree = im.free_symbols
lam = Lambda(n, re)
if not im:
# allow re-evaluation
# of self in this case to make
# the result canonical
pass
elif im.is_zero is False:
return S.EmptySet
elif ifree != {n}:
return None
else:
# univarite imaginary part in same variable
base_set = base_set.intersect(solveset_real(im, n))
return imageset(lam, base_set)
elif isinstance(other, Interval):
from sympy.solvers.solveset import (invert_real, invert_complex,
solveset)
f = self.lamda.expr
n = self.lamda.variables[0]
new_inf, new_sup = None, None
new_lopen, new_ropen = other.left_open, other.right_open
if f.is_real:
inverter = invert_real
else:
inverter = invert_complex
g1, h1 = inverter(f, other.inf, n)
g2, h2 = inverter(f, other.sup, n)
if all(isinstance(i, FiniteSet) for i in (h1, h2)):
if g1 == n:
if len(h1) == 1:
new_inf = h1.args[0]
if g2 == n:
if len(h2) == 1:
new_sup = h2.args[0]
# TODO: Design a technique to handle multiple-inverse
# functions
# Any of the new boundary values cannot be determined
if any(i is None for i in (new_sup, new_inf)):
return
range_set = S.EmptySet
if all(i.is_real for i in (new_sup, new_inf)):
# this assumes continuity of underlying function
# however fixes the case when it is decreasing
if new_inf > new_sup:
new_inf, new_sup = new_sup, new_inf
new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
range_set = base_set.intersect(new_interval)
else:
if other.is_subset(S.Reals):
solutions = solveset(f, n, S.Reals)
if not isinstance(range_set, (ImageSet, ConditionSet)):
range_set = solutions.intersect(other)
else:
return
if range_set is S.EmptySet:
return S.EmptySet
elif isinstance(range_set, Range) and range_set.size is not S.Infinity:
range_set = FiniteSet(*list(range_set))
if range_set is not None:
return imageset(Lambda(n, f), range_set)
return
else:
return
@dispatch(ProductSet, ProductSet)
def intersection_sets(a, b): # noqa:F811
if len(b.args) != len(a.args):
return S.EmptySet
return ProductSet(*(i.intersect(j) for i, j in zip(a.sets, b.sets)))
@dispatch(Interval, Interval)
def intersection_sets(a, b): # noqa:F811
# handle (-oo, oo)
infty = S.NegativeInfinity, S.Infinity
if a == Interval(*infty):
l, r = a.left, a.right
if l.is_real or l in infty or r.is_real or r in infty:
return b
# We can't intersect [0,3] with [x,6] -- we don't know if x>0 or x<0
if not a._is_comparable(b):
return None
empty = False
if a.start <= b.end and b.start <= a.end:
# Get topology right.
if a.start < b.start:
start = b.start
left_open = b.left_open
elif a.start > b.start:
start = a.start
left_open = a.left_open
else:
start = a.start
left_open = a.left_open or b.left_open
if a.end < b.end:
end = a.end
right_open = a.right_open
elif a.end > b.end:
end = b.end
right_open = b.right_open
else:
end = a.end
right_open = a.right_open or b.right_open
if end - start == 0 and (left_open or right_open):
empty = True
else:
empty = True
if empty:
return S.EmptySet
return Interval(start, end, left_open, right_open)
@dispatch(type(EmptySet), Set)
def intersection_sets(a, b): # noqa:F811
return S.EmptySet
@dispatch(UniversalSet, Set)
def intersection_sets(a, b): # noqa:F811
return b
@dispatch(FiniteSet, FiniteSet)
def intersection_sets(a, b): # noqa:F811
return FiniteSet(*(a._elements & b._elements))
@dispatch(FiniteSet, Set)
def intersection_sets(a, b): # noqa:F811
try:
return FiniteSet(*[el for el in a if el in b])
except TypeError:
return None # could not evaluate `el in b` due to symbolic ranges.
@dispatch(Set, Set)
def intersection_sets(a, b): # noqa:F811
return None
@dispatch(Integers, Rationals)
def intersection_sets(a, b): # noqa:F811
return a
@dispatch(Naturals, Rationals)
def intersection_sets(a, b): # noqa:F811
return a
@dispatch(Rationals, Reals)
def intersection_sets(a, b): # noqa:F811
return a
def _intlike_interval(a, b):
try:
from sympy.functions.elementary.integers import floor, ceiling
if b._inf is S.NegativeInfinity and b._sup is S.Infinity:
return a
s = Range(max(a.inf, ceiling(b.left)), floor(b.right) + 1)
return intersection_sets(s, b) # take out endpoints if open interval
except ValueError:
return None
@dispatch(Integers, Interval)
def intersection_sets(a, b): # noqa:F811
return _intlike_interval(a, b)
@dispatch(Naturals, Interval)
def intersection_sets(a, b): # noqa:F811
return _intlike_interval(a, b)
|
823327b58494de772fe1087cf4b73affe419468f993b7a8d012850960b35c529 | from sympy.core.compatibility import range, PY3
from sympy.core.expr import unchanged
from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set,
ComplexRegion)
from sympy.sets.sets import (FiniteSet, Interval, imageset, Union,
Intersection, ProductSet, Contains)
from sympy.simplify.simplify import simplify
from sympy import (S, Symbol, Lambda, symbols, cos, sin, pi, oo, Basic,
Rational, sqrt, tan, log, exp, Abs, I, Tuple, eye,
Dummy, floor, And, Eq)
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import XFAIL, raises
from sympy.abc import x, y, t
import itertools
def test_naturals():
N = S.Naturals
assert 5 in N
assert -5 not in N
assert 5.5 not in N
ni = iter(N)
a, b, c, d = next(ni), next(ni), next(ni), next(ni)
assert (a, b, c, d) == (1, 2, 3, 4)
assert isinstance(a, Basic)
assert N.intersect(Interval(-5, 5)) == Range(1, 6)
assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5)
assert N.boundary == N
assert N.is_open == False
assert N.is_closed == True
assert N.inf == 1
assert N.sup is oo
assert not N.contains(oo)
for s in (S.Naturals0, S.Naturals):
assert s.intersection(S.Reals) is s
assert s.is_subset(S.Reals)
assert N.as_relational(x) == And(Eq(floor(x), x), x >= 1, x < oo)
def test_naturals0():
N = S.Naturals0
assert 0 in N
assert -1 not in N
assert next(iter(N)) == 0
assert not N.contains(oo)
assert N.contains(sin(x)) == Contains(sin(x), N)
def test_integers():
Z = S.Integers
assert 5 in Z
assert -5 in Z
assert 5.5 not in Z
assert not Z.contains(oo)
assert not Z.contains(-oo)
zi = iter(Z)
a, b, c, d = next(zi), next(zi), next(zi), next(zi)
assert (a, b, c, d) == (0, 1, -1, 2)
assert isinstance(a, Basic)
assert Z.intersect(Interval(-5, 5)) == Range(-5, 6)
assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5)
assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity)
assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity)
assert Z.inf is -oo
assert Z.sup is oo
assert Z.boundary == Z
assert Z.is_open == False
assert Z.is_closed == True
assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo)
def test_ImageSet():
raises(ValueError, lambda: ImageSet(x, S.Integers))
assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1)
assert ImageSet(Lambda(x, y), S.Integers) == {y}
assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet
empty = Intersection(FiniteSet(log(2)/pi), S.Integers)
assert unchanged(ImageSet, Lambda(x, 1), empty) # issue #17471
squares = ImageSet(Lambda(x, x**2), S.Naturals)
assert 4 in squares
assert 5 not in squares
assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9)
assert 16 not in squares.intersect(Interval(0, 10))
si = iter(squares)
a, b, c, d = next(si), next(si), next(si), next(si)
assert (a, b, c, d) == (1, 4, 9, 16)
harmonics = ImageSet(Lambda(x, 1/x), S.Naturals)
assert Rational(1, 5) in harmonics
assert Rational(.25) in harmonics
assert 0.25 not in harmonics
assert Rational(.3) not in harmonics
assert (1, 2) not in harmonics
assert harmonics.is_iterable
assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0)
assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4)
assert ImageSet(Lambda((x, y), 2*x), {4}, {3}).doit() == FiniteSet(8)
assert (ImageSet(Lambda((x, y), x+y), {1, 2, 3}, {10, 20, 30}).doit() ==
FiniteSet(11, 12, 13, 21, 22, 23, 31, 32, 33))
c = Interval(1, 3) * Interval(1, 3)
assert Tuple(2, 6) in ImageSet(Lambda(((x, y),), (x, 2*y)), c)
assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y),), (x, 1/y)), c)
assert Tuple(2, -2) not in ImageSet(Lambda(((x, y),), (x, y**2)), c)
assert Tuple(2, -2) in ImageSet(Lambda(((x, y),), (x, -2)), c)
c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9))
assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x),), (y, t, x)), c3)
assert Tuple(Rational(1, 8), 3, 9) in ImageSet(Lambda(((t, y, x),), (1/y, t, x)), c3)
assert 2/pi not in ImageSet(Lambda(((x, y),), 2/x), c)
assert 2/S(100) not in ImageSet(Lambda(((x, y),), 2/x), c)
assert Rational(2, 3) in ImageSet(Lambda(((x, y),), 2/x), c)
S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals)
assert S1.base_pset == ProductSet(S.Integers, S.Naturals)
assert S1.base_sets == (S.Integers, S.Naturals)
# Passing a set instead of a FiniteSet shouldn't raise
assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3})
S2 = ImageSet(Lambda(((x, y),), x+y), {(1, 2), (3, 4)})
assert 3 in S2.doit()
# FIXME: This doesn't yet work:
#assert 3 in S2
assert S2._contains(3) is None
raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1))
def test_image_is_ImageSet():
assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet)
def test_halfcircle():
r, th = symbols('r, theta', real=True)
L = Lambda(((r, th),), (r*cos(th), r*sin(th)))
halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi))
assert (1, 0) in halfcircle
assert (0, -1) not in halfcircle
assert (0, 0) in halfcircle
assert halfcircle._contains((r, 0)) is None
# This one doesn't work:
#assert (r, 2*pi) not in halfcircle
assert not halfcircle.is_iterable
def test_ImageSet_iterator_not_injective():
L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ...
evens = ImageSet(L, S.Naturals)
i = iter(evens)
# No repeats here
assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6)
def test_inf_Range_len():
raises(ValueError, lambda: len(Range(0, oo, 2)))
assert Range(0, oo, 2).size is S.Infinity
assert Range(0, -oo, -2).size is S.Infinity
assert Range(oo, 0, -2).size is S.Infinity
assert Range(-oo, 0, 2).size is S.Infinity
def test_Range_set():
empty = Range(0)
assert Range(5) == Range(0, 5) == Range(0, 5, 1)
r = Range(10, 20, 2)
assert 12 in r
assert 8 not in r
assert 11 not in r
assert 30 not in r
assert list(Range(0, 5)) == list(range(5))
assert list(Range(5, 0, -1)) == list(range(5, 0, -1))
assert Range(5, 15).sup == 14
assert Range(5, 15).inf == 5
assert Range(15, 5, -1).sup == 15
assert Range(15, 5, -1).inf == 6
assert Range(10, 67, 10).sup == 60
assert Range(60, 7, -10).inf == 10
assert len(Range(10, 38, 10)) == 3
assert Range(0, 0, 5) == empty
assert Range(oo, oo, 1) == empty
assert Range(oo, 1, 1) == empty
assert Range(-oo, 1, -1) == empty
assert Range(1, oo, -1) == empty
assert Range(1, -oo, 1) == empty
assert Range(1, -4, oo) == empty
assert Range(1, -4, -oo) == Range(1, 2)
assert Range(1, 4, oo) == Range(1, 2)
assert Range(-oo, oo).size == oo
assert Range(oo, -oo, -1).size == oo
raises(ValueError, lambda: Range(-oo, oo, 2))
raises(ValueError, lambda: Range(x, pi, y))
raises(ValueError, lambda: Range(x, y, 0))
assert 5 in Range(0, oo, 5)
assert -5 in Range(-oo, 0, 5)
assert oo not in Range(0, oo)
ni = symbols('ni', integer=False)
assert ni not in Range(oo)
u = symbols('u', integer=None)
assert Range(oo).contains(u) is not False
inf = symbols('inf', infinite=True)
assert inf not in Range(-oo, oo)
raises(ValueError, lambda: Range(0, oo, 2)[-1])
raises(ValueError, lambda: Range(0, -oo, -2)[-1])
assert Range(-oo, 1, 1)[-1] is S.Zero
assert Range(oo, 1, -1)[-1] == 2
assert inf not in Range(oo)
inf = symbols('inf', infinite=True)
assert inf not in Range(oo)
assert Range(-oo, 1, 1)[-1] is S.Zero
assert Range(oo, 1, -1)[-1] == 2
assert Range(1, 10, 1)[-1] == 9
assert all(i.is_Integer for i in Range(0, -1, 1))
it = iter(Range(-oo, 0, 2))
raises(TypeError, lambda: next(it))
assert empty.intersect(S.Integers) == empty
assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)
assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1)
# test slicing
assert Range(1, 10, 1)[5] == 6
assert Range(1, 12, 2)[5] == 11
assert Range(1, 10, 1)[-1] == 9
assert Range(1, 10, 3)[-1] == 7
raises(ValueError, lambda: Range(oo,0,-1)[1:3:0])
raises(ValueError, lambda: Range(oo,0,-1)[:1])
raises(ValueError, lambda: Range(1, oo)[-2])
raises(ValueError, lambda: Range(-oo, 1)[2])
raises(IndexError, lambda: Range(10)[-20])
raises(IndexError, lambda: Range(10)[20])
raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
assert Range(2, -oo, -2)[2:2:2] == empty
assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
assert Range(oo, 0, -2)[-10:0:2] == empty
raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
assert Range(oo, 0, -2)[0:-4:-2] == empty
assert Range(oo, 0, -2)[:0:2] == empty
raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])
# test empty Range
assert Range(x, x, y) == empty
assert empty.reversed == empty
assert 0 not in empty
assert list(empty) == []
assert len(empty) == 0
assert empty.size is S.Zero
assert empty.intersect(FiniteSet(0)) is S.EmptySet
assert bool(empty) is False
raises(IndexError, lambda: empty[0])
assert empty[:0] == empty
raises(NotImplementedError, lambda: empty.inf)
raises(NotImplementedError, lambda: empty.sup)
AB = [None] + list(range(12))
for R in [
Range(1, 10),
Range(1, 10, 2),
]:
r = list(R)
for a, b, c in cartes(AB, AB, [-3, -1, None, 1, 3]):
for reverse in range(2):
r = list(reversed(r))
R = R.reversed
result = list(R[a:b:c])
ans = r[a:b:c]
txt = ('\n%s[%s:%s:%s] = %s -> %s' % (
R, a, b, c, result, ans))
check = ans == result
assert check, txt
assert Range(1, 10, 1).boundary == Range(1, 10, 1)
for r in (Range(1, 10, 2), Range(1, oo, 2)):
rev = r.reversed
assert r.inf == rev.inf and r.sup == rev.sup
assert r.step == -rev.step
# Make sure to use range in Python 3 and xrange in Python 2 (regardless of
# compatibility imports above)
if PY3:
builtin_range = range
else:
builtin_range = xrange # noqa
raises(TypeError, lambda: Range(builtin_range(1)))
assert S(builtin_range(10)) == Range(10)
if PY3:
assert S(builtin_range(1000000000000)) == \
Range(1000000000000)
# test Range.as_relational
assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(x, floor(x))
assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(x, floor(x))
def test_Range_symbolic():
# symbolic Range
sr = Range(x, y, t)
i = Symbol('i', integer=True)
ip = Symbol('i', integer=True, positive=True)
ir = Range(i, i + 20, 2)
inf = symbols('inf', infinite=True)
# args
assert sr.args == (x, y, t)
assert ir.args == (i, i + 20, 2)
# reversed
raises(ValueError, lambda: sr.reversed)
assert ir.reversed == Range(i + 18, i - 2, -2)
# contains
assert inf not in sr
assert inf not in ir
assert .1 not in sr
assert .1 not in ir
assert i + 1 not in ir
assert i + 2 in ir
raises(TypeError, lambda: 1 in sr) # XXX is this what contains is supposed to do?
# iter
raises(ValueError, lambda: next(iter(sr)))
assert next(iter(ir)) == i
assert sr.intersect(S.Integers) == sr
assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr)
raises(ValueError, lambda: sr[:2])
raises(ValueError, lambda: sr[0])
raises(ValueError, lambda: sr.as_relational(x))
# len
assert len(ir) == ir.size == 10
raises(ValueError, lambda: len(sr))
raises(ValueError, lambda: sr.size)
# bool
assert bool(ir) == bool(sr) == True
# getitem
raises(ValueError, lambda: sr[0])
raises(ValueError, lambda: sr[-1])
raises(ValueError, lambda: sr[:2])
assert ir[:2] == Range(i, i + 4, 2)
assert ir[0] == i
assert ir[-2] == i + 16
assert ir[-1] == i + 18
raises(ValueError, lambda: Range(i)[-1])
assert Range(ip)[-1] == ip - 1
assert ir.inf == i
assert ir.sup == i + 18
assert Range(ip).inf == 0
assert Range(ip).sup == ip - 1
raises(ValueError, lambda: Range(i).inf)
# as_relational
raises(ValueError, lambda: sr.as_relational(x))
assert ir.as_relational(x) == (
x >= i) & Eq(x, floor(x)) & (x <= i + 18)
assert Range(i, i + 1).as_relational(x) == Eq(x, i)
# contains() for symbolic values (issue #18146)
e = Symbol('e', integer=True, even=True)
o = Symbol('o', integer=True, odd=True)
assert Range(5).contains(i) == And(i >= 0, i <= 4)
assert Range(1).contains(i) == Eq(i, 0)
assert Range(-oo, 5, 1).contains(i) == (i <= 4)
assert Range(-oo, oo).contains(i) == True
assert Range(0, 8, 2).contains(i) == Contains(i, Range(0, 8, 2))
assert Range(0, 8, 2).contains(e) == And(e >= 0, e <= 6)
assert Range(0, 8, 2).contains(2*i) == And(2*i >= 0, 2*i <= 6)
assert Range(0, 8, 2).contains(o) == False
assert Range(1, 9, 2).contains(e) == False
assert Range(1, 9, 2).contains(o) == And(o >= 1, o <= 7)
assert Range(8, 0, -2).contains(o) == False
assert Range(9, 1, -2).contains(o) == And(o >= 3, o <= 9)
assert Range(-oo, 8, 2).contains(i) == Contains(i, Range(-oo, 8, 2))
def test_range_range_intersection():
for a, b, r in [
(Range(0), Range(1), S.EmptySet),
(Range(3), Range(4, oo), S.EmptySet),
(Range(3), Range(-3, -1), S.EmptySet),
(Range(1, 3), Range(0, 3), Range(1, 3)),
(Range(1, 3), Range(1, 4), Range(1, 3)),
(Range(1, oo, 2), Range(2, oo, 2), S.EmptySet),
(Range(0, oo, 2), Range(oo), Range(0, oo, 2)),
(Range(0, oo, 2), Range(100), Range(0, 100, 2)),
(Range(2, oo, 2), Range(oo), Range(2, oo, 2)),
(Range(0, oo, 2), Range(5, 6), S.EmptySet),
(Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)),
(Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet),
(Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)),
(Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]:
assert a.intersect(b) == r
assert a.intersect(b.reversed) == r
assert a.reversed.intersect(b) == r
assert a.reversed.intersect(b.reversed) == r
a, b = b, a
assert a.intersect(b) == r
assert a.intersect(b.reversed) == r
assert a.reversed.intersect(b) == r
assert a.reversed.intersect(b.reversed) == r
def test_range_interval_intersection():
p = symbols('p', positive=True)
assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
assert Range(4).intersect(Interval(0, 3)) == Range(4)
assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet
# Null Range intersections
assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet
assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet
def test_Integers_eval_imageset():
ans = ImageSet(Lambda(x, 2*x + Rational(3, 7)), S.Integers)
im = imageset(Lambda(x, -2*x + Rational(3, 7)), S.Integers)
assert im == ans
im = imageset(Lambda(x, -2*x - Rational(11, 7)), S.Integers)
assert im == ans
y = Symbol('y')
L = imageset(x, 2*x + y, S.Integers)
assert y + 4 in L
_x = symbols('x', negative=True)
eq = _x**2 - _x + 1
assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1
eq = 3*_x - 1
assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2
assert imageset(x, (x, 1/x), S.Integers) == \
ImageSet(Lambda(x, (x, 1/x)), S.Integers)
def test_Range_eval_imageset():
a, b, c = symbols('a b c')
assert imageset(x, a*(x + b) + c, Range(3)) == \
imageset(x, a*x + a*b + c, Range(3))
eq = (x + 1)**2
assert imageset(x, eq, Range(3)).lamda.expr == eq
eq = a*(x + b) + c
r = Range(3, -3, -2)
imset = imageset(x, eq, r)
assert imset.lamda.expr != eq
assert list(imset) == [eq.subs(x, i).expand() for i in list(r)]
def test_fun():
assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)),
Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1))
def test_Reals():
assert 5 in S.Reals
assert S.Pi in S.Reals
assert -sqrt(2) in S.Reals
assert (2, 5) not in S.Reals
assert sqrt(-1) not in S.Reals
assert S.Reals == Interval(-oo, oo)
assert S.Reals != Interval(0, oo)
assert S.Reals.is_subset(Interval(-oo, oo))
assert S.Reals.intersect(Range(-oo, oo)) == Range(-oo, oo)
def test_Complex():
assert 5 in S.Complexes
assert 5 + 4*I in S.Complexes
assert S.Pi in S.Complexes
assert -sqrt(2) in S.Complexes
assert -I in S.Complexes
assert sqrt(-1) in S.Complexes
assert S.Complexes.intersect(S.Reals) == S.Reals
assert S.Complexes.union(S.Reals) == S.Complexes
assert S.Complexes == ComplexRegion(S.Reals*S.Reals)
assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False
assert str(S.Complexes) == "S.Complexes"
assert repr(S.Complexes) == "S.Complexes"
def take(n, iterable):
"Return first n items of the iterable as a list"
return list(itertools.islice(iterable, n))
def test_intersections():
assert S.Integers.intersect(S.Reals) == S.Integers
assert 5 in S.Integers.intersect(S.Reals)
assert 5 in S.Integers.intersect(S.Reals)
assert -5 not in S.Naturals.intersect(S.Reals)
assert 5.5 not in S.Integers.intersect(S.Reals)
assert 5 in S.Integers.intersect(Interval(3, oo))
assert -5 in S.Integers.intersect(Interval(-oo, 3))
assert all(x.is_Integer
for x in take(10, S.Integers.intersect(Interval(3, oo)) ))
def test_infinitely_indexed_set_1():
from sympy.abc import n, m, t
assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers)
assert imageset(Lambda(n, 2*n), S.Integers).intersect(
imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet
assert imageset(Lambda(n, 2*n), S.Integers).intersect(
imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet
assert imageset(Lambda(m, 2*m), S.Integers).intersect(
imageset(Lambda(n, 3*n), S.Integers)) == \
ImageSet(Lambda(t, 6*t), S.Integers)
assert imageset(x, x/2 + Rational(1, 3), S.Integers).intersect(S.Integers) is S.EmptySet
assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers
# https://github.com/sympy/sympy/issues/17355
S53 = ImageSet(Lambda(n, 5*n + 3), S.Integers)
assert S53.intersect(S.Integers) == S53
def test_infinitely_indexed_set_2():
from sympy.abc import n
a = Symbol('a', integer=True)
assert imageset(Lambda(n, n), S.Integers) == \
imageset(Lambda(n, n + a), S.Integers)
assert imageset(Lambda(n, n + pi), S.Integers) == \
imageset(Lambda(n, n + a + pi), S.Integers)
assert imageset(Lambda(n, n), S.Integers) == \
imageset(Lambda(n, -n + a), S.Integers)
assert imageset(Lambda(n, -6*n), S.Integers) == \
ImageSet(Lambda(n, 6*n), S.Integers)
assert imageset(Lambda(n, 2*n + pi), S.Integers) == \
ImageSet(Lambda(n, 2*n + pi - 2), S.Integers)
def test_imageset_intersect_real():
from sympy import I
from sympy.abc import n
assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == \
FiniteSet(-1, 1)
s = ImageSet(
Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))),
S.Integers)
# s is unevaluated, but after intersection the result
# should be canonical
assert s.intersect(S.Reals) == imageset(
Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet(
Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
def test_imageset_intersect_interval():
from sympy.abc import n
f1 = ImageSet(Lambda(n, n*pi), S.Integers)
f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi))
f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
# complex expressions
f4 = ImageSet(Lambda(n, n*I*pi), S.Integers)
f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers)
# non-linear expressions
f6 = ImageSet(Lambda(n, log(n)), S.Integers)
f7 = ImageSet(Lambda(n, n**2), S.Integers)
f8 = ImageSet(Lambda(n, Abs(n)), S.Integers)
f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0)
assert f1.intersect(Interval(-1, 1)) == FiniteSet(0)
assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi)
assert f2.intersect(Interval(1, 2)) == Interval(1, 2)
assert f3.intersect(Interval(-1, 1)) == S.EmptySet
assert f3.intersect(Interval(-5, 5)) == FiniteSet(pi*Rational(-3, 2), pi/2)
assert f4.intersect(Interval(-1, 1)) == FiniteSet(0)
assert f4.intersect(Interval(1, 2)) == S.EmptySet
assert f5.intersect(Interval(0, 1)) == S.EmptySet
assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2))
assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10))
assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2))
assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2))
def test_imageset_intersect_diophantine():
from sympy.abc import m, n
# Check that same lambda variable for both ImageSets is handled correctly
img1 = ImageSet(Lambda(n, 2*n + 1), S.Integers)
img2 = ImageSet(Lambda(n, 4*n + 1), S.Integers)
assert img1.intersect(img2) == img2
# Empty solution set returned by diophantine:
assert ImageSet(Lambda(n, 2*n), S.Integers).intersect(
ImageSet(Lambda(n, 2*n + 1), S.Integers)) == S.EmptySet
# Check intersection with S.Integers:
assert ImageSet(Lambda(n, 9/n + 20*n/3), S.Integers).intersect(
S.Integers) == FiniteSet(-61, -23, 23, 61)
# Single solution (2, 3) for diophantine solution:
assert ImageSet(Lambda(n, (n - 2)**2), S.Integers).intersect(
ImageSet(Lambda(n, -(n - 3)**2), S.Integers)) == FiniteSet(0)
# Single parametric solution for diophantine solution:
assert ImageSet(Lambda(n, n**2 + 5), S.Integers).intersect(
ImageSet(Lambda(m, 2*m), S.Integers)) == ImageSet(
Lambda(n, 4*n**2 + 4*n + 6), S.Integers)
# 4 non-parametric solution couples for dioph. equation:
assert ImageSet(Lambda(n, n**2 - 9), S.Integers).intersect(
ImageSet(Lambda(m, -m**2), S.Integers)) == FiniteSet(-9, 0)
# Double parametric solution for diophantine solution:
assert ImageSet(Lambda(m, m**2 + 40), S.Integers).intersect(
ImageSet(Lambda(n, 41*n), S.Integers)) == Intersection(
ImageSet(Lambda(m, m**2 + 40), S.Integers),
ImageSet(Lambda(n, 41*n), S.Integers))
# Check that diophantine returns *all* (8) solutions (permute=True)
assert ImageSet(Lambda(n, n**4 - 2**4), S.Integers).intersect(
ImageSet(Lambda(m, -m**4 + 3**4), S.Integers)) == FiniteSet(0, 65)
assert ImageSet(Lambda(n, pi/12 + n*5*pi/12), S.Integers).intersect(
ImageSet(Lambda(n, 7*pi/12 + n*11*pi/12), S.Integers)) == ImageSet(
Lambda(n, 55*pi*n/12 + 17*pi/4), S.Integers)
# TypeError raised by diophantine (#18081)
assert ImageSet(Lambda(n, n*log(2)), S.Integers).intersection(S.Integers) \
== Intersection(ImageSet(Lambda(n, n*log(2)), S.Integers), S.Integers)
# NotImplementedError raised by diophantine (no solver for cubic_thue)
assert ImageSet(Lambda(n, n**3 + 1), S.Integers).intersect(
ImageSet(Lambda(n, n**3), S.Integers)) == Intersection(
ImageSet(Lambda(n, n**3 + 1), S.Integers),
ImageSet(Lambda(n, n**3), S.Integers))
def test_infinitely_indexed_set_3():
from sympy.abc import n, m, t
assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect(
imageset(Lambda(n, 3*pi*n), S.Integers)) == \
ImageSet(Lambda(t, 6*pi*t), S.Integers)
assert imageset(Lambda(n, 2*n + 1), S.Integers) == \
imageset(Lambda(n, 2*n - 1), S.Integers)
assert imageset(Lambda(n, 3*n + 2), S.Integers) == \
imageset(Lambda(n, 3*n - 1), S.Integers)
def test_ImageSet_simplification():
from sympy.abc import n, m
assert imageset(Lambda(n, n), S.Integers) == S.Integers
assert imageset(Lambda(n, sin(n)),
imageset(Lambda(m, tan(m)), S.Integers)) == \
imageset(Lambda(m, sin(tan(m))), S.Integers)
assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2)
assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2)
assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2)
def test_ImageSet_contains():
from sympy.abc import x
assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers)
assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet
i = Dummy(integer=True)
q = imageset(x, x + I*y, S.Integers).intersection(S.Reals)
assert q.subs(y, I*i).intersection(S.Integers) is S.Integers
q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals)
assert q.subs(y, 0) is S.Integers
assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers
z = cos(1)**2 + sin(1)**2 - 1
q = imageset(x, x + I*z, S.Integers).intersection(S.Reals)
assert q is not S.EmptySet
def test_ComplexRegion_contains():
# contains in ComplexRegion
a = Interval(2, 3)
b = Interval(4, 6)
c = Interval(7, 9)
c1 = ComplexRegion(a*b)
c2 = ComplexRegion(Union(a*b, c*a))
assert 2.5 + 4.5*I in c1
assert 2 + 4*I in c1
assert 3 + 4*I in c1
assert 8 + 2.5*I in c2
assert 2.5 + 6.1*I not in c1
assert 4.5 + 3.2*I not in c1
r1 = Interval(0, 1)
theta1 = Interval(0, 2*S.Pi)
c3 = ComplexRegion(r1*theta1, polar=True)
assert (0.5 + I*Rational(6, 10)) in c3
assert (S.Half + I*Rational(6, 10)) in c3
assert (S.Half + .6*I) in c3
assert (0.5 + .6*I) in c3
assert I in c3
assert 1 in c3
assert 0 in c3
assert 1 + I not in c3
assert 1 - I not in c3
raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2))
def test_ComplexRegion_intersect():
# Polar form
X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True)
unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True)
first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True)
assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk
assert right_half_disk.intersect(first_quad_disk) == first_quad_disk
assert upper_half_disk.intersect(right_half_disk) == first_quad_disk
assert upper_half_disk.intersect(lower_half_disk) == X_axis
c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True)
assert c1.intersect(Interval(1, 5)) == Interval(1, 4)
assert c1.intersect(Interval(4, 9)) == FiniteSet(4)
assert c1.intersect(Interval(5, 12)) is S.EmptySet
# Rectangular form
X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0))
unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1))
upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo))
lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0))
right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo))
first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo))
assert upper_half_plane.intersect(unit_square) == upper_half_unit_square
assert right_half_plane.intersect(first_quad_plane) == first_quad_plane
assert upper_half_plane.intersect(right_half_plane) == first_quad_plane
assert upper_half_plane.intersect(lower_half_plane) == X_axis
c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10))
assert c1.intersect(Interval(2, 7)) == Interval(2, 5)
assert c1.intersect(Interval(5, 7)) == FiniteSet(5)
assert c1.intersect(Interval(6, 9)) is S.EmptySet
# unevaluated object
C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False)
def test_ComplexRegion_union():
# Polar form
c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi))
p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi))
assert c1.union(c2) == ComplexRegion(p1, polar=True)
assert c3.union(c4) == ComplexRegion(p2, polar=True)
# Rectangular form
c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9))
c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12))
c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0))
c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20))
p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12))
p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20))
assert c5.union(c6) == ComplexRegion(p3)
assert c7.union(c8) == ComplexRegion(p4)
assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False)
assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4)))
def test_ComplexRegion_from_real():
c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True)
raises(ValueError, lambda: c1.from_real(c1))
assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False)
def test_ComplexRegion_measure():
a, b = Interval(2, 5), Interval(4, 8)
theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi)
c1 = ComplexRegion(a*b)
c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True)
assert c1.measure == 12
assert c2.measure == 9*pi
def test_normalize_theta_set():
# Interval
assert normalize_theta_set(Interval(pi, 2*pi)) == \
Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
assert normalize_theta_set(Interval(pi*Rational(9, 2), 5*pi)) == Interval(pi/2, pi)
assert normalize_theta_set(Interval(pi*Rational(-3, 2), pi/2)) == Interval.Ropen(0, 2*pi)
assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi)
assert normalize_theta_set(Interval(pi*Rational(-3, 2), -pi/2)) == Interval(pi/2, pi*Rational(3, 2))
assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi)
assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
assert normalize_theta_set(Interval.open(4*pi, pi*Rational(9, 2))) == Interval.open(0, pi/2)
assert normalize_theta_set(Interval.Lopen(4*pi, pi*Rational(9, 2))) == Interval.Lopen(0, pi/2)
assert normalize_theta_set(Interval.Ropen(4*pi, pi*Rational(9, 2))) == Interval.Ropen(0, pi/2)
assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))
# FiniteSet
assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi)
assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi)
assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, pi*Rational(3, 2))
assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \
FiniteSet(pi/2)
assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0)
# Unions
assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
Union(Interval(0, pi/3), Interval(pi/2, pi))
assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \
Interval(0, pi)
# ValueError for non-real sets
raises(ValueError, lambda: normalize_theta_set(S.Complexes))
# NotImplementedError for subset of reals
raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1)))
# NotImplementedError without pi as coefficient
raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi)))
raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10)))
raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi)))
def test_ComplexRegion_FiniteSet():
x, y, z, a, b, c = symbols('x y z a b c')
# Issue #9669
assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \
FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y,
b + I*z, c + I*x, c + I*y, c + I*z)
assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I)
def test_union_RealSubSet():
assert (S.Complexes).union(Interval(1, 2)) == S.Complexes
assert (S.Complexes).union(S.Integers) == S.Complexes
def test_issue_9980():
c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3))
c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3))
R = Union(c1, c2)
assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \
Interval(1, 5)*Interval(1, 3)), False)
assert c1.func(*c1.args) == c1
assert R.func(*R.args) == R
def test_issue_11732():
interval12 = Interval(1, 2)
finiteset1234 = FiniteSet(1, 2, 3, 4)
pointComplex = Tuple(1, 5)
assert (interval12 in S.Naturals) == False
assert (interval12 in S.Naturals0) == False
assert (interval12 in S.Integers) == False
assert (interval12 in S.Complexes) == False
assert (finiteset1234 in S.Naturals) == False
assert (finiteset1234 in S.Naturals0) == False
assert (finiteset1234 in S.Integers) == False
assert (finiteset1234 in S.Complexes) == False
assert (pointComplex in S.Naturals) == False
assert (pointComplex in S.Naturals0) == False
assert (pointComplex in S.Integers) == False
assert (pointComplex in S.Complexes) == True
def test_issue_11730():
unit = Interval(0, 1)
square = ComplexRegion(unit ** 2)
assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes
assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes
assert Union(unit, square) == square
assert Intersection(S.Reals, square) == unit
def test_issue_11938():
unit = Interval(0, 1)
ival = Interval(1, 2)
cr1 = ComplexRegion(ival * unit)
assert Intersection(cr1, S.Reals) == ival
assert Intersection(cr1, unit) == FiniteSet(1)
arg1 = Interval(0, S.Pi)
arg2 = FiniteSet(S.Pi)
arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4)
cp1 = ComplexRegion(unit * arg1, polar=True)
cp2 = ComplexRegion(unit * arg2, polar=True)
cp3 = ComplexRegion(unit * arg3, polar=True)
assert Intersection(cp1, S.Reals) == Interval(-1, 1)
assert Intersection(cp2, S.Reals) == Interval(-1, 0)
assert Intersection(cp3, S.Reals) == FiniteSet(0)
def test_issue_11914():
a, b = Interval(0, 1), Interval(0, pi)
c, d = Interval(2, 3), Interval(pi, 3 * pi / 2)
cp1 = ComplexRegion(a * b, polar=True)
cp2 = ComplexRegion(c * d, polar=True)
assert -3 in cp1.union(cp2)
assert -3 in cp2.union(cp1)
assert -5 not in cp1.union(cp2)
def test_issue_9543():
assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals)
def test_issue_16871():
assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1}
assert ImageSet(Lambda(x, x - 3), S.Integers
).intersection(S.Integers) is S.Integers
@XFAIL
def test_issue_16871b():
assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers)
def test_issue_18050():
assert imageset(Lambda(x, I*x + 1), S.Integers
) == ImageSet(Lambda(x, I*x + 1), S.Integers)
assert imageset(Lambda(x, 3*I*x + 4 + 8*I), S.Integers
) == ImageSet(Lambda(x, 3*I*x + 4 + 2*I), S.Integers)
# no 'Mod' for next 2 tests:
assert imageset(Lambda(x, 2*x + 3*I), S.Integers
) == ImageSet(Lambda(x, 2*x + 3*I), S.Integers)
r = Symbol('r', positive=True)
assert imageset(Lambda(x, r*x + 10), S.Integers
) == ImageSet(Lambda(x, r*x + 10), S.Integers)
# reduce real part:
assert imageset(Lambda(x, 3*x + 8 + 5*I), S.Integers
) == ImageSet(Lambda(x, 3*x + 2 + 5*I), S.Integers)
def test_Rationals():
assert S.Integers.is_subset(S.Rationals)
assert S.Naturals.is_subset(S.Rationals)
assert S.Naturals0.is_subset(S.Rationals)
assert S.Rationals.is_subset(S.Reals)
assert S.Rationals.inf is -oo
assert S.Rationals.sup is oo
it = iter(S.Rationals)
assert [next(it) for i in range(12)] == [
0, 1, -1, S.Half, 2, Rational(-1, 2), -2,
Rational(1, 3), 3, Rational(-1, 3), -3, Rational(2, 3)]
assert Basic() not in S.Rationals
assert S.Half in S.Rationals
assert 1.0 not in S.Rationals
assert 2 in S.Rationals
r = symbols('r', rational=True)
assert r in S.Rationals
raises(TypeError, lambda: x in S.Rationals)
# issue #18134:
assert S.Rationals.boundary == S.Reals
assert S.Rationals.closure == S.Reals
assert S.Rationals.is_open == False
assert S.Rationals.is_closed == False
def test_NZQRC_unions():
# check that all trivial number set unions are simplified:
nbrsets = (S.Naturals, S.Naturals0, S.Integers, S.Rationals,
S.Reals, S.Complexes)
unions = (Union(a, b) for a in nbrsets for b in nbrsets)
assert all(u.is_Union is False for u in unions)
def test_imageset_intersection():
n = Dummy()
s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) +
log(Abs(sqrt(-I))))), S.Integers)
assert s.intersect(S.Reals) == ImageSet(
Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
def test_issue_17858():
assert 1 in Range(-oo, oo)
assert 0 in Range(oo, -oo, -1)
assert oo not in Range(-oo, oo)
assert -oo not in Range(-oo, oo)
def test_issue_17859():
r = Range(-oo,oo)
raises(ValueError,lambda: r[::2])
raises(ValueError, lambda: r[::-2])
r = Range(oo,-oo,-1)
raises(ValueError,lambda: r[::2])
raises(ValueError, lambda: r[::-2])
|
3c85da4793933dea2847c8a7c57c9fe2a74c38ff7a9d9ff6ae5729c0f7d7d7d8 | from sympy import (Symbol, Set, Union, Interval, oo, S, sympify, nan,
Max, Min, Float,
FiniteSet, Intersection, imageset, I, true, false, ProductSet,
sqrt, Complement, EmptySet, sin, cos, Lambda, ImageSet, pi,
Pow, Contains, Sum, rootof, SymmetricDifference, Piecewise,
Matrix, Range, Add, symbols, zoo, Rational)
from mpmath import mpi
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
from sympy.logic import And, Or, Xor
from sympy.utilities.pytest import raises, XFAIL, warns_deprecated_sympy
from sympy.abc import x, y, z, m, n
def test_imageset():
ints = S.Integers
assert imageset(x, x - 1, S.Naturals) is S.Naturals0
assert imageset(x, x + 1, S.Naturals0) is S.Naturals
assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
assert imageset(x, abs(x), S.Naturals) is S.Naturals
assert imageset(x, abs(x), S.Integers) is S.Naturals0
# issue 16878a
r = symbols('r', real=True)
assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
assert (r, r) in imageset(x, (x, x), S.Reals)
assert 1 + I in imageset(x, x + I, S.Reals)
assert {1} not in imageset(x, (x,), S.Reals)
assert (1, 1) not in imageset(x, (x,) , S.Reals)
raises(TypeError, lambda: imageset(x, ints))
raises(ValueError, lambda: imageset(x, y, z, ints))
raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
def f(x):
return cos(x)
assert imageset(f, ints) == imageset(x, cos(x), ints)
f = lambda x: cos(x)
assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
assert imageset(x, 1, ints) == FiniteSet(1)
assert imageset(x, y, ints) == {y}
assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
clash = Symbol('x', integer=true)
assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
in ('_x + x', 'x + _x'))
x1, x2 = symbols("x1, x2")
assert imageset(lambda x, y: Add(x, y), Interval(1, 2), Interval(2, 3)) == \
ImageSet(Lambda((x1, x2), x1+x2), Interval(1, 2), Interval(2, 3))
def test_is_empty():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_empty is False
assert S.EmptySet.is_empty is True
def test_is_finiteset():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_finite_set is False
assert S.EmptySet.is_finite_set is True
assert FiniteSet(1, 2).is_finite_set is True
assert Interval(1, 2).is_finite_set is False
assert Interval(x, y).is_finite_set is None
assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
def test_deprecated_is_EmptySet():
with warns_deprecated_sympy():
S.EmptySet.is_EmptySet
def test_interval_arguments():
assert Interval(0, oo) == Interval(0, oo, False, True)
assert Interval(0, oo).right_open is true
assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
assert Interval(-oo, 0).left_open is true
assert Interval(oo, -oo) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(-oo, -oo) == S.EmptySet
assert Interval(oo, x) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(x, -oo) == S.EmptySet
assert Interval(x, x) == {x}
assert isinstance(Interval(1, 1), FiniteSet)
e = Sum(x, (x, 1, 3))
assert isinstance(Interval(e, e), FiniteSet)
assert Interval(1, 0) == S.EmptySet
assert Interval(1, 1).measure == 0
assert Interval(1, 1, False, True) == S.EmptySet
assert Interval(1, 1, True, False) == S.EmptySet
assert Interval(1, 1, True, True) == S.EmptySet
assert isinstance(Interval(0, Symbol('a')), Interval)
assert Interval(Symbol('a', real=True, positive=True), 0) == S.EmptySet
raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
def test_interval_symbolic_end_points():
a = Symbol('a', real=True)
assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)
assert Interval(0, a).contains(1) == LessThan(1, a)
def test_interval_is_empty():
x, y = symbols('x, y')
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
nn = Symbol('nn', nonnegative=True)
assert Interval(1, 2).is_empty == False
assert Interval(3, 3).is_empty == False # FiniteSet
assert Interval(r, r).is_empty == False # FiniteSet
assert Interval(r, r + nn).is_empty == False
assert Interval(x, x).is_empty == False
assert Interval(1, oo).is_empty == False
assert Interval(-oo, oo).is_empty == False
assert Interval(-oo, 1).is_empty == False
assert Interval(x, y).is_empty == None
assert Interval(r, oo).is_empty == False # real implies finite
assert Interval(n, 0).is_empty == False
assert Interval(n, 0, left_open=True).is_empty == False
assert Interval(p, 0).is_empty == True # EmptySet
assert Interval(nn, 0).is_empty == None
assert Interval(n, p).is_empty == False
assert Interval(0, p, left_open=True).is_empty == False
assert Interval(0, p, right_open=True).is_empty == False
assert Interval(0, nn, left_open=True).is_empty == None
assert Interval(0, nn, right_open=True).is_empty == None
def test_union():
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
Interval(1, 3, False, True)
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
Interval(1, 3, True, True)
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
Interval(1, 3)
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
Interval(1, 3)
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
assert Union(S.EmptySet) == S.EmptySet
assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
Interval(0, 1)
assert Interval(1, 2).union(Interval(2, 3)) == \
Interval(1, 2) + Interval(2, 3)
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
assert Union(Set()) == Set()
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
FiniteSet(x, FiniteSet(y, z))
# Test that Intervals and FiniteSets play nicely
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
assert Interval(1, 3, True, True) + FiniteSet(3) == \
Interval(1, 3, True, False)
X = Interval(1, 3) + FiniteSet(5)
Y = Interval(1, 2) + FiniteSet(3)
XandY = X.intersect(Y)
assert 2 in X and 3 in X and 3 in XandY
assert XandY.is_subset(X) and XandY.is_subset(Y)
raises(TypeError, lambda: Union(1, 2, 3))
assert X.is_iterable is False
# issue 7843
assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
FiniteSet(-sqrt(-I), sqrt(-I))
assert Union(S.Reals, S.Integers) == S.Reals
def test_union_iter():
# Use Range because it is ordered
u = Union(Range(3), Range(5), Range(4), evaluate=False)
# Round robin
assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]
def test_union_is_empty():
assert (Interval(x, y) + FiniteSet(1)).is_empty == False
assert (Interval(x, y) + Interval(-x, y)).is_empty == None
def test_difference():
assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
assert Interval(1, 3, True) - Interval(2, 3, True) == \
Interval(1, 2, True, False)
assert Interval(0, 2) - FiniteSet(1) == \
Union(Interval(0, 1, False, True), Interval(1, 2, True, False))
# issue #18119
assert S.Reals - FiniteSet(I) == S.Reals
assert S.Reals - FiniteSet(-I, I) == S.Reals
assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
assert Interval(0, 10) - FiniteSet(1, I) == Union(
Interval.Ropen(0, 1), Interval.Lopen(1, 10))
assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
evaluate=False)
assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
FiniteSet(1, 2)
assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert -1 in S.Reals - S.Naturals
def test_Complement():
A = FiniteSet(1, 3, 4)
B = FiniteSet(3, 4)
C = Interval(1, 3)
D = Interval(1, 2)
assert Complement(A, B, evaluate=False).is_iterable is True
assert Complement(A, C, evaluate=False).is_iterable is True
assert Complement(C, D, evaluate=False).is_iterable is None
assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))
assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
Interval(1, 3)) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert not 3 in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
assert not 1 in Complement(S.Reals, S.Naturals, evaluate=False)
assert Complement(S.Integers, S.UniversalSet) == EmptySet
assert S.UniversalSet.complement(S.Integers) == EmptySet
assert (not 0 in S.Reals.intersect(S.Integers - FiniteSet(0)))
assert S.EmptySet - S.Integers == S.EmptySet
assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)
assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
# issue 12712
assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
Complement(FiniteSet(x, y), Interval(-10, 10))
A = FiniteSet(*symbols('a:c'))
B = FiniteSet(*symbols('d:f'))
assert unchanged(Complement, ProductSet(A, A), B)
A2 = ProductSet(A, A)
B3 = ProductSet(B, B, B)
assert A2 - B3 == A2
assert B3 - A2 == B3
def test_set_operations_nonsets():
'''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
ops = [
lambda a, b: a + b,
lambda a, b: a - b,
lambda a, b: a * b,
lambda a, b: a / b,
lambda a, b: a // b,
lambda a, b: a | b,
lambda a, b: a & b,
lambda a, b: a ^ b,
# FiniteSet(1) ** 2 gives a ProductSet
#lambda a, b: a ** b,
]
Sx = FiniteSet(x)
Sy = FiniteSet(y)
sets = [
{1},
FiniteSet(1),
Interval(1, 2),
Union(Sx, Interval(1, 2)),
Intersection(Sx, Sy),
Complement(Sx, Sy),
ProductSet(Sx, Sy),
S.EmptySet,
]
nums = [0, 1, 2, S(0), S(1), S(2)]
for s in sets:
for n in nums:
for op in ops:
raises(TypeError, lambda : op(s, n))
raises(TypeError, lambda : op(n, s))
raises(TypeError, lambda: s ** object())
raises(TypeError, lambda: s ** {1})
def test_complement():
assert Interval(0, 1).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
assert S.UniversalSet.complement(S.Reals) == S.EmptySet
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
assert S.EmptySet.complement(S.Reals) == S.Reals
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity,
0)).complement(S.Reals) == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
assert FiniteSet(1, 2, 3).complement(S.Reals) == \
Interval(S.NegativeInfinity, 1, True, True) + \
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
Interval(3, S.Infinity, True, True)
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
Interval(0, oo, True, True)
,FiniteSet(x), evaluate=False)
square = Interval(0, 1) * Interval(0, 1)
notsquare = square.complement(S.Reals*S.Reals)
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
def test_intersect1():
assert all(S.Integers.intersection(i) is i for i in
(S.Naturals, S.Naturals0))
assert all(i.intersection(S.Integers) is i for i in
(S.Naturals, S.Naturals0))
s = S.Naturals0
assert S.Naturals.intersection(s) is S.Naturals
assert s.intersection(S.Naturals) is S.Naturals
x = Symbol('x')
assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
Interval(1, 2, True)
assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, False)
assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, True)
assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
Union(Interval(0, 1), Interval(2, 2))
assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet
assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
Union(Interval(0, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
S.EmptySet
assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
# XXX: Is the real=True necessary here?
# https://github.com/sympy/sympy/issues/17532
m, n = symbols('m, n', real=True)
assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
FiniteSet(m)
# issue 8217
assert Intersection(FiniteSet(x), FiniteSet(y)) == \
Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
assert FiniteSet(x).intersect(S.Reals) == \
Intersection(S.Reals, FiniteSet(x), evaluate=False)
# tests for the intersection alias
assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
def test_intersection():
# iterable
i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
assert i.is_iterable
assert set(i) == {S(2), S(3)}
# challenging intervals
x = Symbol('x', real=True)
i = Intersection(Interval(0, 3), Interval(x, 6))
assert (5 in i) is False
raises(TypeError, lambda: 2 in i)
# Singleton special cases
assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)
# Products
line = Interval(0, 5)
i = Intersection(line**2, line**3, evaluate=False)
assert (2, 2) not in i
assert (2, 2, 2) not in i
raises(TypeError, lambda: list(i))
a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])
assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet
# issue 12178
assert Intersection() == S.UniversalSet
# issue 16987
assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})
def test_issue_9623():
n = Symbol('n')
a = S.Reals
b = Interval(0, oo)
c = FiniteSet(n)
assert Intersection(a, b, c) == Intersection(b, c)
assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet
def test_is_disjoint():
assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True
def test_ProductSet__len__():
A = FiniteSet(1, 2)
B = FiniteSet(1, 2, 3)
assert ProductSet(A).__len__() == 2
assert ProductSet(A).__len__() is not S(2)
assert ProductSet(A, B).__len__() == 6
assert ProductSet(A, B).__len__() is not S(6)
def test_ProductSet():
# ProductSet is always a set of Tuples
assert ProductSet(S.Reals) == S.Reals ** 1
assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3
assert ProductSet(S.Reals) != S.Reals
assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()
assert 1 not in ProductSet(S.Reals)
assert (1,) in ProductSet(S.Reals)
assert 1 not in ProductSet(S.Reals, S.Reals)
assert (1, 2) in ProductSet(S.Reals, S.Reals)
assert (1, I) not in ProductSet(S.Reals, S.Reals)
assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
assert (1, 2, 3) in S.Reals ** 3
assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)
assert ProductSet() == FiniteSet(())
assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet
# See GH-17458
for ni in range(5):
Rn = ProductSet(*(S.Reals,) * ni)
assert (1,) * ni in Rn
assert 1 not in Rn
assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)
S1 = S.Reals
S2 = S.Integers
x1 = pi
x2 = 3
assert x1 in S1
assert x2 in S2
assert (x1, x2) in S1 * S2
S3 = S1 * S2
x3 = (x1, x2)
assert x3 in S3
assert (x3, x3) in S3 * S3
assert x3 + x3 not in S3 * S3
raises(ValueError, lambda: S.Reals**-1)
with warns_deprecated_sympy():
ProductSet(FiniteSet(s) for s in range(2))
raises(TypeError, lambda: ProductSet(None))
S1 = FiniteSet(1, 2)
S2 = FiniteSet(3, 4)
S3 = ProductSet(S1, S2)
assert (S3.as_relational(x, y)
== And(S1.as_relational(x), S2.as_relational(y))
== And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
raises(ValueError, lambda: S3.as_relational(x))
raises(ValueError, lambda: S3.as_relational(x, 1))
raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))
Z2 = ProductSet(S.Integers, S.Integers)
assert Z2.contains((1, 2)) is S.true
assert Z2.contains((1,)) is S.false
assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
assert Z2.contains(x).subs(x, 1) is S.false
assert Z2.contains((x, 1)).subs(x, 2) is S.true
assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False)
assert unchanged(Contains, (x, y), Z2)
assert Contains((1, 2), Z2) is S.true
def test_ProductSet_of_single_arg_is_not_arg():
assert unchanged(ProductSet, Interval(0, 1))
assert ProductSet(Interval(0, 1)) != Interval(0, 1)
def test_ProductSet_is_empty():
assert ProductSet(S.Integers, S.Reals).is_empty == False
assert ProductSet(Interval(x, 1), S.Reals).is_empty == None
def test_interval_subs():
a = Symbol('a', real=True)
assert Interval(0, a).subs(a, 2) == Interval(0, 2)
assert Interval(a, 0).subs(a, 2) == S.EmptySet
def test_interval_to_mpi():
assert Interval(0, 1).to_mpi() == mpi(0, 1)
assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
def test_measure():
a = Symbol('a', real=True)
assert Interval(1, 3).measure == 2
assert Interval(0, a).measure == a
assert Interval(1, a).measure == a - 1
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
== 2
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
assert S.EmptySet.measure == 0
square = Interval(0, 10) * Interval(0, 10)
offsetsquare = Interval(5, 15) * Interval(5, 15)
band = Interval(-oo, oo) * Interval(2, 4)
assert square.measure == offsetsquare.measure == 100
assert (square + offsetsquare).measure == 175 # there is some overlap
assert (square - offsetsquare).measure == 75
assert (square * FiniteSet(1, 2, 3)).measure == 0
assert (square.intersect(band)).measure == 20
assert (square + band).measure is oo
assert (band * FiniteSet(1, 2, 3)).measure is nan
def test_is_subset():
assert Interval(0, 1).is_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_subset(Interval(0, 2)) is False
assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False
assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
assert FiniteSet(1).is_subset(Interval(0, 2))
assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
assert (Interval(1, 2) + FiniteSet(3)).is_subset(
(Interval(0, 2, False, True) + FiniteSet(2, 3)))
assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False
assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True
assert Interval(0, 1).is_subset(S.EmptySet) is False
assert S.EmptySet.is_subset(S.EmptySet) is True
raises(ValueError, lambda: S.EmptySet.is_subset(1))
# tests for the issubset alias
assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True
assert S.Naturals.is_subset(S.Integers)
assert S.Naturals0.is_subset(S.Integers)
assert FiniteSet(x).is_subset(FiniteSet(y)) is None
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False
assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False
n = Symbol('n', integer=True)
assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
def test_is_proper_subset():
assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))
def test_is_superset():
assert Interval(0, 1).is_superset(Interval(0, 2)) == False
assert Interval(0, 3).is_superset(Interval(0, 2))
assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(1).is_superset(Interval(0, 2)) == False
assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
assert (Interval(1, 2) + FiniteSet(3)).is_superset(
(Interval(0, 2, False, True) + FiniteSet(2, 3))) == False
assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False
assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False
assert Interval(0, 1).is_superset(S.EmptySet) == True
assert S.EmptySet.is_superset(S.EmptySet) == True
raises(ValueError, lambda: S.EmptySet.is_superset(1))
# tests for the issuperset alias
assert Interval(0, 1).issuperset(S.EmptySet) == True
assert S.EmptySet.issuperset(S.EmptySet) == True
def test_is_proper_superset():
assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))
def test_contains():
assert Interval(0, 2).contains(1) is S.true
assert Interval(0, 2).contains(3) is S.false
assert Interval(0, 2, True, False).contains(0) is S.false
assert Interval(0, 2, True, False).contains(2) is S.true
assert Interval(0, 2, False, True).contains(0) is S.true
assert Interval(0, 2, False, True).contains(2) is S.false
assert Interval(0, 2, True, True).contains(0) is S.false
assert Interval(0, 2, True, True).contains(2) is S.false
assert (Interval(0, 2) in Interval(0, 2)) is False
assert FiniteSet(1, 2, 3).contains(2) is S.true
assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true
assert FiniteSet(y)._contains(x) is None
raises(TypeError, lambda: x in FiniteSet(y))
assert FiniteSet({x, y})._contains({x}) is None
assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True
assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False
# issue 8197
from sympy.abc import a, b
assert isinstance(FiniteSet(b).contains(-a), Contains)
assert isinstance(FiniteSet(b).contains(a), Contains)
assert isinstance(FiniteSet(a).contains(1), Contains)
raises(TypeError, lambda: 1 in FiniteSet(a))
# issue 8209
rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
s1 = FiniteSet(rad1)
s2 = FiniteSet(rad2)
assert s1 - s2 == S.EmptySet
items = [1, 2, S.Infinity, S('ham'), -1.1]
fset = FiniteSet(*items)
assert all(item in fset for item in items)
assert all(fset.contains(item) is S.true for item in items)
assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false
assert S.EmptySet.contains(1) is S.false
assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
assert rootof(x**5 + x**3 + 1, 0) in S.Reals
assert not rootof(x**5 + x**3 + 1, 1) in S.Reals
# non-bool results
assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
And(y <= 3, y <= x, S.One <= y, S(2) <= y)
assert (S.Complexes).contains(S.ComplexInfinity) == S.false
def test_interval_symbolic():
x = Symbol('x')
e = Interval(0, 1)
assert e.contains(x) == And(S.Zero <= x, x <= 1)
raises(TypeError, lambda: x in e)
e = Interval(0, 1, True, True)
assert e.contains(x) == And(S.Zero < x, x < 1)
def test_union_contains():
x = Symbol('x')
i1 = Interval(0, 1)
i2 = Interval(2, 3)
i3 = Union(i1, i2)
assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
raises(TypeError, lambda: x in i3)
e = i3.contains(x)
assert e == i3.as_relational(x)
assert e.subs(x, -0.5) is false
assert e.subs(x, 0.5) is true
assert e.subs(x, 1.5) is false
assert e.subs(x, 2.5) is true
assert e.subs(x, 3.5) is false
U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
assert all(el not in U for el in [0, 4, -oo])
assert all(el in U for el in [2, 5, 10])
def test_is_number():
assert Interval(0, 1).is_number is False
assert Set().is_number is False
def test_Interval_is_left_unbounded():
assert Interval(3, 4).is_left_unbounded is False
assert Interval(-oo, 3).is_left_unbounded is True
assert Interval(Float("-inf"), 3).is_left_unbounded is True
def test_Interval_is_right_unbounded():
assert Interval(3, 4).is_right_unbounded is False
assert Interval(3, oo).is_right_unbounded is True
assert Interval(3, Float("+inf")).is_right_unbounded is True
def test_Interval_as_relational():
x = Symbol('x')
assert Interval(-1, 2, False, False).as_relational(x) == \
And(Le(-1, x), Le(x, 2))
assert Interval(-1, 2, True, False).as_relational(x) == \
And(Lt(-1, x), Le(x, 2))
assert Interval(-1, 2, False, True).as_relational(x) == \
And(Le(-1, x), Lt(x, 2))
assert Interval(-1, 2, True, True).as_relational(x) == \
And(Lt(-1, x), Lt(x, 2))
assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))
assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))
assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert Interval(x, y).as_relational(x) == (x <= y)
assert Interval(y, x).as_relational(x) == (y <= x)
def test_Finite_as_relational():
x = Symbol('x')
y = Symbol('y')
assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))
def test_Union_as_relational():
x = Symbol('x')
assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
And(Lt(0, x), Le(x, 1))
def test_Intersection_as_relational():
x = Symbol('x')
assert (Intersection(Interval(0, 1), FiniteSet(2),
evaluate=False).as_relational(x)
== And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))
def test_Complement_as_relational():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == \
And(Le(0, x), Le(x, 1), Ne(x, 2))
@XFAIL
def test_Complement_as_relational_fail():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
# XXX This example fails because 0 <= x changes to x >= 0
# during the evaluation.
assert expr.as_relational(x) == \
(0 <= x) & (x <= 1) & Ne(x, 2)
def test_SymmetricDifference_as_relational():
x = Symbol('x')
expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))
def test_EmptySet():
assert S.EmptySet.as_relational(Symbol('x')) is S.false
assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
assert S.EmptySet.boundary == S.EmptySet
def test_finite_basic():
x = Symbol('x')
A = FiniteSet(1, 2, 3)
B = FiniteSet(3, 4, 5)
AorB = Union(A, B)
AandB = A.intersect(B)
assert A.is_subset(AorB) and B.is_subset(AorB)
assert AandB.is_subset(A)
assert AandB == FiniteSet(3)
assert A.inf == 1 and A.sup == 3
assert AorB.inf == 1 and AorB.sup == 5
assert FiniteSet(x, 1, 5).sup == Max(x, 5)
assert FiniteSet(x, 1, 5).inf == Min(x, 1)
# issue 7335
assert FiniteSet(S.EmptySet) != S.EmptySet
assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)
# Ensure a variety of types can exist in a FiniteSet
assert FiniteSet((1, 2), Float, A, -5, x, 'eggs', x**2, Interval)
assert (A > B) is False
assert (A >= B) is False
assert (A < B) is False
assert (A <= B) is False
assert AorB > A and AorB > B
assert AorB >= A and AorB >= B
assert A >= A and A <= A
assert A >= AandB and B >= AandB
assert A > AandB and B > AandB
assert FiniteSet(1.0) == FiniteSet(1)
def test_product_basic():
H, T = 'H', 'T'
unit_line = Interval(0, 1)
d6 = FiniteSet(1, 2, 3, 4, 5, 6)
d4 = FiniteSet(1, 2, 3, 4)
coin = FiniteSet(H, T)
square = unit_line * unit_line
assert (0, 0) in square
assert 0 not in square
assert (H, T) in coin ** 2
assert (.5, .5, .5) in (square * unit_line).flatten()
assert ((.5, .5), .5) in square * unit_line
assert (H, 3, 3) in (coin * d6 * d6).flatten()
assert ((H, 3), 3) in coin * d6 * d6
HH, TT = sympify(H), sympify(T)
assert set(coin**2) == set(((HH, HH), (HH, TT), (TT, HH), (TT, TT)))
assert (d4*d4).is_subset(d6*d6)
assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True))*Interval(-oo, oo),
Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True)))
assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)
assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square
assert len(coin*coin*coin) == 8
assert len(S.EmptySet*S.EmptySet) == 0
assert len(S.EmptySet*coin) == 0
raises(TypeError, lambda: len(coin*Interval(0, 2)))
def test_real():
x = Symbol('x', real=True, finite=True)
I = Interval(0, 5)
J = Interval(10, 20)
A = FiniteSet(1, 2, 30, x, S.Pi)
B = FiniteSet(-4, 0)
C = FiniteSet(100)
D = FiniteSet('Ham', 'Eggs')
assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
assert not D.is_subset(S.Reals)
assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])
assert not (I + A + D).is_subset(S.Reals)
def test_supinf():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert (Interval(0, 1) + FiniteSet(2)).sup == 2
assert (Interval(0, 1) + FiniteSet(2)).inf == 0
assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
assert FiniteSet(5, 1, x).sup == Max(5, x)
assert FiniteSet(5, 1, x).inf == Min(1, x)
assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
S.Infinity
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
S.NegativeInfinity
assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')
def test_universalset():
U = S.UniversalSet
x = Symbol('x')
assert U.as_relational(x) is S.true
assert U.union(Interval(2, 4)) == U
assert U.intersect(Interval(2, 4)) == Interval(2, 4)
assert U.measure is S.Infinity
assert U.boundary == S.EmptySet
assert U.contains(0) is S.true
def test_Union_of_ProductSets_shares():
line = Interval(0, 2)
points = FiniteSet(0, 1, 2)
assert Union(line * line, line * points) == line * line
def test_Interval_free_symbols():
# issue 6211
assert Interval(0, 1).free_symbols == set()
x = Symbol('x', real=True)
assert Interval(0, x).free_symbols == {x}
def test_image_interval():
from sympy.core.numbers import Rational
x = Symbol('x', real=True)
a = Symbol('a', real=True)
assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
Interval(-4, 2, True, False)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
Interval(0, 4, False, True)
assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
Interval(-35, 0) # Multiple Maxima
assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
+ Interval(2, oo) # Single Infinite discontinuity
assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities
# Test for Python lambda
assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
ImageSet(Lambda(x, a*x), Interval(0, 1))
assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
def test_image_piecewise():
f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
@XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
def test_image_Intersection():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
def test_image_FiniteSet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
def test_image_Union():
x = Symbol('x', real=True)
assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
(Interval(0, 4) + FiniteSet(9))
def test_image_EmptySet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
def test_issue_5724_7680():
assert I not in S.Reals # issue 7680
assert Interval(-oo, oo).contains(I) is S.false
def test_boundary():
assert FiniteSet(1).boundary == FiniteSet(1)
assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
for left_open in (true, false) for right_open in (true, false))
def test_boundary_Union():
assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
assert ((Interval(0, 1, False, True)
+ Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))
assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
== FiniteSet(0, 10)
assert Union(Interval(0, 10, True, True),
Interval(10, 15, True, True), evaluate=False).boundary \
== FiniteSet(0, 10, 15)
@XFAIL
def test_union_boundary_of_joining_sets():
""" Testing the boundary of unions is a hard problem """
assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
def test_boundary_ProductSet():
open_square = Interval(0, 1, True, True) ** 2
assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1))
second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
assert (open_square + second_square).boundary == (
FiniteSet(0, 1) * Interval(0, 1)
+ FiniteSet(1, 2) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1)
+ Interval(1, 2) * FiniteSet(0, 1))
def test_boundary_ProductSet_line():
line_in_r2 = Interval(0, 1) * FiniteSet(0)
assert line_in_r2.boundary == line_in_r2
def test_is_open():
assert Interval(0, 1, False, False).is_open is False
assert Interval(0, 1, True, False).is_open is False
assert Interval(0, 1, True, True).is_open is True
assert FiniteSet(1, 2, 3).is_open is False
def test_is_closed():
assert Interval(0, 1, False, False).is_closed is True
assert Interval(0, 1, True, False).is_closed is False
assert FiniteSet(1, 2, 3).is_closed is True
def test_closure():
assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)
def test_interior():
assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)
def test_issue_7841():
raises(TypeError, lambda: x in S.Reals)
def test_Eq():
assert Eq(Interval(0, 1), Interval(0, 1))
assert Eq(Interval(0, 1), Interval(0, 2)) == False
s1 = FiniteSet(0, 1)
s2 = FiniteSet(1, 2)
assert Eq(s1, s1)
assert Eq(s1, s2) == False
assert Eq(s1*s2, s1*s2)
assert Eq(s1*s2, s2*s1) == False
assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false
assert Eq(ProductSet({1}, {2}), Interval(1, 2)) not in (S.true, S.false)
assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false
assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
assert Eq(ProductSet(), FiniteSet(1)) is S.false
i1 = Interval(0, 1)
i2 = Interval(x, y)
assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))
def test_SymmetricDifference():
A = FiniteSet(0, 1, 2, 3, 4, 5)
B = FiniteSet(2, 4, 6, 8, 10)
C = Interval(8, 10)
assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
FiniteSet(0, 1, 3, 5, 6, 8, 10)
raises(TypeError,
lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))
assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3 ,4 ,5 )) \
== FiniteSet(5)
assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
FiniteSet(3, 4, 6)
assert Set(1, 2 ,3) ^ Set(2, 3, 4) == Union(Set(1, 2, 3) - Set(2, 3, 4), \
Set(2, 3, 4) - Set(1, 2, 3))
assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
Interval(2, 5), Interval(2, 5) - Interval(0, 4))
def test_issue_9536():
from sympy.functions.elementary.exponential import log
a = Symbol('a', real=True)
assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))
def test_issue_9637():
n = Symbol('n')
a = FiniteSet(n)
b = FiniteSet(2, n)
assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
assert Complement(Interval(1, 3), b) == \
Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)
def test_issue_9808():
# See https://github.com/sympy/sympy/issues/16342
assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
Complement(FiniteSet(1), FiniteSet(y), evaluate=False)
def test_issue_9956():
assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
assert Interval(-oo, oo).contains(1) is S.true
def test_issue_Symbol_inter():
i = Interval(0, oo)
r = S.Reals
mat = Matrix([0, 0, 0])
assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
Intersection(i, FiniteSet(m))
assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
Intersection(i, FiniteSet(m, n))
assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
Intersection(Intersection({m, z}, {m, n, x}), r)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
Intersection(FiniteSet(3, m, n), r)
assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
Intersection(r, FiniteSet(n))
assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
Intersection(r, FiniteSet(sin(x), cos(x)))
assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
Intersection(r, FiniteSet(x**2, sin(x)))
def test_issue_11827():
assert S.Naturals0**4
def test_issue_10113():
f = x**2/(x**2 - 4)
assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))
def test_issue_10248():
raises(
TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
)
A = Symbol('A', real=True)
assert list(Intersection(S.Reals, FiniteSet(A))) == [A]
def test_issue_9447():
a = Interval(0, 1) + Interval(2, 3)
assert Complement(S.UniversalSet, a) == Complement(
S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
assert Complement(S.Naturals, a) == Complement(
S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
def test_issue_10337():
assert (FiniteSet(2) == 3) is False
assert (FiniteSet(2) != 3) is True
raises(TypeError, lambda: FiniteSet(2) < 3)
raises(TypeError, lambda: FiniteSet(2) <= 3)
raises(TypeError, lambda: FiniteSet(2) > 3)
raises(TypeError, lambda: FiniteSet(2) >= 3)
def test_issue_10326():
bad = [
EmptySet,
FiniteSet(1),
Interval(1, 2),
S.ComplexInfinity,
S.ImaginaryUnit,
S.Infinity,
S.NaN,
S.NegativeInfinity,
]
interval = Interval(0, 5)
for i in bad:
assert i not in interval
x = Symbol('x', real=True)
nr = Symbol('nr', extended_real=False)
assert x + 1 in Interval(x, x + 4)
assert nr not in Interval(x, x + 4)
assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
assert Interval(-oo, oo).contains(oo) is S.false
assert Interval(-oo, oo).contains(-oo) is S.false
def test_issue_2799():
U = S.UniversalSet
a = Symbol('a', real=True)
inf_interval = Interval(a, oo)
R = S.Reals
assert U + inf_interval == inf_interval + U
assert U + R == R + U
assert R + inf_interval == inf_interval + R
def test_issue_9706():
assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
assert Interval(0, oo).closure == Interval(0, oo, False, True)
assert Interval(-oo, oo).closure == Interval(-oo, oo)
def test_issue_8257():
reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity
def test_issue_10931():
assert S.Integers - S.Integers == EmptySet
assert S.Integers - S.Reals == EmptySet
def test_issue_11174():
soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
assert Intersection(FiniteSet(-x), S.Reals) == soln
soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
assert Intersection(FiniteSet(x), S.Reals) == soln
def test_finite_set_intersection():
# The following should not produce recursion errors
# Note: some of these are not completely correct. See
# https://github.com/sympy/sympy/issues/16342.
assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))
assert FiniteSet(1+x-y) & FiniteSet(1) == \
FiniteSet(1) & FiniteSet(1+x-y) == \
Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)
assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)
assert FiniteSet({x}) & FiniteSet({x, y}) == \
Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)
def test_union_intersection_constructor():
# The actual exception does not matter here, so long as these fail
sets = [FiniteSet(1), FiniteSet(2)]
raises(Exception, lambda: Union(sets))
raises(Exception, lambda: Intersection(sets))
raises(Exception, lambda: Union(tuple(sets)))
raises(Exception, lambda: Intersection(tuple(sets)))
raises(Exception, lambda: Union(i for i in sets))
raises(Exception, lambda: Intersection(i for i in sets))
# Python sets are treated the same as FiniteSet
# The union of a single set (of sets) is the set (of sets) itself
assert Union(set(sets)) == FiniteSet(*sets)
assert Intersection(set(sets)) == FiniteSet(*sets)
assert Union({1}, {2}) == FiniteSet(1, 2)
assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)
def test_Union_contains():
assert zoo not in Union(
Interval.open(-oo, 0), Interval.open(0, oo))
@XFAIL
def test_issue_16878b():
# in intersection_sets for (ImageSet, Set) there is no code
# that handles the base_set of S.Reals like there is
# for Integers
assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
|
bbe3ad07fa33cd93823ad2c9a5812fcf08b18af2290c0124a740d4894e6cb7cf | from __future__ import print_function, division
import random
from collections import defaultdict
from sympy.core.basic import Atom, Basic
from sympy.core.parameters import global_parameters
from sympy.core.expr import Expr
from sympy.core.compatibility import \
is_sequence, reduce, range, as_int, Iterable
from sympy.core.numbers import Integer
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import as_Boolean
from sympy.matrices import zeros
from sympy.polys.polytools import lcm
from sympy.utilities.iterables import (flatten, has_variety, minlex,
has_dups, runs)
from mpmath.libmp.libintmath import ifac
def _af_rmul(a, b):
"""
Return the product b*a; input and output are array forms. The ith value
is a[b[i]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a)
>>> b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmuln
"""
return [a[i] for i in b]
def _af_rmuln(*abc):
"""
Given [a, b, c, ...] return the product of ...*c*b*a using array forms.
The ith value is a[b[c[i]]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmul
"""
a = abc
m = len(a)
if m == 3:
p0, p1, p2 = a
return [p0[p1[i]] for i in p2]
if m == 4:
p0, p1, p2, p3 = a
return [p0[p1[p2[i]]] for i in p3]
if m == 5:
p0, p1, p2, p3, p4 = a
return [p0[p1[p2[p3[i]]]] for i in p4]
if m == 6:
p0, p1, p2, p3, p4, p5 = a
return [p0[p1[p2[p3[p4[i]]]]] for i in p5]
if m == 7:
p0, p1, p2, p3, p4, p5, p6 = a
return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6]
if m == 8:
p0, p1, p2, p3, p4, p5, p6, p7 = a
return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7]
if m == 1:
return a[0][:]
if m == 2:
a, b = a
return [a[i] for i in b]
if m == 0:
raise ValueError("String must not be empty")
p0 = _af_rmuln(*a[:m//2])
p1 = _af_rmuln(*a[m//2:])
return [p0[i] for i in p1]
def _af_parity(pi):
"""
Computes the parity of a permutation in array form.
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that x > y but p[x] < p[y].
Examples
========
>>> from sympy.combinatorics.permutations import _af_parity
>>> _af_parity([0, 1, 2, 3])
0
>>> _af_parity([3, 2, 0, 1])
1
See Also
========
Permutation
"""
n = len(pi)
a = [0] * n
c = 0
for j in range(n):
if a[j] == 0:
c += 1
a[j] = 1
i = j
while pi[i] != j:
i = pi[i]
a[i] = 1
return (n - c) % 2
def _af_invert(a):
"""
Finds the inverse, ~A, of a permutation, A, given in array form.
Examples
========
>>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
>>> A = [1, 2, 0, 3]
>>> _af_invert(A)
[2, 0, 1, 3]
>>> _af_rmul(_, A)
[0, 1, 2, 3]
See Also
========
Permutation, __invert__
"""
inv_form = [0] * len(a)
for i, ai in enumerate(a):
inv_form[ai] = i
return inv_form
def _af_pow(a, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation, _af_pow
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> _af_pow(p._array_form, 4)
[0, 1, 2, 3]
"""
if n == 0:
return list(range(len(a)))
if n < 0:
return _af_pow(_af_invert(a), -n)
if n == 1:
return a[:]
elif n == 2:
b = [a[i] for i in a]
elif n == 3:
b = [a[a[i]] for i in a]
elif n == 4:
b = [a[a[a[i]]] for i in a]
else:
# use binary multiplication
b = list(range(len(a)))
while 1:
if n & 1:
b = [b[i] for i in a]
n -= 1
if not n:
break
if n % 4 == 0:
a = [a[a[a[i]]] for i in a]
n = n // 4
elif n % 2 == 0:
a = [a[i] for i in a]
n = n // 2
return b
def _af_commutes_with(a, b):
"""
Checks if the two permutations with array forms
given by ``a`` and ``b`` commute.
Examples
========
>>> from sympy.combinatorics.permutations import _af_commutes_with
>>> _af_commutes_with([1, 2, 0], [0, 2, 1])
False
See Also
========
Permutation, commutes_with
"""
return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
class Cycle(dict):
"""
Wrapper around dict which provides the functionality of a disjoint cycle.
A cycle shows the rule to use to move subsets of elements to obtain
a permutation. The Cycle class is more flexible than Permutation in
that 1) all elements need not be present in order to investigate how
multiple cycles act in sequence and 2) it can contain singletons:
>>> from sympy.combinatorics.permutations import Perm, Cycle
A Cycle will automatically parse a cycle given as a tuple on the rhs:
>>> Cycle(1, 2)(2, 3)
(1 3 2)
The identity cycle, Cycle(), can be used to start a product:
>>> Cycle()(1, 2)(2, 3)
(1 3 2)
The array form of a Cycle can be obtained by calling the list
method (or passing it to the list function) and all elements from
0 will be shown:
>>> a = Cycle(1, 2)
>>> a.list()
[0, 2, 1]
>>> list(a)
[0, 2, 1]
If a larger (or smaller) range is desired use the list method and
provide the desired size -- but the Cycle cannot be truncated to
a size smaller than the largest element that is out of place:
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
>>> b.list()
[0, 2, 1, 3, 4]
>>> b.list(b.size + 1)
[0, 2, 1, 3, 4, 5]
>>> b.list(-1)
[0, 2, 1]
Singletons are not shown when printing with one exception: the largest
element is always shown -- as a singleton if necessary:
>>> Cycle(1, 4, 10)(4, 5)
(1 5 4 10)
>>> Cycle(1, 2)(4)(5)(10)
(1 2)(10)
The array form can be used to instantiate a Permutation so other
properties of the permutation can be investigated:
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
[(1, 2), (3, 4)]
Notes
=====
The underlying structure of the Cycle is a dictionary and although
the __iter__ method has been redefined to give the array form of the
cycle, the underlying dictionary items are still available with the
such methods as items():
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
See Also
========
Permutation
"""
def __missing__(self, arg):
"""Enter arg into dictionary and return arg."""
return as_int(arg)
def __iter__(self):
for i in self.list():
yield i
def __call__(self, *other):
"""Return product of cycles processed from R to L.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle as C
>>> from sympy.combinatorics.permutations import Permutation as Perm
>>> C(1, 2)(2, 3)
(1 3 2)
An instance of a Cycle will automatically parse list-like
objects and Permutations that are on the right. It is more
flexible than the Permutation in that all elements need not
be present:
>>> a = C(1, 2)
>>> a(2, 3)
(1 3 2)
>>> a(2, 3)(4, 5)
(1 3 2)(4 5)
"""
rv = Cycle(*other)
for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]):
rv[k] = v
return rv
def list(self, size=None):
"""Return the cycles as an explicit list starting from 0 up
to the greater of the largest value in the cycles and size.
Truncation of trailing unmoved items will occur when size
is less than the maximum element in the cycle; if this is
desired, setting ``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Cycle(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Cycle(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
if size is not None:
big = max([i for i in self.keys() if self[i] != i] + [0])
size = max(size, big + 1)
else:
size = self.size
return [self[i] for i in range(size)]
def __repr__(self):
"""We want it to print as a Cycle, not as a dict.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> print(_)
(1 2)
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
"""
if not self:
return 'Cycle()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
return 'Cycle%s' % s
def __str__(self):
"""We want it to be printed in a Cycle notation with no
comma in-between.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> Cycle(1, 2, 4)(5, 6)
(1 2 4)(5 6)
"""
if not self:
return '()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
s = s.replace(',', '')
return s
def __init__(self, *args):
"""Load up a Cycle instance with the values for the cycle.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2, 6)
(1 2 6)
"""
if not args:
return
if len(args) == 1:
if isinstance(args[0], Permutation):
for c in args[0].cyclic_form:
self.update(self(*c))
return
elif isinstance(args[0], Cycle):
for k, v in args[0].items():
self[k] = v
return
args = [as_int(a) for a in args]
if any(i < 0 for i in args):
raise ValueError('negative integers are not allowed in a cycle.')
if has_dups(args):
raise ValueError('All elements must be unique in a cycle.')
for i in range(-len(args), 0):
self[args[i]] = args[i + 1]
@property
def size(self):
if not self:
return 0
return max(self.keys()) + 1
def copy(self):
return Cycle(self)
class Permutation(Atom):
"""
A permutation, alternatively known as an 'arrangement number' or 'ordering'
is an arrangement of the elements of an ordered list into a one-to-one
mapping with itself. The permutation of a given arrangement is given by
indicating the positions of the elements after re-arrangement [2]_. For
example, if one started with elements [x, y, a, b] (in that order) and
they were reordered as [x, y, b, a] then the permutation would be
[0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred
to as 0 and the permutation uses the indices of the elements in the
original ordering, not the elements (a, b, etc...) themselves.
>>> from sympy.combinatorics import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations Notation
=====================
Permutations are commonly represented in disjoint cycle or array forms.
Array Notation and 2-line Form
------------------------------------
In the 2-line form, the elements and their final positions are shown
as a matrix with 2 rows:
[0 1 2 ... n-1]
[p(0) p(1) p(2) ... p(n-1)]
Since the first line is always range(n), where n is the size of p,
it is sufficient to represent the permutation by the second line,
referred to as the "array form" of the permutation. This is entered
in brackets as the argument to the Permutation class:
>>> p = Permutation([0, 2, 1]); p
Permutation([0, 2, 1])
Given i in range(p.size), the permutation maps i to i^p
>>> [i^p for i in range(p.size)]
[0, 2, 1]
The composite of two permutations p*q means first apply p, then q, so
i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:
>>> q = Permutation([2, 1, 0])
>>> [i^p^q for i in range(3)]
[2, 0, 1]
>>> [i^(p*q) for i in range(3)]
[2, 0, 1]
One can use also the notation p(i) = i^p, but then the composition
rule is (p*q)(i) = q(p(i)), not p(q(i)):
>>> [(p*q)(i) for i in range(p.size)]
[2, 0, 1]
>>> [q(p(i)) for i in range(p.size)]
[2, 0, 1]
>>> [p(q(i)) for i in range(p.size)]
[1, 2, 0]
Disjoint Cycle Notation
-----------------------
In disjoint cycle notation, only the elements that have shifted are
indicated. In the above case, the 2 and 1 switched places. This can
be entered in two ways:
>>> Permutation(1, 2) == Permutation([[1, 2]]) == p
True
Only the relative ordering of elements in a cycle matter:
>>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
True
The disjoint cycle notation is convenient when representing
permutations that have several cycles in them:
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
True
It also provides some economy in entry when computing products of
permutations that are written in disjoint cycle notation:
>>> Permutation(1, 2)(1, 3)(2, 3)
Permutation([0, 3, 2, 1])
>>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
True
Caution: when the cycles have common elements
between them then the order in which the
permutations are applied matters. The
convention is that the permutations are
applied from *right to left*. In the following, the
transposition of elements 2 and 3 is followed
by the transposition of elements 1 and 2:
>>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)])
True
>>> Permutation(1, 2)(2, 3).list()
[0, 3, 1, 2]
If the first and second elements had been
swapped first, followed by the swapping of the second
and third, the result would have been [0, 2, 3, 1].
If, for some reason, you want to apply the cycles
in the order they are entered, you can simply reverse
the order of cycles:
>>> Permutation([(1, 2), (2, 3)][::-1]).list()
[0, 2, 3, 1]
Entering a singleton in a permutation is a way to indicate the size of the
permutation. The ``size`` keyword can also be used.
Array-form entry:
>>> Permutation([[1, 2], [9]])
Permutation([0, 2, 1], size=10)
>>> Permutation([[1, 2]], size=10)
Permutation([0, 2, 1], size=10)
Cyclic-form entry:
>>> Permutation(1, 2, size=10)
Permutation([0, 2, 1], size=10)
>>> Permutation(9)(1, 2)
Permutation([0, 2, 1], size=10)
Caution: no singleton containing an element larger than the largest
in any previous cycle can be entered. This is an important difference
in how Permutation and Cycle handle the __call__ syntax. A singleton
argument at the start of a Permutation performs instantiation of the
Permutation and is permitted:
>>> Permutation(5)
Permutation([], size=6)
A singleton entered after instantiation is a call to the permutation
-- a function call -- and if the argument is out of range it will
trigger an error. For this reason, it is better to start the cycle
with the singleton:
The following fails because there is is no element 3:
>>> Permutation(1, 2)(3)
Traceback (most recent call last):
...
IndexError: list index out of range
This is ok: only the call to an out of range singleton is prohibited;
otherwise the permutation autosizes:
>>> Permutation(3)(1, 2)
Permutation([0, 2, 1, 3])
>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
True
Equality testing
----------------
The array forms must be the same in order for permutations to be equal:
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
False
Identity Permutation
--------------------
The identity permutation is a permutation in which no element is out of
place. It can be entered in a variety of ways. All the following create
an identity permutation of size 4:
>>> I = Permutation([0, 1, 2, 3])
>>> all(p == I for p in [
... Permutation(3),
... Permutation(range(4)),
... Permutation([], size=4),
... Permutation(size=4)])
True
Watch out for entering the range *inside* a set of brackets (which is
cycle notation):
>>> I == Permutation([range(4)])
False
Permutation Printing
====================
There are a few things to note about how Permutations are printed.
1) If you prefer one form (array or cycle) over another, you can set
``init_printing`` with the ``perm_cyclic`` flag.
>>> from sympy import init_printing
>>> p = Permutation(1, 2)(4, 5)(3, 4)
>>> p
Permutation([0, 2, 1, 4, 5, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(1 2)(3 4 5)
2) Regardless of the setting, a list of elements in the array for cyclic
form can be obtained and either of those can be copied and supplied as
the argument to Permutation:
>>> p.array_form
[0, 2, 1, 4, 5, 3]
>>> p.cyclic_form
[[1, 2], [3, 4, 5]]
>>> Permutation(_) == p
True
3) Printing is economical in that as little as possible is printed while
retaining all information about the size of the permutation:
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation([1, 0, 2, 3])
Permutation([1, 0, 2, 3])
>>> Permutation([1, 0, 2, 3], size=20)
Permutation([1, 0], size=20)
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
Permutation([1, 0, 2, 4, 3], size=20)
>>> p = Permutation([1, 0, 2, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(3)(0 1)
>>> init_printing(perm_cyclic=False, pretty_print=False)
The 2 was not printed but it is still there as can be seen with the
array_form and size methods:
>>> p.array_form
[1, 0, 2, 3]
>>> p.size
4
Short introduction to other methods
===================================
The permutation can act as a bijective function, telling what element is
located at a given position
>>> q = Permutation([5, 2, 3, 4, 1, 0])
>>> q.array_form[1] # the hard way
2
>>> q(1) # the easy way
2
>>> {i: q(i) for i in range(q.size)} # showing the bijection
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
The full cyclic form (including singletons) can be obtained:
>>> p.full_cyclic_form
[[0, 1], [2], [3]]
Any permutation can be factored into transpositions of pairs of elements:
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
[(1, 2), (3, 5), (3, 4)]
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
[[1, 2], [3, 4, 5]]
The number of permutations on a set of n elements is given by n! and is
called the cardinality.
>>> p.size
4
>>> p.cardinality
24
A given permutation has a rank among all the possible permutations of the
same elements, but what that rank is depends on how the permutations are
enumerated. (There are a number of different methods of doing so.) The
lexicographic rank is given by the rank method and this rank is used to
increment a permutation with addition/subtraction:
>>> p.rank()
6
>>> p + 1
Permutation([1, 0, 3, 2])
>>> p.next_lex()
Permutation([1, 0, 3, 2])
>>> _.rank()
7
>>> p.unrank_lex(p.size, rank=7)
Permutation([1, 0, 3, 2])
The product of two permutations p and q is defined as their composition as
functions, (p*q)(i) = q(p(i)) [6]_.
>>> p = Permutation([1, 0, 2, 3])
>>> q = Permutation([2, 3, 1, 0])
>>> list(q*p)
[2, 3, 0, 1]
>>> list(p*q)
[3, 2, 1, 0]
>>> [q(p(i)) for i in range(p.size)]
[3, 2, 1, 0]
The permutation can be 'applied' to any list-like object, not only
Permutations:
>>> p(['zero', 'one', 'four', 'two'])
['one', 'zero', 'four', 'two']
>>> p('zo42')
['o', 'z', '4', '2']
If you have a list of arbitrary elements, the corresponding permutation
can be found with the from_sequence method:
>>> Permutation.from_sequence('SymPy')
Permutation([1, 3, 2, 0, 4])
See Also
========
Cycle
References
==========
.. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics
Combinatorics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, pp. 3-16, 1990.
.. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial
Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
.. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking
permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001),
281-284. DOI=10.1016/S0020-0190(01)00141-7
.. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms'
CRC Press, 1999
.. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O.
Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, MA: Addison-Wesley, 1994.
.. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse
.. [7] https://en.wikipedia.org/wiki/Lehmer_code
"""
is_Permutation = True
_array_form = None
_cyclic_form = None
_cycle_structure = None
_size = None
_rank = None
def __new__(cls, *args, **kwargs):
"""
Constructor for the Permutation object from a list or a
list of lists in which all elements of the permutation may
appear only once.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations entered in array-form are left unaltered:
>>> Permutation([0, 2, 1])
Permutation([0, 2, 1])
Permutations entered in cyclic form are converted to array form;
singletons need not be entered, but can be entered to indicate the
largest element:
>>> Permutation([[4, 5, 6], [0, 1]])
Permutation([1, 0, 2, 3, 5, 6, 4])
>>> Permutation([[4, 5, 6], [0, 1], [19]])
Permutation([1, 0, 2, 3, 5, 6, 4], size=20)
All manipulation of permutations assumes that the smallest element
is 0 (in keeping with 0-based indexing in Python) so if the 0 is
missing when entering a permutation in array form, an error will be
raised:
>>> Permutation([2, 1])
Traceback (most recent call last):
...
ValueError: Integers 0 through 2 must be present.
If a permutation is entered in cyclic form, it can be entered without
singletons and the ``size`` specified so those values can be filled
in, otherwise the array form will only extend to the maximum value
in the cycles:
>>> Permutation([[1, 4], [3, 5, 2]], size=10)
Permutation([0, 4, 3, 5, 1, 2], size=10)
>>> _.array_form
[0, 4, 3, 5, 1, 2, 6, 7, 8, 9]
"""
size = kwargs.pop('size', None)
if size is not None:
size = int(size)
#a) ()
#b) (1) = identity
#c) (1, 2) = cycle
#d) ([1, 2, 3]) = array form
#e) ([[1, 2]]) = cyclic form
#f) (Cycle) = conversion to permutation
#g) (Permutation) = adjust size or return copy
ok = True
if not args: # a
return cls._af_new(list(range(size or 0)))
elif len(args) > 1: # c
return cls._af_new(Cycle(*args).list(size))
if len(args) == 1:
a = args[0]
if isinstance(a, cls): # g
if size is None or size == a.size:
return a
return cls(a.array_form, size=size)
if isinstance(a, Cycle): # f
return cls._af_new(a.list(size))
if not is_sequence(a): # b
return cls._af_new(list(range(a + 1)))
if has_variety(is_sequence(ai) for ai in a):
ok = False
else:
ok = False
if not ok:
raise ValueError("Permutation argument must be a list of ints, "
"a list of lists, Permutation or Cycle.")
# safe to assume args are valid; this also makes a copy
# of the args
args = list(args[0])
is_cycle = args and is_sequence(args[0])
if is_cycle: # e
args = [[int(i) for i in c] for c in args]
else: # d
args = [int(i) for i in args]
# if there are n elements present, 0, 1, ..., n-1 should be present
# unless a cycle notation has been provided. A 0 will be added
# for convenience in case one wants to enter permutations where
# counting starts from 1.
temp = flatten(args)
if has_dups(temp) and not is_cycle:
raise ValueError('there were repeated elements.')
temp = set(temp)
if not is_cycle and \
any(i not in temp for i in range(len(temp))):
raise ValueError("Integers 0 through %s must be present." %
max(temp))
if is_cycle:
# it's not necessarily canonical so we won't store
# it -- use the array form instead
c = Cycle()
for ci in args:
c = c(*ci)
aform = c.list()
else:
aform = list(args)
if size and size > len(aform):
# don't allow for truncation of permutation which
# might split a cycle and lead to an invalid aform
# but do allow the permutation size to be increased
aform.extend(list(range(len(aform), size)))
return cls._af_new(aform)
def _eval_Eq(self, other):
other = _sympify(other)
if not isinstance(other, Permutation):
return None
if self._size != other._size:
return None
return as_Boolean(self._array_form == other._array_form)
@classmethod
def _af_new(cls, perm):
"""A method to produce a Permutation object from a list;
the list is bound to the _array_form attribute, so it must
not be modified; this method is meant for internal use only;
the list ``a`` is supposed to be generated as a temporary value
in a method, so p = Perm._af_new(a) is the only object
to hold a reference to ``a``::
Examples
========
>>> from sympy.combinatorics.permutations import Perm
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = [2, 1, 3, 0]
>>> p = Perm._af_new(a)
>>> p
Permutation([2, 1, 3, 0])
"""
p = super(Permutation, cls).__new__(cls)
p._array_form = perm
p._size = len(perm)
return p
def _hashable_content(self):
# the array_form (a list) is the Permutation arg, so we need to
# return a tuple, instead
return tuple(self.array_form)
@property
def array_form(self):
"""
Return a copy of the attribute _array_form
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[3, 2, 0, 1]
>>> Permutation([2, 0, 3, 1]).array_form
[2, 0, 3, 1]
>>> Permutation([[1, 2], [4, 5]]).array_form
[0, 2, 1, 3, 5, 4]
"""
return self._array_form[:]
def list(self, size=None):
"""Return the permutation as an explicit list, possibly
trimming unmoved elements if size is less than the maximum
element in the permutation; if this is desired, setting
``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Permutation(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
>>> Permutation(3).list(-1)
[]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
rv = self.array_form
if size is not None:
if size > self.size:
rv.extend(list(range(self.size, size)))
else:
# find first value from rhs where rv[i] != i
i = self.size - 1
while rv:
if rv[-1] != i:
break
rv.pop()
i -= 1
return rv
@property
def cyclic_form(self):
"""
This is used to convert to the cyclic notation
from the canonical notation. Singletons are omitted.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2])
>>> p.cyclic_form
[[1, 3, 2]]
>>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
[[0, 1], [3, 4]]
See Also
========
array_form, full_cyclic_form
"""
if self._cyclic_form is not None:
return list(self._cyclic_form)
array_form = self.array_form
unchecked = [True] * len(array_form)
cyclic_form = []
for i in range(len(array_form)):
if unchecked[i]:
cycle = []
cycle.append(i)
unchecked[i] = False
j = i
while unchecked[array_form[j]]:
j = array_form[j]
cycle.append(j)
unchecked[j] = False
if len(cycle) > 1:
cyclic_form.append(cycle)
assert cycle == list(minlex(cycle, is_set=True))
cyclic_form.sort()
self._cyclic_form = cyclic_form[:]
return cyclic_form
@property
def full_cyclic_form(self):
"""Return permutation in cyclic form including singletons.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation([0, 2, 1]).full_cyclic_form
[[0], [1, 2]]
"""
need = set(range(self.size)) - set(flatten(self.cyclic_form))
rv = self.cyclic_form
rv.extend([[i] for i in need])
rv.sort()
return rv
@property
def size(self):
"""
Returns the number of elements in the permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([[3, 2], [0, 1]]).size
4
See Also
========
cardinality, length, order, rank
"""
return self._size
def support(self):
"""Return the elements in permutation, P, for which P[i] != i.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[3, 2], [0, 1], [4]])
>>> p.array_form
[1, 0, 3, 2, 4]
>>> p.support()
[0, 1, 2, 3]
"""
a = self.array_form
return [i for i, e in enumerate(a) if a[i] != i]
def __add__(self, other):
"""Return permutation that is other higher in rank than self.
The rank is the lexicographical rank, with the identity permutation
having rank of 0.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> I = Permutation([0, 1, 2, 3])
>>> a = Permutation([2, 1, 3, 0])
>>> I + a.rank() == a
True
See Also
========
__sub__, inversion_vector
"""
rank = (self.rank() + other) % self.cardinality
rv = self.unrank_lex(self.size, rank)
rv._rank = rank
return rv
def __sub__(self, other):
"""Return the permutation that is other lower in rank than self.
See Also
========
__add__
"""
return self.__add__(-other)
@staticmethod
def rmul(*args):
"""
Return product of Permutations [a, b, c, ...] as the Permutation whose
ith value is a(b(c(i))).
a, b, c, ... can be Permutation objects or tuples.
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(Permutation.rmul(a, b))
[1, 2, 0]
>>> [a(b(i)) for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
Notes
=====
All items in the sequence will be parsed by Permutation as
necessary as long as the first item is a Permutation:
>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
True
The reverse order of arguments will raise a TypeError.
"""
rv = args[0]
for i in range(1, len(args)):
rv = args[i]*rv
return rv
@classmethod
def rmul_with_af(cls, *args):
"""
same as rmul, but the elements of args are Permutation objects
which have _array_form
"""
a = [x._array_form for x in args]
rv = cls._af_new(_af_rmuln(*a))
return rv
def mul_inv(self, other):
"""
other*~self, self and other have _array_form
"""
a = _af_invert(self._array_form)
b = other._array_form
return self._af_new(_af_rmul(a, b))
def __rmul__(self, other):
"""This is needed to coerce other to Permutation in rmul."""
cls = type(self)
return cls(other)*self
def __mul__(self, other):
"""
Return the product a*b as a Permutation; the ith value is b(a(i)).
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
This handles operands in reverse order compared to _af_rmul and rmul:
>>> al = list(a); bl = list(b)
>>> _af_rmul(al, bl)
[1, 2, 0]
>>> [al[bl[i]] for i in range(3)]
[1, 2, 0]
It is acceptable for the arrays to have different lengths; the shorter
one will be padded to match the longer one:
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> b*Permutation([1, 0])
Permutation([1, 2, 0])
>>> Permutation([1, 0])*b
Permutation([2, 0, 1])
It is also acceptable to allow coercion to handle conversion of a
single list to the left of a Permutation:
>>> [0, 1]*a # no change: 2-element identity
Permutation([1, 0, 2])
>>> [[0, 1]]*a # exchange first two elements
Permutation([0, 1, 2])
You cannot use more than 1 cycle notation in a product of cycles
since coercion can only handle one argument to the left. To handle
multiple cycles it is convenient to use Cycle instead of Permutation:
>>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2)(2, 3)
(1 3 2)
"""
a = self.array_form
# __rmul__ makes sure the other is a Permutation
b = other.array_form
if not b:
perm = a
else:
b.extend(list(range(len(b), len(a))))
perm = [b[i] for i in a] + b[len(a):]
return self._af_new(perm)
def commutes_with(self, other):
"""
Checks if the elements are commuting.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([1, 4, 3, 0, 2, 5])
>>> b = Permutation([0, 1, 2, 3, 4, 5])
>>> a.commutes_with(b)
True
>>> b = Permutation([2, 3, 5, 4, 1, 0])
>>> a.commutes_with(b)
False
"""
a = self.array_form
b = other.array_form
return _af_commutes_with(a, b)
def __pow__(self, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> p**4
Permutation([0, 1, 2, 3])
"""
if isinstance(n, Permutation):
raise NotImplementedError(
'p**p is not defined; do you mean p^p (conjugate)?')
n = int(n)
return self._af_new(_af_pow(self.array_form, n))
def __rxor__(self, i):
"""Return self(i) when ``i`` is an int.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation(1, 2, 9)
>>> 2^p == p(2) == 9
True
"""
if int(i) == i:
return self(i)
else:
raise NotImplementedError(
"i^p = p(i) when i is an integer, not %s." % i)
def __xor__(self, h):
"""Return the conjugate permutation ``~h*self*h` `.
If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and
``b = ~h*a*h`` and both have the same cycle structure.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(1, 2, 9)
>>> q = Permutation(6, 9, 8)
>>> p*q != q*p
True
Calculate and check properties of the conjugate:
>>> c = p^q
>>> c == ~q*p*q and p == q*c*~q
True
The expression q^p^r is equivalent to q^(p*r):
>>> r = Permutation(9)(4, 6, 8)
>>> q^p^r == q^(p*r)
True
If the term to the left of the conjugate operator, i, is an integer
then this is interpreted as selecting the ith element from the
permutation to the right:
>>> all(i^p == p(i) for i in range(p.size))
True
Note that the * operator as higher precedence than the ^ operator:
>>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4)
True
Notes
=====
In Python the precedence rule is p^q^r = (p^q)^r which differs
in general from p^(q^r)
>>> q^p^r
(9)(1 4 8)
>>> q^(p^r)
(9)(1 8 6)
For a given r and p, both of the following are conjugates of p:
~r*p*r and r*p*~r. But these are not necessarily the same:
>>> ~r*p*r == r*p*~r
True
>>> p = Permutation(1, 2, 9)(5, 6)
>>> ~r*p*r == r*p*~r
False
The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent
to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to
this method:
>>> p^~r == r*p*~r
True
"""
if self.size != h.size:
raise ValueError("The permutations must be of equal size.")
a = [None]*self.size
h = h._array_form
p = self._array_form
for i in range(self.size):
a[h[i]] = h[p[i]]
return self._af_new(a)
def transpositions(self):
"""
Return the permutation decomposed into a list of transpositions.
It is always possible to express a permutation as the product of
transpositions, see [1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
>>> t = p.transpositions()
>>> t
[(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
>>> print(''.join(str(c) for c in t))
(0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
"""
a = self.cyclic_form
res = []
for x in a:
nx = len(x)
if nx == 2:
res.append(tuple(x))
elif nx > 2:
first = x[0]
for y in x[nx - 1:0:-1]:
res.append((first, y))
return res
@classmethod
def from_sequence(self, i, key=None):
"""Return the permutation needed to obtain ``i`` from the sorted
elements of ``i``. If custom sorting is desired, a key can be given.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.from_sequence('SymPy')
(4)(0 1 3)
>>> _(sorted("SymPy"))
['S', 'y', 'm', 'P', 'y']
>>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
(4)(0 2)(1 3)
"""
ic = list(zip(i, list(range(len(i)))))
if key:
ic.sort(key=lambda x: key(x[0]))
else:
ic.sort()
return ~Permutation([i[1] for i in ic])
def __invert__(self):
"""
Return the inverse of the permutation.
A permutation multiplied by its inverse is the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([[2, 0], [3, 1]])
>>> ~p
Permutation([2, 3, 0, 1])
>>> _ == p**-1
True
>>> p*~p == ~p*p == Permutation([0, 1, 2, 3])
True
"""
return self._af_new(_af_invert(self._array_form))
def __iter__(self):
"""Yield elements from array form.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> list(Permutation(range(3)))
[0, 1, 2]
"""
for i in self.array_form:
yield i
def __repr__(self):
from sympy.printing.repr import srepr
return srepr(self)
def __call__(self, *i):
"""
Allows applying a permutation instance as a bijective function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> [p(i) for i in range(4)]
[2, 3, 0, 1]
If an array is given then the permutation selects the items
from the array (i.e. the permutation is applied to the array):
>>> from sympy.abc import x
>>> p([x, 1, 0, x**2])
[0, x**2, x, 1]
"""
# list indices can be Integer or int; leave this
# as it is (don't test or convert it) because this
# gets called a lot and should be fast
if len(i) == 1:
i = i[0]
if not isinstance(i, Iterable):
i = as_int(i)
if i < 0 or i > self.size:
raise TypeError(
"{} should be an integer between 0 and {}"
.format(i, self.size-1))
return self._array_form[i]
# P([a, b, c])
if len(i) != self.size:
raise TypeError(
"{} should have the length {}.".format(i, self.size))
return [i[j] for j in self._array_form]
# P(1, 2, 3)
return self*Permutation(Cycle(*i), size=self.size)
def atoms(self):
"""
Returns all the elements of a permutation
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
{0, 1, 2, 3, 4, 5}
>>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
{0, 1, 2, 3, 4, 5}
"""
return set(self.array_form)
def apply(self, i):
r"""Apply the permutation to an expression.
Parameters
==========
i : Expr
It should be an integer between $0$ and $n-1$ where $n$
is the size of the permutation.
If it is a symbol or a symbolic expression that can
have integer values, an ``AppliedPermutation`` object
will be returned which can represent an unevaluated
function.
Notes
=====
Any permutation can be defined as a bijective function
$\sigma : \{ 0, 1, ..., n-1 \} \rightarrow \{ 0, 1, ..., n-1 \}$
where $n$ denotes the size of the permutation.
The definition may even be extended for any set with distinctive
elements, such that the permutation can even be applied for
real numbers or such, however, it is not implemented for now for
computational reasons and the integrity with the group theory
module.
This function is similar to the ``__call__`` magic, however,
``__call__`` magic already has some other applications like
permuting an array or attatching new cycles, which would
not always be mathematically consistent.
This also guarantees that the return type is a SymPy integer,
which guarantees the safety to use assumptions.
"""
i = _sympify(i)
if i.is_integer is False:
raise NotImplementedError("{} should be an integer.".format(i))
n = self.size
if (i < 0) == True or (i >= n) == True:
raise NotImplementedError(
"{} should be an integer between 0 and {}".format(i, n-1))
if i.is_Integer:
return Integer(self._array_form[i])
return AppliedPermutation(self, i)
def next_lex(self):
"""
Returns the next permutation in lexicographical order.
If self is the last permutation in lexicographical order
it returns None.
See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 3, 1, 0])
>>> p = Permutation([2, 3, 1, 0]); p.rank()
17
>>> p = p.next_lex(); p.rank()
18
See Also
========
rank, unrank_lex
"""
perm = self.array_form[:]
n = len(perm)
i = n - 2
while perm[i + 1] < perm[i]:
i -= 1
if i == -1:
return None
else:
j = n - 1
while perm[j] < perm[i]:
j -= 1
perm[j], perm[i] = perm[i], perm[j]
i += 1
j = n - 1
while i < j:
perm[j], perm[i] = perm[i], perm[j]
i += 1
j -= 1
return self._af_new(perm)
@classmethod
def unrank_nonlex(self, n, r):
"""
This is a linear time unranking algorithm that does not
respect lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_nonlex(4, 5)
Permutation([2, 0, 3, 1])
>>> Permutation.unrank_nonlex(4, -1)
Permutation([0, 1, 2, 3])
See Also
========
next_nonlex, rank_nonlex
"""
def _unrank1(n, r, a):
if n > 0:
a[n - 1], a[r % n] = a[r % n], a[n - 1]
_unrank1(n - 1, r//n, a)
id_perm = list(range(n))
n = int(n)
r = r % ifac(n)
_unrank1(n, r, id_perm)
return self._af_new(id_perm)
def rank_nonlex(self, inv_perm=None):
"""
This is a linear time ranking algorithm that does not
enforce lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_nonlex()
23
See Also
========
next_nonlex, unrank_nonlex
"""
def _rank1(n, perm, inv_perm):
if n == 1:
return 0
s = perm[n - 1]
t = inv_perm[n - 1]
perm[n - 1], perm[t] = perm[t], s
inv_perm[n - 1], inv_perm[s] = inv_perm[s], t
return s + n*_rank1(n - 1, perm, inv_perm)
if inv_perm is None:
inv_perm = (~self).array_form
if not inv_perm:
return 0
perm = self.array_form[:]
r = _rank1(len(perm), perm, inv_perm)
return r
def next_nonlex(self):
"""
Returns the next permutation in nonlex order [3].
If self is the last permutation in this order it returns None.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
5
>>> p = p.next_nonlex(); p
Permutation([3, 0, 1, 2])
>>> p.rank_nonlex()
6
See Also
========
rank_nonlex, unrank_nonlex
"""
r = self.rank_nonlex()
if r == ifac(self.size) - 1:
return None
return self.unrank_nonlex(self.size, r + 1)
def rank(self):
"""
Returns the lexicographic rank of the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank()
0
>>> p = Permutation([3, 2, 1, 0])
>>> p.rank()
23
See Also
========
next_lex, unrank_lex, cardinality, length, order, size
"""
if not self._rank is None:
return self._rank
rank = 0
rho = self.array_form[:]
n = self.size - 1
size = n + 1
psize = int(ifac(n))
for j in range(size - 1):
rank += rho[j]*psize
for i in range(j + 1, size):
if rho[i] > rho[j]:
rho[i] -= 1
psize //= n
n -= 1
self._rank = rank
return rank
@property
def cardinality(self):
"""
Returns the number of all possible permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.cardinality
24
See Also
========
length, order, rank, size
"""
return int(ifac(self.size))
def parity(self):
"""
Computes the parity of a permutation.
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.parity()
0
>>> p = Permutation([3, 2, 0, 1])
>>> p.parity()
1
See Also
========
_af_parity
"""
if self._cyclic_form is not None:
return (self.size - self.cycles) % 2
return _af_parity(self.array_form)
@property
def is_even(self):
"""
Checks if a permutation is even.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_even
True
>>> p = Permutation([3, 2, 1, 0])
>>> p.is_even
True
See Also
========
is_odd
"""
return not self.is_odd
@property
def is_odd(self):
"""
Checks if a permutation is odd.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_odd
False
>>> p = Permutation([3, 2, 0, 1])
>>> p.is_odd
True
See Also
========
is_even
"""
return bool(self.parity() % 2)
@property
def is_Singleton(self):
"""
Checks to see if the permutation contains only one number and is
thus the only possible permutation of this set of numbers
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0]).is_Singleton
True
>>> Permutation([0, 1]).is_Singleton
False
See Also
========
is_Empty
"""
return self.size == 1
@property
def is_Empty(self):
"""
Checks to see if the permutation is a set with zero elements
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([]).is_Empty
True
>>> Permutation([0]).is_Empty
False
See Also
========
is_Singleton
"""
return self.size == 0
@property
def is_identity(self):
return self.is_Identity
@property
def is_Identity(self):
"""
Returns True if the Permutation is an identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([])
>>> p.is_Identity
True
>>> p = Permutation([[0], [1], [2]])
>>> p.is_Identity
True
>>> p = Permutation([0, 1, 2])
>>> p.is_Identity
True
>>> p = Permutation([0, 2, 1])
>>> p.is_Identity
False
See Also
========
order
"""
af = self.array_form
return not af or all(i == af[i] for i in range(self.size))
def ascents(self):
"""
Returns the positions of ascents in a permutation, ie, the location
where p[i] < p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.ascents()
[1, 2]
See Also
========
descents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]]
return pos
def descents(self):
"""
Returns the positions of descents in a permutation, ie, the location
where p[i] > p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.descents()
[0, 3]
See Also
========
ascents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]]
return pos
def max(self):
"""
The maximum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([1, 0, 2, 3, 4])
>>> p.max()
1
See Also
========
min, descents, ascents, inversions
"""
max = 0
a = self.array_form
for i in range(len(a)):
if a[i] != i and a[i] > max:
max = a[i]
return max
def min(self):
"""
The minimum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 4, 3, 2])
>>> p.min()
2
See Also
========
max, descents, ascents, inversions
"""
a = self.array_form
min = len(a)
for i in range(len(a)):
if a[i] != i and a[i] < min:
min = a[i]
return min
def inversions(self):
"""
Computes the number of inversions of a permutation.
An inversion is where i > j but p[i] < p[j].
For small length of p, it iterates over all i and j
values and calculates the number of inversions.
For large length of p, it uses a variation of merge
sort to calculate the number of inversions.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3, 4, 5])
>>> p.inversions()
0
>>> Permutation([3, 2, 1, 0]).inversions()
6
See Also
========
descents, ascents, min, max
References
==========
.. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm
"""
inversions = 0
a = self.array_form
n = len(a)
if n < 130:
for i in range(n - 1):
b = a[i]
for c in a[i + 1:]:
if b > c:
inversions += 1
else:
k = 1
right = 0
arr = a[:]
temp = a[:]
while k < n:
i = 0
while i + k < n:
right = i + k * 2 - 1
if right >= n:
right = n - 1
inversions += _merge(arr, temp, i, i + k, right)
i = i + k * 2
k = k * 2
return inversions
def commutator(self, x):
"""Return the commutator of self and x: ``~x*~self*x*self``
If f and g are part of a group, G, then the commutator of f and g
is the group identity iff f and g commute, i.e. fg == gf.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([0, 2, 3, 1])
>>> x = Permutation([2, 0, 3, 1])
>>> c = p.commutator(x); c
Permutation([2, 1, 3, 0])
>>> c == ~x*~p*x*p
True
>>> I = Permutation(3)
>>> p = [I + i for i in range(6)]
>>> for i in range(len(p)):
... for j in range(len(p)):
... c = p[i].commutator(p[j])
... if p[i]*p[j] == p[j]*p[i]:
... assert c == I
... else:
... assert c != I
...
References
==========
https://en.wikipedia.org/wiki/Commutator
"""
a = self.array_form
b = x.array_form
n = len(a)
if len(b) != n:
raise ValueError("The permutations must be of equal size.")
inva = [None]*n
for i in range(n):
inva[a[i]] = i
invb = [None]*n
for i in range(n):
invb[b[i]] = i
return self._af_new([a[b[inva[i]]] for i in invb])
def signature(self):
"""
Gives the signature of the permutation needed to place the
elements of the permutation in canonical order.
The signature is calculated as (-1)^<number of inversions>
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2])
>>> p.inversions()
0
>>> p.signature()
1
>>> q = Permutation([0,2,1])
>>> q.inversions()
1
>>> q.signature()
-1
See Also
========
inversions
"""
if self.is_even:
return 1
return -1
def order(self):
"""
Computes the order of a permutation.
When the permutation is raised to the power of its
order it equals the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 1, 5, 2, 4, 0])
>>> p.order()
4
>>> (p**(p.order()))
Permutation([], size=6)
See Also
========
identity, cardinality, length, rank, size
"""
return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1)
def length(self):
"""
Returns the number of integers moved by a permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 3, 2, 1]).length()
2
>>> Permutation([[0, 1], [2, 3]]).length()
4
See Also
========
min, max, support, cardinality, order, rank, size
"""
return len(self.support())
@property
def cycle_structure(self):
"""Return the cycle structure of the permutation as a dictionary
indicating the multiplicity of each cycle length.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation(3).cycle_structure
{1: 4}
>>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
{2: 2, 3: 1}
"""
if self._cycle_structure:
rv = self._cycle_structure
else:
rv = defaultdict(int)
singletons = self.size
for c in self.cyclic_form:
rv[len(c)] += 1
singletons -= len(c)
if singletons:
rv[1] = singletons
self._cycle_structure = rv
return dict(rv) # make a copy
@property
def cycles(self):
"""
Returns the number of cycles contained in the permutation
(including singletons).
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2]).cycles
3
>>> Permutation([0, 1, 2]).full_cyclic_form
[[0], [1], [2]]
>>> Permutation(0, 1)(2, 3).cycles
2
See Also
========
sympy.functions.combinatorial.numbers.stirling
"""
return len(self.full_cyclic_form)
def index(self):
"""
Returns the index of a permutation.
The index of a permutation is the sum of all subscripts j such
that p[j] is greater than p[j+1].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([3, 0, 2, 1, 4])
>>> p.index()
2
"""
a = self.array_form
return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]])
def runs(self):
"""
Returns the runs of a permutation.
An ascending sequence in a permutation is called a run [5].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
>>> p.runs()
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
>>> q = Permutation([1,3,2,0])
>>> q.runs()
[[1, 3], [2], [0]]
"""
return runs(self.array_form)
def inversion_vector(self):
"""Return the inversion vector of the permutation.
The inversion vector consists of elements whose value
indicates the number of elements in the permutation
that are lesser than it and lie on its right hand side.
The inversion vector is the same as the Lehmer encoding of a
permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
>>> p.inversion_vector()
[4, 7, 0, 5, 0, 2, 1, 1]
>>> p = Permutation([3, 2, 1, 0])
>>> p.inversion_vector()
[3, 2, 1]
The inversion vector increases lexicographically with the rank
of the permutation, the -ith element cycling through 0..i.
>>> p = Permutation(2)
>>> while p:
... print('%s %s %s' % (p, p.inversion_vector(), p.rank()))
... p = p.next_lex()
(2) [0, 0] 0
(1 2) [0, 1] 1
(2)(0 1) [1, 0] 2
(0 1 2) [1, 1] 3
(0 2 1) [2, 0] 4
(0 2) [2, 1] 5
See Also
========
from_inversion_vector
"""
self_array_form = self.array_form
n = len(self_array_form)
inversion_vector = [0] * (n - 1)
for i in range(n - 1):
val = 0
for j in range(i + 1, n):
if self_array_form[j] < self_array_form[i]:
val += 1
inversion_vector[i] = val
return inversion_vector
def rank_trotterjohnson(self):
"""
Returns the Trotter Johnson rank, which we get from the minimal
change algorithm. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_trotterjohnson()
0
>>> p = Permutation([0, 2, 1, 3])
>>> p.rank_trotterjohnson()
7
See Also
========
unrank_trotterjohnson, next_trotterjohnson
"""
if self.array_form == [] or self.is_Identity:
return 0
if self.array_form == [1, 0]:
return 1
perm = self.array_form
n = self.size
rank = 0
for j in range(1, n):
k = 1
i = 0
while perm[i] != j:
if perm[i] < j:
k += 1
i += 1
j1 = j + 1
if rank % 2 == 0:
rank = j1*rank + j1 - k
else:
rank = j1*rank + k - 1
return rank
@classmethod
def unrank_trotterjohnson(cls, size, rank):
"""
Trotter Johnson permutation unranking. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_trotterjohnson(5, 10)
Permutation([0, 3, 1, 2, 4])
See Also
========
rank_trotterjohnson, next_trotterjohnson
"""
perm = [0]*size
r2 = 0
n = ifac(size)
pj = 1
for j in range(2, size + 1):
pj *= j
r1 = (rank * pj) // n
k = r1 - j*r2
if r2 % 2 == 0:
for i in range(j - 1, j - k - 1, -1):
perm[i] = perm[i - 1]
perm[j - k - 1] = j - 1
else:
for i in range(j - 1, k, -1):
perm[i] = perm[i - 1]
perm[k] = j - 1
r2 = r1
return cls._af_new(perm)
def next_trotterjohnson(self):
"""
Returns the next permutation in Trotter-Johnson order.
If self is the last permutation it returns None.
See [4] section 2.4. If it is desired to generate all such
permutations, they can be generated in order more quickly
with the ``generate_bell`` function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 0, 2, 1])
>>> p.rank_trotterjohnson()
4
>>> p = p.next_trotterjohnson(); p
Permutation([0, 3, 2, 1])
>>> p.rank_trotterjohnson()
5
See Also
========
rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell
"""
pi = self.array_form[:]
n = len(pi)
st = 0
rho = pi[:]
done = False
m = n-1
while m > 0 and not done:
d = rho.index(m)
for i in range(d, m):
rho[i] = rho[i + 1]
par = _af_parity(rho[:m])
if par == 1:
if d == m:
m -= 1
else:
pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d]
done = True
else:
if d == 0:
m -= 1
st += 1
else:
pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d]
done = True
if m == 0:
return None
return self._af_new(pi)
def get_precedence_matrix(self):
"""
Gets the precedence matrix. This is used for computing the
distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation.josephus(3, 6, 1)
>>> p
Permutation([2, 5, 3, 1, 4, 0])
>>> p.get_precedence_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0]])
See Also
========
get_precedence_distance, get_adjacency_matrix, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(m.rows):
for j in range(i + 1, m.cols):
m[perm[i], perm[j]] = 1
return m
def get_precedence_distance(self, other):
"""
Computes the precedence distance between two permutations.
Suppose p and p' represent n jobs. The precedence metric
counts the number of times a job j is preceded by job i
in both p and p'. This metric is commutative.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 0, 4, 3, 1])
>>> q = Permutation([3, 1, 2, 4, 0])
>>> p.get_precedence_distance(q)
7
>>> q.get_precedence_distance(p)
7
See Also
========
get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance
"""
if self.size != other.size:
raise ValueError("The permutations must be of equal size.")
self_prec_mat = self.get_precedence_matrix()
other_prec_mat = other.get_precedence_matrix()
n_prec = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_prec_mat[i, j] * other_prec_mat[i, j] == 1:
n_prec += 1
d = self.size * (self.size - 1)//2 - n_prec
return d
def get_adjacency_matrix(self):
"""
Computes the adjacency matrix of a permutation.
If job i is adjacent to job j in a permutation p
then we set m[i, j] = 1 where m is the adjacency
matrix of p.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation.josephus(3, 6, 1)
>>> p.get_adjacency_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
>>> q = Permutation([0, 1, 2, 3])
>>> q.get_adjacency_matrix()
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(self.size - 1):
m[perm[i], perm[i + 1]] = 1
return m
def get_adjacency_distance(self, other):
"""
Computes the adjacency distance between two permutations.
This metric counts the number of times a pair i,j of jobs is
adjacent in both p and p'. If n_adj is this quantity then
the adjacency distance is n - n_adj - 1 [1]
[1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals
of Operational Research, 86, pp 473-490. (1999)
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> p.get_adjacency_distance(q)
3
>>> r = Permutation([0, 2, 1, 4, 3])
>>> p.get_adjacency_distance(r)
4
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_matrix
"""
if self.size != other.size:
raise ValueError("The permutations must be of the same size.")
self_adj_mat = self.get_adjacency_matrix()
other_adj_mat = other.get_adjacency_matrix()
n_adj = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_adj_mat[i, j] * other_adj_mat[i, j] == 1:
n_adj += 1
d = self.size - n_adj - 1
return d
def get_positional_distance(self, other):
"""
Computes the positional distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> r = Permutation([3, 1, 4, 0, 2])
>>> p.get_positional_distance(q)
12
>>> p.get_positional_distance(r)
12
See Also
========
get_precedence_distance, get_adjacency_distance
"""
a = self.array_form
b = other.array_form
if len(a) != len(b):
raise ValueError("The permutations must be of the same size.")
return sum([abs(a[i] - b[i]) for i in range(len(a))])
@classmethod
def josephus(cls, m, n, s=1):
"""Return as a permutation the shuffling of range(n) using the Josephus
scheme in which every m-th item is selected until all have been chosen.
The returned permutation has elements listed by the order in which they
were selected.
The parameter ``s`` stops the selection process when there are ``s``
items remaining and these are selected by continuing the selection,
counting by 1 rather than by ``m``.
Consider selecting every 3rd item from 6 until only 2 remain::
choices chosen
======== ======
012345
01 345 2
01 34 25
01 4 253
0 4 2531
0 25314
253140
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.josephus(3, 6, 2).array_form
[2, 5, 3, 1, 4, 0]
References
==========
.. [1] https://en.wikipedia.org/wiki/Flavius_Josephus
.. [2] https://en.wikipedia.org/wiki/Josephus_problem
.. [3] http://www.wou.edu/~burtonl/josephus.html
"""
from collections import deque
m -= 1
Q = deque(list(range(n)))
perm = []
while len(Q) > max(s, 1):
for dp in range(m):
Q.append(Q.popleft())
perm.append(Q.popleft())
perm.extend(list(Q))
return cls(perm)
@classmethod
def from_inversion_vector(cls, inversion):
"""
Calculates the permutation from the inversion vector.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
Permutation([3, 2, 1, 0, 4, 5])
"""
size = len(inversion)
N = list(range(size + 1))
perm = []
try:
for k in range(size):
val = N[inversion[k]]
perm.append(val)
N.remove(val)
except IndexError:
raise ValueError("The inversion vector is not valid.")
perm.extend(N)
return cls._af_new(perm)
@classmethod
def random(cls, n):
"""
Generates a random permutation of length ``n``.
Uses the underlying Python pseudo-random number generator.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
True
"""
perm_array = list(range(n))
random.shuffle(perm_array)
return cls._af_new(perm_array)
@classmethod
def unrank_lex(cls, size, rank):
"""
Lexicographic permutation unranking.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = Permutation.unrank_lex(5, 10)
>>> a.rank()
10
>>> a
Permutation([0, 2, 4, 1, 3])
See Also
========
rank, next_lex
"""
perm_array = [0] * size
psize = 1
for i in range(size):
new_psize = psize*(i + 1)
d = (rank % new_psize) // psize
rank -= d*psize
perm_array[size - i - 1] = d
for j in range(size - i, size):
if perm_array[j] > d - 1:
perm_array[j] += 1
psize = new_psize
return cls._af_new(perm_array)
def resize(self, n):
"""Resize the permutation to the new size ``n``.
Parameters
==========
n : int
The new size of the permutation.
Raises
======
ValueError
If the permutation cannot be resized to the given size.
This may only happen when resized to a smaller size than
the original.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
Increasing the size of a permutation:
>>> p = Permutation(0, 1, 2)
>>> p = p.resize(5)
>>> p
(4)(0 1 2)
Decreasing the size of the permutation:
>>> p = p.resize(4)
>>> p
(3)(0 1 2)
If resizing to the specific size breaks the cycles:
>>> p.resize(2)
Traceback (most recent call last):
...
ValueError: The permutation can not be resized to 2 because the
cycle (0, 1, 2) may break.
"""
aform = self.array_form
l = len(aform)
if n > l:
aform += list(range(l, n))
return Permutation._af_new(aform)
elif n < l:
cyclic_form = self.full_cyclic_form
new_cyclic_form = []
for cycle in cyclic_form:
cycle_min = min(cycle)
cycle_max = max(cycle)
if cycle_min <= n-1:
if cycle_max > n-1:
raise ValueError(
"The permutation can not be resized to {} "
"because the cycle {} may break."
.format(n, tuple(cycle)))
new_cyclic_form.append(cycle)
return Permutation(new_cyclic_form)
return self
# XXX Deprecated flag
print_cyclic = None
def _merge(arr, temp, left, mid, right):
"""
Merges two sorted arrays and calculates the inversion count.
Helper function for calculating inversions. This method is
for internal use only.
"""
i = k = left
j = mid
inv_count = 0
while i < mid and j <= right:
if arr[i] < arr[j]:
temp[k] = arr[i]
k += 1
i += 1
else:
temp[k] = arr[j]
k += 1
j += 1
inv_count += (mid -i)
while i < mid:
temp[k] = arr[i]
k += 1
i += 1
if j <= right:
k += right - j + 1
j += right - j + 1
arr[left:k + 1] = temp[left:k + 1]
else:
arr[left:right + 1] = temp[left:right + 1]
return inv_count
Perm = Permutation
_af_new = Perm._af_new
class AppliedPermutation(Expr):
"""A permutation applied to a symbolic variable.
Parameters
==========
perm : Permutation
x : Expr
Examples
========
>>> from sympy import Symbol
>>> from sympy.combinatorics import Permutation
Creating a symbolic permutation function application:
>>> x = Symbol('x')
>>> p = Permutation(0, 1, 2)
>>> p.apply(x)
AppliedPermutation((0 1 2), x)
>>> _.subs(x, 1)
2
"""
def __new__(cls, perm, x, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
perm = _sympify(perm)
x = _sympify(x)
if not isinstance(perm, Permutation):
raise ValueError("{} must be a Permutation instance."
.format(perm))
if evaluate:
if x.is_Integer:
return perm.apply(x)
obj = super(AppliedPermutation, cls).__new__(cls, perm, x)
return obj
|
abaf3baf641818f409f75d1ba7a9bb992afed1bc7c6fea9ab4a0f24d6243e903 | """
This module contain solvers for all kinds of equations:
- algebraic or transcendental, use solve()
- recurrence, use rsolve()
- differential, use dsolve()
- nonlinear (numerically), use nsolve()
(you will need a good starting point)
"""
from __future__ import print_function, division
from sympy import divisors
from sympy.core.compatibility import (iterable, is_sequence, ordered,
default_sort_key, range)
from sympy.core.sympify import sympify
from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul,
Pow, Unequality)
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand_mul, expand_log,
Derivative, AppliedUndef, UndefinedFunction, nfloat,
Function, expand_power_exp, _mexpand, expand)
from sympy.integrals.integrals import Integral
from sympy.core.numbers import ilcm, Float, Rational
from sympy.core.relational import Relational
from sympy.core.logic import fuzzy_not, fuzzy_and
from sympy.core.power import integer_log
from sympy.logic.boolalg import And, Or, BooleanAtom
from sympy.core.basic import preorder_traversal
from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan,
Abs, re, im, arg, sqrt, atan2)
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
HyperbolicFunction)
from sympy.simplify import (simplify, collect, powsimp, posify,
powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction,
separatevars)
from sympy.simplify.sqrtdenest import sqrt_depth
from sympy.simplify.fu import TR1
from sympy.matrices import Matrix, zeros
from sympy.polys import roots, cancel, factor, Poly, degree
from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError
from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise
from sympy.utilities.lambdify import lambdify
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import uniq, generate_bell, flatten
from sympy.utilities.decorator import conserve_mpmath_dps
from mpmath import findroot
from sympy.solvers.polysys import solve_poly_system
from sympy.solvers.inequalities import reduce_inequalities
from types import GeneratorType
from collections import defaultdict
import itertools
import warnings
def recast_to_symbols(eqs, symbols):
"""
Return (e, s, d) where e and s are versions of *eqs* and
*symbols* in which any non-Symbol objects in *symbols* have
been replaced with generic Dummy symbols and d is a dictionary
that can be used to restore the original expressions.
Examples
========
>>> from sympy.solvers.solvers import recast_to_symbols
>>> from sympy import symbols, Function
>>> x, y = symbols('x y')
>>> fx = Function('f')(x)
>>> eqs, syms = [fx + 1, x, y], [fx, y]
>>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d)
([_X0 + 1, x, y], [_X0, y], {_X0: f(x)})
The original equations and symbols can be restored using d:
>>> assert [i.xreplace(d) for i in eqs] == eqs
>>> assert [d.get(i, i) for i in s] == syms
"""
if not iterable(eqs) and iterable(symbols):
raise ValueError('Both eqs and symbols must be iterable')
new_symbols = list(symbols)
swap_sym = {}
for i, s in enumerate(symbols):
if not isinstance(s, Symbol) and s not in swap_sym:
swap_sym[s] = Dummy('X%d' % i)
new_symbols[i] = swap_sym[s]
new_f = []
for i in eqs:
isubs = getattr(i, 'subs', None)
if isubs is not None:
new_f.append(isubs(swap_sym))
else:
new_f.append(i)
swap_sym = {v: k for k, v in swap_sym.items()}
return new_f, new_symbols, swap_sym
def _ispow(e):
"""Return True if e is a Pow or is exp."""
return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp))
def _simple_dens(f, symbols):
# when checking if a denominator is zero, we can just check the
# base of powers with nonzero exponents since if the base is zero
# the power will be zero, too. To keep it simple and fast, we
# limit simplification to exponents that are Numbers
dens = set()
for d in denoms(f, symbols):
if d.is_Pow and d.exp.is_Number:
if d.exp.is_zero:
continue # foo**0 is never 0
d = d.base
dens.add(d)
return dens
def denoms(eq, *symbols):
"""
Return (recursively) set of all denominators that appear in *eq*
that contain any symbol in *symbols*; if *symbols* are not
provided then all denominators will be returned.
Examples
========
>>> from sympy.solvers.solvers import denoms
>>> from sympy.abc import x, y, z
>>> from sympy import sqrt
>>> denoms(x/y)
{y}
>>> denoms(x/(y*z))
{y, z}
>>> denoms(3/x + y/z)
{x, z}
>>> denoms(x/2 + y/z)
{2, z}
If *symbols* are provided then only denominators containing
those symbols will be returned:
>>> denoms(1/x + 1/y + 1/z, y, z)
{y, z}
"""
pot = preorder_traversal(eq)
dens = set()
for p in pot:
# lhs and rhs will be traversed after anyway
if isinstance(p, Relational):
continue
den = denom(p)
if den is S.One:
continue
for d in Mul.make_args(den):
dens.add(d)
if not symbols:
return dens
elif len(symbols) == 1:
if iterable(symbols[0]):
symbols = symbols[0]
rv = []
for d in dens:
free = d.free_symbols
if any(s in free for s in symbols):
rv.append(d)
return set(rv)
def checksol(f, symbol, sol=None, **flags):
"""
Checks whether sol is a solution of equation f == 0.
Explanation
===========
Input can be either a single symbol and corresponding value
or a dictionary of symbols and values. When given as a dictionary
and flag ``simplify=True``, the values in the dictionary will be
simplified. *f* can be a single equation or an iterable of equations.
A solution must satisfy all equations in *f* to be considered valid;
if a solution does not satisfy any equation, False is returned; if one or
more checks are inconclusive (and none are False) then None is returned.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers import checksol
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
To check if an expression is zero using ``checksol()``, pass it
as *f* and send an empty dictionary for *symbol*:
>>> checksol(x**2 + x - x*(x + 1), {})
True
None is returned if ``checksol()`` could not conclude.
flags:
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warn=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify solution before substituting into function and
simplify the function before trying specific simplifications
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
"""
from sympy.physics.units import Unit
minimal = flags.get('minimal', False)
if sol is not None:
sol = {symbol: sol}
elif isinstance(symbol, dict):
sol = symbol
else:
msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)'
raise ValueError(msg % (symbol, sol))
if iterable(f):
if not f:
raise ValueError('no functions to check')
rv = True
for fi in f:
check = checksol(fi, sol, **flags)
if check:
continue
if check is False:
return False
rv = None # don't return, wait to see if there's a False
return rv
if isinstance(f, Poly):
f = f.as_expr()
elif isinstance(f, (Equality, Unequality)):
if f.rhs in (S.true, S.false):
f = f.reversed
B, E = f.args
if B in (S.true, S.false):
f = f.subs(sol)
if f not in (S.true, S.false):
return
else:
f = f.rewrite(Add, evaluate=False)
if isinstance(f, BooleanAtom):
return bool(f)
elif not f.is_Relational and not f:
return True
if sol and not f.free_symbols & set(sol.keys()):
# if f(y) == 0, x=3 does not set f(y) to zero...nor does it not
return None
illegal = set([S.NaN,
S.ComplexInfinity,
S.Infinity,
S.NegativeInfinity])
if any(sympify(v).atoms() & illegal for k, v in sol.items()):
return False
was = f
attempt = -1
numerical = flags.get('numerical', True)
while 1:
attempt += 1
if attempt == 0:
val = f.subs(sol)
if isinstance(val, Mul):
val = val.as_independent(Unit)[0]
if val.atoms() & illegal:
return False
elif attempt == 1:
if not val.is_number:
if not val.is_constant(*list(sol.keys()), simplify=not minimal):
return False
# there are free symbols -- simple expansion might work
_, val = val.as_content_primitive()
val = _mexpand(val.as_numer_denom()[0], recursive=True)
elif attempt == 2:
if minimal:
return
if flags.get('simplify', True):
for k in sol:
sol[k] = simplify(sol[k])
# start over without the failed expanded form, possibly
# with a simplified solution
val = simplify(f.subs(sol))
if flags.get('force', True):
val, reps = posify(val)
# expansion may work now, so try again and check
exval = _mexpand(val, recursive=True)
if exval.is_number:
# we can decide now
val = exval
else:
# if there are no radicals and no functions then this can't be
# zero anymore -- can it?
pot = preorder_traversal(expand_mul(val))
seen = set()
saw_pow_func = False
for p in pot:
if p in seen:
continue
seen.add(p)
if p.is_Pow and not p.exp.is_Integer:
saw_pow_func = True
elif p.is_Function:
saw_pow_func = True
elif isinstance(p, UndefinedFunction):
saw_pow_func = True
if saw_pow_func:
break
if saw_pow_func is False:
return False
if flags.get('force', True):
# don't do a zero check with the positive assumptions in place
val = val.subs(reps)
nz = fuzzy_not(val.is_zero)
if nz is not None:
# issue 5673: nz may be True even when False
# so these are just hacks to keep a false positive
# from being returned
# HACK 1: LambertW (issue 5673)
if val.is_number and val.has(LambertW):
# don't eval this to verify solution since if we got here,
# numerical must be False
return None
# add other HACKs here if necessary, otherwise we assume
# the nz value is correct
return not nz
break
if val == was:
continue
elif val.is_Rational:
return val == 0
if numerical and val.is_number:
if val in (S.true, S.false):
return bool(val)
return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true
was = val
if flags.get('warn', False):
warnings.warn("\n\tWarning: could not verify solution %s." % sol)
# returns None if it can't conclude
# TODO: improve solution testing
def failing_assumptions(expr, **assumptions):
"""
Return a dictionary containing assumptions with values not
matching those of the passed assumptions.
Examples
========
>>> from sympy import failing_assumptions, Symbol
>>> x = Symbol('x', real=True, positive=True)
>>> y = Symbol('y')
>>> failing_assumptions(6*x + y, real=True, positive=True)
{'positive': None, 'real': None}
>>> failing_assumptions(x**2 - 1, positive=True)
{'positive': None}
If *expr* satisfies all of the assumptions, an empty dictionary is returned.
>>> failing_assumptions(x**2, positive=True)
{}
"""
expr = sympify(expr)
failed = {}
for key in list(assumptions.keys()):
test = getattr(expr, 'is_%s' % key, None)
if test is not assumptions[key]:
failed[key] = test
return failed # {} or {assumption: value != desired}
def check_assumptions(expr, against=None, **assumptions):
"""
Checks whether expression *expr* satisfies all assumptions.
Explanation
===========
*assumptions* is a dict of assumptions: {'assumption': True|False, ...}.
Examples
========
>>> from sympy import Symbol, pi, I, exp, check_assumptions
>>> check_assumptions(-5, integer=True)
True
>>> check_assumptions(pi, real=True, integer=False)
True
>>> check_assumptions(pi, real=True, negative=True)
False
>>> check_assumptions(exp(I*pi/7), real=False)
True
>>> x = Symbol('x', real=True, positive=True)
>>> check_assumptions(2*x + 1, real=True, positive=True)
True
>>> check_assumptions(-2*x - 5, real=True, positive=True)
False
To check assumptions of *expr* against another variable or expression,
pass the expression or variable as ``against``.
>>> check_assumptions(2*x + 1, x)
True
``None`` is returned if ``check_assumptions()`` could not conclude.
>>> check_assumptions(2*x - 1, real=True, positive=True)
>>> z = Symbol('z')
>>> check_assumptions(z, real=True)
See Also
========
failing_assumptions
"""
expr = sympify(expr)
if against:
if not isinstance(against, Symbol):
raise TypeError('against should be of type Symbol')
if assumptions:
raise AssertionError('No assumptions should be specified')
assumptions = against.assumptions0
def _test(key):
v = getattr(expr, 'is_' + key, None)
if v is not None:
return assumptions[key] is v
return fuzzy_and(_test(key) for key in assumptions)
def solve(f, *symbols, **flags):
r"""
Algebraically solves equations and systems of equations.
Explanation
===========
Currently supported:
- polynomial
- transcendental
- piecewise combinations of the above
- systems of linear and polynomial equations
- systems containing relational expressions
Examples
========
The output varies according to the input and can be seen by example:
>>> from sympy import solve, Poly, Eq, Function, exp
>>> from sympy.abc import x, y, z, a, b
>>> f = Function('f')
Boolean or univariate Relational:
>>> solve(x < 3)
(-oo < x) & (x < 3)
To always get a list of solution mappings, use flag dict=True:
>>> solve(x - 3, dict=True)
[{x: 3}]
>>> sol = solve([x - 3, y - 1], dict=True)
>>> sol
[{x: 3, y: 1}]
>>> sol[0][x]
3
>>> sol[0][y]
1
To get a list of *symbols* and set of solution(s) use flag set=True:
>>> solve([x**2 - 3, y - 1], set=True)
([x, y], {(-sqrt(3), 1), (sqrt(3), 1)})
Single expression and single symbol that is in the expression:
>>> solve(x - y, x)
[y]
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(x**2 - y**2, x, set=True)
([x], {(-y,), (y,)})
>>> solve(x**4 - 1, x, set=True)
([x], {(-1,), (1,), (-I,), (I,)})
Single expression with no symbol that is in the expression:
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
Single expression with no symbol given. In this case, all free *symbols*
will be selected as potential *symbols* to solve for. If the equation is
univariate then a list of solutions is returned; otherwise - as is the case
when *symbols* are given as an iterable of length greater than 1 - a list of
mappings will be returned:
>>> solve(x - 3)
[3]
>>> solve(x**2 - y**2)
[{x: -y}, {x: y}]
>>> solve(z**2*x**2 - z**2*y**2)
[{x: -y}, {x: y}, {z: 0}]
>>> solve(z**2*x - z**2*y**2)
[{x: y**2}, {z: 0}]
When an object other than a Symbol is given as a symbol, it is
isolated algebraically and an implicit solution may be obtained.
This is mostly provided as a convenience to save you from replacing
the object with a Symbol and solving for that Symbol. It will only
work if the specified object can be replaced with a Symbol using the
subs method:
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
([exp(x)], {(-sqrt(-x),), (sqrt(-x),)})
>>> from sympy import Indexed, IndexedBase, Tuple, sqrt
>>> A = IndexedBase('A')
>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1)
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
* To solve for a symbol implicitly, use implicit=True:
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
* It is possible to solve for anything that can be targeted with
subs:
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
* Nothing heroic is done in this implicit solving so you may end up
with a symbol still in the solution:
>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
>>> solve(eqs, y, x + 2)
{y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)}
>>> solve(eqs, y*x, x)
{x: -y - 4, x*y: -3*y - sqrt(3)}
* If you attempt to solve for a number remember that the number
you have obtained does not necessarily mean that the value is
equivalent to the expression obtained:
>>> solve(sqrt(2) - 1, 1)
[sqrt(2)]
>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too
[x/(y - 1)]
>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
[-x + y]
* To solve for a function within a derivative, use ``dsolve``.
Single expression and more than one symbol:
* When there is a linear solution:
>>> solve(x - y**2, x, y)
[(y**2, y)]
>>> solve(x**2 - y, x, y)
[(x, x**2)]
>>> solve(x**2 - y, x, y, dict=True)
[{y: x**2}]
* When undetermined coefficients are identified:
* That are linear:
>>> solve((a + b)*x - b + 2, a, b)
{a: -2, b: 2}
* That are nonlinear:
>>> solve((a + b)*x - b**2 + 2, a, b, set=True)
([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))})
* If there is no linear solution, then the first successful
attempt for a nonlinear solution will be returned:
>>> solve(x**2 - y**2, x, y, dict=True)
[{x: -y}, {x: y}]
>>> solve(x**2 - y**2/exp(x), x, y, dict=True)
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
>>> solve(x**2 - y**2/exp(x), y, x)
[(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)]
Iterable of one or more of the above:
* Involving relationals or bools:
>>> solve([x < 3, x - 2])
Eq(x, 2)
>>> solve([x > 3, x - 2])
False
* When the system is linear:
* With a solution:
>>> solve([x - 3], x)
{x: 3}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y)
{x: 2 - 5*y, z: 21*y - 6}
* Without a solution:
>>> solve([x + 3, x - 3])
[]
* When the system is not linear:
>>> solve([x**2 + y -2, y**2 - 4], x, y, set=True)
([x, y], {(-2, -2), (0, 2), (2, -2)})
* If no *symbols* are given, all free *symbols* will be selected and a
list of mappings returned:
>>> solve([x - 2, x**2 + y])
[{x: 2, y: -4}]
>>> solve([x - 2, x**2 + f(x)], {f(x), x})
[{x: 2, f(x): -4}]
* If any equation does not depend on the symbol(s) given, it will be
eliminated from the equation set and an answer may be given
implicitly in terms of variables that were not of interest:
>>> solve([x - y, y - 3], x)
{x: y}
**Additional Examples**
``solve()`` with check=True (default) will run through the symbol tags to
elimate unwanted solutions. If no assumptions are included, all possible
solutions will be returned:
>>> from sympy import Symbol, solve
>>> x = Symbol("x")
>>> solve(x**2 - 1)
[-1, 1]
By using the positive tag, only one solution will be returned:
>>> pos = Symbol("pos", positive=True)
>>> solve(pos**2 - 1)
[1]
Assumptions are not checked when ``solve()`` input involves
relationals or bools.
When the solutions are checked, those that make any denominator zero
are automatically excluded. If you do not want to exclude such solutions,
then use the check=False option:
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
If check=False, then a solution to the numerator being zero is found: x = 0.
In this case, this is a spurious solution since $\sin(x)/x$ has the well
known limit (without dicontinuity) of 1 at x = 0:
>>> solve(sin(x)/x, check=False)
[0, pi]
In the following case, however, the limit exists and is equal to the
value of x = 0 that is excluded when check=True:
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
**Disabling High-Order Explicit Solutions**
When solving polynomial expressions, you might not want explicit solutions
(which can be quite long). If the expression is univariate, ``CRootOf``
instances will be returned instead:
>>> solve(x**3 - x + 1)
[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 -
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 +
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 +
sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 +
27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)]
>>> solve(x**3 - x + 1, cubics=False)
[CRootOf(x**3 - x + 1, 0),
CRootOf(x**3 - x + 1, 1),
CRootOf(x**3 - x + 1, 2)]
If the expression is multivariate, no solution might be returned:
>>> solve(x**3 - x + a, x, cubics=False)
[]
Sometimes solutions will be obtained even when a flag is False because the
expression could be factored. In the following example, the equation can
be factored as the product of a linear and a quadratic factor so explicit
solutions (which did not require solving a cubic expression) are obtained:
>>> eq = x**3 + 3*x**2 + x - 1
>>> solve(eq, cubics=False)
[-1, -1 + sqrt(2), -sqrt(2) - 1]
**Solving Equations Involving Radicals**
Because of SymPy's use of the principle root, some solutions
to radical equations will be missed unless check=False:
>>> from sympy import root
>>> eq = root(x**3 - 3*x**2, 3) + 1 - x
>>> solve(eq)
[]
>>> solve(eq, check=False)
[1/3]
In the above example, there is only a single solution to the
equation. Other expressions will yield spurious roots which
must be checked manually; roots which give a negative argument
to odd-powered radicals will also need special checking:
>>> from sympy import real_root, S
>>> eq = root(x, 3) - root(x, 5) + S(1)/7
>>> solve(eq) # this gives 2 solutions but misses a 3rd
[CRootOf(7*_p**5 - 7*_p**3 + 1, 1)**15,
CRootOf(7*_p**5 - 7*_p**3 + 1, 2)**15]
>>> sol = solve(eq, check=False)
>>> [abs(eq.subs(x,i).n(2)) for i in sol]
[0.48, 0.e-110, 0.e-110, 0.052, 0.052]
The first solution is negative so ``real_root`` must be used to see that it
satisfies the expression:
>>> abs(real_root(eq.subs(x, sol[0])).n(2))
0.e-110
If the roots of the equation are not real then more care will be
necessary to find the roots, especially for higher order equations.
Consider the following expression:
>>> expr = root(x, 3) - root(x, 5)
We will construct a known value for this expression at x = 3 by selecting
the 1-th root for each radical:
>>> expr1 = root(x, 3, 1) - root(x, 5, 1)
>>> v = expr1.subs(x, -3)
The ``solve`` function is unable to find any exact roots to this equation:
>>> eq = Eq(expr, v); eq1 = Eq(expr1, v)
>>> solve(eq, check=False), solve(eq1, check=False)
([], [])
The function ``unrad``, however, can be used to get a form of the equation
for which numerical roots can be found:
>>> from sympy.solvers.solvers import unrad
>>> from sympy import nroots
>>> e, (p, cov) = unrad(eq)
>>> pvals = nroots(e)
>>> inversion = solve(cov, x)[0]
>>> xvals = [inversion.subs(p, i) for i in pvals]
Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the
solution can only be verified with ``expr1``:
>>> z = expr - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9]
[]
>>> z1 = expr1 - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9]
[-3.0]
Parameters
==========
f :
- a single Expr or Poly that must be zero
- an Equality
- a Relational expression
- a Boolean
- iterable of one or more of the above
symbols : (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols
(e.g., ``solve(f, x, y)``)
- ordered iterable of symbols
(e.g., ``solve(f, [x, y])``)
flags :
dict=True (default is False)
Return list (perhaps empty) of solution mappings.
set=True (default is False)
Return list of symbols and set of tuple(s) of solution(s).
exclude=[] (default)
Do not try to solve for any of the free symbols in exclude;
if expressions are given, the free symbols in them will
be extracted automatically.
check=True (default)
If False, do not do any testing of solutions. This can be
useful if you want to include solutions that make any
denominator zero.
numerical=True (default)
Do a fast numerical check if *f* has only one symbol.
minimal=True (default is False)
A very fast, minimal testing.
warn=True (default is False)
Show a warning if ``checksol()`` could not conclude.
simplify=True (default)
Simplify all but polynomials of order 3 or greater before
returning them and (if check is not False) use the
general simplify function on the solutions and the
expression obtained when they are substituted into the
function which should be zero.
force=True (default is False)
Make positive all symbols without assumptions regarding sign.
rational=True (default)
Recast Floats as Rational; if this option is not used, the
system containing Floats may fail to solve because of issues
with polys. If rational=None, Floats will be recast as
rationals but the answer will be recast as Floats. If the
flag is False then nothing will be done to the Floats.
manual=True (default is False)
Do not use the polys/matrix method to solve a system of
equations, solve them one at a time as you might "manually."
implicit=True (default is False)
Allows ``solve`` to return a solution for a pattern in terms of
other functions that contain that pattern; this is only
needed if the pattern is inside of some invertible function
like cos, exp, ect.
particular=True (default is False)
Instructs ``solve`` to try to find a particular solution to a linear
system with as many zeros as possible; this is very expensive.
quick=True (default is False)
When using particular=True, use a fast heuristic to find a
solution with many zeros (instead of using the very slow method
guaranteed to find the largest number of zeros possible).
cubics=True (default)
Return explicit solutions when cubic expressions are encountered.
quartics=True (default)
Return explicit solutions when quartic expressions are encountered.
quintics=True (default)
Return explicit solutions (if possible) when quintic expressions
are encountered.
See Also
========
rsolve: For solving recurrence relationships
dsolve: For solving differential equations
"""
# keeping track of how f was passed since if it is a list
# a dictionary of results will be returned.
###########################################################################
def _sympified_list(w):
return list(map(sympify, w if iterable(w) else [w]))
bare_f = not iterable(f)
ordered_symbols = (symbols and
symbols[0] and
(isinstance(symbols[0], Symbol) or
is_sequence(symbols[0],
include=GeneratorType)
)
)
f, symbols = (_sympified_list(w) for w in [f, symbols])
if isinstance(f, list):
f = [s for s in f if s is not S.true and s is not True]
implicit = flags.get('implicit', False)
# preprocess symbol(s)
###########################################################################
if not symbols:
# get symbols from equations
symbols = set().union(*[fi.free_symbols for fi in f])
if len(symbols) < len(f):
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if isinstance(p, AppliedUndef):
flags['dict'] = True # better show symbols
symbols.add(p)
pot.skip() # don't go any deeper
symbols = list(symbols)
ordered_symbols = False
elif len(symbols) == 1 and iterable(symbols[0]):
symbols = symbols[0]
# remove symbols the user is not interested in
exclude = flags.pop('exclude', set())
if exclude:
if isinstance(exclude, Expr):
exclude = [exclude]
exclude = set().union(*[e.free_symbols for e in sympify(exclude)])
symbols = [s for s in symbols if s not in exclude]
# preprocess equation(s)
###########################################################################
for i, fi in enumerate(f):
if isinstance(fi, (Equality, Unequality)):
if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]:
fi = fi.lhs - fi.rhs
else:
args = fi.args
if args[1] in (S.true, S.false):
args = args[1], args[0]
L, R = args
if L in (S.false, S.true):
if isinstance(fi, Unequality):
L = ~L
if R.is_Relational:
fi = ~R if L is S.false else R
elif R.is_Symbol:
return L
elif R.is_Boolean and (~R).is_Symbol:
return ~L
else:
raise NotImplementedError(filldedent('''
Unanticipated argument of Eq when other arg
is True or False.
'''))
else:
fi = fi.rewrite(Add, evaluate=False)
f[i] = fi
if fi.is_Relational:
return reduce_inequalities(f, symbols=symbols)
if isinstance(fi, Poly):
f[i] = fi.as_expr()
# rewrite hyperbolics in terms of exp
f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction),
lambda w: w.rewrite(exp))
# if we have a Matrix, we need to iterate over its elements again
if f[i].is_Matrix:
bare_f = False
f.extend(list(f[i]))
f[i] = S.Zero
# if we can split it into real and imaginary parts then do so
freei = f[i].free_symbols
if freei and all(s.is_extended_real or s.is_imaginary for s in freei):
fr, fi = f[i].as_real_imag()
# accept as long as new re, im, arg or atan2 are not introduced
had = f[i].atoms(re, im, arg, atan2)
if fr and fi and fr != fi and not any(
i.atoms(re, im, arg, atan2) - had for i in (fr, fi)):
if bare_f:
bare_f = False
f[i: i + 1] = [fr, fi]
# real/imag handling -----------------------------
if any(isinstance(fi, (bool, BooleanAtom)) for fi in f):
if flags.get('set', False):
return [], set()
return []
for i, fi in enumerate(f):
# Abs
while True:
was = fi
fi = fi.replace(Abs, lambda arg:
separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols)
else Abs(arg))
if was == fi:
break
for e in fi.find(Abs):
if e.has(*symbols):
raise NotImplementedError('solving %s when the argument '
'is not real or imaginary.' % e)
# arg
_arg = [a for a in fi.atoms(arg) if a.has(*symbols)]
fi = fi.xreplace(dict(list(zip(_arg,
[atan(im(a.args[0])/re(a.args[0])) for a in _arg]))))
# save changes
f[i] = fi
# see if re(s) or im(s) appear
irf = []
for s in symbols:
if s.is_extended_real or s.is_imaginary:
continue # neither re(x) nor im(x) will appear
# if re(s) or im(s) appear, the auxiliary equation must be present
if any(fi.has(re(s), im(s)) for fi in f):
irf.append((s, re(s) + S.ImaginaryUnit*im(s)))
if irf:
for s, rhs in irf:
for i, fi in enumerate(f):
f[i] = fi.xreplace({s: rhs})
f.append(s - rhs)
symbols.extend([re(s), im(s)])
if bare_f:
bare_f = False
flags['dict'] = True
# end of real/imag handling -----------------------------
symbols = list(uniq(symbols))
if not ordered_symbols:
# we do this to make the results returned canonical in case f
# contains a system of nonlinear equations; all other cases should
# be unambiguous
symbols = sorted(symbols, key=default_sort_key)
# we can solve for non-symbol entities by replacing them with Dummy symbols
f, symbols, swap_sym = recast_to_symbols(f, symbols)
# this is needed in the next two events
symset = set(symbols)
# get rid of equations that have no symbols of interest; we don't
# try to solve them because the user didn't ask and they might be
# hard to solve; this means that solutions may be given in terms
# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y}
newf = []
for fi in f:
# let the solver handle equations that..
# - have no symbols but are expressions
# - have symbols of interest
# - have no symbols of interest but are constant
# but when an expression is not constant and has no symbols of
# interest, it can't change what we obtain for a solution from
# the remaining equations so we don't include it; and if it's
# zero it can be removed and if it's not zero, there is no
# solution for the equation set as a whole
#
# The reason for doing this filtering is to allow an answer
# to be obtained to queries like solve((x - y, y), x); without
# this mod the return value is []
ok = False
if fi.has(*symset):
ok = True
else:
if fi.is_number:
if fi.is_Number:
if fi.is_zero:
continue
return []
ok = True
else:
if fi.is_constant():
ok = True
if ok:
newf.append(fi)
if not newf:
return []
f = newf
del newf
# mask off any Object that we aren't going to invert: Derivative,
# Integral, etc... so that solving for anything that they contain will
# give an implicit solution
seen = set()
non_inverts = set()
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not isinstance(p, Expr) or isinstance(p, Piecewise):
pass
elif (isinstance(p, bool) or
not p.args or
p in symset or
p.is_Add or p.is_Mul or
p.is_Pow and not implicit or
p.is_Function and not implicit) and p.func not in (re, im):
continue
elif not p in seen:
seen.add(p)
if p.free_symbols & symset:
non_inverts.add(p)
else:
continue
pot.skip()
del seen
non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts])))
f = [fi.subs(non_inverts) for fi in f]
# Both xreplace and subs are needed below: xreplace to force substitution
# inside Derivative, subs to handle non-straightforward substitutions
non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()]
# rationalize Floats
floats = False
if flags.get('rational', True) is not False:
for i, fi in enumerate(f):
if fi.has(Float):
floats = True
f[i] = nsimplify(fi, rational=True)
# capture any denominators before rewriting since
# they may disappear after the rewrite, e.g. issue 14779
flags['_denominators'] = _simple_dens(f[0], symbols)
# Any embedded piecewise functions need to be brought out to the
# top level so that the appropriate strategy gets selected.
# However, this is necessary only if one of the piecewise
# functions depends on one of the symbols we are solving for.
def _has_piecewise(e):
if e.is_Piecewise:
return e.has(*symbols)
return any([_has_piecewise(a) for a in e.args])
for i, fi in enumerate(f):
if _has_piecewise(fi):
f[i] = piecewise_fold(fi)
#
# try to get a solution
###########################################################################
if bare_f:
solution = _solve(f[0], *symbols, **flags)
else:
solution = _solve_system(f, symbols, **flags)
#
# postprocessing
###########################################################################
# Restore masked-off objects
if non_inverts:
def _do_dict(solution):
return {k: v.subs(non_inverts) for k, v in
solution.items()}
for i in range(1):
if isinstance(solution, dict):
solution = _do_dict(solution)
break
elif solution and isinstance(solution, list):
if isinstance(solution[0], dict):
solution = [_do_dict(s) for s in solution]
break
elif isinstance(solution[0], tuple):
solution = [tuple([v.subs(non_inverts) for v in s]) for s
in solution]
break
else:
solution = [v.subs(non_inverts) for v in solution]
break
elif not solution:
break
else:
raise NotImplementedError(filldedent('''
no handling of %s was implemented''' % solution))
# Restore original "symbols" if a dictionary is returned.
# This is not necessary for
# - the single univariate equation case
# since the symbol will have been removed from the solution;
# - the nonlinear poly_system since that only supports zero-dimensional
# systems and those results come back as a list
#
# ** unless there were Derivatives with the symbols, but those were handled
# above.
if swap_sym:
symbols = [swap_sym.get(k, k) for k in symbols]
if isinstance(solution, dict):
solution = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in solution.items()}
elif solution and isinstance(solution, list) and isinstance(solution[0], dict):
for i, sol in enumerate(solution):
solution[i] = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in sol.items()}
# undo the dictionary solutions returned when the system was only partially
# solved with poly-system if all symbols are present
if (
not flags.get('dict', False) and
solution and
ordered_symbols and
not isinstance(solution, dict) and
all(isinstance(sol, dict) for sol in solution)
):
solution = [tuple([r.get(s, s).subs(r) for s in symbols])
for r in solution]
# Get assumptions about symbols, to filter solutions.
# Note that if assumptions about a solution can't be verified, it is still
# returned.
check = flags.get('check', True)
# restore floats
if floats and solution and flags.get('rational', None) is None:
solution = nfloat(solution, exponent=False)
if check and solution: # assumption checking
warn = flags.get('warn', False)
got_None = [] # solutions for which one or more symbols gave None
no_False = [] # solutions for which no symbols gave False
if isinstance(solution, tuple):
# this has already been checked and is in as_set form
return solution
elif isinstance(solution, list):
if isinstance(solution[0], tuple):
for sol in solution:
for symb, val in zip(symbols, sol):
test = check_assumptions(val, **symb.assumptions0)
if test is False:
break
if test is None:
got_None.append(sol)
else:
no_False.append(sol)
elif isinstance(solution[0], dict):
for sol in solution:
a_None = False
for symb, val in sol.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
break
a_None = True
else:
no_False.append(sol)
if a_None:
got_None.append(sol)
else: # list of expressions
for sol in solution:
test = check_assumptions(sol, **symbols[0].assumptions0)
if test is False:
continue
no_False.append(sol)
if test is None:
got_None.append(sol)
elif isinstance(solution, dict):
a_None = False
for symb, val in solution.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
no_False = None
break
a_None = True
else:
no_False = solution
if a_None:
got_None.append(solution)
elif isinstance(solution, (Relational, And, Or)):
if len(symbols) != 1:
raise ValueError("Length should be 1")
if warn and symbols[0].assumptions0:
warnings.warn(filldedent("""
\tWarning: assumptions about variable '%s' are
not handled currently.""" % symbols[0]))
# TODO: check also variable assumptions for inequalities
else:
raise TypeError('Unrecognized solution') # improve the checker
solution = no_False
if warn and got_None:
warnings.warn(filldedent("""
\tWarning: assumptions concerning following solution(s)
can't be checked:""" + '\n\t' +
', '.join(str(s) for s in got_None)))
#
# done
###########################################################################
as_dict = flags.get('dict', False)
as_set = flags.get('set', False)
if not as_set and isinstance(solution, list):
# Make sure that a list of solutions is ordered in a canonical way.
solution.sort(key=default_sort_key)
if not as_dict and not as_set:
return solution or []
# return a list of mappings or []
if not solution:
solution = []
else:
if isinstance(solution, dict):
solution = [solution]
elif iterable(solution[0]):
solution = [dict(list(zip(symbols, s))) for s in solution]
elif isinstance(solution[0], dict):
pass
else:
if len(symbols) != 1:
raise ValueError("Length should be 1")
solution = [{symbols[0]: s} for s in solution]
if as_dict:
return solution
assert as_set
if not solution:
return [], set()
k = list(ordered(solution[0].keys()))
return k, {tuple([s[ki] for ki in k]) for s in solution}
def _solve(f, *symbols, **flags):
"""
Return a checked solution for *f* in terms of one or more of the
symbols. A list should be returned except for the case when a linear
undetermined-coefficients equation is encountered (in which case
a dictionary is returned).
If no method is implemented to solve the equation, a NotImplementedError
will be raised. In the case that conversion of an expression to a Poly
gives None a ValueError will be raised.
"""
not_impl_msg = "No algorithms are implemented to solve equation %s"
if len(symbols) != 1:
soln = None
free = f.free_symbols
ex = free - set(symbols)
if len(ex) != 1:
ind, dep = f.as_independent(*symbols)
ex = ind.free_symbols & dep.free_symbols
if len(ex) == 1:
ex = ex.pop()
try:
# soln may come back as dict, list of dicts or tuples, or
# tuple of symbol list and set of solution tuples
soln = solve_undetermined_coeffs(f, symbols, ex, **flags)
except NotImplementedError:
pass
if soln:
if flags.get('simplify', True):
if isinstance(soln, dict):
for k in soln:
soln[k] = simplify(soln[k])
elif isinstance(soln, list):
if isinstance(soln[0], dict):
for d in soln:
for k in d:
d[k] = simplify(d[k])
elif isinstance(soln[0], tuple):
soln = [tuple(simplify(i) for i in j) for j in soln]
else:
raise TypeError('unrecognized args in list')
elif isinstance(soln, tuple):
sym, sols = soln
soln = sym, {tuple(simplify(i) for i in j) for j in sols}
else:
raise TypeError('unrecognized solution type')
return soln
# find first successful solution
failed = []
got_s = set([])
result = []
for s in symbols:
xi, v = solve_linear(f, symbols=[s])
if xi == s:
# no need to check but we should simplify if desired
if flags.get('simplify', True):
v = simplify(v)
vfree = v.free_symbols
if got_s and any([ss in vfree for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
got_s.add(xi)
result.append({xi: v})
elif xi: # there might be a non-linear solution if xi is not 0
failed.append(s)
if not failed:
return result
for s in failed:
try:
soln = _solve(f, s, **flags)
for sol in soln:
if got_s and any([ss in sol.free_symbols for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
got_s.add(s)
result.append({s: sol})
except NotImplementedError:
continue
if got_s:
return result
else:
raise NotImplementedError(not_impl_msg % f)
symbol = symbols[0]
# /!\ capture this flag then set it to False so that no checking in
# recursive calls will be done; only the final answer is checked
flags['check'] = checkdens = check = flags.pop('check', True)
# build up solutions if f is a Mul
if f.is_Mul:
result = set()
for m in f.args:
if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]):
result = set()
break
soln = _solve(m, symbol, **flags)
result.update(set(soln))
result = list(result)
if check:
# all solutions have been checked but now we must
# check that the solutions do not set denominators
# in any factor to zero
dens = flags.get('_denominators', _simple_dens(f, symbols))
result = [s for s in result if
all(not checksol(den, {symbol: s}, **flags) for den in
dens)]
# set flags for quick exit at end; solutions for each
# factor were already checked and simplified
check = False
flags['simplify'] = False
elif f.is_Piecewise:
result = set()
for i, (expr, cond) in enumerate(f.args):
if expr.is_zero:
raise NotImplementedError(
'solve cannot represent interval solutions')
candidates = _solve(expr, symbol, **flags)
# the explicit condition for this expr is the current cond
# and none of the previous conditions
args = [~c for _, c in f.args[:i]] + [cond]
cond = And(*args)
for candidate in candidates:
if candidate in result:
# an unconditional value was already there
continue
try:
v = cond.subs(symbol, candidate)
_eval_simplify = getattr(v, '_eval_simplify', None)
if _eval_simplify is not None:
# unconditionally take the simpification of v
v = _eval_simplify(ratio=2, measure=lambda x: 1)
except TypeError:
# incompatible type with condition(s)
continue
if v == False:
continue
if v == True:
result.add(candidate)
else:
result.add(Piecewise(
(candidate, v),
(S.NaN, True)))
# set flags for quick exit at end; solutions for each
# piece were already checked and simplified
check = False
flags['simplify'] = False
else:
# first see if it really depends on symbol and whether there
# is only a linear solution
f_num, sol = solve_linear(f, symbols=symbols)
if f_num.is_zero or sol is S.NaN:
return []
elif f_num.is_Symbol:
# no need to check but simplify if desired
if flags.get('simplify', True):
sol = simplify(sol)
return [sol]
result = False # no solution was obtained
msg = '' # there is no failure message
# Poly is generally robust enough to convert anything to
# a polynomial and tell us the different generators that it
# contains, so we will inspect the generators identified by
# polys to figure out what to do.
# try to identify a single generator that will allow us to solve this
# as a polynomial, followed (perhaps) by a change of variables if the
# generator is not a symbol
try:
poly = Poly(f_num)
if poly is None:
raise ValueError('could not convert %s to Poly' % f_num)
except GeneratorsNeeded:
simplified_f = simplify(f_num)
if simplified_f != f_num:
return _solve(simplified_f, symbol, **flags)
raise ValueError('expression appears to be a constant')
gens = [g for g in poly.gens if g.has(symbol)]
def _as_base_q(x):
"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
"""
b, e = x.as_base_exp()
if e.is_Rational:
return b, e.q
if not e.is_Mul:
return x, 1
c, ee = e.as_coeff_Mul()
if c.is_Rational and c is not S.One: # c could be a Float
return b**ee, c.q
return x, 1
if len(gens) > 1:
# If there is more than one generator, it could be that the
# generators have the same base but different powers, e.g.
# >>> Poly(exp(x) + 1/exp(x))
# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
#
# If unrad was not disabled then there should be no rational
# exponents appearing as in
# >>> Poly(sqrt(x) + sqrt(sqrt(x)))
# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
bases, qs = list(zip(*[_as_base_q(g) for g in gens]))
bases = set(bases)
if len(bases) > 1 or not all(q == 1 for q in qs):
funcs = set(b for b in bases if b.is_Function)
trig = set([_ for _ in funcs if
isinstance(_, TrigonometricFunction)])
other = funcs - trig
if not other and len(funcs.intersection(trig)) > 1:
newf = TR1(f_num).rewrite(tan)
if newf != f_num:
# don't check the rewritten form --check
# solutions in the un-rewritten form below
flags['check'] = False
result = _solve(newf, symbol, **flags)
flags['check'] = check
# just a simple case - see if replacement of single function
# clears all symbol-dependent functions, e.g.
# log(x) - log(log(x) - 1) - 3 can be solved even though it has
# two generators.
if result is False and funcs:
funcs = list(ordered(funcs)) # put shallowest function first
f1 = funcs[0]
t = Dummy('t')
# perform the substitution
ftry = f_num.subs(f1, t)
# if no Functions left, we can proceed with usual solve
if not ftry.has(symbol):
cv_sols = _solve(ftry, t, **flags)
cv_inv = _solve(t - f1, symbol, **flags)[0]
sols = list()
for sol in cv_sols:
sols.append(cv_inv.subs(t, sol))
result = list(ordered(sols))
if result is False:
msg = 'multiple generators %s' % gens
else:
# e.g. case where gens are exp(x), exp(-x)
u = bases.pop()
t = Dummy('t')
inv = _solve(u - t, symbol, **flags)
if isinstance(u, (Pow, exp)):
# this will be resolved by factor in _tsolve but we might
# as well try a simple expansion here to get things in
# order so something like the following will work now without
# having to factor:
#
# >>> eq = (exp(I*(-x-2))+exp(I*(x+2)))
# >>> eq.subs(exp(x),y) # fails
# exp(I*(-x - 2)) + exp(I*(x + 2))
# >>> eq.expand().subs(exp(x),y) # works
# y**I*exp(2*I) + y**(-I)*exp(-2*I)
def _expand(p):
b, e = p.as_base_exp()
e = expand_mul(e)
return expand_power_exp(b**e)
ftry = f_num.replace(
lambda w: w.is_Pow or isinstance(w, exp),
_expand).subs(u, t)
if not ftry.has(symbol):
soln = _solve(ftry, t, **flags)
sols = list()
for sol in soln:
for i in inv:
sols.append(i.subs(t, sol))
result = list(ordered(sols))
elif len(gens) == 1:
# There is only one generator that we are interested in, but
# there may have been more than one generator identified by
# polys (e.g. for symbols other than the one we are interested
# in) so recast the poly in terms of our generator of interest.
# Also use composite=True with f_num since Poly won't update
# poly as documented in issue 8810.
poly = Poly(f_num, gens[0], composite=True)
# if we aren't on the tsolve-pass, use roots
if not flags.pop('tsolve', False):
soln = None
deg = poly.degree()
flags['tsolve'] = True
solvers = {k: flags.get(k, True) for k in
('cubics', 'quartics', 'quintics')}
soln = roots(poly, **solvers)
if sum(soln.values()) < deg:
# e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 +
# 5000*x**2 + 6250*x + 3189) -> {}
# so all_roots is used and RootOf instances are
# returned *unless* the system is multivariate
# or high-order EX domain.
try:
soln = poly.all_roots()
except NotImplementedError:
if not flags.get('incomplete', True):
raise NotImplementedError(
filldedent('''
Neither high-order multivariate polynomials
nor sorting of EX-domain polynomials is supported.
If you want to see any results, pass keyword incomplete=True to
solve; to see numerical values of roots
for univariate expressions, use nroots.
'''))
else:
pass
else:
soln = list(soln.keys())
if soln is not None:
u = poly.gen
if u != symbol:
try:
t = Dummy('t')
iv = _solve(u - t, symbol, **flags)
soln = list(ordered({i.subs(t, s) for i in iv for s in soln}))
except NotImplementedError:
# perhaps _tsolve can handle f_num
soln = None
else:
check = False # only dens need to be checked
if soln is not None:
if len(soln) > 2:
# if the flag wasn't set then unset it since high-order
# results are quite long. Perhaps one could base this
# decision on a certain critical length of the
# roots. In addition, wester test M2 has an expression
# whose roots can be shown to be real with the
# unsimplified form of the solution whereas only one of
# the simplified forms appears to be real.
flags['simplify'] = flags.get('simplify', False)
result = soln
# fallback if above fails
# -----------------------
if result is False:
# try unrad
if flags.pop('_unrad', True):
try:
u = unrad(f_num, symbol)
except (ValueError, NotImplementedError):
u = False
if u:
eq, cov = u
if cov:
isym, ieq = cov
inv = _solve(ieq, symbol, **flags)[0]
rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)}
else:
try:
rv = set(_solve(eq, symbol, **flags))
except NotImplementedError:
rv = None
if rv is not None:
result = list(ordered(rv))
# if the flag wasn't set then unset it since unrad results
# can be quite long or of very high order
flags['simplify'] = flags.get('simplify', False)
else:
pass # for coverage
# try _tsolve
if result is False:
flags.pop('tsolve', None) # allow tsolve to be used on next pass
try:
soln = _tsolve(f_num, symbol, **flags)
if soln is not None:
result = soln
except PolynomialError:
pass
# ----------- end of fallback ----------------------------
if result is False:
raise NotImplementedError('\n'.join([msg, not_impl_msg % f]))
if flags.get('simplify', True):
result = list(map(simplify, result))
# we just simplified the solution so we now set the flag to
# False so the simplification doesn't happen again in checksol()
flags['simplify'] = False
if checkdens:
# reject any result that makes any denom. affirmatively 0;
# if in doubt, keep it
dens = _simple_dens(f, symbols)
result = [s for s in result if
all(not checksol(d, {symbol: s}, **flags)
for d in dens)]
if check:
# keep only results if the check is not False
result = [r for r in result if
checksol(f_num, {symbol: r}, **flags) is not False]
return result
def _solve_system(exprs, symbols, **flags):
if not exprs:
return []
polys = []
dens = set()
failed = []
result = False
linear = False
manual = flags.get('manual', False)
checkdens = check = flags.get('check', True)
for j, g in enumerate(exprs):
dens.update(_simple_dens(g, symbols))
i, d = _invert(g, *symbols)
g = d - i
g = g.as_numer_denom()[0]
if manual:
failed.append(g)
continue
poly = g.as_poly(*symbols, extension=True)
if poly is not None:
polys.append(poly)
else:
failed.append(g)
if not polys:
solved_syms = []
else:
if all(p.is_linear for p in polys):
n, m = len(polys), len(symbols)
matrix = zeros(n, m + 1)
for i, poly in enumerate(polys):
for monom, coeff in poly.terms():
try:
j = monom.index(1)
matrix[i, j] = coeff
except ValueError:
matrix[i, m] = -coeff
# returns a dictionary ({symbols: values}) or None
if flags.pop('particular', False):
result = minsolve_linear_system(matrix, *symbols, **flags)
else:
result = solve_linear_system(matrix, *symbols, **flags)
if failed:
if result:
solved_syms = list(result.keys())
else:
solved_syms = []
else:
linear = True
else:
if len(symbols) > len(polys):
from sympy.utilities.iterables import subsets
free = set().union(*[p.free_symbols for p in polys])
free = list(ordered(free.intersection(symbols)))
got_s = set()
result = []
for syms in subsets(free, len(polys)):
try:
# returns [] or list of tuples of solutions for syms
res = solve_poly_system(polys, *syms)
if res:
for r in res:
skip = False
for r1 in r:
if got_s and any([ss in r1.free_symbols
for ss in got_s]):
# sol depends on previously
# solved symbols: discard it
skip = True
if not skip:
got_s.update(syms)
result.extend([dict(list(zip(syms, r)))])
except NotImplementedError:
pass
if got_s:
solved_syms = list(got_s)
else:
raise NotImplementedError('no valid subset found')
else:
try:
result = solve_poly_system(polys, *symbols)
if result:
solved_syms = symbols
# we don't know here if the symbols provided
# were given or not, so let solve resolve that.
# A list of dictionaries is going to always be
# returned from here.
result = [dict(list(zip(solved_syms, r))) for r in result]
except NotImplementedError:
failed.extend([g.as_expr() for g in polys])
solved_syms = []
result = None
if result:
if isinstance(result, dict):
result = [result]
else:
result = [{}]
if failed:
# For each failed equation, see if we can solve for one of the
# remaining symbols from that equation. If so, we update the
# solution set and continue with the next failed equation,
# repeating until we are done or we get an equation that can't
# be solved.
def _ok_syms(e, sort=False):
rv = (e.free_symbols - solved_syms) & legal
if sort:
rv = list(rv)
rv.sort(key=default_sort_key)
return rv
solved_syms = set(solved_syms) # set of symbols we have solved for
legal = set(symbols) # what we are interested in
# sort so equation with the fewest potential symbols is first
u = Dummy() # used in solution checking
for eq in ordered(failed, lambda _: len(_ok_syms(_))):
newresult = []
bad_results = []
got_s = set()
hit = False
for r in result:
# update eq with everything that is known so far
eq2 = eq.subs(r)
# if check is True then we see if it satisfies this
# equation, otherwise we just accept it
if check and r:
b = checksol(u, u, eq2, minimal=True)
if b is not None:
# this solution is sufficient to know whether
# it is valid or not so we either accept or
# reject it, then continue
if b:
newresult.append(r)
else:
bad_results.append(r)
continue
# search for a symbol amongst those available that
# can be solved for
ok_syms = _ok_syms(eq2, sort=True)
if not ok_syms:
if r:
newresult.append(r)
break # skip as it's independent of desired symbols
for s in ok_syms:
try:
soln = _solve(eq2, s, **flags)
except NotImplementedError:
continue
# put each solution in r and append the now-expanded
# result in the new result list; use copy since the
# solution for s in being added in-place
for sol in soln:
if got_s and any([ss in sol.free_symbols for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
rnew = r.copy()
for k, v in r.items():
rnew[k] = v.subs(s, sol)
# and add this new solution
rnew[s] = sol
newresult.append(rnew)
hit = True
got_s.add(s)
if not hit:
raise NotImplementedError('could not solve %s' % eq2)
else:
result = newresult
for b in bad_results:
if b in result:
result.remove(b)
default_simplify = bool(failed) # rely on system-solvers to simplify
if flags.get('simplify', default_simplify):
for r in result:
for k in r:
r[k] = simplify(r[k])
flags['simplify'] = False # don't need to do so in checksol now
if checkdens:
result = [r for r in result
if not any(checksol(d, r, **flags) for d in dens)]
if check and not linear:
result = [r for r in result
if not any(checksol(e, r, **flags) is False for e in exprs)]
result = [r for r in result if r]
if linear and result:
result = result[0]
return result
def solve_linear(lhs, rhs=0, symbols=[], exclude=[]):
r"""
Return a tuple derived from ``f = lhs - rhs`` that is one of
the following: ``(0, 1)``, ``(0, 0)``, ``(symbol, solution)``, ``(n, d)``.
Explanation
===========
``(0, 1)`` meaning that ``f`` is independent of the symbols in *symbols*
that are not in *exclude*.
``(0, 0)`` meaning that there is no solution to the equation amongst the
symbols given. If the first element of the tuple is not zero, then the
function is guaranteed to be dependent on a symbol in *symbols*.
``(symbol, solution)`` where symbol appears linearly in the numerator of
``f``, is in *symbols* (if given), and is not in *exclude* (if given). No
simplification is done to ``f`` other than a ``mul=True`` expansion, so the
solution will correspond strictly to a unique solution.
``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f``
when the numerator was not linear in any symbol of interest; ``n`` will
never be a symbol unless a solution for that symbol was found (in which case
the second element is the solution, not the denominator).
Examples
========
>>> from sympy.core.power import Pow
>>> from sympy.polys.polytools import cancel
``f`` is independent of the symbols in *symbols* that are not in
*exclude*:
>>> from sympy.solvers.solvers import solve_linear
>>> from sympy.abc import x, y, z
>>> from sympy import cos, sin
>>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
>>> solve_linear(eq)
(0, 1)
>>> eq = cos(x)**2 + sin(x)**2 # = 1
>>> solve_linear(eq)
(0, 1)
>>> solve_linear(x, exclude=[x])
(0, 1)
The variable ``x`` appears as a linear variable in each of the
following:
>>> solve_linear(x + y**2)
(x, -y**2)
>>> solve_linear(1/x - y**2)
(x, y**(-2))
When not linear in ``x`` or ``y`` then the numerator and denominator are
returned:
>>> solve_linear(x**2/y**2 - 3)
(x**2 - 3*y**2, y**2)
If the numerator of the expression is a symbol, then ``(0, 0)`` is
returned if the solution for that symbol would have set any
denominator to 0:
>>> eq = 1/(1/x - 2)
>>> eq.as_numer_denom()
(x, 1 - 2*x)
>>> solve_linear(eq)
(0, 0)
But automatic rewriting may cause a symbol in the denominator to
appear in the numerator so a solution will be returned:
>>> (1/x)**-1
x
>>> solve_linear((1/x)**-1)
(x, 0)
Use an unevaluated expression to avoid this:
>>> solve_linear(Pow(1/x, -1, evaluate=False))
(0, 0)
If ``x`` is allowed to cancel in the following expression, then it
appears to be linear in ``x``, but this sort of cancellation is not
done by ``solve_linear`` so the solution will always satisfy the
original expression without causing a division by zero error.
>>> eq = x**2*(1/x - z**2/x)
>>> solve_linear(cancel(eq))
(x, 0)
>>> solve_linear(eq)
(x**2*(1 - z**2), x)
A list of symbols for which a solution is desired may be given:
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
A list of symbols to ignore may also be given:
>>> solve_linear(x + y + z, exclude=[x])
(y, -x - z)
(A solution for ``y`` is obtained because it is the first variable
from the canonically sorted list of symbols that had a linear
solution.)
"""
if isinstance(lhs, Equality):
if rhs:
raise ValueError(filldedent('''
If lhs is an Equality, rhs must be 0 but was %s''' % rhs))
rhs = lhs.rhs
lhs = lhs.lhs
dens = None
eq = lhs - rhs
n, d = eq.as_numer_denom()
if not n:
return S.Zero, S.One
free = n.free_symbols
if not symbols:
symbols = free
else:
bad = [s for s in symbols if not s.is_Symbol]
if bad:
if len(bad) == 1:
bad = bad[0]
if len(symbols) == 1:
eg = 'solve(%s, %s)' % (eq, symbols[0])
else:
eg = 'solve(%s, *%s)' % (eq, list(symbols))
raise ValueError(filldedent('''
solve_linear only handles symbols, not %s. To isolate
non-symbols use solve, e.g. >>> %s <<<.
''' % (bad, eg)))
symbols = free.intersection(symbols)
symbols = symbols.difference(exclude)
if not symbols:
return S.Zero, S.One
# derivatives are easy to do but tricky to analyze to see if they
# are going to disallow a linear solution, so for simplicity we
# just evaluate the ones that have the symbols of interest
derivs = defaultdict(list)
for der in n.atoms(Derivative):
csym = der.free_symbols & symbols
for c in csym:
derivs[c].append(der)
all_zero = True
for xi in sorted(symbols, key=default_sort_key): # canonical order
# if there are derivatives in this var, calculate them now
if isinstance(derivs[xi], list):
derivs[xi] = {der: der.doit() for der in derivs[xi]}
newn = n.subs(derivs[xi])
dnewn_dxi = newn.diff(xi)
# dnewn_dxi can be nonzero if it survives differentation by any
# of its free symbols
free = dnewn_dxi.free_symbols
if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free)):
all_zero = False
if dnewn_dxi is S.NaN:
break
if xi not in dnewn_dxi.free_symbols:
vi = -1/dnewn_dxi*(newn.subs(xi, 0))
if dens is None:
dens = _simple_dens(eq, symbols)
if not any(checksol(di, {xi: vi}, minimal=True) is True
for di in dens):
# simplify any trivial integral
irep = [(i, i.doit()) for i in vi.atoms(Integral) if
i.function.is_number]
# do a slight bit of simplification
vi = expand_mul(vi.subs(irep))
return xi, vi
if all_zero:
return S.Zero, S.One
if n.is_Symbol: # no solution for this symbol was found
return S.Zero, S.Zero
return n, d
def minsolve_linear_system(system, *symbols, **flags):
r"""
Find a particular solution to a linear system.
Explanation
===========
In particular, try to find a solution with the minimal possible number
of non-zero variables using a naive algorithm with exponential complexity.
If ``quick=True``, a heuristic is used.
"""
quick = flags.get('quick', False)
# Check if there are any non-zero solutions at all
s0 = solve_linear_system(system, *symbols, **flags)
if not s0 or all(v == 0 for v in s0.values()):
return s0
if quick:
# We just solve the system and try to heuristically find a nice
# solution.
s = solve_linear_system(system, *symbols)
def update(determined, solution):
delete = []
for k, v in solution.items():
solution[k] = v.subs(determined)
if not solution[k].free_symbols:
delete.append(k)
determined[k] = solution[k]
for k in delete:
del solution[k]
determined = {}
update(determined, s)
while s:
# NOTE sort by default_sort_key to get deterministic result
k = max((k for k in s.values()),
key=lambda x: (len(x.free_symbols), default_sort_key(x)))
x = max(k.free_symbols, key=default_sort_key)
if len(k.free_symbols) != 1:
determined[x] = S.Zero
else:
val = solve(k)[0]
if val == 0 and all(v.subs(x, val) == 0 for v in s.values()):
determined[x] = S.One
else:
determined[x] = val
update(determined, s)
return determined
else:
# We try to select n variables which we want to be non-zero.
# All others will be assumed zero. We try to solve the modified system.
# If there is a non-trivial solution, just set the free variables to
# one. If we do this for increasing n, trying all combinations of
# variables, we will find an optimal solution.
# We speed up slightly by starting at one less than the number of
# variables the quick method manages.
from itertools import combinations
from sympy.utilities.misc import debug
N = len(symbols)
bestsol = minsolve_linear_system(system, *symbols, quick=True)
n0 = len([x for x in bestsol.values() if x != 0])
for n in range(n0 - 1, 1, -1):
debug('minsolve: %s' % n)
thissol = None
for nonzeros in combinations(list(range(N)), n):
subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T
s = solve_linear_system(subm, *[symbols[i] for i in nonzeros])
if s and not all(v == 0 for v in s.values()):
subs = [(symbols[v], S.One) for v in nonzeros]
for k, v in s.items():
s[k] = v.subs(subs)
for sym in symbols:
if sym not in s:
if symbols.index(sym) in nonzeros:
s[sym] = S.One
else:
s[sym] = S.Zero
thissol = s
break
if thissol is None:
break
bestsol = thissol
return bestsol
def solve_linear_system(system, *symbols, **flags):
r"""
Solve system of $N$ linear equations with $M$ variables, which means
both under- and overdetermined systems are supported.
Explanation
===========
The possible number of solutions is zero, one, or infinite. Respectively,
this procedure will return None or a dictionary with solutions. In the
case of underdetermined systems, all arbitrary parameters are skipped.
This may cause a situation in which an empty dictionary is returned.
In that case, all symbols can be assigned arbitrary values.
Input to this function is a $N\times M + 1$ matrix, which means it has
to be in augmented form. If you prefer to enter $N$ equations and $M$
unknowns then use ``solve(Neqs, *Msymbols)`` instead. Note: a local
copy of the matrix is made by this routine so the matrix that is
passed will not be modified.
The algorithm used here is fraction-free Gaussian elimination,
which results, after elimination, in an upper-triangular matrix.
Then solutions are found using back-substitution. This approach
is more efficient and compact than the Gauss-Jordan method.
Examples
========
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y
Solve the following system::
x + 4 y == 2
-2 x + y == 14
>>> system = Matrix(( (1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
A degenerate system returns an empty dictionary:
>>> system = Matrix(( (0,0,0), (0,0,0) ))
>>> solve_linear_system(system, x, y)
{}
"""
do_simplify = flags.get('simplify', True)
if system.rows == system.cols - 1 == len(symbols):
try:
# well behaved n-equations and n-unknowns
inv = inv_quick(system[:, :-1])
rv = dict(zip(symbols, inv*system[:, -1]))
if do_simplify:
for k, v in rv.items():
rv[k] = simplify(v)
if not all(i.is_zero for i in rv.values()):
# non-trivial solution
return rv
except ValueError:
pass
matrix = system[:, :]
syms = list(symbols)
i, m = 0, matrix.cols - 1 # don't count augmentation
while i < matrix.rows:
if i == m:
# an overdetermined system
if any(matrix[i:, m]):
return None # no solutions
else:
# remove trailing rows
matrix = matrix[:i, :]
break
if not matrix[i, i]:
# there is no pivot in current column
# so try to find one in other columns
for k in range(i + 1, m):
if matrix[i, k]:
break
else:
if matrix[i, m]:
# We need to know if this is always zero or not. We
# assume that if there are free symbols that it is not
# identically zero (or that there is more than one way
# to make this zero). Otherwise, if there are none, this
# is a constant and we assume that it does not simplify
# to zero XXX are there better (fast) ways to test this?
# The .equals(0) method could be used but that can be
# slow; numerical testing is prone to errors of scaling.
if not matrix[i, m].free_symbols:
return None # no solution
# A row of zeros with a non-zero rhs can only be accepted
# if there is another equivalent row. Any such rows will
# be deleted.
nrows = matrix.rows
rowi = matrix.row(i)
ip = None
j = i + 1
while j < matrix.rows:
# do we need to see if the rhs of j
# is a constant multiple of i's rhs?
rowj = matrix.row(j)
if rowj == rowi:
matrix.row_del(j)
elif rowj[:-1] == rowi[:-1]:
if ip is None:
_, ip = rowi[-1].as_content_primitive()
_, jp = rowj[-1].as_content_primitive()
if not (simplify(jp - ip) or simplify(jp + ip)):
matrix.row_del(j)
j += 1
if nrows == matrix.rows:
# no solution
return None
# zero row or was a linear combination of
# other rows or was a row with a symbolic
# expression that matched other rows, e.g. [0, 0, x - y]
# so now we can safely skip it
matrix.row_del(i)
if not matrix:
# every choice of variable values is a solution
# so we return an empty dict instead of None
return dict()
continue
# we want to change the order of columns so
# the order of variables must also change
syms[i], syms[k] = syms[k], syms[i]
matrix.col_swap(i, k)
pivot_inv = S.One/matrix[i, i]
# divide all elements in the current row by the pivot
matrix.row_op(i, lambda x, _: x * pivot_inv)
for k in range(i + 1, matrix.rows):
if matrix[k, i]:
coeff = matrix[k, i]
# subtract from the current row the row containing
# pivot and multiplied by extracted coefficient
matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff))
i += 1
# if there weren't any problems, augmented matrix is now
# in row-echelon form so we can check how many solutions
# there are and extract them using back substitution
if len(syms) == matrix.rows:
# this system is Cramer equivalent so there is
# exactly one solution to this system of equations
k, solutions = i - 1, {}
while k >= 0:
content = matrix[k, m]
# run back-substitution for variables
for j in range(k + 1, m):
content -= matrix[k, j]*solutions[syms[j]]
if do_simplify:
solutions[syms[k]] = simplify(content)
else:
solutions[syms[k]] = content
k -= 1
return solutions
elif len(syms) > matrix.rows:
# this system will have infinite number of solutions
# dependent on exactly len(syms) - i parameters
k, solutions = i - 1, {}
while k >= 0:
content = matrix[k, m]
# run back-substitution for variables
for j in range(k + 1, i):
content -= matrix[k, j]*solutions[syms[j]]
# run back-substitution for parameters
for j in range(i, m):
content -= matrix[k, j]*syms[j]
if do_simplify:
solutions[syms[k]] = simplify(content)
else:
solutions[syms[k]] = content
k -= 1
return solutions
else:
return [] # no solutions
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
r"""
Solve equation of a type $p(x; a_1, \ldots, a_k) = q(x)$ where both
$p$ and $q$ are univariate polynomials that depend on $k$ parameters.
Explanation
===========
The result of this function is a dictionary with symbolic values of those
parameters with respect to coefficients in $q$.
This function accepts both equations class instances and ordinary
SymPy expressions. Specification of parameters and variables is
obligatory for efficiency and simplicity reasons.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import a, b, c, x
>>> from sympy.solvers import solve_undetermined_coeffs
>>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
{a: 1/c, b: -1/c}
"""
if isinstance(equ, Equality):
# got equation, so move all the
# terms to the left hand side
equ = equ.lhs - equ.rhs
equ = cancel(equ).as_numer_denom()[0]
system = list(collect(equ.expand(), sym, evaluate=False).values())
if not any(equ.has(sym) for equ in system):
# consecutive powers in the input expressions have
# been successfully collected, so solve remaining
# system using Gaussian elimination algorithm
return solve(system, *coeffs, **flags)
else:
return None # no solutions
def solve_linear_system_LU(matrix, syms):
"""
Solves the augmented matrix system using ``LUsolve`` and returns a
dictionary in which solutions are keyed to the symbols of *syms* as ordered.
Explanation
===========
The matrix must be invertible.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.solvers import solve_linear_system_LU
>>> solve_linear_system_LU(Matrix([
... [1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
See Also
========
LUsolve
"""
if matrix.rows != matrix.cols - 1:
raise ValueError("Rows should be equal to columns - 1")
A = matrix[:matrix.rows, :matrix.rows]
b = matrix[:, matrix.cols - 1:]
soln = A.LUsolve(b)
solutions = {}
for i in range(soln.rows):
solutions[syms[i]] = soln[i, 0]
return solutions
def det_perm(M):
"""
Return the determinant of *M* by using permutations to select factors.
Explanation
===========
For sizes larger than 8 the number of permutations becomes prohibitively
large, or if there are no symbols in the matrix, it is better to use the
standard determinant routines (e.g., ``M.det()``.)
See Also
========
det_minor
det_quick
"""
args = []
s = True
n = M.rows
list_ = getattr(M, '_mat', None)
if list_ is None:
list_ = flatten(M.tolist())
for perm in generate_bell(n):
fac = []
idx = 0
for j in perm:
fac.append(list_[idx + j])
idx += n
term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7
args.append(term if s else -term)
s = not s
return Add(*args)
def det_minor(M):
"""
Return the ``det(M)`` computed from minors without
introducing new nesting in products.
See Also
========
det_perm
det_quick
"""
n = M.rows
if n == 2:
return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1]
else:
return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in
Add.make_args(det_minor(M.minor_submatrix(0, i)))])
if M[0, i] else S.Zero for i in range(n)])
def det_quick(M, method=None):
"""
Return ``det(M)`` assuming that either
there are lots of zeros or the size of the matrix
is small. If this assumption is not met, then the normal
Matrix.det function will be used with method = ``method``.
See Also
========
det_minor
det_perm
"""
if any(i.has(Symbol) for i in M):
if M.rows < 8 and all(i.has(Symbol) for i in M):
return det_perm(M)
return det_minor(M)
else:
return M.det(method=method) if method else M.det()
def inv_quick(M):
"""Return the inverse of ``M``, assuming that either
there are lots of zeros or the size of the matrix
is small.
"""
from sympy.matrices import zeros
if not all(i.is_Number for i in M):
if not any(i.is_Number for i in M):
det = lambda _: det_perm(_)
else:
det = lambda _: det_minor(_)
else:
return M.inv()
n = M.rows
d = det(M)
if d == S.Zero:
raise ValueError("Matrix det == 0; not invertible.")
ret = zeros(n)
s1 = -1
for i in range(n):
s = s1 = -s1
for j in range(n):
di = det(M.minor_submatrix(i, j))
ret[j, i] = s*di/d
s = -s
return ret
# these are functions that have multiple inverse values per period
multi_inverses = {
sin: lambda x: (asin(x), S.Pi - asin(x)),
cos: lambda x: (acos(x), 2*S.Pi - acos(x)),
}
def _tsolve(eq, sym, **flags):
"""
Helper for ``_solve`` that solves a transcendental equation with respect
to the given symbol. Various equations containing powers and logarithms,
can be solved.
There is currently no guarantee that all solutions will be returned or
that a real solution will be favored over a complex one.
Either a list of potential solutions will be returned or None will be
returned (in the case that no method was known to get a solution
for the equation). All other errors (like the inability to cast an
expression as a Poly) are unhandled.
Examples
========
>>> from sympy import log
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy.abc import x
>>> tsolve(3**(2*x + 5) - 4, x)
[-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)]
>>> tsolve(log(x) + 2*x, x)
[LambertW(2)/2]
"""
if 'tsolve_saw' not in flags:
flags['tsolve_saw'] = []
if eq in flags['tsolve_saw']:
return None
else:
flags['tsolve_saw'].append(eq)
rhs, lhs = _invert(eq, sym)
if lhs == sym:
return [rhs]
try:
if lhs.is_Add:
# it's time to try factoring; powdenest is used
# to try get powers in standard form for better factoring
f = factor(powdenest(lhs - rhs))
if f.is_Mul:
return _solve(f, sym, **flags)
if rhs:
f = logcombine(lhs, force=flags.get('force', True))
if f.count(log) != lhs.count(log):
if isinstance(f, log):
return _solve(f.args[0] - exp(rhs), sym, **flags)
return _tsolve(f - rhs, sym, **flags)
elif lhs.is_Pow:
if lhs.exp.is_Integer:
if lhs - rhs != eq:
return _solve(lhs - rhs, sym, **flags)
if sym not in lhs.exp.free_symbols:
return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags)
# _tsolve calls this with Dummy before passing the actual number in.
if any(t.is_Dummy for t in rhs.free_symbols):
raise NotImplementedError # _tsolve will call here again...
# a ** g(x) == 0
if not rhs:
# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at
# the same place
sol_base = _solve(lhs.base, sym, **flags)
return [s for s in sol_base if lhs.exp.subs(sym, s) != 0]
# a ** g(x) == b
if not lhs.base.has(sym):
if lhs.base == 0:
return _solve(lhs.exp, sym, **flags) if rhs != 0 else []
# Gets most solutions...
if lhs.base == rhs.as_base_exp()[0]:
# handles case when bases are equal
sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags)
else:
# handles cases when bases are not equal and exp
# may or may not be equal
sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags)
# Check for duplicate solutions
def equal(expr1, expr2):
_ = Dummy()
eq = checksol(expr1 - _, _, expr2)
if eq is None:
if nsimplify(expr1) != nsimplify(expr2):
return False
# they might be coincidentally the same
# so check more rigorously
eq = expr1.equals(expr2)
return eq
# Guess a rational exponent
e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base)))
e_rat = simplify(posify(e_rat)[0])
n, d = fraction(e_rat)
if expand(lhs.base**n - rhs**d) == 0:
sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)]
sol.extend(_solve(lhs.exp - e_rat, sym, **flags))
return list(ordered(set(sol)))
# f(x) ** g(x) == c
else:
sol = []
logform = lhs.exp*log(lhs.base) - log(rhs)
if logform != lhs - rhs:
try:
sol.extend(_solve(logform, sym, **flags))
except NotImplementedError:
pass
# Collect possible solutions and check with substitution later.
check = []
if rhs == 1:
# f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1
check.extend(_solve(lhs.exp, sym, **flags))
check.extend(_solve(lhs.base - 1, sym, **flags))
check.extend(_solve(lhs.base + 1, sym, **flags))
elif rhs.is_Rational:
for d in (i for i in divisors(abs(rhs.p)) if i != 1):
e, t = integer_log(rhs.p, d)
if not t:
continue # rhs.p != d**b
for s in divisors(abs(rhs.q)):
if s**e== rhs.q:
r = Rational(d, s)
check.extend(_solve(lhs.base - r, sym, **flags))
check.extend(_solve(lhs.base + r, sym, **flags))
check.extend(_solve(lhs.exp - e, sym, **flags))
elif rhs.is_irrational:
b_l, e_l = lhs.base.as_base_exp()
n, d = (e_l*lhs.exp).as_numer_denom()
b, e = sqrtdenest(rhs).as_base_exp()
check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))]
check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))])
if e_l*d != 1:
check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags))
for s in check:
ok = checksol(eq, sym, s)
if ok is None:
ok = eq.subs(sym, s).equals(0)
if ok:
sol.append(s)
return list(ordered(set(sol)))
elif lhs.is_Function and len(lhs.args) == 1:
if lhs.func in multi_inverses:
# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3))
soln = []
for i in multi_inverses[lhs.func](rhs):
soln.extend(_solve(lhs.args[0] - i, sym, **flags))
return list(ordered(soln))
elif lhs.func == LambertW:
return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags)
rewrite = lhs.rewrite(exp)
if rewrite != lhs:
return _solve(rewrite - rhs, sym, **flags)
except NotImplementedError:
pass
# maybe it is a lambert pattern
if flags.pop('bivariate', True):
# lambert forms may need some help being recognized, e.g. changing
# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1
# to 2**(3*x) + (x*log(2) + 1)**3
g = _filtered_gens(eq.as_poly(), sym)
up_or_log = set()
for gi in g:
if isinstance(gi, exp) or isinstance(gi, log):
up_or_log.add(gi)
elif gi.is_Pow:
gisimp = powdenest(expand_power_exp(gi))
if gisimp.is_Pow and sym in gisimp.exp.free_symbols:
up_or_log.add(gi)
eq_down = expand_log(expand_power_exp(eq)).subs(
dict(list(zip(up_or_log, [0]*len(up_or_log)))))
eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down))
rhs, lhs = _invert(eq, sym)
if lhs.has(sym):
try:
poly = lhs.as_poly()
g = _filtered_gens(poly, sym)
_eq = lhs - rhs
sols = _solve_lambert(_eq, sym, g)
# use a simplified form if it satisfies eq
# and has fewer operations
for n, s in enumerate(sols):
ns = nsimplify(s)
if ns != s and ns.count_ops() <= s.count_ops():
ok = checksol(_eq, sym, ns)
if ok is None:
ok = _eq.subs(sym, ns).equals(0)
if ok:
sols[n] = ns
return sols
except NotImplementedError:
# maybe it's a convoluted function
if len(g) == 2:
try:
gpu = bivariate_type(lhs - rhs, *g)
if gpu is None:
raise NotImplementedError
g, p, u = gpu
flags['bivariate'] = False
inversion = _tsolve(g - u, sym, **flags)
if inversion:
sol = _solve(p, u, **flags)
return list(ordered(set([i.subs(u, s)
for i in inversion for s in sol])))
except NotImplementedError:
pass
else:
pass
if flags.pop('force', True):
flags['force'] = False
pos, reps = posify(lhs - rhs)
if rhs == S.ComplexInfinity:
return []
for u, s in reps.items():
if s == sym:
break
else:
u = sym
if pos.has(u):
try:
soln = _solve(pos, u, **flags)
return list(ordered([s.subs(reps) for s in soln]))
except NotImplementedError:
pass
else:
pass # here for coverage
return # here for coverage
# TODO: option for calculating J numerically
@conserve_mpmath_dps
def nsolve(*args, **kwargs):
r"""
Solve a nonlinear equation system numerically: ``nsolve(f, [args,] x0,
modules=['mpmath'], **kwargs)``.
Explanation
===========
``f`` is a vector function of symbolic expressions representing the system.
*args* are the variables. If there is only one variable, this argument can
be omitted. ``x0`` is a starting vector close to a solution.
Use the modules keyword to specify which modules should be used to
evaluate the function and the Jacobian matrix. Make sure to use a module
that supports matrices. For more information on the syntax, please see the
docstring of ``lambdify``.
If the keyword arguments contain ``dict=True`` (default is False) ``nsolve``
will return a list (perhaps empty) of solution mappings. This might be
especially useful if you want to use ``nsolve`` as a fallback to solve since
using the dict argument for both methods produces return values of
consistent type structure. Please note: to keep this consistent with
``solve``, the solution will be returned in a list even though ``nsolve``
(currently at least) only finds one solution at a time.
Overdetermined systems are supported.
Examples
========
>>> from sympy import Symbol, nsolve
>>> import sympy
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[-1.19287309935246], [1.27844411169911]])
For one-dimensional functions the syntax is simplified:
>>> from sympy import sin, nsolve
>>> from sympy.abc import x
>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
To solve with higher precision than the default, use the prec argument:
>>> from sympy import cos
>>> nsolve(cos(x) - x, 1)
0.739085133215161
>>> nsolve(cos(x) - x, 1, prec=50)
0.73908513321516064165531208767387340401341175890076
>>> cos(_)
0.73908513321516064165531208767387340401341175890076
To solve for complex roots of real functions, a nonreal initial point
must be specified:
>>> from sympy import I
>>> nsolve(x**2 + 2, I)
1.4142135623731*I
``mpmath.findroot`` is used and you can find their more extensive
documentation, especially concerning keyword parameters and
available solvers. Note, however, that functions which are very
steep near the root, the verification of the solution may fail. In
this case you should use the flag ``verify=False`` and
independently verify the solution.
>>> from sympy import cos, cosh
>>> from sympy.abc import i
>>> f = cos(x)*cosh(x) - 1
>>> nsolve(f, 3.14*100)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19)
>>> ans = nsolve(f, 3.14*100, verify=False); ans
312.588469032184
>>> f.subs(x, ans).n(2)
2.1e+121
>>> (f/f.diff(x)).subs(x, ans).n(2)
7.4e-15
One might safely skip the verification if bounds of the root are known
and a bisection method is used:
>>> bounds = lambda i: (3.14*i, 3.14*(i + 1))
>>> nsolve(f, bounds(100), solver='bisect', verify=False)
315.730061685774
Alternatively, a function may be better behaved when the
denominator is ignored. Since this is not always the case, however,
the decision of what function to use is left to the discretion of
the user.
>>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100
>>> nsolve(eq, 0.46)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19)
Try another starting point or tweak arguments.
>>> nsolve(eq.as_numer_denom()[0], 0.46)
0.46792545969349058
"""
# there are several other SymPy functions that use method= so
# guard against that here
if 'method' in kwargs:
raise ValueError(filldedent('''
Keyword "method" should not be used in this context. When using
some mpmath solvers directly, the keyword "method" is
used, but when using nsolve (and findroot) the keyword to use is
"solver".'''))
if 'prec' in kwargs:
prec = kwargs.pop('prec')
import mpmath
mpmath.mp.dps = prec
else:
prec = None
# keyword argument to return result as a dictionary
as_dict = kwargs.pop('dict', False)
# interpret arguments
if len(args) == 3:
f = args[0]
fargs = args[1]
x0 = args[2]
if iterable(fargs) and iterable(x0):
if len(x0) != len(fargs):
raise TypeError('nsolve expected exactly %i guess vectors, got %i'
% (len(fargs), len(x0)))
elif len(args) == 2:
f = args[0]
fargs = None
x0 = args[1]
if iterable(f):
raise TypeError('nsolve expected 3 arguments, got 2')
elif len(args) < 2:
raise TypeError('nsolve expected at least 2 arguments, got %i'
% len(args))
else:
raise TypeError('nsolve expected at most 3 arguments, got %i'
% len(args))
modules = kwargs.get('modules', ['mpmath'])
if iterable(f):
f = list(f)
for i, fi in enumerate(f):
if isinstance(fi, Equality):
f[i] = fi.lhs - fi.rhs
f = Matrix(f).T
if iterable(x0):
x0 = list(x0)
if not isinstance(f, Matrix):
# assume it's a sympy expression
if isinstance(f, Equality):
f = f.lhs - f.rhs
syms = f.free_symbols
if fargs is None:
fargs = syms.copy().pop()
if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)):
raise ValueError(filldedent('''
expected a one-dimensional and numerical function'''))
# the function is much better behaved if there is no denominator
# but sending the numerator is left to the user since sometimes
# the function is better behaved when the denominator is present
# e.g., issue 11768
f = lambdify(fargs, f, modules)
x = sympify(findroot(f, x0, **kwargs))
if as_dict:
return [{fargs: x}]
return x
if len(fargs) > f.cols:
raise NotImplementedError(filldedent('''
need at least as many equations as variables'''))
verbose = kwargs.get('verbose', False)
if verbose:
print('f(x):')
print(f)
# derive Jacobian
J = f.jacobian(fargs)
if verbose:
print('J(x):')
print(J)
# create functions
f = lambdify(fargs, f.T, modules)
J = lambdify(fargs, J, modules)
# solve the system numerically
x = findroot(f, x0, J=J, **kwargs)
if as_dict:
return [dict(zip(fargs, [sympify(xi) for xi in x]))]
return Matrix(x)
def _invert(eq, *symbols, **kwargs):
"""
Return tuple (i, d) where ``i`` is independent of *symbols* and ``d``
contains symbols.
Explanation
===========
``i`` and ``d`` are obtained after recursively using algebraic inversion
until an uninvertible ``d`` remains. If there are no free symbols then
``d`` will be zero. Some (but not necessarily all) solutions to the
expression ``i - d`` will be related to the solutions of the original
expression.
Examples
========
>>> from sympy.solvers.solvers import _invert as invert
>>> from sympy import sqrt, cos
>>> from sympy.abc import x, y
>>> invert(x - 3)
(3, x)
>>> invert(3)
(3, 0)
>>> invert(2*cos(x) - 1)
(1/2, cos(x))
>>> invert(sqrt(x) - 3)
(3, sqrt(x))
>>> invert(sqrt(x) + y, x)
(-y, sqrt(x))
>>> invert(sqrt(x) + y, y)
(-sqrt(x), y)
>>> invert(sqrt(x) + y, x, y)
(0, sqrt(x) + y)
If there is more than one symbol in a power's base and the exponent
is not an Integer, then the principal root will be used for the
inversion:
>>> invert(sqrt(x + y) - 2)
(4, x + y)
>>> invert(sqrt(x + y) - 2)
(4, x + y)
If the exponent is an Integer, setting ``integer_power`` to True
will force the principal root to be selected:
>>> invert(x**2 - 4, integer_power=True)
(2, x)
"""
eq = sympify(eq)
if eq.args:
# make sure we are working with flat eq
eq = eq.func(*eq.args)
free = eq.free_symbols
if not symbols:
symbols = free
if not free & set(symbols):
return eq, S.Zero
dointpow = bool(kwargs.get('integer_power', False))
lhs = eq
rhs = S.Zero
while True:
was = lhs
while True:
indep, dep = lhs.as_independent(*symbols)
# dep + indep == rhs
if lhs.is_Add:
# this indicates we have done it all
if indep.is_zero:
break
lhs = dep
rhs -= indep
# dep * indep == rhs
else:
# this indicates we have done it all
if indep is S.One:
break
lhs = dep
rhs /= indep
# collect like-terms in symbols
if lhs.is_Add:
terms = {}
for a in lhs.args:
i, d = a.as_independent(*symbols)
terms.setdefault(d, []).append(i)
if any(len(v) > 1 for v in terms.values()):
args = []
for d, i in terms.items():
if len(i) > 1:
args.append(Add(*i)*d)
else:
args.append(i[0]*d)
lhs = Add(*args)
# if it's a two-term Add with rhs = 0 and two powers we can get the
# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3
if lhs.is_Add and not rhs and len(lhs.args) == 2 and \
not lhs.is_polynomial(*symbols):
a, b = ordered(lhs.args)
ai, ad = a.as_independent(*symbols)
bi, bd = b.as_independent(*symbols)
if any(_ispow(i) for i in (ad, bd)):
a_base, a_exp = ad.as_base_exp()
b_base, b_exp = bd.as_base_exp()
if a_base == b_base:
# a = -b
lhs = powsimp(powdenest(ad/bd))
rhs = -bi/ai
else:
rat = ad/bd
_lhs = powsimp(ad/bd)
if _lhs != rat:
lhs = _lhs
rhs = -bi/ai
elif ai == -bi:
if isinstance(ad, Function) and ad.func == bd.func:
if len(ad.args) == len(bd.args) == 1:
lhs = ad.args[0] - bd.args[0]
elif len(ad.args) == len(bd.args):
# should be able to solve
# f(x, y) - f(2 - x, 0) == 0 -> x == 1
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
elif lhs.is_Mul and any(_ispow(a) for a in lhs.args):
lhs = powsimp(powdenest(lhs))
if lhs.is_Function:
if hasattr(lhs, 'inverse') and len(lhs.args) == 1:
# -1
# f(x) = g -> x = f (g)
#
# /!\ inverse should not be defined if there are multiple values
# for the function -- these are handled in _tsolve
#
rhs = lhs.inverse()(rhs)
lhs = lhs.args[0]
elif isinstance(lhs, atan2):
y, x = lhs.args
lhs = 2*atan(y/(sqrt(x**2 + y**2) + x))
elif lhs.func == rhs.func:
if len(lhs.args) == len(rhs.args) == 1:
lhs = lhs.args[0]
rhs = rhs.args[0]
elif len(lhs.args) == len(rhs.args):
# should be able to solve
# f(x, y) == f(2, 3) -> x == 2
# f(x, x + y) == f(2, 3) -> x == 2
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0:
lhs = 1/lhs
rhs = 1/rhs
# base**a = b -> base = b**(1/a) if
# a is an Integer and dointpow=True (this gives real branch of root)
# a is not an Integer and the equation is multivariate and the
# base has more than 1 symbol in it
# The rationale for this is that right now the multi-system solvers
# doesn't try to resolve generators to see, for example, if the whole
# system is written in terms of sqrt(x + y) so it will just fail, so we
# do that step here.
if lhs.is_Pow and (
lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and
len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1):
rhs = rhs**(1/lhs.exp)
lhs = lhs.base
if lhs == was:
break
return rhs, lhs
def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root, real_roots, solve
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(x**3 - x**2 - 2*x - 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
uflags = dict(check=False, simplify=False)
def _cov(p, e):
if cov:
# XXX - uncovered
oldp, olde = cov
if Poly(e, p).degree(p) in (1, 2):
cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])]
else:
raise NotImplementedError
else:
cov[:] = [p, e]
def _canonical(eq, cov):
if cov:
# change symbol to vanilla so no solutions are eliminated
p, e = cov
rep = {p: Dummy(p.name)}
eq = eq.xreplace(rep)
cov = [p.xreplace(rep), e.xreplace(rep)]
# remove constants and powers of factors since these don't change
# the location of the root; XXX should factor or factor_terms be used?
eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True)
if eq.is_Mul:
args = []
for f in eq.args:
if f.is_number:
continue
if f.is_Pow and _take(f, True):
args.append(f.base)
else:
args.append(f)
eq = Mul(*args) # leave as Mul for more efficient solving
# make the sign canonical
free = eq.free_symbols
if len(free) == 1:
if eq.coeff(free.pop()**degree(eq)).could_extract_minus_sign():
eq = -eq
elif eq.could_extract_minus_sign():
eq = -eq
return eq, cov
def _Q(pow):
# return leading Rational of denominator of Pow's exponent
c = pow.as_base_exp()[1].as_coeff_Mul()[0]
if not c.is_Rational:
return S.One
return c.q
# define the _take method that will determine whether a term is of interest
def _take(d, take_int_pow):
# return True if coefficient of any factor's exponent's den is not 1
for pow in Mul.make_args(d):
if not (pow.is_Symbol or pow.is_Pow):
continue
b, e = pow.as_base_exp()
if not b.has(*syms):
continue
if not take_int_pow and _Q(pow) == 1:
continue
free = pow.free_symbols
if free.intersection(syms):
return True
return False
_take = flags.setdefault('_take', _take)
cov, nwas, rpt = [flags.setdefault(k, v) for k, v in
sorted(dict(cov=[], n=None, rpt=0).items())]
# preconditioning
eq = powdenest(factor_terms(eq, radical=True, clear=True))
if isinstance(eq, Relational):
eq, d = eq, 1
else:
eq, d = eq.as_numer_denom()
eq = _mexpand(eq, recursive=True)
if eq.is_number:
return
syms = set(syms) or eq.free_symbols
poly = eq.as_poly()
gens = [g for g in poly.gens if _take(g, True)]
if not gens:
return
# check for trivial case
# - already a polynomial in integer powers
if all(_Q(g) == 1 for g in gens):
return
# - an exponent has a symbol of interest (don't handle)
if any(g.as_base_exp()[1].has(*syms) for g in gens):
return
def _rads_bases_lcm(poly):
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the denominators of the
# exponents of the radicals
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
if not _take(g, False):
continue
q = _Q(g)
if q != 1:
rads.add(g)
lcm = ilcm(lcm, q)
bases.add(g.base)
return rads, bases, lcm
rads, bases, lcm = _rads_bases_lcm(poly)
if not rads:
return
covsym = Dummy('p', nonnegative=True)
# only keep in syms symbols that actually appear in radicals;
# and update gens
newsyms = set()
for r in rads:
newsyms.update(syms & r.free_symbols)
if newsyms != syms:
syms = newsyms
gens = [g for g in gens if g.free_symbols & syms]
# get terms together that have common generators
drad = dict(list(zip(rads, list(range(len(rads))))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t, False):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
others = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
ok = False # we don't have a solution yet
depth = sqrt_depth(eq)
if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2):
eq = rterms[0]**lcm - ((-others)**lcm)
ok = True
else:
if len(rterms) == 1 and rterms[0].is_Add:
rterms = list(rterms[0].args)
if len(bases) == 1:
b = bases.pop()
if len(syms) > 1:
free = b.free_symbols
x = {g for g in gens if g.is_Symbol} & free
if not x:
x = free
x = ordered(x)
else:
x = syms
x = list(x)[0]
try:
inv = _solve(covsym**lcm - b, x, **uflags)
if not inv:
raise NotImplementedError
eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0])
_cov(covsym, covsym**lcm - b)
return _canonical(eq, cov)
except NotImplementedError:
pass
else:
# no longer consider integer powers as generators
gens = [g for g in gens if _Q(g) != 1]
if len(rterms) == 2:
if not others:
eq = rterms[0]**lcm - (-rterms[1])**lcm
ok = True
elif not log(lcm, 2).is_Integer:
# the lcm-is-power-of-two case is handled below
r0, r1 = rterms
if flags.get('_reverse', False):
r1, r0 = r0, r1
i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly())
i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly())
for reverse in range(2):
if reverse:
i0, i1 = i1, i0
r0, r1 = r1, r0
_rads1, _, lcm1 = i1
_rads1 = Mul(*_rads1)
t1 = _rads1**lcm1
c = covsym**lcm1 - t1
for x in syms:
try:
sol = _solve(c, x, **uflags)
if not sol:
raise NotImplementedError
neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \
others
tmp = unrad(neweq, covsym)
if tmp:
eq, newcov = tmp
if newcov:
newp, newc = newcov
_cov(newp, c.subs(covsym,
_solve(newc, covsym, **uflags)[0]))
else:
_cov(covsym, c)
else:
eq = neweq
_cov(covsym, c)
ok = True
break
except NotImplementedError:
if reverse:
raise NotImplementedError(
'no successful change of variable found')
else:
pass
if ok:
break
elif len(rterms) == 3:
# two cube roots and another with order less than 5
# (so an analytical solution can be found) or a base
# that matches one of the cube root bases
info = [_rads_bases_lcm(i.as_poly()) for i in rterms]
RAD = 0
BASES = 1
LCM = 2
if info[0][LCM] != 3:
info.append(info.pop(0))
rterms.append(rterms.pop(0))
elif info[1][LCM] != 3:
info.append(info.pop(1))
rterms.append(rterms.pop(1))
if info[0][LCM] == info[1][LCM] == 3:
if info[1][BASES] != info[2][BASES]:
info[0], info[1] = info[1], info[0]
rterms[0], rterms[1] = rterms[1], rterms[0]
if info[1][BASES] == info[2][BASES]:
eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3
ok = True
elif info[2][LCM] < 5:
# a*root(A, 3) + b*root(B, 3) + others = c
a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB']
# zz represents the unraded expression into which the
# specifics for this case are substituted
zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 -
3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 +
3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 -
63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 -
21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d +
45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 -
18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 +
9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 +
3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 -
60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 +
3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 -
126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 -
9*c*d**8 + d**9)
def _t(i):
b = Mul(*info[i][RAD])
return cancel(rterms[i]/b), Mul(*info[i][BASES])
aa, AA = _t(0)
bb, BB = _t(1)
cc = -rterms[2]
dd = others
eq = zz.xreplace(dict(zip(
(a, A, b, B, c, d),
(aa, AA, bb, BB, cc, dd))))
ok = True
# handle power-of-2 cases
if not ok:
if log(lcm, 2).is_Integer and (not others and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
ok = True
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+others)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, others)
ok = True
elif len(rterms) == 2:
# r0**2 - (r1+others)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, others)
ok = True
new_depth = sqrt_depth(eq) if ok else depth
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
raise NotImplementedError('Cannot remove all radicals')
flags.update(dict(cov=cov, n=len(rterms), rpt=rpt))
neq = unrad(eq, *syms, **flags)
if neq:
eq, cov = neq
eq, cov = _canonical(eq, cov)
return eq, cov
from sympy.solvers.bivariate import (
bivariate_type, _solve_lambert, _filtered_gens)
|
792d0bcd731ea0efdaf92d9961bee7f692cbdd386db76a47bd3abb31f9190207 | """Base class for all the objects in SymPy"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import chain
from .assumptions import BasicMeta, ManagedProperties
from .cache import cacheit
from .sympify import _sympify, sympify, SympifyError
from .compatibility import (iterable, Iterator, ordered,
string_types, with_metaclass, zip_longest, range, PY3, Mapping)
from .singleton import S
from inspect import getmro
def as_Basic(expr):
"""Return expr as a Basic instance using strict sympify
or raise a TypeError; this is just a wrapper to _sympify,
raising a TypeError instead of a SympifyError."""
from sympy.utilities.misc import func_name
try:
return _sympify(expr)
except SympifyError:
raise TypeError(
'Argument must be a Basic object, not `%s`' % func_name(
expr))
class Basic(with_metaclass(ManagedProperties)):
"""
Base class for all objects in SymPy.
Conventions:
1) Always use ``.args``, when accessing parameters of some instance:
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
2) Never use internal methods or variables (the ones prefixed with ``_``):
>>> cot(x)._args # do not use this, use cot(x).args instead
(x,)
"""
__slots__ = ['_mhash', # hash value
'_args', # arguments
'_assumptions'
]
# To be overridden with True in the appropriate subclasses
is_number = False
is_Atom = False
is_Symbol = False
is_symbol = False
is_Indexed = False
is_Dummy = False
is_Wild = False
is_Function = False
is_Add = False
is_Mul = False
is_Pow = False
is_Number = False
is_Float = False
is_Rational = False
is_Integer = False
is_NumberSymbol = False
is_Order = False
is_Derivative = False
is_Piecewise = False
is_Poly = False
is_AlgebraicNumber = False
is_Relational = False
is_Equality = False
is_Boolean = False
is_Not = False
is_Matrix = False
is_Vector = False
is_Point = False
is_MatAdd = False
is_MatMul = False
def __new__(cls, *args):
obj = object.__new__(cls)
obj._assumptions = cls.default_assumptions
obj._mhash = None # will be set by __hash__ method.
obj._args = args # all items in args must be Basic objects
return obj
def copy(self):
return self.func(*self.args)
def __reduce_ex__(self, proto):
""" Pickling support."""
return type(self), self.__getnewargs__(), self.__getstate__()
def __getnewargs__(self):
return self.args
def __getstate__(self):
return {}
def __setstate__(self, state):
for k, v in state.items():
setattr(self, k, v)
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
@property
def assumptions0(self):
"""
Return object `type` assumptions.
For example:
Symbol('x', real=True)
Symbol('x', integer=True)
are different objects. In other words, besides Python type (Symbol in
this case), the initial assumptions are also forming their typeinfo.
Examples
========
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'commutative': True}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'commutative': True, 'complex': True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True, 'extended_real':
True, 'finite': True, 'hermitian': True, 'imaginary': False,
'infinite': False, 'negative': False, 'nonnegative': True,
'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
True, 'zero': False}
"""
return {}
def compare(self, other):
"""
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
Not in the mathematical sense. If the object is of a different type
from the "other" then their classes are ordered according to
the sorted_classes list.
Examples
========
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
"""
# all redefinitions of __cmp__ method should start with the
# following lines:
if self is other:
return 0
n1 = self.__class__
n2 = other.__class__
c = (n1 > n2) - (n1 < n2)
if c:
return c
#
st = self._hashable_content()
ot = other._hashable_content()
c = (len(st) > len(ot)) - (len(st) < len(ot))
if c:
return c
for l, r in zip(st, ot):
l = Basic(*l) if isinstance(l, frozenset) else l
r = Basic(*r) if isinstance(r, frozenset) else r
if isinstance(l, Basic):
c = l.compare(r)
else:
c = (l > r) - (l < r)
if c:
return c
return 0
@staticmethod
def _compare_pretty(a, b):
from sympy.series.order import Order
if isinstance(a, Order) and not isinstance(b, Order):
return 1
if not isinstance(a, Order) and isinstance(b, Order):
return -1
if a.is_Rational and b.is_Rational:
l = a.p * b.q
r = b.p * a.q
return (l > r) - (l < r)
else:
from sympy.core.symbol import Wild
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
r_a = a.match(p1 * p2**p3)
if r_a and p3 in r_a:
a3 = r_a[p3]
r_b = b.match(p1 * p2**p3)
if r_b and p3 in r_b:
b3 = r_b[p3]
c = Basic.compare(a3, b3)
if c != 0:
return c
return Basic.compare(a, b)
@classmethod
def fromiter(cls, args, **assumptions):
"""
Create a new object from an iterable.
This is a convenience function that allows one to create objects from
any iterable, without having to convert to a list or tuple first.
Examples
========
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
"""
return cls(*tuple(args), **assumptions)
@classmethod
def class_key(cls):
"""Nice order of classes. """
return 5, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
"""
Return a sort key.
Examples
========
>>> from sympy.core import S, I
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
"""
# XXX: remove this when issue 5169 is fixed
def inner_key(arg):
if isinstance(arg, Basic):
return arg.sort_key(order)
else:
return arg
args = self._sorted_args
args = len(args), tuple([inner_key(arg) for arg in args])
return self.class_key(), args, S.One.sort_key(), S.One
def __eq__(self, other):
"""Return a boolean indicating whether a == b on the basis of
their symbolic trees.
This is the same as a.compare(b) == 0 but faster.
Notes
=====
If a class that overrides __eq__() needs to retain the
implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting __hash__ =
<ParentClass>.__hash__. Otherwise the inheritance of __hash__()
will be blocked, just as if __hash__ had been explicitly set to
None.
References
==========
from http://docs.python.org/dev/reference/datamodel.html#object.__hash__
"""
if self is other:
return True
tself = type(self)
tother = type(other)
if tself is not tother:
try:
other = _sympify(other)
tother = type(other)
except SympifyError:
return NotImplemented
# As long as we have the ordering of classes (sympy.core),
# comparing types will be slow in Python 2, because it uses
# __cmp__. Until we can remove it
# (https://github.com/sympy/sympy/issues/4269), we only compare
# types in Python 2 directly if they actually have __ne__.
if PY3 or type(tself).__ne__ is not type.__ne__:
if tself != tother:
return False
elif tself is not tother:
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
"""``a != b`` -> Compare two symbolic trees and see whether they are different
this is the same as:
``a.compare(b) != 0``
but faster
"""
return not self == other
def dummy_eq(self, other, symbol=None):
"""
Compare two expressions and handle dummy symbols.
Examples
========
>>> from sympy import Dummy
>>> from sympy.abc import x, y
>>> u = Dummy('u')
>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False
>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False
"""
s = self.as_dummy()
o = _sympify(other)
o = o.as_dummy()
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
if len(dummy_symbols) == 1:
dummy = dummy_symbols.pop()
else:
return s == o
if symbol is None:
symbols = o.free_symbols
if len(symbols) == 1:
symbol = symbols.pop()
else:
return s == o
tmp = dummy.__class__()
return s.subs(dummy, tmp) == o.subs(symbol, tmp)
# Note, we always use the default ordering (lex) in __str__ and __repr__,
# regardless of the global setting. See issue 5487.
def __repr__(self):
"""Method to return the string representation.
Return the expression as a string.
"""
from sympy.printing import sstr
return sstr(self, order=None)
def __str__(self):
from sympy.printing import sstr
return sstr(self, order=None)
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def atoms(self, *types):
"""Returns the atoms that form the current object.
By default, only objects that are truly atomic and can't
be divided into smaller pieces are returned: symbols, numbers,
and number symbols like I and pi. It is possible to request
atoms of any type, however, as demonstrated below.
Examples
========
>>> from sympy import I, pi, sin
>>> from sympy.abc import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
If one or more types are given, the results will contain only
those types of atoms.
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
{1, 2, I, pi}
Note that I (imaginary unit) and zoo (complex infinity) are special
types of number symbols and are not part of the NumberSymbol class.
The type can be given implicitly, too:
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
Be careful to check your assumptions when using the implicit option
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all
integers in an expression:
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
Finally, arguments to atoms() can select more than atomic atoms: any
sympy type (loaded in core/__init__.py) can be listed as an argument
and those types of "atoms" as found in scanning the arguments of the
expression recursively:
>>> from sympy import Function, Mul
>>> from sympy.core.function import AppliedUndef
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
else:
types = (Atom,)
result = set()
for expr in preorder_traversal(self):
if isinstance(expr, types):
result.add(expr)
return result
@property
def free_symbols(self):
"""Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes
this is not true. e.g. Integrals use Symbols for the dummy variables
which are bound variables, so Integral has a method to return all
symbols except those. Derivative keeps track of symbols with respect
to which it will perform a derivative; those are
bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a
free_symbols method."""
return set().union(*[a.free_symbols for a in self.args])
@property
def expr_free_symbols(self):
return set([])
def as_dummy(self):
"""Return the expression with any objects having structurally
bound symbols replaced with unique, canonical symbols within
the object in which they appear and having only the default
assumption for commutativity being True.
Examples
========
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x, y
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
Notes
=====
Any object that has structural dummy variables should have
a property, `bound_symbols` that returns a list of structural
dummy symbols of the object itself.
Lambda and Subs have bound symbols, but because of how they
are cached, they already compare the same regardless of their
bound symbols:
>>> from sympy import Lambda
>>> Lambda(x, x + 1) == Lambda(y, y + 1)
True
"""
def can(x):
d = {i: i.as_dummy() for i in x.bound_symbols}
# mask free that shadow bound
x = x.subs(d)
c = x.canonical_variables
# replace bound
x = x.xreplace(c)
# undo masking
x = x.xreplace(dict((v, k) for k, v in d.items()))
return x
return self.replace(
lambda x: hasattr(x, 'bound_symbols'),
lambda x: can(x))
@property
def canonical_variables(self):
"""Return a dictionary mapping any variable defined in
``self.bound_symbols`` to Symbols that do not clash
with any existing symbol in the expression.
Examples
========
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
"""
from sympy.core.symbol import Symbol
from sympy.utilities.iterables import numbered_symbols
if not hasattr(self, 'bound_symbols'):
return {}
dums = numbered_symbols('_')
reps = {}
v = self.bound_symbols
# this free will include bound symbols that are not part of
# self's bound symbols
free = set([i.name for i in self.atoms(Symbol) - set(v)])
for v in v:
d = next(dums)
if v.is_Symbol:
while v.name == d.name or d.name in free:
d = next(dums)
reps[v] = d
return reps
def rcall(self, *args):
"""Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for
operators. For instance in SymPy the the following will not work:
``(x+Lambda(y, 2*y))(z) == x+2*z``,
however you can use
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
"""
return Basic._recursive_call(self, args)
@staticmethod
def _recursive_call(expr_to_call, on_args):
"""Helper for rcall method."""
from sympy import Symbol
def the_call_method_is_overridden(expr):
for cls in getmro(type(expr)):
if '__call__' in cls.__dict__:
return cls != Basic
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
return expr_to_call # transformed into an UndefFunction
else:
return expr_to_call(*on_args)
elif expr_to_call.args:
args = [Basic._recursive_call(
sub, on_args) for sub in expr_to_call.args]
return type(expr_to_call)(*args)
else:
return expr_to_call
def is_hypergeometric(self, k):
from sympy.simplify import hypersimp
return hypersimp(self, k) is not None
@property
def is_comparable(self):
"""Return True if self can be computed to a real number
(or already is a real number) with precision, else False.
Examples
========
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
A False result does not mean that `self` cannot be rewritten
into a form that would be comparable. For example, the
difference computed below is zero but without simplification
it does not evaluate to a zero with precision:
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2)._prec
1
"""
is_extended_real = self.is_extended_real
if is_extended_real is False:
return False
if not self.is_number:
return False
# don't re-eval numbers that are already evaluated since
# this will create spurious precision
n, i = [p.evalf(2) if not p.is_Number else p
for p in self.as_real_imag()]
if not (i.is_Number and n.is_Number):
return False
if i:
# if _prec = 1 we can't decide and if not,
# the answer is False because numbers with
# imaginary parts can't be compared
# so return False
return False
else:
return n._prec != 1
@property
def func(self):
"""
The top-level function in an expression.
The following should hold for all objects::
>> x == x.func(*x.args)
Examples
========
>>> from sympy.abc import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
"""
return self.__class__
@property
def args(self):
"""Returns a tuple of arguments of 'self'.
Examples
========
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
Notes
=====
Never use self._args, always use self.args.
Only use _args in __new__ when creating a new function.
Don't override .args() from Basic (so that it's easy to
change the interface in the future if needed).
"""
return self._args
@property
def _sorted_args(self):
"""
The same as ``args``. Derived classes which don't fix an
order on their arguments should override this method to
produce the sorted representation.
"""
return self.args
def as_content_primitive(self, radical=False, clear=True):
"""A stub to allow Basic args (like Tuple) to be skipped when computing
the content and primitive components of an expression.
See Also
========
sympy.core.expr.Expr.as_content_primitive
"""
return S.One, self
def subs(self, *args, **kwargs):
"""
Substitutes old for new in an expression after sympifying args.
`args` is either:
- two arguments, e.g. foo.subs(old, new)
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the
replacements are processed in the order given with successive
patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs.
In this case the old/new pairs will be sorted by op count and in
case of a tie, by number of args and the default_sort_key. The
resulting sorted list is then processed as an iterable container
(see previous).
If the keyword ``simultaneous`` is True, the subexpressions will not be
evaluated until all the substitutions have been made.
Examples
========
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
To replace only the x**2 but not the x**4, use xreplace:
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
To delay evaluation until all substitutions have been made,
set the keyword ``simultaneous`` to True:
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
This has the added feature of not allowing subsequent substitutions
to affect those already made:
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
In order to obtain a canonical result, unordered iterables are
sorted by count_op length, number of arguments and by the
default_sort_key to break any ties. All other iterables are left
unsorted.
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e
>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
The resulting expression represents a literal replacement of the
old arguments with the new arguments. This may not reflect the
limiting behavior of the expression:
>>> (x**3 - 3*x).subs({x: oo})
nan
>>> limit(x**3 - 3*x, x, oo)
oo
If the substitution will be followed by numerical
evaluation, it is better to pass the substitution to
evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830
as the former will ensure that the desired level of precision is
obtained.
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
xreplace: exact node replacement in expr tree; also capable of
using matching rules
sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
"""
from sympy.core.containers import Dict
from sympy.utilities import default_sort_key
from sympy import Dummy, Symbol
unordered = False
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, set):
unordered = True
elif isinstance(sequence, (Dict, Mapping)):
unordered = True
sequence = sequence.items()
elif not iterable(sequence):
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
When a single argument is passed to subs
it should be a dictionary of old: new pairs or an iterable
of (old, new) tuples."""))
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
sequence = list(sequence)
for i, s in enumerate(sequence):
if isinstance(s[0], string_types):
# when old is a string we prefer Symbol
s = Symbol(s[0]), s[1]
try:
s = [sympify(_, strict=not isinstance(_, string_types))
for _ in s]
except SympifyError:
# if it can't be sympified, skip it
sequence[i] = None
continue
# skip if there is no change
sequence[i] = None if _aresame(*s) else tuple(s)
sequence = list(filter(None, sequence))
if unordered:
sequence = dict(sequence)
if not all(k.is_Atom for k in sequence):
d = {}
for o, n in sequence.items():
try:
ops = o.count_ops(), len(o.args)
except TypeError:
ops = (0, 0)
d.setdefault(ops, []).append((o, n))
newseq = []
for k in sorted(d.keys(), reverse=True):
newseq.extend(
sorted([v[0] for v in d[k]], key=default_sort_key))
sequence = [(k, sequence[k]) for k in newseq]
del newseq, d
else:
sequence = sorted([(k, v) for (k, v) in sequence.items()],
key=default_sort_key)
if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs?
reps = {}
rv = self
kwargs['hack2'] = True
m = Dummy('subs_m')
for old, new in sequence:
com = new.is_commutative
if com is None:
com = True
d = Dummy('subs_d', commutative=com)
# using d*m so Subs will be used on dummy variables
# in things like Derivative(f(x, y), x) in which x
# is both free and bound
rv = rv._subs(old, d*m, **kwargs)
if not isinstance(rv, Basic):
break
reps[d] = new
reps[m] = S.One # get rid of m
return rv.xreplace(reps)
else:
rv = self
for old, new in sequence:
rv = rv._subs(old, new, **kwargs)
if not isinstance(rv, Basic):
break
return rv
@cacheit
def _subs(self, old, new, **hints):
"""Substitutes an expression old -> new.
If self is not equal to old then _eval_subs is called.
If _eval_subs doesn't want to make any special replacement
then a None is received which indicates that the fallback
should be applied wherein a search for replacements is made
amongst the arguments of self.
>>> from sympy import Add
>>> from sympy.abc import x, y, z
Examples
========
Add's _eval_subs knows how to target x + y in the following
so it makes the change:
>>> (x + y + z).subs(x + y, 1)
z + 1
Add's _eval_subs doesn't need to know how to find x + y in
the following:
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
True
The returned None will cause the fallback routine to traverse the args and
pass the z*(x + y) arg to Mul where the change will take place and the
substitution will succeed:
>>> (z*(x + y) + 3).subs(x + y, 1)
z + 3
** Developers Notes **
An _eval_subs routine for a class should be written if:
1) any arguments are not instances of Basic (e.g. bool, tuple);
2) some arguments should not be targeted (as in integration
variables);
3) if there is something other than a literal replacement
that should be attempted (as in Piecewise where the condition
may be updated without doing a replacement).
If it is overridden, here are some special cases that might arise:
1) If it turns out that no special change was made and all
the original sub-arguments should be checked for
replacements then None should be returned.
2) If it is necessary to do substitutions on a portion of
the expression then _subs should be called. _subs will
handle the case of any sub-expression being equal to old
(which usually would not be the case) while its fallback
will handle the recursion into the sub-arguments. For
example, after Add's _eval_subs removes some matching terms
it must process the remaining terms so it calls _subs
on each of the un-matched terms and then adds them
onto the terms previously obtained.
3) If the initial expression should remain unchanged then
the original expression should be returned. (Whenever an
expression is returned, modified or not, no further
substitution of old -> new is attempted.) Sum's _eval_subs
routine uses this strategy when a substitution is attempted
on any of its summation variables.
"""
def fallback(self, old, new):
"""
Try to replace old with new in any of self's arguments.
"""
hit = False
args = list(self.args)
for i, arg in enumerate(args):
if not hasattr(arg, '_eval_subs'):
continue
arg = arg._subs(old, new, **hints)
if not _aresame(arg, args[i]):
hit = True
args[i] = arg
if hit:
rv = self.func(*args)
hack2 = hints.get('hack2', False)
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
coeff = S.One
nonnumber = []
for i in args:
if i.is_Number:
coeff *= i
else:
nonnumber.append(i)
nonnumber = self.func(*nonnumber)
if coeff is S.One:
return nonnumber
else:
return self.func(coeff, nonnumber, evaluate=False)
return rv
return self
if _aresame(self, old):
return new
rv = self._eval_subs(old, new)
if rv is None:
rv = fallback(self, old, new)
return rv
def _eval_subs(self, old, new):
"""Override this stub if you want to do anything more than
attempt a replacement of old with new in the arguments of self.
See also
========
_subs
"""
return None
def xreplace(self, rule):
"""
Replace occurrences of objects within the expression.
Parameters
==========
rule : dict-like
Expresses a replacement rule
Returns
=======
xreplace : the result of the replacement
Examples
========
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
Replacements occur only if an entire node in the expression tree is
matched:
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
xreplace doesn't differentiate between free and bound symbols. In the
following, subs(x, y) would not change x since it is a bound symbol,
but xreplace does:
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
Trying to replace x with an expression raises an error:
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
subs: substitution of subexpressions as defined by the objects
themselves.
"""
value, _ = self._xreplace(rule)
return value
def _xreplace(self, rule):
"""
Helper for xreplace. Tracks whether a replacement actually occurred.
"""
if self in rule:
return rule[self], True
elif rule:
args = []
changed = False
for a in self.args:
_xreplace = getattr(a, '_xreplace', None)
if _xreplace is not None:
a_xr = _xreplace(rule)
args.append(a_xr[0])
changed |= a_xr[1]
else:
args.append(a)
args = tuple(args)
if changed:
return self.func(*args), True
return self, False
@cacheit
def has(self, *patterns):
"""
Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
Note ``has`` is a structural algorithm with no knowledge of
mathematics. Consider the following half-open interval:
>>> from sympy.sets import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
>>> i.args
(0, 5, True, False)
>>> i.has(4) # there is no "4" in the arguments
False
>>> i.has(0) # there *is* a "0" in the arguments
True
Instead, use ``contains`` to determine whether a number is in the
interval or not:
>>> i.contains(4)
True
>>> i.contains(0)
False
Note that ``expr.has(*patterns)`` is exactly equivalent to
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
returned when the list of patterns is empty.
>>> x.has()
False
"""
return any(self._has(pattern) for pattern in patterns)
def _has(self, pattern):
"""Helper for .has()"""
from sympy.core.function import UndefinedFunction, Function
if isinstance(pattern, UndefinedFunction):
return any(f.func == pattern or f == pattern
for f in self.atoms(Function, UndefinedFunction))
pattern = sympify(pattern)
if isinstance(pattern, BasicMeta):
return any(isinstance(arg, pattern)
for arg in preorder_traversal(self))
_has_matcher = getattr(pattern, '_has_matcher', None)
if _has_matcher is not None:
match = _has_matcher()
return any(match(arg) for arg in preorder_traversal(self))
else:
return any(arg == pattern for arg in preorder_traversal(self))
def _has_matcher(self):
"""Helper for .has()"""
return lambda other: self == other
def replace(self, query, value, map=False, simultaneous=True, exact=None):
"""
Replace matching subexpressions of ``self`` with ``value``.
If ``map = True`` then also return the mapping {old: new} where ``old``
was a sub-expression found with query and ``new`` is the replacement
value for it. If the expression itself doesn't match the query, then
the returned value will be ``self.xreplace(map)`` otherwise it should
be ``self.subs(ordered(map.items()))``.
Traverses an expression tree and performs replacement of matching
subexpressions from the bottom to the top of the tree. The default
approach is to do the replacement in a simultaneous fashion so
changes made are targeted only once. If this is not desired or causes
problems, ``simultaneous`` can be set to False.
In addition, if an expression containing more than one Wild symbol
is being used to match subexpressions and the ``exact`` flag is None
it will be set to True so the match will only succeed if all non-zero
values are received for each Wild that appears in the match pattern.
Setting this to False accepts a match of 0; while setting it True
accepts all matches that have a 0 in them. See example below for
cautions.
The list of possible combinations of queries and replacement values
is listed below:
Examples
========
Initial setup
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
1.1. type -> type
obj.replace(type, newtype)
When object of type ``type`` is found, replace it with the
result of passing its argument(s) to ``newtype``.
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
(cos(x), {sin(x): cos(x)})
>>> (x*y).replace(Mul, Add)
x + y
1.2. type -> func
obj.replace(type, func)
When object of type ``type`` is found, apply ``func`` to its
argument(s). ``func`` must be written to handle the number
of arguments of ``type``.
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching ``pattern`` with the expression
written in terms of the Wild symbols in ``pattern``.
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
Matching is exact by default when more than one Wild symbol
is used: matching fails unless the match gives non-zero
values for all Wild symbols:
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
>>> (2*x).replace(a*x + b, b - a)
2*x
When set to False, the results may be non-intuitive:
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of
pattern variables is used rather than an expression:
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
3.1. func -> func
obj.replace(filter, func)
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
is True.
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
The expression itself is also targeted by the query but is done in
such a fashion that changes are not made twice.
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
When matching a single symbol, `exact` will default to True, but
this may or may not be the behavior that is desired:
Here, we want `exact=False`:
>>> from sympy import Function
>>> f = Function('f')
>>> e = f(1) + f(0)
>>> q = f(a), lambda a: f(a + 1)
>>> e.replace(*q, exact=False)
f(1) + f(2)
>>> e.replace(*q, exact=True)
f(0) + f(2)
But here, the nature of matching makes selecting
the right setting tricky:
>>> e = x**(1 + y)
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
1
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(-x - y + 1)
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
1
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(1 - y)
It is probably better to use a different form of the query
that describes the target expression more precisely:
>>> (1 + x**(1 + y)).replace(
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
... lambda x: x.base**(1 - (x.exp - 1)))
...
x**(1 - y) + 1
See Also
========
subs: substitution of subexpressions as defined by the objects
themselves.
xreplace: exact node replacement in expr tree; also capable of
using matching rules
"""
from sympy.core.symbol import Dummy, Wild
from sympy.simplify.simplify import bottom_up
try:
query = _sympify(query)
except SympifyError:
pass
try:
value = _sympify(value)
except SympifyError:
pass
if isinstance(query, type):
_query = lambda expr: isinstance(expr, query)
if isinstance(value, type):
_value = lambda expr, result: value(*expr.args)
elif callable(value):
_value = lambda expr, result: value(*expr.args)
else:
raise TypeError(
"given a type, replace() expects another "
"type or a callable")
elif isinstance(query, Basic):
_query = lambda expr: expr.match(query)
if exact is None:
exact = (len(query.atoms(Wild)) > 1)
if isinstance(value, Basic):
if exact:
_value = lambda expr, result: (value.subs(result)
if all(result.values()) else expr)
else:
_value = lambda expr, result: value.subs(result)
elif callable(value):
# match dictionary keys get the trailing underscore stripped
# from them and are then passed as keywords to the callable;
# if ``exact`` is True, only accept match if there are no null
# values amongst those matched.
if exact:
_value = lambda expr, result: (value(**
{str(k)[:-1]: v for k, v in result.items()})
if all(val for val in result.values()) else expr)
else:
_value = lambda expr, result: value(**
{str(k)[:-1]: v for k, v in result.items()})
else:
raise TypeError(
"given an expression, replace() expects "
"another expression or a callable")
elif callable(query):
_query = query
if callable(value):
_value = lambda expr, result: value(expr)
else:
raise TypeError(
"given a callable, replace() expects "
"another callable")
else:
raise TypeError(
"first argument to replace() must be a "
"type, an expression or a callable")
mapping = {} # changes that took place
mask = [] # the dummies that were used as change placeholders
def rec_replace(expr):
result = _query(expr)
if result or result == {}:
new = _value(expr, result)
if new is not None and new != expr:
mapping[expr] = new
if simultaneous:
# don't let this change during rebuilding;
# XXX this may fail if the object being replaced
# cannot be represented as a Dummy in the expression
# tree, e.g. an ExprConditionPair in Piecewise
# cannot be represented with a Dummy
com = getattr(new, 'is_commutative', True)
if com is None:
com = True
d = Dummy('rec_replace', commutative=com)
mask.append((d, new))
expr = d
else:
expr = new
return expr
rv = bottom_up(self, rec_replace, atoms=True)
# restore original expressions for Dummy symbols
if simultaneous:
mask = list(reversed(mask))
for o, n in mask:
r = {o: n}
# if a sub-expression could not be replaced with
# a Dummy then this will fail; either filter
# against such sub-expressions or figure out a
# way to carry out simultaneous replacement
# in this situation.
rv = rv.xreplace(r) # if this fails, see above
if not map:
return rv
else:
if simultaneous:
# restore subexpressions in mapping
for o, n in mask:
r = {o: n}
mapping = {k.xreplace(r): v.xreplace(r)
for k, v in mapping.items()}
return rv, mapping
def find(self, query, group=False):
"""Find all subexpressions matching a query. """
query = _make_find_query(query)
results = list(filter(query, preorder_traversal(self)))
if not group:
return set(results)
else:
groups = {}
for result in results:
if result in groups:
groups[result] += 1
else:
groups[result] = 1
return groups
def count(self, query):
"""Count the number of matching subexpressions. """
query = _make_find_query(query)
return sum(bool(query(sub)) for sub in preorder_traversal(self))
def matches(self, expr, repl_dict={}, old=False):
"""
Helper method for match() that looks for a match between Wild symbols
in self and expressions in expr.
Examples
========
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
"""
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict.copy()
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
def match(self, pattern, old=False):
"""
Pattern matching.
Wild symbols match all.
Return ``None`` when expression (self) does not match
with pattern. Otherwise return a dictionary such that::
pattern.xreplace(self.match(pattern)) == self
Examples
========
>>> from sympy import Wild
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
The ``old`` flag will give the old-style pattern matching where
expressions and patterns are essentially solved to give the
match. Both of the following give None unless ``old=True``:
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
"""
pattern = sympify(pattern)
return pattern.matches(self, old=old)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from sympy import count_ops
return count_ops(self, visual)
def doit(self, **hints):
"""Evaluate objects that are not evaluated by default like limits,
integrals, sums and products. All objects of this kind will be
evaluated recursively, unless some species were excluded via 'hints'
or unless the 'deep' hint was set to 'False'.
>>> from sympy import Integral
>>> from sympy.abc import x
>>> 2*Integral(x, x)
2*Integral(x, x)
>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
"""
if hints.get('deep', True):
terms = [term.doit(**hints) if isinstance(term, Basic) else term
for term in self.args]
return self.func(*terms)
else:
return self
def simplify(self, **kwargs):
"""See the simplify function in sympy.simplify"""
from sympy.simplify import simplify
return simplify(self, **kwargs)
def _eval_rewrite(self, pattern, rule, **hints):
if self.is_Atom:
if hasattr(self, rule):
return getattr(self, rule)()
return self
if hints.get('deep', True):
args = [a._eval_rewrite(pattern, rule, **hints)
if isinstance(a, Basic) else a
for a in self.args]
else:
args = self.args
if pattern is None or isinstance(self, pattern):
if hasattr(self, rule):
rewritten = getattr(self, rule)(*args, **hints)
if rewritten is not None:
return rewritten
return self.func(*args) if hints.get('evaluate', True) else self
def _accept_eval_derivative(self, s):
# This method needs to be overridden by array-like objects
return s._visit_eval_derivative_scalar(self)
def _visit_eval_derivative_scalar(self, base):
# Base is a scalar
# Types are (base: scalar, self: scalar)
return base._eval_derivative(self)
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: scalar)
# Base is some kind of array/matrix,
# it should have `.applyfunc(lambda x: x.diff(self)` implemented:
return base._eval_derivative_array(self)
def _eval_derivative_n_times(self, s, n):
# This is the default evaluator for derivatives (as called by `diff`
# and `Derivative`), it will attempt a loop to derive the expression
# `n` times by calling the corresponding `_eval_derivative` method,
# while leaving the derivative unevaluated if `n` is symbolic. This
# method should be overridden if the object has a closed form for its
# symbolic n-th derivative.
from sympy import Integer
if isinstance(n, (int, Integer)):
obj = self
for i in range(n):
obj2 = obj._accept_eval_derivative(s)
if obj == obj2 or obj2 is None:
break
obj = obj2
return obj2
else:
return None
def rewrite(self, *args, **hints):
""" Rewrite functions in terms of other functions.
Rewrites expression containing applications of functions
of one kind in terms of functions of different kind. For
example you can rewrite trigonometric functions as complex
exponentials or combinatorial functions as gamma function.
As a pattern this function accepts a list of functions to
to rewrite (instances of DefinedFunction class). As rule
you can use string or a destination function instance (in
this case rewrite() will use the str() function).
There is also the possibility to pass hints on how to rewrite
the given expressions. For now there is only one such hint
defined called 'deep'. When 'deep' is set to False it will
forbid functions to rewrite their contents.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x
Unspecified pattern:
>>> sin(x).rewrite(exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a single function:
>>> sin(x).rewrite(sin, exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a list of functions:
>>> sin(x).rewrite([sin, ], exp)
-I*(exp(I*x) - exp(-I*x))/2
"""
if not args:
return self
else:
pattern = args[:-1]
if isinstance(args[-1], string_types):
rule = '_eval_rewrite_as_' + args[-1]
else:
try:
rule = '_eval_rewrite_as_' + args[-1].__name__
except:
rule = '_eval_rewrite_as_' + args[-1].__class__.__name__
if not pattern:
return self._eval_rewrite(None, rule, **hints)
else:
if iterable(pattern[0]):
pattern = pattern[0]
pattern = [p for p in pattern if self.has(p)]
if pattern:
return self._eval_rewrite(tuple(pattern), rule, **hints)
else:
return self
_constructor_postprocessor_mapping = {}
@classmethod
def _exec_constructor_postprocessors(cls, obj):
# WARNING: This API is experimental.
# This is an experimental API that introduces constructor
# postprosessors for SymPy Core elements. If an argument of a SymPy
# expression has a `_constructor_postprocessor_mapping` attribute, it will
# be interpreted as a dictionary containing lists of postprocessing
# functions for matching expression node names.
clsname = obj.__class__.__name__
postprocessors = defaultdict(list)
for i in obj.args:
try:
postprocessor_mappings = (
Basic._constructor_postprocessor_mapping[cls].items()
for cls in type(i).mro()
if cls in Basic._constructor_postprocessor_mapping
)
for k, v in chain.from_iterable(postprocessor_mappings):
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
except TypeError:
pass
for f in postprocessors.get(clsname, []):
obj = f(obj)
return obj
class Atom(Basic):
"""
A parent class for atomic things. An atom is an expression with no subexpressions.
Examples
========
Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_Atom = True
__slots__ = []
def matches(self, expr, repl_dict={}, old=False):
if self == expr:
return repl_dict
def xreplace(self, rule, hack2=False):
return rule.get(self, self)
def doit(self, **hints):
return self
@classmethod
def class_key(cls):
return 2, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def _eval_simplify(self, **kwargs):
return self
@property
def _sorted_args(self):
# this is here as a safeguard against accidentally using _sorted_args
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
# since there are no args. So the calling routine should be checking
# to see that this property is not called for Atoms.
raise AttributeError('Atoms have no args. It might be necessary'
' to make a check for Atoms in the calling code.')
def _aresame(a, b):
"""Return True if a and b are structurally the same, else False.
Examples
========
In SymPy (as in Python) two numbers compare the same if they
have the same underlying base-2 representation even though
they may not be the same type:
>>> from sympy import S
>>> 2.0 == S(2)
True
>>> 0.5 == S.Half
True
This routine was written to provide a query for such cases that
would give false when the types do not match:
>>> from sympy.core.basic import _aresame
>>> _aresame(S(2.0), S(2))
False
"""
from .numbers import Number
from .function import AppliedUndef, UndefinedFunction as UndefFunc
if isinstance(a, Number) and isinstance(b, Number):
return a == b and a.__class__ == b.__class__
for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)):
if i != j or type(i) != type(j):
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
if i.class_key() != j.class_key():
return False
else:
return False
return True
def _atomic(e, recursive=False):
"""Return atom-like quantities as far as substitution is
concerned: Derivatives, Functions and Symbols. Don't
return any 'atoms' that are inside such quantities unless
they also appear outside, too, unless `recursive` is True.
Examples
========
>>> from sympy import Derivative, Function, cos
>>> from sympy.abc import x, y
>>> from sympy.core.basic import _atomic
>>> f = Function('f')
>>> _atomic(x + y)
{x, y}
>>> _atomic(x + f(y))
{x, f(y)}
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
{y, cos(x), Derivative(f(x), x)}
"""
from sympy import Derivative, Function, Symbol
pot = preorder_traversal(e)
seen = set()
if isinstance(e, Basic):
free = getattr(e, "free_symbols", None)
if free is None:
return {e}
else:
return set()
atoms = set()
for p in pot:
if p in seen:
pot.skip()
continue
seen.add(p)
if isinstance(p, Symbol) and p in free:
atoms.add(p)
elif isinstance(p, (Derivative, Function)):
if not recursive:
pot.skip()
atoms.add(p)
return atoms
class preorder_traversal(Iterator):
"""
Do a pre-order traversal of a tree.
This iterator recursively yields nodes that it has visited in a pre-order
fashion. That is, it yields the current node then descends through the
tree breadth-first to yield all of a node's children's pre-order
traversal.
For an expression, the order of the traversal depends on the order of
.args, which in many cases can be arbitrary.
Parameters
==========
node : sympy expression
The expression to traverse.
keys : (default None) sort key(s)
The key(s) used to sort args of Basic objects. When None, args of Basic
objects are processed in arbitrary order. If key is defined, it will
be passed along to ordered() as the only key(s) to use to sort the
arguments; if ``key`` is simply True then the default keys of ordered
will be used.
Yields
======
subtree : sympy expression
All of the subtrees in the tree.
Examples
========
>>> from sympy import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
The nodes are returned in the order that they are encountered unless key
is given; simply passing key=True will guarantee that the traversal is
unique.
>>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP
[z*(x + y), z, x + y, y, x]
>>> list(preorder_traversal((x + y)*z, keys=True))
[z*(x + y), z, x + y, x, y]
"""
def __init__(self, node, keys=None):
self._skip_flag = False
self._pt = self._preorder_traversal(node, keys)
def _preorder_traversal(self, node, keys):
yield node
if self._skip_flag:
self._skip_flag = False
return
if isinstance(node, Basic):
if not keys and hasattr(node, '_argset'):
# LatticeOp keeps args as a set. We should use this if we
# don't care about the order, to prevent unnecessary sorting.
args = node._argset
else:
args = node.args
if keys:
if keys != True:
args = ordered(args, keys, default=False)
else:
args = ordered(args)
for arg in args:
for subtree in self._preorder_traversal(arg, keys):
yield subtree
elif iterable(node):
for item in node:
for subtree in self._preorder_traversal(item, keys):
yield subtree
def skip(self):
"""
Skip yielding current node's (last yielded node's) subtrees.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
>>> pt = preorder_traversal((x+y*z)*z)
>>> for i in pt:
... print(i)
... if i == x+y*z:
... pt.skip()
z*(x + y*z)
z
x + y*z
"""
self._skip_flag = True
def __next__(self):
return next(self._pt)
def __iter__(self):
return self
def _make_find_query(query):
"""Convert the argument of Basic.find() into a callable"""
try:
query = sympify(query)
except SympifyError:
pass
if isinstance(query, type):
return lambda expr: isinstance(expr, query)
elif isinstance(query, Basic):
return lambda expr: expr.match(query) is not None
return query
|
881a1f8be22cb3ea87689ee735a6e862168e19b44f7913c0c4dc2cb0d85caf3b | from __future__ import print_function, division
from math import log as _log
from .sympify import _sympify
from .cache import cacheit
from .singleton import S
from .expr import Expr
from .evalf import PrecisionExhausted
from .function import (_coeff_isneg, expand_complex, expand_multinomial,
expand_mul)
from .logic import fuzzy_bool, fuzzy_not, fuzzy_and
from .compatibility import as_int, range
from .parameters import global_parameters
from sympy.utilities.iterables import sift
from mpmath.libmp import sqrtrem as mpmath_sqrtrem
from math import sqrt as _sqrt
def isqrt(n):
"""Return the largest integer less than or equal to sqrt(n)."""
if n < 0:
raise ValueError("n must be nonnegative")
n = int(n)
# Fast path: with IEEE 754 binary64 floats and a correctly-rounded
# math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
# 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
# IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
# answer and fall back to the slow method if necessary.
if n < 4503599761588224:
s = int(_sqrt(n))
if 0 <= n - s*s <= 2*s:
return s
return integer_nthroot(n, 2)[0]
def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
Examples
========
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
To simply determine if a number is a perfect square, the is_square
function should be used:
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
See Also
========
sympy.ntheory.primetest.is_square
integer_log
"""
y, n = as_int(y), as_int(n)
if y < 0:
raise ValueError("y must be nonnegative")
if n < 1:
raise ValueError("n must be positive")
if y in (0, 1):
return y, True
if n == 1:
return y, True
if n == 2:
x, rem = mpmath_sqrtrem(y)
return int(x), not rem
if n > y:
return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
exp = _log(y, 2)/n
if exp > 53:
shift = int(exp - 53)
guess = int(2.0**(exp - shift) + 1) << shift
else:
guess = int(2.0**exp)
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n - 1)
xprev, x = x, ((n - 1)*x + y//t)//n
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return int(x), t == y # int converts long to int if possible
def integer_log(y, x):
r"""
Returns ``(e, bool)`` where e is the largest nonnegative integer
such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
Examples
========
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
>>> integer_log(4, -2)
(2, True)
>>> integer_log(-125,-5)
(3, True)
See Also
========
integer_nthroot
sympy.ntheory.primetest.is_square
sympy.ntheory.factor_.multiplicity
sympy.ntheory.factor_.perfect_power
"""
if x == 1:
raise ValueError('x cannot take value as 1')
if y == 0:
raise ValueError('y cannot take value as 0')
if x in (-2, 2):
x = int(x)
y = as_int(y)
e = y.bit_length() - 1
return e, x**e == y
if x < 0:
n, b = integer_log(y if y > 0 else -y, -x)
return n, b and bool(n % 2 if y < 0 else not n % 2)
x = as_int(x)
y = as_int(y)
r = e = 0
while y >= x:
d = x
m = 1
while y >= d:
y, rem = divmod(y, d)
r = r or rem
e += m
if y > d:
d *= d
m *= 2
return e, r == 0 and y == 1
class Pow(Expr):
"""
Defines the expression x**y as "x raised to a power y"
Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
+--------------+---------+-----------------------------------------------+
| expr | value | reason |
+==============+=========+===============================================+
| z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
+--------------+---------+-----------------------------------------------+
| z**1 | z | |
+--------------+---------+-----------------------------------------------+
| (-oo)**(-1) | 0 | |
+--------------+---------+-----------------------------------------------+
| (-1)**-1 | -1 | |
+--------------+---------+-----------------------------------------------+
| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
| | | undefined, but is convenient in some contexts |
| | | where the base is assumed to be positive. |
+--------------+---------+-----------------------------------------------+
| 1**-1 | 1 | |
+--------------+---------+-----------------------------------------------+
| oo**-1 | 0 | |
+--------------+---------+-----------------------------------------------+
| 0**oo | 0 | Because for all complex numbers z near |
| | | 0, z**oo -> 0. |
+--------------+---------+-----------------------------------------------+
| 0**-oo | zoo | This is not strictly true, as 0**oo may be |
| | | oscillating between positive and negative |
| | | values or rotating in the complex plane. |
| | | It is convenient, however, when the base |
| | | is positive. |
+--------------+---------+-----------------------------------------------+
| 1**oo | nan | Because there are various cases where |
| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
| | | but lim( x(t)**y(t), t) != 1. See [3]. |
+--------------+---------+-----------------------------------------------+
| b**zoo | nan | Because b**z has no limit as z -> zoo |
+--------------+---------+-----------------------------------------------+
| (-1)**oo | nan | Because of oscillations in the limit. |
| (-1)**(-oo) | | |
+--------------+---------+-----------------------------------------------+
| oo**oo | oo | |
+--------------+---------+-----------------------------------------------+
| oo**-oo | 0 | |
+--------------+---------+-----------------------------------------------+
| (-oo)**oo | nan | |
| (-oo)**-oo | | |
+--------------+---------+-----------------------------------------------+
| oo**I | nan | oo**e could probably be best thought of as |
| (-oo)**I | | the limit of x**e for real x as x tends to |
| | | oo. If e is I, then the limit does not exist |
| | | and nan is used to indicate that. |
+--------------+---------+-----------------------------------------------+
| oo**(1+I) | zoo | If the real part of e is positive, then the |
| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
| | | is zoo. |
+--------------+---------+-----------------------------------------------+
| oo**(-1+I) | 0 | If the real part of e is negative, then the |
| -oo**(-1+I) | | limit is 0. |
+--------------+---------+-----------------------------------------------+
Because symbolic computations are more flexible that floating point
calculations and we prefer to never return an incorrect answer,
we choose not to conform to all IEEE 754 conventions. This helps
us avoid extra test-case code in the calculation of limits.
See Also
========
sympy.core.numbers.Infinity
sympy.core.numbers.NegativeInfinity
sympy.core.numbers.NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentiation
.. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero
.. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
"""
is_Pow = True
__slots__ = ['is_commutative']
@cacheit
def __new__(cls, b, e, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
from sympy.functions.elementary.exponential import exp_polar
b = _sympify(b)
e = _sympify(e)
# XXX: Maybe only Expr should be allowed...
from sympy.core.relational import Relational
if isinstance(b, Relational) or isinstance(e, Relational):
raise TypeError('Relational can not be used in Pow')
if evaluate:
if e is S.ComplexInfinity:
return S.NaN
if e is S.Zero:
return S.One
elif e is S.One:
return b
elif e == -1 and not b:
return S.ComplexInfinity
# Only perform autosimplification if exponent or base is a Symbol or number
elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\
e.is_integer and _coeff_isneg(b):
if e.is_even:
b = -b
elif e.is_odd:
return -Pow(-b, e)
if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
return S.NaN
elif b is S.One:
if abs(e).is_infinite:
return S.NaN
return S.One
else:
# recognize base as E
if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
from sympy import numer, denom, log, sign, im, factor_terms
c, ex = factor_terms(e, sign=False).as_coeff_Mul()
den = denom(ex)
if isinstance(den, log) and den.args[0] == b:
return S.Exp1**(c*numer(ex))
elif den.is_Add:
s = sign(im(b))
if s.is_Number and s and den == \
log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
return S.Exp1**(c*numer(ex))
obj = b._eval_power(e)
if obj is not None:
return obj
obj = Expr.__new__(cls, b, e)
obj = cls._exec_constructor_postprocessors(obj)
if not isinstance(obj, Pow):
return obj
obj.is_commutative = (b.is_commutative and e.is_commutative)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@classmethod
def class_key(cls):
return 3, 2, cls.__name__
def _eval_refine(self, assumptions):
from sympy.assumptions.ask import ask, Q
b, e = self.as_base_exp()
if ask(Q.integer(e), assumptions) and _coeff_isneg(b):
if ask(Q.even(e), assumptions):
return Pow(-b, e)
elif ask(Q.odd(e), assumptions):
return -Pow(-b, e)
def _eval_power(self, other):
from sympy import Abs, arg, exp, floor, im, log, re, sign
b, e = self.as_base_exp()
if b is S.NaN:
return (b**e)**other # let __new__ handle it
s = None
if other.is_integer:
s = 1
elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
s = 1
elif e.is_extended_real is not None:
# helper functions ===========================
def _half(e):
"""Return True if the exponent has a literal 2 as the
denominator, else None."""
if getattr(e, 'q', None) == 2:
return True
n, d = e.as_numer_denom()
if n.is_integer and d == 2:
return True
def _n2(e):
"""Return ``e`` evaluated to a Number with 2 significant
digits, else None."""
try:
rv = e.evalf(2, strict=True)
if rv.is_Number:
return rv
except PrecisionExhausted:
pass
# ===================================================
if e.is_extended_real:
# we need _half(other) with constant floor or
# floor(S.Half - e*arg(b)/2/pi) == 0
# handle -1 as special case
if e == -1:
# floor arg. is 1/2 + arg(b)/2/pi
if _half(other):
if b.is_negative is True:
return S.NegativeOne**other*Pow(-b, e*other)
if b.is_extended_real is False:
return Pow(b.conjugate()/Abs(b)**2, other)
elif e.is_even:
if b.is_extended_real:
b = abs(b)
if b.is_imaginary:
b = abs(im(b))*S.ImaginaryUnit
if (abs(e) < 1) == True or e == 1:
s = 1 # floor = 0
elif b.is_extended_nonnegative:
s = 1 # floor = 0
elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
s = 1 # floor = 0
elif fuzzy_not(im(b).is_zero) and abs(e) == 2:
s = 1 # floor = 0
elif _half(other):
s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
S.Half - e*arg(b)/(2*S.Pi)))
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
else:
# e.is_extended_real is False requires:
# _half(other) with constant floor or
# floor(S.Half - im(e*log(b))/2/pi) == 0
try:
s = exp(2*S.ImaginaryUnit*S.Pi*other*
floor(S.Half - im(e*log(b))/2/S.Pi))
# be careful to test that s is -1 or 1 b/c sign(I) == I:
# so check that s is real
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
except PrecisionExhausted:
s = None
if s is not None:
return s*Pow(b, e*other)
def _eval_Mod(self, q):
r"""A dispatched function to compute `b^e \bmod q`, dispatched
by ``Mod``.
Notes
=====
Algorithms:
1. For unevaluated integer power, use built-in ``pow`` function
with 3 arguments, if powers are not too large wrt base.
2. For very large powers, use totient reduction if e >= lg(m).
Bound on m, is for safe factorization memory wise ie m^(1/4).
For pollard-rho to be faster than built-in pow lg(e) > m^(1/4)
check is added.
3. For any unevaluated power found in `b` or `e`, the step 2
will be recursed down to the base and the exponent
such that the `b \bmod q` becomes the new base and
``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then
the computation for the reduced expression can be done.
"""
from sympy.ntheory import totient
from .mod import Mod
base, exp = self.base, self.exp
if exp.is_integer and exp.is_positive:
if q.is_integer and base % q == 0:
return S.Zero
if base.is_Integer and exp.is_Integer and q.is_Integer:
b, e, m = int(base), int(exp), int(q)
mb = m.bit_length()
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
phi = totient(m)
return Integer(pow(b, phi + e%phi, m))
return Integer(pow(b, e, m))
if isinstance(base, Pow) and base.is_integer and base.is_number:
base = Mod(base, q)
return Mod(Pow(base, exp, evaluate=False), q)
if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
bit_length = int(q).bit_length()
# XXX Mod-Pow actually attempts to do a hanging evaluation
# if this dispatched function returns None.
# May need some fixes in the dispatcher itself.
if bit_length <= 80:
phi = totient(q)
exp = phi + Mod(exp, phi)
return Mod(Pow(base, exp, evaluate=False), q)
def _eval_is_even(self):
if self.exp.is_integer and self.exp.is_positive:
return self.base.is_even
def _eval_is_negative(self):
ext_neg = Pow._eval_is_extended_negative(self)
if ext_neg is True:
return self.is_finite
return ext_neg
def _eval_is_positive(self):
ext_pos = Pow._eval_is_extended_positive(self)
if ext_pos is True:
return self.is_finite
return ext_pos
def _eval_is_extended_positive(self):
from sympy import log
if self.base == self.exp:
if self.base.is_extended_nonnegative:
return True
elif self.base.is_positive:
if self.exp.is_extended_real:
return True
elif self.base.is_extended_negative:
if self.exp.is_even:
return True
if self.exp.is_odd:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return self.exp.is_zero
elif self.base.is_extended_nonpositive:
if self.exp.is_odd:
return False
elif self.base.is_imaginary:
if self.exp.is_integer:
m = self.exp % 4
if m.is_zero:
return True
if m.is_integer and m.is_zero is False:
return False
if self.exp.is_imaginary:
return log(self.base).is_imaginary
def _eval_is_extended_negative(self):
if self.base.is_extended_negative:
if self.exp.is_odd and self.base.is_finite:
return True
if self.exp.is_even:
return False
elif self.base.is_extended_positive:
if self.exp.is_extended_real:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return False
elif self.base.is_extended_nonnegative:
if self.exp.is_extended_nonnegative:
return False
elif self.base.is_extended_nonpositive:
if self.exp.is_even:
return False
elif self.base.is_extended_real:
if self.exp.is_even:
return False
def _eval_is_zero(self):
if self.base.is_zero:
if self.exp.is_extended_positive:
return True
elif self.exp.is_extended_nonpositive:
return False
elif self.base.is_zero is False:
if self.exp.is_negative:
return self.base.is_infinite
elif self.exp.is_nonnegative:
return False
elif self.exp.is_infinite:
if (1 - abs(self.base)).is_extended_positive:
return self.exp.is_extended_positive
elif (1 - abs(self.base)).is_extended_negative:
return self.exp.is_extended_negative
else:
# when self.base.is_zero is None
return None
def _eval_is_integer(self):
b, e = self.args
if b.is_rational:
if b.is_integer is False and e.is_positive:
return False # rat**nonneg
if b.is_integer and e.is_integer:
if b is S.NegativeOne:
return True
if e.is_nonnegative or e.is_positive:
return True
if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
return False
if b.is_Number and e.is_Number:
check = self.func(*self.args)
return check.is_Integer
def _eval_is_extended_real(self):
from sympy import arg, exp, log, Mul
real_b = self.base.is_extended_real
if real_b is None:
if self.base.func == exp and self.base.args[0].is_imaginary:
return self.exp.is_imaginary
return
real_e = self.exp.is_extended_real
if real_e is None:
return
if real_b and real_e:
if self.base.is_extended_positive:
return True
elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
return True
elif self.exp.is_integer and self.base.is_extended_nonzero:
return True
elif self.exp.is_integer and self.exp.is_nonnegative:
return True
elif self.base.is_extended_negative:
if self.exp.is_Rational:
return False
if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
return Pow(self.base, -self.exp).is_extended_real
im_b = self.base.is_imaginary
im_e = self.exp.is_imaginary
if im_b:
if self.exp.is_integer:
if self.exp.is_even:
return True
elif self.exp.is_odd:
return False
elif im_e and log(self.base).is_imaginary:
return True
elif self.exp.is_Add:
c, a = self.exp.as_coeff_Add()
if c and c.is_Integer:
return Mul(
self.base**c, self.base**a, evaluate=False).is_extended_real
elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
if (self.exp/2).is_integer is False:
return False
if real_b and im_e:
if self.base is S.NegativeOne:
return True
c = self.exp.coeff(S.ImaginaryUnit)
if c:
if self.base.is_rational and c.is_rational:
if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
return False
ok = (c*log(self.base)/S.Pi).is_integer
if ok is not None:
return ok
if real_b is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
return i.is_integer
def _eval_is_complex(self):
if all(a.is_complex for a in self.args) and self._eval_is_finite():
return True
def _eval_is_imaginary(self):
from sympy import arg, log
if self.base.is_imaginary:
if self.exp.is_integer:
odd = self.exp.is_odd
if odd is not None:
return odd
return
if self.exp.is_imaginary:
imlog = log(self.base).is_imaginary
if imlog is not None:
return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
if self.base.is_extended_real and self.exp.is_extended_real:
if self.base.is_positive:
return False
else:
rat = self.exp.is_rational
if not rat:
return rat
if self.exp.is_integer:
return False
else:
half = (2*self.exp).is_integer
if half:
return self.base.is_negative
return half
if self.base.is_extended_real is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
isodd = (2*i).is_odd
if isodd is not None:
return isodd
if self.exp.is_negative:
return (1/self).is_imaginary
def _eval_is_odd(self):
if self.exp.is_integer:
if self.exp.is_positive:
return self.base.is_odd
elif self.exp.is_nonnegative and self.base.is_odd:
return True
elif self.base is S.NegativeOne:
return True
def _eval_is_finite(self):
if self.exp.is_negative:
if self.base.is_zero:
return False
if self.base.is_infinite or self.base.is_nonzero:
return True
c1 = self.base.is_finite
if c1 is None:
return
c2 = self.exp.is_finite
if c2 is None:
return
if c1 and c2:
if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
return True
def _eval_is_prime(self):
'''
An integer raised to the n(>=2)-th power cannot be a prime.
'''
if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
return False
def _eval_is_composite(self):
"""
A power is composite if both base and exponent are greater than 1
"""
if (self.base.is_integer and self.exp.is_integer and
((self.base - 1).is_positive and (self.exp - 1).is_positive or
(self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
return True
def _eval_is_polar(self):
return self.base.is_polar
def _eval_subs(self, old, new):
from sympy import exp, log, Symbol
def _check(ct1, ct2, old):
"""Return (bool, pow, remainder_pow) where, if bool is True, then the
exponent of Pow `old` will combine with `pow` so the substitution
is valid, otherwise bool will be False.
For noncommutative objects, `pow` will be an integer, and a factor
`Pow(old.base, remainder_pow)` needs to be included. If there is
no such factor, None is returned. For commutative objects,
remainder_pow is always None.
cti are the coefficient and terms of an exponent of self or old
In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
will give y**2 since (b**x)**2 == b**(2*x); if that equality does
not hold then the substitution should not occur so `bool` will be
False.
"""
coeff1, terms1 = ct1
coeff2, terms2 = ct2
if terms1 == terms2:
if old.is_commutative:
# Allow fractional powers for commutative objects
pow = coeff1/coeff2
try:
as_int(pow, strict=False)
combines = True
except ValueError:
combines = isinstance(Pow._eval_power(
Pow(*old.as_base_exp(), evaluate=False),
pow), (Pow, exp, Symbol))
return combines, pow, None
else:
# With noncommutative symbols, substitute only integer powers
if not isinstance(terms1, tuple):
terms1 = (terms1,)
if not all(term.is_integer for term in terms1):
return False, None, None
try:
# Round pow toward zero
pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
if pow < 0 and remainder != 0:
pow += 1
remainder -= as_int(coeff2)
if remainder == 0:
remainder_pow = None
else:
remainder_pow = Mul(remainder, *terms1)
return True, pow, remainder_pow
except ValueError:
# Can't substitute
pass
return False, None, None
if old == self.base:
return new**self.exp._subs(old, new)
# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
if isinstance(old, self.func) and self.exp == old.exp:
l = log(self.base, old.base)
if l.is_Number:
return Pow(new, l)
if isinstance(old, self.func) and self.base == old.base:
if self.exp.is_Add is False:
ct1 = self.exp.as_independent(Symbol, as_Add=False)
ct2 = old.exp.as_independent(Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
result = self.func(new, pow)
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
oarg = old.exp
new_l = []
o_al = []
ct2 = oarg.as_coeff_mul()
for a in self.exp.args:
newa = a._subs(old, new)
ct1 = newa.as_coeff_mul()
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
new_l.append(new**pow)
if remainder_pow is not None:
o_al.append(remainder_pow)
continue
elif not old.is_commutative and not newa.is_integer:
# If any term in the exponent is non-integer,
# we do not do any substitutions in the noncommutative case
return
o_al.append(newa)
if new_l:
expo = Add(*o_al)
new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
return Mul(*new_l)
if isinstance(old, exp) and self.exp.is_extended_real and self.base.is_positive:
ct1 = old.args[0].as_independent(Symbol, as_Add=False)
ct2 = (self.exp*log(self.base)).as_independent(
Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
def as_base_exp(self):
"""Return base and exp of self.
If base is 1/Integer, then return Integer, -exp. If this extra
processing is not needed, the base and exp properties will
give the raw arguments
Examples
========
>>> from sympy import Pow, S
>>> p = Pow(S.Half, 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
"""
b, e = self.args
if b.is_Rational and b.p == 1 and b.q != 1:
return Integer(b.q), -e
return b, e
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import adjoint
i, p = self.exp.is_integer, self.base.is_positive
if i:
return adjoint(self.base)**self.exp
if p:
return self.base**adjoint(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return adjoint(expanded)
def _eval_conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
i, p = self.exp.is_integer, self.base.is_positive
if i:
return c(self.base)**self.exp
if p:
return self.base**c(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return c(expanded)
if self.is_extended_real:
return self
def _eval_transpose(self):
from sympy.functions.elementary.complexes import transpose
i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
if p:
return self.base**self.exp
if i:
return transpose(self.base)**self.exp
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return transpose(expanded)
def _eval_expand_power_exp(self, **hints):
"""a**(n + m) -> a**n*a**m"""
b = self.base
e = self.exp
if e.is_Add and e.is_commutative:
expr = []
for x in e.args:
expr.append(self.func(self.base, x))
return Mul(*expr)
return self.func(b, e)
def _eval_expand_power_base(self, **hints):
"""(a*b)**n -> a**n * b**n"""
force = hints.get('force', False)
b = self.base
e = self.exp
if not b.is_Mul:
return self
cargs, nc = b.args_cnc(split_1=False)
# expand each term - this is top-level-only
# expansion but we have to watch out for things
# that don't have an _eval_expand method
if nc:
nc = [i._eval_expand_power_base(**hints)
if hasattr(i, '_eval_expand_power_base') else i
for i in nc]
if e.is_Integer:
if e.is_positive:
rv = Mul(*nc*e)
else:
rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
if cargs:
rv *= Mul(*cargs)**e
return rv
if not cargs:
return self.func(Mul(*nc), e, evaluate=False)
nc = [Mul(*nc)]
# sift the commutative bases
other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
binary=True)
def pred(x):
if x is S.ImaginaryUnit:
return S.ImaginaryUnit
polar = x.is_polar
if polar:
return True
if polar is None:
return fuzzy_bool(x.is_extended_nonnegative)
sifted = sift(maybe_real, pred)
nonneg = sifted[True]
other += sifted[None]
neg = sifted[False]
imag = sifted[S.ImaginaryUnit]
if imag:
I = S.ImaginaryUnit
i = len(imag) % 4
if i == 0:
pass
elif i == 1:
other.append(I)
elif i == 2:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
else:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
other.append(I)
del imag
# bring out the bases that can be separated from the base
if force or e.is_integer:
# treat all commutatives the same and put nc in other
cargs = nonneg + neg + other
other = nc
else:
# this is just like what is happening automatically, except
# that now we are doing it for an arbitrary exponent for which
# no automatic expansion is done
assert not e.is_Integer
# handle negatives by making them all positive and putting
# the residual -1 in other
if len(neg) > 1:
o = S.One
if not other and neg[0].is_Number:
o *= neg.pop(0)
if len(neg) % 2:
o = -o
for n in neg:
nonneg.append(-n)
if o is not S.One:
other.append(o)
elif neg and other:
if neg[0].is_Number and neg[0] is not S.NegativeOne:
other.append(S.NegativeOne)
nonneg.append(-neg[0])
else:
other.extend(neg)
else:
other.extend(neg)
del neg
cargs = nonneg
other += nc
rv = S.One
if cargs:
rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
if other:
rv *= self.func(Mul(*other), e, evaluate=False)
return rv
def _eval_expand_multinomial(self, **hints):
"""(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
base, exp = self.args
result = self
if exp.is_Rational and exp.p > 0 and base.is_Add:
if not exp.is_Integer:
n = Integer(exp.p // exp.q)
if not n:
return result
else:
radical, result = self.func(base, exp - n), []
expanded_base_n = self.func(base, n)
if expanded_base_n.is_Pow:
expanded_base_n = \
expanded_base_n._eval_expand_multinomial()
for term in Add.make_args(expanded_base_n):
result.append(term*radical)
return Add(*result)
n = int(exp)
if base.is_commutative:
order_terms, other_terms = [], []
for b in base.args:
if b.is_Order:
order_terms.append(b)
else:
other_terms.append(b)
if order_terms:
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
f = Add(*other_terms)
o = Add(*order_terms)
if n == 2:
return expand_multinomial(f**n, deep=False) + n*f*o
else:
g = expand_multinomial(f**(n - 1), deep=False)
return expand_mul(f*g, deep=False) + n*g*o
if base.is_number:
# Efficiently expand expressions of the form (a + b*I)**n
# where 'a' and 'b' are real numbers and 'n' is integer.
a, b = base.as_real_imag()
if a.is_Rational and b.is_Rational:
if not a.is_Integer:
if not b.is_Integer:
k = self.func(a.q * b.q, n)
a, b = a.p*b.q, a.q*b.p
else:
k = self.func(a.q, n)
a, b = a.p, a.q*b
elif not b.is_Integer:
k = self.func(b.q, n)
a, b = a*b.q, b.p
else:
k = 1
a, b, c, d = int(a), int(b), 1, 0
while n:
if n & 1:
c, d = a*c - b*d, b*c + a*d
n -= 1
a, b = a*a - b*b, 2*a*b
n //= 2
I = S.ImaginaryUnit
if k == 1:
return c + I*d
else:
return Integer(c)/k + I*d/k
p = other_terms
# (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
# in this particular example:
# p = [x,y]; n = 3
# so now it's easy to get the correct result -- we get the
# coefficients first:
from sympy import multinomial_coefficients
from sympy.polys.polyutils import basic_from_dict
expansion_dict = multinomial_coefficients(len(p), n)
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
# and now construct the expression.
return basic_from_dict(expansion_dict, *p)
else:
if n == 2:
return Add(*[f*g for f in base.args for g in base.args])
else:
multi = (base**(n - 1))._eval_expand_multinomial()
if multi.is_Add:
return Add(*[f*g for f in base.args
for g in multi.args])
else:
# XXX can this ever happen if base was an Add?
return Add(*[f*multi for f in base.args])
elif (exp.is_Rational and exp.p < 0 and base.is_Add and
abs(exp.p) > exp.q):
return 1 / self.func(base, -exp)._eval_expand_multinomial()
elif exp.is_Add and base.is_Number:
# a + b a b
# n --> n n , where n, a, b are Numbers
coeff, tail = S.One, S.Zero
for term in exp.args:
if term.is_Number:
coeff *= self.func(base, term)
else:
tail += term
return coeff * self.func(base, tail)
else:
return result
def as_real_imag(self, deep=True, **hints):
from sympy import atan2, cos, im, re, sin
from sympy.polys.polytools import poly
if self.exp.is_Integer:
exp = self.exp
re_e, im_e = self.base.as_real_imag(deep=deep)
if not im_e:
return self, S.Zero
a, b = symbols('a b', cls=Dummy)
if exp >= 0:
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
if expr != self:
return expr.as_real_imag()
expr = poly(
(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re_e**2 + im_e**2
re_e, im_e = re_e/mag, -im_e/mag
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
if expr != self:
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms with odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
elif self.exp.is_Rational:
re_e, im_e = self.base.as_real_imag(deep=deep)
if im_e.is_zero and self.exp is S.Half:
if re_e.is_extended_nonnegative:
return self, S.Zero
if re_e.is_extended_nonpositive:
return S.Zero, (-self.base)**self.exp
# XXX: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
t = atan2(im_e, re_e)
rp, tp = self.func(r, self.exp), t*self.exp
return (rp*cos(tp), rp*sin(tp))
else:
if deep:
hints['complex'] = False
expanded = self.expand(deep, **hints)
if hints.get('ignore') == expanded:
return None
else:
return (re(expanded), im(expanded))
else:
return (re(self), im(self))
def _eval_derivative(self, s):
from sympy import log
dbase = self.base.diff(s)
dexp = self.exp.diff(s)
return self * (dexp * log(self.base) + dbase * self.exp/self.base)
def _eval_evalf(self, prec):
base, exp = self.as_base_exp()
base = base._evalf(prec)
if not exp.is_Integer:
exp = exp._evalf(prec)
if exp.is_negative and base.is_number and base.is_extended_real is False:
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
exp = -exp
return self.func(base, exp).expand()
return self.func(base, exp)
def _eval_is_polynomial(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return bool(self.base._eval_is_polynomial(syms) and
self.exp.is_Integer and (self.exp >= 0))
else:
return True
def _eval_is_rational(self):
# The evaluation of self.func below can be very expensive in the case
# of integer**integer if the exponent is large. We should try to exit
# before that if possible:
if (self.exp.is_integer and self.base.is_rational
and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
return True
p = self.func(*self.as_base_exp()) # in case it's unevaluated
if not p.is_Pow:
return p.is_rational
b, e = p.as_base_exp()
if e.is_Rational and b.is_Rational:
# we didn't check that e is not an Integer
# because Rational**Integer autosimplifies
return False
if e.is_integer:
if b.is_rational:
if fuzzy_not(b.is_zero) or e.is_nonnegative:
return True
if b == e: # always rational, even for 0**0
return True
elif b.is_irrational:
return e.is_zero
def _eval_is_algebraic(self):
def _is_one(expr):
try:
return (expr - 1).is_zero
except ValueError:
# when the operation is not allowed
return False
if self.base.is_zero or _is_one(self.base):
return True
elif self.exp.is_rational:
if self.base.is_algebraic is False:
return self.exp.is_zero
if self.base.is_zero is False:
if self.exp.is_nonzero:
return self.base.is_algebraic
elif self.base.is_algebraic:
return True
if self.exp.is_positive:
return self.base.is_algebraic
elif self.base.is_algebraic and self.exp.is_algebraic:
if ((fuzzy_not(self.base.is_zero)
and fuzzy_not(_is_one(self.base)))
or self.base.is_integer is False
or self.base.is_irrational):
return self.exp.is_rational
def _eval_is_rational_function(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_rational_function(syms) and \
self.exp.is_Integer
else:
return True
def _eval_is_algebraic_expr(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_algebraic_expr(syms) and \
self.exp.is_Rational
else:
return True
def _eval_rewrite_as_exp(self, base, expo, **kwargs):
from sympy import exp, log, I, arg
if base.is_zero or base.has(exp) or expo.has(exp):
return base**expo
if base.has(Symbol):
# delay evaluation if expo is non symbolic
# (as exp(x*log(5)) automatically reduces to x**5)
return exp(log(base)*expo, evaluate=expo.has(Symbol))
else:
return exp((log(abs(base)) + I*arg(base))*expo)
def as_numer_denom(self):
if not self.is_commutative:
return self, S.One
base, exp = self.as_base_exp()
n, d = base.as_numer_denom()
# this should be the same as ExpBase.as_numer_denom wrt
# exponent handling
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
int_exp = exp.is_integer
# the denominator cannot be separated from the numerator if
# its sign is unknown unless the exponent is an integer, e.g.
# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
# denominator is negative the numerator and denominator can
# be negated and the denominator (now positive) separated.
if not (d.is_extended_real or int_exp):
n = base
d = S.One
dnonpos = d.is_nonpositive
if dnonpos:
n, d = -n, -d
elif dnonpos is None and not int_exp:
n = base
d = S.One
if neg_exp:
n, d = d, n
exp = -exp
if exp.is_infinite:
if n is S.One and d is not S.One:
return n, self.func(d, exp)
if n is not S.One and d is S.One:
return self.func(n, exp), d
return self.func(n, exp), self.func(d, exp)
def matches(self, expr, repl_dict={}, old=False):
expr = _sympify(expr)
# special case, pattern = 1 and expr.exp can match to 0
if expr is S.One:
d = repl_dict.copy()
d = self.exp.matches(S.Zero, d)
if d is not None:
return d
# make sure the expression to be matched is an Expr
if not isinstance(expr, Expr):
return None
b, e = expr.as_base_exp()
# special case number
sb, se = self.as_base_exp()
if sb.is_Symbol and se.is_Integer and expr:
if e.is_rational:
return sb.matches(b**(e/se), repl_dict)
return sb.matches(expr**(1/se), repl_dict)
d = repl_dict.copy()
d = self.base.matches(b, d)
if d is None:
return None
d = self.exp.xreplace(d).matches(e, d)
if d is None:
return Expr.matches(self, expr, repl_dict)
return d
def _eval_nseries(self, x, n, logx):
# NOTE! This function is an important part of the gruntz algorithm
# for computing limits. It has to return a generalized power
# series with coefficients in C(log, log(x)). In more detail:
# It has to return an expression
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i are
# expressions involving only numbers, the log function, and log(x).
from sympy import ceiling, collect, exp, log, O, Order, powsimp
b, e = self.args
if e.is_Integer:
if e > 0:
# positive integer powers are easy to expand, e.g.:
# sin(x)**4 = (x - x**3/3 + ...)**4 = ...
return expand_multinomial(self.func(b._eval_nseries(x, n=n,
logx=logx), e), deep=False)
elif e is S.NegativeOne:
# this is also easy to expand using the formula:
# 1/(1 + x) = 1 - x + x**2 - x**3 ...
# so we need to rewrite base to the form "1 + x"
nuse = n
cf = 1
try:
ord = b.as_leading_term(x)
cf = Order(ord, x).getn()
if cf and cf.is_Number:
nuse = n + 2*ceiling(cf)
else:
cf = 1
except NotImplementedError:
pass
b_orig, prefactor = b, O(1, x)
while prefactor.is_Order:
nuse += 1
b = b_orig._eval_nseries(x, n=nuse, logx=logx)
prefactor = b.as_leading_term(x)
# express "rest" as: rest = 1 + k*x**l + ... + O(x**n)
rest = expand_mul((b - prefactor)/prefactor)
if rest.is_Order:
return 1/prefactor + rest/prefactor + O(x**n, x)
k, l = rest.leadterm(x)
if l.is_Rational and l > 0:
pass
elif l.is_number and l > 0:
l = l.evalf()
elif l == 0:
k = k.simplify()
if k == 0:
# if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to
# factor the w**4 out using collect:
return 1/collect(prefactor, x)
else:
raise NotImplementedError()
else:
raise NotImplementedError()
if cf < 0:
cf = S.One/abs(cf)
try:
dn = Order(1/prefactor, x).getn()
if dn and dn < 0:
pass
else:
dn = 0
except NotImplementedError:
dn = 0
terms = [1/prefactor]
for m in range(1, ceiling((n - dn + 1)/l*cf)):
new_term = terms[-1]*(-rest)
if new_term.is_Pow:
new_term = new_term._eval_expand_multinomial(
deep=False)
else:
new_term = expand_mul(new_term, deep=False)
terms.append(new_term)
terms.append(O(x**n, x))
return powsimp(Add(*terms), deep=True, combine='exp')
else:
# negative powers are rewritten to the cases above, for
# example:
# sin(x)**(-4) = 1/(sin(x)**4) = ...
# and expand the denominator:
nuse, denominator = n, O(1, x)
while denominator.is_Order:
denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx)
nuse += 1
if 1/denominator == self:
return self
# now we have a type 1/f(x), that we know how to expand
return (1/denominator)._eval_nseries(x, n=n, logx=logx)
if e.has(Symbol):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx)
# see if the base is as simple as possible
bx = b
while bx.is_Pow and bx.exp.is_Rational:
bx = bx.base
if bx == x:
return self
# work for b(x)**e where e is not an Integer and does not contain x
# and hopefully has no other symbols
def e2int(e):
"""return the integer value (if possible) of e and a
flag indicating whether it is bounded or not."""
n = e.limit(x, 0)
infinite = n.is_infinite
if not infinite:
# XXX was int or floor intended? int used to behave like floor
# so int(-Rational(1, 2)) returned -1 rather than int's 0
try:
n = int(n)
except TypeError:
# well, the n is something more complicated (like 1 + log(2))
try:
n = int(n.evalf()) + 1 # XXX why is 1 being added?
except TypeError:
pass # hope that base allows this to be resolved
n = _sympify(n)
return n, infinite
order = O(x**n, x)
ei, infinite = e2int(e)
b0 = b.limit(x, 0)
if infinite and (b0 is S.One or b0.has(Symbol)):
# XXX what order
if b0 is S.One:
resid = (b - 1)
if resid.is_positive:
return S.Infinity
elif resid.is_negative:
return S.Zero
raise ValueError('cannot determine sign of %s' % resid)
return b0**ei
if (b0 is S.Zero or b0.is_infinite):
if infinite is not False:
return b0**e # XXX what order
if not ei.is_number: # if not, how will we proceed?
raise ValueError(
'expecting numerical exponent but got %s' % ei)
nuse = n - ei
if e.is_extended_real and e.is_positive:
lt = b.as_leading_term(x)
# Try to correct nuse (= m) guess from:
# (lt + rest + O(x**m))**e =
# lt**e*(1 + rest/lt + O(x**m)/lt)**e =
# lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n)
try:
cf = Order(lt, x).getn()
nuse = ceiling(n - cf*(e - 1))
except NotImplementedError:
pass
bs = b._eval_nseries(x, n=nuse, logx=logx)
terms = bs.removeO()
if terms.is_Add:
bs = terms
lt = terms.as_leading_term(x)
# bs -> lt + rest -> lt*(1 + (bs/lt - 1))
return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries(
x, n=nuse, logx=logx)).expand() + order)
if bs.is_Add:
from sympy import O
# So, bs + O() == terms
c = Dummy('c')
res = []
for arg in bs.args:
if arg.is_Order:
arg = c*arg.expr
res.append(arg)
bs = Add(*res)
rv = (bs**e).series(x).subs(c, O(1, x))
rv += order
return rv
rv = bs**e
if terms != bs:
rv += order
return rv
# either b0 is bounded but neither 1 nor 0 or e is infinite
# b -> b0 + (b - b0) -> b0 * (1 + (b/b0 - 1))
o2 = order*(b0**-e)
z = (b/b0 - 1)
o = O(z, x)
if o is S.Zero or o2 is S.Zero:
infinite = True
else:
if o.expr.is_number:
e2 = log(o2.expr*x)/log(x)
else:
e2 = log(o2.expr)/log(o.expr)
n, infinite = e2int(e2)
if infinite:
# requested accuracy gives infinite series,
# order is probably non-polynomial e.g. O(exp(-1/x), x).
r = 1 + z
else:
l = []
g = None
for i in range(n + 2):
g = self._taylor_term(i, z, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
r = Add(*l)
return expand_mul(r*b0**e) + order
def _eval_as_leading_term(self, x):
from sympy import exp, log
if not self.exp.has(x):
return self.func(self.base.as_leading_term(x), self.exp)
return exp(self.exp * log(self.base)).as_leading_term(x)
@cacheit
def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
from sympy import binomial
return binomial(self.exp, n) * self.func(x, n)
def _sage_(self):
return self.args[0]._sage_()**self.args[1]._sage_()
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(2)))
>>> from sympy import expand_power_base, powsimp, Mul
>>> from sympy.abc import x, y
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**((1 + y)/2)).as_content_primitive()
(2, 4**(y/2))
>>> (3**((1 + y)/2)).as_content_primitive()
(1, 3**((y + 1)/2))
>>> (3**((5 + y)/2)).as_content_primitive()
(9, 3**((y + 1)/2))
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq); s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x + 1))**y)
>>> s = expand_power_base(_[1]); s.is_Mul, s
(True, 2**y*(x + 1)**y)
See docstring of Expr.as_content_primitive for more examples.
"""
b, e = self.as_base_exp()
b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
ce, pe = e.as_content_primitive(radical=radical, clear=clear)
if b.is_Rational:
#e
#= ce*pe
#= ce*(h + t)
#= ce*h + ce*t
#=> self
#= b**(ce*h)*b**(ce*t)
#= b**(cehp/cehq)*b**(ce*t)
#= b**(iceh + r/cehq)*b**(ce*t)
#= b**(iceh)*b**(r/cehq)*b**(ce*t)
#= b**(iceh)*b**(ce*t + r/cehq)
h, t = pe.as_coeff_Add()
if h.is_Rational:
ceh = ce*h
c = self.func(b, ceh)
r = S.Zero
if not c.is_Rational:
iceh, r = divmod(ceh.p, ceh.q)
c = self.func(b, iceh)
return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
e = _keep_coeff(ce, pe)
# b**e = (h*t)**e = h**e*t**e = c*m*t**e
if e.is_Rational and b.is_Mul:
h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
c, m = self.func(h, e).as_coeff_Mul() # so c is positive
m, me = m.as_base_exp()
if m is S.One or me == e: # probably always true
# return the following, not return c, m*Pow(t, e)
# which would change Pow into Mul; we let sympy
# decide what to do by using the unevaluated Mul, e.g
# should it stay as sqrt(2 + 2*sqrt(5)) or become
# sqrt(2)*sqrt(1 + sqrt(5))
return c, self.func(_keep_coeff(m, t), e)
return S.One, self.func(b, e)
def is_constant(self, *wrt, **flags):
expr = self
if flags.get('simplify', True):
expr = expr.simplify()
b, e = expr.as_base_exp()
bz = b.equals(0)
if bz: # recalculate with assumptions in case it's unevaluated
new = b**e
if new != expr:
return new.is_constant()
econ = e.is_constant(*wrt)
bcon = b.is_constant(*wrt)
if bcon:
if econ:
return True
bz = b.equals(0)
if bz is False:
return False
elif bcon is None:
return None
return e.equals(0)
def _eval_difference_delta(self, n, step):
b, e = self.args
if e.has(n) and not b.has(n):
new_e = e.subs(n, n + step)
return (b**(new_e - e) - 1) * self
from .add import Add
from .numbers import Integer
from .mul import Mul, _keep_coeff
from .symbol import Symbol, Dummy, symbols
|
83ea992bbde037a035fceb03aa7cd0fe5e775aaa2e27f88e4e339365fab1fb45 | """Core module. Provides the basic operations needed in sympy.
"""
from .sympify import sympify, SympifyError
from .cache import cacheit
from .basic import Basic, Atom, preorder_traversal
from .singleton import S
from .expr import Expr, AtomicExpr, UnevaluatedExpr
from .symbol import Symbol, Wild, Dummy, symbols, var
from .numbers import Number, Float, Rational, Integer, NumberSymbol, \
RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \
AlgebraicNumber, comp, mod_inverse
from .power import Pow, integer_nthroot, integer_log
from .mul import Mul, prod
from .add import Add
from .mod import Mod
from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge,
Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan,
StrictLessThan )
from .multidimensional import vectorize
from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \
Function, Subs, expand, PoleError, count_ops, \
expand_mul, expand_log, expand_func, \
expand_trig, expand_complex, expand_multinomial, nfloat, \
expand_power_base, expand_power_exp, arity
from .evalf import PrecisionExhausted, N
from .containers import Tuple, Dict
from .exprtools import gcd_terms, factor_terms, factor_nc
from .parameters import evaluate
# expose singletons
Catalan = S.Catalan
EulerGamma = S.EulerGamma
GoldenRatio = S.GoldenRatio
TribonacciConstant = S.TribonacciConstant
|
c017d0e64eaa8918a0be8499030342bc1d8e8cf60f6efb91a99a790a94151ecf | from __future__ import print_function, division
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .add import _unevaluated_Add, Add
from .basic import S
from .compatibility import ordered
from .basic import Basic
from .expr import Expr
from .evalf import EvalfMixin
from .sympify import _sympify
from .parameters import global_parameters
from sympy.logic.boolalg import Boolean, BooleanAtom
__all__ = (
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
'StrictGreaterThan', 'GreaterThan',
)
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
# and Expr.
def _canonical(cond):
# return a condition in which all relationals are canonical
reps = {r: r.canonical for r in cond.atoms(Relational)}
return cond.xreplace(reps)
# XXX: AttributeError was being caught here but it wasn't triggered by any of
# the tests so I've removed it...
class Relational(Boolean, EvalfMixin):
"""Base class for all relation types.
Subclasses of Relational should generally be instantiated directly, but
Relational can be instantiated with a valid ``rop`` value to dispatch to
the appropriate subclass.
Parameters
==========
rop : str or None
Indicates what subclass to instantiate. Valid values can be found
in the keys of Relational.ValidRelationalOperator.
Examples
========
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
"""
__slots__ = []
is_Relational = True
# ValidRelationOperator - Defined below, because the necessary classes
# have not yet been defined
def __new__(cls, lhs, rhs, rop=None, **assumptions):
# If called by a subclass, do nothing special and pass on to Basic.
if cls is not Relational:
return Basic.__new__(cls, lhs, rhs, **assumptions)
# XXX: Why do this? There should be a separate function to make a
# particular subclass of Relational from a string.
#
# If called directly with an operator, look up the subclass
# corresponding to that operator and delegate to it
cls = cls.ValidRelationOperator.get(rop, None)
if cls is None:
raise ValueError("Invalid relational operator symbol: %r" % rop)
# XXX: Why should the below be removed when Py2 is not supported?
#
# /// drop when Py2 is no longer supported
if not issubclass(cls, (Eq, Ne)):
# validate that Booleans are not being used in a relational
# other than Eq/Ne;
# Note: Symbol is a subclass of Boolean but is considered
# acceptable here.
from sympy.core.symbol import Symbol
from sympy.logic.boolalg import Boolean
def unacceptable(side):
return isinstance(side, Boolean) and not isinstance(side, Symbol)
if unacceptable(lhs) or unacceptable(rhs):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
# \\\
return cls(lhs, rhs, **assumptions)
@property
def lhs(self):
"""The left-hand side of the relation."""
return self._args[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self._args[1]
@property
def reversed(self):
"""Return the relationship with sides reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1 > x
"""
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
a, b = self.args
return Relational.__new__(ops.get(self.func, self.func), b, a)
@property
def reversedsign(self):
"""Return the relationship with signs reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
"""
a, b = self.args
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
else:
return self
@property
def negated(self):
"""Return the negated relationship.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.negated
Ne(x, 1)
>>> x < 1
x < 1
>>> _.negated
x >= 1
Notes
=====
This works more or less identical to ``~``/``Not``. The difference is
that ``negated`` returns the relationship even if ``evaluate=False``.
Hence, this is useful in code when checking for e.g. negated relations
to existing ones as it will not be affected by the `evaluate` flag.
"""
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
# If there ever will be new Relational subclasses, the following line
# will work until it is properly sorted out
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
# b, evaluate=evaluate)))(*self.args, evaluate=False)
return Relational.__new__(ops.get(self.func), *self.args)
def _eval_evalf(self, prec):
return self.func(*[s._evalf(prec) for s in self.args])
@property
def canonical(self):
"""Return a canonical form of the relational by putting a
Number on the rhs else ordering the args. The relation is also changed
so that the left-hand side expression does not start with a ``-``.
No other simplification is attempted.
Examples
========
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
"""
args = self.args
r = self
if r.rhs.is_number:
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
r = r.reversed
elif r.lhs.is_number:
r = r.reversed
elif tuple(ordered(args)) != args:
r = r.reversed
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
return r
# Check if first value has negative sign
if LHS_CEMS and LHS_CEMS():
return r.reversedsign
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
# Right hand side has a minus, but not lhs.
# How does the expression with reversed signs behave?
# This is so that expressions of the type
# Eq(x, -y) and Eq(-x, y)
# have the same canonical representation
expr1, _ = ordered([r.lhs, -r.rhs])
if expr1 != r.lhs:
return r.reversed.reversedsign
return r
def equals(self, other, failing_expression=False):
"""Return True if the sides of the relationship are mathematically
identical and the type of relationship is the same.
If failing_expression is True, return the expression whose truth value
was unknown."""
if isinstance(other, Relational):
if self == other or self.reversed == other:
return True
a, b = self, other
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
if a.func != b.func:
return False
left, right = [i.equals(j,
failing_expression=failing_expression)
for i, j in zip(a.args, b.args)]
if left is True:
return right
if right is True:
return left
lr, rl = [i.equals(j, failing_expression=failing_expression)
for i, j in zip(a.args, b.reversed.args)]
if lr is True:
return rl
if rl is True:
return lr
e = (left, right, lr, rl)
if all(i is False for i in e):
return False
for i in e:
if i not in (True, False):
return i
else:
if b.func != a.func:
b = b.reversed
if a.func != b.func:
return False
left = a.lhs.equals(b.lhs,
failing_expression=failing_expression)
if left is False:
return False
right = a.rhs.equals(b.rhs,
failing_expression=failing_expression)
if right is False:
return False
if left is True:
return right
return left
def _eval_simplify(self, **kwargs):
r = self
r = r.func(*[i.simplify(**kwargs) for i in r.args])
if r.is_Relational:
dif = r.lhs - r.rhs
# replace dif with a valid Number that will
# allow a definitive comparison with 0
v = None
if dif.is_comparable:
v = dif.n(2)
elif dif.equals(0): # XXX this is expensive
v = S.Zero
if v is not None:
r = r.func._eval_relation(v, S.Zero)
r = r.canonical
# If there is only one symbol in the expression,
# try to write it on a simplified form
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
if len(free) == 1:
try:
from sympy.solvers.solveset import linear_coeffs
x = free.pop()
dif = r.lhs - r.rhs
m, b = linear_coeffs(dif, x)
if m.is_zero is False:
if m.is_negative:
# Dividing with a negative number, so change order of arguments
# canonical will put the symbol back on the lhs later
r = r.func(-b/m, x)
else:
r = r.func(x, -b/m)
else:
r = r.func(b, S.zero)
except ValueError:
# maybe not a linear function, try polynomial
from sympy.polys import Poly, poly, PolynomialError, gcd
try:
p = poly(dif, x)
c = p.all_coeffs()
constant = c[-1]
c[-1] = 0
scale = gcd(c)
c = [ctmp/scale for ctmp in c]
r = r.func(Poly.from_list(c, x).as_expr(), -constant/scale)
except PolynomialError:
pass
elif len(free) >= 2:
try:
from sympy.solvers.solveset import linear_coeffs
from sympy.polys import gcd
free = list(ordered(free))
dif = r.lhs - r.rhs
m = linear_coeffs(dif, *free)
constant = m[-1]
del m[-1]
scale = gcd(m)
m = [mtmp/scale for mtmp in m]
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
if scale.is_zero is False:
if constant != 0:
# lhs: expression, rhs: constant
newexpr = Add(*[i*j for i, j in nzm])
r = r.func(newexpr, -constant/scale)
else:
# keep first term on lhs
lhsterm = nzm[0][0]*nzm[0][1]
del nzm[0]
newexpr = Add(*[i*j for i, j in nzm])
r = r.func(lhsterm, -newexpr)
else:
r = r.func(constant, S.zero)
except ValueError:
pass
# Did we get a simplified result?
r = r.canonical
measure = kwargs['measure']
if measure(r) < kwargs['ratio']*measure(self):
return r
else:
return self
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
def expand(self, **kwargs):
args = (arg.expand(**kwargs) for arg in self.args)
return self.func(*args)
def __nonzero__(self):
raise TypeError("cannot determine truth value of Relational")
__bool__ = __nonzero__
def _eval_as_set(self):
# self is univariate and periodicity(self, x) in (0, None)
from sympy.solvers.inequalities import solve_univariate_inequality
syms = self.free_symbols
assert len(syms) == 1
x = syms.pop()
return solve_univariate_inequality(self, x, relational=False)
@property
def binary_symbols(self):
# override where necessary
return set()
Rel = Relational
class Equality(Relational):
"""An equal relation between two objects.
Represents that two objects are equal. If they can be easily shown
to be definitively equal (or unequal), this will reduce to True (or
False). Otherwise, the relation is maintained as an unevaluated
Equality object. Use the ``simplify`` function on this object for
more nontrivial evaluation of the equality relation.
As usual, the keyword argument ``evaluate=False`` can be used to
prevent any evaluation.
Examples
========
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
See Also
========
sympy.logic.boolalg.Equivalent : for representing equality between two
boolean expressions
Notes
=====
This class is not the same as the == operator. The == operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
If either object defines an `_eval_Eq` method, it can be used in place of
the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)`
returns anything other than None, that return value will be substituted for
the Equality. If None is returned by `_eval_Eq`, an Equality object will
be created as usual.
Since this object is already an expression, it does not respond to
the method `as_expr` if one tries to create `x - y` from Eq(x, y).
This can be done with the `rewrite(Add)` method.
"""
rel_op = '=='
__slots__ = []
is_Equality = True
def __new__(cls, lhs, rhs=None, **options):
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
from sympy.core.expr import _n2
from sympy.functions.elementary.complexes import arg
from sympy.simplify.simplify import clear_coefficients
from sympy.utilities.iterables import sift
if rhs is None:
SymPyDeprecationWarning(
feature="Eq(expr) with rhs default to 0",
useinstead="Eq(expr, 0)",
issue=16587,
deprecated_since_version="1.5"
).warn()
rhs = 0
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
# If one expression has an _eval_Eq, return its results.
if hasattr(lhs, '_eval_Eq'):
r = lhs._eval_Eq(rhs)
if r is not None:
return r
if hasattr(rhs, '_eval_Eq'):
r = rhs._eval_Eq(lhs)
if r is not None:
return r
# If expressions have the same structure, they must be equal.
if lhs == rhs:
return S.true # e.g. True == True
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
return S.false # True != False
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
isinstance(lhs, Boolean) !=
isinstance(rhs, Boolean)):
return S.false # only Booleans can equal Booleans
if lhs.is_infinite or rhs.is_infinite:
if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
return S.false
if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
return S.false
if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
r = fuzzy_xor([lhs.is_extended_positive, fuzzy_not(rhs.is_extended_positive)])
return S(r)
# Try to split real/imaginary parts and equate them
I = S.ImaginaryUnit
def split_real_imag(expr):
real_imag = lambda t: (
'real' if t.is_extended_real else
'imag' if (I*t).is_extended_real else None)
return sift(Add.make_args(expr), real_imag)
lhs_ri = split_real_imag(lhs)
if not lhs_ri[None]:
rhs_ri = split_real_imag(rhs)
if not rhs_ri[None]:
eq_real = Eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']))
eq_imag = Eq(I*Add(*lhs_ri['imag']), I*Add(*rhs_ri['imag']))
res = fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
if res is not None:
return S(res)
# Compare e.g. zoo with 1+I*oo by comparing args
arglhs = arg(lhs)
argrhs = arg(rhs)
# Guard against Eq(nan, nan) -> False
if not (arglhs == S.NaN and argrhs == S.NaN):
res = fuzzy_bool(Eq(arglhs, argrhs))
if res is not None:
return S(res)
return Relational.__new__(cls, lhs, rhs, **options)
if all(isinstance(i, Expr) for i in (lhs, rhs)):
# see if the difference evaluates
dif = lhs - rhs
z = dif.is_zero
if z is not None:
if z is False and dif.is_commutative: # issue 10728
return S.false
if z:
return S.true
# evaluate numerically if possible
n2 = _n2(lhs, rhs)
if n2 is not None:
return _sympify(n2 == 0)
# see if the ratio evaluates
n, d = dif.as_numer_denom()
rv = None
if n.is_zero:
rv = d.is_nonzero
elif n.is_finite:
if d.is_infinite:
rv = S.true
elif n.is_zero is False:
rv = d.is_infinite
if rv is None:
# if the condition that makes the denominator
# infinite does not make the original expression
# True then False can be returned
l, r = clear_coefficients(d, S.Infinity)
args = [_.subs(l, r) for _ in (lhs, rhs)]
if args != [lhs, rhs]:
rv = fuzzy_bool(Eq(*args))
if rv is True:
rv = None
elif any(a.is_infinite for a in Add.make_args(n)):
# (inf or nan)/x != 0
rv = S.false
if rv is not None:
return _sympify(rv)
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs == rhs)
def _eval_rewrite_as_Add(self, *args, **kwargs):
"""return Eq(L, R) as L - R. To control the evaluation of
the result set pass `evaluate=True` to give L - R;
if `evaluate=None` then terms in L and R will not cancel
but they will be listed in canonical order; otherwise
non-canonical args will be returned.
Examples
========
>>> from sympy import Eq, Add
>>> from sympy.abc import b, x
>>> eq = Eq(x + b, x - b)
>>> eq.rewrite(Add)
2*b
>>> eq.rewrite(Add, evaluate=None).args
(b, b, x, -x)
>>> eq.rewrite(Add, evaluate=False).args
(b, x, b, -x)
"""
L, R = args
evaluate = kwargs.get('evaluate', True)
if evaluate:
# allow cancellation of args
return L - R
args = Add.make_args(L) + Add.make_args(-R)
if evaluate is None:
# no cancellation, but canonical
return _unevaluated_Add(*args)
# no cancellation, not canonical
return Add._from_args(args)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, **kwargs):
from sympy.solvers.solveset import linear_coeffs
# standard simplify
e = super(Equality, self)._eval_simplify(**kwargs)
if not isinstance(e, Equality):
return e
free = self.free_symbols
if len(free) == 1:
try:
x = free.pop()
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
if m.is_zero is False:
enew = e.func(x, -b/m)
else:
enew = e.func(m*x, -b)
measure = kwargs['measure']
if measure(enew) <= kwargs['ratio']*measure(e):
e = enew
except ValueError:
pass
return e.canonical
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals import integrate
return integrate(self, *args, **kwargs)
def as_poly(self, *gens, **kwargs):
'''Returns lhs-rhs as a Poly
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y
>>> Eq(x**2, 1).as_poly(x)
Poly(x**2 - 1, x, domain='ZZ')
'''
return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
Eq = Equality
class Unequality(Relational):
"""An unequal relation between two objects.
Represents that two objects are not equal. If they can be shown to be
definitively equal, this will reduce to False; if definitively unequal,
this will reduce to True. Otherwise, the relation is maintained as an
Unequality object.
Examples
========
>>> from sympy import Ne
>>> from sympy.abc import x, y
>>> Ne(y, x+x**2)
Ne(y, x**2 + x)
See Also
========
Equality
Notes
=====
This class is not the same as the != operator. The != operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the
same algorithms, including any available `_eval_Eq` methods.
"""
rel_op = '!='
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
is_equal = Equality(lhs, rhs)
if isinstance(is_equal, BooleanAtom):
return is_equal.negated
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs != rhs)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, **kwargs):
# simplify as an equality
eq = Equality(*self.args)._eval_simplify(**kwargs)
if isinstance(eq, Equality):
# send back Ne with the new args
return self.func(*eq.args)
return eq.negated # result of Ne is the negated Eq
Ne = Unequality
class _Inequality(Relational):
"""Internal base class for all *Than types.
Each subclass must implement _eval_relation to provide the method for
comparing two real numbers.
"""
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_parameters.evaluate)
if evaluate:
# First we invoke the appropriate inequality method of `lhs`
# (e.g., `lhs.__lt__`). That method will try to reduce to
# boolean or raise an exception. It may keep calling
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
# In some cases, `Expr` will just invoke us again (if neither it
# nor a subclass was able to reduce to boolean or raise an
# exception). In that case, it must call us with
# `evaluate=False` to prevent infinite recursion.
r = cls._eval_relation(lhs, rhs)
if r is not None:
return r
# Note: not sure r could be None, perhaps we never take this
# path? In principle, could use this to shortcut out if a
# class realizes the inequality cannot be evaluated further.
# make a "non-evaluated" Expr for the inequality
return Relational.__new__(cls, lhs, rhs, **options)
class _Greater(_Inequality):
"""Not intended for general use
_Greater is only used so that GreaterThan and StrictGreaterThan may
subclass it for the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[0]
@property
def lts(self):
return self._args[1]
class _Less(_Inequality):
"""Not intended for general use.
_Less is only used so that LessThan and StrictLessThan may subclass it for
the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[1]
@property
def lts(self):
return self._args[0]
class GreaterThan(_Greater):
"""Class representations of inequalities.
Extended Summary
================
The ``*Than`` classes represent inequal relationships, where the left-hand
side is generally bigger or smaller than the right-hand side. For example,
the GreaterThan class represents an inequal relationship where the
left-hand side is at least as big as the right side, if not bigger. In
mathematical notation:
lhs >= rhs
In total, there are four ``*Than`` classes, to represent the four
inequalities:
+-----------------+--------+
|Class Name | Symbol |
+=================+========+
|GreaterThan | (>=) |
+-----------------+--------+
|LessThan | (<=) |
+-----------------+--------+
|StrictGreaterThan| (>) |
+-----------------+--------+
|StrictLessThan | (<) |
+-----------------+--------+
All classes take two arguments, lhs and rhs.
+----------------------------+-----------------+
|Signature Example | Math equivalent |
+============================+=================+
|GreaterThan(lhs, rhs) | lhs >= rhs |
+----------------------------+-----------------+
|LessThan(lhs, rhs) | lhs <= rhs |
+----------------------------+-----------------+
|StrictGreaterThan(lhs, rhs) | lhs > rhs |
+----------------------------+-----------------+
|StrictLessThan(lhs, rhs) | lhs < rhs |
+----------------------------+-----------------+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
objects also have the .lts and .gts properties, which represent the "less
than side" and "greater than side" of the operator. Use of .lts and .gts
in an algorithm rather than .lhs and .rhs as an assumption of inequality
direction will make more explicit the intent of a certain section of code,
and will make it similarly more robust to client code changes:
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
Examples
========
One generally does not instantiate these classes directly, but uses various
convenience methods:
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
Another option is to use the Python inequality operators (>=, >, <=, <)
directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts,
is that one can write a more "mathematical looking" statement rather than
littering the math with oddball function calls. However there are certain
(minor) caveats of which to be aware (search for 'gotcha', below).
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
However, it is also perfectly valid to instantiate a ``*Than`` class less
succinctly and less conveniently:
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
Notes
=====
There are a couple of "gotchas" to be aware of when using Python's
operators.
The first is that what your write is not always what you get:
>>> 1 < x
x > 1
Due to the order that Python parses a statement, it may
not immediately find two objects comparable. When "1 < x"
is evaluated, Python recognizes that the number 1 is a native
number and that x is *not*. Because a native Python number does
not know how to compare itself with a SymPy object
Python will try the reflective operation, "x > 1" and that is the
form that gets evaluated, hence returned.
If the order of the statement is important (for visual output to
the console, perhaps), one can work around this annoyance in a
couple ways:
(1) "sympify" the literal before comparison
>>> S(1) < x
1 < x
(2) use one of the wrappers or less succinct methods described
above
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
The second gotcha involves writing equality tests between relationals
when one or both sides of the test involve a literal relational:
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
The solution for this case is to wrap literal relationals in
parentheses:
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
The third gotcha involves chained inequalities not involving
'==' or '!='. Occasionally, one may be tempted to write:
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
Due to an implementation detail or decision of Python [1]_,
there is no way for SymPy to create a chained inequality with
that syntax so one must use And:
>>> e = And(x < y, y < z)
>>> type( e )
And
>>> e
(x < y) & (y < z)
Although this can also be done with the '&' operator, it cannot
be done with the 'and' operarator:
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
.. [1] This implementation detail is that Python provides no reliable
method to determine that a chained inequality is being built.
Chained comparison operators are evaluated pairwise, using "and"
logic (see
http://docs.python.org/2/reference/expressions.html#notin). This
is done in an efficient way, so that each object being compared
is only evaluated once and the comparison can short-circuit. For
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
> 3)``. The ``and`` operator coerces each side into a bool,
returning the object itself when it short-circuits. The bool of
the --Than operators will raise TypeError on purpose, because
SymPy cannot determine the mathematical ordering of symbolic
expressions. Thus, if we were to compute ``x > y > z``, with
``x``, ``y``, and ``z`` being Symbols, Python converts the
statement (roughly) into these steps:
(1) x > y > z
(2) (x > y) and (y > z)
(3) (GreaterThanObject) and (y > z)
(4) (GreaterThanObject.__nonzero__()) and (y > z)
(5) TypeError
Because of the "and" added at step 2, the statement gets turned into a
weak ternary statement, and the first object's __nonzero__ method will
raise TypeError. Thus, creating a chained inequality is not possible.
In Python, there is no way to override the ``and`` operator, or to
control how it short circuits, so it is impossible to make something
like ``x > y > z`` work. There was a PEP to change this,
:pep:`335`, but it was officially closed in March, 2012.
"""
__slots__ = ()
rel_op = '>='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__ge__(rhs))
Ge = GreaterThan
class LessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__le__(rhs))
Le = LessThan
class StrictGreaterThan(_Greater):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '>'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__gt__(rhs))
Gt = StrictGreaterThan
class StrictLessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__lt__(rhs))
Lt = StrictLessThan
# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
None: Equality,
'==': Equality,
'eq': Equality,
'!=': Unequality,
'<>': Unequality,
'ne': Unequality,
'>=': GreaterThan,
'ge': GreaterThan,
'<=': LessThan,
'le': LessThan,
'>': StrictGreaterThan,
'gt': StrictGreaterThan,
'<': StrictLessThan,
'lt': StrictLessThan,
}
|
b58ceb78708e9ceaf0a36f822e25dbb710514649116aa6753015f26ff6a4cbd5 | from __future__ import absolute_import, print_function, division
import numbers
import decimal
import fractions
import math
import re as regex
from .containers import Tuple
from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .evalf import pure_complex
from .decorators import _sympifyit
from .cache import cacheit, clear_cache
from .logic import fuzzy_not
from sympy.core.compatibility import (
as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY,
SYMPY_INTS, int_info)
from sympy.core.cache import lru_cache
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp import bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero, _normalize as mpf_normalize,
prec_to_dps, fone, fnone)
from sympy.utilities.misc import debug, filldedent
from .parameters import global_parameters
from sympy.utilities.exceptions import SymPyDeprecationWarning
rnd = mlib.round_nearest
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
"""Return a bool indicating whether the error between z1 and z2
is <= tol.
Examples
========
If ``tol`` is None then True will be returned if
``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the
decimal precision of each value.
>>> from sympy.core.numbers import comp, pi
>>> pi4 = pi.n(4); pi4
3.142
>>> comp(_, 3.142)
True
>>> comp(pi4, 3.141)
False
>>> comp(pi4, 3.143)
False
A comparison of strings will be made
if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''.
>>> comp(pi4, 3.1415)
True
>>> comp(pi4, 3.1415, '')
False
When ``tol`` is provided and ``z2`` is non-zero and
``|z1| > 1`` the error is normalized by ``|z1|``:
>>> abs(pi4 - 3.14)/pi4
0.000509791731426756
>>> comp(pi4, 3.14, .001) # difference less than 0.1%
True
>>> comp(pi4, 3.14, .0005) # difference less than 0.1%
False
When ``|z1| <= 1`` the absolute error is used:
>>> 1/pi4
0.3183
>>> abs(1/pi4 - 0.3183)/(1/pi4)
3.07371499106316e-5
>>> abs(1/pi4 - 0.3183)
9.78393554684764e-6
>>> comp(1/pi4, 0.3183, 1e-5)
True
To see if the absolute error between ``z1`` and ``z2`` is less
than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)``
or ``comp(z1 - z2, tol=tol)``:
>>> abs(pi4 - 3.14)
0.00160156249999988
>>> comp(pi4 - 3.14, 0, .002)
True
>>> comp(pi4 - 3.14, 0, .001)
False
"""
if type(z2) is str:
if not pure_complex(z1, or_real=True):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
a, b = z1, z2
if tol == '':
return str(a) == str(b)
if tol is None:
a, b = sympify(a), sympify(b)
if not all(i.is_number for i in (a, b)):
raise ValueError('expecting 2 numbers')
fa = a.atoms(Float)
fb = b.atoms(Float)
if not fa and not fb:
# no floats -- compare exactly
return a == b
# get a to be pure_complex
for do in range(2):
ca = pure_complex(a, or_real=True)
if not ca:
if fa:
a = a.n(prec_to_dps(min([i._prec for i in fa])))
ca = pure_complex(a, or_real=True)
break
else:
fa, fb = fb, fa
a, b = b, a
cb = pure_complex(b)
if not cb and fb:
b = b.n(prec_to_dps(min([i._prec for i in fb])))
cb = pure_complex(b, or_real=True)
if ca and cb and (ca[1] or cb[1]):
return all(comp(i, j) for i, j in zip(ca, cb))
tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec)))
return int(abs(a - b)*tol) <= 5
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return fzero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should sympy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
The algorithm is based on the well known Euclid's algorithm. To
improve speed, igcd() has its own caching mechanism implemented.
Examples
========
>>> from sympy.core.numbers import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
for b in args_temp:
a = igcd2(a, b) if b else a
return a
try:
from math import gcd as igcd2
except ImportError:
def igcd2(a, b):
"""Compute gcd of two Python integers a and b."""
if (a.bit_length() > BIGBITS and
b.bit_length() > BIGBITS):
return igcd_lehmer(a, b)
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a
# Use Lehmer's algorithm only for very large numbers.
# The limit could be different on Python 2.7 and 3.x.
# If so, then this could be defined in compatibility.py.
BIGBITS = 5000
def igcd_lehmer(a, b):
"""Computes greatest common divisor of two integers.
Euclid's algorithm for the computation of the greatest
common divisor gcd(a, b) of two (positive) integers
a and b is based on the division identity
a = q*b + r,
where the quotient q and the remainder r are integers
and 0 <= r < b. Then each common divisor of a and b
divides r, and it follows that gcd(a, b) == gcd(b, r).
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, q = a // b and r = a % b are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm is based on the observation that the quotients
qn = r(n-1) // rn are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy.core.numbers import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
"""
Return the number c such that, (a * c) = 1 (mod m)
where c has the same sign as m. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import S
>>> from sympy.core.numbers import mod_inverse
Suppose we wish to find multiplicative inverse x of
3 modulo 11. This is the same as finding x such
that 3 * x = 1 (mod 11). One value of x that satisfies
this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11).
This is the value returned by mod_inverse:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
``a`` and ``m`` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, y, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if not (big is S.true or big is S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = []
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, string_types):
_obj = obj.lower() # float('INF') == float('inf')
if _obj == 'nan':
return S.NaN
elif _obj == 'inf':
return S.Infinity
elif _obj == '+inf':
return S.Infinity
elif _obj == '-inf':
return S.NegativeInfinity
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from .containers import Tuple
from sympy.functions.elementary.complexes import sign
try:
other = Number(other)
if self.is_infinite or S.NaN in (self, other):
return (S.NaN, S.NaN)
except TypeError:
return NotImplemented
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
elif isinstance(other, Float):
rat = self/Rational(other)
else:
rat = self/other
if other.is_finite:
w = int(rat) if rat > 0 else int(rat) - 1
r = self - other*w
else:
w = 0 if not self or (sign(self) == sign(other)) else -1
r = other if w else self
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
return NotImplemented
return divmod(other, self)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
def _eval_is_finite(self):
return True
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity or other is S.NegativeInfinity:
return S.Zero
return AtomicExpr.__div__(self, other)
__truediv__ = __div__
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super(Number, self).__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, **kwargs):
# a -> c*t
if self.is_Rational or not kwargs.pop('rational', True):
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; spaces or underscores are also allowed. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
In SymPy, a Float is a number that can be computed with arbitrary
precision. Although floating point 'inf' and 'nan' are not such
numbers, Float can create these numbers:
>>> Float('-inf')
-oo
>>> _.is_Float
False
"""
__slots__ = ['_mpf_', '_prec']
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_extended_real = True
is_Float = True
def __new__(cls, num, dps=None, prec=None, precision=None):
if prec is not None:
SymPyDeprecationWarning(
feature="Using 'prec=XX' to denote decimal precision",
useinstead="'dps=XX' for decimal precision and 'precision=XX' "\
"for binary precision",
issue=12820,
deprecated_since_version="1.1").warn()
dps = prec
del prec # avoid using this deprecated kwarg
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, string_types):
# Float accepts spaces as digit separators
num = num.replace(' ', '').lower()
# in Py 3.6
# underscores are allowed. In anticipation of that, we ignore
# legally placed underscores
if '_' in num:
parts = num.split('_')
if not (all(parts) and
all(parts[i][-1].isdigit()
for i in range(0, len(parts), 2)) and
all(parts[i][0].isdigit()
for i in range(1, len(parts), 2))):
# copy Py 3.6 error
raise ValueError("could not convert string to float: '%s'" % num)
num = ''.join(parts)
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif num in ('inf', '+inf'):
return S.Infinity
elif num == '-inf':
return S.NegativeInfinity
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, float) and num == float('inf'):
return S.Infinity
elif isinstance(num, float) and num == float('-inf'):
return S.NegativeInfinity
elif isinstance(num, float) and num == float('nan'):
return S.NaN
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num)
elif num is S.Infinity:
return num
elif num is S.NegativeInfinity:
return num
elif num is S.NaN:
return num
elif type(num).__module__ == 'numpy': # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, string_types) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = mlib.libmpf.dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, string_types):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = mlib.libmpf.dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = mlib.libmpf.dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, string_types):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
return S.NaN
elif num.is_infinite():
if num > 0:
return S.Infinity
return S.NegativeInfinity
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if type(num[1]) is str:
# it's a hexadecimal (coming from a pickled object)
# assume that it is in standard form
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
if not all((
num[0] in (0, 1),
num[1] >= 0,
all(type(i) in (long, int) for i in num)
)):
raise ValueError('malformed mpf: %s' % (num,))
# don't compute number or else it may
# over/underflow
return Float._new(
(num[0], num[1], num[2], bitcount(num[1])),
precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
return cls._new(_mpf_, precision, zero=False)
@classmethod
def _new(cls, _mpf_, _prec, zero=True):
# special cases
if zero and _mpf_ == fzero:
return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs__(self):
return (mlib.to_pickable(self._mpf_),)
def __getstate__(self):
return {'_prec': self._prec}
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == fzero
def _eval_is_negative(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num > 0
def _eval_is_extended_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_extended_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == fzero
def __nonzero__(self):
return self._mpf_ != fzero
__bool__ = __nonzero__
def __neg__(self):
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and other != 0 and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__div__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_parameters.evaluate:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_parameters.evaluate:
return other.__mod__(self)
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_positive:
return S.Zero
if expt.is_negative:
return S.Infinity
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, fzero), (expt, fzero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == fzero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
__long__ = __int__
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
# comparison is exact
# so Float(.1, 3) != Float(.1, 33)
return self._mpf_ == other._mpf_
if other.is_Rational:
return other.__eq__(self)
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def _Frel(self, other, op):
from sympy.core.evalf import evalf
from sympy.core.numbers import prec_to_dps
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Rational:
# test self*other.q <?> other.p without losing precision
'''
>>> f = Float(.1,2)
>>> i = 1234567890
>>> (f*i)._mpf_
(0, 471, 18, 9)
>>> mlib.mpf_mul(f._mpf_, mlib.from_int(i))
(0, 505555550955, -12, 39)
'''
smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q))
ompf = mlib.from_int(other.p)
return _sympify(bool(op(smpf, ompf)))
elif other.is_Float:
return _sympify(bool(
op(self._mpf_, other._mpf_)))
elif other.is_comparable and other not in (
S.Infinity, S.NegativeInfinity):
other = other.evalf(prec_to_dps(self._prec))
if other._prec > 1:
if other.is_Number:
return _sympify(bool(
op(self._mpf_, other._as_mpf_val(self._prec))))
def __gt__(self, other):
if isinstance(other, NumberSymbol):
return other.__lt__(self)
rv = self._Frel(other, mlib.mpf_gt)
if rv is None:
return Expr.__gt__(self, other)
return rv
def __ge__(self, other):
if isinstance(other, NumberSymbol):
return other.__le__(self)
rv = self._Frel(other, mlib.mpf_ge)
if rv is None:
return Expr.__ge__(self, other)
return rv
def __lt__(self, other):
if isinstance(other, NumberSymbol):
return other.__gt__(self)
rv = self._Frel(other, mlib.mpf_lt)
if rv is None:
return Expr.__lt__(self, other)
return rv
def __le__(self, other):
if isinstance(other, NumberSymbol):
return other.__ge__(self)
rv = self._Frel(other, mlib.mpf_le)
if rv is None:
return Expr.__le__(self, other)
return rv
def __hash__(self):
return super(Float, self).__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def _sage_(self):
import sage.all as sage
return sage.RealNumber(str(self))
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
See Also
========
sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ['p', 'q']
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, string_types):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
else:
p = Rational(p)
q = Rational(q)
if isinstance(q, Rational):
p *= q.q
q = q.p
if isinstance(p, Rational):
q *= p.q
p = p.p
# p and q are now integers
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__div__(self, other)
return Number.__div__(self, other)
@_sympifyit('other', NotImplemented)
def __rdiv__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rdiv__(self, other)
return Number.__rdiv__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_extended_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
if self.p != 1:
# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
return Integer(self.p)**expt*Integer(self.q)**(-expt)
# as the above caught negative self.p, now self is positive
return Integer(self.q)**Rational(
expt.p*(expt.q - 1), expt.q) / \
Integer(self.q)**Integer(expt.p)
if self.is_extended_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
__long__ = __int__
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __eq__(self, other):
from sympy.core.power import integer_log
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, Number):
# S(0) == S.false is False
# S(0) == False is True
return False
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
# all Floats have a denominator that is a power of 2
# so if self doesn't, it can't be equal to other
if self.q & (self.q - 1):
return False
s, m, t = other._mpf_[:3]
if s:
m = -m
if not t:
# other is an odd integer
if not self.is_Integer or self.is_even:
return False
return m == self.p
if t > 0:
# other is an even integer
if not self.is_Integer:
return False
# does m*2**t == self.p
return self.p and not self.p % m and \
integer_log(self.p//m, 2) == (t, True)
# does non-integer s*m/2**-t = p/q?
if self.is_Integer:
return False
return m == self.p and integer_log(self.q, 2) == (-t, True)
return False
def __ne__(self, other):
return not self == other
def _Rrel(self, other, attr):
# if you want self < other, pass self, other, __gt__
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Number:
op = None
s, o = self, other
if other.is_NumberSymbol:
op = getattr(o, attr)
elif other.is_Float:
op = getattr(o, attr)
elif other.is_Rational:
s, o = Integer(s.p*o.q), Integer(s.q*o.p)
op = getattr(o, attr)
if op:
return op(s)
if o.is_number and o.is_extended_real:
return Integer(s.p), s.q*o
def __gt__(self, other):
rv = self._Rrel(other, '__lt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__gt__(*rv)
def __ge__(self, other):
rv = self._Rrel(other, '__le__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__ge__(*rv)
def __lt__(self, other):
rv = self._Rrel(other, '__gt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__lt__(*rv)
def __le__(self, other):
rv = self._Rrel(other, '__ge__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__le__(*rv)
def __hash__(self):
return super(Rational, self).__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
def numerator(self):
return self.p
def denominator(self):
return self.q
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other == S.Zero:
return other
return Rational(
Integer(igcd(self.p, other.p)),
Integer(ilcm(self.q, other.q)))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def _sage_(self):
import sage.all as sage
return sage.Integer(self.p)/sage.Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ['p']
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, string_types):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
__long__ = __int__
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
from .containers import Tuple
if isinstance(other, Integer) and global_parameters.evaluate:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
from .containers import Tuple
if isinstance(other, integer_types) and global_parameters.evaluate:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_parameters.evaluate:
if isinstance(other, integer_types):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, integer_types):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy.ntheory.factor_ import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super(Integer, self)._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self)**ne
else:
return Rational(1, self.p)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
@_sympifyit('other', NotImplemented)
def __floordiv__(self, other):
if not isinstance(other, Expr):
return NotImplemented
if isinstance(other, Integer):
return Integer(self.p // other)
return Integer(divmod(self, other)[0])
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# Add sympify converters
for i_type in integer_types:
converter[i_type] = Integer
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ['rep', 'root', 'alias', 'minpoly']
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
def __new__(cls, expr, coeffs=None, alias=None, **args):
"""Construct a new algebraic number. """
from sympy import Poly
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
from sympy.core.symbol import Symbol
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
sargs = (root, scoeffs)
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __hash__(self):
return super(AlgebraicNumber, self).__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy import Dummy, Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, **kwargs):
from sympy.polys import CRootOf, minpoly
measure, ratio = kwargs['measure'], kwargs['ratio']
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(with_metaclass(Singleton, IntegerConstant)):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer, zoo
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
is_comparable = True
__slots__ = []
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative:
return S.ComplexInfinity
if expt.is_extended_real is False:
return S.NaN
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __nonzero__(self):
return False
__bool__ = __nonzero__
def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted
"""Efficiently extract the coefficient of a summation. """
return S.One, self
class One(with_metaclass(Singleton, IntegerConstant)):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
p = 1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(with_metaclass(Singleton, IntegerConstant)):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt is S.Infinity or expt is S.NegativeInfinity:
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(with_metaclass(Singleton, RationalConstant)):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = []
@staticmethod
def __abs__():
return S.Half
class Infinity(with_metaclass(Singleton, Number)):
r"""Positive infinite quantity.
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_number = True
is_complex = False
is_extended_real = True
is_infinite = True
is_comparable = True
is_extended_positive = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.NegativeInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.NegativeInfinity
return Number.__div__(self, other)
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
from sympy.functions import re
if expt.is_extended_positive:
return S.Infinity
if expt.is_extended_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_extended_real is False and expt.is_number:
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def _sage_(self):
import sage.all as sage
return sage.oo
def __hash__(self):
return super(Infinity, self).__hash__()
def __eq__(self, other):
return other is S.Infinity or other == float('inf')
def __ne__(self, other):
return other is not S.Infinity and other != float('inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(with_metaclass(Singleton, Number)):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_extended_real = True
is_complex = False
is_commutative = True
is_infinite = True
is_comparable = True
is_extended_negative = True
is_number = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('-inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.Infinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.Infinity
return Number.__div__(self, other)
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_extended_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
return S.NegativeOne**expt*S.Infinity**expt
def _as_mpf_val(self, prec):
return mlib.fninf
def _sage_(self):
import sage.all as sage
return -(sage.oo)
def __hash__(self):
return super(NegativeInfinity, self).__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity or other == float('-inf')
def __ne__(self, other):
return other is not S.NegativeInfinity and other != float('-inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
def as_powers_dict(self):
return {S.NegativeOne: 1, S.Infinity: 1}
class NaN(with_metaclass(Singleton, Number)):
"""
Not a Number.
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
contrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_extended_real = None
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
def __neg__(self):
return self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __div__(self, other):
return self
__truediv__ = __div__
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def _sage_(self):
import sage.all as sage
return sage.NaN
def __hash__(self):
return super(NaN, self).__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
def _eval_Eq(self, other):
# NaN is not mathematically equal to anything, even NaN
return S.false
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)):
r"""Complex infinity.
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo, oo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = False
is_extended_real = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt.is_zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
def _sage_(self):
import sage.all as sage
return sage.UnsignedInfinityRing.gen()
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = []
is_NumberSymbol = True
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __long__(self):
return self.__int__()
def __hash__(self):
return super(NumberSymbol, self).__hash__()
class Exp1(with_metaclass(Singleton, NumberSymbol)):
r"""The `e` constant.
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
from sympy import exp
return exp(expt)
def _eval_rewrite_as_sin(self, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I) + I*cos(I + S.Pi/2)
def _sage_(self):
import sage.all as sage
return sage.e
E = S.Exp1
class Pi(with_metaclass(Singleton, NumberSymbol)):
r"""The `\pi` constant.
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71), Rational(22, 7))
def _sage_(self):
import sage.all as sage
return sage.pi
pi = S.Pi
class GoldenRatio(with_metaclass(Singleton, NumberSymbol)):
r"""The golden ratio, `\phi`.
`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
def _sage_(self):
import sage.all as sage
return sage.golden_ratio
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)):
r"""The tribonacci constant.
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 2
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt, cbrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(with_metaclass(Singleton, NumberSymbol)):
r"""The Euler-Mascheroni constant.
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5))
def _sage_(self):
import sage.all as sage
return sage.euler_gamma
class Catalan(with_metaclass(Singleton, NumberSymbol)):
r"""Catalan's constant.
`K = 0.91596559\ldots` is given by the infinite series
.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10), S.One)
def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None):
from sympy import Sum, Dummy
if (k_sym is not None) or (symbols is not None):
return self
k = Dummy('k', integer=True, nonnegative=True)
return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity))
def _sage_(self):
import sage.all as sage
return sage.catalan
class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Number):
if isinstance(expt, Integer):
expt = expt.p % 4
if expt == 0:
return S.One
if expt == 1:
return S.ImaginaryUnit
if expt == 2:
return -S.One
return -S.ImaginaryUnit
return
def as_base_exp(self):
return S.NegativeOne, S.Half
def _sage_(self):
import sage.all as sage
return sage.I
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
converter[fractions.Fraction] = sympify_fractions
try:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
else:
raise ImportError
def sympify_mpz(x):
return Integer(long(x))
def sympify_mpq(x):
return Rational(long(x.numerator), long(x.denominator))
converter[type(gmpy.mpz(1))] = sympify_mpz
converter[type(gmpy.mpq(1, 2))] = sympify_mpq
except ImportError:
pass
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
converter[mpnumeric] = sympify_mpmath
def sympify_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
def _register_classes():
numbers.Number.register(Number)
numbers.Real.register(Float)
numbers.Rational.register(Rational)
numbers.Rational.register(Integer)
_register_classes()
|
a0b0caa5ba6d1a24868b7978876e173ef8f62cad5c6250f4ed927e1813476194 | """sympify -- convert objects SymPy internal format"""
from __future__ import print_function, division
from inspect import getmro
from .core import all_classes as sympy_classes
from .compatibility import iterable, string_types, range
from .parameters import global_parameters
class SympifyError(ValueError):
def __init__(self, expr, base_exc=None):
self.expr = expr
self.base_exc = base_exc
def __str__(self):
if self.base_exc is None:
return "SympifyError: %r" % (self.expr,)
return ("Sympify of expression '%s' failed, because of exception being "
"raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
str(self.base_exc)))
converter = {} # See sympify docstring.
class CantSympify(object):
"""
Mix in this trait to a class to disallow sympification of its instances.
Examples
========
>>> from sympy.core.sympify import sympify, CantSympify
>>> class Something(dict):
... pass
...
>>> sympify(Something())
{}
>>> class Something(dict, CantSympify):
... pass
...
>>> sympify(Something())
Traceback (most recent call last):
...
SympifyError: SympifyError: {}
"""
pass
def _convert_numpy_types(a, **sympify_args):
"""
Converts a numpy datatype input to an appropriate SymPy type.
"""
import numpy as np
if not isinstance(a, np.floating):
if np.iscomplex(a):
return converter[complex](a.item())
else:
return sympify(a.item(), **sympify_args)
else:
try:
from sympy.core.numbers import Float
prec = np.finfo(a).nmant + 1
# E.g. double precision means prec=53 but nmant=52
# Leading bit of mantissa is always 1, so is not stored
a = str(list(np.reshape(np.asarray(a),
(1, np.size(a)))[0]))[1:-1]
return Float(a, precision=prec)
except NotImplementedError:
raise SympifyError('Translation for numpy float : %s '
'is not implemented' % a)
def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
evaluate=None):
"""Converts an arbitrary expression to a type that can be used inside SymPy.
For example, it will convert Python ints into instances of sympy.Integer,
floats into instances of sympy.Float, etc. It is also able to coerce symbolic
expressions which inherit from Basic. This can be useful in cooperation
with SAGE.
It currently accepts as arguments:
- any object defined in SymPy
- standard numeric python types: int, long, float, Decimal
- strings (like "0.09" or "2e-19")
- booleans, including ``None`` (will leave ``None`` unchanged)
- dict, lists, sets or tuples containing any of the above
.. warning::
Note that this function uses ``eval``, and thus shouldn't be used on
unsanitized input.
If the argument is already a type that SymPy understands, it will do
nothing but return that value. This can be used at the beginning of a
function to ensure you are working with the correct type.
>>> from sympy import sympify
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
>>> sympify(2.0).is_real
True
>>> sympify("2.0").is_real
True
>>> sympify("2e-45").is_real
True
If the expression could not be converted, a SympifyError is raised.
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse u'x***2'"
Locals
------
The sympification happens with access to everything that is loaded
by ``from sympy import *``; anything used in a string that is not
defined by that import will be converted to a symbol. In the following,
the ``bitcount`` function is treated as a symbol and the ``O`` is
interpreted as the Order object (used with series) and it raises
an error when used improperly:
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("O + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
In order to have ``bitcount`` be recognized it can be imported into a
namespace dictionary and passed as locals:
>>> from sympy.core.compatibility import exec_
>>> ns = {}
>>> exec_('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
In order to have the ``O`` interpreted as a Symbol, identify it as such
in the namespace dictionary. This can be done in a variety of ways; all
three of the following are possibilities:
>>> from sympy import Symbol
>>> ns["O"] = Symbol("O") # method 1
>>> exec_('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("O + 1", locals=ns)
O + 1
If you want *all* single-letter and Greek-letter variables to be symbols
then you can use the clashing-symbols dictionaries that have been defined
there as private variables: _clash1 (single-letter variables), _clash2
(the multi-letter Greek names) or _clash (both single and multi-letter
names that are defined in abc).
>>> from sympy.abc import _clash1
>>> _clash1
{'C': C, 'E': E, 'I': I, 'N': N, 'O': O, 'Q': Q, 'S': S}
>>> sympify('I & Q', _clash1)
I & Q
Strict
------
If the option ``strict`` is set to ``True``, only the types for which an
explicit conversion has been defined are converted. In the other
cases, a SympifyError is raised.
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
...
SympifyError: SympifyError: None
Evaluation
----------
If the option ``evaluate`` is set to ``False``, then arithmetic and
operators will be converted into their SymPy equivalents and the
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
be denested first. This is done via an AST transformation that replaces
operators with their SymPy equivalents, so if an operand redefines any
of those operations, the redefined operators will not be used.
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
Extending
---------
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
just define a ``_sympy_`` method to your class. You can do that even to
classes that you do not own by subclassing or adding the method at runtime.
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
... def _sympy_(self): return Matrix(self)
>>> sympify(MyList1())
Matrix([
[1],
[2]])
If you do not have control over the class definition you could also use the
``converter`` global dictionary. The key is the class and the value is a
function that takes a single argument and returns the desired SymPy
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
>>> class MyList2(object): # XXX Do not do this if you control the class!
... def __iter__(self): # Use _sympy_!
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
Notes
=====
The keywords ``rational`` and ``convert_xor`` are only used
when the input is a string.
Sometimes autosimplification during sympification results in expressions
that are very different in structure than what was entered. Until such
autosimplification is no longer done, the ``kernS`` function might be of
some use. In the example below you can see how an expression reduces to
-1 by autosimplification, but does not do so when ``kernS`` is used.
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
"""
is_sympy = getattr(a, '__sympy__', None)
if is_sympy is not None:
return a
if isinstance(a, CantSympify):
raise SympifyError(a)
cls = getattr(a, "__class__", None)
if cls is None:
cls = type(a) # Probably an old-style class
conv = converter.get(cls, None)
if conv is not None:
return conv(a)
for superclass in getmro(cls):
try:
return converter[superclass](a)
except KeyError:
continue
if cls is type(None):
if strict:
raise SympifyError(a)
else:
return a
if evaluate is None:
evaluate = global_parameters.evaluate
# Support for basic numpy datatypes
# Note that this check exists to avoid importing NumPy when not necessary
if type(a).__module__ == 'numpy':
import numpy as np
if np.isscalar(a):
return _convert_numpy_types(a, locals=locals,
convert_xor=convert_xor, strict=strict, rational=rational,
evaluate=evaluate)
_sympy_ = getattr(a, "_sympy_", None)
if _sympy_ is not None:
try:
return a._sympy_()
# XXX: Catches AttributeError: 'SympyConverter' object has no
# attribute 'tuple'
# This is probably a bug somewhere but for now we catch it here.
except AttributeError:
pass
if not strict:
# Put numpy array conversion _before_ float/int, see
# <https://github.com/sympy/sympy/issues/13924>.
flat = getattr(a, "flat", None)
if flat is not None:
shape = getattr(a, "shape", None)
if shape is not None:
from ..tensor.array import Array
return Array(a.flat, a.shape) # works with e.g. NumPy arrays
if not isinstance(a, string_types):
for coerce in (float, int):
try:
coerced = coerce(a)
except (TypeError, ValueError):
continue
# XXX: AttributeError only needed here for Py2
except AttributeError:
continue
try:
return sympify(coerced)
except SympifyError:
continue
if strict:
raise SympifyError(a)
if iterable(a):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
if isinstance(a, dict):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a.items()])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
# At this point we were given an arbitrary expression
# which does not inherit from Basic and doesn't implement
# _sympy_ (which is a canonical and robust way to convert
# anything to SymPy expression).
#
# As a last chance, we try to take "a"'s normal form via unicode()
# and try to parse it. If it fails, then we have no luck and
# return an exception
try:
from .compatibility import unicode
a = unicode(a)
except Exception as exc:
raise SympifyError(a, exc)
from sympy.parsing.sympy_parser import (parse_expr, TokenError,
standard_transformations)
from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
from sympy.parsing.sympy_parser import rationalize as t_rationalize
transformations = standard_transformations
if rational:
transformations += (t_rationalize,)
if convert_xor:
transformations += (t_convert_xor,)
try:
a = a.replace('\n', '')
expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
except (TokenError, SyntaxError) as exc:
raise SympifyError('could not parse %r' % a, exc)
return expr
def _sympify(a):
"""
Short version of sympify for internal usage for __add__ and __eq__ methods
where it is ok to allow some things (like Python integers and floats) in
the expression. This excludes things (like strings) that are unwise to
allow into such an expression.
>>> from sympy import Integer
>>> Integer(1) == 1
True
>>> Integer(1) == '1'
False
>>> from sympy.abc import x
>>> x + 1
x + 1
>>> x + '1'
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
see: sympify
"""
return sympify(a, strict=True)
def kernS(s):
"""Use a hack to try keep autosimplification from distributing a
a number into an Add; this modification doesn't
prevent the 2-arg Mul from becoming an Add, however.
Examples
========
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x, y, z
The 2-arg Mul distributes a number (or minus sign) across the terms
of an expression, but kernS will prevent that:
>>> 2*(x + y), -(x + 1)
(2*x + 2*y, -x - 1)
>>> kernS('2*(x + y)')
2*(x + y)
>>> kernS('-(x + 1)')
-(x + 1)
If use of the hack fails, the un-hacked string will be passed to sympify...
and you get what you get.
XXX This hack should not be necessary once issue 4596 has been resolved.
"""
import string
from random import choice
from sympy.core.symbol import Symbol
hit = False
quoted = '"' in s or "'" in s
if '(' in s and not quoted:
if s.count('(') != s.count(")"):
raise SympifyError('unmatched left parenthesis')
# strip all space from s
s = ''.join(s.split())
olds = s
# now use space to represent a symbol that
# will
# step 1. turn potential 2-arg Muls into 3-arg versions
# 1a. *( -> * *(
s = s.replace('*(', '* *(')
# 1b. close up exponentials
s = s.replace('** *', '**')
# 2. handle the implied multiplication of a negated
# parenthesized expression in two steps
# 2a: -(...) --> -( *(...)
target = '-( *('
s = s.replace('-(', target)
# 2b: double the matching closing parenthesis
# -( *(...) --> -( *(...))
i = nest = 0
assert target.endswith('(') # assumption below
while True:
j = s.find(target, i)
if j == -1:
break
j += len(target) - 1
for j in range(j, len(s)):
if s[j] == "(":
nest += 1
elif s[j] == ")":
nest -= 1
if nest == 0:
break
s = s[:j] + ")" + s[j:]
i = j + 2 # the first char after 2nd )
if ' ' in s:
# get a unique kern
kern = '_'
while kern in s:
kern += choice(string.ascii_letters + string.digits)
s = s.replace(' ', kern)
hit = kern in s
for i in range(2):
try:
expr = sympify(s)
break
except: # the kern might cause unknown errors, so use bare except
if hit:
s = olds # maybe it didn't like the kern; use un-kerned s
hit = False
continue
expr = sympify(s) # let original error raise
if not hit:
return expr
rep = {Symbol(kern): 1}
def _clear(expr):
if isinstance(expr, (list, tuple, set)):
return type(expr)([_clear(e) for e in expr])
if hasattr(expr, 'subs'):
return expr.subs(rep, hack2=True)
return expr
expr = _clear(expr)
# hope that kern is not there anymore
return expr
|
6a9c807392d9f798cb8e81626e5b50654645463450467f5668a809f9dd6c0f24 | """Geometrical Points.
Contains
========
Point
Point2D
Point3D
When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:
>>> from sympy.geometry.point import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False
"""
from __future__ import division, print_function
import warnings
from sympy.core import S, sympify, Expr
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.matrices import Matrix
from sympy.core.numbers import Float
from sympy.core.parameters import global_parameters
from sympy.core.add import Add
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name, Undecidable
from .entity import GeometryEntity
class Point(GeometryEntity):
"""A point in a n-dimensional Euclidean space.
Parameters
==========
coords : sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created
as appropriate.
evaluate : if `True` (default), all floats are turn into
exact types.
dim : number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
on_morph : indicates what should happen when the number of
coordinates of a point need to be changed by adding or
removing zeros. Possible values are `'warn'`, `'error'`, or
`ignore` (default). No warning or error is given when `*args`
is empty and `dim` is given. An error is always raised when
trying to remove nonzero coordinates.
Attributes
==========
length
origin: A `Point` representing the origin of the
appropriately-dimensioned space.
Raises
======
TypeError : When instantiating with anything but a Point or sequence
ValueError : when instantiating with a sequence with length < 2 or
when trying to reduce dimensions if keyword `on_morph='error'` is
set.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
is_Point = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
on_morph = kwargs.get('on_morph', 'ignore')
# unpack into coords
coords = args[0] if len(args) == 1 else args
# check args and handle quickly handle Point instances
if isinstance(coords, Point):
# even if we're mutating the dimension of a point, we
# don't reevaluate its coordinates
evaluate = False
if len(coords) == kwargs.get('dim', len(coords)):
return coords
if not is_sequence(coords):
raise TypeError(filldedent('''
Expecting sequence of coordinates, not `{}`'''
.format(func_name(coords))))
# A point where only `dim` is specified is initialized
# to zeros.
if len(coords) == 0 and kwargs.get('dim', None):
coords = (S.Zero,)*kwargs.get('dim')
coords = Tuple(*coords)
dim = kwargs.get('dim', len(coords))
if len(coords) < 2:
raise ValueError(filldedent('''
Point requires 2 or more coordinates or
keyword `dim` > 1.'''))
if len(coords) != dim:
message = ("Dimension of {} needs to be changed "
"from {} to {}.").format(coords, len(coords), dim)
if on_morph == 'ignore':
pass
elif on_morph == "error":
raise ValueError(message)
elif on_morph == 'warn':
warnings.warn(message)
else:
raise ValueError(filldedent('''
on_morph value should be 'error',
'warn' or 'ignore'.'''))
if any(coords[dim:]):
raise ValueError('Nonzero coordinates cannot be removed.')
if any(a.is_number and im(a) for a in coords):
raise ValueError('Imaginary coordinates are not permitted.')
if not all(isinstance(a, Expr) for a in coords):
raise TypeError('Coordinates must be valid SymPy expressions.')
# pad with zeros appropriately
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
# Turn any Floats into rationals and simplify
# any expressions before we instantiate
if evaluate:
coords = coords.xreplace(dict(
[(f, simplify(nsimplify(f, rational=True)))
for f in coords.atoms(Float)]))
# return 2D or 3D instances
if len(coords) == 2:
kwargs['_nocheck'] = True
return Point2D(*coords, **kwargs)
elif len(coords) == 3:
kwargs['_nocheck'] = True
return Point3D(*coords, **kwargs)
# the general Point
return GeometryEntity.__new__(cls, *coords)
def __abs__(self):
"""Returns the distance between this point and the origin."""
origin = Point([0]*len(self))
return Point.distance(origin, self)
def __add__(self, other):
"""Add other to self by incrementing self's coordinates by
those of other.
Notes
=====
>>> from sympy.geometry.point import Point
When sequences of coordinates are passed to Point methods, they
are converted to a Point internally. This __add__ method does
not do that so if floating point values are used, a floating
point result (in terms of SymPy Floats) will be returned.
>>> Point(1, 2) + (.1, .2)
Point2D(1.1, 2.2)
If this is not desired, the `translate` method can be used or
another Point can be added:
>>> Point(1, 2).translate(.1, .2)
Point2D(11/10, 11/5)
>>> Point(1, 2) + Point(.1, .2)
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.translate
"""
try:
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
except TypeError:
raise GeometryError("Don't know how to add {} and a Point object".format(other))
coords = [simplify(a + b) for a, b in zip(s, o)]
return Point(coords, evaluate=False)
def __contains__(self, item):
return item in self.args
def __div__(self, divisor):
"""Divide point's coordinates by a factor."""
divisor = sympify(divisor)
coords = [simplify(x/divisor) for x in self.args]
return Point(coords, evaluate=False)
def __eq__(self, other):
if not isinstance(other, Point) or len(self.args) != len(other.args):
return False
return self.args == other.args
def __getitem__(self, key):
return self.args[key]
def __hash__(self):
return hash(self.args)
def __iter__(self):
return self.args.__iter__()
def __len__(self):
return len(self.args)
def __mul__(self, factor):
"""Multiply point's coordinates by a factor.
Notes
=====
>>> from sympy.geometry.point import Point
When multiplying a Point by a floating point number,
the coordinates of the Point will be changed to Floats:
>>> Point(1, 2)*0.1
Point2D(0.1, 0.2)
If this is not desired, the `scale` method can be used or
else only multiply or divide by integers:
>>> Point(1, 2).scale(1.1, 1.1)
Point2D(11/10, 11/5)
>>> Point(1, 2)*11/10
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.scale
"""
factor = sympify(factor)
coords = [simplify(x*factor) for x in self.args]
return Point(coords, evaluate=False)
def __rmul__(self, factor):
"""Multiply a factor by point's coordinates."""
return self.__mul__(factor)
def __neg__(self):
"""Negate the point."""
coords = [-x for x in self.args]
return Point(coords, evaluate=False)
def __sub__(self, other):
"""Subtract two points, or subtract a factor from this point's
coordinates."""
return self + [-x for x in other]
@classmethod
def _normalize_dimension(cls, *points, **kwargs):
"""Ensure that points have the same dimension.
By default `on_morph='warn'` is passed to the
`Point` constructor."""
# if we have a built-in ambient dimension, use it
dim = getattr(cls, '_ambient_dimension', None)
# override if we specified it
dim = kwargs.get('dim', dim)
# if no dim was given, use the highest dimensional point
if dim is None:
dim = max(i.ambient_dimension for i in points)
if all(i.ambient_dimension == dim for i in points):
return list(points)
kwargs['dim'] = dim
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
return [Point(i, **kwargs) for i in points]
@staticmethod
def affine_rank(*args):
"""The affine rank of a set of points is the dimension
of the smallest affine space containing all the points.
For example, if the points lie on a line (and are not all
the same) their affine rank is 1. If the points lie on a plane
but not a line, their affine rank is 2. By convention, the empty
set has affine rank -1."""
if len(args) == 0:
return -1
# make sure we're genuinely points
# and translate every point to the origin
points = Point._normalize_dimension(*[Point(i) for i in args])
origin = points[0]
points = [i - origin for i in points[1:]]
m = Matrix([i.args for i in points])
# XXX fragile -- what is a better way?
return m.rank(iszerofunc = lambda x:
abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
@property
def ambient_dimension(self):
"""Number of components this point has."""
return getattr(self, '_ambient_dimension', len(self))
@classmethod
def are_coplanar(cls, *points):
"""Return True if there exists a plane in which all the points
lie. A trivial True value is returned if `len(points) < 3` or
all Points are 2-dimensional.
Parameters
==========
A set of points
Raises
======
ValueError : if less than 3 unique points are given
Returns
=======
boolean
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
"""
if len(points) <= 1:
return True
points = cls._normalize_dimension(*[Point(i) for i in points])
# quick exit if we are in 2D
if points[0].ambient_dimension == 2:
return True
points = list(uniq(points))
return Point.affine_rank(*points) <= 2
def distance(self, other):
"""The Euclidean distance between self and another GeometricEntity.
Returns
=======
distance : number or symbolic expression.
Raises
======
TypeError : if other is not recognized as a GeometricEntity or is a
GeometricEntity for which distance is not defined.
See Also
========
sympy.geometry.line.Segment.length
sympy.geometry.point.Point.taxicab_distance
Examples
========
>>> from sympy.geometry import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
The computed distance may be symbolic, too:
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
"""
if not isinstance(other, GeometryEntity):
try:
other = Point(other, dim=self.ambient_dimension)
except TypeError:
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
if isinstance(other, Point):
s, p = Point._normalize_dimension(self, Point(other))
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
distance = getattr(other, 'distance', None)
if distance is None:
raise TypeError("distance between Point and %s is not defined" % type(other))
return distance(self)
def dot(self, p):
"""Return dot product of self with another Point."""
if not is_sequence(p):
p = Point(p) # raise the error via Point
return Add(*(a*b for a, b in zip(self, p)))
def equals(self, other):
"""Returns whether the coordinates of self and other agree."""
# a point is equal to another point if all its components are equal
if not isinstance(other, Point) or len(self) != len(other):
return False
return all(a.equals(b) for a, b in zip(self, other))
def evalf(self, prec=None, **options):
"""Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point
where the coordinates are evaluated as floating point numbers to
the precision indicated (default=15).
Parameters
==========
prec : int
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Rational
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point2D(1/2, 3/2)
>>> p1.evalf()
Point2D(0.5, 1.5)
"""
coords = [x.evalf(prec, **options) for x in self.args]
return Point(*coords, evaluate=False)
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other)
if isinstance(other, Point):
if self == other:
return [self]
p1, p2 = Point._normalize_dimension(self, other)
if p1 == self and p1 == p2:
return [self]
return []
return other.intersection(self)
def is_collinear(self, *args):
"""Returns `True` if there exists a line
that contains `self` and `points`. Returns `False` otherwise.
A trivially True value is returned if no points are given.
Parameters
==========
args : sequence of Points
Returns
=======
is_collinear : boolean
See Also
========
sympy.geometry.line.Line
Examples
========
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
return Point.affine_rank(*points) <= 1
def is_concyclic(self, *args):
"""Do `self` and the given sequence of points lie in a circle?
Returns True if the set of points are concyclic and
False otherwise. A trivial value of True is returned
if there are fewer than 2 other points.
Parameters
==========
args : sequence of Points
Returns
=======
is_concyclic : boolean
Examples
========
>>> from sympy import Point
Define 4 points that are on the unit circle:
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
True
Define a point not on that circle:
>>> p = Point(1, 1)
>>> p.is_concyclic(p1, p2, p3)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
if not Point.affine_rank(*points) <= 2:
return False
origin = points[0]
points = [p - origin for p in points]
# points are concyclic if they are coplanar and
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
# i and j. Rearranging this equation gives us the following
# condition: the matrix `mat` must not a pivot in the last
# column.
mat = Matrix([list(i) + [i.dot(i)] for i in points])
rref, pivots = mat.rref()
if len(origin) not in pivots:
return True
return False
@property
def is_nonzero(self):
"""True if any coordinate is nonzero, False if every coordinate is zero,
and None if it cannot be determined."""
is_zero = self.is_zero
if is_zero is None:
return None
return not is_zero
def is_scalar_multiple(self, p):
"""Returns whether each coordinate of `self` is a scalar
multiple of the corresponding coordinate in point p.
"""
s, o = Point._normalize_dimension(self, Point(p))
# 2d points happen a lot, so optimize this function call
if s.ambient_dimension == 2:
(x1, y1), (x2, y2) = s.args, o.args
rv = (x1*y2 - x2*y1).equals(0)
if rv is None:
raise Undecidable(filldedent(
'''can't determine if %s is a scalar multiple of
%s''' % (s, o)))
# if the vectors p1 and p2 are linearly dependent, then they must
# be scalar multiples of each other
m = Matrix([s.args, o.args])
return m.rank() < 2
@property
def is_zero(self):
"""True if every coordinate is zero, False if any coordinate is not zero,
and None if it cannot be determined."""
nonzero = [x.is_nonzero for x in self.args]
if any(nonzero):
return False
if any(x is None for x in nonzero):
return None
return True
@property
def length(self):
"""
Treating a Point as a Line, this returns 0 for the length of a Point.
Examples
========
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
"""
return S.Zero
def midpoint(self, p):
"""The midpoint between self and point p.
Parameters
==========
p : Point
Returns
=======
midpoint : Point
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
"""
s, p = Point._normalize_dimension(self, Point(p))
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
@property
def origin(self):
"""A point of all zeros of the same ambient dimension
as the current point"""
return Point([0]*len(self), evaluate=False)
@property
def orthogonal_direction(self):
"""Returns a non-zero point that is orthogonal to the
line containing `self` and the origin.
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
"""
dim = self.ambient_dimension
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
if self[0].is_zero:
return Point([1] + (dim - 1)*[0])
if self[1].is_zero:
return Point([0,1] + (dim - 2)*[0])
# if the first two coordinates aren't zero, we can create a non-zero
# orthogonal vector by swapping them, negating one, and padding with zeros
return Point([-self[1], self[0]] + (dim - 2)*[0])
@staticmethod
def project(a, b):
"""Project the point `a` onto the line between the origin
and point `b` along the normal direction.
Parameters
==========
a : Point
b : Point
Returns
=======
p : Point
See Also
========
sympy.geometry.line.LinearEntity.projection
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
"""
a, b = Point._normalize_dimension(Point(a), Point(b))
if b.is_zero:
raise ValueError("Cannot project to the zero vector.")
return b*(a.dot(b) / b.dot(b))
def taxicab_distance(self, p):
"""The Taxicab Distance from self to point p.
Returns the sum of the horizontal and vertical distances to point p.
Parameters
==========
p : Point
Returns
=======
taxicab_distance : The sum of the horizontal
and vertical distances to point p.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
"""
s, p = Point._normalize_dimension(self, Point(p))
return Add(*(abs(a - b) for a, b in zip(s, p)))
def canberra_distance(self, p):
"""The Canberra Distance from self to point p.
Returns the weighted sum of horizontal and vertical distances to
point p.
Parameters
==========
p : Point
Returns
=======
canberra_distance : The weighted sum of horizontal and vertical
distances to point p. The weight used is the sum of absolute values
of the coordinates.
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
Raises
======
ValueError when both vectors are zero.
See Also
========
sympy.geometry.point.Point.distance
"""
s, p = Point._normalize_dimension(self, Point(p))
if self.is_zero and p.is_zero:
raise ValueError("Cannot project to the zero vector.")
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
@property
def unit(self):
"""Return the Point that is in the same direction as `self`
and a distance of 1 from the origin"""
return self / abs(self)
n = evalf
__truediv__ = __div__
class Point2D(Point):
"""A point in a 2-dimensional Euclidean space.
Parameters
==========
coords : sequence of 2 coordinate values.
Attributes
==========
x
y
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When trying to create a point with more than two dimensions.
When `intersection` is called with object other than a Point.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point2D
>>> from sympy.abc import x
>>> Point2D(1, 2)
Point2D(1, 2)
>>> Point2D([1, 2])
Point2D(1, 2)
>>> Point2D(0, x)
Point2D(0, x)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point2D(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point2D(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
_ambient_dimension = 2
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 2
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
return (self.x, self.y, self.x, self.y)
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
See Also
========
translate, scale
Examples
========
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
"""
from sympy import cos, sin, Point
c = cos(angle)
s = sin(angle)
rv = self
if pt is not None:
pt = Point(pt, dim=2)
rv -= pt
x, y = rv.args
rv = Point(c*x - s*y, s*x + c*y)
if pt is not None:
rv += pt
return rv
def scale(self, x=1, y=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
rotate, translate
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return Point(self.x*x, self.y*y)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 3x3 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point2D.rotate
sympy.geometry.point.Point2D.scale
sympy.geometry.point.Point2D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
raise ValueError("matrix must be a 3x3 matrix")
col, row = matrix.shape
x, y = self.args
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
def translate(self, x=0, y=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
sympy.geometry.point.Point2D.rotate, scale
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
>>> t + Point2D(2, 2)
Point2D(2, 3)
"""
return Point(self.x + x, self.y + y)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
"""
return self.args[1]
class Point3D(Point):
"""A point in a 3-dimensional Euclidean space.
Parameters
==========
coords : sequence of 3 coordinate values.
Attributes
==========
x
y
z
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When `intersection` is called with object other than a Point.
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D(0, x, 3)
Point3D(0, x, 3)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
"""
_ambient_dimension = 3
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 3
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@staticmethod
def are_collinear(*points):
"""Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if
the set of points are collinear, or False otherwise.
Parameters
==========
points : sequence of Point
Returns
=======
are_collinear : boolean
See Also
========
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point3D, Matrix
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
"""
return Point.is_collinear(*points)
def direction_cosine(self, point):
"""
Gives the direction cosine between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
"""
a = self.direction_ratio(point)
b = sqrt(Add(*(i**2 for i in a)))
return [(point.x - self.x) / b,(point.y - self.y) / b,
(point.z - self.z) / b]
def direction_ratio(self, point):
"""
Gives the direction ratio between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
"""
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=3)
if isinstance(other, Point3D):
if self == other:
return [self]
return []
return other.intersection(self)
def scale(self, x=1, y=1, z=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
translate
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
"""
if pt:
pt = Point3D(pt)
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
return Point3D(self.x*x, self.y*y, self.z*z)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 4x4 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point3D.scale
sympy.geometry.point.Point3D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
raise ValueError("matrix must be a 4x4 matrix")
col, row = matrix.shape
from sympy.matrices.expressions import Transpose
x, y, z = self.args
m = Transpose(matrix)
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
def translate(self, x=0, y=0, z=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
scale
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
"""
return Point3D(self.x + x, self.y + y, self.z + z)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
"""
return self.args[1]
@property
def z(self):
"""
Returns the Z coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
"""
return self.args[2]
|
e07010923664d7dba79c348182b5a019a9180387cadbadf8c99b0b1e70c1e8d4 | from __future__ import print_function, division
from collections import defaultdict
import inspect
from sympy.core.basic import Basic
from sympy.core.compatibility import (iterable, with_metaclass,
ordered, range, PY3, reduce)
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.decorators import (deprecated, sympify_method_args,
sympify_return)
from sympy.core.evalf import EvalfMixin
from sympy.core.parameters import global_parameters
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_bool, fuzzy_or, fuzzy_and, fuzzy_not
from sympy.core.numbers import Float
from sympy.core.operations import LatticeOp
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.sets.contains import Contains
from sympy.utilities import subsets
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import iproduct, sift, roundrobin
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None
is_UniversalSet = None
is_Complement = None
is_ComplexRegion = False
is_empty = None
is_finite_set = None
@property
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(FiniteSet(3), Interval.Lopen(1, 2))
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it isn't, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the 'in' operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
other = sympify(other, strict=True)
c = self._contains(other)
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval, PowerSet
A power set of an empty set:
>>> from sympy import FiniteSet, EmptySet
>>> A = EmptySet
>>> A.powerset()
FiniteSet(EmptySet)
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
FiniteSet(0, 1)
>>> Interval(0, 1, True, False).boundary
FiniteSet(0, 1)
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), FiniteSet(1, 2, 3))
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
SymPyDeprecationWarning(
feature="ProductSet(iterable)",
useinstead="ProductSet(*iterable)",
issue=17557,
deprecated_since_version="1.5"
).warn()
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
for s2 in _flatten(s.sets):
yield s2
else:
yield s
return ProductSet(*_flatten(self.sets))
def _eval_Eq(self, other):
if not other.is_ProductSet:
return
if len(self.sets) != len(other.sets):
return false
eqs = (Eq(x, y) for x, y in zip(self.sets, other.sets))
return tfn[fuzzy_and(map(fuzzy_bool, eqs))]
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval, ProductSet
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all([bool(s) for s in self.sets])
__nonzero__ = __bool__
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
inftys = [S.Infinity, S.NegativeInfinity]
# Only allow real intervals (use symbols with 'is_extended_real=True').
if not all(i.is_extended_real is not False or i in inftys for i in (start, end)):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if (end < start) == True:
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if not isinstance(other, Expr) or (
other is S.Infinity or
other is S.NegativeInfinity or
other is S.NaN or
other is S.ComplexInfinity) or other.is_extended_real is False:
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if not other.is_extended_real is None:
return other.is_extended_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._eval_evalf(prec),
self.right._eval_evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
return And(Eq(self.left, other.left),
Eq(self.right, other.right),
self.left_open == other.left_open,
self.right_open == other.right_open)
class Union(Set, LatticeOp, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if all(isinstance(i, (FiniteSet, Interval)) for i in self.args):
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
raise NotImplementedError('relational of Union with non-Intervals')
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(*(set._eval_evalf(prec) for set in self.args))
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - set((s,))
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A \mid x \notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
FiniteSet(0, 2)
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(with_metaclass(Singleton, Set)):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(with_metaclass(Singleton, Set)):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
FiniteSet(1, 2, 3, 4)
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
FiniteSet(1, 2, 3, 4)
>>> f - FiniteSet(2)
FiniteSet(1, 3, 4)
>>> f + FiniteSet(2, 5)
FiniteSet(1, 2, 3, 4, 5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
_args_set = set(args)
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def _eval_Eq(self, other):
if not isinstance(other, FiniteSet):
# XXX: If Interval(x, x, evaluate=False) worked then the line
# below would mean that
# FiniteSet(x) & Interval(x, x, evaluate=False) -> false
if isinstance(other, Interval):
return false
elif isinstance(other, Set):
return None
return false
def all_in_both():
s_set = set(self.args)
o_set = set(other.args)
yield fuzzy_and(self._contains(e) for e in o_set - s_set)
yield fuzzy_and(other._contains(e) for e in s_set - o_set)
return tfn[fuzzy_and(all_in_both())]
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
nums = sorted(m for m in self.args if m.is_number)
if other == S.Reals and nums != []:
syms = [m for m in self.args if m.is_Symbol]
# Reals cannot contain elements other than numbers and symbols.
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []:
return None
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._eval_evalf(prec) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all((fs_test(arg) for arg in args)):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
FiniteSet(1, 2, 4, 5)
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, Symbol, imageset, sin, Lambda
>>> from sympy.abc import x, y
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
if PY3:
s = inspect.signature(f).parameters
else:
s = inspect.getargspec(f).args
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(_uniquely_named_symbol(Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = set((new_set, ))
new_args = (args - set((s, t))).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - set((s,))
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - set((s, t))).union(set((new_set, )))
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
87206dded807279c03307e40653d13c890213ba61edcf3d923121ffe0ac11b41 | # -*- coding: utf-8 -*-
from sympy import (
Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio,
LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels,
Heaviside, dirichlet_eta, diag)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.compatibility import range, u_decode as u, unicode, PY3
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
mathieusprime, mathieucprime)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.matrices.expressions import hadamard_power
from sympy.physics import mechanics
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent, is_combining
from sympy.sets import ImageSet, ProductSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead,
TensorElement, tensor_heads)
from sympy.utilities.pytest import raises
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx'
assert pretty( u'xxx"xxx' ) == u'xxx\"xxx'
assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx'
assert pretty( u"xxx'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx'
assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx'
assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == u'∞'
assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁'
assert upretty( Symbol('beta') ) == u'β'
assert upretty(Symbol('lambda')) == u'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == u'β₁₂'
assert upretty( Symbol('Y00') ) == u'Y₀₀'
assert upretty( Symbol('Y_00') ) == u'Y₀₀'
assert upretty( Symbol('F^+-') ) == u'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == u'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == u'β²₁'
assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == u'Fᵦ'
assert upretty( Symbol('F_gamma') ) == u'Fᵧ'
assert upretty( Symbol('F_rho') ) == u'Fᵨ'
assert upretty( Symbol('F_phi') ) == u'Fᵩ'
assert upretty( Symbol('F_chi') ) == u'Fᵪ'
assert upretty( Symbol('F_a') ) == u'Fₐ'
assert upretty( Symbol('F_e') ) == u'Fₑ'
assert upretty( Symbol('F_i') ) == u'Fᵢ'
assert upretty( Symbol('F_o') ) == u'Fₒ'
assert upretty( Symbol('F_u') ) == u'Fᵤ'
assert upretty( Symbol('F_r') ) == u'Fᵣ'
assert upretty( Symbol('F_v') ) == u'Fᵥ'
assert upretty( Symbol('F_x') ) == u'Fₓ'
def test_missing_in_2X_issue_9047():
if PY3:
assert upretty( Symbol('F_h') ) == u'Fₕ'
assert upretty( Symbol('F_k') ) == u'Fₖ'
assert upretty( Symbol('F_l') ) == u'Fₗ'
assert upretty( Symbol('F_m') ) == u'Fₘ'
assert upretty( Symbol('F_n') ) == u'Fₙ'
assert upretty( Symbol('F_p') ) == u'Fₚ'
assert upretty( Symbol('F_s') ) == u'Fₛ'
assert upretty( Symbol('F_t') ) == u'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == u'F̊'
assert upretty( Symbol('Fddddot') ) == u'F⃜'
assert upretty( Symbol('Fdddot') ) == u'F⃛'
assert upretty( Symbol('Fddot') ) == u'F̈'
assert upretty( Symbol('Fdot') ) == u'Ḟ'
assert upretty( Symbol('Fcheck') ) == u'F̌'
assert upretty( Symbol('Fbreve') ) == u'F̆'
assert upretty( Symbol('Facute') ) == u'F́'
assert upretty( Symbol('Fgrave') ) == u'F̀'
assert upretty( Symbol('Ftilde') ) == u'F̃'
assert upretty( Symbol('Fhat') ) == u'F̂'
assert upretty( Symbol('Fbar') ) == u'F̅'
assert upretty( Symbol('Fvec') ) == u'F⃗'
assert upretty( Symbol('Fprime') ) == u'F′'
assert upretty( Symbol('Fprm') ) == u'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == u'Fbold'
assert upretty( Symbol('Fbm') ) == u'Fbm'
assert upretty( Symbol('Fcal') ) == u'Fcal'
assert upretty( Symbol('Fscr') ) == u'Fscr'
assert upretty( Symbol('Ffrak') ) == u'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == u'‖F‖'
assert upretty( Symbol('Favg') ) == u'⟨F⟩'
assert upretty( Symbol('Fabs') ) == u'|F|'
assert upretty( Symbol('Fmag') ) == u'|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == u'x⃗̇'
assert upretty( Symbol('xDotVec') ) == u'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == u'x_dot'
assert upretty( Symbol('x__dot') ) == u'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_Permutation():
from sympy.combinatorics.permutations import Permutation
p1 = Permutation(1, 2)(3, 4)
assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \
u'⎛0 1 2 3 4⎞\n'\
u'⎝0 2 1 4 3⎠'
assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \
"/0 1 2 3 4\\\n"\
"\\0 2 1 4 3/"
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
u("""\
∞\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
u("""\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
("""\
-1.0\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
("""\
-1.0\n\
2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
u("""\
1/3\n\
x \
""")
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
1 \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
u("""\
x\n\
(-2) \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
u("""\
1\n\
3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
u("""\
2\n\
1 + x + x \
""")
ucode_str_2 = \
u("""\
2 \n\
x + x + 1\
""")
ucode_str_3 = \
u("""\
2 \n\
x + 1 + x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
u("""\
1 - x\
""")
ucode_str_2 = \
u("""\
-x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
u("""\
1 - 2⋅x\
""")
ucode_str_2 = \
u("""\
-2⋅x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
u("""\
x\n\
─\n\
y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
u("""\
2 + x\n\
─────\n\
y \
""")
ucode_str_2 = \
u("""\
x + 2\n\
─────\n\
y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
u("""\
y⋅(1 + x)\
""")
ucode_str_2 = \
u("""\
(1 + x)⋅y\
""")
ucode_str_3 = \
u("""\
y⋅(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
u("""\
-5⋅x \n\
──────\n\
10 + x\
""")
ucode_str_2 = \
u("""\
-5⋅x \n\
──────\n\
x + 10\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S.Half - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
u("""\
-3⋅x - 1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
u("""\
1/2 - 3⋅x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S.Half - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
u("""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
u("""\
1 3⋅x\n\
─ - ───\n\
2 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
u("""\
-x⋅z \n\
─────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
u("""\
2\n\
x \n\
──\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
u("""\
2 \n\
-x \n\
────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
u("""\
-x \n\
───\n\
y⋅z\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
b \n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-1 \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
u("""\
-10 \n\
────\n\
2 \n\
b \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
u("""\
-200 \n\
─────\n\
37 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
u("""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
""")
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
u("""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
""")
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == u"γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == u"φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
u("""\
x = y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
u("""\
x < y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
u("""\
x > y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
u("""\
x ≤ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
u("""\
x ≥ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
u("""\
x 2\n\
───── ≠ y \n\
1 + y \
""")
ucode_str_2 = \
u("""\
x 2\n\
───── ≠ y \n\
y + 1 \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
u("""\
x := y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
u("""\
x += y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
u("""\
x -= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
u("""\
x *= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
u("""\
x /= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
u("""\
x %= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
u("""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
u("""\
x\n\
2⋅x + ℯ \
""")
ucode_str_2 = \
u("""\
x \n\
ℯ + 2⋅x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
u("""\
│x│\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
u("""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
""")
ucode_str_2 = \
u("""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
1 \n\
---------\n\
|y - |x||\
"""
ucode_str = \
u("""\
1 \n\
─────────\n\
│y - │x││\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
u("""\
n!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
u("""\
(2⋅n)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
u("""\
((n!)!)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
u("""\
(1 + n)!\
""")
ucode_str_2 = \
u("""\
(n + 1)!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
u("""\
!n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
u("""\
!(2⋅n)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
u("""\
n!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
u("""\
(2⋅n)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
u("""\
((n!!)!!)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
u("""\
(1 + n)!!\
""")
ucode_str_2 = \
u("""\
(n + 1)!!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
u("""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
u("""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
u("""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n, x)
ascii_str = \
"""\
B (x)\n\
n \
"""
ucode_str = \
u("""\
B (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
u("""\
F \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
u("""\
L \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
u("""\
T \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n)
ascii_str = \
"""\
stieltjes \n\
n\
"""
ucode_str = \
u("""\
γ \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n, x)
ascii_str = \
"""\
stieltjes (x)\n\
n \
"""
ucode_str = \
u("""\
γ (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieuc(x, y, z)
ascii_str = 'C(x, y, z)'
ucode_str = u('C(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieus(x, y, z)
ascii_str = 'S(x, y, z)'
ucode_str = u('S(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieucprime(x, y, z)
ascii_str = "C'(x, y, z)"
ucode_str = u("C'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieusprime(x, y, z)
ascii_str = "S'(x, y, z)"
ucode_str = u("S'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
u("""\
_\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
u("""\
________\n\
f(1 + x)\
""")
ucode_str_2 = \
u("""\
________\n\
f(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
u("""\
f(x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
u("""\
f(x, y)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
u("""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
u("""\
2 \n\
sin (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
u("""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
""")
ucode_str_2 = \
u("""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
u("""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
u("""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
u("""\
E \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
u("""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
u("""\
E (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
u("""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
u"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
3 ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
1000___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
u("""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
u("""\
3 ________\n\
╲╱ 1 + √5 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
x ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
u("""\
_______\n\
╲╱ 2 + π \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
u("""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
u("""\
___\n\
╲╱ 2 \
""")
ucode_str2 = \
u"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
u("""\
____\n\
╲╱ C₁ \
""")
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
u("""\
δ \n\
x,y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
u("""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """)
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
u("""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """)
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_Lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == u"x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == u"x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
u("""\
2\n\
x ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
u("""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = u"(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
u("""\
2\n\
(x, y) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(((x, y),), x**2)
ascii_str = \
"""\
2\n\
((x, y),) -> x \
"""
ucode_str = \
u("""\
2\n\
((x, y),) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
u("""\
O(1)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
u("""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
u("""\
O(1; x → ∞)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
u("""\
d \n\
──(log(x))\n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
u("""\
d \n\
x + ──(log(x))\n\
dx \
""")
ucode_str_2 = \
u("""\
d \n\
──(log(x)) + x\n\
dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
u("""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
""")
ucode_str_2 = \
u("""\
∂ \n\
──(x + log(x + y))\n\
∂x \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
u("""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
""")
ucode_str_2 = \
u("""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
u("""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
""")
ucode_str_2 = \
u("""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
u("""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
u("""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
u("""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
u("""\
d \n\
──(β(α))\n\
dα \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
u("""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
u("""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
u("""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
u("""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
u("""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
u("""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
ucode_str_2 = \
u("""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
u("""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
unicode_str = \
u("""\
⎡v̇_msc_00 0 0 ⎤
⎢ ⎥
⎢ 0 v̇_msc_01 0 ⎥
⎢ ⎥
⎣ 0 0 v̇_msc_02⎦\
""")
expr = diag(*MatrixSymbol('vdot_msc',1,3))
assert upretty(expr) == unicode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
""")
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
""")
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
u("""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
""")
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
u("""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
""")
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
u("""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
""")
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
u("""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
""")
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
u("""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
""")
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == u("ⅆ x∧ⅆ y")
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == u" †\nX "
assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y "
assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
u" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
u" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
u" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
u" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
u" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
u" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
u("""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
""")
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
u("""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
""")
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
Y = X[1:2:3, 4:5:6]
ascii_str = ucode_str = "X[1:3, 4:6]"
assert pretty(Y) == ascii_str
assert upretty(Y) == ucode_str
Z = X[1:10:2]
ascii_str = ucode_str = "X[1:10:2, :n]"
assert pretty(Z) == ascii_str
assert upretty(Z) == ucode_str
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
(d -> sin(d)).\\X *X/\
"""
ucode_str = u("""\
⎛ T ⎞\n\
(d ↦ sin(d))˳⎝X ⋅X⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
ascii_str = """\
/ 1\\ \n\
|d -> -|.(n*X)\n\
\\ d/ \
"""
ucode_str = u("""\
⎛ 1⎞ \n\
⎜d ↦ ─⎟˳(n⋅X)\n\
⎝ d⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == u"A*B"
assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == u"A⋅B"
assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
u("""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
u("""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ 1 \n\
| 0 for --- < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
u("""\
⎧ 1 \n\
⎪ 0 for ─── < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
u("""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == u("""\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
""")
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
u("""\
()\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
u("""\
[]\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
u("""\
{}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
u("""\
{x: sin(x)}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
u("""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
u("""\
⎡ 2⎤\n\
⎣x ⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
u("""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == u"[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == u"{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == u'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == u'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
u"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
u"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(set([x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = u'{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = u('{30, 29, …, 2}')
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = u'{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = u('{…, 2, 0}')
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = u('{-2, -3, …}')
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = u("SetExpr([1, 3])")
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}'
ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}'
ucode_str = u('{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = \
' 2 \n'\
'{x | x in Naturals}'
ucode_str = u('''\
⎧ 2 ⎫\n\
⎨x | x ∊ ℕ⎬\n\
⎩ ⎭''')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = u'{x | x ∊ ℝ ∧ (sin(x) = 0)}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}'
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}'
assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str
ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = u'[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = u'[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_exponent():
ucode_str = ' 1\n[0, 1] '
assert upretty(Interval(0, 1)**1) == ucode_str
ucode_str = ' 2\n[0, 1] '
assert upretty(Interval(0, 1)**2) == ucode_str
def test_ProductSet_parenthesis():
ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b = Interval(2, 3), Interval(4, 7)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = u'[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = u'[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = u'[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = u'[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = u'[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = u'[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = u'[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = u'[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = u'[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = u'[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = u'[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = u'[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = u'[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = u'[0, b, 4*b]'
ucode_str = u'[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
u("""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
u("""\
lim x\n\
x─→∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
u("""\
2\n\
lim x \n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
u("""\
1\n\
lim ─\n\
x─→0⁺x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
u("""\
lim (x + sin(x))\n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
u("""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
u("""\
lim sin(x)\n\
x─→0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
u("""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
u("""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == u'𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == u"¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == u"x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == u"x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == u"x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == u"x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == u"x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == u"x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == u"y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == u"ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == u"ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == u"ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == u"ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == u"ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == u"ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == u"ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == u"ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == u"ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == u"ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from sympy.core.compatibility import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D(object):
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
u("""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
""")
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
u("""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
""")
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
u("""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
u("""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
""")
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
u("""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
""")
from sympy.physics.units import kg, m, s
assert upretty(expr) == u("joule")
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
u("""\
(f(x))│ 2\n\
│x=φ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == u"γ(x, y)"
assert upretty(uppergamma(x, y)) == u"Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)'
assert xpretty(gamma, use_unicode=True) == u'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)'
assert xpretty(beta, use_unicode=True) == u'Β'
assert xpretty(beta, use_unicode=False) == u'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == u'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == u'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
δ (x)\
""")
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
x⋅δ (x)\
""")
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
u("""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
u("""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
u("""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
""")
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
""")
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
u("""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
""")
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
""")
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
u("""\
-1\n\
A⋅B⋅C \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
u("""\
-1 \n\
C ⋅A⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
u("""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = u"E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
u("""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
""")
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
u("""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
""")
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == u"x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == u"x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
u("""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
""")
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
u("""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
""")
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
u("""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
""")
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
u("""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
""")
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
u("""\
1 \n\
──\n\
√x\
""")
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == u"A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == u"f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == u"id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == u"K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet"
assert upretty(d) == u"∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}")
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}")
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == u"A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
u("""\
2\n\
ℚ[x, y] \
""")
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
u("""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
u("""\
╱ 2 ╲\n\
╲x , y╱\
""")
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
u("""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
u("""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
""")
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
u("""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
""")
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
u("""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
""")
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
u("""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
""")
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
u("""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
""")
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
u("""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
""")
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == u'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y'
assert upretty(Not(Implies(x, y))) == u'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == u'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.utilities.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == u'[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
u("""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
""")
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
u("""\
d \n\
-──(y(x))\n\
dx \
""")
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
u("""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
""")
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
u("""\
3\n\
2 \n\
───\n\
2\n\
10 \
""")
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
u("""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
""")
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
u("""\
11\n\
──\n\
13\n\
(sin(x)) \
""")
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
u("""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
""")
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = u("ν(n)")
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = u("Ω(n)")
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = u("x mod 7")
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = u("(x + 1) mod 7")
ascii_str3 = "2*x mod 7"
ucode_str3 = u("2⋅x mod 7")
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = u("(x mod 7) + 1")
ascii_str5 = "2*(x mod 7)"
ucode_str5 = u("2⋅(x mod 7)")
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert upretty(he) == ucode_str
ucode_str = \
u("""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
""")
assert upretty(he**2) == ucode_str
ucode_str = \
u("""\
1\n\
1 + ─\n\
x\
""")
assert upretty(he + 1) == ucode_str
ucode_str = \
u('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
u("""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
""")
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = u("A₀₀")
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = u("3⋅A₀₀")
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = u("(-B + A)[0, 0]")
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
u("""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
""")
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
u("""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
""")
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == u'90°'
expr2 = x*degree
assert pretty(expr2) == u'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == u'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)')
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)")
assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)")
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
u("""\
-i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
u("""\
i\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
u("""\
i₀\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
u("""\
\n\
A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
u("""\
\n\
-3⋅A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
u("""\
i \n\
H \n\
j\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
u("""\
L₀ \n\
H \n\
L₀\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
u("""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
u("""\
i\n\
(x + 1)⋅A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
A + 3*B \n\
\
"""
ucode_str = \
u("""\
i i\n\
A + 3⋅B \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
u("""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|B *C + 3*H |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜B ⋅C + 3⋅H ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(j), D(j))
ascii_str = \
"""\
/ i i\\ d / L_0\\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ /\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ i i⎞ ∂ ⎛ L₀⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ ⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
ucode_str = u("""\
2 \n\
∂ ⎛ ⎞\n\
───────⎜A + B ⎟\n\
⎝ i i⎠\n\
∂A ∂A \n\
n j \
""")
assert upretty(expr) == ucode_str
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
ucode_str = u("""\
2 \n\
∂ ⎛ ⎞\n\
───────⎜3⋅A ⎟\n\
⎝ i⎠\n\
∂A ∂A \n\
n j \
""")
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i: 1, j: 1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j: 1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i: 1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = u'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == u'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == u'-𝐀'
assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == u'𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == u'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == u'‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == u'𝐀₂'
def test_center_accent():
assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã'
assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã'
assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa'
assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa'
assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa'
assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert pretty(Identity(4)) == 'I'
assert upretty(Identity(4)) == u'𝕀'
assert pretty(ZeroMatrix(2, 2)) == '0'
assert upretty(ZeroMatrix(2, 2)) == u'𝟘'
assert pretty(OneMatrix(2, 2)) == '1'
assert upretty(OneMatrix(2, 2)) == u'𝟙'
def test_pretty_misc_functions():
assert pretty(LambertW(x)) == 'W(x)'
assert upretty(LambertW(x)) == u'W(x)'
assert pretty(LambertW(x, y)) == 'W(x, y)'
assert upretty(LambertW(x, y)) == u'W(x, y)'
assert pretty(airyai(x)) == 'Ai(x)'
assert upretty(airyai(x)) == u'Ai(x)'
assert pretty(airybi(x)) == 'Bi(x)'
assert upretty(airybi(x)) == u'Bi(x)'
assert pretty(airyaiprime(x)) == "Ai'(x)"
assert upretty(airyaiprime(x)) == u"Ai'(x)"
assert pretty(airybiprime(x)) == "Bi'(x)"
assert upretty(airybiprime(x)) == u"Bi'(x)"
assert pretty(fresnelc(x)) == 'C(x)'
assert upretty(fresnelc(x)) == u'C(x)'
assert pretty(fresnels(x)) == 'S(x)'
assert upretty(fresnels(x)) == u'S(x)'
assert pretty(Heaviside(x)) == 'Heaviside(x)'
assert upretty(Heaviside(x)) == u'θ(x)'
assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
assert upretty(Heaviside(x, y)) == u'θ(x, y)'
assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
assert upretty(dirichlet_eta(x)) == u'η(x)'
def test_hadamard_power():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
B = MatrixSymbol('B', m, n)
# Testing printer:
expr = hadamard_power(A, n)
ascii_str = \
"""\
.n\n\
A \
"""
ucode_str = \
u("""\
∘n\n\
A \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
A \
"""
ucode_str = \
u("""\
∘(n + 1)\n\
A \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A*B.T, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
/ T\\ \n\
\\A*B / \
"""
ucode_str = \
u("""\
∘(n + 1)\n\
⎛ T⎞ \n\
⎝A⋅B ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_17258():
n = Symbol('n', integer=True)
assert pretty(Sum(n, (n, -oo, 1))) == \
' 1 \n'\
' __ \n'\
' \\ ` \n'\
' ) n\n'\
' /_, \n'\
'n = -oo '
assert upretty(Sum(n, (n, -oo, 1))) == \
u("""\
1 \n\
___ \n\
╲ \n\
╲ \n\
╱ n\n\
╱ \n\
‾‾‾ \n\
n = -∞ \
""")
def test_is_combining():
line = u("v̇_m")
assert [is_combining(sym) for sym in line] == \
[False, True, False, False]
def test_issue_17857():
assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}'
assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
|
2f3c96f97fc7ed84c0b2a29ce1dea733a35207ac4a17086750b60ba473d4f54a | from sympy import (
Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh,
tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi,
EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase,
integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan,
Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign,
simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol,
symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar, li, hyper
)
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.functions.elementary.complexes import periodic_argument
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import Integral
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.utilities.pytest import (raises, slow, skip, ON_TRAVIS,
warns_deprecated_sympy)
from sympy.utilities.randtest import verify_numerically
x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b')
n = Symbol('n', integer=True)
f = Function('f')
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() is oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) is S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2)
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_issue_18038():
raises(AttributeError, lambda: integrate((x, x)))
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
qx = integrate(p, x)
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_defined():
p = Poly(x + x**2*y + y**3, x, y)
Qx = integrate(p, (x, 0, 1))
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == S.Half + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in sympy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2.0*cos(pi*n)/(pi*n)
assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == Rational(-1, 2)
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_18133():
assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x)
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
i = Integral(x, (x, a, b))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2))
raises(ValueError, lambda: i.transform(x, 1))
raises(ValueError, lambda: i.transform(x, s*t))
raises(ValueError, lambda: i.transform(x, -s))
raises(ValueError, lambda: i.transform(x, (s, t)))
raises(ValueError, lambda: i.transform(2*x, 2*s))
i = Integral(x**2, (x, 1, 2))
raises(ValueError, lambda: i.transform(x**2, s))
am = Symbol('a', negative=True)
bp = Symbol('b', positive=True)
i = Integral(x, (x, bp, am))
i.transform(x, 2*s)
assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2))
i = Integral(x, (x, a))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2))
def test_issue_4052():
f = S.Half*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
def test_double_previously_failing_integrals():
# Double integrals not implemented <- Sure it is!
res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1))
# Old numerical test
assert NS(res, 15) == '2.43790283299492'
# Symbolic test
assert res == Rational(-4, 3) + 8*sqrt(2)/3
# double integral + zero detection
assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert unchanged(Integral, in_3, (x,))
assert Integral(in_3, x) == Integral(in_3, (x,))
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12)
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', extended_real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2)
assert integrate(Abs(x), (x, 0, 1)) == S.Half
assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2)
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3)
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2
assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2
assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2
assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + Rational(1, 3) - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2
assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2
assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2
assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2
assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8)
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54)
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32)
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + Rational(1, 3) + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == Rational(1, 4)
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_issue_18153():
assert integrate(x**n*log(x),x) == \
Piecewise(
(n*x*x**n*log(x)/(n**2 + 2*n + 1) +
x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1)
, Ne(n, -1)), (log(x)**2/2, True)
)
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
{x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
-z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4551():
assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral)
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \
Piecewise((0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))),
(pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))),
(0, True))
# Should be possible to further simplify to:
# Piecewise(
# (0, Eq(k, 0) | Eq(m, 0)),
# (-pi/2, Eq(k, -m)),
# (pi/2, Eq(k, m)),
# (0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
@slow
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True, finite=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy import meijerg
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \
(log(z) + EulerGamma + log(pi))/z - Ci(pi**2*z)/z + log(pi)/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
from sympy import Si
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
from sympy import simplify
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
assert integrate(sin(x)/x, x) == Si(x)
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy import simplify, expand_func, polygamma, gamma
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy import lowergamma, simplify
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) is oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R))
assert not e.has(nan)
# See that it evaluates
assert not e.has(Integral)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == (
-128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 +
(16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
(8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368():
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S.Half,), (0, 0)),
((0, S.Half), (0,)),
polar_lift(s)**2),
True)
),
And(
Abs(periodic_argument(polar_lift(s)**2, oo)) < pi,
cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0,
Ne(s**2, 1))
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Ne(1/s, 1),
Abs(periodic_argument(s, oo)) < pi/2,
Abs(periodic_argument(s, oo)) <= pi/2,
cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_TRAVIS:
skip("Too slow for travis.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
@slow
def test_issue_11876():
assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) is oo
assert integrate(1/x**2, (x, -1, 1)) is oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo
assert integrate(1/x**2, (x, 1, -1)) is -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6)
def test_issue_14078():
assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \
x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) is S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == \
log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1))
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
@slow
def test_issue_14782_slow():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16
def test_issue_12081():
f = x**(Rational(-3, 2))*exp(-x)
assert integrate(f, [x, 0, oo]) is oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
with warns_deprecated_sympy():
Integral(Eq(x, y))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
with warns_deprecated_sympy():
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
# These are not deprecated because they are definite integrals
assert integrate(Eq(x, y), (x, 0, 1)) == Eq(S.Half, y)
assert Eq(x, y).integrate((x, 0, 1)) == Eq(S.Half, y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
def test_issue_4311_fast():
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3),
(x**4/4 - 9*x**2/2, True))
def test_integrate_with_complex_constants():
K = Symbol('K', real=True, positive=True)
x = Symbol('x', real=True)
m = Symbol('m', real=True)
assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2
/(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K))
assert integrate(1/(1 + I*x**2), x) == -sqrt(I)*log(x - sqrt(I))/2 +\
sqrt(I)*log(x + sqrt(I))/2
assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I))
def test_issue_14241():
x = Symbol('x')
n = Symbol('n', positive=True, integer=True)
assert integrate(n * x ** (n - 1) / (x + 1), x) == \
n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1)
def test_issue_13112():
assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4
def test_issue_14709b():
h = Symbol('h', positive=True)
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert i == 5*h**2*pi/16
def test_issue_8614():
x = Symbol('x')
t = Symbol('t')
assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x)
assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2)
def test_issue_15494():
s = symbols('s', real=True, positive=True)
integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s)
solution = integrate(integrand, s)
assert solution != S.NaN
# Not sure how to test this properly as it is a symbolic expression with floats
# assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)'
# Maybe
assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8
integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s)
assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2
def test_li_integral():
y = Symbol('y')
assert Integral(li(y*x**2), x).doit() == Piecewise(
(x*li(x**2*y) - x*Ei(3*log(x) + 3*log(y)/2)/(sqrt(y)*sqrt(x**2)), Ne(y, 0)),
(0, True))
def test_issue_17473():
x = Symbol('x')
n = Symbol('n')
assert integrate(sin(x**n), x) == \
x*x**n*gamma(S(1)/2 + 1/(2*n))*hyper((S(1)/2 + 1/(2*n),),
(S(3)/2, S(3)/2 + 1/(2*n)),
-x**(2*n)/4)/(2*n*gamma(S(3)/2 + 1/(2*n)))
def test_issue_17671():
assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma
assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2
assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -2*log(3)/9 - EulerGamma/9
|
85429abfbd5b857edbd2328d0b480fefe465d699ce3424b604a0c87bb83bc602 | from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy
from sympy import (S, Symbol, symbols, nan, oo, I, pi, Float, And, Or,
Not, Implies, Xor, zoo, sqrt, Rational, simplify, Function,
log, cos, sin, Add, Mul, Pow, floor, ceiling, trigsimp)
from sympy.core.compatibility import range, PY3
from sympy.core.relational import (Relational, Equality, Unequality,
GreaterThan, LessThan, StrictGreaterThan,
StrictLessThan, Rel, Eq, Lt, Le,
Gt, Ge, Ne)
from sympy.sets.sets import Interval, FiniteSet
from itertools import combinations
x, y, z, t = symbols('x,y,z,t')
def rel_check(a, b):
from sympy.utilities.pytest import raises
assert a.is_number and b.is_number
for do in range(len(set([type(a), type(b)]))):
if S.NaN in (a, b):
v = [(a == b), (a != b)]
assert len(set(v)) == 1 and v[0] == False
assert not (a != b) and not (a == b)
assert raises(TypeError, lambda: a < b)
assert raises(TypeError, lambda: a <= b)
assert raises(TypeError, lambda: a > b)
assert raises(TypeError, lambda: a >= b)
else:
E = [(a == b), (a != b)]
assert len(set(E)) == 2
v = [
(a < b), (a <= b), (a > b), (a >= b)]
i = [
[True, True, False, False],
[False, True, False, True], # <-- i == 1
[False, False, True, True]].index(v)
if i == 1:
assert E[0] or (a.is_Float != b.is_Float) # ugh
else:
assert E[1]
a, b = b, a
return True
def test_rel_ne():
assert Relational(x, y, '!=') == Ne(x, y)
# issue 6116
p = Symbol('p', positive=True)
assert Ne(p, 0) is S.true
def test_rel_subs():
e = Relational(x, y, '==')
e = e.subs(x, z)
assert isinstance(e, Equality)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '>=')
e = e.subs(x, z)
assert isinstance(e, GreaterThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '<=')
e = e.subs(x, z)
assert isinstance(e, LessThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '>')
e = e.subs(x, z)
assert isinstance(e, StrictGreaterThan)
assert e.lhs == z
assert e.rhs == y
e = Relational(x, y, '<')
e = e.subs(x, z)
assert isinstance(e, StrictLessThan)
assert e.lhs == z
assert e.rhs == y
e = Eq(x, 0)
assert e.subs(x, 0) is S.true
assert e.subs(x, 1) is S.false
def test_wrappers():
e = x + x**2
res = Relational(y, e, '==')
assert Rel(y, x + x**2, '==') == res
assert Eq(y, x + x**2) == res
res = Relational(y, e, '<')
assert Lt(y, x + x**2) == res
res = Relational(y, e, '<=')
assert Le(y, x + x**2) == res
res = Relational(y, e, '>')
assert Gt(y, x + x**2) == res
res = Relational(y, e, '>=')
assert Ge(y, x + x**2) == res
res = Relational(y, e, '!=')
assert Ne(y, x + x**2) == res
def test_Eq():
assert Eq(x, x) # issue 5719
with warns_deprecated_sympy():
assert Eq(x) == Eq(x, 0)
# issue 6116
p = Symbol('p', positive=True)
assert Eq(p, 0) is S.false
# issue 13348
assert Eq(True, 1) is S.false
assert Eq((), 1) is S.false
def test_as_poly():
from sympy.polys.polytools import Poly
# Only Eq should have an as_poly method:
assert Eq(x, 1).as_poly() == Poly(x - 1, x, domain='ZZ')
raises(AttributeError, lambda: Ne(x, 1).as_poly())
raises(AttributeError, lambda: Ge(x, 1).as_poly())
raises(AttributeError, lambda: Gt(x, 1).as_poly())
raises(AttributeError, lambda: Le(x, 1).as_poly())
raises(AttributeError, lambda: Lt(x, 1).as_poly())
def test_rel_Infinity():
# NOTE: All of these are actually handled by sympy.core.Number, and do
# not create Relational objects.
assert (oo > oo) is S.false
assert (oo > -oo) is S.true
assert (oo > 1) is S.true
assert (oo < oo) is S.false
assert (oo < -oo) is S.false
assert (oo < 1) is S.false
assert (oo >= oo) is S.true
assert (oo >= -oo) is S.true
assert (oo >= 1) is S.true
assert (oo <= oo) is S.true
assert (oo <= -oo) is S.false
assert (oo <= 1) is S.false
assert (-oo > oo) is S.false
assert (-oo > -oo) is S.false
assert (-oo > 1) is S.false
assert (-oo < oo) is S.true
assert (-oo < -oo) is S.false
assert (-oo < 1) is S.true
assert (-oo >= oo) is S.false
assert (-oo >= -oo) is S.true
assert (-oo >= 1) is S.false
assert (-oo <= oo) is S.true
assert (-oo <= -oo) is S.true
assert (-oo <= 1) is S.true
def test_infinite_symbol_inequalities():
x = Symbol('x', extended_positive=True, infinite=True)
y = Symbol('y', extended_positive=True, infinite=True)
z = Symbol('z', extended_negative=True, infinite=True)
w = Symbol('w', extended_negative=True, infinite=True)
inf_set = (x, y, oo)
ninf_set = (z, w, -oo)
for inf1 in inf_set:
assert (inf1 < 1) is S.false
assert (inf1 > 1) is S.true
assert (inf1 <= 1) is S.false
assert (inf1 >= 1) is S.true
for inf2 in inf_set:
assert (inf1 < inf2) is S.false
assert (inf1 > inf2) is S.false
assert (inf1 <= inf2) is S.true
assert (inf1 >= inf2) is S.true
for ninf1 in ninf_set:
assert (inf1 < ninf1) is S.false
assert (inf1 > ninf1) is S.true
assert (inf1 <= ninf1) is S.false
assert (inf1 >= ninf1) is S.true
assert (ninf1 < inf1) is S.true
assert (ninf1 > inf1) is S.false
assert (ninf1 <= inf1) is S.true
assert (ninf1 >= inf1) is S.false
for ninf1 in ninf_set:
assert (ninf1 < 1) is S.true
assert (ninf1 > 1) is S.false
assert (ninf1 <= 1) is S.true
assert (ninf1 >= 1) is S.false
for ninf2 in ninf_set:
assert (ninf1 < ninf2) is S.false
assert (ninf1 > ninf2) is S.false
assert (ninf1 <= ninf2) is S.true
assert (ninf1 >= ninf2) is S.true
def test_bool():
assert Eq(0, 0) is S.true
assert Eq(1, 0) is S.false
assert Ne(0, 0) is S.false
assert Ne(1, 0) is S.true
assert Lt(0, 1) is S.true
assert Lt(1, 0) is S.false
assert Le(0, 1) is S.true
assert Le(1, 0) is S.false
assert Le(0, 0) is S.true
assert Gt(1, 0) is S.true
assert Gt(0, 1) is S.false
assert Ge(1, 0) is S.true
assert Ge(0, 1) is S.false
assert Ge(1, 1) is S.true
assert Eq(I, 2) is S.false
assert Ne(I, 2) is S.true
raises(TypeError, lambda: Gt(I, 2))
raises(TypeError, lambda: Ge(I, 2))
raises(TypeError, lambda: Lt(I, 2))
raises(TypeError, lambda: Le(I, 2))
a = Float('.000000000000000000001', '')
b = Float('.0000000000000000000001', '')
assert Eq(pi + a, pi + b) is S.false
def test_rich_cmp():
assert (x < y) == Lt(x, y)
assert (x <= y) == Le(x, y)
assert (x > y) == Gt(x, y)
assert (x >= y) == Ge(x, y)
def test_doit():
from sympy import Symbol
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
np = Symbol('np', nonpositive=True)
nn = Symbol('nn', nonnegative=True)
assert Gt(p, 0).doit() is S.true
assert Gt(p, 1).doit() == Gt(p, 1)
assert Ge(p, 0).doit() is S.true
assert Le(p, 0).doit() is S.false
assert Lt(n, 0).doit() is S.true
assert Le(np, 0).doit() is S.true
assert Gt(nn, 0).doit() == Gt(nn, 0)
assert Lt(nn, 0).doit() is S.false
assert Eq(x, 0).doit() == Eq(x, 0)
def test_new_relational():
x = Symbol('x')
assert Eq(x, 0) == Relational(x, 0) # None ==> Equality
assert Eq(x, 0) == Relational(x, 0, '==')
assert Eq(x, 0) == Relational(x, 0, 'eq')
assert Eq(x, 0) == Equality(x, 0)
assert Eq(x, 0) != Relational(x, 1) # None ==> Equality
assert Eq(x, 0) != Relational(x, 1, '==')
assert Eq(x, 0) != Relational(x, 1, 'eq')
assert Eq(x, 0) != Equality(x, 1)
assert Eq(x, -1) == Relational(x, -1) # None ==> Equality
assert Eq(x, -1) == Relational(x, -1, '==')
assert Eq(x, -1) == Relational(x, -1, 'eq')
assert Eq(x, -1) == Equality(x, -1)
assert Eq(x, -1) != Relational(x, 1) # None ==> Equality
assert Eq(x, -1) != Relational(x, 1, '==')
assert Eq(x, -1) != Relational(x, 1, 'eq')
assert Eq(x, -1) != Equality(x, 1)
assert Ne(x, 0) == Relational(x, 0, '!=')
assert Ne(x, 0) == Relational(x, 0, '<>')
assert Ne(x, 0) == Relational(x, 0, 'ne')
assert Ne(x, 0) == Unequality(x, 0)
assert Ne(x, 0) != Relational(x, 1, '!=')
assert Ne(x, 0) != Relational(x, 1, '<>')
assert Ne(x, 0) != Relational(x, 1, 'ne')
assert Ne(x, 0) != Unequality(x, 1)
assert Ge(x, 0) == Relational(x, 0, '>=')
assert Ge(x, 0) == Relational(x, 0, 'ge')
assert Ge(x, 0) == GreaterThan(x, 0)
assert Ge(x, 1) != Relational(x, 0, '>=')
assert Ge(x, 1) != Relational(x, 0, 'ge')
assert Ge(x, 1) != GreaterThan(x, 0)
assert (x >= 1) == Relational(x, 1, '>=')
assert (x >= 1) == Relational(x, 1, 'ge')
assert (x >= 1) == GreaterThan(x, 1)
assert (x >= 0) != Relational(x, 1, '>=')
assert (x >= 0) != Relational(x, 1, 'ge')
assert (x >= 0) != GreaterThan(x, 1)
assert Le(x, 0) == Relational(x, 0, '<=')
assert Le(x, 0) == Relational(x, 0, 'le')
assert Le(x, 0) == LessThan(x, 0)
assert Le(x, 1) != Relational(x, 0, '<=')
assert Le(x, 1) != Relational(x, 0, 'le')
assert Le(x, 1) != LessThan(x, 0)
assert (x <= 1) == Relational(x, 1, '<=')
assert (x <= 1) == Relational(x, 1, 'le')
assert (x <= 1) == LessThan(x, 1)
assert (x <= 0) != Relational(x, 1, '<=')
assert (x <= 0) != Relational(x, 1, 'le')
assert (x <= 0) != LessThan(x, 1)
assert Gt(x, 0) == Relational(x, 0, '>')
assert Gt(x, 0) == Relational(x, 0, 'gt')
assert Gt(x, 0) == StrictGreaterThan(x, 0)
assert Gt(x, 1) != Relational(x, 0, '>')
assert Gt(x, 1) != Relational(x, 0, 'gt')
assert Gt(x, 1) != StrictGreaterThan(x, 0)
assert (x > 1) == Relational(x, 1, '>')
assert (x > 1) == Relational(x, 1, 'gt')
assert (x > 1) == StrictGreaterThan(x, 1)
assert (x > 0) != Relational(x, 1, '>')
assert (x > 0) != Relational(x, 1, 'gt')
assert (x > 0) != StrictGreaterThan(x, 1)
assert Lt(x, 0) == Relational(x, 0, '<')
assert Lt(x, 0) == Relational(x, 0, 'lt')
assert Lt(x, 0) == StrictLessThan(x, 0)
assert Lt(x, 1) != Relational(x, 0, '<')
assert Lt(x, 1) != Relational(x, 0, 'lt')
assert Lt(x, 1) != StrictLessThan(x, 0)
assert (x < 1) == Relational(x, 1, '<')
assert (x < 1) == Relational(x, 1, 'lt')
assert (x < 1) == StrictLessThan(x, 1)
assert (x < 0) != Relational(x, 1, '<')
assert (x < 0) != Relational(x, 1, 'lt')
assert (x < 0) != StrictLessThan(x, 1)
# finally, some fuzz testing
from random import randint
from sympy.core.compatibility import unichr
for i in range(100):
while 1:
strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255)
relation_type = strtype(randint(0, length))
if randint(0, 1):
relation_type += strtype(randint(0, length))
if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge',
'<=', 'le', '>', 'gt', '<', 'lt', ':=',
'+=', '-=', '*=', '/=', '%='):
break
raises(ValueError, lambda: Relational(x, 1, relation_type))
assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '=='))
assert all(Relational(x, 0, op).rel_op == '!='
for op in ('ne', '<>', '!='))
assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>'))
assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<'))
assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>='))
assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<='))
def test_relational_arithmetic():
for cls in [Eq, Ne, Le, Lt, Ge, Gt]:
rel = cls(x, y)
raises(TypeError, lambda: 0+rel)
raises(TypeError, lambda: 1*rel)
raises(TypeError, lambda: 1**rel)
raises(TypeError, lambda: rel**1)
raises(TypeError, lambda: Add(0, rel))
raises(TypeError, lambda: Mul(1, rel))
raises(TypeError, lambda: Pow(1, rel))
raises(TypeError, lambda: Pow(rel, 1))
def test_relational_bool_output():
# https://github.com/sympy/sympy/issues/5931
raises(TypeError, lambda: bool(x > 3))
raises(TypeError, lambda: bool(x >= 3))
raises(TypeError, lambda: bool(x < 3))
raises(TypeError, lambda: bool(x <= 3))
raises(TypeError, lambda: bool(Eq(x, 3)))
raises(TypeError, lambda: bool(Ne(x, 3)))
def test_relational_logic_symbols():
# See issue 6204
assert (x < y) & (z < t) == And(x < y, z < t)
assert (x < y) | (z < t) == Or(x < y, z < t)
assert ~(x < y) == Not(x < y)
assert (x < y) >> (z < t) == Implies(x < y, z < t)
assert (x < y) << (z < t) == Implies(z < t, x < y)
assert (x < y) ^ (z < t) == Xor(x < y, z < t)
assert isinstance((x < y) & (z < t), And)
assert isinstance((x < y) | (z < t), Or)
assert isinstance(~(x < y), GreaterThan)
assert isinstance((x < y) >> (z < t), Implies)
assert isinstance((x < y) << (z < t), Implies)
assert isinstance((x < y) ^ (z < t), (Or, Xor))
def test_univariate_relational_as_set():
assert (x > 0).as_set() == Interval(0, oo, True, True)
assert (x >= 0).as_set() == Interval(0, oo)
assert (x < 0).as_set() == Interval(-oo, 0, True, True)
assert (x <= 0).as_set() == Interval(-oo, 0)
assert Eq(x, 0).as_set() == FiniteSet(0)
assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \
Interval(0, oo, True, True)
assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo)
@XFAIL
def test_multivariate_relational_as_set():
assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \
Interval(-oo, 0)*Interval(-oo, 0)
def test_Not():
assert Not(Equality(x, y)) == Unequality(x, y)
assert Not(Unequality(x, y)) == Equality(x, y)
assert Not(StrictGreaterThan(x, y)) == LessThan(x, y)
assert Not(StrictLessThan(x, y)) == GreaterThan(x, y)
assert Not(GreaterThan(x, y)) == StrictLessThan(x, y)
assert Not(LessThan(x, y)) == StrictGreaterThan(x, y)
def test_evaluate():
assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)'
assert Eq(x, x, evaluate=False).doit() == S.true
assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)'
assert Ne(x, x, evaluate=False).doit() == S.false
assert str(Ge(x, x, evaluate=False)) == 'x >= x'
assert str(Le(x, x, evaluate=False)) == 'x <= x'
assert str(Gt(x, x, evaluate=False)) == 'x > x'
assert str(Lt(x, x, evaluate=False)) == 'x < x'
def assert_all_ineq_raise_TypeError(a, b):
raises(TypeError, lambda: a > b)
raises(TypeError, lambda: a >= b)
raises(TypeError, lambda: a < b)
raises(TypeError, lambda: a <= b)
raises(TypeError, lambda: b > a)
raises(TypeError, lambda: b >= a)
raises(TypeError, lambda: b < a)
raises(TypeError, lambda: b <= a)
def assert_all_ineq_give_class_Inequality(a, b):
"""All inequality operations on `a` and `b` result in class Inequality."""
from sympy.core.relational import _Inequality as Inequality
assert isinstance(a > b, Inequality)
assert isinstance(a >= b, Inequality)
assert isinstance(a < b, Inequality)
assert isinstance(a <= b, Inequality)
assert isinstance(b > a, Inequality)
assert isinstance(b >= a, Inequality)
assert isinstance(b < a, Inequality)
assert isinstance(b <= a, Inequality)
def test_imaginary_compare_raises_TypeError():
# See issue #5724
assert_all_ineq_raise_TypeError(I, x)
def test_complex_compare_not_real():
# two cases which are not real
y = Symbol('y', imaginary=True)
z = Symbol('z', complex=True, extended_real=False)
for w in (y, z):
assert_all_ineq_raise_TypeError(2, w)
# some cases which should remain un-evaluated
t = Symbol('t')
x = Symbol('x', real=True)
z = Symbol('z', complex=True)
for w in (x, z, t):
assert_all_ineq_give_class_Inequality(2, w)
def test_imaginary_and_inf_compare_raises_TypeError():
# See pull request #7835
y = Symbol('y', imaginary=True)
assert_all_ineq_raise_TypeError(oo, y)
assert_all_ineq_raise_TypeError(-oo, y)
def test_complex_pure_imag_not_ordered():
raises(TypeError, lambda: 2*I < 3*I)
# more generally
x = Symbol('x', real=True, nonzero=True)
y = Symbol('y', imaginary=True)
z = Symbol('z', complex=True)
assert_all_ineq_raise_TypeError(I, y)
t = I*x # an imaginary number, should raise errors
assert_all_ineq_raise_TypeError(2, t)
t = -I*y # a real number, so no errors
assert_all_ineq_give_class_Inequality(2, t)
t = I*z # unknown, should be unevaluated
assert_all_ineq_give_class_Inequality(2, t)
def test_x_minus_y_not_same_as_x_lt_y():
"""
A consequence of pull request #7792 is that `x - y < 0` and `x < y`
are not synonymous.
"""
x = I + 2
y = I + 3
raises(TypeError, lambda: x < y)
assert x - y < 0
ineq = Lt(x, y, evaluate=False)
raises(TypeError, lambda: ineq.doit())
assert ineq.lhs - ineq.rhs < 0
t = Symbol('t', imaginary=True)
x = 2 + t
y = 3 + t
ineq = Lt(x, y, evaluate=False)
raises(TypeError, lambda: ineq.doit())
assert ineq.lhs - ineq.rhs < 0
# this one should give error either way
x = I + 2
y = 2*I + 3
raises(TypeError, lambda: x < y)
raises(TypeError, lambda: x - y < 0)
def test_nan_equality_exceptions():
# See issue #7774
import random
assert Equality(nan, nan) is S.false
assert Unequality(nan, nan) is S.true
# See issue #7773
A = (x, S.Zero, S.One/3, pi, oo, -oo)
assert Equality(nan, random.choice(A)) is S.false
assert Equality(random.choice(A), nan) is S.false
assert Unequality(nan, random.choice(A)) is S.true
assert Unequality(random.choice(A), nan) is S.true
def test_nan_inequality_raise_errors():
# See discussion in pull request #7776. We test inequalities with
# a set including examples of various classes.
for q in (x, S.Zero, S(10), S.One/3, pi, S(1.3), oo, -oo, nan):
assert_all_ineq_raise_TypeError(q, nan)
def test_nan_complex_inequalities():
# Comparisons of NaN with non-real raise errors, we're not too
# fussy whether its the NaN error or complex error.
for r in (I, zoo, Symbol('z', imaginary=True)):
assert_all_ineq_raise_TypeError(r, nan)
def test_complex_infinity_inequalities():
raises(TypeError, lambda: zoo > 0)
raises(TypeError, lambda: zoo >= 0)
raises(TypeError, lambda: zoo < 0)
raises(TypeError, lambda: zoo <= 0)
def test_inequalities_symbol_name_same():
"""Using the operator and functional forms should give same results."""
# We test all combinations from a set
# FIXME: could replace with random selection after test passes
A = (x, y, S.Zero, S.One/3, pi, oo, -oo)
for a in A:
for b in A:
assert Gt(a, b) == (a > b)
assert Lt(a, b) == (a < b)
assert Ge(a, b) == (a >= b)
assert Le(a, b) == (a <= b)
for b in (y, S.Zero, S.One/3, pi, oo, -oo):
assert Gt(x, b, evaluate=False) == (x > b)
assert Lt(x, b, evaluate=False) == (x < b)
assert Ge(x, b, evaluate=False) == (x >= b)
assert Le(x, b, evaluate=False) == (x <= b)
for b in (y, S.Zero, S.One/3, pi, oo, -oo):
assert Gt(b, x, evaluate=False) == (b > x)
assert Lt(b, x, evaluate=False) == (b < x)
assert Ge(b, x, evaluate=False) == (b >= x)
assert Le(b, x, evaluate=False) == (b <= x)
def test_inequalities_symbol_name_same_complex():
"""Using the operator and functional forms should give same results.
With complex non-real numbers, both should raise errors.
"""
# FIXME: could replace with random selection after test passes
for a in (x, S.Zero, S.One/3, pi, oo, Rational(1, 3)):
raises(TypeError, lambda: Gt(a, I))
raises(TypeError, lambda: a > I)
raises(TypeError, lambda: Lt(a, I))
raises(TypeError, lambda: a < I)
raises(TypeError, lambda: Ge(a, I))
raises(TypeError, lambda: a >= I)
raises(TypeError, lambda: Le(a, I))
raises(TypeError, lambda: a <= I)
def test_inequalities_cant_sympify_other():
# see issue 7833
from operator import gt, lt, ge, le
bar = "foo"
for a in (x, S.Zero, S.One/3, pi, I, zoo, oo, -oo, nan, Rational(1, 3)):
for op in (lt, gt, le, ge):
if PY3:
raises(TypeError, lambda: op(a, bar))
def test_ineq_avoid_wild_symbol_flip():
# see issue #7951, we try to avoid this internally, e.g., by using
# __lt__ instead of "<".
from sympy.core.symbol import Wild
p = symbols('p', cls=Wild)
# x > p might flip, but Gt should not:
assert Gt(x, p) == Gt(x, p, evaluate=False)
# Previously failed as 'p > x':
e = Lt(x, y).subs({y: p})
assert e == Lt(x, p, evaluate=False)
# Previously failed as 'p <= x':
e = Ge(x, p).doit()
assert e == Ge(x, p, evaluate=False)
def test_issue_8245():
a = S("6506833320952669167898688709329/5070602400912917605986812821504")
assert rel_check(a, a.n(10))
assert rel_check(a, a.n(20))
assert rel_check(a, a.n())
# prec of 30 is enough to fully capture a as mpf
assert Float(a, 30) == Float(str(a.p), '')/Float(str(a.q), '')
for i in range(31):
r = Rational(Float(a, i))
f = Float(r)
assert (f < a) == (Rational(f) < a)
# test sign handling
assert (-f < -a) == (Rational(-f) < -a)
# test equivalence handling
isa = Float(a.p,'')/Float(a.q,'')
assert isa <= a
assert not isa < a
assert isa >= a
assert not isa > a
assert isa > 0
a = sqrt(2)
r = Rational(str(a.n(30)))
assert rel_check(a, r)
a = sqrt(2)
r = Rational(str(a.n(29)))
assert rel_check(a, r)
assert Eq(log(cos(2)**2 + sin(2)**2), 0) == True
def test_issue_8449():
p = Symbol('p', nonnegative=True)
assert Lt(-oo, p)
assert Ge(-oo, p) is S.false
assert Gt(oo, -p)
assert Le(oo, -p) is S.false
def test_simplify_relational():
assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1)
assert simplify(x*(y + 1) - x*y - x - 1 < x) == (x > -1)
assert simplify(x < x*(y + 1) - x*y - x + 1) == (x < 1)
r = S.One < x
# canonical operations are not the same as simplification,
# so if there is no simplification, canonicalization will
# be done unless the measure forbids it
assert simplify(r) == r.canonical
assert simplify(r, ratio=0) != r.canonical
# this is not a random test; in _eval_simplify
# this will simplify to S.false and that is the
# reason for the 'if r.is_Relational' in Relational's
# _eval_simplify routine
assert simplify(-(2**(pi*Rational(3, 2)) + 6**pi)**(1/pi) +
2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false
# canonical at least
assert Eq(y, x).simplify() == Eq(x, y)
assert Eq(x - 1, 0).simplify() == Eq(x, 1)
assert Eq(x - 1, x).simplify() == S.false
assert Eq(2*x - 1, x).simplify() == Eq(x, 1)
assert Eq(2*x, 4).simplify() == Eq(x, 2)
z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None
assert Eq(z*x, 0).simplify() == S.true
assert Ne(y, x).simplify() == Ne(x, y)
assert Ne(x - 1, 0).simplify() == Ne(x, 1)
assert Ne(x - 1, x).simplify() == S.true
assert Ne(2*x - 1, x).simplify() == Ne(x, 1)
assert Ne(2*x, 4).simplify() == Ne(x, 2)
assert Ne(z*x, 0).simplify() == S.false
# No real-valued assumptions
assert Ge(y, x).simplify() == Le(x, y)
assert Ge(x - 1, 0).simplify() == Ge(x, 1)
assert Ge(x - 1, x).simplify() == S.false
assert Ge(2*x - 1, x).simplify() == Ge(x, 1)
assert Ge(2*x, 4).simplify() == Ge(x, 2)
assert Ge(z*x, 0).simplify() == S.true
assert Ge(x, -2).simplify() == Ge(x, -2)
assert Ge(-x, -2).simplify() == Le(x, 2)
assert Ge(x, 2).simplify() == Ge(x, 2)
assert Ge(-x, 2).simplify() == Le(x, -2)
assert Le(y, x).simplify() == Ge(x, y)
assert Le(x - 1, 0).simplify() == Le(x, 1)
assert Le(x - 1, x).simplify() == S.true
assert Le(2*x - 1, x).simplify() == Le(x, 1)
assert Le(2*x, 4).simplify() == Le(x, 2)
assert Le(z*x, 0).simplify() == S.true
assert Le(x, -2).simplify() == Le(x, -2)
assert Le(-x, -2).simplify() == Ge(x, 2)
assert Le(x, 2).simplify() == Le(x, 2)
assert Le(-x, 2).simplify() == Ge(x, -2)
assert Gt(y, x).simplify() == Lt(x, y)
assert Gt(x - 1, 0).simplify() == Gt(x, 1)
assert Gt(x - 1, x).simplify() == S.false
assert Gt(2*x - 1, x).simplify() == Gt(x, 1)
assert Gt(2*x, 4).simplify() == Gt(x, 2)
assert Gt(z*x, 0).simplify() == S.false
assert Gt(x, -2).simplify() == Gt(x, -2)
assert Gt(-x, -2).simplify() == Lt(x, 2)
assert Gt(x, 2).simplify() == Gt(x, 2)
assert Gt(-x, 2).simplify() == Lt(x, -2)
assert Lt(y, x).simplify() == Gt(x, y)
assert Lt(x - 1, 0).simplify() == Lt(x, 1)
assert Lt(x - 1, x).simplify() == S.true
assert Lt(2*x - 1, x).simplify() == Lt(x, 1)
assert Lt(2*x, 4).simplify() == Lt(x, 2)
assert Lt(z*x, 0).simplify() == S.false
assert Lt(x, -2).simplify() == Lt(x, -2)
assert Lt(-x, -2).simplify() == Gt(x, 2)
assert Lt(x, 2).simplify() == Lt(x, 2)
assert Lt(-x, 2).simplify() == Gt(x, -2)
def test_equals():
w, x, y, z = symbols('w:z')
f = Function('f')
assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x))
assert Eq(x, y).equals(x < y, True) == False
assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2)
assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2)
assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2)
assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2)
assert Eq(w, x).equals(Eq(y, z), True) == False
assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3)
assert (x < y).equals(y > x, True) == True
assert (x < y).equals(y >= x, True) == False
assert (x < y).equals(z < y, True) == False
assert (x < y).equals(x < z, True) == False
assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2)
assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2)
def test_reversed():
assert (x < y).reversed == (y > x)
assert (x <= y).reversed == (y >= x)
assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False)
assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False)
assert (x >= y).reversed == (y <= x)
assert (x > y).reversed == (y < x)
def test_canonical():
c = [i.canonical for i in (
x + y < z,
x + 2 > 3,
x < 2,
S(2) > x,
x**2 > -x/y,
Gt(3, 2, evaluate=False)
)]
assert [i.canonical for i in c] == c
assert [i.reversed.canonical for i in c] == c
assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c)
c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c]
assert [i.canonical for i in c] == c
assert [i.reversed.canonical for i in c] == c
assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c)
@XFAIL
def test_issue_8444_nonworkingtests():
x = symbols('x', real=True)
assert (x <= oo) == (x >= -oo) == True
x = symbols('x')
assert x >= floor(x)
assert (x < floor(x)) == False
assert x <= ceiling(x)
assert (x > ceiling(x)) == False
def test_issue_8444_workingtests():
x = symbols('x')
assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False)
assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False)
assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False)
assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False)
i = symbols('i', integer=True)
assert (i > floor(i)) == False
assert (i < ceiling(i)) == False
def test_issue_10304():
d = cos(1)**2 + sin(1)**2 - 1
assert d.is_comparable is False # if this fails, find a new d
e = 1 + d*I
assert simplify(Eq(e, 0)) is S.false
def test_issue_10401():
x = symbols('x')
fin = symbols('inf', finite=True)
inf = symbols('inf', infinite=True)
inf2 = symbols('inf2', infinite=True)
infx = symbols('infx', infinite=True, extended_real=True)
# Used in the commented tests below:
#infx2 = symbols('infx2', infinite=True, extended_real=True)
infnx = symbols('inf~x', infinite=True, extended_real=False)
infnx2 = symbols('inf~x2', infinite=True, extended_real=False)
infp = symbols('infp', infinite=True, extended_positive=True)
infp1 = symbols('infp1', infinite=True, extended_positive=True)
infn = symbols('infn', infinite=True, extended_negative=True)
zero = symbols('z', zero=True)
nonzero = symbols('nz', zero=False, finite=True)
assert Eq(1/(1/x + 1), 1).func is Eq
assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true
assert Eq(1/(1/fin + 1), 1) is S.false
T, F = S.true, S.false
assert Eq(fin, inf) is F
assert Eq(inf, inf2) not in (T, F) and inf != inf2
assert Eq(1 + inf, 2 + inf2) not in (T, F) and inf != inf2
assert Eq(infp, infp1) is T
assert Eq(infp, infn) is F
assert Eq(1 + I*oo, I*oo) is F
assert Eq(I*oo, 1 + I*oo) is F
assert Eq(1 + I*oo, 2 + I*oo) is F
assert Eq(1 + I*oo, 2 + I*infx) is F
assert Eq(1 + I*oo, 2 + infx) is F
# FIXME: The test below fails because (-infx).is_extended_positive is True
# (should be None)
#assert Eq(1 + I*infx, 1 + I*infx2) not in (T, F) and infx != infx2
#
assert Eq(zoo, sqrt(2) + I*oo) is F
assert Eq(zoo, oo) is F
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert Eq(i*I, r) not in (T, F)
assert Eq(infx, infnx) is F
assert Eq(infnx, infnx2) not in (T, F) and infnx != infnx2
assert Eq(zoo, oo) is F
assert Eq(inf/inf2, 0) is F
assert Eq(inf/fin, 0) is F
assert Eq(fin/inf, 0) is T
assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0)
# The commented out test below is incorrect because:
assert zoo == -zoo
assert Eq(zoo, -zoo) is T
assert Eq(oo, -oo) is F
assert Eq(inf, -inf) not in (T, F)
assert Eq(fin/(fin + 1), 1) is S.false
o = symbols('o', odd=True)
assert Eq(o, 2*o) is S.false
p = symbols('p', positive=True)
assert Eq(p/(p - 1), 1) is F
def test_issue_10633():
assert Eq(True, False) == False
assert Eq(False, True) == False
assert Eq(True, True) == True
assert Eq(False, False) == True
def test_issue_10927():
x = symbols('x')
assert str(Eq(x, oo)) == 'Eq(x, oo)'
assert str(Eq(x, -oo)) == 'Eq(x, -oo)'
def test_issues_13081_12583_12534():
# 13081
r = Rational('905502432259640373/288230376151711744')
assert (r < pi) is S.false
assert (r > pi) is S.true
# 12583
v = sqrt(2)
u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1))
assert (u >= 0) is S.true
# 12534; Rational vs NumberSymbol
# here are some precisions for which Rational forms
# at a lower and higher precision bracket the value of pi
# e.g. for p = 20:
# Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834
# pi.n(25) = 3.14159265358979323846 2643
# Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987
assert [p for p in range(20, 50) if
(Rational(pi.n(p)) < pi) and
(pi < Rational(pi.n(p + 1)))] == [20, 24, 27, 33, 37, 43, 48]
# pick one such precision and affirm that the reversed operation
# gives the opposite result, i.e. if x < y is true then x > y
# must be false
for i in (20, 21):
v = pi.n(i)
assert rel_check(Rational(v), pi)
assert rel_check(v, pi)
assert rel_check(pi.n(20), pi.n(21))
# Float vs Rational
# the rational form is less than the floating representation
# at the same precision
assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i)] == []
# this should be the same if we reverse the relational
assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i))] == []
def test_binary_symbols():
ans = set([x])
for f in Eq, Ne:
for t in S.true, S.false:
eq = f(x, S.true)
assert eq.binary_symbols == ans
assert eq.reversed.binary_symbols == ans
assert f(x, 1).binary_symbols == set()
def test_rel_args():
# can't have Boolean args; this is automatic with Python 3
# so this test and the __lt__, etc..., definitions in
# relational.py and boolalg.py which are marked with ///
# can be removed.
for op in ['<', '<=', '>', '>=']:
for b in (S.true, x < 1, And(x, y)):
for v in (0.1, 1, 2**32, t, S.One):
raises(TypeError, lambda: Relational(b, v, op))
def test_Equality_rewrite_as_Add():
eq = Eq(x + y, y - x)
assert eq.rewrite(Add) == 2*x
assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y)
assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y)
def test_issue_15847():
a = Ne(x*(x+y), x**2 + x*y)
assert simplify(a) == False
def test_negated_property():
eq = Eq(x, y)
assert eq.negated == Ne(x, y)
eq = Ne(x, y)
assert eq.negated == Eq(x, y)
eq = Ge(x + y, y - x)
assert eq.negated == Lt(x + y, y - x)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).negated.negated == f(x, y)
def test_reversedsign_property():
eq = Eq(x, y)
assert eq.reversedsign == Eq(-x, -y)
eq = Ne(x, y)
assert eq.reversedsign == Ne(-x, -y)
eq = Ge(x + y, y - x)
assert eq.reversedsign == Le(-x - y, x - y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).reversedsign.reversedsign == f(x, y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, y).reversedsign.reversedsign == f(-x, y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, -y).reversedsign.reversedsign == f(x, -y)
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, -y).reversedsign.reversedsign == f(-x, -y)
def test_reversed_reversedsign_property():
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, y).reversed.reversedsign == f(x, y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, y).reversed.reversedsign == f(-x, y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(x, -y).reversed.reversedsign == f(x, -y).reversedsign.reversed
for f in (Eq, Ne, Ge, Gt, Le, Lt):
assert f(-x, -y).reversed.reversedsign == \
f(-x, -y).reversedsign.reversed
def test_improved_canonical():
def test_different_forms(listofforms):
for form1, form2 in combinations(listofforms, 2):
assert form1.canonical == form2.canonical
def generate_forms(expr):
return [expr, expr.reversed, expr.reversedsign,
expr.reversed.reversedsign]
test_different_forms(generate_forms(x > -y))
test_different_forms(generate_forms(x >= -y))
test_different_forms(generate_forms(Eq(x, -y)))
test_different_forms(generate_forms(Ne(x, -y)))
test_different_forms(generate_forms(pi < x))
test_different_forms(generate_forms(pi - 5*y < -x + 2*y**2 - 7))
assert (pi >= x).canonical == (x <= pi)
def test_set_equality_canonical():
a, b, c = symbols('a b c')
A = Eq(FiniteSet(a, b, c), FiniteSet(1, 2, 3))
B = Ne(FiniteSet(a, b, c), FiniteSet(4, 5, 6))
assert A.canonical == A.reversed
assert B.canonical == B.reversed
def test_trigsimp():
# issue 16736
s, c = sin(2*x), cos(2*x)
eq = Eq(s, c)
assert trigsimp(eq) == eq # no rearrangement of sides
# simplification of sides might result in
# an unevaluated Eq
changed = trigsimp(Eq(s + c, sqrt(2)))
assert isinstance(changed, Eq)
assert changed.subs(x, pi/8) is S.true
# or an evaluated one
assert trigsimp(Eq(cos(x)**2 + sin(x)**2, 1)) is S.true
def test_polynomial_relation_simplification():
assert Ge(3*x*(x + 1) + 4, 3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))]
assert Le(-(3*x*(x + 1) + 4), -3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))]
assert ((x**2+3)*(x**2-1)+3*x >= 2*x**2).simplify() in [(x**4 + 3*x >= 3), (-x**4 - 3*x <= -3)]
def test_multivariate_linear_function_simplification():
assert Ge(x + y, x - y).simplify() == Ge(y, 0)
assert Le(-x + y, -x - y).simplify() == Le(y, 0)
assert Eq(2*x + y, 2*x + y - 3).simplify() == False
assert (2*x + y > 2*x + y - 3).simplify() == True
assert (2*x + y < 2*x + y - 3).simplify() == False
assert (2*x + y < 2*x + y + 3).simplify() == True
a, b, c, d, e, f, g = symbols('a b c d e f g')
assert Lt(a + b + c + 2*d, 3*d - f + g). simplify() == Lt(a, -b - c + d - f + g)
def test_nonpolymonial_relations():
assert Eq(cos(x), 0).simplify() == Eq(cos(x), 0)
|
b857cb9a155b609a5e9ebcf7df8b034b1666839bc9d16de22f43b859e70070bf | from sympy import (Eq, Rational, Float, S, Symbol, cos, oo, pi, simplify,
sin, sqrt, symbols, acos)
from sympy.core.compatibility import range
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
Point2D, Line2D)
from sympy.geometry.line import Undecidable
from sympy.geometry.polygon import _asa as asa
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import raises, warns
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
k = Symbol('k', real=True)
x1 = Symbol('x1', real=True)
y1 = Symbol('y1', real=True)
t = Symbol('t', real=True)
a, b = symbols('a,b', real=True)
m = symbols('m', real=True)
def test_object_from_equation():
from sympy.abc import x, y, a, b
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
assert Line(Eq(3*a + b, -18), x='a', y=b) == Line2D(Point2D(0, -18), Point2D(1, -21))
raises(ValueError, lambda: Line(x))
raises(ValueError, lambda: Line(y))
raises(ValueError, lambda: Line(x/y))
raises(ValueError, lambda: Line(a/b, x='a', y='b'))
raises(ValueError, lambda: Line(y/x))
raises(ValueError, lambda: Line(b/a, x='a', y='b'))
raises(ValueError, lambda: Line((x + 1)**2 + y))
def feq(a, b):
"""Test if two floating point values are 'equal'."""
t_float = Float("1.0E-10")
return -t_float < a - b < t_float
def test_angle_between():
a = Point(1, 2, 3, 4)
b = a.orthogonal_direction
o = a.origin
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
def test_closing_angle():
a = Ray((0, 0), angle=0)
b = Ray((1, 2), angle=pi/2)
assert a.closing_angle(b) == -pi/2
assert b.closing_angle(a) == pi/2
assert a.closing_angle(a) == 0
def test_arbitrary_point():
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
l2 = Line(Point(x1, x1), Point(y1, y1))
assert l2.arbitrary_point() in l2
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
Point(t + 1, t + 1)
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
Point3D(S.Half, S.Half, S.Half)
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
def test_are_concurrent_2d():
l1 = Line(Point(0, 0), Point(1, 1))
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.are_concurrent(l1) is False
assert Line.are_concurrent(l1, l2)
assert Line.are_concurrent(l1, l1, l1, l2)
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
def test_are_concurrent_3d():
p1 = Point3D(0, 0, 0)
l1 = Line(p1, Point3D(1, 1, 1))
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
assert Line3D.are_concurrent(l1) is False
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
def test_arguments():
"""Functions accepting `Point` objects in `geometry`
should also accept tuples, lists, and generators and
automatically convert them to points."""
from sympy import subsets
singles2d = ((1, 2), [1, 3], Point(1, 5))
doubles2d = subsets(singles2d, 2)
l2d = Line(Point2D(1, 2), Point2D(2, 3))
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
doubles3d = subsets(singles3d, 2)
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
doubles4d = subsets(singles4d, 2)
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
# test 2D
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
'projection', 'intersection']
for p in doubles2d:
Line2D(*p)
for func in test_single:
for p in singles2d:
getattr(l2d, func)(p)
# test 3D
for p in doubles3d:
Line3D(*p)
for func in test_single:
for p in singles3d:
getattr(l3d, func)(p)
# test 4D
for p in doubles4d:
Line(*p)
for func in test_single:
for p in singles4d:
getattr(l4d, func)(p)
def test_basic_properties_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p10 = Point(2000, 2000)
p_r3 = Ray(p1, p2).random_point()
p_r4 = Ray(p2, p1).random_point()
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
l4 = Line(p1, Point(1, 0))
r1 = Ray(p1, Point(0, 1))
r2 = Ray(Point(0, 1), p1)
s1 = Segment(p1, p10)
p_s1 = s1.random_point()
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
assert Line(p1, p2) == Line(p1, p2)
assert Line(p1, p2) != Line(p2, p1)
assert l1 != Line(Point(x1, x1), Point(y1, y1))
assert l1 != l3
assert Line(p1, p10) != Line(p10, p1)
assert Line(p1, p10) != p1
assert p1 in l1 # is p1 on the line l1?
assert p1 not in l3
assert s1 in Line(p1, p10)
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
assert (r1 in s1) is False
assert Segment(p1, p2) in s1
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
assert l1.slope == 1
assert l3.slope is oo
assert l4.slope == 0
assert Line(p1, Point(0, 1)).slope is oo
assert Line(r1.source, r1.random_point()).slope == r1.slope
assert Line(r2.source, r2.random_point()).slope == r2.slope
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
assert l4.coefficients == (0, 1, 0)
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
# issue 7963
r = Ray((0, 0), angle=x)
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
for ind in range(0, 5):
assert l3.random_point() in l3
assert p_r3.x >= p1.x and p_r3.y >= p1.y
assert p_r4.x <= p2.x and p_r4.y <= p2.y
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
assert hash(s1) != hash(Segment(p10, p1))
assert s1.plot_interval() == [t, 0, 1]
assert Line(p1, p10).plot_interval() == [t, -5, 5]
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_basic_properties_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
p5 = Point3D(x1, 1 + x1, 1)
l1 = Line3D(p1, p2)
l3 = Line3D(p3, p5)
r1 = Ray3D(p1, Point3D(-1, 5, 0))
r3 = Ray3D(p1, p2)
s1 = Segment3D(p1, p2)
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
assert Line3D(p1, p2) != Line3D(p2, p1)
assert l1 != l3
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
assert r3 != r1
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
assert p1 in l1
assert p1 not in l3
assert l1.direction_ratio == [1, 1, 1]
assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
# Test zdirection
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
def test_contains():
p1 = Point(0, 0)
r = Ray(p1, Point(4, 4))
r1 = Ray3D(p1, Point3D(0, 0, -1))
r2 = Ray3D(p1, Point3D(0, 1, 0))
r3 = Ray3D(p1, Point3D(0, 0, 1))
l = Line(Point(0, 1), Point(3, 4))
# Segment contains
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
# Line contains
assert l.contains(Point(0, 1)) is True
assert l.contains((0, 1)) is True
assert l.contains((0, 0)) is False
# Ray contains
assert r.contains(p1) is True
assert r.contains((1, 1)) is True
assert r.contains((1, 3)) is False
assert r.contains(Segment((1, 1), (2, 2))) is True
assert r.contains(Segment((1, 2), (2, 5))) is False
assert r.contains(Ray((2, 2), (3, 3))) is True
assert r.contains(Ray((2, 2), (3, 5))) is False
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
assert r2.contains(Point3D(0, 0, 0)) is True
assert r3.contains(Point3D(0, 0, 0)) is True
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
with warns(UserWarning):
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
with warns(UserWarning):
assert r3.contains(Point(1.0, 1.0)) is False
def test_contains_nonreal_symbols():
u, v, w, z = symbols('u, v, w, z')
l = Segment(Point(u, w), Point(v, z))
p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
assert l.contains(p)
def test_distance_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
half = S.Half
s1 = Segment(Point(0, 0), Point(1, 1))
s2 = Segment(Point(half, half), Point(1, 0))
r = Ray(p1, p2)
assert s1.distance(Point(0, 0)) == 0
assert s1.distance((0, 0)) == 0
assert s2.distance(Point(0, 0)) == 2 ** half / 2
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
assert Line(p1, p2).distance(Point(2, 2)) == 0
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
assert Line((0, 0), (0, 1)).distance(p1) == 0
assert Line((0, 0), (0, 1)).distance(p2) == 1
assert Line((0, 0), (1, 0)).distance(p1) == 0
assert Line((0, 0), (1, 0)).distance(p2) == 1
assert r.distance(Point(-1, -1)) == sqrt(2)
assert r.distance(Point(1, 1)) == 0
assert r.distance(Point(-1, 1)) == sqrt(2)
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
assert r.distance((1, 1)) == 0
def test_dimension_normalization():
with warns(UserWarning):
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
def test_distance_3d():
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
r = Ray3D(p1, p2)
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
# Line to point
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
# Ray to point
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
assert r.distance(Point3D(1, 1, 1)) == 0
assert r.distance((-1, -1, -1)) == sqrt(3)
assert r.distance((1, 1, 1)) == 0
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
def test_equals():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line((0, 5), slope=m)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_equation():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
assert Line(p1, Point(0, 1)).equation() == x
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
assert Line(p2, Point(2, 1)).equation() == y - 1
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
).equation() == (-x + y, -x + z)
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
).equation() == (-x + y - 1, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
).equation() == (x - 1, -y + z - 1)
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
).equation() == (y - 2, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
).equation() == (-x + y - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
).equation() == (x - 1, y - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
).equation() == (x - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
).equation() == (y - 2, z - 3)
def test_intersection_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(x1, x1)
p4 = Point(y1, y1)
l1 = Line(p1, p2)
l3 = Line(Point(0, 0), Point(3, 4))
r1 = Ray(Point(1, 1), Point(2, 2))
r2 = Ray(Point(0, 0), Point(3, 4))
r4 = Ray(p1, p2)
r6 = Ray(Point(0, 1), Point(1, 2))
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
s1 = Segment(p1, p2)
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
s3 = Segment(Point(0, 0), Point(3, 4))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point(x1, 1 + x1)) == []
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
assert intersection(l3, l3) == [l3]
assert intersection(l3, r2) == [r2]
assert intersection(l3, s3) == [s3]
assert intersection(s3, l3) == [s3]
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
assert intersection(r2, l3) == [r2]
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
assert r4.intersection(s2) == [s2]
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert r4.intersection(Ray(p2, p1)) == [s1]
assert Ray(p2, p1).intersection(r6) == []
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
[Segment(Point(0, 0), Point(0, 1))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((1, 0), (2, 0)).intersection(
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
assert s1.intersection(s2) == [s2]
assert s2.intersection(s1) == [s2]
assert asa(120, 8, 52) == \
Triangle(
Point(0, 0),
Point(8, 0),
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
# 16628 - this should be fast
p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
/(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
+ 1991998000*sqrt(630547164901) + 1622561172902000),
(-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
90004251917891999 +
496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
+ 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
8112805864510000))
p2 = Point2D(Rational(497, 10), Rational(-497, 10))
p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
l = Line(p0, p1)
s = Segment(p2, p3)
n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
9803028531*sqrt(630547164901) +
33200*sqrt(255775022850776494562626))
d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
630547164901) + sqrt(255775022850776494562626)
assert intersection(l, s) == [
Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
def test_line_intersection():
# see also test_issue_11238 in test_matrices.py
x0 = tan(pi*Rational(13, 45))
x1 = sqrt(3)
x2 = x0**2
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
def test_intersection_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
l1 = Line3D(p1, p2)
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
assert intersection(l2, r2) == [r2]
assert intersection(l2, s1) == [s1]
assert intersection(r2, l2) == [r2]
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
== [Point3D(0, 0, 0)]
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(s1, r2) == [s1]
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
[Point3D(2, 2, 1)]
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
[Point3D(t, t)]
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
def test_is_parallel():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
l2 = Line(Point(x1, x1), Point(y1, y1))
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(p1, p2).parallel_line(p3.args) == \
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_is_perpendicular():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line(Point(x1, x1), Point(y1, y1))
l1_1 = Line(p1, Point(-x1, x1))
# 2D
assert Line.is_perpendicular(l1, l1_1)
assert Line.is_perpendicular(l1, l2) is False
p = l1.random_point()
assert l1.perpendicular_segment(p) == p
# 3D
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_is_similar():
p1 = Point(2000, 2000)
p2 = p1.scale(2, 2)
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
r2 = Ray(Point(0, 0), Point(0, 1))
s1 = Segment(Point(0, 0), p1)
assert s1.is_similar(Segment(p1, p2))
assert s1.is_similar(r2) is False
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
def test_length():
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
assert Line(Point(0, 0), Point(1, 1)).length is oo
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
def test_projection():
p1 = Point(0, 0)
p2 = Point3D(0, 0, 0)
p3 = Point(-x1, x1)
l1 = Line(p1, Point(1, 1))
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
l3 = Line3D(p2, Point3D(1, 1, 1))
r1 = Ray(Point(1, 1), Point(2, 2))
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
assert l1.projection(p3) == p1
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_perpendicular_bisector():
s1 = Segment(Point(0, 0), Point(1, 1))
aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
assert s1.perpendicular_bisector().equals(aline)
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
def test_raises():
d, e = symbols('a,b', real=True)
s = Segment((d, 0), (e, 0))
raises(TypeError, lambda: Line((1, 1), 1))
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
raises(Undecidable, lambda: Point(2 * d, 0) in s)
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
raises(TypeError, lambda: Line3D((1, 1), 1))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
raises(TypeError, lambda: Ray((1, 1), 1))
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
.projection(Circle(Point(0, 0), 1)))
def test_ray_generation():
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
Point(2, 1 + tan(4.02 * pi)))
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
def test_symbolic_intersect():
# Issue 7814.
circle = Circle(Point(x, 0), y)
line = Line(Point(k, z), slope=0)
assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
def test_issue_2941():
def _check():
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
l1 = f(a, b)
l2 = g(c, d)
assert l1.intersection(l2) == l2.intersection(l1)
# intersect at end point
c, d = (-2, -2), (-2, 0)
a, b = (0, 0), (1, 1)
_check()
# midline intersection
c, d = (-2, -3), (-2, 0)
_check()
def test_parameter_value():
t = Symbol('t')
p1, p2 = Point(0, 1), Point(5, 6)
l = Line(p1, p2)
assert l.parameter_value((5, 6), t) == {t: 1}
raises(ValueError, lambda: l.parameter_value((0, 0), t))
|
312dfc4a0b1f4f30823267ac515424296506a51a75da1ab0df97e12bfef1df82 | #!/usr/bin/env python
"""Distutils based setup script for SymPy.
This uses Distutils (https://python.org/sigs/distutils-sig/) the standard
python mechanism for installing packages. Optionally, you can use
Setuptools (https://setuptools.readthedocs.io/en/latest/)
to automatically handle dependencies. For the easiest installation
just type the command (you'll probably need root privileges for that):
python setup.py install
This will install the library in the default location. For instructions on
how to customize the install procedure read the output of:
python setup.py --help install
In addition, there are some other commands:
python setup.py clean -> will clean all trash (*.pyc and stuff)
python setup.py test -> will run the complete test suite
python setup.py bench -> will run the complete benchmark suite
python setup.py audit -> will run pyflakes checker on source code
To get a full list of available commands, read the output of:
python setup.py --help-commands
Or, if all else fails, feel free to write to the sympy list at
[email protected] and ask for help.
"""
import sys
import os
import shutil
import glob
import subprocess
from distutils.command.sdist import sdist
min_mpmath_version = '0.19'
# This directory
dir_setup = os.path.dirname(os.path.realpath(__file__))
extra_kwargs = {}
try:
from setuptools import setup, Command
extra_kwargs['zip_safe'] = False
extra_kwargs['entry_points'] = {
'console_scripts': [
'isympy = isympy:main',
]
}
except ImportError:
from distutils.core import setup, Command
extra_kwargs['scripts'] = ['bin/isympy']
# handle mpmath deps in the hard way:
from distutils.version import LooseVersion
try:
import mpmath
if mpmath.__version__ < LooseVersion(min_mpmath_version):
raise ImportError
except ImportError:
print("Please install the mpmath package with a version >= %s"
% min_mpmath_version)
sys.exit(-1)
PY3 = sys.version_info[0] > 2
# Make sure I have the right Python version.
if ((sys.version_info[0] == 2 and sys.version_info[1] < 7) or
(sys.version_info[0] == 3 and sys.version_info[1] < 5)):
print("SymPy requires Python 2.7 or 3.5 or newer. Python %d.%d detected"
% sys.version_info[:2])
sys.exit(-1)
# Check that this list is uptodate against the result of the command:
# python bin/generate_module_list.py
modules = [
'sympy.algebras',
'sympy.assumptions',
'sympy.assumptions.handlers',
'sympy.benchmarks',
'sympy.calculus',
'sympy.categories',
'sympy.codegen',
'sympy.combinatorics',
'sympy.concrete',
'sympy.core',
'sympy.core.benchmarks',
'sympy.crypto',
'sympy.deprecated',
'sympy.diffgeom',
'sympy.discrete',
'sympy.external',
'sympy.functions',
'sympy.functions.combinatorial',
'sympy.functions.elementary',
'sympy.functions.elementary.benchmarks',
'sympy.functions.special',
'sympy.functions.special.benchmarks',
'sympy.geometry',
'sympy.holonomic',
'sympy.integrals',
'sympy.integrals.benchmarks',
'sympy.integrals.rubi',
'sympy.integrals.rubi.parsetools',
'sympy.integrals.rubi.rubi_tests',
'sympy.integrals.rubi.rules',
'sympy.interactive',
'sympy.liealgebras',
'sympy.logic',
'sympy.logic.algorithms',
'sympy.logic.utilities',
'sympy.matrices',
'sympy.matrices.benchmarks',
'sympy.matrices.expressions',
'sympy.multipledispatch',
'sympy.ntheory',
'sympy.parsing',
'sympy.parsing.autolev',
'sympy.parsing.autolev._antlr',
'sympy.parsing.c',
'sympy.parsing.fortran',
'sympy.parsing.latex',
'sympy.parsing.latex._antlr',
'sympy.physics',
'sympy.physics.continuum_mechanics',
'sympy.physics.hep',
'sympy.physics.mechanics',
'sympy.physics.optics',
'sympy.physics.quantum',
'sympy.physics.units',
'sympy.physics.units.definitions',
'sympy.physics.units.systems',
'sympy.physics.vector',
'sympy.plotting',
'sympy.plotting.intervalmath',
'sympy.plotting.pygletplot',
'sympy.polys',
'sympy.polys.agca',
'sympy.polys.benchmarks',
'sympy.polys.domains',
'sympy.printing',
'sympy.printing.pretty',
'sympy.sandbox',
'sympy.series',
'sympy.series.benchmarks',
'sympy.sets',
'sympy.sets.handlers',
'sympy.simplify',
'sympy.solvers',
'sympy.solvers.benchmarks',
'sympy.solvers.diophantine',
'sympy.solvers.ode',
'sympy.stats',
'sympy.strategies',
'sympy.strategies.branch',
'sympy.tensor',
'sympy.tensor.array',
'sympy.testing',
'sympy.unify',
'sympy.utilities',
'sympy.utilities._compilation',
'sympy.utilities.mathml',
'sympy.vector',
]
class audit(Command):
"""Audits SymPy's source code for following issues:
- Names which are used but not defined or used before they are defined.
- Names which are redefined without having been used.
"""
description = "Audit SymPy source with PyFlakes"
user_options = []
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
import os
try:
import pyflakes.scripts.pyflakes as flakes
except ImportError:
print("In order to run the audit, you need to have PyFlakes installed.")
sys.exit(-1)
dirs = (os.path.join(*d) for d in (m.split('.') for m in modules))
warns = 0
for dir in dirs:
for filename in os.listdir(dir):
if filename.endswith('.py') and filename != '__init__.py':
warns += flakes.checkPath(os.path.join(dir, filename))
if warns > 0:
print("Audit finished with total %d warnings" % warns)
class clean(Command):
"""Cleans *.pyc and debian trashs, so you should get the same copy as
is in the VCS.
"""
description = "remove build files"
user_options = [("all", "a", "the same")]
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
curr_dir = os.getcwd()
for root, dirs, files in os.walk(dir_setup):
for file in files:
if file.endswith('.pyc') and os.path.isfile:
os.remove(os.path.join(root, file))
os.chdir(dir_setup)
names = ["python-build-stamp-2.4", "MANIFEST", "build",
"dist", "doc/_build", "sample.tex"]
for f in names:
if os.path.isfile(f):
os.remove(f)
elif os.path.isdir(f):
shutil.rmtree(f)
for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules",
"physics", "vector", "*.pdf")):
if os.path.isfile(name):
os.remove(name)
os.chdir(curr_dir)
class test_sympy(Command):
"""Runs all tests under the sympy/ folder
"""
description = "run all tests and doctests; also see bin/test and bin/doctest"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.utilities import runtests
runtests.run_all_tests()
class run_benchmarks(Command):
"""Runs all SymPy benchmarks"""
description = "run all benchmarks"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
# we use py.test like architecture:
#
# o collector -- collects benchmarks
# o runner -- executes benchmarks
# o presenter -- displays benchmarks results
#
# this is done in sympy.utilities.benchmarking on top of py.test
def run(self):
from sympy.utilities import benchmarking
benchmarking.main(['sympy'])
class antlr(Command):
"""Generate code with antlr4"""
description = "generate parser code from antlr grammars"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.parsing.latex._build_latex_antlr import build_parser
if not build_parser():
sys.exit(-1)
class sdist_sympy(sdist):
def run(self):
# Fetch git commit hash and write down to commit_hash.txt before
# shipped in tarball.
commit_hash = None
commit_hash_filepath = 'doc/commit_hash.txt'
try:
commit_hash = \
subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
print('Commit hash found : {}.'.format(commit_hash))
print('Writing it to {}.'.format(commit_hash_filepath))
except:
pass
if commit_hash:
with open(commit_hash_filepath, 'w') as f:
f.write(commit_hash)
super(sdist_sympy, self).run()
try:
os.remove(commit_hash_filepath)
print(
'Successfully removed temporary file {}.'
.format(commit_hash_filepath))
except OSError as e:
print("Error deleting %s - %s." % (e.filename, e.strerror))
# Check that this list is uptodate against the result of the command:
# python bin/generate_test_list.py
tests = [
'sympy.algebras.tests',
'sympy.assumptions.tests',
'sympy.calculus.tests',
'sympy.categories.tests',
'sympy.codegen.tests',
'sympy.combinatorics.tests',
'sympy.concrete.tests',
'sympy.core.tests',
'sympy.crypto.tests',
'sympy.deprecated.tests',
'sympy.diffgeom.tests',
'sympy.discrete.tests',
'sympy.external.tests',
'sympy.functions.combinatorial.tests',
'sympy.functions.elementary.tests',
'sympy.functions.special.tests',
'sympy.geometry.tests',
'sympy.holonomic.tests',
'sympy.integrals.rubi.parsetools.tests',
'sympy.integrals.rubi.rubi_tests.tests',
'sympy.integrals.rubi.tests',
'sympy.integrals.tests',
'sympy.interactive.tests',
'sympy.liealgebras.tests',
'sympy.logic.tests',
'sympy.matrices.expressions.tests',
'sympy.matrices.tests',
'sympy.multipledispatch.tests',
'sympy.ntheory.tests',
'sympy.parsing.tests',
'sympy.physics.continuum_mechanics.tests',
'sympy.physics.hep.tests',
'sympy.physics.mechanics.tests',
'sympy.physics.optics.tests',
'sympy.physics.quantum.tests',
'sympy.physics.tests',
'sympy.physics.units.tests',
'sympy.physics.vector.tests',
'sympy.plotting.intervalmath.tests',
'sympy.plotting.pygletplot.tests',
'sympy.plotting.tests',
'sympy.polys.agca.tests',
'sympy.polys.domains.tests',
'sympy.polys.tests',
'sympy.printing.pretty.tests',
'sympy.printing.tests',
'sympy.sandbox.tests',
'sympy.series.tests',
'sympy.sets.tests',
'sympy.simplify.tests',
'sympy.solvers.diophantine.tests',
'sympy.solvers.ode.tests',
'sympy.solvers.tests',
'sympy.stats.tests',
'sympy.strategies.branch.tests',
'sympy.strategies.tests',
'sympy.tensor.array.tests',
'sympy.tensor.tests',
'sympy.testing.tests',
'sympy.unify.tests',
'sympy.utilities._compilation.tests',
'sympy.utilities.tests',
'sympy.vector.tests',
]
long_description = '''SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS) while keeping the code
as simple as possible in order to be comprehensible and easily extensible.
SymPy is written entirely in Python.'''
with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f:
# Defines __version__
exec(f.read())
with open(os.path.join(dir_setup, 'sympy', '__init__.py')) as f:
long_description = f.read().split('"""')[1]
if __name__ == '__main__':
setup(name='sympy',
version=__version__,
description='Computer algebra system (CAS) in Python',
long_description=long_description,
author='SymPy development team',
author_email='[email protected]',
license='BSD',
keywords="Math CAS",
url='https://sympy.org',
py_modules=['isympy'],
packages=['sympy'] + modules + tests,
ext_modules=[],
package_data={
'sympy.utilities.mathml': ['data/*.xsl'],
'sympy.logic.benchmarks': ['input/*.cnf'],
'sympy.parsing.autolev': [
'*.g4', 'test-examples/*.al', 'test-examples/*.py',
'test-examples/pydy-example-repo/*.al',
'test-examples/pydy-example-repo/*.py',
],
'sympy.parsing.latex': ['*.txt', '*.g4'],
'sympy.integrals.rubi.parsetools': ['header.py.txt'],
'sympy.plotting.tests': ['test_region_*.png'],
},
data_files=[('share/man/man1', ['doc/man/isympy.1'])],
cmdclass={'test': test_sympy,
'bench': run_benchmarks,
'clean': clean,
'audit': audit,
'antlr': antlr,
'sdist': sdist_sympy,
},
python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*',
classifiers=[
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Physics',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
],
install_requires=[
'mpmath>=%s' % min_mpmath_version,
],
**extra_kwargs
)
|
10a411105b32c012bec212749dd6cc5f84bea3cd72a2e59bcea4d10541541423 | # -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import
import os
from itertools import chain
import json
import sys
import warnings
import pytest
from sympy.testing.runtests import setup_pprint, _get_doctest_blacklist
durations_path = os.path.join(os.path.dirname(__file__), '.ci', 'durations.json')
blacklist_path = os.path.join(os.path.dirname(__file__), '.ci', 'blacklisted.json')
# Collecting tests from rubi_tests under pytest leads to errors even if the
# tests will be skipped.
collect_ignore = ["sympy/integrals/rubi"] + _get_doctest_blacklist()
if sys.version_info < (3,):
collect_ignore.append('doc/src/gotchas.rst')
# Set up printing for doctests
setup_pprint()
sys.__displayhook__ = sys.displayhook
#from sympy import pprint_use_unicode
#pprint_use_unicode(False)
def _mk_group(group_dict):
return list(chain(*[[k+'::'+v for v in files] for k, files in group_dict.items()]))
if os.path.exists(durations_path):
veryslow_group, slow_group = [_mk_group(group_dict) for group_dict in json.loads(open(durations_path, 'rt').read())]
else:
# warnings in conftest has issues: https://github.com/pytest-dev/pytest/issues/2891
warnings.warn("conftest.py:22: Could not find %s, --quickcheck and --veryquickcheck will have no effect.\n" % durations_path)
veryslow_group, slow_group = [], []
if os.path.exists(blacklist_path):
blacklist_group = _mk_group(json.loads(open(blacklist_path, 'rt').read()))
else:
warnings.warn("conftest.py:28: Could not find %s, no tests will be skipped due to blacklisting\n" % blacklist_path)
blacklist_group = []
def pytest_addoption(parser):
parser.addoption("--quickcheck", dest="runquick", action="store_true",
help="Skip very slow tests (see ./ci/parse_durations_log.py)")
parser.addoption("--veryquickcheck", dest="runveryquick", action="store_true",
help="Skip slow & very slow (see ./ci/parse_durations_log.py)")
def pytest_configure(config):
# register an additional marker
config.addinivalue_line("markers", "slow: manually marked test as slow (use .ci/durations.json instead)")
config.addinivalue_line("markers", "quickcheck: skip very slow tests")
config.addinivalue_line("markers", "veryquickcheck: skip slow & very slow tests")
def pytest_runtest_setup(item):
if isinstance(item, pytest.Function):
if item.nodeid in veryslow_group and (item.config.getvalue("runquick") or
item.config.getvalue("runveryquick")):
pytest.skip("very slow test, skipping since --quickcheck or --veryquickcheck was passed.")
return
if item.nodeid in slow_group and item.config.getvalue("runveryquick"):
pytest.skip("slow test, skipping since --veryquickcheck was passed.")
return
if item.nodeid in blacklist_group:
pytest.skip("blacklisted test, see %s" % blacklist_path)
return
|
fe6e32663b91bbf131c23eef8f471441c979993cce53b2cb767d56b66c5857c0 | #!/usr/bin/env python
#
# Tests that a useful message is give in the ImportError when trying to import
# sympy from Python 2. This is tested on Travis to ensure that we don't get a
# Py2 SyntaxError from sympy/__init__.py
import sys
assert sys.version_info[:2] == (2, 7), "This test is for Python 2.7 only"
import os
thisdir = os.path.dirname(__file__)
parentdir = os.path.normpath(os.path.join(thisdir, '..'))
# Append the SymPy root directory to path
sys.path.append(parentdir)
try:
import sympy
except ImportError as exc:
message = str(exc)
# "Python version 3.5 or above is required for SymPy."
assert message.startswith("Python version")
assert message.endswith(" or above is required for SymPy.")
else:
raise AssertionError("import sympy should give ImportError on Python 2.7")
|
8f95be0c38fdd1f637ab2522d574a6da47dc16820d9e418c66a04f3a5b6b8a6a | #!/usr/bin/env python
"""
Program to test that all methods/functions have at least one example
doctest. Also checks if docstrings are imported into Sphinx. For this to
work, the Sphinx docs need to be built first. Use "cd doc; make html" to
build the Sphinx docs.
Usage:
./bin/coverage_doctest.py sympy/core
or
./bin/coverage_doctest.py sympy/core/basic.py
If no arguments are given, all files in sympy/ are checked.
"""
from __future__ import print_function
import os
import sys
import inspect
from argparse import ArgumentParser, RawDescriptionHelpFormatter
try:
from HTMLParser import HTMLParser
except ImportError:
# It's html.parser in Python 3
from html.parser import HTMLParser
from sympy.utilities.misc import filldedent
# Load color templates, duplicated from sympy/testing/runtests.py
color_templates = (
("Black", "0;30"),
("Red", "0;31"),
("Green", "0;32"),
("Brown", "0;33"),
("Blue", "0;34"),
("Purple", "0;35"),
("Cyan", "0;36"),
("LightGray", "0;37"),
("DarkGray", "1;30"),
("LightRed", "1;31"),
("LightGreen", "1;32"),
("Yellow", "1;33"),
("LightBlue", "1;34"),
("LightPurple", "1;35"),
("LightCyan", "1;36"),
("White", "1;37"),
)
colors = {}
for name, value in color_templates:
colors[name] = value
c_normal = '\033[0m'
c_color = '\033[%sm'
def print_header(name, underline=None, color=None):
print()
if color:
print("%s%s%s" % (c_color % colors[color], name, c_normal))
else:
print(name)
if underline and not color:
print(underline*len(name))
def print_coverage(module_path, c, c_md, c_mdt, c_idt, c_sph, f, f_md, f_mdt,
f_idt, f_sph, score, total_doctests, total_members,
sphinx_score, total_sphinx, verbose=False, no_color=False,
sphinx=True):
""" Prints details (depending on verbose) of a module """
doctest_color = "Brown"
sphinx_color = "DarkGray"
less_100_color = "Red"
less_50_color = "LightRed"
equal_100_color = "Green"
big_header_color = "LightPurple"
small_header_color = "Purple"
if no_color:
score_string = "Doctests: %s%% (%s of %s)" % (score, total_doctests,
total_members)
elif score < 100:
if score < 50:
score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[doctest_color], c_normal, c_color % colors[less_50_color], score, total_doctests, total_members, c_normal)
else:
score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[doctest_color], c_normal, c_color % colors[less_100_color], score, total_doctests, total_members, c_normal)
else:
score_string = "%sDoctests:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[doctest_color], c_normal, c_color % colors[equal_100_color], score, total_doctests, total_members, c_normal)
if sphinx:
if no_color:
sphinx_score_string = "Sphinx: %s%% (%s of %s)" % (sphinx_score,
total_members - total_sphinx, total_members)
elif sphinx_score < 100:
if sphinx_score < 50:
sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[sphinx_color], c_normal, c_color %
colors[less_50_color], sphinx_score, total_members - total_sphinx,
total_members, c_normal)
else:
sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[sphinx_color], c_normal, c_color %
colors[less_100_color], sphinx_score, total_members -
total_sphinx, total_members, c_normal)
else:
sphinx_score_string = "%sSphinx:%s %s%s%% (%s of %s)%s" % \
(c_color % colors[sphinx_color], c_normal, c_color %
colors[equal_100_color], sphinx_score, total_members -
total_sphinx, total_members, c_normal)
if verbose:
print('\n' + '-'*70)
print(module_path)
print('-'*70)
else:
if sphinx:
print("%s: %s %s" % (module_path, score_string, sphinx_score_string))
else:
print("%s: %s" % (module_path, score_string))
if verbose:
print_header('CLASSES', '*', not no_color and big_header_color)
if not c:
print_header('No classes found!')
else:
if c_md:
print_header('Missing docstrings', '-', not no_color and small_header_color)
for md in c_md:
print(' * ' + md)
if c_mdt:
print_header('Missing doctests', '-', not no_color and small_header_color)
for md in c_mdt:
print(' * ' + md)
if c_idt:
# Use "# indirect doctest" in the docstring to
# suppress this warning.
print_header('Indirect doctests', '-', not no_color and small_header_color)
for md in c_idt:
print(' * ' + md)
print('\n Use \"# indirect doctest\" in the docstring to suppress this warning')
if c_sph:
print_header('Not imported into Sphinx', '-', not no_color and small_header_color)
for md in c_sph:
print(' * ' + md)
print_header('FUNCTIONS', '*', not no_color and big_header_color)
if not f:
print_header('No functions found!')
else:
if f_md:
print_header('Missing docstrings', '-', not no_color and small_header_color)
for md in f_md:
print(' * ' + md)
if f_mdt:
print_header('Missing doctests', '-', not no_color and small_header_color)
for md in f_mdt:
print(' * ' + md)
if f_idt:
print_header('Indirect doctests', '-', not no_color and small_header_color)
for md in f_idt:
print(' * ' + md)
print('\n Use \"# indirect doctest\" in the docstring to suppress this warning')
if f_sph:
print_header('Not imported into Sphinx', '-', not no_color and small_header_color)
for md in f_sph:
print(' * ' + md)
if verbose:
print('\n' + '-'*70)
print(score_string)
if sphinx:
print(sphinx_score_string)
print('-'*70)
def _is_indirect(member, doc):
""" Given string repr of doc and member checks if the member
contains indirect documentation """
d = member in doc
e = 'indirect doctest' in doc
if not d and not e:
return True
else:
return False
def _get_arg_list(name, fobj):
""" Given a function object, constructs a list of arguments
and their defaults. Takes care of varargs and kwargs """
trunc = 20 # Sometimes argument length can be huge
argspec = inspect.getargspec(fobj)
arg_list = []
if argspec.args:
for arg in argspec.args:
arg_list.append(str(arg))
arg_list.reverse()
# Now add the defaults
if argspec.defaults:
for i in range(len(argspec.defaults)):
arg_list[i] = str(arg_list[i]) + '=' + str(argspec.defaults[-i])
# Get the list in right order
arg_list.reverse()
# Add var args
if argspec.varargs:
arg_list.append(argspec.varargs)
if argspec.keywords:
arg_list.append(argspec.keywords)
# Truncate long arguments
arg_list = [x[:trunc] for x in arg_list]
# Construct the parameter string (enclosed in brackets)
str_param = "%s(%s)" % (name, ', '.join(arg_list))
return str_param
def get_mod_name(path, base):
""" Gets a module name, given the path of file/dir and base
dir of sympy """
rel_path = os.path.relpath(path, base)
# Remove the file extension
rel_path, ign = os.path.splitext(rel_path)
# Replace separators by . for module path
file_module = ""
h, t = os.path.split(rel_path)
while h or t:
if t:
file_module = t + '.' + file_module
h, t = os.path.split(h)
return file_module[:-1]
class FindInSphinx(HTMLParser):
is_imported = []
def handle_starttag(self, tag, attr):
a = dict(attr)
if tag == "div" and a.get('class', None) == "viewcode-block":
self.is_imported.append(a['id'])
def find_sphinx(name, mod_path, found={}):
if mod_path in found: # Cache results
return name in found[mod_path]
doc_path = mod_path.split('.')
doc_path[-1] += '.html'
sphinx_path = os.path.join(sympy_top, 'doc', '_build', 'html', '_modules', *doc_path)
if not os.path.exists(sphinx_path):
return False
with open(sphinx_path) as f:
html_txt = f.read()
p = FindInSphinx()
p.feed(html_txt)
found[mod_path] = p.is_imported
return name in p.is_imported
def process_function(name, c_name, b_obj, mod_path, f_sk, f_md, f_mdt, f_idt,
f_has_doctest, sk_list, sph, sphinx=True):
"""
Processes a function to get information regarding documentation.
It is assume that the function calling this subrouting has already
verified that it is a valid module function.
"""
if name in sk_list:
return False, False
# We add in the end, as inspect.getsourcelines is slow
add_md = False
add_mdt = False
add_idt = False
in_sphinx = True
f_doctest = False
function = False
if inspect.isclass(b_obj):
obj = getattr(b_obj, name)
obj_name = c_name + '.' + name
else:
obj = b_obj
obj_name = name
full_name = _get_arg_list(name, obj)
if name.startswith('_'):
f_sk.append(full_name)
else:
doc = obj.__doc__
if type(doc) is str:
if not doc:
add_md = True
elif not '>>>' in doc:
add_mdt = True
elif _is_indirect(name, doc):
add_idt = True
else:
f_doctest = True
elif doc is None:
# this was a function defined in the docstring
f_doctest = True
else:
assert None, type(doc)
function = True
if sphinx:
in_sphinx = find_sphinx(obj_name, mod_path)
if add_md or add_mdt or add_idt or not in_sphinx:
try:
line_no = inspect.getsourcelines(obj)[1]
except IOError:
# Raised when source does not exist
# which means the function is not there.
return False, False
full_name = "LINE %d: %s" % (line_no, full_name)
if add_md:
f_md.append(full_name)
elif add_mdt:
f_mdt.append(full_name)
elif add_idt:
f_idt.append(full_name)
if not in_sphinx:
sph.append(full_name)
return f_doctest, function
def process_class(c_name, obj, c_sk, c_md, c_mdt, c_idt, c_has_doctest,
mod_path, sph, sphinx=True):
"""
Extracts information about the class regarding documentation.
It is assumed that the function calling this subroutine has already
checked that the class is valid.
"""
# Skip class case
if c_name.startswith('_'):
c_sk.append(c_name)
return False, False, None
c = False
c_dt = False
# Get the line number of class
try:
source, line_no = inspect.getsourcelines(obj)
except IOError:
# Raised when source does not exist
# which means the class is not there.
return False, False, None
c = True
full_name = "LINE %d: %s" % (line_no, c_name)
doc = obj.__doc__
if type(doc) is str:
if not doc:
c_md.append(full_name)
elif not '>>>' in doc:
c_mdt.append(full_name)
elif _is_indirect(c_name, doc):
c_idt.append(full_name)
else:
c_dt = True
c_has_doctest.append(full_name)
elif doc is None:
# this was a class defined in the docstring
c_dt = True
c_has_doctest.append(full_name)
else:
assert None, type(doc)
in_sphinx = False
if sphinx:
in_sphinx = find_sphinx(c_name, mod_path)
if not in_sphinx:
sph.append(full_name)
return c_dt, c, source
def coverage(module_path, verbose=False, no_color=False, sphinx=True):
""" Given a module path, builds an index of all classes and functions
contained. It then goes through each of the classes/functions to get
the docstring and doctest coverage of the module. """
# Import the package and find members
m = None
try:
__import__(module_path)
m = sys.modules[module_path]
except Exception as a:
# Most likely cause, absence of __init__
print("%s could not be loaded due to %s." % (module_path, repr(a)))
return 0, 0, 0
c_skipped = []
c_md = []
c_mdt = []
c_has_doctest = []
c_idt = []
classes = 0
c_doctests = 0
c_sph = []
f_skipped = []
f_md = []
f_mdt = []
f_has_doctest = []
f_idt = []
functions = 0
f_doctests = 0
f_sph = []
skip_members = ['__abstractmethods__']
# Get the list of members
m_members = dir(m)
for member in m_members:
# Check for skipped functions first, they throw nasty errors
# when combined with getattr
if member in skip_members:
continue
# Identify if the member (class/def) is a part of this module
obj = getattr(m, member)
obj_mod = inspect.getmodule(obj)
# Function not a part of this module
if not obj_mod or not obj_mod.__name__ == module_path:
continue
# If it's a function
if inspect.isfunction(obj) or inspect.ismethod(obj):
f_dt, f = process_function(member, '', obj, module_path,
f_skipped, f_md, f_mdt, f_idt, f_has_doctest, skip_members,
f_sph, sphinx=sphinx)
if f:
functions += 1
if f_dt:
f_doctests += 1
# If it's a class, look at it's methods too
elif inspect.isclass(obj):
# Process the class first
c_dt, c, source = process_class(member, obj, c_skipped, c_md,
c_mdt, c_idt, c_has_doctest, module_path, c_sph, sphinx=sphinx)
if not c:
continue
else:
classes += 1
if c_dt:
c_doctests += 1
# Iterate through it's members
for f_name in obj.__dict__:
if f_name in skip_members or f_name.startswith('_'):
continue
# Check if def funcname appears in source
if not ("def " + f_name) in ' '.join(source):
continue
# Identify the module of the current class member
f_obj = getattr(obj, f_name)
obj_mod = inspect.getmodule(f_obj)
# Function not a part of this module
if not obj_mod or not obj_mod.__name__ == module_path:
continue
# If it's a function
if inspect.isfunction(f_obj) or inspect.ismethod(f_obj):
f_dt, f = process_function(f_name, member, obj,
module_path, f_skipped, f_md, f_mdt, f_idt, f_has_doctest,
skip_members, f_sph, sphinx=sphinx)
if f:
functions += 1
if f_dt:
f_doctests += 1
# Evaluate the percent coverage
total_doctests = c_doctests + f_doctests
total_members = classes + functions
if total_members:
score = 100 * float(total_doctests) / (total_members)
else:
score = 100
score = int(score)
if sphinx:
total_sphinx = len(c_sph) + len(f_sph)
if total_members:
sphinx_score = 100 - 100 * float(total_sphinx) / total_members
else:
sphinx_score = 100
sphinx_score = int(sphinx_score)
else:
total_sphinx = 0
sphinx_score = 0
# Sort functions/classes by line number
c_md = sorted(c_md, key=lambda x: int(x.split()[1][:-1]))
c_mdt = sorted(c_mdt, key=lambda x: int(x.split()[1][:-1]))
c_idt = sorted(c_idt, key=lambda x: int(x.split()[1][:-1]))
f_md = sorted(f_md, key=lambda x: int(x.split()[1][:-1]))
f_mdt = sorted(f_mdt, key=lambda x: int(x.split()[1][:-1]))
f_idt = sorted(f_idt, key=lambda x: int(x.split()[1][:-1]))
print_coverage(module_path, classes, c_md, c_mdt, c_idt, c_sph, functions, f_md,
f_mdt, f_idt, f_sph, score, total_doctests, total_members,
sphinx_score, total_sphinx, verbose=verbose,
no_color=no_color, sphinx=sphinx)
return total_doctests, total_sphinx, total_members
def go(sympy_top, file, verbose=False, no_color=False, exact=True, sphinx=True):
# file names containing any string in skip_paths will be skipped,
skip_paths = []
if os.path.isdir(file):
doctests, total_sphinx, num_functions = 0, 0, 0
for F in os.listdir(file):
_doctests, _total_sphinx, _num_functions = go(sympy_top, '%s/%s' % (file, F),
verbose=verbose, no_color=no_color, exact=False, sphinx=sphinx)
doctests += _doctests
total_sphinx += _total_sphinx
num_functions += _num_functions
return doctests, total_sphinx, num_functions
if (not (file.endswith('.py') or file.endswith('.pyx')) or
file.endswith('__init__.py') or
not exact and ('test_' in file or 'bench_' in file or
any(name in file for name in skip_paths))):
return 0, 0, 0
if not os.path.exists(file):
print("File(%s does not exist." % file)
sys.exit(1)
# Relpath for constructing the module name
return coverage(get_mod_name(file, sympy_top), verbose=verbose,
no_color=no_color, sphinx=sphinx)
if __name__ == "__main__":
bintest_dir = os.path.abspath(os.path.dirname(__file__)) # bin/cover...
sympy_top = os.path.split(bintest_dir)[0] # ../
sympy_dir = os.path.join(sympy_top, 'sympy') # ../sympy/
if os.path.isdir(sympy_dir):
sys.path.insert(0, sympy_top)
usage = "usage: ./bin/doctest_coverage.py PATHS"
parser = ArgumentParser(
description=__doc__,
usage=usage,
formatter_class=RawDescriptionHelpFormatter,
)
parser.add_argument("path", nargs='*', default=[os.path.join(sympy_top, 'sympy')])
parser.add_argument("-v", "--verbose", action="store_true", dest="verbose",
default=False)
parser.add_argument("--no-colors", action="store_true", dest="no_color",
help="use no colors", default=False)
parser.add_argument("--no-sphinx", action="store_false", dest="sphinx",
help="don't report Sphinx coverage", default=True)
args = parser.parse_args()
if args.sphinx and not os.path.exists(os.path.join(sympy_top, 'doc', '_build', 'html')):
print(filldedent("""
Cannot check Sphinx coverage without a documentation build.
To build the docs, run "cd doc; make html". To skip
checking Sphinx coverage, pass --no-sphinx.
"""))
sys.exit(1)
full_coverage = True
for file in args.path:
file = os.path.normpath(file)
print('DOCTEST COVERAGE for %s' % (file))
print('='*70)
print()
doctests, total_sphinx, num_functions = go(sympy_top, file, verbose=args.verbose,
no_color=args.no_color, sphinx=args.sphinx)
if num_functions == 0:
score = 100
sphinx_score = 100
else:
score = 100 * float(doctests) / num_functions
score = int(score)
if doctests < num_functions:
full_coverage = False
if args.sphinx:
sphinx_score = 100 - 100 * float(total_sphinx) / num_functions
sphinx_score = int(sphinx_score)
if total_sphinx > 0:
full_coverage = False
print()
print('='*70)
if args.no_color:
print("TOTAL DOCTEST SCORE for %s: %s%% (%s of %s)" % \
(get_mod_name(file, sympy_top), score, doctests, num_functions))
elif score < 100:
print("TOTAL DOCTEST SCORE for %s: %s%s%% (%s of %s)%s" % \
(get_mod_name(file, sympy_top), c_color % (colors["Red"]),
score, doctests, num_functions, c_normal))
else:
print("TOTAL DOCTEST SCORE for %s: %s%s%% (%s of %s)%s" % \
(get_mod_name(file, sympy_top), c_color % (colors["Green"]),
score, doctests, num_functions, c_normal))
if args.sphinx:
if args.no_color:
print("TOTAL SPHINX SCORE for %s: %s%% (%s of %s)" % \
(get_mod_name(file, sympy_top), sphinx_score,
num_functions - total_sphinx, num_functions))
elif sphinx_score < 100:
print("TOTAL SPHINX SCORE for %s: %s%s%% (%s of %s)%s" % \
(get_mod_name(file, sympy_top), c_color % (colors["Red"]),
sphinx_score, num_functions - total_sphinx, num_functions, c_normal))
else:
print("TOTAL SPHINX SCORE for %s: %s%s%% (%s of %s)%s" % \
(get_mod_name(file, sympy_top), c_color % (colors["Green"]),
sphinx_score, num_functions - total_sphinx, num_functions, c_normal))
print()
sys.exit(not full_coverage)
|
1dbf3a843d7061dff5cd80049f8b32e34c0c0d531cd04ad0516f2b530cb55e01 | #!/usr/bin/env python
from __future__ import print_function
DESCRIPTION = """
Runs all the examples for testing purposes and reports successes and failures
to stderr. An example is marked successful if the running thread does not
throw an exception, for threaded examples, such as plotting, one needs to
check the stderr messages as well.
"""
EPILOG = """
Example Usage:
When no examples fail:
$ ./all.py > out
SUCCESSFUL:
- beginner.basic
[...]
NO FAILED EXAMPLES
$
When examples fail:
$ ./all.py -w > out
Traceback (most recent call last):
File "./all.py", line 111, in run_examples
[...]
SUCCESSFUL:
- beginner.basic
[...]
FAILED:
- intermediate.mplot2D
[...]
$
Obviously, we want to achieve the first result.
"""
import imp
import optparse
import os
import sys
import traceback
# add local sympy to the module path
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..")
sympy_dir = os.path.normpath(sympy_dir)
sys.path.insert(0, sympy_dir)
import sympy
TERMINAL_EXAMPLES = [
"beginner.basic",
"beginner.differentiation",
"beginner.expansion",
"beginner.functions",
"beginner.limits_examples",
"beginner.precision",
"beginner.print_pretty",
"beginner.series",
"beginner.substitution",
"intermediate.coupled_cluster",
"intermediate.differential_equations",
"intermediate.infinite_1d_box",
"intermediate.partial_differential_eqs",
"intermediate.trees",
"intermediate.vandermonde",
"advanced.curvilinear_coordinates",
"advanced.dense_coding_example",
"advanced.fem",
"advanced.gibbs_phenomenon",
"advanced.grover_example",
"advanced.hydrogen",
"advanced.pidigits",
"advanced.qft",
"advanced.relativity",
]
WINDOWED_EXAMPLES = [
"beginner.plotting_nice_plot",
"intermediate.mplot2d",
"intermediate.mplot3d",
"intermediate.print_gtk",
"advanced.autowrap_integrators",
"advanced.autowrap_ufuncify",
"advanced.pyglet_plotting",
]
EXAMPLE_DIR = os.path.dirname(__file__)
def __import__(name, globals=None, locals=None, fromlist=None):
"""An alternative to the import function so that we can import
modules defined as strings.
This code was taken from: http://docs.python.org/lib/examples-imp.html
"""
# Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass
# If any of the following calls raises an exception,
# there's a problem we can't handle -- let the caller handle it.
module_name = name.split('.')[-1]
module_path = os.path.join(EXAMPLE_DIR, *name.split('.')[:-1])
fp, pathname, description = imp.find_module(module_name, [module_path])
try:
return imp.load_module(module_name, fp, pathname, description)
finally:
# Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()
def load_example_module(example):
"""Loads modules based upon the given package name"""
mod = __import__(example)
return mod
def run_examples(windowed=False, quiet=False, summary=True):
"""Run all examples in the list of modules.
Returns a boolean value indicating whether all the examples were
successful.
"""
successes = []
failures = []
examples = TERMINAL_EXAMPLES
if windowed:
examples += WINDOWED_EXAMPLES
if quiet:
from sympy.testing.runtests import PyTestReporter
reporter = PyTestReporter()
reporter.write("Testing Examples\n")
reporter.write("-" * reporter.terminal_width)
else:
reporter = None
for example in examples:
if run_example(example, reporter=reporter):
successes.append(example)
else:
failures.append(example)
if summary:
show_summary(successes, failures, reporter=reporter)
return len(failures) == 0
def run_example(example, reporter=None):
"""Run a specific example.
Returns a boolean value indicating whether the example was successful.
"""
if reporter:
reporter.write(example)
else:
print("=" * 79)
print("Running: ", example)
try:
mod = load_example_module(example)
if reporter:
suppress_output(mod.main)
reporter.write("[PASS]", "Green", align="right")
else:
mod.main()
return True
except KeyboardInterrupt as e:
raise e
except:
if reporter:
reporter.write("[FAIL]", "Red", align="right")
traceback.print_exc()
return False
class DummyFile(object):
def write(self, x):
pass
def suppress_output(fn):
"""Suppresses the output of fn on sys.stdout."""
save_stdout = sys.stdout
try:
sys.stdout = DummyFile()
fn()
finally:
sys.stdout = save_stdout
def show_summary(successes, failures, reporter=None):
"""Shows a summary detailing which examples were successful and which failed."""
if reporter:
reporter.write("-" * reporter.terminal_width)
if failures:
reporter.write("FAILED:\n", "Red")
for example in failures:
reporter.write(" %s\n" % example)
else:
reporter.write("ALL EXAMPLES PASSED\n", "Green")
else:
if successes:
print("SUCCESSFUL: ", file=sys.stderr)
for example in successes:
print(" -", example, file=sys.stderr)
else:
print("NO SUCCESSFUL EXAMPLES", file=sys.stderr)
if failures:
print("FAILED: ", file=sys.stderr)
for example in failures:
print(" -", example, file=sys.stderr)
else:
print("NO FAILED EXAMPLES", file=sys.stderr)
def main(*args, **kws):
"""Main script runner"""
parser = optparse.OptionParser()
parser.add_option('-w', '--windowed', action="store_true", dest="windowed",
help="also run examples requiring windowed environment")
parser.add_option('-q', '--quiet', action="store_true", dest="quiet",
help="runs examples in 'quiet mode' suppressing example output and \
showing simple status messages.")
parser.add_option('--no-summary', action="store_true", dest="no_summary",
help="hides the summary at the end of testing the examples")
(options, _) = parser.parse_args()
return 0 if run_examples(windowed=options.windowed, quiet=options.quiet,
summary=not options.no_summary) else 1
if __name__ == "__main__":
sys.exit(main(*sys.argv[1:]))
|
2db43194f52789f3ec1a5f48aa5e034824cc0fcb69e9ecc7a0b9a4914db8ddfe | """
SymPy is a Python library for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS) while keeping the code as simple
as possible in order to be comprehensible and easily extensible. SymPy is
written entirely in Python. It depends on mpmath, and other external libraries
may be optionally for things like plotting support.
See the webpage for more information and documentation:
https://sympy.org
"""
import sys
if sys.version_info < (3, 5):
raise ImportError("Python version 3.5 or above is required for SymPy.")
del sys
try:
import mpmath
except ImportError:
raise ImportError("SymPy now depends on mpmath as an external library. "
"See https://docs.sympy.org/latest/install.html#mpmath for more information.")
del mpmath
from sympy.release import __version__
if 'dev' in __version__:
def enable_warnings():
import warnings
warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*')
del warnings
enable_warnings()
del enable_warnings
def __sympy_debug():
# helper function so we don't import os globally
import os
debug_str = os.getenv('SYMPY_DEBUG', 'False')
if debug_str in ('True', 'False'):
return eval(debug_str)
else:
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
debug_str)
SYMPY_DEBUG = __sympy_debug() # type: bool
from .core import (sympify, SympifyError, cacheit, Basic, Atom,
preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol,
Wild, Dummy, symbols, var, Number, Float, Rational, Integer,
NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo,
AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log,
Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality,
GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan,
vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass,
Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log,
expand_func, expand_trig, expand_complex, expand_multinomial, nfloat,
expand_power_base, expand_power_exp, arity, PrecisionExhausted, N,
evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate,
Catalan, EulerGamma, GoldenRatio, TribonacciConstant)
from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor,
Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map,
true, false, satisfiable)
from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext,
assuming, Q, ask, register_handler, remove_handler, refine)
from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr,
degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo,
pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert,
subresultants, resultant, discriminant, cofactors, gcd_list, gcd,
lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose,
decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf,
factor_list, factor, intervals, refine_root, count_roots, real_roots,
nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner,
is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner,
interpolate, rational_interpolate, viete, together,
BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed,
OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed,
IsomorphismFailed, ExtraneousFactors, EvaluationFailed,
RefinementFailed, CoercionFailed, NotInvertible, NotReversible,
NotAlgebraic, DomainError, PolynomialError, UnificationFailed,
GeneratorsError, GeneratorsNeeded, ComputationFailed,
UnivariatePolynomialError, MultivariatePolynomialError,
PolificationFailed, OptionError, FlagError, minpoly,
minimal_polynomial, primitive_element, field_isomorphism,
to_number_field, isolate, itermonomials, Monomial, lex, grlex,
grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf,
ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing,
RationalField, RealField, ComplexField, PythonFiniteField,
GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational,
GMPYRationalField, AlgebraicField, PolynomialRing, FractionField,
ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python,
QQ_gmpy, GF, FF, ZZ, QQ, RR, CC, EX, construct_domain,
swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly,
interpolating_poly, jacobi_poly, chebyshevt_poly, chebyshevu_poly,
hermite_poly, legendre_poly, laguerre_poly, apart, apart_list,
assemble_partfrac_list, Options, ring, xring, vring, sring, field,
xfield, vfield, sfield)
from .series import (Order, O, limit, Limit, gruntz, series, approximants,
residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul,
fourier_series, fps, difference_delta, limit_seq)
from .functions import (factorial, factorial2, rf, ff, binomial,
RisingFactorial, FallingFactorial, subfactorial, carmichael,
fibonacci, lucas, tribonacci, harmonic, bernoulli, bell, euler,
catalan, genocchi, partition, sqrt, root, Min, Max, Id, real_root,
cbrt, re, im, sign, Abs, conjugate, arg, polar_lift,
periodic_argument, unbranched_argument, principal_branch, transpose,
adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc,
asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log,
LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh,
acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold,
erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li,
Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma, lowergamma,
uppergamma, polygamma, loggamma, digamma, trigamma, multigamma,
dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk, LeviCivita,
KroneckerDelta, SingularityFunction, DiracDelta, Heaviside,
bspline_basis, bspline_basis_set, interpolating_spline, besselj,
bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1,
hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper,
meijerg, appellf1, legendre, assoc_legendre, hermite, chebyshevt,
chebyshevu, chebyshevu_root, chebyshevt_root, laguerre,
assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c,
Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus,
mathieuc, mathieusprime, mathieucprime)
from .ntheory import (nextprime, prevprime, prime, primepi, primerange,
randprime, Sieve, sieve, primorial, cycle_length, composite,
compositepi, isprime, divisors, proper_divisors, factorint,
multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors,
totient, trailing, divisor_count, proper_divisor_count, divisor_sigma,
factorrat, reduced_totient, primenu, primeomega,
mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
is_deficient, is_amicable, abundance, npartitions, is_primitive_root,
is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod,
quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue,
sqrt_mod_iter, mobius, discrete_log, quadratic_congruence,
binomial_coefficients, binomial_coefficients_list,
multinomial_coefficients, continued_fraction_periodic,
continued_fraction_iterator, continued_fraction_reduce,
continued_fraction_convergents, continued_fraction, egyptian_fraction)
from .concrete import product, Product, summation, Sum
from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform,
inverse_mobius_transform, convolution, covering_product,
intersecting_product)
from .simplify import (simplify, hypersimp, hypersimilar, logcombine,
separatevars, posify, besselsimp, kroneckersimp, signsimp, bottom_up,
nsimplify, FU, fu, sqrtdenest, cse, use, epath, EPath, hyperexpand,
collect, rcollect, radsimp, collect_const, fraction, numer, denom,
trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp,
ratsimp, ratsimpmodprime)
from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet,
Intersection, imageset, Complement, SymmetricDifference, ImageSet,
Range, ComplexRegion, Reals, Contains, ConditionSet, Ordinal,
OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet,
Integers, Rationals)
from .solvers import (solve, solve_linear_system, solve_linear_system_LU,
solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick,
inv_quick, check_assumptions, failing_assumptions, diophantine,
rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol,
classify_ode, dsolve, homogeneous_order, solve_poly_system,
solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul,
pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities,
reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality,
solve_rational_inequalities, solve_univariate_inequality, decompogen,
solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution,
Complexes)
from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt,
casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy,
matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2,
rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix,
DeferredVector, MatrixBase, Matrix, MutableMatrix,
MutableSparseMatrix, banded, ImmutableDenseMatrix,
ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice,
BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse,
MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose,
ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols,
Adjoint, hadamard_product, HadamardProduct, HadamardPower,
Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix,
DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute)
from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D,
Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle,
Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid,
convex_hull, idiff, intersection, closest_points, farthest_points,
GeometryError, Curve, Parabola)
from .utilities import (flatten, group, take, subsets, variations,
numbered_symbols, cartes, capture, dict_merge, postorder_traversal,
interactive_traversal, prefixes, postfixes, sift, topological_sort,
unflatten, has_dups, has_variety, reshape, default_sort_key, ordered,
rotations, filldedent, lambdify, source, threaded, xthreaded, public,
memoize_property, timed)
from .integrals import (integrate, Integral, line_integrate, mellin_transform,
inverse_mellin_transform, MellinTransform, InverseMellinTransform,
laplace_transform, inverse_laplace_transform, LaplaceTransform,
InverseLaplaceTransform, fourier_transform, inverse_fourier_transform,
FourierTransform, InverseFourierTransform, sine_transform,
inverse_sine_transform, SineTransform, InverseSineTransform,
cosine_transform, inverse_cosine_transform, CosineTransform,
InverseCosineTransform, hankel_transform, inverse_hankel_transform,
HankelTransform, InverseHankelTransform, singularityintegrate)
from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure,
get_indices, MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray,
tensorproduct, tensorcontraction, derive_by_array, permutedims, Array,
DenseNDimArray, SparseNDimArray)
from .parsing import parse_expr
from .calculus import (euler_equations, singularities, is_increasing,
is_strictly_increasing, is_decreasing, is_strictly_decreasing,
is_monotonic, finite_diff_weights, apply_finite_diff, as_finite_diff,
differentiate_finite, periodicity, not_empty_in, AccumBounds,
is_convex, stationary_points, minimum, maximum)
from .algebras import Quaternion
from .printing import (pager_print, pretty, pretty_print, pprint,
pprint_use_unicode, pprint_try_use_unicode, latex, print_latex,
multiline_latex, mathml, print_mathml, python, print_python, pycode,
ccode, print_ccode, glsl_code, print_glsl, cxxcode, fcode,
print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code,
mathematica_code, octave_code, rust_code, print_gtk, preview, srepr,
print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint,
maple_code, print_maple_code)
from .testing import test, doctest
# This module causes conflicts with other modules:
# from .stats import *
# Adds about .04-.05 seconds of import time
# from combinatorics import *
# This module is slow to import:
#from physics import units
from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric
from .interactive import init_session, init_printing
evalf._create_evalf_table()
# This is slow to import:
#import abc
from .deprecated import C, ClassRegistry, class_registry
__all__ = [
# sympy.core
'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom',
'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr',
'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float',
'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm',
'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp',
'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod',
'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality',
'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan',
'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative',
'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError',
'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig',
'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base',
'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple',
'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan',
'EulerGamma', 'GoldenRatio', 'TribonacciConstant',
# sympy.logic
'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor',
'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic',
'bool_map', 'true', 'false', 'satisfiable',
# sympy.assumptions
'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q',
'ask', 'register_handler', 'remove_handler', 'refine',
# sympy.polys
'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree',
'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo',
'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert',
'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list',
'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content',
'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff',
'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor',
'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots',
'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner',
'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner',
'interpolate', 'rational_interpolate', 'viete', 'together',
'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed',
'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed',
'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed',
'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible',
'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed',
'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed',
'UnivariatePolynomialError', 'MultivariatePolynomialError',
'PolificationFailed', 'OptionError', 'FlagError', 'minpoly',
'minimal_polynomial', 'primitive_element', 'field_isomorphism',
'to_number_field', 'isolate', 'itermonomials', 'Monomial', 'lex', 'grlex',
'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf',
'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField',
'IntegerRing', 'RationalField', 'RealField', 'ComplexField',
'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain',
'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
'GF', 'FF', 'ZZ', 'QQ', 'RR', 'CC', 'EX', 'construct_domain',
'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly',
'random_poly', 'interpolating_poly', 'jacobi_poly', 'chebyshevt_poly',
'chebyshevu_poly', 'hermite_poly', 'legendre_poly', 'laguerre_poly',
'apart', 'apart_list', 'assemble_partfrac_list', 'Options', 'ring',
'xring', 'vring', 'sring', 'field', 'xfield', 'vfield', 'sfield',
# sympy.series
'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants',
'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd',
'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq',
# sympy.functions
'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial',
'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas',
'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan',
'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root',
'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift',
'periodic_argument', 'unbranched_argument', 'principal_branch',
'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan',
'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc',
'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh',
'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh',
'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise',
'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv',
'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi',
'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma',
'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta',
'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita',
'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside',
'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj',
'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn',
'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime',
'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre',
'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu',
'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre',
'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm',
'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta',
'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime',
# sympy.ntheory
'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',
'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity',
'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient',
'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma',
'factorrat', 'reduced_totient', 'primenu', 'primeomega',
'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime',
'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions',
'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients',
'binomial_coefficients_list', 'multinomial_coefficients',
'continued_fraction_periodic', 'continued_fraction_iterator',
'continued_fraction_reduce', 'continued_fraction_convergents',
'continued_fraction', 'egyptian_fraction',
# sympy.concrete
'product', 'Product', 'summation', 'Sum',
# sympy.discrete
'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform',
'inverse_mobius_transform', 'convolution', 'covering_product',
'intersecting_product',
# sympy.simplify
'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars',
'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'bottom_up',
'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'use', 'epath', 'EPath',
'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const',
'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp',
'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime',
# sympy.sets
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
'Intersection', 'imageset', 'Complement', 'SymmetricDifference',
'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet',
'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Reals', 'Naturals',
'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
# sympy.solvers
'solve', 'solve_linear_system', 'solve_linear_system_LU',
'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
'solve_poly_system', 'solve_triangulated', 'pde_separate',
'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde',
'checkpdesol', 'ode_order', 'reduce_inequalities',
'reduce_abs_inequality', 'reduce_abs_inequalities',
'solve_poly_inequality', 'solve_rational_inequalities',
'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve',
'linear_eq_to_matrix', 'nonlinsolve', 'substitution', 'Complexes',
# sympy.matrices
'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag',
'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy',
'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1',
'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros',
'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix',
'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix',
'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice',
'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse',
'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace',
'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse',
'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct',
'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix',
'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct',
'kronecker_product', 'KroneckerProduct', 'PermutationMatrix',
'MatrixPermute',
# sympy.geometry
'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D',
'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse',
'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola',
# sympy.utilities
'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols',
'cartes', 'capture', 'dict_merge', 'postorder_traversal',
'interactive_traversal', 'prefixes', 'postfixes', 'sift',
'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape',
'default_sort_key', 'ordered', 'rotations', 'filldedent', 'lambdify',
'source', 'threaded', 'xthreaded', 'public', 'memoize_property', 'test',
'doctest', 'timed',
# sympy.integrals
'integrate', 'Integral', 'line_integrate', 'mellin_transform',
'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform',
'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform',
'InverseLaplaceTransform', 'fourier_transform',
'inverse_fourier_transform', 'FourierTransform',
'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform',
'SineTransform', 'InverseSineTransform', 'cosine_transform',
'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform',
'hankel_transform', 'inverse_hankel_transform', 'HankelTransform',
'InverseHankelTransform', 'singularityintegrate',
# sympy.tensor
'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure',
'get_indices', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
'tensorproduct', 'tensorcontraction', 'derive_by_array', 'permutedims',
'Array', 'DenseNDimArray', 'SparseNDimArray',
# sympy.parsing
'parse_expr',
# sympy.calculus
'euler_equations', 'singularities', 'is_increasing',
'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing',
'is_monotonic', 'finite_diff_weights', 'apply_finite_diff',
'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in',
'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum',
# sympy.algebras
'Quaternion',
# sympy.printing
'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex',
'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode',
'print_ccode', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode',
'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode',
'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk',
'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr',
'TableForm', 'dotprint', 'maple_code', 'print_maple_code',
# sympy.plotting
'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric',
# sympy.interactive
'init_session', 'init_printing',
# sympy.testing
'test', 'doctest',
# sympy.deprecated:
'C', 'ClassRegistry', 'class_registry',
]
|
5bb757a80bf28944a18808aef139f66c1c51b9325c3f52a5561b58f15dd51696 | from __future__ import print_function, division
import sys
sys._running_pytest = True # type: ignore
from distutils.version import LooseVersion as V
import pytest
from sympy.core.cache import clear_cache
import re
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def process_split(config, items):
split = config.getoption("--split")
if not split:
return
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b "
"where a and b are ints.")
i, t = map(int, m.groups())
start, end = (i-1)*len(items)//t, i*len(items)//t
if i < t:
# remove elements from end of list first
del items[end:]
del items[:start]
def pytest_report_header(config):
from sympy.utilities.misc import ARCH
s = "architecture: %s\n" % ARCH
from sympy.core.cache import USE_CACHE
s += "cache: %s\n" % USE_CACHE
from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
s += "ground types: %s %s\n" % (GROUND_TYPES, version)
return s
def pytest_terminal_summary(terminalreporter):
if (terminalreporter.stats.get('error', None) or
terminalreporter.stats.get('failed', None)):
terminalreporter.write_sep(
' ', 'DO *NOT* COMMIT!', red=True, bold=True)
def pytest_addoption(parser):
parser.addoption("--split", action="store", default="",
help="split tests")
def pytest_collection_modifyitems(config, items):
""" pytest hook. """
# handle splits
process_split(config, items)
@pytest.fixture(autouse=True, scope='module')
def file_clear_cache():
clear_cache()
@pytest.fixture(autouse=True, scope='module')
def check_disabled(request):
if getattr(request.module, 'disabled', False):
pytest.skip("test requirements not met.")
elif getattr(request.module, 'ipython', False):
# need to check version and options for ipython tests
if (V(pytest.__version__) < '2.6.3' and
pytest.config.getvalue('-s') != 'no'):
pytest.skip("run py.test with -s or upgrade to newer version.")
|
70ce5b48292a6a64d8d5eb6b024c2e63d43522bc0750b6c8fb54a2a73c6ecfd9 | """
This module exports all latin and greek letters as Symbols, so you can
conveniently do
>>> from sympy.abc import x, y
instead of the slightly more clunky-looking
>>> from sympy import symbols
>>> x, y = symbols('x y')
Caveats
=======
1. As of the time of writing this, the names ``C``, ``O``, ``S``, ``I``, ``N``,
``E``, and ``Q`` are colliding with names defined in SymPy. If you import them
from both ``sympy.abc`` and ``sympy``, the second import will "win".
This is an issue only for * imports, which should only be used for short-lived
code such as interactive sessions and throwaway scripts that do not survive
until the next SymPy upgrade, where ``sympy`` may contain a different set of
names.
2. This module does not define symbol names on demand, i.e.
``from sympy.abc import foo`` will be reported as an error because
``sympy.abc`` does not contain the name ``foo``. To get a symbol named ``foo``,
you still need to use ``Symbol('foo')`` or ``symbols('foo')``.
You can freely mix usage of ``sympy.abc`` and ``Symbol``/``symbols``, though
sticking with one and only one way to get the symbols does tend to make the code
more readable.
The module also defines some special names to help detect which names clash
with the default SymPy namespace.
``_clash1`` defines all the single letter variables that clash with
SymPy objects; ``_clash2`` defines the multi-letter clashing symbols;
and ``_clash`` is the union of both. These can be passed for ``locals``
during sympification if one desires Symbols rather than the non-Symbol
objects for those names.
Examples
========
>>> from sympy import S
>>> from sympy.abc import _clash1, _clash2, _clash
>>> S("Q & C", locals=_clash1)
C & Q
>>> S('pi(x)', locals=_clash2)
pi(x)
>>> S('pi(C, Q)', locals=_clash)
pi(C, Q)
"""
from __future__ import print_function, division
from typing import Any, Dict
import string
from .core import Symbol, symbols
from .core.alphabets import greeks
from .core.compatibility import exec_
##### Symbol definitions #####
# Implementation note: The easiest way to avoid typos in the symbols()
# parameter is to copy it from the left-hand side of the assignment.
a, b, c, d, e, f, g, h, i, j = symbols('a, b, c, d, e, f, g, h, i, j')
k, l, m, n, o, p, q, r, s, t = symbols('k, l, m, n, o, p, q, r, s, t')
u, v, w, x, y, z = symbols('u, v, w, x, y, z')
A, B, C, D, E, F, G, H, I, J = symbols('A, B, C, D, E, F, G, H, I, J')
K, L, M, N, O, P, Q, R, S, T = symbols('K, L, M, N, O, P, Q, R, S, T')
U, V, W, X, Y, Z = symbols('U, V, W, X, Y, Z')
alpha, beta, gamma, delta = symbols('alpha, beta, gamma, delta')
epsilon, zeta, eta, theta = symbols('epsilon, zeta, eta, theta')
iota, kappa, lamda, mu = symbols('iota, kappa, lamda, mu')
nu, xi, omicron, pi = symbols('nu, xi, omicron, pi')
rho, sigma, tau, upsilon = symbols('rho, sigma, tau, upsilon')
phi, chi, psi, omega = symbols('phi, chi, psi, omega')
##### Clashing-symbols diagnostics #####
# We want to know which names in SymPy collide with those in here.
# This is mostly for diagnosing SymPy's namespace during SymPy development.
_latin = list(string.ascii_letters)
# OSINEQ should not be imported as they clash; gamma, pi and zeta clash, too
_greek = list(greeks) # make a copy, so we can mutate it
# Note: We import lamda since lambda is a reserved keyword in Python
_greek.remove("lambda")
_greek.append("lamda")
ns = {} # type: Dict[str, Any]
exec_('from sympy import *', ns)
_clash1 = {}
_clash2 = {}
while ns:
_k, _ = ns.popitem()
if _k in _greek:
_clash2[_k] = Symbol(_k)
_greek.remove(_k)
elif _k in _latin:
_clash1[_k] = Symbol(_k)
_latin.remove(_k)
_clash = {}
_clash.update(_clash1)
_clash.update(_clash2)
del _latin, _greek, Symbol, _k
|
768c84106fad5fbdd9bc2e9cf03c0f483ab8794bdaa3ccbc049ba1853d5e95f3 | #!/usr/bin/env python
"""
Plotting Examples
Suggested Usage: python -i pyglet_plotting.py
"""
from sympy import symbols, sin, cos, pi, sqrt
from sympy.core.compatibility import clock
from sympy.plotting.pygletplot import PygletPlot
from time import sleep
def main():
x, y, z = symbols('x,y,z')
# toggle axes visibility with F5, colors with F6
axes_options = 'visible=false; colored=true; label_ticks=true; label_axes=true; overlay=true; stride=0.5'
# axes_options = 'colored=false; overlay=false; stride=(1.0, 0.5, 0.5)'
p = PygletPlot(
width=600,
height=500,
ortho=False,
invert_mouse_zoom=False,
axes=axes_options,
antialiasing=True)
examples = []
def example_wrapper(f):
examples.append(f)
return f
@example_wrapper
def mirrored_saddles():
p[5] = x**2 - y**2, [20], [20]
p[6] = y**2 - x**2, [20], [20]
@example_wrapper
def mirrored_saddles_saveimage():
p[5] = x**2 - y**2, [20], [20]
p[6] = y**2 - x**2, [20], [20]
p.wait_for_calculations()
# although the calculation is complete,
# we still need to wait for it to be
# rendered, so we'll sleep to be sure.
sleep(1)
p.saveimage("plot_example.png")
@example_wrapper
def mirrored_ellipsoids():
p[2] = x**2 + y**2, [40], [40], 'color=zfade'
p[3] = -x**2 - y**2, [40], [40], 'color=zfade'
@example_wrapper
def saddle_colored_by_derivative():
f = x**2 - y**2
p[1] = f, 'style=solid'
p[1].color = abs(f.diff(x)), abs(f.diff(x) + f.diff(y)), abs(f.diff(y))
@example_wrapper
def ding_dong_surface():
f = sqrt(1.0 - y)*y
p[1] = f, [x, 0, 2*pi,
40], [y, -
1, 4, 100], 'mode=cylindrical; style=solid; color=zfade4'
@example_wrapper
def polar_circle():
p[7] = 1, 'mode=polar'
@example_wrapper
def polar_flower():
p[8] = 1.5*sin(4*x), [160], 'mode=polar'
p[8].color = z, x, y, (0.5, 0.5, 0.5), (
0.8, 0.8, 0.8), (x, y, None, z) # z is used for t
@example_wrapper
def simple_cylinder():
p[9] = 1, 'mode=cylindrical'
@example_wrapper
def cylindrical_hyperbola():
# (note that polar is an alias for cylindrical)
p[10] = 1/y, 'mode=polar', [x], [y, -2, 2, 20]
@example_wrapper
def extruded_hyperbolas():
p[11] = 1/x, [x, -10, 10, 100], [1], 'style=solid'
p[12] = -1/x, [x, -10, 10, 100], [1], 'style=solid'
@example_wrapper
def torus():
a, b = 1, 0.5 # radius, thickness
p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x)) *\
sin(y), b*sin(x), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
@example_wrapper
def warped_torus():
a, b = 2, 1 # radius, thickness
p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b *\
sin(x) + 0.5*sin(4*y), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
@example_wrapper
def parametric_spiral():
p[14] = cos(y), sin(y), y / 10.0, [y, -4*pi, 4*pi, 100]
p[14].color = x, (0.1, 0.9), y, (0.1, 0.9), z, (0.1, 0.9)
@example_wrapper
def multistep_gradient():
p[1] = 1, 'mode=spherical', 'style=both'
# p[1] = exp(-x**2-y**2+(x*y)/4), [-1.7,1.7,100], [-1.7,1.7,100], 'style=solid'
# p[1] = 5*x*y*exp(-x**2-y**2), [-2,2,100], [-2,2,100]
gradient = [0.0, (0.3, 0.3, 1.0),
0.30, (0.3, 1.0, 0.3),
0.55, (0.95, 1.0, 0.2),
0.65, (1.0, 0.95, 0.2),
0.85, (1.0, 0.7, 0.2),
1.0, (1.0, 0.3, 0.2)]
p[1].color = z, [None, None, z], gradient
# p[1].color = 'zfade'
# p[1].color = 'zfade3'
@example_wrapper
def lambda_vs_sympy_evaluation():
start = clock()
p[4] = x**2 + y**2, [100], [100], 'style=solid'
p.wait_for_calculations()
print("lambda-based calculation took %s seconds." % (clock() - start))
start = clock()
p[4] = x**2 + y**2, [100], [100], 'style=solid; use_sympy_eval'
p.wait_for_calculations()
print(
"sympy substitution-based calculation took %s seconds." %
(clock() - start))
@example_wrapper
def gradient_vectors():
def gradient_vectors_inner(f, i):
from sympy import lambdify
from sympy.plotting.plot_interval import PlotInterval
from pyglet.gl import glBegin, glColor3f
from pyglet.gl import glVertex3f, glEnd, GL_LINES
def draw_gradient_vectors(f, iu, iv):
"""
Create a function which draws vectors
representing the gradient of f.
"""
dx, dy, dz = f.diff(x), f.diff(y), 0
FF = lambdify([x, y], [x, y, f])
FG = lambdify([x, y], [dx, dy, dz])
iu.v_steps /= 5
iv.v_steps /= 5
Gvl = list(list([FF(u, v), FG(u, v)]
for v in iv.frange())
for u in iu.frange())
def draw_arrow(p1, p2):
"""
Draw a single vector.
"""
glColor3f(0.4, 0.4, 0.9)
glVertex3f(*p1)
glColor3f(0.9, 0.4, 0.4)
glVertex3f(*p2)
def draw():
"""
Iterate through the calculated
vectors and draw them.
"""
glBegin(GL_LINES)
for u in Gvl:
for v in u:
point = [[v[0][0], v[0][1], v[0][2]],
[v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
draw_arrow(point[0], point[1])
glEnd()
return draw
p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid'
iu = PlotInterval(p[i].intervals[0])
iv = PlotInterval(p[i].intervals[1])
p[i].postdraw.append(draw_gradient_vectors(f, iu, iv))
gradient_vectors_inner(x**2 + y**2, 1)
gradient_vectors_inner(-x**2 - y**2, 2)
def help_str():
s = ("\nPlot p has been created. Useful commands: \n"
" help(p), p[1] = x**2, print p, p.clear() \n\n"
"Available examples (see source in plotting.py):\n\n")
for i in range(len(examples)):
s += "(%i) %s\n" % (i, examples[i].__name__)
s += "\n"
s += "e.g. >>> example(2)\n"
s += " >>> ding_dong_surface()\n"
return s
def example(i):
if callable(i):
p.clear()
i()
elif i >= 0 and i < len(examples):
p.clear()
examples[i]()
else:
print("Not a valid example.\n")
print(p)
example(0) # 0 - 15 are defined above
print(help_str())
if __name__ == "__main__":
main()
|
ecb93a180c4272899c981984edbba87aef6275f08f12315531916b6c5ce68f3c | #!/usr/bin/env python
"""Vandermonde matrix example
Demonstrates matrix computations using the Vandermonde matrix.
* https://en.wikipedia.org/wiki/Vandermonde_matrix
"""
from sympy import Matrix, pprint, Rational, symbols, Symbol, zeros
def symbol_gen(sym_str):
"""Symbol generator
Generates sym_str_n where n is the number of times the generator
has been called.
"""
n = 0
while True:
yield Symbol("%s_%d" % (sym_str, n))
n += 1
def comb_w_rep(n, k):
"""Combinations with repetition
Returns the list of k combinations with repetition from n objects.
"""
if k == 0:
return [[]]
combs = [[i] for i in range(n)]
for i in range(k - 1):
curr = []
for p in combs:
for m in range(p[-1], n):
curr.append(p + [m])
combs = curr
return combs
def vandermonde(order, dim=1, syms='a b c d'):
"""Computes a Vandermonde matrix of given order and dimension.
Define syms to give beginning strings for temporary variables.
Returns the Matrix, the temporary variables, and the terms for the
polynomials.
"""
syms = syms.split()
n = len(syms)
if n < dim:
new_syms = []
for i in range(dim - n):
j, rem = divmod(i, n)
new_syms.append(syms[rem] + str(j))
syms.extend(new_syms)
terms = []
for i in range(order + 1):
terms.extend(comb_w_rep(dim, i))
rank = len(terms)
V = zeros(rank)
generators = [symbol_gen(syms[i]) for i in range(dim)]
all_syms = []
for i in range(rank):
row_syms = [next(g) for g in generators]
all_syms.append(row_syms)
for j, term in enumerate(terms):
v_entry = 1
for k in term:
v_entry *= row_syms[k]
V[i*rank + j] = v_entry
return V, all_syms, terms
def gen_poly(points, order, syms):
"""Generates a polynomial using a Vandermonde system"""
num_pts = len(points)
if num_pts == 0:
raise ValueError("Must provide points")
dim = len(points[0]) - 1
if dim > len(syms):
raise ValueError("Must provide at least %d symbols for the polynomial" % dim)
V, tmp_syms, terms = vandermonde(order, dim)
if num_pts < V.shape[0]:
raise ValueError(
"Must provide %d points for order %d, dimension "
"%d polynomial, given %d points" %
(V.shape[0], order, dim, num_pts))
elif num_pts > V.shape[0]:
print("gen_poly given %d points but only requires %d, "\
"continuing using the first %d points" % \
(num_pts, V.shape[0], V.shape[0]))
num_pts = V.shape[0]
subs_dict = {}
for j in range(dim):
for i in range(num_pts):
subs_dict[tmp_syms[i][j]] = points[i][j]
V_pts = V.subs(subs_dict)
V_inv = V_pts.inv()
coeffs = V_inv.multiply(Matrix([points[i][-1] for i in range(num_pts)]))
f = 0
for j, term in enumerate(terms):
t = 1
for k in term:
t *= syms[k]
f += coeffs[j]*t
return f
def main():
order = 2
V, tmp_syms, _ = vandermonde(order)
print("Vandermonde matrix of order 2 in 1 dimension")
pprint(V)
print('-'*79)
print("Computing the determinant and comparing to \sum_{0<i<j<=3}(a_j - a_i)")
det_sum = 1
for j in range(order + 1):
for i in range(j):
det_sum *= (tmp_syms[j][0] - tmp_syms[i][0])
print("""
det(V) = %(det)s
\sum = %(sum)s
= %(sum_expand)s
""" % {"det": V.det(),
"sum": det_sum,
"sum_expand": det_sum.expand(),
})
print('-'*79)
print("Polynomial fitting with a Vandermonde Matrix:")
x, y, z = symbols('x,y,z')
points = [(0, 3), (1, 2), (2, 3)]
print("""
Quadratic function, represented by 3 points:
points = %(pts)s
f = %(f)s
""" % {"pts": points,
"f": gen_poly(points, 2, [x]),
})
points = [(0, 1, 1), (1, 0, 0), (1, 1, 0), (Rational(1, 2), 0, 0),
(0, Rational(1, 2), 0), (Rational(1, 2), Rational(1, 2), 0)]
print("""
2D Quadratic function, represented by 6 points:
points = %(pts)s
f = %(f)s
""" % {"pts": points,
"f": gen_poly(points, 2, [x, y]),
})
points = [(0, 1, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 1)]
print("""
3D linear function, represented by 4 points:
points = %(pts)s
f = %(f)s
""" % {"pts": points,
"f": gen_poly(points, 1, [x, y, z]),
})
if __name__ == "__main__":
main()
|
5653ce3524ac49aaac53e8a5c82948482c358702d81d83ca935f7059d24956d6 | #!/usr/bin/env python
"""Matplotlib 3D plotting example
Demonstrates plotting with matplotlib.
"""
import sys
from sample import sample
from sympy import Symbol
from sympy.external import import_module
def mplot3d(f, var1, var2, show=True):
"""
Plot a 3d function using matplotlib/Tk.
"""
import warnings
warnings.filterwarnings("ignore", "Could not match \S")
p = import_module('pylab')
# Try newer version first
p3 = import_module('mpl_toolkits.mplot3d',
import_kwargs={'fromlist': ['something']}) or import_module('matplotlib.axes3d')
if not p or not p3:
sys.exit("Matplotlib is required to use mplot3d.")
x, y, z = sample(f, var1, var2)
fig = p.figure()
ax = p3.Axes3D(fig)
# ax.plot_surface(x, y, z, rstride=2, cstride=2)
ax.plot_wireframe(x, y, z)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
if show:
p.show()
def main():
x = Symbol('x')
y = Symbol('y')
mplot3d(x**2 - y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20))
# mplot3d(x**2+y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20))
# mplot3d(sin(x)+sin(y), (x, -3.14, 3.14, 10), (y, -3.14, 3.14, 10))
if __name__ == "__main__":
main()
|
1a5bcbe59e873d289475a474e65e052a281efbd4dd619182e5f07955c1b1827f | """
========
numpydoc
========
Sphinx extension that handles docstrings in the Numpy standard format. [1]
It will:
- Convert Parameters etc. sections to field lists.
- Convert See Also section to a See also entry.
- Renumber references.
- Extract the signature from the docstring, if it can't be determined
otherwise.
.. [1] https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
"""
from __future__ import division, absolute_import, print_function
import sys
import re
import pydoc
import sphinx
import inspect
from collections.abc import Callable
if sphinx.__version__ < '1.0.1':
raise RuntimeError("Sphinx 1.0.1 or newer is required")
from docscrape_sphinx import get_doc_object, SphinxDocString
if sys.version_info[0] >= 3:
sixu = lambda s: s
else:
sixu = lambda s: unicode(s, 'unicode_escape')
def mangle_docstrings(app, what, name, obj, options, lines,
reference_offset=[0]):
cfg = {'use_plots': app.config.numpydoc_use_plots,
'show_class_members': app.config.numpydoc_show_class_members,
'show_inherited_class_members':
app.config.numpydoc_show_inherited_class_members,
'class_members_toctree': app.config.numpydoc_class_members_toctree}
u_NL = sixu('\n')
if what == 'module':
# Strip top title
pattern = '^\\s*[#*=]{4,}\\n[a-z0-9 -]+\\n[#*=]{4,}\\s*'
title_re = re.compile(sixu(pattern), re.I | re.S)
lines[:] = title_re.sub(sixu(''), u_NL.join(lines)).split(u_NL)
else:
doc = get_doc_object(obj, what, u_NL.join(lines), config=cfg)
if sys.version_info[0] >= 3:
doc = str(doc)
else:
doc = unicode(doc)
lines[:] = doc.split(u_NL)
if (app.config.numpydoc_edit_link and hasattr(obj, '__name__') and
obj.__name__):
if hasattr(obj, '__module__'):
v = dict(full_name=sixu("%s.%s") % (obj.__module__, obj.__name__))
else:
v = dict(full_name=obj.__name__)
lines += [sixu(''), sixu('.. htmlonly::'), sixu('')]
lines += [sixu(' %s') % x for x in
(app.config.numpydoc_edit_link % v).split("\n")]
# replace reference numbers so that there are no duplicates
references = []
for line in lines:
line = line.strip()
m = re.match(sixu('^.. \\[([a-z0-9_.-])\\]'), line, re.I)
if m:
references.append(m.group(1))
# start renaming from the longest string, to avoid overwriting parts
references.sort(key=lambda x: -len(x))
if references:
for i, line in enumerate(lines):
for r in references:
if re.match(sixu('^\\d+$'), r):
new_r = sixu("R%d") % (reference_offset[0] + int(r))
else:
new_r = sixu("%s%d") % (r, reference_offset[0])
lines[i] = lines[i].replace(sixu('[%s]_') % r,
sixu('[%s]_') % new_r)
lines[i] = lines[i].replace(sixu('.. [%s]') % r,
sixu('.. [%s]') % new_r)
reference_offset[0] += len(references)
def mangle_signature(app, what, name, obj, options, sig, retann):
# Do not try to inspect classes that don't define `__init__`
if (inspect.isclass(obj) and
(not hasattr(obj, '__init__') or
'initializes x; see ' in pydoc.getdoc(obj.__init__))):
return '', ''
if not (isinstance(obj, Callable) or
hasattr(obj, '__argspec_is_invalid_')):
return
if not hasattr(obj, '__doc__'):
return
doc = SphinxDocString(pydoc.getdoc(obj))
if doc['Signature']:
sig = re.sub(sixu("^[^(]*"), sixu(""), doc['Signature'])
return sig, sixu('')
def setup(app, get_doc_object_=get_doc_object):
if not hasattr(app, 'add_config_value'):
return # probably called by nose, better bail out
global get_doc_object
get_doc_object = get_doc_object_
app.connect('autodoc-process-docstring', mangle_docstrings)
app.connect('autodoc-process-signature', mangle_signature)
app.add_config_value('numpydoc_edit_link', None, False)
app.add_config_value('numpydoc_use_plots', None, False)
app.add_config_value('numpydoc_show_class_members', True, True)
app.add_config_value('numpydoc_show_inherited_class_members', True, True)
app.add_config_value('numpydoc_class_members_toctree', True, True)
# Extra mangling domains
app.add_domain(NumpyPythonDomain)
app.add_domain(NumpyCDomain)
# ------------------------------------------------------------------------------
# Docstring-mangling domains
# ------------------------------------------------------------------------------
from docutils.statemachine import ViewList
from sphinx.domains.c import CDomain
from sphinx.domains.python import PythonDomain
class ManglingDomainBase(object):
directive_mangling_map = {}
def __init__(self, *a, **kw):
super(ManglingDomainBase, self).__init__(*a, **kw)
self.wrap_mangling_directives()
def wrap_mangling_directives(self):
for name, objtype in list(self.directive_mangling_map.items()):
self.directives[name] = wrap_mangling_directive(
self.directives[name], objtype)
class NumpyPythonDomain(ManglingDomainBase, PythonDomain):
name = 'np'
directive_mangling_map = {
'function': 'function',
'class': 'class',
'exception': 'class',
'method': 'function',
'classmethod': 'function',
'staticmethod': 'function',
'attribute': 'attribute',
}
indices = []
class NumpyCDomain(ManglingDomainBase, CDomain):
name = 'np-c'
directive_mangling_map = {
'function': 'function',
'member': 'attribute',
'macro': 'function',
'type': 'class',
'var': 'object',
}
def wrap_mangling_directive(base_directive, objtype):
class directive(base_directive):
def run(self):
env = self.state.document.settings.env
name = None
if self.arguments:
m = re.match(r'^(.*\s+)?(.*?)(\(.*)?', self.arguments[0])
name = m.group(2).strip()
if not name:
name = self.arguments[0]
lines = list(self.content)
mangle_docstrings(env.app, objtype, name, None, None, lines)
self.content = ViewList(lines, self.content.parent)
return base_directive.run(self)
return directive
|
6a9ccbeaa67cecfa77232f13ba029452631a6f05bb1390afc6f167d333bc6515 | """
Extract reference documentation from the NumPy source tree.
"""
from __future__ import division, absolute_import, print_function
import inspect
import textwrap
import re
import pydoc
from collections.abc import Mapping
import sys
class Reader(object):
"""
A line-based string reader.
"""
def __init__(self, data):
"""
Parameters
----------
data : str
String with lines separated by '\n'.
"""
if isinstance(data, list):
self._str = data
else:
self._str = data.split('\n') # store string as list of lines
self.reset()
def __getitem__(self, n):
return self._str[n]
def reset(self):
self._l = 0 # current line nr
def read(self):
if not self.eof():
out = self[self._l]
self._l += 1
return out
else:
return ''
def seek_next_non_empty_line(self):
for l in self[self._l:]:
if l.strip():
break
else:
self._l += 1
def eof(self):
return self._l >= len(self._str)
def read_to_condition(self, condition_func):
start = self._l
for line in self[start:]:
if condition_func(line):
return self[start:self._l]
self._l += 1
if self.eof():
return self[start:self._l + 1]
return []
def read_to_next_empty_line(self):
self.seek_next_non_empty_line()
def is_empty(line):
return not line.strip()
return self.read_to_condition(is_empty)
def read_to_next_unindented_line(self):
def is_unindented(line):
return (line.strip() and (len(line.lstrip()) == len(line)))
return self.read_to_condition(is_unindented)
def peek(self, n=0):
if self._l + n < len(self._str):
return self[self._l + n]
else:
return ''
def is_empty(self):
return not ''.join(self._str).strip()
class NumpyDocString(Mapping):
def __init__(self, docstring, config={}):
docstring = textwrap.dedent(docstring).split('\n')
self._doc = Reader(docstring)
self._parsed_data = {
'Signature': '',
'Summary': [''],
'Extended Summary': [],
'Parameters': [],
'Returns': [],
'Yields': [],
'Raises': [],
'Warns': [],
'Other Parameters': [],
'Attributes': [],
'Methods': [],
'See Also': [],
# 'Notes': [],
'Warnings': [],
'References': '',
# 'Examples': '',
'index': {}
}
self._other_keys = []
self._parse()
def __getitem__(self, key):
return self._parsed_data[key]
def __setitem__(self, key, val):
if key not in self._parsed_data:
self._other_keys.append(key)
self._parsed_data[key] = val
def __iter__(self):
return iter(self._parsed_data)
def __len__(self):
return len(self._parsed_data)
def _is_at_section(self):
self._doc.seek_next_non_empty_line()
if self._doc.eof():
return False
l1 = self._doc.peek().strip() # e.g. Parameters
if l1.startswith('.. index::'):
return True
l2 = self._doc.peek(1).strip() # ---------- or ==========
return l2.startswith('-'*len(l1)) or l2.startswith('='*len(l1))
def _strip(self, doc):
i = 0
j = 0
for i, line in enumerate(doc):
if line.strip():
break
for j, line in enumerate(doc[::-1]):
if line.strip():
break
return doc[i:len(doc) - j]
def _read_to_next_section(self):
section = self._doc.read_to_next_empty_line()
while not self._is_at_section() and not self._doc.eof():
if not self._doc.peek(-1).strip(): # previous line was empty
section += ['']
section += self._doc.read_to_next_empty_line()
return section
def _read_sections(self):
while not self._doc.eof():
data = self._read_to_next_section()
name = data[0].strip()
if name.startswith('..'): # index section
yield name, data[1:]
elif len(data) < 2:
yield StopIteration
else:
yield name, self._strip(data[2:])
def _parse_param_list(self, content):
r = Reader(content)
params = []
while not r.eof():
header = r.read().strip()
if ' : ' in header:
arg_name, arg_type = header.split(' : ')[:2]
else:
arg_name, arg_type = header, ''
desc = r.read_to_next_unindented_line()
desc = dedent_lines(desc)
params.append((arg_name, arg_type, desc))
return params
_name_rgx = re.compile(r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`|"
r" (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X)
def _parse_see_also(self, content):
"""
func_name : Descriptive text
continued text
another_func_name : Descriptive text
func_name1, func_name2, :meth:`func_name`, func_name3
"""
items = []
def parse_item_name(text):
"""Match ':role:`name`' or 'name'"""
m = self._name_rgx.match(text)
if m:
g = m.groups()
if g[1] is None:
return g[3], None
else:
return g[2], g[1]
raise ValueError("%s is not an item name" % text)
def push_item(name, rest):
if not name:
return
name, role = parse_item_name(name)
if '.' not in name:
name = '~.' + name
items.append((name, list(rest), role))
del rest[:]
current_func = None
rest = []
for line in content:
if not line.strip():
continue
m = self._name_rgx.match(line)
if m and line[m.end():].strip().startswith(':'):
push_item(current_func, rest)
current_func, line = line[:m.end()], line[m.end():]
rest = [line.split(':', 1)[1].strip()]
if not rest[0]:
rest = []
elif not line.startswith(' '):
push_item(current_func, rest)
current_func = None
if ',' in line:
for func in line.split(','):
if func.strip():
push_item(func, [])
elif line.strip():
current_func = line
elif current_func is not None:
rest.append(line.strip())
push_item(current_func, rest)
return items
def _parse_index(self, section, content):
"""
.. index: default
:refguide: something, else, and more
"""
def strip_each_in(lst):
return [s.strip() for s in lst]
out = {}
section = section.split('::')
if len(section) > 1:
out['default'] = strip_each_in(section[1].split(','))[0]
for line in content:
line = line.split(':')
if len(line) > 2:
out[line[1]] = strip_each_in(line[2].split(','))
return out
def _parse_summary(self):
"""Grab signature (if given) and summary"""
if self._is_at_section():
return
# If several signatures present, take the last one
while True:
summary = self._doc.read_to_next_empty_line()
summary_str = " ".join([s.strip() for s in summary]).strip()
if re.compile('^([\w., ]+=)?\s*[\w\.]+\(.*\)$').match(summary_str):
self['Signature'] = summary_str
if not self._is_at_section():
continue
break
if summary is not None:
self['Summary'] = summary
if not self._is_at_section():
self['Extended Summary'] = self._read_to_next_section()
def _parse(self):
self._doc.reset()
self._parse_summary()
sections = list(self._read_sections())
section_names = set([section for section, content in sections])
has_returns = 'Returns' in section_names
has_yields = 'Yields' in section_names
# We could do more tests, but we are not. Arbitrarily.
if has_returns and has_yields:
msg = 'Docstring contains both a Returns and Yields section.'
raise ValueError(msg)
for (section, content) in sections:
if not section.startswith('..'):
section = (s.capitalize() for s in section.split(' '))
section = ' '.join(section)
if section in ('Parameters', 'Returns', 'Yields', 'Raises',
'Warns', 'Other Parameters', 'Attributes',
'Methods'):
self[section] = self._parse_param_list(content)
elif section.startswith('.. index::'):
self['index'] = self._parse_index(section, content)
elif section == 'See Also':
self['See Also'] = self._parse_see_also(content)
else:
self[section] = content
# string conversion routines
def _str_header(self, name, symbol='-'):
return [name, len(name)*symbol]
def _str_indent(self, doc, indent=4):
out = []
for line in doc:
out += [' '*indent + line]
return out
def _str_signature(self):
if self['Signature']:
return [self['Signature'].replace('*', '\*')] + ['']
else:
return ['']
def _str_summary(self):
if self['Summary']:
return self['Summary'] + ['']
else:
return []
def _str_extended_summary(self):
if self['Extended Summary']:
return self['Extended Summary'] + ['']
else:
return []
def _str_param_list(self, name):
out = []
if self[name]:
out += self._str_header(name)
for param, param_type, desc in self[name]:
if param_type:
out += ['%s : %s' % (param, param_type)]
else:
out += [param]
out += self._str_indent(desc)
out += ['']
return out
def _str_section(self, name):
out = []
if self[name]:
out += self._str_header(name)
out += self[name]
out += ['']
return out
def _str_see_also(self, func_role):
if not self['See Also']:
return []
out = []
out += self._str_header("See Also")
last_had_desc = True
for func, desc, role in self['See Also']:
if role:
link = ':%s:`%s`' % (role, func)
elif func_role:
link = ':%s:`%s`' % (func_role, func)
else:
link = "`%s`_" % func
if desc or last_had_desc:
out += ['']
out += [link]
else:
out[-1] += ", %s" % link
if desc:
out += self._str_indent([' '.join(desc)])
last_had_desc = True
else:
last_had_desc = False
out += ['']
return out
def _str_index(self):
idx = self['index']
out = []
out += ['.. index:: %s' % idx.get('default', '')]
for section, references in idx.items():
if section == 'default':
continue
out += [' :%s: %s' % (section, ', '.join(references))]
return out
def __str__(self, func_role=''):
out = []
out += self._str_signature()
out += self._str_summary()
out += self._str_extended_summary()
for param_list in ('Parameters', 'Returns', 'Yields',
'Other Parameters', 'Raises', 'Warns'):
out += self._str_param_list(param_list)
out += self._str_section('Warnings')
out += self._str_see_also(func_role)
for s in ('Notes', 'References', 'Examples'):
out += self._str_section(s)
for param_list in ('Attributes', 'Methods'):
out += self._str_param_list(param_list)
out += self._str_index()
return '\n'.join(out)
def indent(str, indent=4):
indent_str = ' '*indent
if str is None:
return indent_str
lines = str.split('\n')
return '\n'.join(indent_str + l for l in lines)
def dedent_lines(lines):
"""Deindent a list of lines maximally"""
return textwrap.dedent("\n".join(lines)).split("\n")
def header(text, style='-'):
return text + '\n' + style*len(text) + '\n'
class FunctionDoc(NumpyDocString):
def __init__(self, func, role='func', doc=None, config={}):
self._f = func
self._role = role # e.g. "func" or "meth"
if doc is None:
if func is None:
raise ValueError("No function or docstring given")
doc = inspect.getdoc(func) or ''
NumpyDocString.__init__(self, doc)
if not self['Signature'] and func is not None:
func, func_name = self.get_func()
try:
# try to read signature
if sys.version_info[0] >= 3:
argspec = inspect.getfullargspec(func)
else:
argspec = inspect.getargspec(func)
argspec = inspect.formatargspec(*argspec)
argspec = argspec.replace('*', '\*')
signature = '%s%s' % (func_name, argspec)
except TypeError as e:
signature = '%s()' % func_name
self['Signature'] = signature
def get_func(self):
func_name = getattr(self._f, '__name__', self.__class__.__name__)
if inspect.isclass(self._f):
func = getattr(self._f, '__call__', self._f.__init__)
else:
func = self._f
return func, func_name
def __str__(self):
out = ''
func, func_name = self.get_func()
signature = self['Signature'].replace('*', '\*')
roles = {'func': 'function',
'meth': 'method'}
if self._role:
if self._role not in roles:
print("Warning: invalid role %s" % self._role)
out += '.. %s:: %s\n \n\n' % (roles.get(self._role, ''),
func_name)
out += super(FunctionDoc, self).__str__(func_role=self._role)
return out
class ClassDoc(NumpyDocString):
extra_public_methods = ['__call__']
def __init__(self, cls, doc=None, modulename='', func_doc=FunctionDoc,
config={}):
if not inspect.isclass(cls) and cls is not None:
raise ValueError("Expected a class or None, but got %r" % cls)
self._cls = cls
self.show_inherited_members = config.get(
'show_inherited_class_members', True)
if modulename and not modulename.endswith('.'):
modulename += '.'
self._mod = modulename
if doc is None:
if cls is None:
raise ValueError("No class or documentation string given")
doc = pydoc.getdoc(cls)
NumpyDocString.__init__(self, doc)
if config.get('show_class_members', True):
def splitlines_x(s):
if not s:
return []
else:
return s.splitlines()
for field, items in [('Methods', self.methods),
('Attributes', self.properties)]:
if not self[field]:
doc_list = []
for name in sorted(items):
clsname = getattr(self._cls, name, None)
if clsname is not None:
doc_item = pydoc.getdoc(clsname)
doc_list.append((name, '', splitlines_x(doc_item)))
self[field] = doc_list
@property
def methods(self):
if self._cls is None:
return []
return [name for name, func in inspect.getmembers(self._cls)
if ((not name.startswith('_')
or name in self.extra_public_methods)
and callable(func))]
@property
def properties(self):
if self._cls is None:
return []
return [name for name, func in inspect.getmembers(self._cls)
if not name.startswith('_') and func is None]
|
6752d5b0a29f8b83f002d414decedaa8ab09628c11be24a2d538cffee2f40b24 | """
Continuous Random Variables - Prebuilt variables
Contains
========
Arcsin
Benini
Beta
BetaNoncentral
BetaPrime
Cauchy
Chi
ChiNoncentral
ChiSquared
Dagum
Erlang
ExGaussian
Exponential
ExponentialPower
FDistribution
FisherZ
Frechet
Gamma
GammaInverse
Gumbel
Gompertz
Kumaraswamy
Laplace
Levy
Logistic
LogLogistic
LogNormal
Maxwell
Moyal
Nakagami
Normal
Pareto
PowerFunction
QuadraticU
RaisedCosine
Rayleigh
Reciprocal
ShiftedGompertz
StudentT
Trapezoidal
Triangular
Uniform
UniformSum
VonMises
Wald
Weibull
WignerSemicircle
"""
from __future__ import print_function, division
import random
from sympy import beta as beta_fn
from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk
from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma, sign,
Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs,
Lambda, Basic, lowergamma, erf, erfc, erfi, erfinv, I, asin,
hyper, uppergamma, sinh, Ne, expint, Rational)
from sympy.external import import_module
from sympy.matrices import MatrixBase, MatrixExpr
from sympy.stats.crv import (SingleContinuousPSpace, SingleContinuousDistribution,
ContinuousDistributionHandmade)
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.joint_rv_types import multivariate_rv
from sympy.stats.rv import _value_check, RandomSymbol
oo = S.Infinity
__all__ = ['ContinuousRV',
'Arcsin',
'Benini',
'Beta',
'BetaNoncentral',
'BetaPrime',
'Cauchy',
'Chi',
'ChiNoncentral',
'ChiSquared',
'Dagum',
'Erlang',
'ExGaussian',
'Exponential',
'ExponentialPower',
'FDistribution',
'FisherZ',
'Frechet',
'Gamma',
'GammaInverse',
'Gompertz',
'Gumbel',
'Kumaraswamy',
'Laplace',
'Levy',
'Logistic',
'LogLogistic',
'LogNormal',
'Maxwell',
'Moyal',
'Nakagami',
'Normal',
'GaussianInverse',
'Pareto',
'PowerFunction',
'QuadraticU',
'RaisedCosine',
'Rayleigh',
'Reciprocal',
'StudentT',
'ShiftedGompertz',
'Trapezoidal',
'Triangular',
'Uniform',
'UniformSum',
'VonMises',
'Wald',
'Weibull',
'WignerSemicircle',
]
def ContinuousRV(symbol, density, set=Interval(-oo, oo)):
"""
Create a Continuous Random Variable given the following:
Parameters
==========
symbol : Symbol
Represents name of the random variable.
density : Expression containing symbol
Represents probability density function.
set : set/Interval
Represents the region where the pdf is valid, by default is real line.
Returns
=======
RandomSymbol
Many common continuous random variable types are already implemented.
This function should be necessary only very rarely.
Examples
========
>>> from sympy import Symbol, sqrt, exp, pi
>>> from sympy.stats import ContinuousRV, P, E
>>> x = Symbol("x")
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
>>> X = ContinuousRV(x, pdf)
>>> E(X)
0
>>> P(X>0)
1/2
"""
pdf = Piecewise((density, set.as_relational(symbol)), (0, True))
pdf = Lambda(symbol, pdf)
dist = ContinuousDistributionHandmade(pdf, set)
return SingleContinuousPSpace(symbol, dist).value
def rv(symbol, cls, args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleContinuousPSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
########################################
# Continuous Probability Distributions #
########################################
#-------------------------------------------------------------------------------
# Arcsin distribution ----------------------------------------------------------
class ArcsinDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
def pdf(self, x):
a, b = self.a, self.b
return 1/(pi*sqrt((x - a)*(b - x)))
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < a),
(2*asin(sqrt((x - a)/(b - a)))/pi, x <= b),
(S.One, True))
def Arcsin(name, a=0, b=1):
r"""
Create a Continuous Random Variable with an arcsin distribution.
The density of the arcsin distribution is given by
.. math::
f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}}
with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`.
Parameters
==========
a : Real number, the left interval boundary
b : Real number, the right interval boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Arcsin, density, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = Arcsin("x", a, b)
>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))
>>> cdf(X)(z)
Piecewise((0, a > z),
(2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z),
(1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Arcsine_distribution
"""
return rv(name, ArcsinDistribution, (a, b))
#-------------------------------------------------------------------------------
# Benini distribution ----------------------------------------------------------
class BeniniDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'sigma')
@staticmethod
def check(alpha, beta, sigma):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(sigma > 0, "Scale parameter Sigma must be positive.")
@property
def set(self):
return Interval(self.sigma, oo)
def pdf(self, x):
alpha, beta, sigma = self.alpha, self.beta, self.sigma
return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)
*(alpha/x + 2*beta*log(x/sigma)/x))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of the '
'Benini distribution does not exist.')
def Benini(name, alpha, beta, sigma):
r"""
Create a Continuous Random Variable with a Benini distribution.
The density of the Benini distribution is given by
.. math::
f(x) := e^{-\alpha\log{\frac{x}{\sigma}}
-\beta\log^2\left[{\frac{x}{\sigma}}\right]}
\left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right)
This is a heavy-tailed distribution and is also known as the log-Rayleigh
distribution.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
sigma : Real number, `\sigma > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Benini, density, cdf
>>> from sympy import Symbol, simplify, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Benini("x", alpha, beta, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ / z \\ / z \ 2/ z \
| 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----|
|alpha \sigma/| \sigma/ \sigma/
|----- + -----------------|*e
\ z z /
>>> cdf(X)(z)
Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Benini_distribution
.. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html
"""
return rv(name, BeniniDistribution, (alpha, beta, sigma))
#-------------------------------------------------------------------------------
# Beta distribution ------------------------------------------------------------
class BetaDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)
def sample(self, size=()):
if not size:
return random.betavariate(self.alpha, self.beta)
else:
return [random.betavariate(self.alpha, self.beta)]*size
def _characteristic_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), I*t)
def _moment_generating_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), t)
def Beta(name, alpha, beta):
r"""
Create a Continuous Random Variable with a Beta distribution.
The density of the Beta distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Beta, density, E, variance
>>> from sympy import Symbol, simplify, pprint, factor
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Beta("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 beta - 1
z *(1 - z)
--------------------------
B(alpha, beta)
>>> simplify(E(X))
alpha/(alpha + beta)
>>> factor(simplify(variance(X)))
alpha*beta/((alpha + beta)**2*(alpha + beta + 1))
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_distribution
.. [2] http://mathworld.wolfram.com/BetaDistribution.html
"""
return rv(name, BetaDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Noncentral Beta distribution ------------------------------------------------------------
class BetaNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'lamda')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta, lamda):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive")
def pdf(self, x):
alpha, beta, lamda = self.alpha, self.beta, self.lamda
k = Dummy("k")
return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *(
1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo))
def BetaNoncentral(name, alpha, beta, lamda):
r"""
Create a Continuous Random Variable with a Type I Noncentral Beta distribution.
The density of the Noncentral Beta distribution is given by
.. math::
f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!}
\frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
lamda: Real number, `\lambda >= 0`, noncentrality parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import BetaNoncentral, density, cdf
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> lamda = Symbol("lamda", nonnegative=True)
>>> z = Symbol("z")
>>> X = BetaNoncentral("x", alpha, beta, lamda)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
oo
_____
\ `
\ -lamda
\ k -------
\ k + alpha - 1 /lamda\ beta - 1 2
) z *|-----| *(1 - z) *e
/ \ 2 /
/ ------------------------------------------------
/ B(k + alpha, beta)*k!
/____,
k = 0
Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows :
>>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit()
2*exp(1/2)
The argument evaluate=False prevents an attempt at evaluation
of the sum for general x, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution
.. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html
"""
return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda))
#-------------------------------------------------------------------------------
# Beta prime distribution ------------------------------------------------------
class BetaPrimeDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
set = Interval(0, oo)
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta)
def BetaPrime(name, alpha, beta):
r"""
Create a continuous random variable with a Beta prime distribution.
The density of the Beta prime distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}
with :math:`x > 0`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import BetaPrime, density
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = BetaPrime("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 -alpha - beta
z *(z + 1)
-------------------------------
B(alpha, beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution
.. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html
"""
return rv(name, BetaPrimeDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Cauchy distribution ----------------------------------------------------------
class CauchyDistribution(SingleContinuousDistribution):
_argnames = ('x0', 'gamma')
@staticmethod
def check(x0, gamma):
_value_check(gamma > 0, "Scale parameter Gamma must be positive.")
_value_check(x0.is_real, "Location parameter must be real.")
def pdf(self, x):
return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2))
def _cdf(self, x):
x0, gamma = self.x0, self.gamma
return (1/pi)*atan((x - x0)/gamma) + S.Half
def _characteristic_function(self, t):
return exp(self.x0 * I * t - self.gamma * Abs(t))
def _moment_generating_function(self, t):
raise NotImplementedError("The moment generating function for the "
"Cauchy distribution does not exist.")
def _quantile(self, p):
return self.x0 + self.gamma*tan(pi*(p - S.Half))
def Cauchy(name, x0, gamma):
r"""
Create a continuous random variable with a Cauchy distribution.
The density of the Cauchy distribution is given by
.. math::
f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]}
Parameters
==========
x0 : Real number, the location
gamma : Real number, `\gamma > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Cauchy, density
>>> from sympy import Symbol
>>> x0 = Symbol("x0")
>>> gamma = Symbol("gamma", positive=True)
>>> z = Symbol("z")
>>> X = Cauchy("x", x0, gamma)
>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_distribution
.. [2] http://mathworld.wolfram.com/CauchyDistribution.html
"""
return rv(name, CauchyDistribution, (x0, gamma))
#-------------------------------------------------------------------------------
# Chi distribution -------------------------------------------------------------
class ChiDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2)
def _characteristic_function(self, t):
k = self.k
part_1 = hyper((k/2,), (S.Half,), -t**2/2)
part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2)
part_3 = hyper(((k+1)/2,), (Rational(3, 2),), -t**2/2)
return part_1 + part_2*part_3
def _moment_generating_function(self, t):
k = self.k
part_1 = hyper((k / 2,), (S.Half,), t ** 2 / 2)
part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2)
part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2)
return part_1 + part_2 * part_3
def Chi(name, k):
r"""
Create a continuous random variable with a Chi distribution.
The density of the Chi distribution is given by
.. math::
f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Chi, density, E
>>> from sympy import Symbol, simplify
>>> k = Symbol("k", integer=True)
>>> z = Symbol("z")
>>> X = Chi("x", k)
>>> density(X)(z)
2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2)
>>> simplify(E(X))
sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_distribution
.. [2] http://mathworld.wolfram.com/ChiDistribution.html
"""
return rv(name, ChiDistribution, (k,))
#-------------------------------------------------------------------------------
# Non-central Chi distribution -------------------------------------------------
class ChiNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('k', 'l')
@staticmethod
def check(k, l):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
_value_check(l > 0, "Shift parameter Lambda must be positive.")
set = Interval(0, oo)
def pdf(self, x):
k, l = self.k, self.l
return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x)
def ChiNoncentral(name, k, l):
r"""
Create a continuous random variable with a non-central Chi distribution.
The density of the non-central Chi distribution is given by
.. math::
f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda}
{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)
with `x \geq 0`. Here, `I_\nu (x)` is the
:ref:`modified Bessel function of the first kind <besseli>`.
Parameters
==========
k : A positive Integer, `k > 0`, the number of degrees of freedom
lambda : Real number, `\lambda > 0`, Shift parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ChiNoncentral, density
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True)
>>> l = Symbol("l")
>>> z = Symbol("z")
>>> X = ChiNoncentral("x", k, l)
>>> density(X)(z)
l*z**k*(l*z)**(-k/2)*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution
"""
return rv(name, ChiNoncentralDistribution, (k, l))
#-------------------------------------------------------------------------------
# Chi squared distribution -----------------------------------------------------
class ChiSquaredDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
k = self.k
return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2)
def _cdf(self, x):
k = self.k
return Piecewise(
(S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0),
(0, True)
)
def _characteristic_function(self, t):
return (1 - 2*I*t)**(-self.k/2)
def _moment_generating_function(self, t):
return (1 - 2*t)**(-self.k/2)
def ChiSquared(name, k):
r"""
Create a continuous random variable with a Chi-squared distribution.
The density of the Chi-squared distribution is given by
.. math::
f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}
x^{\frac{k}{2}-1} e^{-\frac{x}{2}}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ChiSquared, density, E, variance, moment
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True, positive=True)
>>> z = Symbol("z")
>>> X = ChiSquared("x", k)
>>> density(X)(z)
2**(-k/2)*z**(k/2 - 1)*exp(-z/2)/gamma(k/2)
>>> E(X)
k
>>> variance(X)
2*k
>>> moment(X, 3)
k**3 + 6*k**2 + 8*k
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution
.. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html
"""
return rv(name, ChiSquaredDistribution, (k, ))
#-------------------------------------------------------------------------------
# Dagum distribution -----------------------------------------------------------
class DagumDistribution(SingleContinuousDistribution):
_argnames = ('p', 'a', 'b')
set = Interval(0, oo)
@staticmethod
def check(p, a, b):
_value_check(p > 0, "Shape parameter p must be positive.")
_value_check(a > 0, "Shape parameter a must be positive.")
_value_check(b > 0, "Scale parameter b must be positive.")
def pdf(self, x):
p, a, b = self.p, self.a, self.b
return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1)))
def _cdf(self, x):
p, a, b = self.p, self.a, self.b
return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0),
(S.Zero, True))
def Dagum(name, p, a, b):
r"""
Create a continuous random variable with a Dagum distribution.
The density of the Dagum distribution is given by
.. math::
f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}}
{\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right)
with :math:`x > 0`.
Parameters
==========
p : Real number, `p > 0`, a shape
a : Real number, `a > 0`, a shape
b : Real number, `b > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Dagum, density, cdf
>>> from sympy import Symbol
>>> p = Symbol("p", positive=True)
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Dagum("x", p, a, b)
>>> density(X)(z)
a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z
>>> cdf(X)(z)
Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dagum_distribution
"""
return rv(name, DagumDistribution, (p, a, b))
#-------------------------------------------------------------------------------
# Erlang distribution ----------------------------------------------------------
def Erlang(name, k, l):
r"""
Create a continuous random variable with an Erlang distribution.
The density of the Erlang distribution is given by
.. math::
f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}
with :math:`x \in [0,\infty]`.
Parameters
==========
k : Positive integer
l : Real number, `\lambda > 0`, the rate
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Erlang, density, cdf, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> k = Symbol("k", integer=True, positive=True)
>>> l = Symbol("l", positive=True)
>>> z = Symbol("z")
>>> X = Erlang("x", k, l)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k k - 1 -l*z
l *z *e
---------------
Gamma(k)
>>> C = cdf(X)(z)
>>> pprint(C, use_unicode=False)
/lowergamma(k, l*z)
|------------------ for z > 0
< Gamma(k)
|
\ 0 otherwise
>>> E(X)
k/l
>>> simplify(variance(X))
k/l**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Erlang_distribution
.. [2] http://mathworld.wolfram.com/ErlangDistribution.html
"""
return rv(name, GammaDistribution, (k, S.One/l))
# -------------------------------------------------------------------------------
# ExGaussian distribution -----------------------------------------------------
class ExGaussianDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std', 'rate')
set = Interval(-oo, oo)
@staticmethod
def check(mean, std, rate):
_value_check(
std > 0, "Standard deviation of ExGaussian must be positive.")
_value_check(rate > 0, "Rate of ExGaussian must be positive.")
def pdf(self, x):
mean, std, rate = self.mean, self.std, self.rate
term1 = rate/2
term2 = exp(rate * (2 * mean + rate * std**2 - 2*x)/2)
term3 = erfc((mean + rate*std**2 - x)/(sqrt(2)*std))
return term1*term2*term3
def _cdf(self, x):
from sympy.stats import cdf
mean, std, rate = self.mean, self.std, self.rate
u = rate*(x - mean)
v = rate*std
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
return GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
def _characteristic_function(self, t):
mean, std, rate = self.mean, self.std, self.rate
term1 = (1 - I*t/rate)**(-1)
term2 = exp(I*mean*t - std**2*t**2/2)
return term1 * term2
def _moment_generating_function(self, t):
mean, std, rate = self.mean, self.std, self.rate
term1 = (1 - t/rate)**(-1)
term2 = exp(mean*t + std**2*t**2/2)
return term1*term2
def ExGaussian(name, mean, std, rate):
r"""
Create a continuous random variable with an Exponentially modified
Gaussian (EMG) distribution.
The density of the exponentially modified Gaussian distribution is given by
.. math::
f(x) := \frac{\lambda}{2}e^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)}
\text{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma})
with `x > 0`. Note that the expected value is `1/\lambda`.
Parameters
==========
mu : A Real number, the mean of Gaussian component
std: A positive Real number,
:math: `\sigma^2 > 0` the variance of Gaussian component
lambda: A positive Real number,
:math: `\lambda > 0` the rate of Exponential component
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ExGaussian, density, cdf, E
>>> from sympy.stats import variance, skewness
>>> from sympy import Symbol, pprint, simplify
>>> mean = Symbol("mu")
>>> std = Symbol("sigma", positive=True)
>>> rate = Symbol("lamda", positive=True)
>>> z = Symbol("z")
>>> X = ExGaussian("x", mean, std, rate)
>>> pprint(density(X)(z), use_unicode=False)
/ 2 \
lamda*\lamda*sigma + 2*mu - 2*z/
--------------------------------- / ___ / 2 \\
2 |\/ 2 *\lamda*sigma + mu - z/|
lamda*e *erfc|-----------------------------|
\ 2*sigma /
----------------------------------------------------------------------------
2
>>> cdf(X)(z)
-(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2 + 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu + z)/(2*sigma))/2 + 1/2
>>> E(X)
(lamda*mu + 1)/lamda
>>> simplify(variance(X))
sigma**2 + lamda**(-2)
>>> simplify(skewness(X))
2/(lamda**2*sigma**2 + 1)**(3/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
"""
return rv(name, ExGaussianDistribution, (mean, std, rate))
#-------------------------------------------------------------------------------
# Exponential distribution -----------------------------------------------------
class ExponentialDistribution(SingleContinuousDistribution):
_argnames = ('rate',)
set = Interval(0, oo)
@staticmethod
def check(rate):
_value_check(rate > 0, "Rate must be positive.")
def pdf(self, x):
return self.rate * exp(-self.rate*x)
def sample(self, size=()):
if not size:
return random.expovariate(self.rate)
else:
return [random.expovariate(self.rate)]*size
def _cdf(self, x):
return Piecewise(
(S.One - exp(-self.rate*x), x >= 0),
(0, True),
)
def _characteristic_function(self, t):
rate = self.rate
return rate / (rate - I*t)
def _moment_generating_function(self, t):
rate = self.rate
return rate / (rate - t)
def _quantile(self, p):
return -log(1-p)/self.rate
def Exponential(name, rate):
r"""
Create a continuous random variable with an Exponential distribution.
The density of the exponential distribution is given by
.. math::
f(x) := \lambda \exp(-\lambda x)
with `x > 0`. Note that the expected value is `1/\lambda`.
Parameters
==========
rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean)
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Exponential, density, cdf, E
>>> from sympy.stats import variance, std, skewness, quantile
>>> from sympy import Symbol
>>> l = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> p = Symbol("p")
>>> X = Exponential("x", l)
>>> density(X)(z)
lambda*exp(-lambda*z)
>>> cdf(X)(z)
Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> E(X)
1/lambda
>>> variance(X)
lambda**(-2)
>>> skewness(X)
2
>>> X = Exponential('x', 10)
>>> density(X)(z)
10*exp(-10*z)
>>> E(X)
1/10
>>> std(X)
1/10
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponential_distribution
.. [2] http://mathworld.wolfram.com/ExponentialDistribution.html
"""
return rv(name, ExponentialDistribution, (rate, ))
# -------------------------------------------------------------------------------
# Exponential Power distribution -----------------------------------------------------
class ExponentialPowerDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'alpha', 'beta')
set = Interval(-oo, oo)
@staticmethod
def check(mu, alpha, beta):
_value_check(alpha > 0, "Scale parameter alpha must be positive.")
_value_check(beta > 0, "Shape parameter beta must be positive.")
def pdf(self, x):
mu, alpha, beta = self.mu, self.alpha, self.beta
num = beta*exp(-(Abs(x - mu)/alpha)**beta)
den = 2*alpha*gamma(1/beta)
return num/den
def _cdf(self, x):
mu, alpha, beta = self.mu, self.alpha, self.beta
num = lowergamma(1/beta, (Abs(x - mu) / alpha)**beta)
den = 2*gamma(1/beta)
return sign(x - mu)*num/den + S.Half
def ExponentialPower(name, mu, alpha, beta):
r"""
Create a Continuous Random Variable with Exponential Power distribution.
This distribution is known also as Generalized Normal
distribution version 1
The density of the Exponential Power distribution is given by
.. math::
f(x) := \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})}
e^{{-(\frac{|x - \mu|}{\alpha})^{\beta}}}
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu : Real number, 'mu' is a location
alpha : Real number, 'alpha > 0' is a scale
beta : Real number, 'beta > 0' is a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ExponentialPower, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> z = Symbol("z")
>>> mu = Symbol("mu")
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> X = ExponentialPower("x", mu, alpha, beta)
>>> pprint(density(X)(z), use_unicode=False)
beta
/|mu - z|\
-|--------|
\ alpha /
beta*e
---------------------
/ 1 \
2*alpha*Gamma|----|
\beta/
>>> cdf(X)(z)
1/2 + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/(2*gamma(1/beta))
References
==========
.. [1] https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html
.. [2] https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
"""
return rv(name, ExponentialPowerDistribution, (mu, alpha, beta))
#-------------------------------------------------------------------------------
# F distribution ---------------------------------------------------------------
class FDistributionDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(0, oo)
@staticmethod
def check(d1, d2):
_value_check((d1 > 0, d1.is_integer),
"Degrees of freedom d1 must be positive integer.")
_value_check((d2 > 0, d2.is_integer),
"Degrees of freedom d2 must be positive integer.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2))
/ (x * beta_fn(d1/2, d2/2)))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'F-distribution does not exist.')
def FDistribution(name, d1, d2):
r"""
Create a continuous random variable with a F distribution.
The density of the F distribution is given by
.. math::
f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}
{(d_1 x + d_2)^{d_1 + d_2}}}}
{x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)}
with :math:`x > 0`.
Parameters
==========
d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1)
d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1)
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import FDistribution, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FDistribution("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d2
-- ______________________________
2 / d1 -d1 - d2
d2 *\/ (d1*z) *(d1*z + d2)
--------------------------------------
/d1 d2\
z*B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/F-distribution
.. [2] http://mathworld.wolfram.com/F-Distribution.html
"""
return rv(name, FDistributionDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Fisher Z distribution --------------------------------------------------------
class FisherZDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(-oo, oo)
@staticmethod
def check(d1, d2):
_value_check(d1 > 0, "Degree of freedom d1 must be positive.")
_value_check(d2 > 0, "Degree of freedom d2 must be positive.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) *
exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2))
def FisherZ(name, d1, d2):
r"""
Create a Continuous Random Variable with an Fisher's Z distribution.
The density of the Fisher's Z distribution is given by
.. math::
f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)}
\frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}}
.. TODO - What is the difference between these degrees of freedom?
Parameters
==========
d1 : `d_1 > 0`, degree of freedom
d2 : `d_2 > 0`, degree of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import FisherZ, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FisherZ("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d1 d2
d1 d2 - -- - --
-- -- 2 2
2 2 / 2*z \ d1*z
2*d1 *d2 *\d1*e + d2/ *e
-----------------------------------------
/d1 d2\
B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution
.. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html
"""
return rv(name, FisherZDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Frechet distribution ---------------------------------------------------------
class FrechetDistribution(SingleContinuousDistribution):
_argnames = ('a', 's', 'm')
set = Interval(0, oo)
@staticmethod
def check(a, s, m):
_value_check(a > 0, "Shape parameter alpha must be positive.")
_value_check(s > 0, "Scale parameter s must be positive.")
def __new__(cls, a, s=1, m=0):
a, s, m = list(map(sympify, (a, s, m)))
return Basic.__new__(cls, a, s, m)
def pdf(self, x):
a, s, m = self.a, self.s, self.m
return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a))
def _cdf(self, x):
a, s, m = self.a, self.s, self.m
return Piecewise((exp(-((x-m)/s)**(-a)), x >= m),
(S.Zero, True))
def Frechet(name, a, s=1, m=0):
r"""
Create a continuous random variable with a Frechet distribution.
The density of the Frechet distribution is given by
.. math::
f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha}
e^{-(\frac{x-m}{s})^{-\alpha}}
with :math:`x \geq m`.
Parameters
==========
a : Real number, :math:`a \in \left(0, \infty\right)` the shape
s : Real number, :math:`s \in \left(0, \infty\right)` the scale
m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Frechet, density, E, std, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> s = Symbol("s", positive=True)
>>> m = Symbol("m", real=True)
>>> z = Symbol("z")
>>> X = Frechet("x", a, s, m)
>>> density(X)(z)
a*((-m + z)/s)**(-a - 1)*exp(-((-m + z)/s)**(-a))/s
>>> cdf(X)(z)
Piecewise((exp(-((-m + z)/s)**(-a)), m <= z), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
"""
return rv(name, FrechetDistribution, (a, s, m))
#-------------------------------------------------------------------------------
# Gamma distribution -----------------------------------------------------------
class GammaDistribution(SingleContinuousDistribution):
_argnames = ('k', 'theta')
set = Interval(0, oo)
@staticmethod
def check(k, theta):
_value_check(k > 0, "k must be positive")
_value_check(theta > 0, "Theta must be positive")
def pdf(self, x):
k, theta = self.k, self.theta
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def sample(self, size=()):
if not size:
return random.gammavariate(self.k, self.theta)
else:
return [random.gammavariate(self.k, self.theta)]*size
def _cdf(self, x):
k, theta = self.k, self.theta
return Piecewise(
(lowergamma(k, S(x)/theta)/gamma(k), x > 0),
(S.Zero, True))
def _characteristic_function(self, t):
return (1 - self.theta*I*t)**(-self.k)
def _moment_generating_function(self, t):
return (1- self.theta*t)**(-self.k)
def Gamma(name, k, theta):
r"""
Create a continuous random variable with a Gamma distribution.
The density of the Gamma distribution is given by
.. math::
f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}}
with :math:`x \in [0,1]`.
Parameters
==========
k : Real number, `k > 0`, a shape
theta : Real number, `\theta > 0`, a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gamma, density, cdf, E, variance
>>> from sympy import Symbol, pprint, simplify
>>> k = Symbol("k", positive=True)
>>> theta = Symbol("theta", positive=True)
>>> z = Symbol("z")
>>> X = Gamma("x", k, theta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-z
-----
-k k - 1 theta
theta *z *e
---------------------
Gamma(k)
>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
/ / z \
|k*lowergamma|k, -----|
| \ theta/
<---------------------- for z >= 0
| Gamma(k + 1)
|
\ 0 otherwise
>>> E(X)
k*theta
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_distribution
.. [2] http://mathworld.wolfram.com/GammaDistribution.html
"""
return rv(name, GammaDistribution, (k, theta))
#-------------------------------------------------------------------------------
# Inverse Gamma distribution ---------------------------------------------------
class GammaInverseDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "alpha must be positive")
_value_check(b > 0, "beta must be positive")
def pdf(self, x):
a, b = self.a, self.b
return b**a/gamma(a) * x**(-a-1) * exp(-b/x)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0),
(S.Zero, True))
def sample(self, size=()):
scipy = import_module('scipy')
if scipy:
from scipy.stats import invgamma
return invgamma.rvs(float(self.a), 0, float(self.b), size=size)
else:
raise NotImplementedError('Sampling the Inverse Gamma Distribution requires Scipy.')
def _characteristic_function(self, t):
a, b = self.a, self.b
return 2 * (-I*b*t)**(a/2) * besselk(a, sqrt(-4*I*b*t)) / gamma(a)
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'gamma inverse distribution does not exist.')
def GammaInverse(name, a, b):
r"""
Create a continuous random variable with an inverse Gamma distribution.
The density of the inverse Gamma distribution is given by
.. math::
f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1}
\exp\left(\frac{-\beta}{x}\right)
with :math:`x > 0`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import GammaInverse, density, cdf, E, variance
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = GammaInverse("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
---
a -a - 1 z
b *z *e
---------------
Gamma(a)
>>> cdf(X)(z)
Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution
"""
return rv(name, GammaInverseDistribution, (a, b))
#-------------------------------------------------------------------------------
# Gumbel distribution (Maximum and Minimum) --------------------------------------------------------
class GumbelDistribution(SingleContinuousDistribution):
_argnames = ('beta', 'mu', 'minimum')
set = Interval(-oo, oo)
@staticmethod
def check(beta, mu, minimum):
_value_check(beta > 0, "Scale parameter beta must be positive.")
def pdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
f_max = (1/beta)*exp(-z - exp(-z))
f_min = (1/beta)*exp(z - exp(z))
return Piecewise((f_min, self.minimum), (f_max, not self.minimum))
def _cdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
F_max = exp(-exp(-z))
F_min = 1 - exp(-exp(z))
return Piecewise((F_min, self.minimum), (F_max, not self.minimum))
def _characteristic_function(self, t):
cf_max = gamma(1 - I*self.beta*t) * exp(I*self.mu*t)
cf_min = gamma(1 + I*self.beta*t) * exp(I*self.mu*t)
return Piecewise((cf_min, self.minimum), (cf_max, not self.minimum))
def _moment_generating_function(self, t):
mgf_max = gamma(1 - self.beta*t) * exp(self.mu*t)
mgf_min = gamma(1 + self.beta*t) * exp(self.mu*t)
return Piecewise((mgf_min, self.minimum), (mgf_max, not self.minimum))
def Gumbel(name, beta, mu, minimum=False):
r"""
Create a Continuous Random Variable with Gumbel distribution.
The density of the Gumbel distribution is given by
For Maximum
.. math::
f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta}
- \exp \left( -\dfrac{x - \mu}{\beta} \right) \right)
with :math:`x \in [ - \infty, \infty ]`.
For Minimum
.. math::
f(x) := \frac{e^{- e^{\frac{- \mu + x}{\beta}} + \frac{- \mu + x}{\beta}}}{\beta}
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu : Real number, 'mu' is a location
beta : Real number, 'beta > 0' is a scale
minimum : Boolean, by default, False, set to True for enabling minimum distribution
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gumbel, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> x = Symbol("x")
>>> mu = Symbol("mu")
>>> beta = Symbol("beta", positive=True)
>>> X = Gumbel("x", beta, mu)
>>> density(X)(x)
exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta
>>> cdf(X)(x)
exp(-exp(-(-mu + x)/beta))
References
==========
.. [1] http://mathworld.wolfram.com/GumbelDistribution.html
.. [2] https://en.wikipedia.org/wiki/Gumbel_distribution
.. [3] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_max.html
.. [4] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_min.html
"""
return rv(name, GumbelDistribution, (beta, mu, minimum))
#-------------------------------------------------------------------------------
# Gompertz distribution --------------------------------------------------------
class GompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
eta, b = self.eta, self.b
return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x))
def _cdf(self, x):
eta, b = self.eta, self.b
return 1 - exp(eta)*exp(-eta*exp(b*x))
def _moment_generating_function(self, t):
eta, b = self.eta, self.b
return eta * exp(eta) * expint(t/b, eta)
def Gompertz(name, b, eta):
r"""
Create a Continuous Random Variable with Gompertz distribution.
The density of the Gompertz distribution is given by
.. math::
f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right)
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Gompertz, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> z = Symbol("z")
>>> X = Gompertz("x", b, eta)
>>> density(X)(z)
b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z))
References
==========
.. [1] https://en.wikipedia.org/wiki/Gompertz_distribution
"""
return rv(name, GompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# Kumaraswamy distribution -----------------------------------------------------
class KumaraswamyDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "a must be positive")
_value_check(b > 0, "b must be positive")
def pdf(self, x):
a, b = self.a, self.b
return a * b * x**(a-1) * (1-x**a)**(b-1)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < S.Zero),
(1 - (1 - x**a)**b, x <= S.One),
(S.One, True))
def Kumaraswamy(name, a, b):
r"""
Create a Continuous Random Variable with a Kumaraswamy distribution.
The density of the Kumaraswamy distribution is given by
.. math::
f(x) := a b x^{a-1} (1-x^a)^{b-1}
with :math:`x \in [0,1]`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Kumaraswamy, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Kumaraswamy("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
b - 1
a - 1 / a\
a*b*z *\1 - z /
>>> cdf(X)(z)
Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution
"""
return rv(name, KumaraswamyDistribution, (a, b))
#-------------------------------------------------------------------------------
# Laplace distribution ---------------------------------------------------------
class LaplaceDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'b')
set = Interval(-oo, oo)
@staticmethod
def check(mu, b):
_value_check(b > 0, "Scale parameter b must be positive.")
_value_check(mu.is_real, "Location parameter mu should be real")
def pdf(self, x):
mu, b = self.mu, self.b
return 1/(2*b)*exp(-Abs(x - mu)/b)
def _cdf(self, x):
mu, b = self.mu, self.b
return Piecewise(
(S.Half*exp((x - mu)/b), x < mu),
(S.One - S.Half*exp(-(x - mu)/b), x >= mu)
)
def _characteristic_function(self, t):
return exp(self.mu*I*t) / (1 + self.b**2*t**2)
def _moment_generating_function(self, t):
return exp(self.mu*t) / (1 - self.b**2*t**2)
def Laplace(name, mu, b):
r"""
Create a continuous random variable with a Laplace distribution.
The density of the Laplace distribution is given by
.. math::
f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right)
Parameters
==========
mu : Real number or a list/matrix, the location (mean) or the
location vector
b : Real number or a positive definite matrix, representing a scale
or the covariance matrix.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Laplace, density, cdf
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu")
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Laplace("x", mu, b)
>>> density(X)(z)
exp(-Abs(mu - z)/b)/(2*b)
>>> cdf(X)(z)
Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True))
>>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]])
>>> pprint(density(L)(1, 2), use_unicode=False)
5 / ____\
e *besselk\0, \/ 35 /
---------------------
pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Laplace_distribution
.. [2] http://mathworld.wolfram.com/LaplaceDistribution.html
"""
if isinstance(mu, (list, MatrixBase)) and\
isinstance(b, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
return multivariate_rv(
MultivariateLaplaceDistribution, name, mu, b)
return rv(name, LaplaceDistribution, (mu, b))
#-------------------------------------------------------------------------------
# Levy distribution ---------------------------------------------------------
class LevyDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'c')
@property
def set(self):
return Interval(self.mu, oo)
@staticmethod
def check(mu, c):
_value_check(c > 0, "c (scale parameter) must be positive")
_value_check(mu.is_real, "mu (location paramater) must be real")
def pdf(self, x):
mu, c = self.mu, self.c
return sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
def _cdf(self, x):
mu, c = self.mu, self.c
return erfc(sqrt(c/(2*(x - mu))))
def _characteristic_function(self, t):
mu, c = self.mu, self.c
return exp(I * mu * t - sqrt(-2 * I * c * t))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of Levy distribution does not exist.')
def Levy(name, mu, c):
r"""
Create a continuous random variable with a Levy distribution.
The density of the Levy distribution is given by
.. math::
f(x) := \sqrt(\frac{c}{2 \pi}) \frac{\exp -\frac{c}{2 (x - \mu)}}{(x - \mu)^{3/2}}
Parameters
==========
mu : Real number, the location parameter
c : Real number, `c > 0`, a scale parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Levy, density, cdf
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu", real=True)
>>> c = Symbol("c", positive=True)
>>> z = Symbol("z")
>>> X = Levy("x", mu, c)
>>> density(X)(z)
sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2))
>>> cdf(X)(z)
erfc(sqrt(c)*sqrt(1/(-2*mu + 2*z)))
References
==========
.. [1] https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
.. [2] http://mathworld.wolfram.com/LevyDistribution.html
"""
return rv(name, LevyDistribution, (mu, c))
#-------------------------------------------------------------------------------
# Logistic distribution --------------------------------------------------------
class LogisticDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
set = Interval(-oo, oo)
@staticmethod
def check(mu, s):
_value_check(s > 0, "Scale parameter s must be positive.")
def pdf(self, x):
mu, s = self.mu, self.s
return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2)
def _cdf(self, x):
mu, s = self.mu, self.s
return S.One/(1 + exp(-(x - mu)/s))
def _characteristic_function(self, t):
return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True))
def _moment_generating_function(self, t):
return exp(self.mu*t) * beta_fn(1 - self.s*t, 1 + self.s*t)
def _quantile(self, p):
return self.mu - self.s*log(-S.One + S.One/p)
def Logistic(name, mu, s):
r"""
Create a continuous random variable with a logistic distribution.
The density of the logistic distribution is given by
.. math::
f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2}
Parameters
==========
mu : Real number, the location (mean)
s : Real number, `s > 0` a scale
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Logistic, density, cdf
>>> from sympy import Symbol
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = Logistic("x", mu, s)
>>> density(X)(z)
exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2)
>>> cdf(X)(z)
1/(exp((mu - z)/s) + 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Logistic_distribution
.. [2] http://mathworld.wolfram.com/LogisticDistribution.html
"""
return rv(name, LogisticDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Log-logistic distribution --------------------------------------------------------
class LogLogisticDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Scale parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
a, b = self.alpha, self.beta
return ((b/a)*(x/a)**(b - 1))/(1 + (x/a)**b)**2
def _cdf(self, x):
a, b = self.alpha, self.beta
return 1/(1 + (x/a)**(-b))
def _quantile(self, p):
a, b = self.alpha, self.beta
return a*((p/(1 - p))**(1/b))
def expectation(self, expr, var, **kwargs):
a, b = self.args
return Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
def LogLogistic(name, alpha, beta):
r"""
Create a continuous random variable with a log-logistic distribution.
The distribution is unimodal when `beta > 1`.
The density of the log-logistic distribution is given by
.. math::
f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta - 1}}
{(1 + (\frac{x}{\alpha})^{\beta})^2}
Parameters
==========
alpha : Real number, `\alpha > 0`, scale parameter and median of distribution
beta : Real number, `\beta > 0` a shape parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogLogistic, density, cdf, quantile
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", real=True, positive=True)
>>> beta = Symbol("beta", real=True, positive=True)
>>> p = Symbol("p")
>>> z = Symbol("z", positive=True)
>>> X = LogLogistic("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
beta - 1
/ z \
beta*|-----|
\alpha/
------------------------
2
/ beta \
|/ z \ |
alpha*||-----| + 1|
\\alpha/ /
>>> cdf(X)(z)
1/(1 + (z/alpha)**(-beta))
>>> quantile(X)(p)
alpha*(p/(1 - p))**(1/beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Log-logistic_distribution
"""
return rv(name, LogLogisticDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Log Normal distribution ------------------------------------------------------
class LogNormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
set = Interval(0, oo)
@staticmethod
def check(mean, std):
_value_check(std > 0, "Parameter std must be positive.")
def pdf(self, x):
mean, std = self.mean, self.std
return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std)
def sample(self, size=()):
if not size:
return random.lognormvariate(self.mean, self.std)
else:
return [random.lognormvariate(self.mean, self.std)]*size
def _cdf(self, x):
mean, std = self.mean, self.std
return Piecewise(
(S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0),
(S.Zero, True)
)
def _moment_generating_function(self, t):
raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.')
def LogNormal(name, mean, std):
r"""
Create a continuous random variable with a log-normal distribution.
The density of the log-normal distribution is given by
.. math::
f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}}
e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}
with :math:`x \geq 0`.
Parameters
==========
mu : Real number, the log-scale
sigma : Real number, :math:`\sigma^2 > 0` a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import LogNormal, density
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = LogNormal("x", mu, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-(-mu + log(z))
-----------------
2
___ 2*sigma
\/ 2 *e
------------------------
____
2*\/ pi *sigma*z
>>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Lognormal
.. [2] http://mathworld.wolfram.com/LogNormalDistribution.html
"""
return rv(name, LogNormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Maxwell distribution ---------------------------------------------------------
class MaxwellDistribution(SingleContinuousDistribution):
_argnames = ('a',)
set = Interval(0, oo)
@staticmethod
def check(a):
_value_check(a > 0, "Parameter a must be positive.")
def pdf(self, x):
a = self.a
return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
def _cdf(self, x):
a = self.a
return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
def Maxwell(name, a):
r"""
Create a continuous random variable with a Maxwell distribution.
The density of the Maxwell distribution is given by
.. math::
f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}
with :math:`x \geq 0`.
.. TODO - what does the parameter mean?
Parameters
==========
a : Real number, `a > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Maxwell, density, E, variance
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> z = Symbol("z")
>>> X = Maxwell("x", a)
>>> density(X)(z)
sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3)
>>> E(X)
2*sqrt(2)*a/sqrt(pi)
>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Maxwell_distribution
.. [2] http://mathworld.wolfram.com/MaxwellDistribution.html
"""
return rv(name, MaxwellDistribution, (a, ))
#-------------------------------------------------------------------------------
# Moyal Distribution -----------------------------------------------------------
class MoyalDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'sigma')
@staticmethod
def check(mu, sigma):
_value_check(mu.is_real, "Location parameter must be real.")
_value_check(sigma.is_real and sigma > 0, "Scale parameter must be real\
and positive.")
def pdf(self, x):
mu, sigma = self.mu, self.sigma
num = exp(-(exp(-(x - mu)/sigma) + (x - mu)/(sigma))/2)
den = (sqrt(2*pi) * sigma)
return num/den
def _characteristic_function(self, t):
mu, sigma = self.mu, self.sigma
term1 = exp(I*t*mu)
term2 = (2**(-I*sigma*t) * gamma(Rational(1, 2) - I*t*sigma))
return (term1 * term2)/sqrt(pi)
def _moment_generating_function(self, t):
mu, sigma = self.mu, self.sigma
term1 = exp(t*mu)
term2 = (2**(-1*sigma*t) * gamma(Rational(1, 2) - t*sigma))
return (term1 * term2)/sqrt(pi)
def Moyal(name, mu, sigma):
r"""
Create a continuous random variable with a Moyal distribution.
The density of the Moyal distribution is given by
.. math::
f(x) := \frac{\exp-\frac{1}{2}\exp-\frac{x-\mu}{\sigma}-\frac{x-\mu}{2\sigma}}{\sqrt{2\pi}\sigma}
with :math:`x \in \mathbb{R}`.
Parameters
==========
mu : Real number
Location parameter
sigma : Real positive number
Scale parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Moyal, density, cdf
>>> from sympy import Symbol, simplify
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True, real=True)
>>> z = Symbol("z")
>>> X = Moyal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
>>> simplify(cdf(X)(z))
1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
References
==========
.. [1] https://reference.wolfram.com/language/ref/MoyalDistribution.html
.. [2] http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
"""
return rv(name, MoyalDistribution, (mu, sigma))
#-------------------------------------------------------------------------------
# Nakagami distribution --------------------------------------------------------
class NakagamiDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'omega')
set = Interval(0, oo)
@staticmethod
def check(mu, omega):
_value_check(mu >= S.Half, "Shape parameter mu must be greater than equal to 1/2.")
_value_check(omega > 0, "Spread parameter omega must be positive.")
def pdf(self, x):
mu, omega = self.mu, self.omega
return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2)
def _cdf(self, x):
mu, omega = self.mu, self.omega
return Piecewise(
(lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0),
(S.Zero, True))
def Nakagami(name, mu, omega):
r"""
Create a continuous random variable with a Nakagami distribution.
The density of the Nakagami distribution is given by
.. math::
f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1}
\exp\left(-\frac{\mu}{\omega}x^2 \right)
with :math:`x > 0`.
Parameters
==========
mu : Real number, `\mu \geq \frac{1}{2}` a shape
omega : Real number, `\omega > 0`, the spread
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Nakagami, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", positive=True)
>>> omega = Symbol("omega", positive=True)
>>> z = Symbol("z")
>>> X = Nakagami("x", mu, omega)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-mu*z
-------
mu -mu 2*mu - 1 omega
2*mu *omega *z *e
----------------------------------
Gamma(mu)
>>> simplify(E(X))
sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1)
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
omega*Gamma (mu + 1/2)
omega - -----------------------
Gamma(mu)*Gamma(mu + 1)
>>> cdf(X)(z)
Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Nakagami_distribution
"""
return rv(name, NakagamiDistribution, (mu, omega))
#-------------------------------------------------------------------------------
# Normal distribution ----------------------------------------------------------
class NormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
@staticmethod
def check(mean, std):
_value_check(std > 0, "Standard deviation must be positive")
def pdf(self, x):
return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std)
def sample(self, size=()):
if not size:
return random.normalvariate(self.mean, self.std)
else:
return [random.normalvariate(self.mean, self.std)]*size
def _cdf(self, x):
mean, std = self.mean, self.std
return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half
def _characteristic_function(self, t):
mean, std = self.mean, self.std
return exp(I*mean*t - std**2*t**2/2)
def _moment_generating_function(self, t):
mean, std = self.mean, self.std
return exp(mean*t + std**2*t**2/2)
def _quantile(self, p):
mean, std = self.mean, self.std
return mean + std*sqrt(2)*erfinv(2*p - 1)
def Normal(name, mean, std):
r"""
Create a continuous random variable with a Normal distribution.
The density of the Normal distribution is given by
.. math::
f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }
Parameters
==========
mu : Real number or a list representing the mean or the mean vector
sigma : Real number or a positive definite square matrix,
:math:`\sigma^2 > 0` the variance
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile
>>> from sympy import Symbol, simplify, pprint, factor, together, factor_terms
>>> mu = Symbol("mu")
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> y = Symbol("y")
>>> p = Symbol("p")
>>> X = Normal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)
>>> C = simplify(cdf(X))(z) # it needs a little more help...
>>> pprint(C, use_unicode=False)
/ ___ \
|\/ 2 *(-mu + z)|
erf|---------------|
\ 2*sigma / 1
-------------------- + -
2 2
>>> quantile(X)(p)
mu + sqrt(2)*sigma*erfinv(2*p - 1)
>>> simplify(skewness(X))
0
>>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-z**2/2)/(2*sqrt(pi))
>>> E(2*X + 1)
1
>>> simplify(std(2*X + 1))
2
>>> m = Normal('X', [1, 2], [[2, 1], [1, 2]])
>>> from sympy.stats.joint_rv import marginal_distribution
>>> pprint(density(m)(y, z), use_unicode=False)
/1 y\ /2*y z\ / z\ / y 2*z \
|- - -|*|--- - -| + |1 - -|*|- - + --- - 1|
___ \2 2/ \ 3 3/ \ 2/ \ 3 3 /
\/ 3 *e
--------------------------------------------------
6*pi
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
References
==========
.. [1] https://en.wikipedia.org/wiki/Normal_distribution
.. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html
"""
if isinstance(mean, (list, MatrixBase, MatrixExpr)) and\
isinstance(std, (list, MatrixBase, MatrixExpr)):
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
return multivariate_rv(
MultivariateNormalDistribution, name, mean, std)
return rv(name, NormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Inverse Gaussian distribution ----------------------------------------------------------
class GaussianInverseDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'shape')
@property
def set(self):
return Interval(0, oo)
@staticmethod
def check(mean, shape):
_value_check(shape > 0, "Shape parameter must be positive")
_value_check(mean > 0, "Mean must be positive")
def pdf(self, x):
mu, s = self.mean, self.shape
return exp(-s*(x - mu)**2 / (2*x*mu**2)) * sqrt(s/((2*pi*x**3)))
def sample(self, size=()):
scipy = import_module('scipy')
if scipy:
from scipy.stats import invgauss
return invgauss.rvs(float(self.mean/self.shape), 0, float(self.shape), size=size)
else:
raise NotImplementedError(
'Sampling the Inverse Gaussian Distribution requires Scipy.')
def _cdf(self, x):
from sympy.stats import cdf
mu, s = self.mean, self.shape
stdNormalcdf = cdf(Normal('x', 0, 1))
first_term = stdNormalcdf(sqrt(s/x) * ((x/mu) - S.One))
second_term = exp(2*s/mu) * stdNormalcdf(-sqrt(s/x)*(x/mu + S.One))
return first_term + second_term
def _characteristic_function(self, t):
mu, s = self.mean, self.shape
return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*I*t)/s)))
def _moment_generating_function(self, t):
mu, s = self.mean, self.shape
return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*t)/s)))
def GaussianInverse(name, mean, shape):
r"""
Create a continuous random variable with an Inverse Gaussian distribution.
Inverse Gaussian distribution is also known as Wald distribution.
The density of the Inverse Gaussian distribution is given by
.. math::
f(x) := \sqrt{\frac{\lambda}{2\pi x^3}} e^{-\frac{\lambda(x-\mu)^2}{2x\mu^2}}
Parameters
==========
mu : Positive number representing the mean
lambda : Positive number representing the shape parameter
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import GaussianInverse, density, cdf, E, std, skewness
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu", positive=True)
>>> lamda = Symbol("lambda", positive=True)
>>> z = Symbol("z", positive=True)
>>> X = GaussianInverse("x", mu, lamda)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-lambda*(-mu + z)
-------------------
2
___ ________ 2*mu *z
\/ 2 *\/ lambda *e
-------------------------------------
____ 3/2
2*\/ pi *z
>>> E(X)
mu
>>> std(X).expand()
mu**(3/2)/sqrt(lambda)
>>> skewness(X).expand()
3*sqrt(mu)/sqrt(lambda)
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
.. [2] http://mathworld.wolfram.com/InverseGaussianDistribution.html
"""
return rv(name, GaussianInverseDistribution, (mean, shape))
Wald = GaussianInverse
#-------------------------------------------------------------------------------
# Pareto distribution ----------------------------------------------------------
class ParetoDistribution(SingleContinuousDistribution):
_argnames = ('xm', 'alpha')
@property
def set(self):
return Interval(self.xm, oo)
@staticmethod
def check(xm, alpha):
_value_check(xm > 0, "Xm must be positive")
_value_check(alpha > 0, "Alpha must be positive")
def pdf(self, x):
xm, alpha = self.xm, self.alpha
return alpha * xm**alpha / x**(alpha + 1)
def sample(self, size=()):
if not size:
return random.paretovariate(self.alpha)
else:
return [random.paretovariate(self.alpha)]*size
def _cdf(self, x):
xm, alpha = self.xm, self.alpha
return Piecewise(
(S.One - xm**alpha/x**alpha, x>=xm),
(0, True),
)
def _moment_generating_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t)
def _characteristic_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t)
def Pareto(name, xm, alpha):
r"""
Create a continuous random variable with the Pareto distribution.
The density of the Pareto distribution is given by
.. math::
f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}}
with :math:`x \in [x_m,\infty]`.
Parameters
==========
xm : Real number, `x_m > 0`, a scale
alpha : Real number, `\alpha > 0`, a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Pareto, density
>>> from sympy import Symbol
>>> xm = Symbol("xm", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Pareto("x", xm, beta)
>>> density(X)(z)
beta*xm**beta*z**(-beta - 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pareto_distribution
.. [2] http://mathworld.wolfram.com/ParetoDistribution.html
"""
return rv(name, ParetoDistribution, (xm, alpha))
#-------------------------------------------------------------------------------
# PowerFunction distribution ---------------------------------------------------
class PowerFunctionDistribution(SingleContinuousDistribution):
_argnames=('alpha','a','b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(alpha, a, b):
_value_check(a.is_real, "Continuous Boundary parameter should be real.")
_value_check(b.is_real, "Continuous Boundary parameter should be real.")
_value_check(a < b, " 'a' the left Boundary must be smaller than 'b' the right Boundary." )
_value_check(alpha.is_positive, "Continuous Shape parameter should be positive.")
def pdf(self, x):
alpha, a, b = self.alpha, self.a, self.b
num = alpha*(x - a)**(alpha - 1)
den = (b - a)**alpha
return num/den
def PowerFunction(name, alpha, a, b):
r"""
Creates a continuous random variable with a Power Function Distribution
The density of PowerFunction distribution is given by
.. math::
f(x) := \frac{{\alpha}(x - a)^{\alpha - 1}}{(b - a)^{\alpha}}
with :math:`x \in [a,b]`.
Parameters
==========
alpha: Positive number, `0 < alpha` the shape paramater
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import PowerFunction, density, cdf, E, variance
>>> from sympy import Symbol, simplify
>>> alpha = Symbol("alpha", positive=True)
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = PowerFunction("X", 2, a, b)
>>> density(X)(z)
(-2*a + 2*z)/(-a + b)**2
>>> cdf(X)(z)
Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) +
z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))
>>> alpha = 2
>>> a = 0
>>> b = 1
>>> Y = PowerFunction("Y", alpha, a, b)
>>> E(Y)
2/3
>>> variance(Y)
1/18
References
==========
.. [1] http://www.mathwave.com/help/easyfit/html/analyses/distributions/power_func.html
"""
return rv(name, PowerFunctionDistribution, (alpha, a, b))
#-------------------------------------------------------------------------------
# QuadraticU distribution ------------------------------------------------------
class QuadraticUDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b):
_value_check(b > a, "Parameter b must be in range (%s, oo)."%(a))
def pdf(self, x):
a, b = self.a, self.b
alpha = 12 / (b-a)**3
beta = (a+b) / 2
return Piecewise(
(alpha * (x-beta)**2, And(a<=x, x<=b)),
(S.Zero, True))
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) \
- exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2)
def _characteristic_function(self, t):
a, b = self.a, self.b
return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) \
/ ((a-b)**3 * t**2)
def QuadraticU(name, a, b):
r"""
Create a Continuous Random Variable with a U-quadratic distribution.
The density of the U-quadratic distribution is given by
.. math::
f(x) := \alpha (x-\beta)^2
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number
b : Real number, :math:`a < b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import QuadraticU, density, E, variance
>>> from sympy import Symbol, simplify, factor, pprint
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = QuadraticU("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ 2
| / a b \
|12*|- - - - + z|
| \ 2 2 /
<----------------- for And(b >= z, a <= z)
| 3
| (-a + b)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution
"""
return rv(name, QuadraticUDistribution, (a, b))
#-------------------------------------------------------------------------------
# RaisedCosine distribution ----------------------------------------------------
class RaisedCosineDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
@property
def set(self):
return Interval(self.mu - self.s, self.mu + self.s)
@staticmethod
def check(mu, s):
_value_check(s > 0, "s must be positive")
def pdf(self, x):
mu, s = self.mu, self.s
return Piecewise(
((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)),
(S.Zero, True))
def _characteristic_function(self, t):
mu, s = self.mu, self.s
return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)),
(exp(I*pi*mu/s)/2, Eq(t, pi/s)),
(pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True))
def _moment_generating_function(self, t):
mu, s = self.mu, self.s
return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2))
def RaisedCosine(name, mu, s):
r"""
Create a Continuous Random Variable with a raised cosine distribution.
The density of the raised cosine distribution is given by
.. math::
f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right)
with :math:`x \in [\mu-s,\mu+s]`.
Parameters
==========
mu : Real number
s : Real number, `s > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import RaisedCosine, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = RaisedCosine("x", mu, s)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ /pi*(-mu + z)\
|cos|------------| + 1
| \ s /
<--------------------- for And(z >= mu - s, z <= mu + s)
| 2*s
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution
"""
return rv(name, RaisedCosineDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Rayleigh distribution --------------------------------------------------------
class RayleighDistribution(SingleContinuousDistribution):
_argnames = ('sigma',)
set = Interval(0, oo)
@staticmethod
def check(sigma):
_value_check(sigma > 0, "Scale parameter sigma must be positive.")
def pdf(self, x):
sigma = self.sigma
return x/sigma**2*exp(-x**2/(2*sigma**2))
def _cdf(self, x):
sigma = self.sigma
return 1 - exp(-(x**2/(2*sigma**2)))
def _characteristic_function(self, t):
sigma = self.sigma
return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I)
def _moment_generating_function(self, t):
sigma = self.sigma
return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1)
def Rayleigh(name, sigma):
r"""
Create a continuous random variable with a Rayleigh distribution.
The density of the Rayleigh distribution is given by
.. math ::
f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}
with :math:`x > 0`.
Parameters
==========
sigma : Real number, `\sigma > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Rayleigh, density, E, variance
>>> from sympy import Symbol, simplify
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Rayleigh("x", sigma)
>>> density(X)(z)
z*exp(-z**2/(2*sigma**2))/sigma**2
>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2
>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution
.. [2] http://mathworld.wolfram.com/RayleighDistribution.html
"""
return rv(name, RayleighDistribution, (sigma, ))
#-------------------------------------------------------------------------------
# Reciprocal distribution --------------------------------------------------------
class ReciprocalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b):
_value_check(a > 0, "Parameter > 0. a = %s"%a)
_value_check((a < b),
"Parameter b must be in range (%s, +oo]. b = %s"%(a, b))
def pdf(self, x):
a, b = self.a, self.b
return 1/(x*(log(b) - log(a)))
def Reciprocal(name, a, b):
r"""Creates a continuous random variable with a reciprocal distribution.
Parameters
==========
a : Real number, :math:`0 < a`
b : Real number, :math:`a < b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Reciprocal, density, cdf
>>> from sympy import symbols
>>> a, b, x = symbols('a, b, x', positive=True)
>>> R = Reciprocal('R', a, b)
>>> density(R)(x)
1/(x*(-log(a) + log(b)))
>>> cdf(R)(x)
Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
Reference
=========
.. [1] https://en.wikipedia.org/wiki/Reciprocal_distribution
"""
return rv(name, ReciprocalDistribution, (a, b))
#-------------------------------------------------------------------------------
# Shifted Gompertz distribution ------------------------------------------------
class ShiftedGompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
b, eta = self.b, self.eta
return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x)))
def ShiftedGompertz(name, b, eta):
r"""
Create a continuous random variable with a Shifted Gompertz distribution.
The density of the Shifted Gompertz distribution is given by
.. math::
f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right]
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import ShiftedGompertz, density, E, variance
>>> from sympy import Symbol
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> x = Symbol("x")
>>> X = ShiftedGompertz("x", b, eta)
>>> density(X)(x)
b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
References
==========
.. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution
"""
return rv(name, ShiftedGompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# StudentT distribution --------------------------------------------------------
class StudentTDistribution(SingleContinuousDistribution):
_argnames = ('nu',)
set = Interval(-oo, oo)
@staticmethod
def check(nu):
_value_check(nu > 0, "Degrees of freedom nu must be positive.")
def pdf(self, x):
nu = self.nu
return 1/(sqrt(nu)*beta_fn(S.Half, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2)
def _cdf(self, x):
nu = self.nu
return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2),
(Rational(3, 2),), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.')
def StudentT(name, nu):
r"""
Create a continuous random variable with a student's t distribution.
The density of the student's t distribution is given by
.. math::
f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)}
{\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)}
\left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}
Parameters
==========
nu : Real number, `\nu > 0`, the degrees of freedom
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import StudentT, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> nu = Symbol("nu", positive=True)
>>> z = Symbol("z")
>>> X = StudentT("x", nu)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
nu 1
- -- - -
2 2
/ 2\
| z |
|1 + --|
\ nu/
-----------------
____ / nu\
\/ nu *B|1/2, --|
\ 2 /
>>> cdf(X)(z)
1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,),
-z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Student_t-distribution
.. [2] http://mathworld.wolfram.com/Studentst-Distribution.html
"""
return rv(name, StudentTDistribution, (nu, ))
#-------------------------------------------------------------------------------
# Trapezoidal distribution ------------------------------------------------------
class TrapezoidalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c', 'd')
@property
def set(self):
return Interval(self.a, self.d)
@staticmethod
def check(a, b, c, d):
_value_check(a < d, "Lower bound parameter a < %s. a = %s"%(d, a))
_value_check((a <= b, b < c),
"Level start parameter b must be in range [%s, %s). b = %s"%(a, c, b))
_value_check((b < c, c <= d),
"Level end parameter c must be in range (%s, %s]. c = %s"%(b, d, c))
_value_check(d >= c, "Upper bound parameter d > %s. d = %s"%(c, d))
def pdf(self, x):
a, b, c, d = self.a, self.b, self.c, self.d
return Piecewise(
(2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)),
(2 / (d+c-a-b), And(b <= x, x < c)),
(2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)),
(S.Zero, True))
def Trapezoidal(name, a, b, c, d):
r"""
Create a continuous random variable with a trapezoidal distribution.
The density of the trapezoidal distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\
\frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\
\frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\
0 & \mathrm{for\ } d < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a < d`
b : Real number, :math:`a <= b < c`
c : Real number, :math:`b < c <= d`
d : Real number
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Trapezoidal, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> d = Symbol("d")
>>> z = Symbol("z")
>>> X = Trapezoidal("x", a,b,c,d)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|------------------------- for And(a <= z, b > z)
|(-a + b)*(-a - b + c + d)
|
| 2
| -------------- for And(b <= z, c > z)
< -a - b + c + d
|
| 2*d - 2*z
|------------------------- for And(d >= z, c <= z)
|(-c + d)*(-a - b + c + d)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution
"""
return rv(name, TrapezoidalDistribution, (a, b, c, d))
#-------------------------------------------------------------------------------
# Triangular distribution ------------------------------------------------------
class TriangularDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c')
@property
def set(self):
return Interval(self.a, self.b)
@staticmethod
def check(a, b, c):
_value_check(b > a, "Parameter b > %s. b = %s"%(a, b))
_value_check((a <= c, c <= b),
"Parameter c must be in range [%s, %s]. c = %s"%(a, b, c))
def pdf(self, x):
a, b, c = self.a, self.b, self.c
return Piecewise(
(2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)),
(2/(b - a), Eq(x, c)),
(2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)),
(S.Zero, True))
def _characteristic_function(self, t):
a, b, c = self.a, self.b, self.c
return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2)
def _moment_generating_function(self, t):
a, b, c = self.a, self.b, self.c
return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c - a) * exp(b * t)) / (
(b - a) * (c - a) * (b - c) * t ** 2)
def Triangular(name, a, b, c):
r"""
Create a continuous random variable with a triangular distribution.
The density of the triangular distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\
\frac{2}{b-a} & \mathrm{for\ } x = c, \\
\frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\
0 & \mathrm{for\ } b < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a \in \left(-\infty, \infty\right)`
b : Real number, :math:`a < b`
c : Real number, :math:`a \leq c \leq b`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Triangular, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> z = Symbol("z")
>>> X = Triangular("x", a,b,c)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|----------------- for And(a <= z, c > z)
|(-a + b)*(-a + c)
|
| 2
| ------ for c = z
< -a + b
|
| 2*b - 2*z
|---------------- for And(b >= z, c < z)
|(-a + b)*(b - c)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Triangular_distribution
.. [2] http://mathworld.wolfram.com/TriangularDistribution.html
"""
return rv(name, TriangularDistribution, (a, b, c))
#-------------------------------------------------------------------------------
# Uniform distribution ---------------------------------------------------------
class UniformDistribution(SingleContinuousDistribution):
_argnames = ('left', 'right')
@property
def set(self):
return Interval(self.left, self.right)
@staticmethod
def check(left, right):
_value_check(left < right, "Lower limit should be less than Upper limit.")
def pdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.One/(right - left), And(left <= x, x <= right)),
(S.Zero, True)
)
def _cdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.Zero, x < left),
((x - left)/(right - left), x <= right),
(S.One, True)
)
def _characteristic_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)),
(S.One, True))
def expectation(self, expr, var, **kwargs):
from sympy import Max, Min
kwargs['evaluate'] = True
result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs)
result = result.subs({Max(self.left, self.right): self.right,
Min(self.left, self.right): self.left})
return result
def sample(self, size=()):
if not size:
return random.uniform(self.left, self.right)
else:
return [random.uniform(self.left, self.right)]*size
def Uniform(name, left, right):
r"""
Create a continuous random variable with a uniform distribution.
The density of the uniform distribution is given by
.. math::
f(x) := \begin{cases}
\frac{1}{b - a} & \text{for } x \in [a,b] \\
0 & \text{otherwise}
\end{cases}
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Uniform, density, cdf, E, variance, skewness
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", negative=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Uniform("x", a, b)
>>> density(X)(z)
Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True))
>>> cdf(X)(z)
Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True))
>>> E(X)
a/2 + b/2
>>> simplify(variance(X))
a**2/12 - a*b/6 + b**2/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
.. [2] http://mathworld.wolfram.com/UniformDistribution.html
"""
return rv(name, UniformDistribution, (left, right))
#-------------------------------------------------------------------------------
# UniformSum distribution ------------------------------------------------------
class UniformSumDistribution(SingleContinuousDistribution):
_argnames = ('n',)
@property
def set(self):
return Interval(0, self.n)
@staticmethod
def check(n):
_value_check((n > 0, n.is_integer),
"Parameter n must be positive integer.")
def pdf(self, x):
n = self.n
k = Dummy("k")
return 1/factorial(
n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x)))
def _cdf(self, x):
n = self.n
k = Dummy("k")
return Piecewise((S.Zero, x < 0),
(1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n),
(k, 0, floor(x))), x <= n),
(S.One, True))
def _characteristic_function(self, t):
return ((exp(I*t) - 1) / (I*t))**self.n
def _moment_generating_function(self, t):
return ((exp(t) - 1) / t)**self.n
def UniformSum(name, n):
r"""
Create a continuous random variable with an Irwin-Hall distribution.
The probability distribution function depends on a single parameter
`n` which is an integer.
The density of the Irwin-Hall distribution is given by
.. math ::
f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k
\binom{n}{k}(x-k)^{n-1}
Parameters
==========
n : A positive Integer, `n > 0`
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import UniformSum, density, cdf
>>> from sympy import Symbol, pprint
>>> n = Symbol("n", integer=True)
>>> z = Symbol("z")
>>> X = UniformSum("x", n)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)
___
\ `
\ k n - 1 /n\
) (-1) *(-k + z) *| |
/ \k/
/__,
k = 0
--------------------------------
(n - 1)!
>>> cdf(X)(z)
Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k),
(_k, 0, floor(z)))/factorial(n), n >= z), (1, True))
Compute cdf with specific 'x' and 'n' values as follows :
>>> cdf(UniformSum("x", 5), evaluate=False)(2).doit()
9/40
The argument evaluate=False prevents an attempt at evaluation
of the sum for general n, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution
.. [2] http://mathworld.wolfram.com/UniformSumDistribution.html
"""
return rv(name, UniformSumDistribution, (n, ))
#-------------------------------------------------------------------------------
# VonMises distribution --------------------------------------------------------
class VonMisesDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'k')
set = Interval(0, 2*pi)
@staticmethod
def check(mu, k):
_value_check(k > 0, "k must be positive")
def pdf(self, x):
mu, k = self.mu, self.k
return exp(k*cos(x-mu)) / (2*pi*besseli(0, k))
def VonMises(name, mu, k):
r"""
Create a Continuous Random Variable with a von Mises distribution.
The density of the von Mises distribution is given by
.. math::
f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}
with :math:`x \in [0,2\pi]`.
Parameters
==========
mu : Real number, measure of location
k : Real number, measure of concentration
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import VonMises, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu")
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = VonMises("x", mu, k)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k*cos(mu - z)
e
------------------
2*pi*besseli(0, k)
References
==========
.. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution
.. [2] http://mathworld.wolfram.com/vonMisesDistribution.html
"""
return rv(name, VonMisesDistribution, (mu, k))
#-------------------------------------------------------------------------------
# Weibull distribution ---------------------------------------------------------
class WeibullDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Alpha must be positive")
_value_check(beta > 0, "Beta must be positive")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha
def sample(self, size=()):
if not size:
return random.weibullvariate(self.alpha, self.beta)
else:
return [random.weibullvariate(self.alpha, self.beta)]*size
def Weibull(name, alpha, beta):
r"""
Create a continuous random variable with a Weibull distribution.
The density of the Weibull distribution is given by
.. math::
f(x) := \begin{cases}
\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}
e^{-(x/\lambda)^{k}} & x\geq0\\
0 & x<0
\end{cases}
Parameters
==========
lambda : Real number, :math:`\lambda > 0` a scale
k : Real number, `k > 0` a shape
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Weibull, density, E, variance
>>> from sympy import Symbol, simplify
>>> l = Symbol("lambda", positive=True)
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = Weibull("x", l, k)
>>> density(X)(z)
k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda
>>> simplify(E(X))
lambda*gamma(1 + 1/k)
>>> simplify(variance(X))
lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k))
References
==========
.. [1] https://en.wikipedia.org/wiki/Weibull_distribution
.. [2] http://mathworld.wolfram.com/WeibullDistribution.html
"""
return rv(name, WeibullDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Wigner semicircle distribution -----------------------------------------------
class WignerSemicircleDistribution(SingleContinuousDistribution):
_argnames = ('R',)
@property
def set(self):
return Interval(-self.R, self.R)
@staticmethod
def check(R):
_value_check(R > 0, "Radius R must be positive.")
def pdf(self, x):
R = self.R
return 2/(pi*R**2)*sqrt(R**2 - x**2)
def _characteristic_function(self, t):
return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def WignerSemicircle(name, R):
r"""
Create a continuous random variable with a Wigner semicircle distribution.
The density of the Wigner semicircle distribution is given by
.. math::
f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2}
with :math:`x \in [-R,R]`.
Parameters
==========
R : Real number, `R > 0`, the radius
Returns
=======
A `RandomSymbol`.
Examples
========
>>> from sympy.stats import WignerSemicircle, density, E
>>> from sympy import Symbol, simplify
>>> R = Symbol("R", positive=True)
>>> z = Symbol("z")
>>> X = WignerSemicircle("x", R)
>>> density(X)(z)
2*sqrt(R**2 - z**2)/(pi*R**2)
>>> E(X)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
.. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html
"""
return rv(name, WignerSemicircleDistribution, (R,))
|
9f80d7032482605f96b3b0570d86cbd96af437dc1a2ade8ab08c16b129373753 | """
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
BetaBinomial
Hypergeometric
Rademacher
"""
from __future__ import print_function, division
import random
from sympy import (S, sympify, Rational, binomial, cacheit, Integer,
Dummy, Eq, Intersection, Interval,
Symbol, Lambda, Piecewise, Or, Gt, Lt, Ge, Le, Contains)
from sympy import beta as beta_fn
from sympy.external import import_module
from sympy.tensor.array import ArrayComprehensionMap
from sympy.stats.frv import (SingleFiniteDistribution,
SingleFinitePSpace)
from sympy.stats.rv import _value_check, Density, RandomSymbol
numpy = import_module('numpy')
scipy = import_module('scipy')
pymc3 = import_module('pymc3')
__all__ = ['FiniteRV',
'DiscreteUniform',
'Die',
'Bernoulli',
'Coin',
'Binomial',
'BetaBinomial',
'Hypergeometric',
'Rademacher'
]
def rv(name, cls, *args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
return SingleFinitePSpace(name, dist).value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
def pmf(self, x):
x = Symbol('x')
return Lambda(x, Piecewise(*(
[(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)])))
@property
def set(self):
return set(self.dict.keys())
@staticmethod
def check(density):
for p in density.values():
_value_check((p >= 0, p <= 1),
"Probability at a point must be between 0 and 1.")
_value_check(Eq(sum(density.values()), 1), "Total Probability must be 1.")
def FiniteRV(name, density):
r"""
Create a Finite Random Variable given a dict representing the density.
Parameters
==========
density: A dict
Dictionary conatining the pdf of finite distribution
Examples
========
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
Returns
=======
RandomSymbol
"""
return rv(name, FiniteDistributionHandmade, density)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@staticmethod
def check(*args):
# not using _value_check since there is a
# suggestion for the user
if len(set(args)) != len(args):
from sympy.utilities.iterables import multiset
from sympy.utilities.misc import filldedent
weights = multiset(args)
n = Integer(len(args))
for k in weights:
weights[k] /= n
raise ValueError(filldedent("""
Repeated args detected but set expected. For a
distribution having different weights for each
item use the following:""") + (
'\nS("FiniteRV(%s, %s)")' % ("'X'", weights)))
@property
def p(self):
return Rational(1, len(self.args))
@property # type: ignore
@cacheit
def dict(self):
return dict((k, self.p) for k in self.set)
@property
def set(self):
return set(self.args)
def pmf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
def _sample_random(self, size):
x = Symbol('x')
return ArrayComprehensionMap(lambda: self.args[random.randint(0, len(self.args)-1)], (x, 0, size)).doit()
def DiscreteUniform(name, items):
r"""
Create a Finite Random Variable representing a uniform distribution over
the input set.
Parameters
==========
items: list/tuple
Items over which Uniform distribution is to be made
Examples
========
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols
>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution
.. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html
"""
return rv(name, DiscreteUniformDistribution, *items)
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
@staticmethod
def check(sides):
_value_check((sides.is_positive, sides.is_integer),
"number of sides must be a positive integer.")
@property
def is_symbolic(self):
return not self.sides.is_number
@property
def high(self):
return self.sides
@property
def low(self):
return S.One
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.sides))
return set(map(Integer, list(range(1, self.sides + 1))))
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers)
return Piecewise((S.One/self.sides, cond), (S.Zero, True))
def Die(name, sides=6):
r"""
Create a Finite Random Variable representing a fair die.
Parameters
==========
sides: Integer
Represents the number of sides of the Die, by default is 6
Examples
========
>>> from sympy.stats import Die, density
>>> from sympy import Symbol
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
>>> n = Symbol('n', positive=True, integer=True)
>>> Dn = Die('Dn', n) # n sided Die
>>> density(Dn).dict
Density(DieDistribution(n))
>>> density(Dn).dict.subs(n, 4).doit()
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
Returns
=======
RandomSymbol
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
@staticmethod
def check(p, succ, fail):
_value_check((p >= 0, p <= 1),
"p should be in range [0, 1].")
@property
def set(self):
return set([self.succ, self.fail])
def pmf(self, x):
return Piecewise((self.p, x == self.succ),
(1 - self.p, x == self.fail),
(S.Zero, True))
def Bernoulli(name, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a Bernoulli process.
Parameters
==========
p : Rational number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success
fail : Integer/symbol/string
Represents event of failure
Examples
========
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution
.. [2] http://mathworld.wolfram.com/BernoulliDistribution.html
"""
return rv(name, BernoulliDistribution, p, succ, fail)
def Coin(name, p=S.Half):
r"""
Create a Finite Random Variable representing a Coin toss.
Parameters
==========
p : Rational Numeber between 0 and 1
Represents probability of getting "Heads", by default is Half
Examples
========
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Coin_flipping
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
@staticmethod
def check(n, p, succ, fail):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer.")
_value_check((p <= 1, p >= 0),
"p should be in range [0, 1].")
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(self.dict.keys())
def pmf(self, x):
n, p = self.n, self.p
x = sympify(x)
if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)):
raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers)
return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True))
@property # type: ignore
@cacheit
def dict(self):
if self.is_symbolic:
return Density(self)
return dict((k*self.succ + (self.n-k)*self.fail, self.pmf(k))
for k in range(0, self.n + 1))
def Binomial(name, n, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
p : Rational Number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success, by default is 1
fail : Integer/symbol/string
Represents event of failure, by default is 0
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S, Symbol
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
>>> n = Symbol('n', positive=True, integer=True)
>>> p = Symbol('p', positive=True)
>>> X = Binomial('X', n, S.Half) # n "coin flips"
>>> density(X).dict
Density(BinomialDistribution(n, 1/2, 1, 0))
>>> density(X).dict.subs(n, 4).doit()
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Binomial_distribution
.. [2] http://mathworld.wolfram.com/BinomialDistribution.html
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
#-------------------------------------------------------------------------------
# Beta-binomial distribution ----------------------------------------------------------
class BetaBinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'alpha', 'beta')
@staticmethod
def check(n, alpha, beta):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((alpha > 0),
"'alpha' must be: alpha > 0 . alpha = %s" % str(alpha))
_value_check((beta > 0),
"'beta' must be: beta > 0 . beta = %s" % str(beta))
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(map(Integer, list(range(0, self.n + 1))))
def pmf(self, k):
n, a, b = self.n, self.alpha, self.beta
return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b)
def _sample_pymc3(self, size):
n, a, b = int(self.n), float(self.alpha), float(self.beta)
with pymc3.Model():
pymc3.BetaBinomial('X', alpha=a, beta=b, n=n)
return pymc3.sample(size, chains=1, progressbar=False)[:]['X']
def BetaBinomial(name, n, alpha, beta):
r"""
Create a Finite Random Variable representing a Beta-binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
alpha : Real positive number
beta : Real positive number
Examples
========
>>> from sympy.stats import BetaBinomial, density
>>> X = BetaBinomial('X', 2, 1, 1)
>>> density(X).dict
{0: 1/3, 1: 2*beta(2, 2), 2: 1/3}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
.. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html
"""
return rv(name, BetaBinomialDistribution, n, alpha, beta)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@staticmethod
def check(n, N, m):
_value_check((N.is_integer, N.is_nonnegative),
"'N' must be nonnegative integer. N = %s." % str(n))
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((m.is_integer, m.is_nonnegative),
"'m' must be nonnegative integer. m = %s." % str(n))
@property
def is_symbolic(self):
return any(not x.is_number for x in (self.N, self.m, self.n))
@property
def high(self):
return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True))
@property
def low(self):
return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True))
@property
def set(self):
N, m, n = self.N, self.m, self.n
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(self.low, self.high))
return set([i for i in range(max(0, n + m - N), min(n, m) + 1)])
def pmf(self, k):
N, m, n = self.N, self.m, self.n
return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n)
def _sample_scipy(self, size):
import scipy.stats # Make sure that stats is imported
N, m, n = int(self.N), int(self.m), int(self.n)
return scipy.stats.hypergeom.rvs(M=m, n=n, N=N, size=size)
def Hypergeometric(name, N, m, n):
r"""
Create a Finite Random Variable representing a hypergeometric distribution.
Parameters
==========
N : Positive Integer
Represents finite population of size N.
m : Positive Integer
Represents number of trials with required feature.
n : Positive Integer
Represents numbers of draws.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution
.. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
def set(self):
return set([-1, 1])
@property
def pmf(self):
k = Dummy('k')
return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True)))
def Rademacher(name):
r"""
Create a Finite Random Variable representing a Rademacher distribution.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] https://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)
|
8ee7ef4f367ca5377a5cca102b02611aeb64ad7f139de5da29fb9ac8abe5d169 | from __future__ import print_function, division
from sympy import (Matrix, MatrixSymbol, S, Indexed, Basic,
Set, And, Eq, FiniteSet, ImmutableMatrix,
Lambda, Mul, Dummy, IndexedBase, Add,
linsolve, eye, Or, Not, Intersection,
Union, Expr, Function, exp, cacheit,
Ge, Piecewise, Symbol)
from sympy.core.relational import Relational
from sympy.logic.boolalg import Boolean
from sympy.stats.joint_rv import JointDistributionHandmade, JointDistribution
from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol,
_symbol_converter, _value_check, pspace, given,
dependent)
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.stats.frv_types import Bernoulli, BernoulliDistribution
from sympy.core.sympify import _sympify
__all__ = [
'StochasticProcess',
'DiscreteTimeStochasticProcess',
'DiscreteMarkovChain',
'TransitionMatrixOf',
'StochasticStateSpaceOf',
'GeneratorMatrixOf',
'ContinuousMarkovChain',
'BernoulliProcess'
]
def _set_converter(itr):
"""
Helper function for converting list/tuple/set to Set.
If parameter is not an instance of list/tuple/set then
no operation is performed.
Returns
=======
Set
The argument converted to Set.
Raises
======
TypeError
If the argument is not an instance of list/tuple/set.
"""
if isinstance(itr, (list, tuple, set)):
itr = FiniteSet(*itr)
if not isinstance(itr, Set):
raise TypeError("%s is not an instance of list/tuple/set."%(itr))
return itr
def _sym_sympify(arg):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
As generally strings are unwise to use in the expressions,
it returns the Symbol of argument if the string type argument is passed.
Parameters
=========
arg: The parameter to be converted to be used in Sympy.
Returns
=======
The converted parameter.
"""
if isinstance(arg, str):
return Symbol(arg)
else:
return _sympify(arg)
def _matrix_checks(matrix):
if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)):
raise TypeError("Transition probabilities either should "
"be a Matrix or a MatrixSymbol.")
if matrix.shape[0] != matrix.shape[1]:
raise ValueError("%s is not a square matrix"%(matrix))
if isinstance(matrix, Matrix):
matrix = ImmutableMatrix(matrix.tolist())
return matrix
class StochasticProcess(Basic):
"""
Base class for all the stochastic processes whether
discrete or continuous.
Parameters
==========
sym: Symbol or str
state_space: Set
The state space of the stochastic process, by default S.Reals.
For discrete sets it is zero indexed.
See Also
========
DiscreteTimeStochasticProcess
"""
index_set = S.Reals
def __new__(cls, sym, state_space=S.Reals, **kwargs):
sym = _symbol_converter(sym)
state_space = _set_converter(state_space)
return Basic.__new__(cls, sym, state_space)
@property
def symbol(self):
return self.args[0]
@property
def state_space(self):
return self.args[1]
def __call__(self, time):
"""
Overridden in ContinuousTimeStochasticProcess.
"""
raise NotImplementedError("Use [] for indexing discrete time stochastic process.")
def __getitem__(self, time):
"""
Overridden in DiscreteTimeStochasticProcess.
"""
raise NotImplementedError("Use () for indexing continuous time stochastic process.")
def probability(self, condition):
raise NotImplementedError()
def joint_distribution(self, *args):
"""
Computes the joint distribution of the random indexed variables.
Parameters
==========
args: iterable
The finite list of random indexed variables/the key of a stochastic
process whose joint distribution has to be computed.
Returns
=======
JointDistribution
The joint distribution of the list of random indexed variables.
An unevaluated object is returned if it is not possible to
compute the joint distribution.
Raises
======
ValueError: When the arguments passed are not of type RandomIndexSymbol
or Number.
"""
args = list(args)
for i, arg in enumerate(args):
if S(arg).is_Number:
if self.index_set.is_subset(S.Integers):
args[i] = self.__getitem__(arg)
else:
args[i] = self.__call__(arg)
elif not isinstance(arg, RandomIndexedSymbol):
raise ValueError("Expected a RandomIndexedSymbol or "
"key not %s"%(type(arg)))
if args[0].pspace.distribution == None: # checks if there is any distribution available
return JointDistribution(*args)
pdf = Lambda(tuple(args),
expr=Mul.fromiter(arg.pspace.process.density(arg) for arg in args))
return JointDistributionHandmade(pdf)
def expectation(self, condition, given_condition):
raise NotImplementedError("Abstract method for expectation queries.")
class DiscreteTimeStochasticProcess(StochasticProcess):
"""
Base class for all discrete stochastic processes.
"""
def __getitem__(self, time):
"""
For indexing discrete time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
if time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
idx_obj = Indexed(self.symbol, time)
distribution = getattr(self, 'distribution', None)
pspace_obj = StochasticPSpace(self.symbol, self, distribution)
return RandomIndexedSymbol(idx_obj, pspace_obj)
class ContinuousTimeStochasticProcess(StochasticProcess):
"""
Base class for all continuous time stochastic process.
"""
def __call__(self, time):
"""
For indexing continuous time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
if time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
func_obj = Function(self.symbol)(time)
pspace_obj = StochasticPSpace(self.symbol, self)
return RandomIndexedSymbol(func_obj, pspace_obj)
class TransitionMatrixOf(Boolean):
"""
Assumes that the matrix is the transition matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, DiscreteMarkovChain):
raise ValueError("Currently only DiscreteMarkovChain "
"support TransitionMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
process = property(lambda self: self.args[0])
matrix = property(lambda self: self.args[1])
class GeneratorMatrixOf(TransitionMatrixOf):
"""
Assumes that the matrix is the generator matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, ContinuousMarkovChain):
raise ValueError("Currently only ContinuousMarkovChain "
"support GeneratorMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
class StochasticStateSpaceOf(Boolean):
def __new__(cls, process, state_space):
if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)):
raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain "
"support StochasticStateSpaceOf.")
state_space = _set_converter(state_space)
return Basic.__new__(cls, process, state_space)
process = property(lambda self: self.args[0])
state_space = property(lambda self: self.args[1])
class MarkovProcess(StochasticProcess):
"""
Contains methods that handle queries
common to Markov processes.
"""
def _extract_information(self, given_condition):
"""
Helper function to extract information, like,
transition matrix/generator matrix, state space, etc.
"""
if isinstance(self, DiscreteMarkovChain):
trans_probs = self.transition_probabilities
elif isinstance(self, ContinuousMarkovChain):
trans_probs = self.generator_matrix
state_space = self.state_space
if isinstance(given_condition, And):
gcs = given_condition.args
given_condition = S.true
for gc in gcs:
if isinstance(gc, TransitionMatrixOf):
trans_probs = gc.matrix
if isinstance(gc, StochasticStateSpaceOf):
state_space = gc.state_space
if isinstance(gc, Relational):
given_condition = given_condition & gc
if isinstance(given_condition, TransitionMatrixOf):
trans_probs = given_condition.matrix
given_condition = S.true
if isinstance(given_condition, StochasticStateSpaceOf):
state_space = given_condition.state_space
given_condition = S.true
return trans_probs, state_space, given_condition
def _check_trans_probs(self, trans_probs, row_sum=1):
"""
Helper function for checking the validity of transition
probabilities.
"""
if not isinstance(trans_probs, MatrixSymbol):
rows = trans_probs.tolist()
for row in rows:
if (sum(row) - row_sum) != 0:
raise ValueError("Values in a row must sum to %s. "
"If you are using Float or floats then please use Rational."%(row_sum))
def _work_out_state_space(self, state_space, given_condition, trans_probs):
"""
Helper function to extract state space if there
is a random symbol in the given condition.
"""
# if given condition is None, then there is no need to work out
# state_space from random variables
if given_condition != None:
rand_var = list(given_condition.atoms(RandomSymbol) -
given_condition.atoms(RandomIndexedSymbol))
if len(rand_var) == 1:
state_space = rand_var[0].pspace.set
if not FiniteSet(*[i for i in range(trans_probs.shape[0])]).is_subset(state_space):
raise ValueError("state space is not compatible with the transition probabilites.")
state_space = FiniteSet(*[i for i in range(trans_probs.shape[0])])
return state_space
@cacheit
def _preprocess(self, given_condition, evaluate):
"""
Helper function for pre-processing the information.
"""
is_insufficient = False
if not evaluate: # avoid pre-processing if the result is not to be evaluated
return (True, None, None, None)
# extracting transition matrix and state space
trans_probs, state_space, given_condition = self._extract_information(given_condition)
# given_condition does not have sufficient information
# for computations
if trans_probs == None or \
given_condition == None:
is_insufficient = True
else:
# checking transition probabilities
if isinstance(self, DiscreteMarkovChain):
self._check_trans_probs(trans_probs, row_sum=1)
elif isinstance(self, ContinuousMarkovChain):
self._check_trans_probs(trans_probs, row_sum=0)
# working out state space
state_space = self._work_out_state_space(state_space, given_condition, trans_probs)
return is_insufficient, trans_probs, state_space, given_condition
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Handles probability queries for Markov process.
Parameters
==========
condition: Relational
given_condition: Relational/And
Returns
=======
Probability
If the information is not sufficient.
Expr
In all other cases.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_space, new_given_condition = \
self._preprocess(given_condition, evaluate)
if check:
return Probability(condition, new_given_condition)
if isinstance(self, ContinuousMarkovChain):
trans_probs = self.transition_probabilities(mat)
elif isinstance(self, DiscreteMarkovChain):
trans_probs = mat
if isinstance(condition, Relational):
rv, states = (list(condition.atoms(RandomIndexedSymbol))[0], condition.as_set())
if isinstance(new_given_condition, And):
gcs = new_given_condition.args
else:
gcs = (new_given_condition, )
grvs = new_given_condition.atoms(RandomIndexedSymbol)
min_key_rv = None
for grv in grvs:
if grv.key <= rv.key:
min_key_rv = grv
if min_key_rv == None:
return Probability(condition)
prob, gstate = dict(), None
for gc in gcs:
if gc.has(min_key_rv):
if gc.has(Probability):
p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \
else (gc.lhs, gc.rhs)
gr = gp.args[0]
gset = Intersection(gr.as_set(), state_space)
gstate = list(gset)[0]
prob[gset] = p
else:
_, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \
else (gc.rhs.key, gc.lhs)
if any((k not in self.index_set) for k in (rv.key, min_key_rv.key)):
raise IndexError("The timestamps of the process are not in it's index set.")
states = Intersection(states, state_space)
for state in Union(states, FiniteSet(gstate)):
if Ge(state, mat.shape[0]) == True:
raise IndexError("No information is available for (%s, %s) in "
"transition probabilities of shape, (%s, %s). "
"State space is zero indexed."
%(gstate, state, mat.shape[0], mat.shape[1]))
if prob:
gstates = Union(*prob.keys())
if len(gstates) == 1:
gstate = list(gstates)[0]
gprob = list(prob.values())[0]
prob[gstates] = gprob
elif len(gstates) == len(state_space) - 1:
gstate = list(state_space - gstates)[0]
gprob = S.One - sum(prob.values())
prob[state_space - gstates] = gprob
else:
raise ValueError("Conflicting information.")
else:
gprob = S.One
if min_key_rv == rv:
return sum([prob[FiniteSet(state)] for state in states])
if isinstance(self, ContinuousMarkovChain):
return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state))
for state in states])
if isinstance(self, DiscreteMarkovChain):
return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state))
for state in states])
if isinstance(condition, Not):
expr = condition.args[0]
return S.One - self.probability(expr, given_condition, evaluate, **kwargs)
if isinstance(condition, And):
compute_later, state2cond, conds = [], dict(), condition.args
for expr in conds:
if isinstance(expr, Relational):
ris = list(expr.atoms(RandomIndexedSymbol))[0]
if state2cond.get(ris, None) is None:
state2cond[ris] = S.true
state2cond[ris] &= expr
else:
compute_later.append(expr)
ris = []
for ri in state2cond:
ris.append(ri)
cset = Intersection(state2cond[ri].as_set(), state_space)
if len(cset) == 0:
return S.Zero
state2cond[ri] = cset.as_relational(ri)
sorted_ris = sorted(ris, key=lambda ri: ri.key)
prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs)
for i in range(1, len(sorted_ris)):
ri, prev_ri = sorted_ris[i], sorted_ris[i-1]
if not isinstance(state2cond[ri], Eq):
raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
prod *= self.probability(state2cond[ri], state2cond[prev_ri]
& mat_of
& StochasticStateSpaceOf(self, state_space),
evaluate, **kwargs)
for expr in compute_later:
prod *= self.probability(expr, given_condition, evaluate, **kwargs)
return prod
if isinstance(condition, Or):
return sum([self.probability(expr, given_condition, evaluate, **kwargs)
for expr in condition.args])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(expr, condition))
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Handles expectation queries for markov process.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation
Unevaluated object if computations cannot be done due to
insufficient information.
Expr
In all other cases when the computations are successful.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_space, condition = \
self._preprocess(condition, evaluate)
if check:
return Expectation(expr, condition)
rvs = random_symbols(expr)
if isinstance(expr, Expr) and isinstance(condition, Eq) \
and len(rvs) == 1:
# handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>))
rv = list(rvs)[0]
lhsg, rhsg = condition.lhs, condition.rhs
if not isinstance(lhsg, RandomIndexedSymbol):
lhsg, rhsg = (rhsg, lhsg)
if rhsg not in self.state_space:
raise ValueError("%s state is not in the state space."%(rhsg))
if rv.key < lhsg.key:
raise ValueError("Incorrect given condition is given, expectation "
"time %s < time %s"%(rv.key, rv.key))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
cond = condition & mat_of & \
StochasticStateSpaceOf(self, state_space)
func = lambda s: self.probability(Eq(rv, s), cond)*expr.subs(rv, s)
return sum([func(s) for s in state_space])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(expr, condition))
class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess):
"""
Represents discrete time Markov chain.
Parameters
==========
sym: Symbol/str
state_space: Set
Optional, by default, S.Reals
trans_probs: Matrix/ImmutableMatrix/MatrixSymbol
Optional, by default, None
Examples
========
>>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf
>>> from sympy import Matrix, MatrixSymbol, Eq
>>> from sympy.stats import P
>>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> YS = DiscreteMarkovChain("Y")
>>> Y.state_space
FiniteSet(0, 1, 2)
>>> Y.transition_probabilities
Matrix([
[0.5, 0.2, 0.3],
[0.2, 0.5, 0.3],
[0.2, 0.3, 0.5]])
>>> TS = MatrixSymbol('T', 3, 3)
>>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS))
T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain
.. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, state_space=S.Reals, trans_probs=None):
sym = _symbol_converter(sym)
state_space = _set_converter(state_space)
if trans_probs != None:
trans_probs = _matrix_checks(trans_probs)
return Basic.__new__(cls, sym, state_space, trans_probs)
@property
def transition_probabilities(self):
"""
Transition probabilities of discrete Markov chain,
either an instance of Matrix or MatrixSymbol.
"""
return self.args[2]
def _transient2transient(self):
"""
Computes the one step probabilities of transient
states to transient states. Used in finding
fundamental matrix, absorbing probabilties.
"""
trans_probs = self.transition_probabilities
if not isinstance(trans_probs, ImmutableMatrix):
return None
m = trans_probs.shape[0]
trans_states = [i for i in range(m) if trans_probs[i, i] != 1]
t2t = [[trans_probs[si, sj] for sj in trans_states] for si in trans_states]
return ImmutableMatrix(t2t)
def _transient2absorbing(self):
"""
Computes the one step probabilities of transient
states to absorbing states. Used in finding
fundamental matrix, absorbing probabilties.
"""
trans_probs = self.transition_probabilities
if not isinstance(trans_probs, ImmutableMatrix):
return None
m, trans_states, absorb_states = \
trans_probs.shape[0], [], []
for i in range(m):
if trans_probs[i, i] == 1:
absorb_states.append(i)
else:
trans_states.append(i)
if not absorb_states or not trans_states:
return None
t2a = [[trans_probs[si, sj] for sj in absorb_states]
for si in trans_states]
return ImmutableMatrix(t2a)
def fundamental_matrix(self):
Q = self._transient2transient()
if Q == None:
return None
I = eye(Q.shape[0])
if (I - Q).det() == 0:
raise ValueError("Fundamental matrix doesn't exists.")
return ImmutableMatrix((I - Q).inv().tolist())
def absorbing_probabilites(self):
"""
Computes the absorbing probabilities, i.e.,
the ij-th entry of the matrix denotes the
probability of Markov chain being absorbed
in state j starting from state i.
"""
R = self._transient2absorbing()
N = self.fundamental_matrix()
if R == None or N == None:
return None
return N*R
def is_regular(self):
w = self.fixed_row_vector()
if w is None or isinstance(w, (Lambda)):
return None
return all((wi > 0) == True for wi in w.row(0))
def is_absorbing_state(self, state):
trans_probs = self.transition_probabilities
if isinstance(trans_probs, ImmutableMatrix) and \
state < trans_probs.shape[0]:
return S(trans_probs[state, state]) is S.One
def is_absorbing_chain(self):
trans_probs = self.transition_probabilities
return any(self.is_absorbing_state(state) == True
for state in range(trans_probs.shape[0]))
def fixed_row_vector(self):
trans_probs = self.transition_probabilities
if trans_probs == None:
return None
if isinstance(trans_probs, MatrixSymbol):
wm = MatrixSymbol('wm', 1, trans_probs.shape[0])
return Lambda((wm, trans_probs), Eq(wm*trans_probs, wm))
w = IndexedBase('w')
wi = [w[i] for i in range(trans_probs.shape[0])]
wm = Matrix([wi])
eqs = (wm*trans_probs - wm).tolist()[0]
eqs.append(sum(wi) - 1)
soln = list(linsolve(eqs, wi))[0]
return ImmutableMatrix([[sol for sol in soln]])
@property
def limiting_distribution(self):
"""
The fixed row vector is the limiting
distribution of a discrete Markov chain.
"""
return self.fixed_row_vector()
class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess):
"""
Represents continuous time Markov chain.
Parameters
==========
sym: Symbol/str
state_space: Set
Optional, by default, S.Reals
gen_mat: Matrix/ImmutableMatrix/MatrixSymbol
Optional, by default, None
Examples
========
>>> from sympy.stats import ContinuousMarkovChain
>>> from sympy import Matrix, S, MatrixSymbol
>>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G)
>>> C.limiting_distribution()
Matrix([[1/2, 1/2]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain
.. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf
"""
index_set = S.Reals
def __new__(cls, sym, state_space=S.Reals, gen_mat=None):
sym = _symbol_converter(sym)
state_space = _set_converter(state_space)
if gen_mat != None:
gen_mat = _matrix_checks(gen_mat)
return Basic.__new__(cls, sym, state_space, gen_mat)
@property
def generator_matrix(self):
return self.args[2]
@cacheit
def transition_probabilities(self, gen_mat=None):
t = Dummy('t')
if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \
gen_mat.is_diagonalizable():
# for faster computation use diagonalized generator matrix
Q, D = gen_mat.diagonalize()
return Lambda(t, Q*exp(t*D)*Q.inv())
if gen_mat != None:
return Lambda(t, exp(t*gen_mat))
def limiting_distribution(self):
gen_mat = self.generator_matrix
if gen_mat == None:
return None
if isinstance(gen_mat, MatrixSymbol):
wm = MatrixSymbol('wm', 1, gen_mat.shape[0])
return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm))
w = IndexedBase('w')
wi = [w[i] for i in range(gen_mat.shape[0])]
wm = Matrix([wi])
eqs = (wm*gen_mat).tolist()[0]
eqs.append(sum(wi) - 1)
soln = list(linsolve(eqs, wi))[0]
return ImmutableMatrix([[sol for sol in soln]])
class BernoulliProcess(DiscreteTimeStochasticProcess):
"""
The Bernoulli process consists of repeated
independent Bernoulli process trials with the same parameter `p`.
It's assumed that the probability `p` applies to every
trial and that the outcomes of each trial
are independent of all the rest. Therefore Bernoulli Processs
is Discrete State and Discrete Time Stochastic Process.
Parameters
==========
sym: Symbol/str
success: Integer/str
The event which is considered to be success, by default is 1.
failure: Integer/str
The event which is considered to be failure, by default is 0.
p: Real Number between 0 and 1
Represents the probability of getting success.
Examples
========
>>> from sympy.stats import BernoulliProcess, P, E
>>> from sympy import Eq, Gt, Lt
>>> B = BernoulliProcess("B", p=0.7, success=1, failure=0)
>>> B.state_space
FiniteSet(0, 1)
>>> (B.p).round(2)
0.70
>>> B.success
1
>>> B.failure
0
>>> X = B[1] + B[2] + B[3]
>>> P(Eq(X, 0)).round(2)
0.03
>>> P(Eq(X, 2)).round(2)
0.44
>>> P(Eq(X, 4)).round(2)
0
>>> P(Gt(X, 1)).round(2)
0.78
>>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2)
0.04
>>> B.joint_distribution(B[1], B[2])
JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)),
(0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)),
(0, True))))
>>> E(2*B[1] + B[2]).round(2)
2.10
>>> P(B[1] < 1).round(2)
0.30
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_process
.. [2] https://mathcs.clarku.edu/~djoyce/ma217/bernoulli.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, p, success=1, failure=0):
_value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.')
sym = _symbol_converter(sym)
p = _sympify(p)
success = _sym_sympify(success)
failure = _sym_sympify(failure)
return Basic.__new__(cls, sym, p, success, failure)
@property
def symbol(self):
return self.args[0]
@property
def p(self):
return self.args[1]
@property
def success(self):
return self.args[2]
@property
def failure(self):
return self.args[3]
@property
def state_space(self):
return _set_converter([self.success, self.failure])
@property
def distribution(self):
return BernoulliDistribution(self.p)
def _rvindexed_subs(self, expr, condition=None):
"""
Substitutes the RandomIndexedSymbol with the RandomSymbol with
same name, distribution and probability as RandomIndexedSymbol.
"""
rvs_expr = random_symbols(expr)
if len(rvs_expr) != 0:
swapdict_expr = {}
for rv in rvs_expr:
if isinstance(rv, RandomIndexedSymbol):
newrv = Bernoulli(rv.name, p=rv.pspace.process.p,
succ=self.success, fail=self.failure)
swapdict_expr[rv] = newrv
expr = expr.subs(swapdict_expr)
rvs_cond = random_symbols(condition)
if len(rvs_cond)!=0:
swapdict_cond = {}
if condition is not None:
for rv in rvs_cond:
if isinstance(rv, RandomIndexedSymbol):
newrv = Bernoulli(rv.name, p=rv.pspace.process.p,
succ=self.success, fail=self.failure)
swapdict_cond[rv] = newrv
condition = condition.subs(swapdict_cond)
return expr, condition
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Computes expectation.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation of the RandomIndexedSymbol.
"""
new_expr, new_condition = self._rvindexed_subs(expr, condition)
new_pspace = pspace(new_expr)
if new_condition is not None:
new_expr = given(new_expr, new_condition)
if new_expr.is_Add: # As E is Linear
return Add(*[new_pspace.compute_expectation(
expr=arg, evaluate=evaluate, **kwargs)
for arg in new_expr.args])
return new_pspace.compute_expectation(
new_expr, evaluate=evaluate, **kwargs)
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Computes probability.
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational/And
The given conditions under which computations should be done.
Returns
=======
Probability of the condition.
"""
new_condition, new_givencondition = self._rvindexed_subs(condition, given_condition)
if isinstance(new_givencondition, RandomSymbol):
condrv = random_symbols(new_condition)
if len(condrv) == 1 and condrv[0] == new_givencondition:
return BernoulliDistribution(self.probability(new_condition), 0, 1)
if any([dependent(rv, new_givencondition) for rv in condrv]):
return Probability(new_condition, new_givencondition)
else:
return self.probability(new_condition)
if new_givencondition is not None and \
not isinstance(new_givencondition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_givencondition))
if new_givencondition == False:
return S.Zero
if new_condition == True:
return S.One
if new_condition == False:
return S.Zero
if not isinstance(new_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_condition))
if new_givencondition is not None: # If there is a condition
# Recompute on new conditional expr
return self.probability(given(new_condition, new_givencondition, **kwargs), **kwargs)
return pspace(new_condition).probability(new_condition, **kwargs)
def density(self, x):
return Piecewise((self.p, Eq(x, self.success)),
(1 - self.p, Eq(x, self.failure)),
(S.Zero, True))
|
32ec595aa88e5e65f086e9cb251e1691416fe8f96b603cf559506bceaeca7171 | """
SymPy statistics module
Introduces a random variable type into the SymPy language.
Random variables may be declared using prebuilt functions such as
Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
Queries on random expressions can be made using the functions
========================= =============================
Expression Meaning
------------------------- -----------------------------
``P(condition)`` Probability
``E(expression)`` Expected value
``H(expression)`` Entropy
``variance(expression)`` Variance
``density(expression)`` Probability Density Function
``sample(expression)`` Produce a realization
``where(condition)`` Where the condition is true
========================= =============================
Examples
========
>>> from sympy.stats import P, E, variance, Die, Normal
>>> from sympy import Eq, simplify
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
>>> P(X>3) # Probability X is greater than 3
1/2
>>> E(X+Y) # Expectation of the sum of two dice
7
>>> variance(X+Y) # Variance of the sum of two dice
35/6
>>> simplify(P(Z>1)) # Probability of Z being greater than 1
1/2 - erf(sqrt(2)/2)/2
"""
__all__ = [
'P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf','median',
'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std',
'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'independent',
'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment',
'sampling_density', 'moment_generating_function', 'smoment', 'quantile',
'FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial',
'BetaBinomial', 'Hypergeometric', 'Rademacher',
'ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime',
'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang',
'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution',
'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel',
'Kumaraswamy', 'Laplace', 'Levy', 'Logistic', 'LogLogistic', 'LogNormal', 'Moyal',
'Maxwell', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction',
'QuadraticU', 'RaisedCosine', 'Rayleigh','Reciprocal', 'StudentT', 'ShiftedGompertz',
'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald',
'Weibull', 'WignerSemicircle',
'Geometric','Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam',
'YuleSimon', 'Zeta',
'JointRV', 'Dirichlet', 'GeneralizedMultivariateLogGamma',
'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta',
'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial',
'NormalGamma',
'StochasticProcess', 'DiscreteTimeStochasticProcess',
'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf',
'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess',
'CircularEnsemble', 'CircularUnitaryEnsemble',
'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble',
'GaussianEnsemble', 'GaussianUnitaryEnsemble',
'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble',
'joint_eigen_distribution', 'JointEigenDistribution',
'level_spacing_distribution',
'Probability', 'Expectation', 'Variance', 'Covariance',
]
from .rv_interface import (P, E, H, density, where, given, sample, cdf, median,
characteristic_function, pspace, sample_iter, variance, std, skewness,
kurtosis, covariance, dependent, entropy, independent, random_symbols,
correlation, factorial_moment, moment, cmoment, sampling_density,
moment_generating_function, smoment, quantile)
from .frv_types import (FiniteRV, DiscreteUniform, Die, Bernoulli, Coin,
Binomial, BetaBinomial, Hypergeometric, Rademacher)
from .crv_types import (ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral,
BetaPrime, Cauchy, Chi, ChiNoncentral, ChiSquared, Dagum, Erlang,
ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ,
Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace,
Levy, Logistic, LogLogistic, LogNormal, Maxwell, Moyal, Nakagami, Normal,
GaussianInverse, Pareto, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, StudentT,
PowerFunction, ShiftedGompertz, Trapezoidal, Triangular, Uniform, UniformSum,
VonMises, Wald, Weibull, WignerSemicircle)
from .drv_types import (Geometric, Hermite, Logarithmic, NegativeBinomial, Poisson,
Skellam, YuleSimon, Zeta)
from .joint_rv_types import (JointRV, Dirichlet,
GeneralizedMultivariateLogGamma, GeneralizedMultivariateLogGammaOmega,
Multinomial, MultivariateBeta, MultivariateEwens, MultivariateT,
NegativeMultinomial, NormalGamma)
from .stochastic_process_types import (StochasticProcess,
DiscreteTimeStochasticProcess, DiscreteMarkovChain,
TransitionMatrixOf, StochasticStateSpaceOf, GeneratorMatrixOf,
ContinuousMarkovChain, BernoulliProcess)
from .random_matrix_models import (CircularEnsemble, CircularUnitaryEnsemble,
CircularOrthogonalEnsemble, CircularSymplecticEnsemble,
GaussianEnsemble, GaussianUnitaryEnsemble, GaussianOrthogonalEnsemble,
GaussianSymplecticEnsemble, joint_eigen_distribution,
JointEigenDistribution, level_spacing_distribution)
from .symbolic_probability import (Probability, Expectation, Variance,
Covariance)
|
3acb3e98bc993e8265c22bccc8a631f75960c805a043f73723875fddc74bc31e | from sympy import (sympify, S, pi, sqrt, exp, Lambda, Indexed, besselk, gamma, Interval,
Range, factorial, Mul, Integer,
Add, rf, Eq, Piecewise, ones, Symbol, Pow, Rational, Sum,
Intersection, Matrix, symbols, Product, IndexedBase)
from sympy.matrices import ImmutableMatrix, MatrixSymbol
from sympy.matrices.expressions.determinant import det
from sympy.stats.joint_rv import (JointDistribution, JointPSpace,
JointDistributionHandmade, MarginalDistribution)
from sympy.stats.rv import _value_check, random_symbols
__all__ = ['JointRV',
'Dirichlet',
'GeneralizedMultivariateLogGamma',
'GeneralizedMultivariateLogGammaOmega',
'Multinomial',
'MultivariateBeta',
'MultivariateEwens',
'MultivariateT',
'NegativeMultinomial',
'NormalGamma'
]
def multivariate_rv(cls, sym, *args):
args = list(map(sympify, args))
dist = cls(*args)
args = dist.args
dist.check(*args)
return JointPSpace(sym, dist).value
def JointRV(symbol, pdf, _set=None):
"""
Create a Joint Random Variable where each of its component is conitinuous,
given the following:
-- a symbol
-- a PDF in terms of indexed symbols of the symbol given
as the first argument
NOTE: As of now, the set for each component for a `JointRV` is
equal to the set of all integers, which can not be changed.
Examples
========
>>> from sympy import symbols, exp, pi, Indexed, S
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv_types import JointRV
>>> x1, x2 = (Indexed('x', i) for i in (1, 2))
>>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi)
>>> N1 = JointRV('x', pdf) #Multivariate Normal distribution
>>> density(N1)(1, 2)
exp(-2)/(2*pi)
Returns
=======
A RandomSymbol.
"""
#TODO: Add support for sets provided by the user
symbol = sympify(symbol)
syms = list(i for i in pdf.free_symbols if isinstance(i, Indexed)
and i.base == IndexedBase(symbol))
syms = tuple(sorted(syms, key = lambda index: index.args[1]))
_set = S.Reals**len(syms)
pdf = Lambda(syms, pdf)
dist = JointDistributionHandmade(pdf, _set)
jrv = JointPSpace(symbol, dist).value
rvs = random_symbols(pdf)
if len(rvs) != 0:
dist = MarginalDistribution(dist, (jrv,))
return JointPSpace(symbol, dist).value
return jrv
#-------------------------------------------------------------------------------
# Multivariate Normal distribution ---------------------------------------------------------
class MultivariateNormalDistribution(JointDistribution):
_argnames = ('mu', 'sigma')
is_Continuous=True
@property
def set(self):
k = self.mu.shape[0]
return S.Reals**k
@staticmethod
def check(mu, sigma):
_value_check(mu.shape[0] == sigma.shape[0],
"Size of the mean vector and covariance matrix are incorrect.")
#check if covariance matrix is positive definite or not.
if not isinstance(sigma, MatrixSymbol):
_value_check(sigma.is_positive_definite,
"The covariance matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.sigma
k = mu.shape[0]
args = ImmutableMatrix(args)
x = args - mu
return S.One/sqrt((2*pi)**(k)*det(sigma))*exp(
Rational(-1, 2)*x.transpose()*(sigma.inv()*\
x))[0]
def marginal_distribution(self, indices, sym):
sym = ImmutableMatrix([Indexed(sym, i) for i in indices])
_mu, _sigma = self.mu, self.sigma
k = self.mu.shape[0]
for i in range(k):
if i not in indices:
_mu = _mu.row_del(i)
_sigma = _sigma.col_del(i)
_sigma = _sigma.row_del(i)
return Lambda(tuple(sym), S.One/sqrt((2*pi)**(len(_mu))*det(_sigma))*exp(
Rational(-1, 2)*(_mu - sym).transpose()*(_sigma.inv()*\
(_mu - sym)))[0])
#-------------------------------------------------------------------------------
# Multivariate Laplace distribution ---------------------------------------------------------
class MultivariateLaplaceDistribution(JointDistribution):
_argnames = ('mu', 'sigma')
is_Continuous=True
@property
def set(self):
k = self.mu.shape[0]
return S.Reals**k
@staticmethod
def check(mu, sigma):
_value_check(mu.shape[0] == sigma.shape[0],
"Size of the mean vector and covariance matrix are incorrect.")
# check if covariance matrix is positive definite or not.
if not isinstance(sigma, MatrixSymbol):
_value_check(sigma.is_positive_definite,
"The covariance matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.sigma
mu_T = mu.transpose()
k = S(mu.shape[0])
sigma_inv = sigma.inv()
args = ImmutableMatrix(args)
args_T = args.transpose()
x = (mu_T*sigma_inv*mu)[0]
y = (args_T*sigma_inv*args)[0]
v = 1 - k/2
return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\
*(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\
*exp((args_T*sigma_inv*mu)[0])
#-------------------------------------------------------------------------------
# Multivariate StudentT distribution ---------------------------------------------------------
class MultivariateTDistribution(JointDistribution):
_argnames = ('mu', 'shape_mat', 'dof')
is_Continuous=True
@property
def set(self):
k = self.mu.shape[0]
return S.Reals**k
@staticmethod
def check(mu, sigma, v):
_value_check(mu.shape[0] == sigma.shape[0],
"Size of the location vector and shape matrix are incorrect.")
# check if covariance matrix is positive definite or not.
if not isinstance(sigma, MatrixSymbol):
_value_check(sigma.is_positive_definite,
"The shape matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.shape_mat
v = S(self.dof)
k = S(mu.shape[0])
sigma_inv = sigma.inv()
args = ImmutableMatrix(args)
x = args - mu
return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\
*(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2)
def MultivariateT(syms, mu, sigma, v):
"""
Creates a joint random variable with multivariate T-distribution.
Parameters
==========
syms: A symbol/str
For identifying the random variable.
mu: A list/matrix
Representing the location vector
sigma: The shape matrix for the distribution
Examples
========
>>> from sympy.stats import density, MultivariateT
>>> from sympy import Symbol
>>> x = Symbol("x")
>>> X = MultivariateT("x", [1, 1], [[1, 0], [0, 1]], 2)
>>> density(X)(1, 2)
2/(9*pi)
Returns
=======
A random symbol
"""
return multivariate_rv(MultivariateTDistribution, syms, mu, sigma, v)
#-------------------------------------------------------------------------------
# Multivariate Normal Gamma distribution ---------------------------------------------------------
class NormalGammaDistribution(JointDistribution):
_argnames = ('mu', 'lamda', 'alpha', 'beta')
is_Continuous=True
@staticmethod
def check(mu, lamda, alpha, beta):
_value_check(mu.is_real, "Location must be real.")
_value_check(lamda > 0, "Lambda must be positive")
_value_check(alpha > 0, "alpha must be positive")
_value_check(beta > 0, "beta must be positive")
@property
def set(self):
return S.Reals*Interval(0, S.Infinity)
def pdf(self, x, tau):
beta, alpha, lamda = self.beta, self.alpha, self.lamda
mu = self.mu
return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\
tau**(alpha - S.Half)*exp(-1*beta*tau)*\
exp(-1*(lamda*tau*(x - mu)**2)/S(2))
def marginal_distribution(self, indices, *sym):
if len(indices) == 2:
return self.pdf(*sym)
if indices[0] == 0:
#For marginal over `x`, return non-standardized Student-T's
#distribution
x = sym[0]
v, mu, sigma = self.alpha - S.Half, self.mu, \
S(self.beta)/(self.lamda * self.alpha)
return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\
(1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2))
#For marginal over `tau`, return Gamma distribution as per construction
from sympy.stats.crv_types import GammaDistribution
return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0]))
def NormalGamma(sym, mu, lamda, alpha, beta):
"""
Creates a bivariate joint random variable with multivariate Normal gamma
distribution.
Parameters
==========
sym: A symbol/str
For identifying the random variable.
mu: A real number
The mean of the normal distribution
alpha: a positive integer
beta: a positive integer
lamda: a positive integer
Examples
========
>>> from sympy.stats import density, NormalGamma
>>> from sympy import symbols
>>> X = NormalGamma('x', 0, 1, 2, 3)
>>> y, z = symbols('y z')
>>> density(X)(y, z)
9*sqrt(2)*z**(3/2)*exp(-3*z)*exp(-y**2*z/2)/(2*sqrt(pi))
Returns
=======
A random symbol
"""
return multivariate_rv(NormalGammaDistribution, sym, mu, lamda, alpha, beta)
#-------------------------------------------------------------------------------
# Multivariate Beta/Dirichlet distribution ---------------------------------------------------------
class MultivariateBetaDistribution(JointDistribution):
_argnames = ('alpha',)
is_Continuous = True
@staticmethod
def check(alpha):
_value_check(len(alpha) >= 2, "At least two categories should be passed.")
for a_k in alpha:
_value_check((a_k > 0) != False, "Each concentration parameter"
" should be positive.")
@property
def set(self):
k = len(self.alpha)
return Interval(0, 1)**k
def pdf(self, *syms):
alpha = self.alpha
B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha))
return Mul.fromiter([sym**(a_k - 1) for a_k, sym in zip(alpha, syms)])/B
def MultivariateBeta(syms, *alpha):
"""
Creates a continuous random variable with Dirichlet/Multivariate Beta
Distribution.
The density of the dirichlet distribution can be found at [1].
Parameters
==========
alpha: positive real numbers signifying concentration numbers.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import MultivariateBeta
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> B = MultivariateBeta('B', [a1, a2])
>>> C = MultivariateBeta('C', a1, a2)
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> density(B)(x, y)
x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2))
>>> marginal_distribution(C, C[0])(x)
x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dirichlet_distribution
.. [2] http://mathworld.wolfram.com/DirichletDistribution.html
"""
if not isinstance(alpha[0], list):
alpha = (list(alpha),)
return multivariate_rv(MultivariateBetaDistribution, syms, alpha[0])
Dirichlet = MultivariateBeta
#-------------------------------------------------------------------------------
# Multivariate Ewens distribution ---------------------------------------------------------
class MultivariateEwensDistribution(JointDistribution):
_argnames = ('n', 'theta')
is_Discrete = True
is_Continuous = False
@staticmethod
def check(n, theta):
_value_check((n > 0),
"sample size should be positive integer.")
_value_check(theta.is_positive, "mutation rate should be positive.")
@property
def set(self):
if not isinstance(self.n, Integer):
i = Symbol('i', integer=True, positive=True)
return Product(Intersection(S.Naturals0, Interval(0, self.n//i)),
(i, 1, self.n))
prod_set = Range(0, self.n + 1)
for i in range(2, self.n + 1):
prod_set *= Range(0, self.n//i + 1)
return prod_set.flatten()
def pdf(self, *syms):
n, theta = self.n, self.theta
condi = isinstance(self.n, Integer)
if not (isinstance(syms[0], IndexedBase) or condi):
raise ValueError("Please use IndexedBase object for syms as "
"the dimension is symbolic")
term_1 = factorial(n)/rf(theta, n)
if condi:
term_2 = Mul.fromiter([theta**syms[j]/((j+1)**syms[j]*factorial(syms[j]))
for j in range(n)])
cond = Eq(sum([(k + 1)*syms[k] for k in range(n)]), n)
return Piecewise((term_1 * term_2, cond), (0, True))
syms = syms[0]
j, k = symbols('j, k', positive=True, integer=True)
term_2 = Product(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])),
(j, 0, n - 1))
cond = Eq(Sum((k + 1)*syms[k], (k, 0, n - 1)), n)
return Piecewise((term_1 * term_2, cond), (0, True))
def MultivariateEwens(syms, n, theta):
"""
Creates a discrete random variable with Multivariate Ewens
Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: positive integer of class Integer,
size of the sample or the integer whose partitions are considered
theta: mutation rate, must be positive real number.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import MultivariateEwens
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> ed = MultivariateEwens('E', 2, 1)
>>> density(ed)(a1, a2)
Piecewise((2**(-a2)/(factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True))
>>> marginal_distribution(ed, ed[0])(a1)
Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Ewens%27s_sampling_formula
.. [2] http://www.stat.rutgers.edu/home/hcrane/Papers/STS529.pdf
"""
return multivariate_rv(MultivariateEwensDistribution, syms, n, theta)
#-------------------------------------------------------------------------------
# Generalized Multivariate Log Gamma distribution ---------------------------------------------------------
class GeneralizedMultivariateLogGammaDistribution(JointDistribution):
_argnames = ('delta', 'v', 'lamda', 'mu')
is_Continuous=True
def check(self, delta, v, l, mu):
_value_check((delta >= 0, delta <= 1), "delta must be in range [0, 1].")
_value_check((v > 0), "v must be positive")
for lk in l:
_value_check((lk > 0), "lamda must be a positive vector.")
for muk in mu:
_value_check((muk > 0), "mu must be a positive vector.")
_value_check(len(l) > 1,"the distribution should have at least"
" two random variables.")
@property
def set(self):
return S.Reals**len(self.lamda)
def pdf(self, *y):
from sympy.functions.special.gamma_functions import gamma
d, v, l, mu = self.delta, self.v, self.lamda, self.mu
n = Symbol('n', negative=False, integer=True)
k = len(l)
sterm1 = Pow((1 - d), n)/\
((gamma(v + n)**(k - 1))*gamma(v)*gamma(n + 1))
sterm2 = Mul.fromiter([mui*li**(-v - n) for mui, li in zip(mu, l)])
term1 = sterm1 * sterm2
sterm3 = (v + n) * sum([mui * yi for mui, yi in zip(mu, y)])
sterm4 = sum([exp(mui * yi)/li for (mui, yi, li) in zip(mu, y, l)])
term2 = exp(sterm3 - sterm4)
return Pow(d, v) * Sum(term1 * term2, (n, 0, S.Infinity))
def GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu):
"""
Creates a joint random variable with generalized multivariate log gamma
distribution.
The joint pdf can be found at [1].
Parameters
==========
syms: list/tuple/set of symbols for identifying each component
delta: A constant in range [0, 1]
v: positive real
lamda: a list of positive reals
mu: a list of positive reals
Returns
=======
A Random Symbol
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma
>>> from sympy import symbols, S
>>> v = 1
>>> l, mu = [1, 1, 1], [1, 1, 1]
>>> d = S.Half
>>> y = symbols('y_1:4', positive=True)
>>> Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu)
>>> density(Gd)(y[0], y[1], y[2])
Sum(2**(-n)*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) -
exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution
.. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis
Note
====
If the GeneralizedMultivariateLogGamma is too long to type use,
`from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG`
If you want to pass the matrix omega instead of the constant delta, then use,
GeneralizedMultivariateLogGammaOmega.
"""
return multivariate_rv(GeneralizedMultivariateLogGammaDistribution,
syms, delta, v, lamda, mu)
def GeneralizedMultivariateLogGammaOmega(syms, omega, v, lamda, mu):
"""
Extends GeneralizedMultivariateLogGamma.
Parameters
==========
syms: list/tuple/set of symbols
For identifying each component
omega: A square matrix
Every element of square matrix must be absolute value of
square root of correlation coefficient
v: positive real
lamda: a list of positive reals
mu: a list of positive reals
Returns
=======
A Random Symbol
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega
>>> from sympy import Matrix, symbols, S
>>> omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]])
>>> v = 1
>>> l, mu = [1, 1, 1], [1, 1, 1]
>>> G = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu)
>>> y = symbols('y_1:4', positive=True)
>>> density(G)(y[0], y[1], y[2])
sqrt(2)*Sum((1 - sqrt(2)/2)**n*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) -
exp(y_2) - exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2
References
==========
See references of GeneralizedMultivariateLogGamma.
Notes
=====
If the GeneralizedMultivariateLogGammaOmega is too long to type use,
`from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO`
"""
_value_check((omega.is_square, isinstance(omega, Matrix)), "omega must be a"
" square matrix")
for val in omega.values():
_value_check((val >= 0, val <= 1),
"all values in matrix must be between 0 and 1(both inclusive).")
_value_check(omega.diagonal().equals(ones(1, omega.shape[0])),
"all the elements of diagonal should be 1.")
_value_check((omega.shape[0] == len(lamda), len(lamda) == len(mu)),
"lamda, mu should be of same length and omega should "
" be of shape (length of lamda, length of mu)")
_value_check(len(lamda) > 1,"the distribution should have at least"
" two random variables.")
delta = Pow(Rational(omega.det()), Rational(1, len(lamda) - 1))
return GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu)
#-------------------------------------------------------------------------------
# Multinomial distribution ---------------------------------------------------------
class MultinomialDistribution(JointDistribution):
_argnames = ('n', 'p')
is_Continuous=False
is_Discrete = True
@staticmethod
def check(n, p):
_value_check(n > 0,
"number of trials must be a positive integer")
for p_k in p:
_value_check((p_k >= 0, p_k <= 1),
"probability must be in range [0, 1]")
_value_check(Eq(sum(p), 1),
"probabilities must sum to 1")
@property
def set(self):
return Intersection(S.Naturals0, Interval(0, self.n))**len(self.p)
def pdf(self, *x):
n, p = self.n, self.p
term_1 = factorial(n)/Mul.fromiter([factorial(x_k) for x_k in x])
term_2 = Mul.fromiter([p_k**x_k for p_k, x_k in zip(p, x)])
return Piecewise((term_1 * term_2, Eq(sum(x), n)), (0, True))
def Multinomial(syms, n, *p):
"""
Creates a discrete random variable with Multinomial Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: positive integer of class Integer,
number of trials
p: event probabilites, >= 0 and <= 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import Multinomial
>>> from sympy import symbols
>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)
>>> M = Multinomial('M', 3, p1, p2, p3)
>>> density(M)(x1, x2, x3)
Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)),
Eq(x1 + x2 + x3, 3)), (0, True))
>>> marginal_distribution(M, M[0])(x1).subs(x1, 1)
3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Multinomial_distribution
.. [2] http://mathworld.wolfram.com/MultinomialDistribution.html
"""
if not isinstance(p[0], list):
p = (list(p), )
return multivariate_rv(MultinomialDistribution, syms, n, p[0])
#-------------------------------------------------------------------------------
# Negative Multinomial Distribution ---------------------------------------------------------
class NegativeMultinomialDistribution(JointDistribution):
_argnames = ('k0', 'p')
is_Continuous=False
is_Discrete = True
@staticmethod
def check(k0, p):
_value_check(k0 > 0,
"number of failures must be a positive integer")
for p_k in p:
_value_check((p_k >= 0, p_k <= 1),
"probability must be in range [0, 1].")
_value_check(sum(p) <= 1,
"success probabilities must not be greater than 1.")
@property
def set(self):
return Range(0, S.Infinity)**len(self.p)
def pdf(self, *k):
k0, p = self.k0, self.p
term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0)
term_2 = Mul.fromiter([pi**ki/factorial(ki) for pi, ki in zip(p, k)])
return term_1 * term_2
def NegativeMultinomial(syms, k0, *p):
"""
Creates a discrete random variable with Negative Multinomial Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
k0: positive integer of class Integer,
number of failures before the experiment is stopped
p: event probabilites, >= 0 and <= 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import NegativeMultinomial
>>> from sympy import symbols
>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)
>>> N = NegativeMultinomial('M', 3, p1, p2, p3)
>>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1)
>>> density(N)(x1, x2, x3)
p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 +
x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3))
>>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2)
0.25
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_multinomial_distribution
.. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html
"""
if not isinstance(p[0], list):
p = (list(p), )
return multivariate_rv(NegativeMultinomialDistribution, syms, k0, p[0])
|
8898e1667a0da7cfa335c2a113f9b67f713eaba80ddd3ffd472705479893a7ba | """
Contains
========
Geometric
Hermite
Logarithmic
NegativeBinomial
Poisson
Skellam
YuleSimon
Zeta
"""
from __future__ import print_function, division
from sympy import (factorial, exp, S, sympify, I, zeta, polylog, log, beta,
hyper, binomial, Piecewise, floor, besseli, sqrt, Sum, Dummy)
from sympy.stats import density
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.rv import _value_check, RandomSymbol
from sympy.external import import_module
numpy = import_module('numpy')
scipy = import_module('scipy')
pymc3 = import_module('pymc3')
__all__ = ['Geometric',
'Hermite',
'Logarithmic',
'NegativeBinomial',
'Poisson',
'Skellam',
'YuleSimon',
'Zeta'
]
def rv(symbol, cls, *args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleDiscretePSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
#-------------------------------------------------------------------------------
# Geometric distribution ------------------------------------------------------------
class GeometricDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check((0 < p, p <= 1), "p must be between 0 and 1")
def pdf(self, k):
return (1 - self.p)**(k - 1) * self.p
def _characteristic_function(self, t):
p = self.p
return p * exp(I*t) / (1 - (1 - p)*exp(I*t))
def _moment_generating_function(self, t):
p = self.p
return p * exp(t) / (1 - (1 - p) * exp(t))
def _sample_numpy(self, size):
p = float(self.p)
return numpy.random.geometric(p=p, size=size)
def _sample_scipy(self, size):
p = float(self.p)
from scipy.stats import geom
return geom.rvs(p=p, size=size)
def _sample_pymc3(self, size):
p = float(self.p)
with pymc3.Model():
pymc3.Geometric('X', p=p)
return pymc3.sample(size, chains=1, progressbar=False)[:]['X']
def Geometric(name, p):
r"""
Create a discrete random variable with a Geometric distribution.
The density of the Geometric distribution is given by
.. math::
f(k) := p (1 - p)^{k - 1}
Parameters
==========
p: A probability between 0 and 1
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Geometric, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Geometric("x", p)
>>> density(X)(z)
(4/5)**(z - 1)/5
>>> E(X)
5
>>> variance(X)
20
References
==========
.. [1] https://en.wikipedia.org/wiki/Geometric_distribution
.. [2] http://mathworld.wolfram.com/GeometricDistribution.html
"""
return rv(name, GeometricDistribution, p)
#-------------------------------------------------------------------------------
# Hermite distribution ---------------------------------------------------------
class HermiteDistribution(SingleDiscreteDistribution):
_argnames = ('a1', 'a2')
set = S.Naturals0
@staticmethod
def check(a1, a2):
_value_check(a1.is_nonnegative, 'Parameter a1 must be >= 0.')
_value_check(a2.is_nonnegative, 'Parameter a2 must be >= 0.')
def pdf(self, k):
a1, a2 = self.a1, self.a2
term1 = exp(-(a1 + a2))
j = Dummy("j", integer=True)
num = a1**(k - 2*j) * a2**j
den = factorial(k - 2*j) * factorial(j)
return term1 * Sum(num/den, (j, 0, k//2)).doit()
def _moment_generating_function(self, t):
a1, a2 = self.a1, self.a2
term1 = a1 * (exp(t) - 1)
term2 = a2 * (exp(2*t) - 1)
return exp(term1 + term2)
def _characteristic_function(self, t):
a1, a2 = self.a1, self.a2
term1 = a1 * (exp(I*t) - 1)
term2 = a2 * (exp(2*I*t) - 1)
return exp(term1 + term2)
def Hermite(name, a1, a2):
r"""
Create a discrete random variable with a Hermite distribution.
The density of the Hermite distribution is given by
.. math::
f(x):= e^{-a_1 -a_2}\sum_{j=0}^{\left \lfloor x/2 \right \rfloor}
\frac{a_{1}^{x-2j}a_{2}^{j}}{(x-2j)!j!}
Parameters
==========
a1: A Positive number greater than equal to 0.
a2: A Positive number greater than equal to 0.
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Hermite, density, E, variance
>>> from sympy import Symbol
>>> a1 = Symbol("a1", positive=True)
>>> a2 = Symbol("a2", positive=True)
>>> x = Symbol("x")
>>> H = Hermite("H", a1=5, a2=4)
>>> density(H)(2)
33*exp(-9)/2
>>> E(H)
13
>>> variance(H)
21
References
==========
.. [1] https://en.wikipedia.org/wiki/Hermite_distribution
"""
return rv(name, HermiteDistribution, a1, a2)
#-------------------------------------------------------------------------------
# Logarithmic distribution ------------------------------------------------------------
class LogarithmicDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check((p > 0, p < 1), "p should be between 0 and 1")
def pdf(self, k):
p = self.p
return (-1) * p**k / (k * log(1 - p))
def _characteristic_function(self, t):
p = self.p
return log(1 - p * exp(I*t)) / log(1 - p)
def _moment_generating_function(self, t):
p = self.p
return log(1 - p * exp(t)) / log(1 - p)
def _sample_scipy(self, size):
p = float(self.p)
from scipy.stats import logser
return logser.rvs(p=p, size=size)
def Logarithmic(name, p):
r"""
Create a discrete random variable with a Logarithmic distribution.
The density of the Logarithmic distribution is given by
.. math::
f(k) := \frac{-p^k}{k \ln{(1 - p)}}
Parameters
==========
p: A value between 0 and 1
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Logarithmic, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Logarithmic("x", p)
>>> density(X)(z)
-5**(-z)/(z*log(4/5))
>>> E(X)
-1/(-4*log(5) + 8*log(2))
>>> variance(X)
-1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution
.. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html
"""
return rv(name, LogarithmicDistribution, p)
#-------------------------------------------------------------------------------
# Negative binomial distribution ------------------------------------------------------------
class NegativeBinomialDistribution(SingleDiscreteDistribution):
_argnames = ('r', 'p')
set = S.Naturals0
@staticmethod
def check(r, p):
_value_check(r > 0, 'r should be positive')
_value_check((p > 0, p < 1), 'p should be between 0 and 1')
def pdf(self, k):
r = self.r
p = self.p
return binomial(k + r - 1, k) * (1 - p)**r * p**k
def _characteristic_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(I*t)))**r
def _moment_generating_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(t)))**r
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def NegativeBinomial(name, r, p):
r"""
Create a discrete random variable with a Negative Binomial distribution.
The density of the Negative Binomial distribution is given by
.. math::
f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k
Parameters
==========
r: A positive value
p: A value between 0 and 1
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import NegativeBinomial, density, E, variance
>>> from sympy import Symbol, S
>>> r = 5
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = NegativeBinomial("x", r, p)
>>> density(X)(z)
1024*5**(-z)*binomial(z + 4, z)/3125
>>> E(X)
5/4
>>> variance(X)
25/16
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution
.. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html
"""
return rv(name, NegativeBinomialDistribution, r, p)
#-------------------------------------------------------------------------------
# Poisson distribution ------------------------------------------------------------
class PoissonDistribution(SingleDiscreteDistribution):
_argnames = ('lamda',)
set = S.Naturals0
@staticmethod
def check(lamda):
_value_check(lamda > 0, "Lambda must be positive")
def pdf(self, k):
return self.lamda**k / factorial(k) * exp(-self.lamda)
def _sample_numpy(self, size):
lamda = float(self.lamda)
return numpy.random.poisson(lam=lamda, size=size)
def _sample_scipy(self, size):
lamda = float(self.lamda)
from scipy.stats import poisson
return poisson.rvs(mu=lamda, size=size)
def _sample_pymc3(self, size):
lamda = float(self.lamda)
with pymc3.Model():
pymc3.Poisson('X', mu=lamda)
return pymc3.sample(size, chains=1, progressbar=False)[:]['X']
def _characteristic_function(self, t):
return exp(self.lamda * (exp(I*t) - 1))
def _moment_generating_function(self, t):
return exp(self.lamda * (exp(t) - 1))
def Poisson(name, lamda):
r"""
Create a discrete random variable with a Poisson distribution.
The density of the Poisson distribution is given by
.. math::
f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!}
Parameters
==========
lamda: Positive number, a rate
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Poisson, density, E, variance
>>> from sympy import Symbol, simplify
>>> rate = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> X = Poisson("x", rate)
>>> density(X)(z)
lambda**z*exp(-lambda)/factorial(z)
>>> E(X)
lambda
>>> simplify(variance(X))
lambda
References
==========
.. [1] https://en.wikipedia.org/wiki/Poisson_distribution
.. [2] http://mathworld.wolfram.com/PoissonDistribution.html
"""
return rv(name, PoissonDistribution, lamda)
# -----------------------------------------------------------------------------
# Skellam distribution --------------------------------------------------------
class SkellamDistribution(SingleDiscreteDistribution):
_argnames = ('mu1', 'mu2')
set = S.Integers
@staticmethod
def check(mu1, mu2):
_value_check(mu1 >= 0, 'Parameter mu1 must be >= 0')
_value_check(mu2 >= 0, 'Parameter mu2 must be >= 0')
def pdf(self, k):
(mu1, mu2) = (self.mu1, self.mu2)
term1 = exp(-(mu1 + mu2)) * (mu1 / mu2) ** (k / 2)
term2 = besseli(k, 2 * sqrt(mu1 * mu2))
return term1 * term2
def _cdf(self, x):
raise NotImplementedError(
"Skellam doesn't have closed form for the CDF.")
def _sample_scipy(self, size):
mu1, mu2 = float(self.mu1), float(self.mu2)
from scipy.stats import skellam
return skellam.rvs(mu1=mu1, mu2=mu2, size=size)
def _characteristic_function(self, t):
(mu1, mu2) = (self.mu1, self.mu2)
return exp(-(mu1 + mu2) + mu1 * exp(I * t) + mu2 * exp(-I * t))
def _moment_generating_function(self, t):
(mu1, mu2) = (self.mu1, self.mu2)
return exp(-(mu1 + mu2) + mu1 * exp(t) + mu2 * exp(-t))
def Skellam(name, mu1, mu2):
r"""
Create a discrete random variable with a Skellam distribution.
The Skellam is the distribution of the difference N1 - N2
of two statistically independent random variables N1 and N2
each Poisson-distributed with respective expected values mu1 and mu2.
The density of the Skellam distribution is given by
.. math::
f(k) := e^{-(\mu_1+\mu_2)}(\frac{\mu_1}{\mu_2})^{k/2}I_k(2\sqrt{\mu_1\mu_2})
Parameters
==========
mu1: A non-negative value
mu2: A non-negative value
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Skellam, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> z = Symbol("z", integer=True)
>>> mu1 = Symbol("mu1", positive=True)
>>> mu2 = Symbol("mu2", positive=True)
>>> X = Skellam("x", mu1, mu2)
>>> pprint(density(X)(z), use_unicode=False)
z
-
2
/mu1\ -mu1 - mu2 / _____ _____\
|---| *e *besseli\z, 2*\/ mu1 *\/ mu2 /
\mu2/
>>> E(X)
mu1 - mu2
>>> variance(X).expand()
mu1 + mu2
References
==========
.. [1] https://en.wikipedia.org/wiki/Skellam_distribution
"""
return rv(name, SkellamDistribution, mu1, mu2)
#-------------------------------------------------------------------------------
# Yule-Simon distribution ------------------------------------------------------------
class YuleSimonDistribution(SingleDiscreteDistribution):
_argnames = ('rho',)
set = S.Naturals
@staticmethod
def check(rho):
_value_check(rho > 0, 'rho should be positive')
def pdf(self, k):
rho = self.rho
return rho * beta(k, rho + 1)
def _cdf(self, x):
return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True))
def _characteristic_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1)
def _moment_generating_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1)
def _sample_scipy(self, size):
rho = float(self.rho)
from scipy.stats import yulesimon
return yulesimon.rvs(alpha=rho, size=size)
def YuleSimon(name, rho):
r"""
Create a discrete random variable with a Yule-Simon distribution.
The density of the Yule-Simon distribution is given by
.. math::
f(k) := \rho B(k, \rho + 1)
Parameters
==========
rho: A positive value
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import YuleSimon, density, E, variance
>>> from sympy import Symbol, simplify
>>> p = 5
>>> z = Symbol("z")
>>> X = YuleSimon("x", p)
>>> density(X)(z)
5*beta(z, 6)
>>> simplify(E(X))
5/4
>>> simplify(variance(X))
25/48
References
==========
.. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution
"""
return rv(name, YuleSimonDistribution, rho)
#-------------------------------------------------------------------------------
# Zeta distribution ------------------------------------------------------------
class ZetaDistribution(SingleDiscreteDistribution):
_argnames = ('s',)
set = S.Naturals
@staticmethod
def check(s):
_value_check(s > 1, 's should be greater than 1')
def pdf(self, k):
s = self.s
return 1 / (k**s * zeta(s))
def _characteristic_function(self, t):
return polylog(self.s, exp(I*t)) / zeta(self.s)
def _moment_generating_function(self, t):
return polylog(self.s, exp(t)) / zeta(self.s)
def _sample_numpy(self, size):
s = float(self.s)
return numpy.random.zipf(a=s, size=size)
def _sample_scipy(self, size):
s = float(self.s)
from scipy.stats import zipf
return zipf.rvs(a=s, size=size)
def Zeta(name, s):
r"""
Create a discrete random variable with a Zeta distribution.
The density of the Zeta distribution is given by
.. math::
f(k) := \frac{1}{k^s \zeta{(s)}}
Parameters
==========
s: A value greater than 1
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import Zeta, density, E, variance
>>> from sympy import Symbol
>>> s = 5
>>> z = Symbol("z")
>>> X = Zeta("x", s)
>>> density(X)(z)
1/(z**5*zeta(5))
>>> E(X)
pi**4/(90*zeta(5))
>>> variance(X)
-pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Zeta_distribution
"""
return rv(name, ZetaDistribution, s)
|
40c1715e1b4e16bbb141c38fe652886f88575380f0819f598f84728366362d71 | from __future__ import print_function, division
from sympy.sets import FiniteSet
from sympy import sqrt, log, exp, FallingFactorial, Rational, Eq, Dummy, piecewise_fold, solveset
from .rv import (probability, expectation, density, where, given, pspace, cdf,
characteristic_function, sample, sample_iter, random_symbols, independent, dependent,
sampling_density, moment_generating_function, quantile)
__all__ = ['P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf',
'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std',
'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'median',
'independent', 'random_symbols', 'correlation', 'factorial_moment',
'moment', 'cmoment', 'sampling_density', 'moment_generating_function',
'smoment', 'quantile']
def moment(X, n, c=0, condition=None, **kwargs):
"""
Return the nth moment of a random expression about c i.e. E((X-c)**n)
Default value of c is 0.
Examples
========
>>> from sympy.stats import Die, moment, E
>>> X = Die('X', 6)
>>> moment(X, 1, 6)
-5/2
>>> moment(X, 2)
91/6
>>> moment(X, 1) == E(X)
True
"""
return expectation((X - c)**n, condition, **kwargs)
def variance(X, condition=None, **kwargs):
"""
Variance of a random expression
Expectation of (X-E(X))**2
Examples
========
>>> from sympy.stats import Die, E, Bernoulli, variance
>>> from sympy import simplify, Symbol
>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> variance(2*X)
35/3
>>> simplify(variance(B))
p*(1 - p)
"""
return cmoment(X, 2, condition, **kwargs)
def standard_deviation(X, condition=None, **kwargs):
"""
Standard Deviation of a random expression
Square root of the Expectation of (X-E(X))**2
Examples
========
>>> from sympy.stats import Bernoulli, std
>>> from sympy import Symbol, simplify
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> simplify(std(B))
sqrt(p*(1 - p))
"""
return sqrt(variance(X, condition, **kwargs))
std = standard_deviation
def entropy(expr, condition=None, **kwargs):
"""
Calculuates entropy of a probability distribution
Parameters
==========
expression : the random expression whose entropy is to be calculated
condition : optional, to specify conditions on random expression
b: base of the logarithm, optional
By default, it is taken as Euler's number
Returns
=======
result : Entropy of the expression, a constant
Examples
========
>>> from sympy.stats import Normal, Die, entropy
>>> X = Normal('X', 0, 1)
>>> entropy(X)
log(2)/2 + 1/2 + log(pi)/2
>>> D = Die('D', 4)
>>> entropy(D)
log(4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory)
.. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf
.. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
"""
pdf = density(expr, condition, **kwargs)
base = kwargs.get('b', exp(1))
if hasattr(pdf, 'dict'):
return sum([-prob*log(prob, base) for prob in pdf.dict.values()])
return expectation(-log(pdf(expr), base))
def covariance(X, Y, condition=None, **kwargs):
"""
Covariance of two random expressions
The expectation that the two variables will rise and fall together
Covariance(X,Y) = E( (X-E(X)) * (Y-E(Y)) )
Examples
========
>>> from sympy.stats import Exponential, covariance
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> covariance(X, X)
lambda**(-2)
>>> covariance(X, Y)
0
>>> covariance(X, Y + rate*X)
1/lambda
"""
return expectation(
(X - expectation(X, condition, **kwargs)) *
(Y - expectation(Y, condition, **kwargs)),
condition, **kwargs)
def correlation(X, Y, condition=None, **kwargs):
"""
Correlation of two random expressions, also known as correlation
coefficient or Pearson's correlation
The normalized expectation that the two variables will rise
and fall together
Correlation(X,Y) = E( (X-E(X)) * (Y-E(Y)) / (sigma(X) * sigma(Y)) )
Examples
========
>>> from sympy.stats import Exponential, correlation
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> correlation(X, X)
1
>>> correlation(X, Y)
0
>>> correlation(X, Y + rate*X)
1/sqrt(1 + lambda**(-2))
"""
return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs)
* std(Y, condition, **kwargs))
def cmoment(X, n, condition=None, **kwargs):
"""
Return the nth central moment of a random expression about its mean
i.e. E((X - E(X))**n)
Examples
========
>>> from sympy.stats import Die, cmoment, variance
>>> X = Die('X', 6)
>>> cmoment(X, 3)
0
>>> cmoment(X, 2)
35/12
>>> cmoment(X, 2) == variance(X)
True
"""
mu = expectation(X, condition, **kwargs)
return moment(X, n, mu, condition, **kwargs)
def smoment(X, n, condition=None, **kwargs):
"""
Return the nth Standardized moment of a random expression i.e.
E(((X - mu)/sigma(X))**n)
Examples
========
>>> from sympy.stats import skewness, Exponential, smoment
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> smoment(Y, 4)
9
>>> smoment(Y, 4) == smoment(3*Y, 4)
True
>>> smoment(Y, 3) == skewness(Y)
True
"""
sigma = std(X, condition, **kwargs)
return (1/sigma)**n*cmoment(X, n, condition, **kwargs)
def skewness(X, condition=None, **kwargs):
"""
Measure of the asymmetry of the probability distribution.
Positive skew indicates that most of the values lie to the right of
the mean.
skewness(X) = E(((X - E(X))/sigma)**3)
Parameters
==========
condition : Expr containing RandomSymbols
A conditional expression. skewness(X, X>0) is skewness of X given X > 0
Examples
========
>>> from sympy.stats import skewness, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> skewness(X)
0
>>> skewness(X, X > 0) # find skewness given X > 0
(-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2)
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> skewness(Y)
2
"""
return smoment(X, 3, condition=condition, **kwargs)
def kurtosis(X, condition=None, **kwargs):
"""
Characterizes the tails/outliers of a probability distribution.
Kurtosis of any univariate normal distribution is 3. Kurtosis less than
3 means that the distribution produces fewer and less extreme outliers
than the normal distribution.
kurtosis(X) = E(((X - E(X))/sigma)**4)
Parameters
==========
condition : Expr containing RandomSymbols
A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0
Examples
========
>>> from sympy.stats import kurtosis, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> kurtosis(X)
3
>>> kurtosis(X, X > 0) # find kurtosis given X > 0
(-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2
>>> rate = Symbol('lamda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> kurtosis(Y)
9
References
==========
.. [1] https://en.wikipedia.org/wiki/Kurtosis
.. [2] http://mathworld.wolfram.com/Kurtosis.html
"""
return smoment(X, 4, condition=condition, **kwargs)
def factorial_moment(X, n, condition=None, **kwargs):
"""
The factorial moment is a mathematical quantity defined as the expectation
or average of the falling factorial of a random variable.
factorial_moment(X, n) = E(X*(X - 1)*(X - 2)*...*(X - n + 1))
Parameters
==========
n: A natural number, n-th factorial moment.
condition : Expr containing RandomSymbols
A conditional expression.
Examples
========
>>> from sympy.stats import factorial_moment, Poisson, Binomial
>>> from sympy import Symbol, S
>>> lamda = Symbol('lamda')
>>> X = Poisson('X', lamda)
>>> factorial_moment(X, 2)
lamda**2
>>> Y = Binomial('Y', 2, S.Half)
>>> factorial_moment(Y, 2)
1/2
>>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1
2
References
==========
.. [1] https://en.wikipedia.org/wiki/Factorial_moment
.. [2] http://mathworld.wolfram.com/FactorialMoment.html
"""
return expectation(FallingFactorial(X, n), condition=condition, **kwargs)
def median(X, evaluate=True, **kwargs):
r"""
Calculuates the median of the probability distribution.
Mathematically, median of Probability distribution is defined as all those
values of `m` for which the following condition is satisfied
.. math::
P(X\geq m)\geq 1/2 \hspace{5} \text{and} \hspace{5} P(X\leq m)\geq 1/2
Parameters
==========
X: The random expression whose median is to be calculated.
Returns
=======
The FiniteSet or an Interval which contains the median of the
random expression.
Examples
========
>>> from sympy.stats import Normal, Die, median
>>> N = Normal('N', 3, 1)
>>> median(N)
FiniteSet(3)
>>> D = Die('D')
>>> median(D)
FiniteSet(3, 4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions
"""
from sympy.stats.crv import ContinuousPSpace
from sympy.stats.drv import DiscretePSpace
from sympy.stats.frv import FinitePSpace
if isinstance(pspace(X), FinitePSpace):
cdf = pspace(X).compute_cdf(X)
result = []
for key, value in cdf.items():
if value>= Rational(1, 2) and (1 - value) + \
pspace(X).probability(Eq(X, key)) >= Rational(1, 2):
result.append(key)
return FiniteSet(*result)
if isinstance(pspace(X), ContinuousPSpace) or isinstance(pspace(X), DiscretePSpace):
cdf = pspace(X).compute_cdf(X)
x = Dummy('x')
result = solveset(piecewise_fold(cdf(x) - Rational(1, 2)), x, pspace(X).set)
return result
raise NotImplementedError("The median of %s is not implemeted."%str(pspace(X)))
P = probability
E = expectation
H = entropy
|
3566e414f3d7b71ff10d38190dda27f885c89db8acab3f5af435fa610e591ac3 | """
Main Random Variables Module
Defines abstract random variable type.
Contains interfaces for probability space object (PSpace) as well as standard
operators, P, E, sample, density, where, quantile
See Also
========
sympy.stats.crv
sympy.stats.frv
sympy.stats.rv_interface
"""
from __future__ import print_function, division
from typing import Tuple as tTuple
from sympy import (Basic, S, Expr, Symbol, Tuple, And, Add, Eq, lambdify,
Equality, Lambda, sympify, Dummy, Ne, KroneckerDelta,
DiracDelta, Mul, Indexed, MatrixSymbol, Function)
from sympy.core.relational import Relational
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import Boolean
from sympy.sets.sets import FiniteSet, ProductSet, Intersection
from sympy.solvers.solveset import solveset
x = Symbol('x')
class RandomDomain(Basic):
"""
Represents a set of variables and the values which they can take
See Also
========
sympy.stats.crv.ContinuousDomain
sympy.stats.frv.FiniteDomain
"""
is_ProductDomain = False
is_Finite = False
is_Continuous = False
is_Discrete = False
def __new__(cls, symbols, *args):
symbols = FiniteSet(*symbols)
return Basic.__new__(cls, symbols, *args)
@property
def symbols(self):
return self.args[0]
@property
def set(self):
return self.args[1]
def __contains__(self, other):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SingleDomain(RandomDomain):
"""
A single variable and its domain
See Also
========
sympy.stats.crv.SingleContinuousDomain
sympy.stats.frv.SingleFiniteDomain
"""
def __new__(cls, symbol, set):
assert symbol.is_Symbol
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
def __contains__(self, other):
if len(other) != 1:
return False
sym, val = tuple(other)[0]
return self.symbol == sym and val in self.set
class ConditionalDomain(RandomDomain):
"""
A RandomDomain with an attached condition
See Also
========
sympy.stats.crv.ConditionalContinuousDomain
sympy.stats.frv.ConditionalFiniteDomain
"""
def __new__(cls, fulldomain, condition):
condition = condition.xreplace(dict((rs, rs.symbol)
for rs in random_symbols(condition)))
return Basic.__new__(cls, fulldomain, condition)
@property
def symbols(self):
return self.fulldomain.symbols
@property
def fulldomain(self):
return self.args[0]
@property
def condition(self):
return self.args[1]
@property
def set(self):
raise NotImplementedError("Set of Conditional Domain not Implemented")
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
class PSpace(Basic):
"""
A Probability Space
Probability Spaces encode processes that equal different values
probabilistically. These underly Random Symbols which occur in SymPy
expressions and contain the mechanics to evaluate statistical statements.
See Also
========
sympy.stats.crv.ContinuousPSpace
sympy.stats.frv.FinitePSpace
"""
is_Finite = None # type: bool
is_Continuous = None # type: bool
is_Discrete = None # type: bool
is_real = None # type: bool
@property
def domain(self):
return self.args[0]
@property
def density(self):
return self.args[1]
@property
def values(self):
return frozenset(RandomSymbol(sym, self) for sym in self.symbols)
@property
def symbols(self):
return self.domain.symbols
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
def probability(self, condition):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SinglePSpace(PSpace):
"""
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
"""
def __new__(cls, s, distribution):
if isinstance(s, str):
s = Symbol(s)
if not isinstance(s, Symbol):
raise TypeError("s should have been string or Symbol")
return Basic.__new__(cls, s, distribution)
@property
def value(self):
return RandomSymbol(self.symbol, self)
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def pdf(self):
return self.distribution.pdf(self.symbol)
class RandomSymbol(Expr):
"""
Random Symbols represent ProbabilitySpaces in SymPy Expressions
In principle they can take on any value that their symbol can take on
within the associated PSpace with probability determined by the PSpace
Density.
Random Symbols contain pspace and symbol properties.
The pspace property points to the represented Probability Space
The symbol is a standard SymPy Symbol that is used in that probability space
for example in defining a density.
You can form normal SymPy expressions using RandomSymbols and operate on
those expressions with the Functions
E - Expectation of a random expression
P - Probability of a condition
density - Probability Density of an expression
given - A new random expression (with new random symbols) given a condition
An object of the RandomSymbol type should almost never be created by the
user. They tend to be created instead by the PSpace class's value method.
Traditionally a user doesn't even do this but instead calls one of the
convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc....
"""
def __new__(cls, symbol, pspace=None):
from sympy.stats.joint_rv import JointRandomSymbol
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
if not isinstance(symbol, Symbol):
raise TypeError("symbol should be of type Symbol")
if not isinstance(pspace, PSpace):
raise TypeError("pspace variable should be of type PSpace")
if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace):
cls = RandomSymbol
return Basic.__new__(cls, symbol, pspace)
is_finite = True
is_symbol = True
is_Atom = True
_diff_wrt = True
pspace = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
name = property(lambda self: self.symbol.name)
def _eval_is_positive(self):
return self.symbol.is_positive
def _eval_is_integer(self):
return self.symbol.is_integer
def _eval_is_real(self):
return self.symbol.is_real or self.pspace.is_real
@property
def is_commutative(self):
return self.symbol.is_commutative
@property
def free_symbols(self):
return {self}
class RandomIndexedSymbol(RandomSymbol):
def __new__(cls, idx_obj, pspace=None):
if not isinstance(idx_obj, (Indexed, Function)):
raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj))
return Basic.__new__(cls, idx_obj, pspace)
symbol = property(lambda self: self.args[0])
name = property(lambda self: str(self.args[0]))
@property
def key(self):
if isinstance(self.symbol, Indexed):
return self.symbol.args[1]
elif isinstance(self.symbol, Function):
return self.symbol.args[0]
class RandomMatrixSymbol(MatrixSymbol):
def __new__(cls, symbol, n, m, pspace=None):
n, m = _sympify(n), _sympify(m)
symbol = _symbol_converter(symbol)
return Basic.__new__(cls, symbol, n, m, pspace)
symbol = property(lambda self: self.args[0])
pspace = property(lambda self: self.args[3])
class ProductPSpace(PSpace):
"""
Abstract class for representing probability spaces with multiple random
variables.
See Also
========
sympy.stats.rv.IndependentProductPSpace
sympy.stats.joint_rv.JointPSpace
"""
pass
class IndependentProductPSpace(ProductPSpace):
"""
A probability space resulting from the merger of two independent probability
spaces.
Often created using the function, pspace
"""
def __new__(cls, *spaces):
rs_space_dict = {}
for space in spaces:
for value in space.values:
rs_space_dict[value] = space
symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()])
# Overlapping symbols
from sympy.stats.joint_rv import MarginalDistribution, CompoundDistribution
if len(symbols) < sum(len(space.symbols) for space in spaces if not
isinstance(space.distribution, (
CompoundDistribution, MarginalDistribution))):
raise ValueError("Overlapping Random Variables")
if all(space.is_Finite for space in spaces):
from sympy.stats.frv import ProductFinitePSpace
cls = ProductFinitePSpace
obj = Basic.__new__(cls, *FiniteSet(*spaces))
return obj
@property
def pdf(self):
p = Mul(*[space.pdf for space in self.spaces])
return p.subs(dict((rv, rv.symbol) for rv in self.values))
@property
def rs_space_dict(self):
d = {}
for space in self.spaces:
for value in space.values:
d[value] = space
return d
@property
def symbols(self):
return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()])
@property
def spaces(self):
return FiniteSet(*self.args)
@property
def values(self):
return sumsets(space.values for space in self.spaces)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or self.values
rvs = frozenset(rvs)
for space in self.spaces:
expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs)
if evaluate and hasattr(expr, 'doit'):
return expr.doit(**kwargs)
return expr
@property
def domain(self):
return ProductDomain(*[space.domain for space in self.spaces])
@property
def density(self):
raise NotImplementedError("Density not available for ProductSpaces")
def sample(self, size=()):
return {k: v for space in self.spaces
for k, v in space.sample().items()}
def probability(self, condition, **kwargs):
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
expr = condition.lhs - condition.rhs
rvs = random_symbols(expr)
dens = self.compute_density(expr)
if any([pspace(rv).is_Continuous for rv in rvs]):
from sympy.stats.crv import (ContinuousDistributionHandmade,
SingleContinuousPSpace)
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.integrate(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
dens = ContinuousDistributionHandmade(dens)
z = Dummy('z', real=True)
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
else:
from sympy.stats.drv import (DiscreteDistributionHandmade,
SingleDiscretePSpace)
dens = DiscreteDistributionHandmade(dens)
z = Dummy('z', integer=True)
space = SingleDiscretePSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
return result if not cond_inv else S.One - result
def compute_density(self, expr, **kwargs):
rvs = random_symbols(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
z = Dummy('z', real=True)
expr = self.compute_expectation(DiracDelta(expr - z),
**kwargs)
else:
z = Dummy('z', integer=True)
expr = self.compute_expectation(KroneckerDelta(expr, z),
**kwargs)
return Lambda(z, expr)
def compute_cdf(self, expr, **kwargs):
raise ValueError("CDF not well defined on multivariate expressions")
def conditional_space(self, condition, normalize=True, **kwargs):
rvs = random_symbols(condition)
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
if any([pspace(rv).is_Continuous for rv in rvs]):
from sympy.stats.crv import (ConditionalContinuousDomain,
ContinuousPSpace)
space = ContinuousPSpace
domain = ConditionalContinuousDomain(self.domain, condition)
elif any([pspace(rv).is_Discrete for rv in rvs]):
from sympy.stats.drv import (ConditionalDiscreteDomain,
DiscretePSpace)
space = DiscretePSpace
domain = ConditionalDiscreteDomain(self.domain, condition)
elif all([pspace(rv).is_Finite for rv in rvs]):
from sympy.stats.frv import FinitePSpace
return FinitePSpace.conditional_space(self, condition)
if normalize:
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
# XXX: Converting symbols from set to tuple. The order matters to
# Lambda though so we shouldn't be starting with a set here...
density = Lambda(tuple(domain.symbols), pdf)
return space(domain, density)
class ProductDomain(RandomDomain):
"""
A domain resulting from the merger of two independent domains
See Also
========
sympy.stats.crv.ProductContinuousDomain
sympy.stats.frv.ProductFiniteDomain
"""
is_ProductDomain = True
def __new__(cls, *domains):
# Flatten any product of products
domains2 = []
for domain in domains:
if not domain.is_ProductDomain:
domains2.append(domain)
else:
domains2.extend(domain.domains)
domains2 = FiniteSet(*domains2)
if all(domain.is_Finite for domain in domains2):
from sympy.stats.frv import ProductFiniteDomain
cls = ProductFiniteDomain
if all(domain.is_Continuous for domain in domains2):
from sympy.stats.crv import ProductContinuousDomain
cls = ProductContinuousDomain
if all(domain.is_Discrete for domain in domains2):
from sympy.stats.drv import ProductDiscreteDomain
cls = ProductDiscreteDomain
return Basic.__new__(cls, *domains2)
@property
def sym_domain_dict(self):
return dict((symbol, domain) for domain in self.domains
for symbol in domain.symbols)
@property
def symbols(self):
return FiniteSet(*[sym for domain in self.domains
for sym in domain.symbols])
@property
def domains(self):
return self.args
@property
def set(self):
return ProductSet(*(domain.set for domain in self.domains))
def __contains__(self, other):
# Split event into each subdomain
for domain in self.domains:
# Collect the parts of this event which associate to this domain
elem = frozenset([item for item in other
if sympify(domain.symbols.contains(item[0]))
is S.true])
# Test this sub-event
if elem not in domain:
return False
# All subevents passed
return True
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
def random_symbols(expr):
"""
Returns all RandomSymbols within a SymPy Expression.
"""
atoms = getattr(expr, 'atoms', None)
if atoms is not None:
comp = lambda rv: rv.symbol.name
l = list(atoms(RandomSymbol))
return sorted(l, key=comp)
else:
return []
def pspace(expr):
"""
Returns the underlying Probability Space of a random expression.
For internal use.
Examples
========
>>> from sympy.stats import pspace, Normal
>>> from sympy.stats.rv import IndependentProductPSpace
>>> X = Normal('X', 0, 1)
>>> pspace(2*X + 1) == X.pspace
True
"""
expr = sympify(expr)
if isinstance(expr, RandomSymbol) and expr.pspace is not None:
return expr.pspace
if expr.has(RandomMatrixSymbol):
rm = list(expr.atoms(RandomMatrixSymbol))[0]
return rm.pspace
rvs = random_symbols(expr)
if not rvs:
raise ValueError("Expression containing Random Variable expected, not %s" % (expr))
# If only one space present
if all(rv.pspace == rvs[0].pspace for rv in rvs):
return rvs[0].pspace
# Otherwise make a product space
return IndependentProductPSpace(*[rv.pspace for rv in rvs])
def sumsets(sets):
"""
Union of sets
"""
return frozenset().union(*sets)
def rs_swap(a, b):
"""
Build a dictionary to swap RandomSymbols based on their underlying symbol.
i.e.
if ``X = ('x', pspace1)``
and ``Y = ('x', pspace2)``
then ``X`` and ``Y`` match and the key, value pair
``{X:Y}`` will appear in the result
Inputs: collections a and b of random variables which share common symbols
Output: dict mapping RVs in a to RVs in b
"""
d = {}
for rsa in a:
d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0]
return d
def given(expr, condition=None, **kwargs):
r""" Conditional Random Expression
From a random expression and a condition on that expression creates a new
probability space from the condition and returns the same expression on that
conditional probability space.
Examples
========
>>> from sympy.stats import given, density, Die
>>> X = Die('X', 6)
>>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}
Following convention, if the condition is a random symbol then that symbol
is considered fixed.
>>> from sympy.stats import Normal
>>> from sympy import pprint
>>> from sympy.abc import z
>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
2
-(-Y + z)
-----------
___ 2
\/ 2 *e
------------------
____
2*\/ pi
"""
if not random_symbols(condition) or pspace_independent(expr, condition):
return expr
if isinstance(condition, RandomSymbol):
condition = Eq(condition, condition.symbol)
condsymbols = random_symbols(condition)
if (isinstance(condition, Equality) and len(condsymbols) == 1 and
not isinstance(pspace(expr).domain, ConditionalDomain)):
rv = tuple(condsymbols)[0]
results = solveset(condition, rv)
if isinstance(results, Intersection) and S.Reals in results.args:
results = list(results.args[1])
sums = 0
for res in results:
temp = expr.subs(rv, res)
if temp == True:
return True
if temp != False:
# XXX: This seems nonsensical but preserves existing behaviour
# after the change that Relational is no longer a subclass of
# Expr. Here expr is sometimes Relational and sometimes Expr
# but we are trying to add them with +=. This needs to be
# fixed somehow.
if sums == 0 and isinstance(expr, Relational):
sums = expr.subs(rv, res)
else:
sums += expr.subs(rv, res)
if sums == 0:
return False
return sums
# Get full probability space of both the expression and the condition
fullspace = pspace(Tuple(expr, condition))
# Build new space given the condition
space = fullspace.conditional_space(condition, **kwargs)
# Dictionary to swap out RandomSymbols in expr with new RandomSymbols
# That point to the new conditional space
swapdict = rs_swap(fullspace.values, space.values)
# Swap random variables in the expression
expr = expr.xreplace(swapdict)
return expr
def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs):
"""
Returns the expected value of a random expression
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the expectation value
given : Expr containing RandomSymbols
A conditional expression. E(X, X>0) is expectation of X given X > 0
numsamples : int
Enables sampling and approximates the expectation with this many samples
evalf : Bool (defaults to True)
If sampling return a number rather than a complex expression
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8
>>> E(X, X > 3) # Expectation of X given that it is above 3
5
"""
if not random_symbols(expr): # expr isn't random?
return expr
if numsamples: # Computing by monte carlo sampling?
return sampling_E(expr, condition, numsamples=numsamples)
if expr.has(RandomIndexedSymbol):
return pspace(expr).compute_expectation(expr, condition, evaluate, **kwargs)
# Create new expr and recompute E
if condition is not None: # If there is a condition
return expectation(given(expr, condition), evaluate=evaluate)
# A few known statements for efficiency
if expr.is_Add: # We know that E is Linear
return Add(*[expectation(arg, evaluate=evaluate)
for arg in expr.args])
# Otherwise case is simple, pass work off to the ProbabilitySpace
result = pspace(expr).compute_expectation(expr, evaluate=evaluate, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit(**kwargs)
else:
return result
def probability(condition, given_condition=None, numsamples=None,
evaluate=True, **kwargs):
"""
Probability that a condition is true, optionally given a second condition
Parameters
==========
condition : Combination of Relationals containing RandomSymbols
The condition of which you want to compute the probability
given_condition : Combination of Relationals containing RandomSymbols
A conditional expression. P(X > 1, X > 0) is expectation of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the probability with this many samples
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import P, Die
>>> from sympy import Eq
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
1/4
>>> P(X > Y)
5/12
"""
condition = sympify(condition)
given_condition = sympify(given_condition)
if condition.has(RandomIndexedSymbol):
return pspace(condition).probability(condition, given_condition, evaluate, **kwargs)
if isinstance(given_condition, RandomSymbol):
condrv = random_symbols(condition)
if len(condrv) == 1 and condrv[0] == given_condition:
from sympy.stats.frv_types import BernoulliDistribution
return BernoulliDistribution(probability(condition), 0, 1)
if any([dependent(rv, given_condition) for rv in condrv]):
from sympy.stats.symbolic_probability import Probability
return Probability(condition, given_condition)
else:
return probability(condition)
if given_condition is not None and \
not isinstance(given_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (given_condition))
if given_condition == False:
return S.Zero
if not isinstance(condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (condition))
if condition is S.true:
return S.One
if condition is S.false:
return S.Zero
if numsamples:
return sampling_P(condition, given_condition, numsamples=numsamples,
**kwargs)
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return probability(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(condition).probability(condition, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
class Density(Basic):
expr = property(lambda self: self.args[0])
@property
def condition(self):
if len(self.args) > 1:
return self.args[1]
else:
return None
def doit(self, evaluate=True, **kwargs):
from sympy.stats.joint_rv import JointPSpace
from sympy.stats.frv import SingleFiniteDistribution
expr, condition = self.expr, self.condition
if _sympify(expr).has(RandomMatrixSymbol):
return pspace(expr).compute_density(expr)
if isinstance(expr, SingleFiniteDistribution):
return expr.dict
if condition is not None:
# Recompute on new conditional expr
expr = given(expr, condition, **kwargs)
if isinstance(expr, RandomSymbol) and \
isinstance(expr.pspace, JointPSpace):
return expr.pspace.distribution
if not random_symbols(expr):
return Lambda(x, DiracDelta(x - expr))
if (isinstance(expr, RandomSymbol) and
hasattr(expr.pspace, 'distribution') and
isinstance(pspace(expr), (SinglePSpace))):
return expr.pspace.distribution
result = pspace(expr).compute_density(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs):
"""
Probability density of a random expression, optionally given a second
condition.
This density will take on different forms for different types of
probability spaces. Discrete variables produce Dicts. Continuous
variables produce Lambdas.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the density value
condition : Relational containing RandomSymbols
A conditional expression. density(X > 1, X > 0) is density of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the density with this many samples
Examples
========
>>> from sympy.stats import density, Die, Normal
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}
>>> density(X)(x)
sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))
"""
if numsamples:
return sampling_density(expr, condition, numsamples=numsamples,
**kwargs)
return Density(expr, condition).doit(evaluate=evaluate, **kwargs)
def cdf(expr, condition=None, evaluate=True, **kwargs):
"""
Cumulative Distribution Function of a random expression.
optionally given a second condition
This density will take on different forms for different types of
probability spaces.
Discrete variables produce Dicts.
Continuous variables produce Lambdas.
Examples
========
>>> from sympy.stats import density, Die, Normal, cdf
>>> D = Die('D', 6)
>>> X = Normal('X', 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> cdf(D)
{1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1}
>>> cdf(3*D, D > 2)
{9: 1/4, 12: 1/2, 15: 3/4, 18: 1}
>>> cdf(X)
Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2)
"""
if condition is not None: # If there is a condition
# Recompute on new conditional expr
return cdf(given(expr, condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(expr).compute_cdf(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def characteristic_function(expr, condition=None, evaluate=True, **kwargs):
"""
Characteristic function of a random expression, optionally given a second condition
Returns a Lambda
Examples
========
>>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function
>>> X = Normal('X', 0, 1)
>>> characteristic_function(X)
Lambda(_t, exp(-_t**2/2))
>>> Y = DiscreteUniform('Y', [1, 2, 7])
>>> characteristic_function(Y)
Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3)
>>> Z = Poisson('Z', 2)
>>> characteristic_function(Z)
Lambda(_t, exp(2*exp(_t*I) - 2))
"""
if condition is not None:
return characteristic_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_characteristic_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def moment_generating_function(expr, condition=None, evaluate=True, **kwargs):
if condition is not None:
return moment_generating_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_moment_generating_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def where(condition, given_condition=None, **kwargs):
"""
Returns the domain where a condition is True.
Examples
========
>>> from sympy.stats import where, Die, Normal
>>> from sympy import symbols, And
>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>>> X = Normal('x', 0, 1)
>>> where(X**2<1)
Domain: (-1 < x) & (x < 1)
>>> where(X**2<1).set
Interval.open(-1, 1)
>>> where(And(D1<=D2 , D2<3))
Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2))
"""
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return where(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
return pspace(condition).where(condition, **kwargs)
def sample(expr, condition=None, size=(), **kwargs):
"""
A realization of the random expression
Examples
========
>>> from sympy.stats import Die, sample, Normal
>>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
>>> die_roll = sample(X + Y + Z) # A random realization of three dice
>>> N = Normal('N', 3, 4)
>>> samp = sample(N)
>>> samp in N.pspace.domain.set
True
>>> samp_list = sample(N, size=4)
>>> [sam in N.pspace.domain.set for sam in samp_list]
[True, True, True, True]
"""
return next(sample_iter(expr, condition, size=size, numsamples=1))
def sample_iter(expr, condition=None, size=(), numsamples=S.Infinity, **kwargs):
"""
Returns an iterator of realizations from the expression given a condition
Parameters
==========
expr: Expr
Random expression to be realized
condition: Expr, optional
A conditional expression
numsamples: integer, optional
Length of the iterator (defaults to infinity)
Examples
========
>>> from sympy.stats import Normal, sample_iter
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3)
>>> list(iterator) # doctest: +SKIP
[12, 4, 7]
See Also
========
sample
sampling_P
sampling_E
sample_iter_lambdify
sample_iter_subs
"""
# lambdify is much faster but not as robust
try:
return sample_iter_lambdify(expr, condition, size=size, numsamples=numsamples, **kwargs)
# use subs when lambdify fails
except TypeError:
return sample_iter_subs(expr, condition, size=size, numsamples=numsamples, **kwargs)
def quantile(expr, evaluate=True, **kwargs):
r"""
Return the :math:`p^{th}` order quantile of a probability distribution.
Quantile is defined as the value at which the probability of the random
variable is less than or equal to the given probability.
..math::
Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)}
Examples
========
>>> from sympy.stats import quantile, Die, Exponential
>>> from sympy import Symbol, pprint
>>> p = Symbol("p")
>>> l = Symbol("lambda", positive=True)
>>> X = Exponential("x", l)
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> D = Die("d", 6)
>>> pprint(quantile(D)(p), use_unicode=False)
/nan for Or(p > 1, p < 0)
|
| 1 for p <= 1/6
|
| 2 for p <= 1/3
|
< 3 for p <= 1/2
|
| 4 for p <= 2/3
|
| 5 for p <= 5/6
|
\ 6 for p <= 1
"""
result = pspace(expr).compute_quantile(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def sample_iter_lambdify(expr, condition=None, size=(), numsamples=S.Infinity, **kwargs):
"""
Uses lambdify for computation. This is fast but does not always work.
See Also
========
sample_iter
"""
if condition:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
rvs = list(ps.values)
fn = lambdify(rvs, expr, **kwargs)
if condition:
given_fn = lambdify(rvs, condition, **kwargs)
# Check that lambdify can handle the expression
# Some operations like Sum can prove difficult
d = ps.sample(size) # a dictionary that maps RVs to values
args = [d[rv] for rv in rvs]
fn(*args)
if condition:
given_fn(*args)
def return_generator():
count = 0
while count < numsamples:
d = ps.sample(size) # a dictionary that maps RVs to values
args = [d[rv] for rv in rvs]
if condition: # Check that these values satisfy the condition
gd = given_fn(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield fn(*args)
count += 1
return return_generator()
def sample_iter_subs(expr, condition=None, size=(), numsamples=S.Infinity, **kwargs):
"""
Uses subs for computation. This is slow but almost always works.
See Also
========
sample_iter
"""
if condition is not None:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
count = 0
while count < numsamples:
d = ps.sample(size) # a dictionary that maps RVs to values
if condition is not None: # Check that these values satisfy the condition
gd = condition.xreplace(d)
if gd != True and gd != False:
raise ValueError("Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield expr.xreplace(d)
count += 1
def sampling_P(condition, given_condition=None, numsamples=1,
evalf=True, **kwargs):
"""
Sampling version of P
See Also
========
P
sampling_E
sampling_density
"""
count_true = 0
count_false = 0
samples = sample_iter(condition, given_condition,
numsamples=numsamples, **kwargs)
for sample in samples:
if sample != True and sample != False:
raise ValueError("Conditions must not contain free symbols")
if sample:
count_true += 1
else:
count_false += 1
result = S(count_true) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_E(expr, given_condition=None, numsamples=1,
evalf=True, **kwargs):
"""
Sampling version of E
See Also
========
P
sampling_P
sampling_density
"""
samples = sample_iter(expr, given_condition,
numsamples=numsamples, **kwargs)
result = Add(*list(samples)) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_density(expr, given_condition=None, numsamples=1, **kwargs):
"""
Sampling version of density
See Also
========
density
sampling_P
sampling_E
"""
results = {}
for result in sample_iter(expr, given_condition,
numsamples=numsamples, **kwargs):
results[result] = results.get(result, 0) + 1
return results
def dependent(a, b):
"""
Dependence of two random expressions
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, dependent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> dependent(X, Y)
False
>>> dependent(2*X + Y, -Y)
True
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> dependent(X, Y)
True
See Also
========
independent
"""
if pspace_independent(a, b):
return False
z = Symbol('z', real=True)
# Dependent if density is unchanged when one is given information about
# the other
return (density(a, Eq(b, z)) != density(a) or
density(b, Eq(a, z)) != density(b))
def independent(a, b):
"""
Independence of two random expressions
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, independent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> independent(X, Y)
True
>>> independent(2*X + Y, -Y)
False
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> independent(X, Y)
False
See Also
========
dependent
"""
return not dependent(a, b)
def pspace_independent(a, b):
"""
Tests for independence between a and b by checking if their PSpaces have
overlapping symbols. This is a sufficient but not necessary condition for
independence and is intended to be used internally.
Notes
=====
pspace_independent(a, b) implies independent(a, b)
independent(a, b) does not imply pspace_independent(a, b)
"""
a_symbols = set(pspace(b).symbols)
b_symbols = set(pspace(a).symbols)
if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0:
return False
if len(a_symbols.intersection(b_symbols)) == 0:
return True
return None
def rv_subs(expr, symbols=None):
"""
Given a random expression replace all random variables with their symbols.
If symbols keyword is given restrict the swap to only the symbols listed.
"""
if symbols is None:
symbols = random_symbols(expr)
if not symbols:
return expr
swapdict = {rv: rv.symbol for rv in symbols}
return expr.subs(swapdict)
class NamedArgsMixin(object):
_argnames = () # type: tTuple[str, ...]
def __getattr__(self, attr):
try:
return self.args[self._argnames.index(attr)]
except ValueError:
raise AttributeError("'%s' object has no attribute '%s'" % (
type(self).__name__, attr))
def _value_check(condition, message):
"""
Raise a ValueError with message if condition is False, else
return True if all conditions were True, else False.
Examples
========
>>> from sympy.stats.rv import _value_check
>>> from sympy.abc import a, b, c
>>> from sympy import And, Dummy
>>> _value_check(2 < 3, '')
True
Here, the condition is not False, but it doesn't evaluate to True
so False is returned (but no error is raised). So checking if the
return value is True or False will tell you if all conditions were
evaluated.
>>> _value_check(a < b, '')
False
In this case the condition is False so an error is raised:
>>> r = Dummy(real=True)
>>> _value_check(r < r - 1, 'condition is not true')
Traceback (most recent call last):
...
ValueError: condition is not true
If no condition of many conditions must be False, they can be
checked by passing them as an iterable:
>>> _value_check((a < 0, b < 0, c < 0), '')
False
The iterable can be a generator, too:
>>> _value_check((i < 0 for i in (a, b, c)), '')
False
The following are equivalent to the above but do not pass
an iterable:
>>> all(_value_check(i < 0, '') for i in (a, b, c))
False
>>> _value_check(And(a < 0, b < 0, c < 0), '')
False
"""
from sympy.core.compatibility import iterable
from sympy.core.logic import fuzzy_and
if not iterable(condition):
condition = [condition]
truth = fuzzy_and(condition)
if truth == False:
raise ValueError(message)
return truth == True
def _symbol_converter(sym):
"""
Casts the parameter to Symbol if it is 'str'
otherwise no operation is performed on it.
Parameters
==========
sym
The parameter to be converted.
Returns
=======
Symbol
the parameter converted to Symbol.
Raises
======
TypeError
If the parameter is not an instance of both str and
Symbol.
Examples
========
>>> from sympy import Symbol
>>> from sympy.stats.rv import _symbol_converter
>>> s = _symbol_converter('s')
>>> isinstance(s, Symbol)
True
>>> _symbol_converter(1)
Traceback (most recent call last):
...
TypeError: 1 is neither a Symbol nor a string
>>> r = Symbol('r')
>>> isinstance(r, Symbol)
True
"""
if isinstance(sym, str):
sym = Symbol(sym)
if not isinstance(sym, Symbol):
raise TypeError("%s is neither a Symbol nor a string"%(sym))
return sym
|
773b0fb978845bc614becbd6e5230b38220df80207b2bb7780dde5209de643b9 | """
Joint Random Variables Module
See Also
========
sympy.stats.rv
sympy.stats.frv
sympy.stats.crv
sympy.stats.drv
"""
from __future__ import print_function, division
from sympy import (Basic, Lambda, sympify, Indexed, Symbol, ProductSet, S,
Dummy)
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum, summation
from sympy.core.compatibility import iterable
from sympy.core.containers import Tuple
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import ImmutableMatrix
from sympy.stats.crv import (ContinuousDistribution,
SingleContinuousDistribution, SingleContinuousPSpace)
from sympy.stats.drv import (DiscreteDistribution,
SingleDiscreteDistribution, SingleDiscretePSpace)
from sympy.stats.rv import (ProductPSpace, NamedArgsMixin,
ProductDomain, RandomSymbol, random_symbols, SingleDomain)
from sympy.utilities.misc import filldedent
# __all__ = ['marginal_distribution']
class JointPSpace(ProductPSpace):
"""
Represents a joint probability space. Represented using symbols for
each component and a distribution.
"""
def __new__(cls, sym, dist):
if isinstance(dist, SingleContinuousDistribution):
return SingleContinuousPSpace(sym, dist)
if isinstance(dist, SingleDiscreteDistribution):
return SingleDiscretePSpace(sym, dist)
if isinstance(sym, str):
sym = Symbol(sym)
if not isinstance(sym, Symbol):
raise TypeError("s should have been string or Symbol")
return Basic.__new__(cls, sym, dist)
@property
def set(self):
return self.domain.set
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def value(self):
return JointRandomSymbol(self.symbol, self)
@property
def component_count(self):
_set = self.distribution.set
if isinstance(_set, ProductSet):
return S(len(_set.args))
elif isinstance(_set, Product):
return _set.limits[0][-1]
return S.One
@property
def pdf(self):
sym = [Indexed(self.symbol, i) for i in range(self.component_count)]
return self.distribution(*sym)
@property
def domain(self):
rvs = random_symbols(self.distribution)
if not rvs:
return SingleDomain(self.symbol, self.distribution.set)
return ProductDomain(*[rv.pspace.domain for rv in rvs])
def component_domain(self, index):
return self.set.args[index]
def marginal_distribution(self, *indices):
count = self.component_count
if count.atoms(Symbol):
raise ValueError("Marginal distributions cannot be computed "
"for symbolic dimensions. It is a work under progress.")
orig = [Indexed(self.symbol, i) for i in range(count)]
all_syms = [Symbol(str(i)) for i in orig]
replace_dict = dict(zip(all_syms, orig))
sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices)
limits = list([i,] for i in all_syms if i not in sym)
index = 0
for i in range(count):
if i not in indices:
limits[index].append(self.distribution.set.args[i])
limits[index] = tuple(limits[index])
index += 1
if self.distribution.is_Continuous:
f = Lambda(sym, integrate(self.distribution(*all_syms), *limits))
elif self.distribution.is_Discrete:
f = Lambda(sym, summation(self.distribution(*all_syms), *limits))
return f.xreplace(replace_dict)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
syms = tuple(self.value[i] for i in range(self.component_count))
rvs = rvs or syms
if not any([i in rvs for i in syms]):
return expr
expr = expr*self.pdf
for rv in rvs:
if isinstance(rv, Indexed):
expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])})
elif isinstance(rv, RandomSymbol):
expr = expr.xreplace({rv: rv.symbol})
if self.value in random_symbols(expr):
raise NotImplementedError(filldedent('''
Expectations of expression with unindexed joint random symbols
cannot be calculated yet.'''))
limits = tuple((Indexed(str(rv.base),rv.args[1]),
self.distribution.set.args[rv.args[1]]) for rv in syms)
return Integral(expr, *limits)
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
def probability(self, condition):
raise NotImplementedError()
class JointDistribution(Basic, NamedArgsMixin):
"""
Represented by the random variables part of the joint distribution.
Contains methods for PDF, CDF, sampling, marginal densities, etc.
"""
_argnames = ('pdf', )
def __new__(cls, *args):
args = list(map(sympify, args))
for i in range(len(args)):
if isinstance(args[i], list):
args[i] = ImmutableMatrix(args[i])
return Basic.__new__(cls, *args)
@property
def domain(self):
return ProductDomain(self.symbols)
@property
def pdf(self):
return self.density.args[1]
def cdf(self, other):
if not isinstance(other, dict):
raise ValueError("%s should be of type dict, got %s"%(other, type(other)))
rvs = other.keys()
_set = self.domain.set.sets
expr = self.pdf(tuple(i.args[0] for i in self.symbols))
for i in range(len(other)):
if rvs[i].is_Continuous:
density = Integral(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
elif rvs[i].is_Discrete:
density = Sum(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
return density
def __call__(self, *args):
return self.pdf(*args)
class JointRandomSymbol(RandomSymbol):
"""
Representation of random symbols with joint probability distributions
to allow indexing."
"""
def __getitem__(self, key):
if isinstance(self.pspace, JointPSpace):
if (self.pspace.component_count <= key) == True:
raise ValueError("Index keys for %s can only up to %s." %
(self.name, self.pspace.component_count - 1))
return Indexed(self, key)
class JointDistributionHandmade(JointDistribution, NamedArgsMixin):
_argnames = ('pdf',)
is_Continuous = True
@property
def set(self):
return self.args[1]
def marginal_distribution(rv, *indices):
"""
Marginal distribution function of a joint random variable.
Parameters
==========
rv: A random variable with a joint probability distribution.
indices: component indices or the indexed random symbol
for whom the joint distribution is to be calculated
Returns
=======
A Lambda expression n `sym`.
Examples
========
>>> from sympy.stats.crv_types import Normal
>>> from sympy.stats.joint_rv import marginal_distribution
>>> m = Normal('X', [1, 2], [[2, 1], [1, 2]])
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
"""
indices = list(indices)
for i in range(len(indices)):
if isinstance(indices[i], Indexed):
indices[i] = indices[i].args[1]
prob_space = rv.pspace
if not indices:
raise ValueError(
"At least one component for marginal density is needed.")
if hasattr(prob_space.distribution, 'marginal_distribution'):
return prob_space.distribution.marginal_distribution(indices, rv.symbol)
return prob_space.marginal_distribution(*indices)
class CompoundDistribution(Basic, NamedArgsMixin):
"""
Represents a compound probability distribution.
Constructed using a single probability distribution with a parameter
distributed according to some given distribution.
"""
def __new__(cls, dist):
if not isinstance(dist, (ContinuousDistribution, DiscreteDistribution)):
raise ValueError(filldedent('''CompoundDistribution can only be
initialized from ContinuousDistribution or DiscreteDistribution
'''))
_args = dist.args
if not any([isinstance(i, RandomSymbol) for i in _args]):
return dist
return Basic.__new__(cls, dist)
@property
def latent_distributions(self):
return random_symbols(self.args[0])
def pdf(self, *x):
dist = self.args[0]
z = Dummy('z')
if isinstance(dist, ContinuousDistribution):
rv = SingleContinuousPSpace(z, dist).value
elif isinstance(dist, DiscreteDistribution):
rv = SingleDiscretePSpace(z, dist).value
return MarginalDistribution(self, (rv,)).pdf(*x)
def set(self):
return self.args[0].set
def __call__(self, *args):
return self.pdf(*args)
class MarginalDistribution(Basic):
"""
Represents the marginal distribution of a joint probability space.
Initialised using a probability distribution and random variables(or
their indexed components) which should be a part of the resultant
distribution.
"""
def __new__(cls, dist, *rvs):
if len(rvs) == 1 and iterable(rvs[0]):
rvs = tuple(rvs[0])
if not all([isinstance(rv, (Indexed, RandomSymbol))] for rv in rvs):
raise ValueError(filldedent('''Marginal distribution can be
intitialised only in terms of random variables or indexed random
variables'''))
rvs = Tuple.fromiter(rv for rv in rvs)
if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
return dist
return Basic.__new__(cls, dist, rvs)
def check(self):
pass
@property
def set(self):
rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)]
return ProductSet(*[rv.pspace.set for rv in rvs])
@property
def symbols(self):
rvs = self.args[1]
return set([rv.pspace.symbol for rv in rvs])
def pdf(self, *x):
expr, rvs = self.args[0], self.args[1]
marginalise_out = [i for i in random_symbols(expr) if i not in rvs]
if isinstance(expr, CompoundDistribution):
syms = Dummy('x', real=True)
expr = expr.args[0].pdf(syms)
elif isinstance(expr, JointDistribution):
count = len(expr.domain.args)
x = Dummy('x', real=True, finite=True)
syms = tuple(Indexed(x, i) for i in count)
expr = expr.pdf(syms)
else:
syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs)
return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x)
def compute_pdf(self, expr, rvs):
for rv in rvs:
lpdf = 1
if isinstance(rv, RandomSymbol):
lpdf = rv.pspace.pdf
expr = self.marginalise_out(expr*lpdf, rv)
return expr
def marginalise_out(self, expr, rv):
from sympy.concrete.summations import Sum
if isinstance(rv, RandomSymbol):
dom = rv.pspace.set
elif isinstance(rv, Indexed):
dom = rv.base.component_domain(
rv.pspace.component_domain(rv.args[1]))
expr = expr.xreplace({rv: rv.pspace.symbol})
if rv.pspace.is_Continuous:
#TODO: Modify to support integration
#for all kinds of sets.
expr = Integral(expr, (rv.pspace.symbol, dom))
elif rv.pspace.is_Discrete:
#incorporate this into `Sum`/`summation`
if dom in (S.Integers, S.Naturals, S.Naturals0):
dom = (dom.inf, dom.sup)
expr = Sum(expr, (rv.pspace.symbol, dom))
return expr
def __call__(self, *args):
return self.pdf(*args)
|
81352f00aba515bf9bedff85314cdfece1eb2d417d36f93827504dc6469d6f00 | from __future__ import print_function, division
from sympy import (Basic, sympify, symbols, Dummy, Lambda, summation,
Piecewise, S, cacheit, Sum, exp, I, Ne, Eq, poly,
series, factorial, And)
from sympy.polys.polyerrors import PolynomialError
from sympy.solvers.solveset import solveset
from sympy.stats.crv import reduce_rational_inequalities_wrap
from sympy.stats.rv import (NamedArgsMixin, SinglePSpace, SingleDomain,
random_symbols, PSpace, ConditionalDomain, RandomDomain,
ProductDomain)
from sympy.stats.symbolic_probability import Probability
from sympy.functions.elementary.integers import floor
from sympy.sets.fancysets import Range, FiniteSet
from sympy.sets.sets import Union
from sympy.sets.contains import Contains
from sympy.utilities import filldedent
from sympy.core.sympify import _sympify
import random
from sympy.external import import_module
class DiscreteDistribution(Basic):
def __call__(self, *args):
return self.pdf(*args)
class SingleDiscreteDistribution(DiscreteDistribution, NamedArgsMixin):
""" Discrete distribution of a single variable
Serves as superclass for PoissonDistribution etc....
Provides methods for pdf, cdf, and sampling
See Also:
sympy.stats.crv_types.*
"""
set = S.Integers
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def sample(self, size=()):
""" A random realization from the distribution"""
if getattr(self,'_sample_scipy', None) and import_module('scipy'):
return self._sample_scipy(size)
icdf = self._inverse_cdf_expression()
samp_list = []
while True:
sample_ = floor(list(icdf(random.uniform(0, 1)))[0])
if sample_ >= self.set.inf:
if not size:
return sample_
else:
samp_list.append(sample_)
if len(samp_list) == size:
return samp_list
@cacheit
def _inverse_cdf_expression(self):
""" Inverse of the CDF
Used by sample
"""
x = Dummy('x', positive=True, integer=True)
z = Dummy('z', positive=True)
cdf_temp = self.cdf(x)
# Invert CDF
try:
inverse_cdf = solveset(cdf_temp - z, x, domain=S.Reals)
except NotImplementedError:
inverse_cdf = None
if not inverse_cdf or len(inverse_cdf.free_symbols) != 1:
raise NotImplementedError("Could not invert CDF")
return Lambda(z, inverse_cdf)
@cacheit
def compute_cdf(self, **kwargs):
""" Compute the CDF from the PDF
Returns a Lambda
"""
x, z = symbols('x, z', integer=True, cls=Dummy)
left_bound = self.set.inf
# CDF is integral of PDF from left bound to z
pdf = self.pdf(x)
cdf = summation(pdf, (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
def _cdf(self, x):
return None
def cdf(self, x, **kwargs):
""" Cumulative density function """
if not kwargs:
cdf = self._cdf(x)
if cdf is not None:
return cdf
return self.compute_cdf(**kwargs)(x)
@cacheit
def compute_characteristic_function(self, **kwargs):
""" Compute the characteristic function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, cls=Dummy)
pdf = self.pdf(x)
cf = summation(exp(I*t*x)*pdf, (x, self.set.inf, self.set.sup))
return Lambda(t, cf)
def _characteristic_function(self, t):
return None
def characteristic_function(self, t, **kwargs):
""" Characteristic function """
if not kwargs:
cf = self._characteristic_function(t)
if cf is not None:
return cf
return self.compute_characteristic_function(**kwargs)(t)
@cacheit
def compute_moment_generating_function(self, **kwargs):
t = Dummy('t', real=True)
x = Dummy('x', integer=True)
pdf = self.pdf(x)
mgf = summation(exp(t*x)*pdf, (x, self.set.inf, self.set.sup))
return Lambda(t, mgf)
def _moment_generating_function(self, t):
return None
def moment_generating_function(self, t, **kwargs):
if not kwargs:
mgf = self._moment_generating_function(t)
if mgf is not None:
return mgf
return self.compute_moment_generating_function(**kwargs)(t)
@cacheit
def compute_quantile(self, **kwargs):
""" Compute the Quantile from the PDF
Returns a Lambda
"""
x = Dummy('x', integer=True)
p = Dummy('p', real=True)
left_bound = self.set.inf
pdf = self.pdf(x)
cdf = summation(pdf, (x, left_bound, x), **kwargs)
set = ((x, p <= cdf), )
return Lambda(p, Piecewise(*set))
def _quantile(self, x):
return None
def quantile(self, x, **kwargs):
""" Cumulative density function """
if not kwargs:
quantile = self._quantile(x)
if quantile is not None:
return quantile
return self.compute_quantile(**kwargs)(x)
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
# TODO: support discrete sets with non integer stepsizes
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self.moment_generating_function(t)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return summation(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
else:
return Sum(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
def __call__(self, *args):
return self.pdf(*args)
class DiscreteDistributionHandmade(SingleDiscreteDistribution):
_argnames = ('pdf',)
@property
def set(self):
return self.args[1]
def __new__(cls, pdf, set=S.Integers):
return Basic.__new__(cls, pdf, set)
class DiscreteDomain(RandomDomain):
"""
A domain with discrete support with step size one.
Represented using symbols and Range.
"""
is_Discrete = True
class SingleDiscreteDomain(DiscreteDomain, SingleDomain):
def as_boolean(self):
return Contains(self.symbol, self.set)
class ConditionalDiscreteDomain(DiscreteDomain, ConditionalDomain):
"""
Domain with discrete support of step size one, that is restricted by
some condition.
"""
@property
def set(self):
rv = self.symbols
if len(self.symbols) > 1:
raise NotImplementedError(filldedent('''
Multivariate conditional domains are not yet implemented.'''))
rv = list(rv)[0]
return reduce_rational_inequalities_wrap(self.condition,
rv).intersect(self.fulldomain.set)
class DiscretePSpace(PSpace):
is_real = True
is_Discrete = True
@property
def pdf(self):
return self.density(*self.symbols)
def where(self, condition):
rvs = random_symbols(condition)
assert all(r.symbol in self.symbols for r in rvs)
if len(rvs) > 1:
raise NotImplementedError(filldedent('''Multivariate discrete
random variables are not yet supported.'''))
conditional_domain = reduce_rational_inequalities_wrap(condition,
rvs[0])
conditional_domain = conditional_domain.intersect(self.domain.set)
return SingleDiscreteDomain(rvs[0].symbol, conditional_domain)
def probability(self, condition):
complement = isinstance(condition, Ne)
if complement:
condition = Eq(condition.args[0], condition.args[1])
try:
_domain = self.where(condition).set
if condition == False or _domain is S.EmptySet:
return S.Zero
if condition == True or _domain == self.domain.set:
return S.One
prob = self.eval_prob(_domain)
except NotImplementedError:
from sympy.stats.rv import density
expr = condition.lhs - condition.rhs
dens = density(expr)
if not isinstance(dens, DiscreteDistribution):
dens = DiscreteDistributionHandmade(dens)
z = Dummy('z', real=True)
space = SingleDiscretePSpace(z, dens)
prob = space.probability(condition.__class__(space.value, 0))
if prob is None:
prob = Probability(condition)
return prob if not complement else S.One - prob
def eval_prob(self, _domain):
sym = list(self.symbols)[0]
if isinstance(_domain, Range):
n = symbols('n', integer=True)
inf, sup, step = (r for r in _domain.args)
summand = ((self.pdf).replace(
sym, n*step))
rv = summation(summand,
(n, inf/step, (sup)/step - 1)).doit()
return rv
elif isinstance(_domain, FiniteSet):
pdf = Lambda(sym, self.pdf)
rv = sum(pdf(x) for x in _domain)
return rv
elif isinstance(_domain, Union):
rv = sum(self.eval_prob(x) for x in _domain.args)
return rv
def conditional_space(self, condition):
# XXX: Converting from set to tuple. The order matters to Lambda
# though so we should be starting with a set...
density = Lambda(tuple(self.symbols), self.pdf/self.probability(condition))
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
domain = ConditionalDiscreteDomain(self.domain, condition)
return DiscretePSpace(domain, density)
class ProductDiscreteDomain(ProductDomain, DiscreteDomain):
def as_boolean(self):
return And(*[domain.as_boolean for domain in self.domains])
class SingleDiscretePSpace(DiscretePSpace, SinglePSpace):
""" Discrete probability space over a single univariate variable """
is_real = True
@property
def set(self):
return self.distribution.set
@property
def domain(self):
return SingleDiscreteDomain(self.symbol, self.set)
def sample(self, size=()):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {self.value: self.distribution.sample(size)}
def compute_expectation(self, expr, rvs=None, evaluate=True, **kwargs):
rvs = rvs or (self.value,)
if self.value not in rvs:
return expr
expr = _sympify(expr)
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
x = self.value.symbol
try:
return self.distribution.expectation(expr, x, evaluate=evaluate,
**kwargs)
except NotImplementedError:
return Sum(expr * self.pdf, (x, self.set.inf, self.set.sup),
**kwargs)
def compute_cdf(self, expr, **kwargs):
if expr == self.value:
x = Dummy("x", real=True)
return Lambda(x, self.distribution.cdf(x, **kwargs))
else:
raise NotImplementedError()
def compute_density(self, expr, **kwargs):
if expr == self.value:
return self.distribution
raise NotImplementedError()
def compute_characteristic_function(self, expr, **kwargs):
if expr == self.value:
t = Dummy("t", real=True)
return Lambda(t, self.distribution.characteristic_function(t, **kwargs))
else:
raise NotImplementedError()
def compute_moment_generating_function(self, expr, **kwargs):
if expr == self.value:
t = Dummy("t", real=True)
return Lambda(t, self.distribution.moment_generating_function(t, **kwargs))
else:
raise NotImplementedError()
def compute_quantile(self, expr, **kwargs):
if expr == self.value:
p = Dummy("p", real=True)
return Lambda(p, self.distribution.quantile(p, **kwargs))
else:
raise NotImplementedError()
|
cd3e63fcea5093c7c5192607ab22d7cdbf16353638fa8040f427e8cd4e85d61d | """
Continuous Random Variables Module
See Also
========
sympy.stats.crv_types
sympy.stats.rv
sympy.stats.frv
"""
from __future__ import print_function, division
from sympy import (Interval, Intersection, symbols, sympify, Dummy, nan,
Integral, And, Or, Piecewise, cacheit, integrate, oo, Lambda,
Basic, S, exp, I, FiniteSet, Ne, Eq, Union, poly, series, factorial)
from sympy.core.function import PoleError
from sympy.functions.special.delta_functions import DiracDelta
from sympy.polys.polyerrors import PolynomialError
from sympy.solvers.solveset import solveset
from sympy.solvers.inequalities import reduce_rational_inequalities
from sympy.core.sympify import _sympify
from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain,
ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin)
import random
class ContinuousDomain(RandomDomain):
"""
A domain with continuous support
Represented using symbols and Intervals.
"""
is_Continuous = True
def as_boolean(self):
raise NotImplementedError("Not Implemented for generic Domains")
class SingleContinuousDomain(ContinuousDomain, SingleDomain):
"""
A univariate domain with continuous support
Represented using a single symbol and interval.
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
if not variables:
return expr
if frozenset(variables) != frozenset(self.symbols):
raise ValueError("Values should be equal")
# assumes only intervals
return Integral(expr, (self.symbol, self.set), **kwargs)
def as_boolean(self):
return self.set.as_relational(self.symbol)
class ProductContinuousDomain(ProductDomain, ContinuousDomain):
"""
A collection of independent domains with continuous support
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
for domain in self.domains:
domain_vars = frozenset(variables) & frozenset(domain.symbols)
if domain_vars:
expr = domain.compute_expectation(expr, domain_vars, **kwargs)
return expr
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain):
"""
A domain with continuous support that has been further restricted by a
condition such as x > 3
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
if not variables:
return expr
# Extract the full integral
fullintgrl = self.fulldomain.compute_expectation(expr, variables)
# separate into integrand and limits
integrand, limits = fullintgrl.function, list(fullintgrl.limits)
conditions = [self.condition]
while conditions:
cond = conditions.pop()
if cond.is_Boolean:
if isinstance(cond, And):
conditions.extend(cond.args)
elif isinstance(cond, Or):
raise NotImplementedError("Or not implemented here")
elif cond.is_Relational:
if cond.is_Equality:
# Add the appropriate Delta to the integrand
integrand *= DiracDelta(cond.lhs - cond.rhs)
else:
symbols = cond.free_symbols & set(self.symbols)
if len(symbols) != 1: # Can't handle x > y
raise NotImplementedError(
"Multivariate Inequalities not yet implemented")
# Can handle x > 0
symbol = symbols.pop()
# Find the limit with x, such as (x, -oo, oo)
for i, limit in enumerate(limits):
if limit[0] == symbol:
# Make condition into an Interval like [0, oo]
cintvl = reduce_rational_inequalities_wrap(
cond, symbol)
# Make limit into an Interval like [-oo, oo]
lintvl = Interval(limit[1], limit[2])
# Intersect them to get [0, oo]
intvl = cintvl.intersect(lintvl)
# Put back into limits list
limits[i] = (symbol, intvl.left, intvl.right)
else:
raise TypeError(
"Condition %s is not a relational or Boolean" % cond)
return Integral(integrand, *limits, **kwargs)
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
@property
def set(self):
if len(self.symbols) == 1:
return (self.fulldomain.set & reduce_rational_inequalities_wrap(
self.condition, tuple(self.symbols)[0]))
else:
raise NotImplementedError(
"Set of Conditional Domain not Implemented")
class ContinuousDistribution(Basic):
def __call__(self, *args):
return self.pdf(*args)
class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin):
""" Continuous distribution of a single variable
Serves as superclass for Normal/Exponential/UniformDistribution etc....
Represented by parameters for each of the specific classes. E.g
NormalDistribution is represented by a mean and standard deviation.
Provides methods for pdf, cdf, and sampling
See Also
========
sympy.stats.crv_types.*
"""
set = Interval(-oo, oo)
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def sample(self, size=()):
""" A random realization from the distribution """
icdf = self._inverse_cdf_expression()
if not size:
return icdf(random.uniform(0, 1))
else:
return [icdf(random.uniform(0, 1))]*size
@cacheit
def _inverse_cdf_expression(self):
""" Inverse of the CDF
Used by sample
"""
x, z = symbols('x, z', positive=True, cls=Dummy)
# Invert CDF
try:
inverse_cdf = solveset(self.cdf(x) - z, x, S.Reals)
if isinstance(inverse_cdf, Intersection) and S.Reals in inverse_cdf.args:
inverse_cdf = list(inverse_cdf.args[1])
except NotImplementedError:
inverse_cdf = None
if not inverse_cdf or len(inverse_cdf) != 1:
raise NotImplementedError("Could not invert CDF")
(icdf,) = inverse_cdf
return Lambda(z, icdf)
@cacheit
def compute_cdf(self, **kwargs):
""" Compute the CDF from the PDF
Returns a Lambda
"""
x, z = symbols('x, z', real=True, cls=Dummy)
left_bound = self.set.start
# CDF is integral of PDF from left bound to z
pdf = self.pdf(x)
cdf = integrate(pdf.doit(), (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
def _cdf(self, x):
return None
def cdf(self, x, **kwargs):
""" Cumulative density function """
if len(kwargs) == 0:
cdf = self._cdf(x)
if cdf is not None:
return cdf
return self.compute_cdf(**kwargs)(x)
@cacheit
def compute_characteristic_function(self, **kwargs):
""" Compute the characteristic function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, cls=Dummy)
pdf = self.pdf(x)
cf = integrate(exp(I*t*x)*pdf, (x, -oo, oo))
return Lambda(t, cf)
def _characteristic_function(self, t):
return None
def characteristic_function(self, t, **kwargs):
""" Characteristic function """
if len(kwargs) == 0:
cf = self._characteristic_function(t)
if cf is not None:
return cf
return self.compute_characteristic_function(**kwargs)(t)
@cacheit
def compute_moment_generating_function(self, **kwargs):
""" Compute the moment generating function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, cls=Dummy)
pdf = self.pdf(x)
mgf = integrate(exp(t * x) * pdf, (x, -oo, oo))
return Lambda(t, mgf)
def _moment_generating_function(self, t):
return None
def moment_generating_function(self, t, **kwargs):
""" Moment generating function """
if not kwargs:
mgf = self._moment_generating_function(t)
if mgf is not None:
return mgf
return self.compute_moment_generating_function(**kwargs)(t)
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self._moment_generating_function(t)
if mgf is None:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
else:
return Integral(expr * self.pdf(var), (var, self.set), **kwargs)
@cacheit
def compute_quantile(self, **kwargs):
""" Compute the Quantile from the PDF
Returns a Lambda
"""
x, p = symbols('x, p', real=True, cls=Dummy)
left_bound = self.set.start
pdf = self.pdf(x)
cdf = integrate(pdf, (x, left_bound, x), **kwargs)
quantile = solveset(cdf - p, x, self.set)
return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True)))
def _quantile(self, x):
return None
def quantile(self, x, **kwargs):
""" Cumulative density function """
if len(kwargs) == 0:
quantile = self._quantile(x)
if quantile is not None:
return quantile
return self.compute_quantile(**kwargs)(x)
class ContinuousDistributionHandmade(SingleContinuousDistribution):
_argnames = ('pdf',)
@property
def set(self):
return self.args[1]
def __new__(cls, pdf, set=Interval(-oo, oo)):
return Basic.__new__(cls, pdf, set)
class ContinuousPSpace(PSpace):
""" Continuous Probability Space
Represents the likelihood of an event space defined over a continuum.
Represented with a ContinuousDomain and a PDF (Lambda-Like)
"""
is_Continuous = True
is_real = True
@property
def pdf(self):
return self.density(*self.domain.symbols)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
if rvs is None:
rvs = self.values
else:
rvs = frozenset(rvs)
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
domain_symbols = frozenset(rv.symbol for rv in rvs)
return self.domain.compute_expectation(self.pdf * expr,
domain_symbols, **kwargs)
def compute_density(self, expr, **kwargs):
# Common case Density(X) where X in self.values
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
z = Dummy('z', real=True)
return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs))
@cacheit
def compute_cdf(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise ValueError(
"CDF not well defined on multivariate expressions")
d = self.compute_density(expr, **kwargs)
x, z = symbols('x, z', real=True, cls=Dummy)
left_bound = self.domain.set.start
# CDF is integral of PDF from left bound to z
cdf = integrate(d(x), (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
@cacheit
def compute_characteristic_function(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise NotImplementedError("Characteristic function of multivariate expressions not implemented")
d = self.compute_density(expr, **kwargs)
x, t = symbols('x, t', real=True, cls=Dummy)
cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs)
return Lambda(t, cf)
@cacheit
def compute_moment_generating_function(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise NotImplementedError("Moment generating function of multivariate expressions not implemented")
d = self.compute_density(expr, **kwargs)
x, t = symbols('x, t', real=True, cls=Dummy)
mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs)
return Lambda(t, mgf)
@cacheit
def compute_quantile(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise ValueError(
"Quantile not well defined on multivariate expressions")
d = self.compute_cdf(expr, **kwargs)
x = Dummy('x', real=True)
p = Dummy('p', positive=True)
quantile = solveset(d(x) - p, x, self.set)
return Lambda(p, quantile)
def probability(self, condition, **kwargs):
z = Dummy('z', real=True)
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
# Univariate case can be handled by where
try:
domain = self.where(condition)
rv = [rv for rv in self.values if rv.symbol == domain.symbol][0]
# Integrate out all other random variables
pdf = self.compute_density(rv, **kwargs)
# return S.Zero if `domain` is empty set
if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet):
return S.Zero if not cond_inv else S.One
if isinstance(domain.set, Union):
return sum(
Integral(pdf(z), (z, subset), **kwargs) for subset in
domain.set.args if isinstance(subset, Interval))
# Integrate out the last variable over the special domain
return Integral(pdf(z), (z, domain.set), **kwargs)
# Other cases can be turned into univariate case
# by computing a density handled by density computation
except NotImplementedError:
from sympy.stats.rv import density
expr = condition.lhs - condition.rhs
if not random_symbols(expr):
dens = self.density
comp = condition.rhs
else:
dens = density(expr, **kwargs)
comp = 0
if not isinstance(dens, ContinuousDistribution):
dens = ContinuousDistributionHandmade(dens, set=self.domain.set)
# Turn problem into univariate case
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, comp))
return result if not cond_inv else S.One - result
def where(self, condition):
rvs = frozenset(random_symbols(condition))
if not (len(rvs) == 1 and rvs.issubset(self.values)):
raise NotImplementedError(
"Multiple continuous random variables not supported")
rv = tuple(rvs)[0]
interval = reduce_rational_inequalities_wrap(condition, rv)
interval = interval.intersect(self.domain.set)
return SingleContinuousDomain(rv.symbol, interval)
def conditional_space(self, condition, normalize=True, **kwargs):
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
domain = ConditionalContinuousDomain(self.domain, condition)
if normalize:
# create a clone of the variable to
# make sure that variables in nested integrals are different
# from the variables outside the integral
# this makes sure that they are evaluated separately
# and in the correct order
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
# XXX: Converting set to tuple. The order matters to Lambda though
# so we shouldn't be starting with a set here...
density = Lambda(tuple(domain.symbols), pdf)
return ContinuousPSpace(domain, density)
class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace):
"""
A continuous probability space over a single univariate variable
These consist of a Symbol and a SingleContinuousDistribution
This class is normally accessed through the various random variable
functions, Normal, Exponential, Uniform, etc....
"""
@property
def set(self):
return self.distribution.set
@property
def domain(self):
return SingleContinuousDomain(sympify(self.symbol), self.set)
def sample(self, size=()):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {self.value: self.distribution.sample(size)}
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or (self.value,)
if self.value not in rvs:
return expr
expr = _sympify(expr)
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
x = self.value.symbol
try:
return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs)
except PoleError:
return Integral(expr * self.pdf, (x, self.set), **kwargs)
def compute_cdf(self, expr, **kwargs):
if expr == self.value:
z = Dummy("z", real=True)
return Lambda(z, self.distribution.cdf(z, **kwargs))
else:
return ContinuousPSpace.compute_cdf(self, expr, **kwargs)
def compute_characteristic_function(self, expr, **kwargs):
if expr == self.value:
t = Dummy("t", real=True)
return Lambda(t, self.distribution.characteristic_function(t, **kwargs))
else:
return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs)
def compute_moment_generating_function(self, expr, **kwargs):
if expr == self.value:
t = Dummy("t", real=True)
return Lambda(t, self.distribution.moment_generating_function(t, **kwargs))
else:
return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs)
def compute_density(self, expr, **kwargs):
# https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables
if expr == self.value:
return self.density
y = Dummy('y', real=True)
gs = solveset(expr - y, self.value, S.Reals)
if isinstance(gs, Intersection) and S.Reals in gs.args:
gs = list(gs.args[1])
if not gs:
raise ValueError("Can not solve %s for %s"%(expr, self.value))
fx = self.compute_density(self.value)
fy = sum(fx(g) * abs(g.diff(y)) for g in gs)
return Lambda(y, fy)
def compute_quantile(self, expr, **kwargs):
if expr == self.value:
p = Dummy("p", real=True)
return Lambda(p, self.distribution.quantile(p, **kwargs))
else:
return ContinuousPSpace.compute_quantile(self, expr, **kwargs)
def _reduce_inequalities(conditions, var, **kwargs):
try:
return reduce_rational_inequalities(conditions, var, **kwargs)
except PolynomialError:
raise ValueError("Reduction of condition failed %s\n" % conditions[0])
def reduce_rational_inequalities_wrap(condition, var):
if condition.is_Relational:
return _reduce_inequalities([[condition]], var, relational=False)
if isinstance(condition, Or):
return Union(*[_reduce_inequalities([[arg]], var, relational=False)
for arg in condition.args])
if isinstance(condition, And):
intervals = [_reduce_inequalities([[arg]], var, relational=False)
for arg in condition.args]
I = intervals[0]
for i in intervals:
I = I.intersect(i)
return I
|
f36d42ae877f12f67da4e395cc725649d7cb8aea5cf807f9014c07f51cad2d2f | """
Finite Discrete Random Variables Module
See Also
========
sympy.stats.frv_types
sympy.stats.rv
sympy.stats.crv
"""
from __future__ import print_function, division
import random
from itertools import product
from sympy import (Basic, Symbol, cacheit, sympify, Mul,
And, Or, Tuple, Piecewise, Eq, Lambda, exp, I, Dummy, nan,
Sum, Intersection, S)
from sympy.core.containers import Dict
from sympy.core.logic import Logic
from sympy.core.relational import Relational
from sympy.core.sympify import _sympify
from sympy.sets.sets import FiniteSet
from sympy.stats.rv import (RandomDomain, ProductDomain, ConditionalDomain,
PSpace, IndependentProductPSpace, SinglePSpace, random_symbols,
sumsets, rv_subs, NamedArgsMixin, Density)
class FiniteDensity(dict):
"""
A domain with Finite Density.
"""
def __call__(self, item):
"""
Make instance of a class callable.
If item belongs to current instance of a class, return it.
Otherwise, return 0.
"""
item = sympify(item)
if item in self:
return self[item]
else:
return 0
@property
def dict(self):
"""
Return item as dictionary.
"""
return dict(self)
class FiniteDomain(RandomDomain):
"""
A domain with discrete finite support
Represented using a FiniteSet.
"""
is_Finite = True
@property
def symbols(self):
return FiniteSet(sym for sym, val in self.elements)
@property
def elements(self):
return self.args[0]
@property
def dict(self):
return FiniteSet(*[Dict(dict(el)) for el in self.elements])
def __contains__(self, other):
return other in self.elements
def __iter__(self):
return self.elements.__iter__()
def as_boolean(self):
return Or(*[And(*[Eq(sym, val) for sym, val in item]) for item in self])
class SingleFiniteDomain(FiniteDomain):
"""
A FiniteDomain over a single symbol/set
Example: The possibilities of a *single* die roll.
"""
def __new__(cls, symbol, set):
if not isinstance(set, FiniteSet) and \
not isinstance(set, Intersection):
set = FiniteSet(*set)
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
@property
def set(self):
return self.args[1]
@property
def elements(self):
return FiniteSet(*[frozenset(((self.symbol, elem), )) for elem in self.set])
def __iter__(self):
return (frozenset(((self.symbol, elem),)) for elem in self.set)
def __contains__(self, other):
sym, val = tuple(other)[0]
return sym == self.symbol and val in self.set
class ProductFiniteDomain(ProductDomain, FiniteDomain):
"""
A Finite domain consisting of several other FiniteDomains
Example: The possibilities of the rolls of three independent dice
"""
def __iter__(self):
proditer = product(*self.domains)
return (sumsets(items) for items in proditer)
@property
def elements(self):
return FiniteSet(*self)
class ConditionalFiniteDomain(ConditionalDomain, ProductFiniteDomain):
"""
A FiniteDomain that has been restricted by a condition
Example: The possibilities of a die roll under the condition that the
roll is even.
"""
def __new__(cls, domain, condition):
"""
Create a new instance of ConditionalFiniteDomain class
"""
if condition is True:
return domain
cond = rv_subs(condition)
return Basic.__new__(cls, domain, cond)
def _test(self, elem):
"""
Test the value. If value is boolean, return it. If value is equality
relational (two objects are equal), return it with left-hand side
being equal to right-hand side. Otherwise, raise ValueError exception.
"""
val = self.condition.xreplace(dict(elem))
if val in [True, False]:
return val
elif val.is_Equality:
return val.lhs == val.rhs
raise ValueError("Undecidable if %s" % str(val))
def __contains__(self, other):
return other in self.fulldomain and self._test(other)
def __iter__(self):
return (elem for elem in self.fulldomain if self._test(elem))
@property
def set(self):
if isinstance(self.fulldomain, SingleFiniteDomain):
return FiniteSet(*[elem for elem in self.fulldomain.set
if frozenset(((self.fulldomain.symbol, elem),)) in self])
else:
raise NotImplementedError(
"Not implemented on multi-dimensional conditional domain")
def as_boolean(self):
return FiniteDomain.as_boolean(self)
class SingleFiniteDistribution(Basic, NamedArgsMixin):
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
@property # type: ignore
@cacheit
def dict(self):
if self.is_symbolic:
return Density(self)
return dict((k, self.pmf(k)) for k in self.set)
def pmf(self, *args): # to be overridden by specific distribution
raise NotImplementedError()
@property
def set(self): # to be overridden by specific distribution
raise NotImplementedError()
values = property(lambda self: self.dict.values)
items = property(lambda self: self.dict.items)
is_symbolic = property(lambda self: False)
__iter__ = property(lambda self: self.dict.__iter__)
__getitem__ = property(lambda self: self.dict.__getitem__)
def __call__(self, *args):
return self.pmf(*args)
def __contains__(self, other):
return other in self.set
#=============================================
#========= Probability Space ===============
#=============================================
class FinitePSpace(PSpace):
"""
A Finite Probability Space
Represents the probabilities of a finite number of events.
"""
is_Finite = True
def __new__(cls, domain, density):
density = dict((sympify(key), sympify(val))
for key, val in density.items())
public_density = Dict(density)
obj = PSpace.__new__(cls, domain, public_density)
obj._density = density
return obj
def prob_of(self, elem):
elem = sympify(elem)
density = self._density
if isinstance(list(density.keys())[0], FiniteSet):
return density.get(elem, S.Zero)
return density.get(tuple(elem)[0][1], S.Zero)
def where(self, condition):
assert all(r.symbol in self.symbols for r in random_symbols(condition))
return ConditionalFiniteDomain(self.domain, condition)
def compute_density(self, expr):
expr = rv_subs(expr, self.values)
d = FiniteDensity()
for elem in self.domain:
val = expr.xreplace(dict(elem))
prob = self.prob_of(elem)
d[val] = d.get(val, S.Zero) + prob
return d
@cacheit
def compute_cdf(self, expr):
d = self.compute_density(expr)
cum_prob = S.Zero
cdf = []
for key in sorted(d):
prob = d[key]
cum_prob += prob
cdf.append((key, cum_prob))
return dict(cdf)
@cacheit
def sorted_cdf(self, expr, python_float=False):
cdf = self.compute_cdf(expr)
items = list(cdf.items())
sorted_items = sorted(items, key=lambda val_cumprob: val_cumprob[1])
if python_float:
sorted_items = [(v, float(cum_prob))
for v, cum_prob in sorted_items]
return sorted_items
@cacheit
def compute_characteristic_function(self, expr):
d = self.compute_density(expr)
t = Dummy('t', real=True)
return Lambda(t, sum(exp(I*k*t)*v for k,v in d.items()))
@cacheit
def compute_moment_generating_function(self, expr):
d = self.compute_density(expr)
t = Dummy('t', real=True)
return Lambda(t, sum(exp(k*t)*v for k,v in d.items()))
def compute_expectation(self, expr, rvs=None, **kwargs):
rvs = rvs or self.values
expr = rv_subs(expr, rvs)
probs = [self.prob_of(elem) for elem in self.domain]
if isinstance(expr, (Logic, Relational)):
parse_domain = [tuple(elem)[0][1] for elem in self.domain]
bools = [expr.xreplace(dict(elem)) for elem in self.domain]
else:
parse_domain = [expr.xreplace(dict(elem)) for elem in self.domain]
bools = [True for elem in self.domain]
return sum([Piecewise((prob * elem, blv), (S.Zero, True))
for prob, elem, blv in zip(probs, parse_domain, bools)])
def compute_quantile(self, expr):
cdf = self.compute_cdf(expr)
p = Dummy('p', real=True)
set = ((nan, (p < 0) | (p > 1)),)
for key, value in cdf.items():
set = set + ((key, p <= value), )
return Lambda(p, Piecewise(*set))
def probability(self, condition):
cond_symbols = frozenset(rs.symbol for rs in random_symbols(condition))
cond = rv_subs(condition)
if not cond_symbols.issubset(self.symbols):
raise ValueError("Cannot compare foreign random symbols, %s"
%(str(cond_symbols - self.symbols)))
if isinstance(condition, Relational) and \
(not cond.free_symbols.issubset(self.domain.free_symbols)):
rv = condition.lhs if isinstance(condition.rhs, Symbol) else condition.rhs
return sum(Piecewise(
(self.prob_of(elem), condition.subs(rv, list(elem)[0][1])),
(S.Zero, True)) for elem in self.domain)
return sympify(sum(self.prob_of(elem) for elem in self.where(condition)))
def conditional_space(self, condition):
domain = self.where(condition)
prob = self.probability(condition)
density = dict((key, val / prob)
for key, val in self._density.items() if domain._test(key))
return FinitePSpace(domain, density)
def sample(self, size=()):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
expr = Tuple(*self.values)
cdf = self.sorted_cdf(expr, python_float=True)
x = random.uniform(0, 1)
# Find first occurrence with cumulative probability less than x
# This should be replaced with binary search
for value, cum_prob in cdf:
if x < cum_prob:
# return dictionary mapping RandomSymbols to values
return dict(list(zip(expr, value)))
assert False, "We should never have gotten to this point"
class SingleFinitePSpace(SinglePSpace, FinitePSpace):
"""
A single finite probability space
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
This class is implemented by many of the standard FiniteRV types such as
Die, Bernoulli, Coin, etc....
"""
@property
def domain(self):
return SingleFiniteDomain(self.symbol, self.distribution.set)
@property
def _is_symbolic(self):
"""
Helper property to check if the distribution
of the random variable is having symbolic
dimension.
"""
return self.distribution.is_symbolic
@property
def distribution(self):
return self.args[1]
def pmf(self, expr):
return self.distribution.pmf(expr)
@property # type: ignore
@cacheit
def _density(self):
return dict((FiniteSet((self.symbol, val)), prob)
for val, prob in self.distribution.dict.items())
@cacheit
def compute_characteristic_function(self, expr):
if self._is_symbolic:
d = self.compute_density(expr)
t = Dummy('t', real=True)
ki = Dummy('ki')
return Lambda(t, Sum(d(ki)*exp(I*ki*t), (ki, self.args[1].low, self.args[1].high)))
expr = rv_subs(expr, self.values)
return FinitePSpace(self.domain, self.distribution).compute_characteristic_function(expr)
@cacheit
def compute_moment_generating_function(self, expr):
if self._is_symbolic:
d = self.compute_density(expr)
t = Dummy('t', real=True)
ki = Dummy('ki')
return Lambda(t, Sum(d(ki)*exp(ki*t), (ki, self.args[1].low, self.args[1].high)))
expr = rv_subs(expr, self.values)
return FinitePSpace(self.domain, self.distribution).compute_moment_generating_function(expr)
def compute_quantile(self, expr):
if self._is_symbolic:
raise NotImplementedError("Computing quantile for random variables "
"with symbolic dimension because the bounds of searching the required "
"value is undetermined.")
expr = rv_subs(expr, self.values)
return FinitePSpace(self.domain, self.distribution).compute_quantile(expr)
def compute_density(self, expr):
if self._is_symbolic:
rv = list(random_symbols(expr))[0]
k = Dummy('k', integer=True)
cond = True if not isinstance(expr, (Relational, Logic)) \
else expr.subs(rv, k)
return Lambda(k,
Piecewise((self.pmf(k), And(k >= self.args[1].low,
k <= self.args[1].high, cond)), (S.Zero, True)))
expr = rv_subs(expr, self.values)
return FinitePSpace(self.domain, self.distribution).compute_density(expr)
def compute_cdf(self, expr):
if self._is_symbolic:
d = self.compute_density(expr)
k = Dummy('k')
ki = Dummy('ki')
return Lambda(k, Sum(d(ki), (ki, self.args[1].low, k)))
expr = rv_subs(expr, self.values)
return FinitePSpace(self.domain, self.distribution).compute_cdf(expr)
def compute_expectation(self, expr, rvs=None, **kwargs):
if self._is_symbolic:
rv = random_symbols(expr)[0]
k = Dummy('k', integer=True)
expr = expr.subs(rv, k)
cond = True if not isinstance(expr, (Relational, Logic)) \
else expr
func = self.pmf(k) * k if cond != True else self.pmf(k) * expr
return Sum(Piecewise((func, cond), (S.Zero, True)),
(k, self.distribution.low, self.distribution.high)).doit()
expr = _sympify(expr)
expr = rv_subs(expr, rvs)
return FinitePSpace(self.domain, self.distribution).compute_expectation(expr, rvs, **kwargs)
def probability(self, condition):
if self._is_symbolic:
#TODO: Implement the mechanism for handling queries for symbolic sized distributions.
raise NotImplementedError("Currently, probability queries are not "
"supported for random variables with symbolic sized distributions.")
condition = rv_subs(condition)
return FinitePSpace(self.domain, self.distribution).probability(condition)
def conditional_space(self, condition):
"""
This method is used for transferring the
computation to probability method because
conditional space of random variables with
symbolic dimensions is currently not possible.
"""
if self._is_symbolic:
self
domain = self.where(condition)
prob = self.probability(condition)
density = dict((key, val / prob)
for key, val in self._density.items() if domain._test(key))
return FinitePSpace(domain, density)
class ProductFinitePSpace(IndependentProductPSpace, FinitePSpace):
"""
A collection of several independent finite probability spaces
"""
@property
def domain(self):
return ProductFiniteDomain(*[space.domain for space in self.spaces])
@property # type: ignore
@cacheit
def _density(self):
proditer = product(*[iter(space._density.items())
for space in self.spaces])
d = {}
for items in proditer:
elems, probs = list(zip(*items))
elem = sumsets(elems)
prob = Mul(*probs)
d[elem] = d.get(elem, S.Zero) + prob
return Dict(d)
@property # type: ignore
@cacheit
def density(self):
return Dict(self._density)
def probability(self, condition):
return FinitePSpace.probability(self, condition)
def compute_density(self, expr):
return FinitePSpace.compute_density(self, expr)
|
c999924ef5b4d1ff5c927d189b77a88ad06d6b23803f77a7a51963b4cf2e2203 | #!/usr/bin/env python
from __future__ import print_function, division
from random import random
from sympy import factor, I, Integer, pi, simplify, sin, sqrt, Symbol, sympify
from sympy.abc import x, y, z
from timeit import default_timer as clock
def bench_R1():
"real(f(f(f(f(f(f(f(f(f(f(i/2)))))))))))"
def f(z):
return sqrt(Integer(1)/3)*z**2 + I/3
f(f(f(f(f(f(f(f(f(f(I/2)))))))))).as_real_imag()[0]
def bench_R2():
"Hermite polynomial hermite(15, y)"
def hermite(n, y):
if n == 1:
return 2*y
if n == 0:
return 1
return (2*y*hermite(n - 1, y) - 2*(n - 1)*hermite(n - 2, y)).expand()
hermite(15, y)
def bench_R3():
"a = [bool(f==f) for _ in range(10)]"
f = x + y + z
[bool(f == f) for _ in range(10)]
def bench_R4():
# we don't have Tuples
pass
def bench_R5():
"blowup(L, 8); L=uniq(L)"
def blowup(L, n):
for i in range(n):
L.append( (L[i] + L[i + 1]) * L[i + 2] )
def uniq(x):
v = set(x)
return v
L = [x, y, z]
blowup(L, 8)
L = uniq(L)
def bench_R6():
"sum(simplify((x+sin(i))/x+(x-sin(i))/x) for i in range(100))"
sum(simplify((x + sin(i))/x + (x - sin(i))/x) for i in range(100))
def bench_R7():
"[f.subs(x, random()) for _ in range(10**4)]"
f = x**24 + 34*x**12 + 45*x**3 + 9*x**18 + 34*x**10 + 32*x**21
[f.subs(x, random()) for _ in range(10**4)]
def bench_R8():
"right(x^2,0,5,10^4)"
def right(f, a, b, n):
a = sympify(a)
b = sympify(b)
n = sympify(n)
x = f.atoms(Symbol).pop()
Deltax = (b - a)/n
c = a
est = 0
for i in range(n):
c += Deltax
est += f.subs(x, c)
return est*Deltax
right(x**2, 0, 5, 10**4)
def _bench_R9():
"factor(x^20 - pi^5*y^20)"
factor(x**20 - pi**5*y**20)
def bench_R10():
"v = [-pi,-pi+1/10..,pi]"
def srange(min, max, step):
v = [min]
while (max - v[-1]).evalf() > 0:
v.append(v[-1] + step)
return v[:-1]
srange(-pi, pi, sympify(1)/10)
def bench_R11():
"a = [random() + random()*I for w in [0..1000]]"
[random() + random()*I for w in range(1000)]
def bench_S1():
"e=(x+y+z+1)**7;f=e*(e+1);f.expand()"
e = (x + y + z + 1)**7
f = e*(e + 1)
f.expand()
if __name__ == '__main__':
benchmarks = [
bench_R1,
bench_R2,
bench_R3,
bench_R5,
bench_R6,
bench_R7,
bench_R8,
#_bench_R9,
bench_R10,
bench_R11,
#bench_S1,
]
report = []
for b in benchmarks:
t = clock()
b()
t = clock() - t
print("%s%65s: %f" % (b.__name__, b.__doc__, t))
|
46c7cd479b889c02006313a37a61eac5d0b2d2c92df03aff8bd67f56149de954 | '''
This implementation is a heavily modified fixed point implementation of
BBP_formula for calculating the nth position of pi. The original hosted
at: http://en.literateprograms.org/Pi_with_the_BBP_formula_(Python)
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sub-license, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Modifications:
1.Once the nth digit and desired number of digits is selected, the
number of digits of working precision is calculated to ensure that
the hexadecimal digits returned are accurate. This is calculated as
int(math.log(start + prec)/math.log(16) + prec + 3)
--------------------------------------- --------
/ /
number of hex digits additional digits
This was checked by the following code which completed without
errors (and dig are the digits included in the test_bbp.py file):
for i in range(0,1000):
for j in range(1,1000):
a, b = pi_hex_digits(i, j), dig[i:i+j]
if a != b:
print('%s\n%s'%(a,b))
Deceasing the additional digits by 1 generated errors, so '3' is
the smallest additional precision needed to calculate the above
loop without errors. The following trailing 10 digits were also
checked to be accurate (and the times were slightly faster with
some of the constant modifications that were made):
>> from time import time
>> t=time();pi_hex_digits(10**2-10 + 1, 10), time()-t
('e90c6cc0ac', 0.0)
>> t=time();pi_hex_digits(10**4-10 + 1, 10), time()-t
('26aab49ec6', 0.17100000381469727)
>> t=time();pi_hex_digits(10**5-10 + 1, 10), time()-t
('a22673c1a5', 4.7109999656677246)
>> t=time();pi_hex_digits(10**6-10 + 1, 10), time()-t
('9ffd342362', 59.985999822616577)
>> t=time();pi_hex_digits(10**7-10 + 1, 10), time()-t
('c1a42e06a1', 689.51800012588501)
2. The while loop to evaluate whether the series has converged quits
when the addition amount `dt` has dropped to zero.
3. the formatting string to convert the decimal to hexadecimal is
calculated for the given precision.
4. pi_hex_digits(n) changed to have coefficient to the formula in an
array (perhaps just a matter of preference).
'''
from __future__ import print_function, division
import math
from sympy.core.compatibility import as_int
def _series(j, n, prec=14):
# Left sum from the bbp algorithm
s = 0
D = _dn(n, prec)
D4 = 4 * D
k = 0
d = 8 * k + j
for k in range(n + 1):
s += (pow(16, n - k, d) << D4) // d
d += 8
# Right sum iterates to infinity for full precision, but we
# stop at the point where one iteration is beyond the precision
# specified.
t = 0
k = n + 1
e = 4*(D + n - k)
d = 8 * k + j
while True:
dt = (1 << e) // d
if not dt:
break
t += dt
# k += 1
e -= 4
d += 8
total = s + t
return total
def pi_hex_digits(n, prec=14):
"""Returns a string containing ``prec`` (default 14) digits
starting at the nth digit of pi in hex. Counting of digits
starts at 0 and the decimal is not counted, so for n = 0 the
returned value starts with 3; n = 1 corresponds to the first
digit past the decimal point (which in hex is 2).
Examples
========
>>> from sympy.ntheory.bbp_pi import pi_hex_digits
>>> pi_hex_digits(0)
'3243f6a8885a30'
>>> pi_hex_digits(0, 3)
'324'
References
==========
.. [1] http://www.numberworld.org/digits/Pi/
"""
n, prec = as_int(n), as_int(prec)
if n < 0:
raise ValueError('n cannot be negative')
if prec == 0:
return ''
# main of implementation arrays holding formulae coefficients
n -= 1
a = [4, 2, 1, 1]
j = [1, 4, 5, 6]
#formulae
D = _dn(n, prec)
x = + (a[0]*_series(j[0], n, prec)
- a[1]*_series(j[1], n, prec)
- a[2]*_series(j[2], n, prec)
- a[3]*_series(j[3], n, prec)) & (16**D - 1)
s = ("%0" + "%ix" % prec) % (x // 16**(D - prec))
return s
def _dn(n, prec):
# controller for n dependence on precision
# n = starting digit index
# prec = the number of total digits to compute
n += 1 # because we subtract 1 for _series
return int(math.log(n + prec)/math.log(16) + prec + 3)
|
2a353873755f0ad8d28ffe6929d8780c8168241db4a772edab773fc95553311c | """
Number theory module (primes, etc)
"""
from .generate import nextprime, prevprime, prime, primepi, primerange, \
randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi
from .primetest import isprime, is_gaussian_prime
from .factor_ import divisors, proper_divisors, factorint, multiplicity, \
multiplicity_in_factorial, perfect_power, pollard_pm1, pollard_rho, \
primefactors, totient, trailing, \
divisor_count, proper_divisor_count, divisor_sigma, factorrat, \
reduced_totient, primenu, primeomega, mersenne_prime_exponent, \
is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, \
abundance, dra, drm
from .partitions_ import npartitions
from .residue_ntheory import is_primitive_root, is_quad_residue, \
legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, \
primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, \
discrete_log, quadratic_congruence, polynomial_congruence
from .multinomial import binomial_coefficients, binomial_coefficients_list, \
multinomial_coefficients
from .continued_fraction import continued_fraction_periodic, \
continued_fraction_iterator, continued_fraction_reduce, \
continued_fraction_convergents, continued_fraction
from .egyptian_fraction import egyptian_fraction
__all__ = [
'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',
'isprime', 'is_gaussian_prime',
'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power',
'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', 'trailing',
'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat',
'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent',
'is_perfect', 'is_mersenne_prime', 'is_abundant', 'is_deficient', 'is_amicable',
'abundance', 'dra', 'drm', 'multiplicity_in_factorial',
'npartitions',
'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
'mobius', 'discrete_log', 'quadratic_congruence', 'polynomial_congruence',
'binomial_coefficients', 'binomial_coefficients_list',
'multinomial_coefficients',
'continued_fraction_periodic', 'continued_fraction_iterator',
'continued_fraction_reduce', 'continued_fraction_convergents',
'continued_fraction',
'egyptian_fraction',
]
|
84ddf4c8cf0c67157cff75604fd98f42dff8e86ae1e0bba9df657063794e8929 | """
Generating and counting primes.
"""
from __future__ import print_function, division
import random
from bisect import bisect
from itertools import count
# Using arrays for sieving instead of lists greatly reduces
# memory consumption
from array import array as _array
from sympy import Function, S
from sympy.core.compatibility import as_int
from .primetest import isprime
def _azeros(n):
return _array('l', [0]*n)
def _aset(*v):
return _array('l', v)
def _arange(a, b):
return _array('l', range(a, b))
class Sieve:
"""An infinite list of prime numbers, implemented as a dynamically
growing sieve of Eratosthenes. When a lookup is requested involving
an odd number that has not been sieved, the sieve is automatically
extended up to that number.
Examples
========
>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> 25 in sieve
False
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
"""
# data shared (and updated) by all Sieve instances
def __init__(self):
self._n = 6
self._list = _aset(2, 3, 5, 7, 11, 13) # primes
self._tlist = _aset(0, 1, 1, 2, 2, 4) # totient
self._mlist = _aset(0, 1, -1, -1, 0, -1) # mobius
assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist))
def __repr__(self):
return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n"
"%s sieve (%i): %i, %i, %i, ... %i, %i\n"
"%s sieve (%i): %i, %i, %i, ... %i, %i>") % (
'prime', len(self._list),
self._list[0], self._list[1], self._list[2],
self._list[-2], self._list[-1],
'totient', len(self._tlist),
self._tlist[0], self._tlist[1],
self._tlist[2], self._tlist[-2], self._tlist[-1],
'mobius', len(self._mlist),
self._mlist[0], self._mlist[1],
self._mlist[2], self._mlist[-2], self._mlist[-1])
def _reset(self, prime=None, totient=None, mobius=None):
"""Reset all caches (default). To reset one or more set the
desired keyword to True."""
if all(i is None for i in (prime, totient, mobius)):
prime = totient = mobius = True
if prime:
self._list = self._list[:self._n]
if totient:
self._tlist = self._tlist[:self._n]
if mobius:
self._mlist = self._mlist[:self._n]
def extend(self, n):
"""Grow the sieve to cover all primes <= n (a real number).
Examples
========
>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> sieve.extend(30)
>>> sieve[10] == 29
True
"""
n = int(n)
if n <= self._list[-1]:
return
# We need to sieve against all bases up to sqrt(n).
# This is a recursive call that will do nothing if there are enough
# known bases already.
maxbase = int(n**0.5) + 1
self.extend(maxbase)
# Create a new sieve starting from sqrt(n)
begin = self._list[-1] + 1
newsieve = _arange(begin, n + 1)
# Now eliminate all multiples of primes in [2, sqrt(n)]
for p in self.primerange(2, maxbase):
# Start counting at a multiple of p, offsetting
# the index to account for the new sieve's base index
startindex = (-begin) % p
for i in range(startindex, len(newsieve), p):
newsieve[i] = 0
# Merge the sieves
self._list += _array('l', [x for x in newsieve if x])
def extend_to_no(self, i):
"""Extend to include the ith prime number.
Parameters
==========
i : integer
Examples
========
>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> sieve.extend_to_no(9)
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
Notes
=====
The list is extended by 50% if it is too short, so it is
likely that it will be longer than requested.
"""
i = as_int(i)
while len(self._list) < i:
self.extend(int(self._list[-1] * 1.5))
def primerange(self, a, b):
"""Generate all prime numbers in the range [a, b).
Examples
========
>>> from sympy import sieve
>>> print([i for i in sieve.primerange(7, 18)])
[7, 11, 13, 17]
"""
from sympy.functions.elementary.integers import ceiling
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
a = max(2, as_int(ceiling(a)))
b = as_int(ceiling(b))
if a >= b:
return
self.extend(b)
i = self.search(a)[1]
maxi = len(self._list) + 1
while i < maxi:
p = self._list[i - 1]
if p < b:
yield p
i += 1
else:
return
def totientrange(self, a, b):
"""Generate all totient numbers for the range [a, b).
Examples
========
>>> from sympy import sieve
>>> print([i for i in sieve.totientrange(7, 18)])
[6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
"""
from sympy.functions.elementary.integers import ceiling
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
a = max(1, as_int(ceiling(a)))
b = as_int(ceiling(b))
n = len(self._tlist)
if a >= b:
return
elif b <= n:
for i in range(a, b):
yield self._tlist[i]
else:
self._tlist += _arange(n, b)
for i in range(1, n):
ti = self._tlist[i]
startindex = (n + i - 1) // i * i
for j in range(startindex, b, i):
self._tlist[j] -= ti
if i >= a:
yield ti
for i in range(n, b):
ti = self._tlist[i]
for j in range(2 * i, b, i):
self._tlist[j] -= ti
if i >= a:
yield ti
def mobiusrange(self, a, b):
"""Generate all mobius numbers for the range [a, b).
Parameters
==========
a : integer
First number in range
b : integer
First number outside of range
Examples
========
>>> from sympy import sieve
>>> print([i for i in sieve.mobiusrange(7, 18)])
[-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
"""
from sympy.functions.elementary.integers import ceiling
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
a = max(1, as_int(ceiling(a)))
b = as_int(ceiling(b))
n = len(self._mlist)
if a >= b:
return
elif b <= n:
for i in range(a, b):
yield self._mlist[i]
else:
self._mlist += _azeros(b - n)
for i in range(1, n):
mi = self._mlist[i]
startindex = (n + i - 1) // i * i
for j in range(startindex, b, i):
self._mlist[j] -= mi
if i >= a:
yield mi
for i in range(n, b):
mi = self._mlist[i]
for j in range(2 * i, b, i):
self._mlist[j] -= mi
if i >= a:
yield mi
def search(self, n):
"""Return the indices i, j of the primes that bound n.
If n is prime then i == j.
Although n can be an expression, if ceiling cannot convert
it to an integer then an n error will be raised.
Examples
========
>>> from sympy import sieve
>>> sieve.search(25)
(9, 10)
>>> sieve.search(23)
(9, 9)
"""
from sympy.functions.elementary.integers import ceiling
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
test = as_int(ceiling(n))
n = as_int(n)
if n < 2:
raise ValueError("n should be >= 2 but got: %s" % n)
if n > self._list[-1]:
self.extend(n)
b = bisect(self._list, n)
if self._list[b - 1] == test:
return b, b
else:
return b, b + 1
def __contains__(self, n):
try:
n = as_int(n)
assert n >= 2
except (ValueError, AssertionError):
return False
if n % 2 == 0:
return n == 2
a, b = self.search(n)
return a == b
def __iter__(self):
for n in count(1):
yield self[n]
def __getitem__(self, n):
"""Return the nth prime number"""
if isinstance(n, slice):
self.extend_to_no(n.stop)
# Python 2.7 slices have 0 instead of None for start, so
# we can't default to 1.
start = n.start if n.start is not None else 0
if start < 1:
# sieve[:5] would be empty (starting at -1), let's
# just be explicit and raise.
raise IndexError("Sieve indices start at 1.")
return self._list[start - 1:n.stop - 1:n.step]
else:
if n < 1:
# offset is one, so forbid explicit access to sieve[0]
# (would surprisingly return the last one).
raise IndexError("Sieve indices start at 1.")
n = as_int(n)
self.extend_to_no(n)
return self._list[n - 1]
# Generate a global object for repeated use in trial division etc
sieve = Sieve()
def prime(nth):
""" Return the nth prime, with the primes indexed as prime(1) = 2,
prime(2) = 3, etc.... The nth prime is approximately n*log(n).
Logarithmic integral of x is a pretty nice approximation for number of
primes <= x, i.e.
li(x) ~ pi(x)
In fact, for the numbers we are concerned about( x<1e11 ),
li(x) - pi(x) < 50000
Also,
li(x) > pi(x) can be safely assumed for the numbers which
can be evaluated by this function.
Here, we find the least integer m such that li(m) > n using binary search.
Now pi(m-1) < li(m-1) <= n,
We find pi(m - 1) using primepi function.
Starting from m, we have to find n - pi(m-1) more primes.
For the inputs this implementation can handle, we will have to test
primality for at max about 10**5 numbers, to get our answer.
Examples
========
>>> from sympy import prime
>>> prime(10)
29
>>> prime(1)
2
>>> prime(100000)
1299709
See Also
========
sympy.ntheory.primetest.isprime : Test if n is prime
primerange : Generate all primes in a given range
primepi : Return the number of primes less than or equal to n
References
==========
.. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
.. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
.. [3] https://en.wikipedia.org/wiki/Skewes%27_number
"""
n = as_int(nth)
if n < 1:
raise ValueError("nth must be a positive integer; prime(1) == 2")
if n <= len(sieve._list):
return sieve[n]
from sympy.functions.special.error_functions import li
from sympy.functions.elementary.exponential import log
a = 2 # Lower bound for binary search
b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
while a < b:
mid = (a + b) >> 1
if li(mid) > n:
b = mid
else:
a = mid + 1
n_primes = primepi(a - 1)
while n_primes < n:
if isprime(a):
n_primes += 1
a += 1
return a - 1
class primepi(Function):
""" Represents the prime counting function pi(n) = the number
of prime numbers less than or equal to n.
Algorithm Description:
In sieve method, we remove all multiples of prime p
except p itself.
Let phi(i,j) be the number of integers 2 <= k <= i
which remain after sieving from primes less than
or equal to j.
Clearly, pi(n) = phi(n, sqrt(n))
If j is not a prime,
phi(i,j) = phi(i, j - 1)
if j is a prime,
We remove all numbers(except j) whose
smallest prime factor is j.
Let x= j*a be such a number, where 2 <= a<= i / j
Now, after sieving from primes <= j - 1,
a must remain
(because x, and hence a has no prime factor <= j - 1)
Clearly, there are phi(i / j, j - 1) such a
which remain on sieving from primes <= j - 1
Now, if a is a prime less than equal to j - 1,
x= j*a has smallest prime factor = a, and
has already been removed(by sieving from a).
So, we don't need to remove it again.
(Note: there will be pi(j - 1) such x)
Thus, number of x, that will be removed are:
phi(i / j, j - 1) - phi(j - 1, j - 1)
(Note that pi(j - 1) = phi(j - 1, j - 1))
=> phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)
So,following recursion is used and implemented as dp:
phi(a, b) = phi(a, b - 1), if b is not a prime
phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime
Clearly a is always of the form floor(n / k),
which can take at most 2*sqrt(n) values.
Two arrays arr1,arr2 are maintained
arr1[i] = phi(i, j),
arr2[i] = phi(n // i, j)
Finally the answer is arr2[1]
Examples
========
>>> from sympy import primepi
>>> primepi(25)
9
See Also
========
sympy.ntheory.primetest.isprime : Test if n is prime
primerange : Generate all primes in a given range
prime : Return the nth prime
"""
@classmethod
def eval(cls, n):
if n is S.Infinity:
return S.Infinity
if n is S.NegativeInfinity:
return S.Zero
try:
n = int(n)
except TypeError:
if n.is_real == False or n is S.NaN:
raise ValueError("n must be real")
return
if n < 2:
return S.Zero
if n <= sieve._list[-1]:
return S(sieve.search(n)[0])
lim = int(n ** 0.5)
lim -= 1
lim = max(lim, 0)
while lim * lim <= n:
lim += 1
lim -= 1
arr1 = [0] * (lim + 1)
arr2 = [0] * (lim + 1)
for i in range(1, lim + 1):
arr1[i] = i - 1
arr2[i] = n // i - 1
for i in range(2, lim + 1):
# Presently, arr1[k]=phi(k,i - 1),
# arr2[k] = phi(n // k,i - 1)
if arr1[i] == arr1[i - 1]:
continue
p = arr1[i - 1]
for j in range(1, min(n // (i * i), lim) + 1):
st = i * j
if st <= lim:
arr2[j] -= arr2[st] - p
else:
arr2[j] -= arr1[n // st] - p
lim2 = min(lim, i * i - 1)
for j in range(lim, lim2, -1):
arr1[j] -= arr1[j // i] - p
return S(arr2[1])
def nextprime(n, ith=1):
""" Return the ith prime greater than n.
i must be an integer.
Notes
=====
Potential primes are located at 6*j +/- 1. This
property is used during searching.
>>> from sympy import nextprime
>>> [(i, nextprime(i)) for i in range(10, 15)]
[(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
>>> nextprime(2, ith=2) # the 2nd prime after 2
5
See Also
========
prevprime : Return the largest prime smaller than n
primerange : Generate all primes in a given range
"""
n = int(n)
i = as_int(ith)
if i > 1:
pr = n
j = 1
while 1:
pr = nextprime(pr)
j += 1
if j > i:
break
return pr
if n < 2:
return 2
if n < 7:
return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n]
if n <= sieve._list[-2]:
l, u = sieve.search(n)
if l == u:
return sieve[u + 1]
else:
return sieve[u]
nn = 6*(n//6)
if nn == n:
n += 1
if isprime(n):
return n
n += 4
elif n - nn == 5:
n += 2
if isprime(n):
return n
n += 4
else:
n = nn + 5
while 1:
if isprime(n):
return n
n += 2
if isprime(n):
return n
n += 4
def prevprime(n):
""" Return the largest prime smaller than n.
Notes
=====
Potential primes are located at 6*j +/- 1. This
property is used during searching.
>>> from sympy import prevprime
>>> [(i, prevprime(i)) for i in range(10, 15)]
[(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]
See Also
========
nextprime : Return the ith prime greater than n
primerange : Generates all primes in a given range
"""
from sympy.functions.elementary.integers import ceiling
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
n = as_int(ceiling(n))
if n < 3:
raise ValueError("no preceding primes")
if n < 8:
return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n]
if n <= sieve._list[-1]:
l, u = sieve.search(n)
if l == u:
return sieve[l-1]
else:
return sieve[l]
nn = 6*(n//6)
if n - nn <= 1:
n = nn - 1
if isprime(n):
return n
n -= 4
else:
n = nn + 1
while 1:
if isprime(n):
return n
n -= 2
if isprime(n):
return n
n -= 4
def primerange(a, b):
""" Generate a list of all prime numbers in the range [a, b).
If the range exists in the default sieve, the values will
be returned from there; otherwise values will be returned
but will not modify the sieve.
Examples
========
>>> from sympy import primerange, sieve
>>> print([i for i in primerange(1, 30)])
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
The Sieve method, primerange, is generally faster but it will
occupy more memory as the sieve stores values. The default
instance of Sieve, named sieve, can be used:
>>> list(sieve.primerange(1, 30))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
Notes
=====
Some famous conjectures about the occurrence of primes in a given
range are [1]:
- Twin primes: though often not, the following will give 2 primes
an infinite number of times:
primerange(6*n - 1, 6*n + 2)
- Legendre's: the following always yields at least one prime
primerange(n**2, (n+1)**2+1)
- Bertrand's (proven): there is always a prime in the range
primerange(n, 2*n)
- Brocard's: there are at least four primes in the range
primerange(prime(n)**2, prime(n+1)**2)
The average gap between primes is log(n) [2]; the gap between
primes can be arbitrarily large since sequences of composite
numbers are arbitrarily large, e.g. the numbers in the sequence
n! + 2, n! + 3 ... n! + n are all composite.
See Also
========
nextprime : Return the ith prime greater than n
prevprime : Return the largest prime smaller than n
randprime : Returns a random prime in a given range
primorial : Returns the product of primes based on condition
Sieve.primerange : return range from already computed primes
or extend the sieve to contain the requested
range.
References
==========
.. [1] https://en.wikipedia.org/wiki/Prime_number
.. [2] http://primes.utm.edu/notes/gaps.html
"""
from sympy.functions.elementary.integers import ceiling
if a >= b:
return
# if we already have the range, return it
if b <= sieve._list[-1]:
for i in sieve.primerange(a, b):
yield i
return
# otherwise compute, without storing, the desired range.
# wrapping ceiling in as_int will raise an error if there was a problem
# determining whether the expression was exactly an integer or not
a = as_int(ceiling(a)) - 1
b = as_int(ceiling(b))
while 1:
a = nextprime(a)
if a < b:
yield a
else:
return
def randprime(a, b):
""" Return a random prime number in the range [a, b).
Bertrand's postulate assures that
randprime(a, 2*a) will always succeed for a > 1.
Examples
========
>>> from sympy import randprime, isprime
>>> randprime(1, 30) #doctest: +SKIP
13
>>> isprime(randprime(1, 30))
True
See Also
========
primerange : Generate all primes in a given range
References
==========
.. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate
"""
if a >= b:
return
a, b = map(int, (a, b))
n = random.randint(a - 1, b)
p = nextprime(n)
if p >= b:
p = prevprime(b)
if p < a:
raise ValueError("no primes exist in the specified range")
return p
def primorial(n, nth=True):
"""
Returns the product of the first n primes (default) or
the primes less than or equal to n (when ``nth=False``).
Examples
========
>>> from sympy.ntheory.generate import primorial, randprime, primerange
>>> from sympy import factorint, Mul, primefactors, sqrt
>>> primorial(4) # the first 4 primes are 2, 3, 5, 7
210
>>> primorial(4, nth=False) # primes <= 4 are 2 and 3
6
>>> primorial(1)
2
>>> primorial(1, nth=False)
1
>>> primorial(sqrt(101), nth=False)
210
One can argue that the primes are infinite since if you take
a set of primes and multiply them together (e.g. the primorial) and
then add or subtract 1, the result cannot be divided by any of the
original factors, hence either 1 or more new primes must divide this
product of primes.
In this case, the number itself is a new prime:
>>> factorint(primorial(4) + 1)
{211: 1}
In this case two new primes are the factors:
>>> factorint(primorial(4) - 1)
{11: 1, 19: 1}
Here, some primes smaller and larger than the primes multiplied together
are obtained:
>>> p = list(primerange(10, 20))
>>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
[2, 5, 31, 149]
See Also
========
primerange : Generate all primes in a given range
"""
if nth:
n = as_int(n)
else:
n = int(n)
if n < 1:
raise ValueError("primorial argument must be >= 1")
p = 1
if nth:
for i in range(1, n + 1):
p *= prime(i)
else:
for i in primerange(2, n + 1):
p *= i
return p
def cycle_length(f, x0, nmax=None, values=False):
"""For a given iterated sequence, return a generator that gives
the length of the iterated cycle (lambda) and the length of terms
before the cycle begins (mu); if ``values`` is True then the
terms of the sequence will be returned instead. The sequence is
started with value ``x0``.
Note: more than the first lambda + mu terms may be returned and this
is the cost of cycle detection with Brent's method; there are, however,
generally less terms calculated than would have been calculated if the
proper ending point were determined, e.g. by using Floyd's method.
>>> from sympy.ntheory.generate import cycle_length
This will yield successive values of i <-- func(i):
>>> def iter(func, i):
... while 1:
... ii = func(i)
... yield ii
... i = ii
...
A function is defined:
>>> func = lambda i: (i**2 + 1) % 51
and given a seed of 4 and the mu and lambda terms calculated:
>>> next(cycle_length(func, 4))
(6, 2)
We can see what is meant by looking at the output:
>>> n = cycle_length(func, 4, values=True)
>>> list(ni for ni in n)
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
There are 6 repeating values after the first 2.
If a sequence is suspected of being longer than you might wish, ``nmax``
can be used to exit early (and mu will be returned as None):
>>> next(cycle_length(func, 4, nmax = 4))
(4, None)
>>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)]
[17, 35, 2, 5]
Code modified from:
https://en.wikipedia.org/wiki/Cycle_detection.
"""
nmax = int(nmax or 0)
# main phase: search successive powers of two
power = lam = 1
tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0.
i = 0
while tortoise != hare and (not nmax or i < nmax):
i += 1
if power == lam: # time to start a new power of two?
tortoise = hare
power *= 2
lam = 0
if values:
yield hare
hare = f(hare)
lam += 1
if nmax and i == nmax:
if values:
return
else:
yield nmax, None
return
if not values:
# Find the position of the first repetition of length lambda
mu = 0
tortoise = hare = x0
for i in range(lam):
hare = f(hare)
while tortoise != hare:
tortoise = f(tortoise)
hare = f(hare)
mu += 1
if mu:
mu -= 1
yield lam, mu
def composite(nth):
""" Return the nth composite number, with the composite numbers indexed as
composite(1) = 4, composite(2) = 6, etc....
Examples
========
>>> from sympy import composite
>>> composite(36)
52
>>> composite(1)
4
>>> composite(17737)
20000
See Also
========
sympy.ntheory.primetest.isprime : Test if n is prime
primerange : Generate all primes in a given range
primepi : Return the number of primes less than or equal to n
prime : Return the nth prime
compositepi : Return the number of positive composite numbers less than or equal to n
"""
n = as_int(nth)
if n < 1:
raise ValueError("nth must be a positive integer; composite(1) == 4")
composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
if n <= 10:
return composite_arr[n - 1]
a, b = 4, sieve._list[-1]
if n <= b - primepi(b) - 1:
while a < b - 1:
mid = (a + b) >> 1
if mid - primepi(mid) - 1 > n:
b = mid
else:
a = mid
if isprime(a):
a -= 1
return a
from sympy.functions.special.error_functions import li
from sympy.functions.elementary.exponential import log
a = 4 # Lower bound for binary search
b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
while a < b:
mid = (a + b) >> 1
if mid - li(mid) - 1 > n:
b = mid
else:
a = mid + 1
n_composites = a - primepi(a) - 1
while n_composites > n:
if not isprime(a):
n_composites -= 1
a -= 1
if isprime(a):
a -= 1
return a
def compositepi(n):
""" Return the number of positive composite numbers less than or equal to n.
The first positive composite is 4, i.e. compositepi(4) = 1.
Examples
========
>>> from sympy import compositepi
>>> compositepi(25)
15
>>> compositepi(1000)
831
See Also
========
sympy.ntheory.primetest.isprime : Test if n is prime
primerange : Generate all primes in a given range
prime : Return the nth prime
primepi : Return the number of primes less than or equal to n
composite : Return the nth composite number
"""
n = int(n)
if n < 4:
return 0
return n - primepi(n) - 1
|
a4ac3f196e3b2a4c99889b82349ec409eb39d48591b7e9598a7ff689dc502dd0 | from __future__ import print_function, division
from sympy.core.compatibility import as_int
from sympy.core.function import Function
from sympy.utilities.iterables import cartes
from sympy.core.numbers import igcd, igcdex, mod_inverse
from sympy.core.power import isqrt
from sympy.core.singleton import S
from .primetest import isprime
from .factor_ import factorint, trailing, totient, multiplicity
from random import randint, Random
def n_order(a, n):
"""Returns the order of ``a`` modulo ``n``.
The order of ``a`` modulo ``n`` is the smallest integer
``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.
Examples
========
>>> from sympy.ntheory import n_order
>>> n_order(3, 7)
6
>>> n_order(4, 7)
3
"""
from collections import defaultdict
a, n = as_int(a), as_int(n)
if igcd(a, n) != 1:
raise ValueError("The two numbers should be relatively prime")
factors = defaultdict(int)
f = factorint(n)
for px, kx in f.items():
if kx > 1:
factors[px] += kx - 1
fpx = factorint(px - 1)
for py, ky in fpx.items():
factors[py] += ky
group_order = 1
for px, kx in factors.items():
group_order *= px**kx
order = 1
if a > n:
a = a % n
for p, e in factors.items():
exponent = group_order
for f in range(e + 1):
if pow(a, exponent, n) != 1:
order *= p ** (e - f + 1)
break
exponent = exponent // p
return order
def _primitive_root_prime_iter(p):
"""
Generates the primitive roots for a prime ``p``
Examples
========
>>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter
>>> list(_primitive_root_prime_iter(19))
[2, 3, 10, 13, 14, 15]
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
"""
# it is assumed that p is an int
v = [(p - 1) // i for i in factorint(p - 1).keys()]
a = 2
while a < p:
for pw in v:
# a TypeError below may indicate that p was not an int
if pow(a, pw, p) == 1:
break
else:
yield a
a += 1
def primitive_root(p):
"""
Returns the smallest primitive root or None
Parameters
==========
p : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import primitive_root
>>> primitive_root(19)
2
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
.. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C
"""
p = as_int(p)
if p < 1:
raise ValueError('p is required to be positive')
if p <= 2:
return 1
f = factorint(p)
if len(f) > 2:
return None
if len(f) == 2:
if 2 not in f or f[2] > 1:
return None
# case p = 2*p1**k, p1 prime
for p1, e1 in f.items():
if p1 != 2:
break
i = 1
while i < p:
i += 2
if i % p1 == 0:
continue
if is_primitive_root(i, p):
return i
else:
if 2 in f:
if p == 4:
return 3
return None
p1, n = list(f.items())[0]
if n > 1:
# see Ref [2], page 81
g = primitive_root(p1)
if is_primitive_root(g, p1**2):
return g
else:
for i in range(2, g + p1 + 1):
if igcd(i, p) == 1 and is_primitive_root(i, p):
return i
return next(_primitive_root_prime_iter(p))
def is_primitive_root(a, p):
"""
Returns True if ``a`` is a primitive root of ``p``
``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and
totient(p) is the smallest positive number s.t.
a**totient(p) cong 1 mod(p)
Examples
========
>>> from sympy.ntheory import is_primitive_root, n_order, totient
>>> is_primitive_root(3, 10)
True
>>> is_primitive_root(9, 10)
False
>>> n_order(3, 10) == totient(10)
True
>>> n_order(9, 10) == totient(10)
False
"""
a, p = as_int(a), as_int(p)
if igcd(a, p) != 1:
raise ValueError("The two numbers should be relatively prime")
if a > p:
a = a % p
return n_order(a, p) == totient(p)
def _sqrt_mod_tonelli_shanks(a, p):
"""
Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)``
References
==========
.. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101
"""
s = trailing(p - 1)
t = p >> s
# find a non-quadratic residue
while 1:
d = randint(2, p - 1)
r = legendre_symbol(d, p)
if r == -1:
break
#assert legendre_symbol(d, p) == -1
A = pow(a, t, p)
D = pow(d, t, p)
m = 0
for i in range(s):
adm = A*pow(D, m, p) % p
adm = pow(adm, 2**(s - 1 - i), p)
if adm % p == p - 1:
m += 2**i
#assert A*pow(D, m, p) % p == 1
x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p
return x
def sqrt_mod(a, p, all_roots=False):
"""
Find a root of ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
all_roots : if True the list of roots is returned or None
Notes
=====
If there is no root it is returned None; else the returned root
is less or equal to ``p // 2``; in general is not the smallest one.
It is returned ``p // 2`` only if it is the only root.
Use ``all_roots`` only when it is expected that all the roots fit
in memory; otherwise use ``sqrt_mod_iter``.
Examples
========
>>> from sympy.ntheory import sqrt_mod
>>> sqrt_mod(11, 43)
21
>>> sqrt_mod(17, 32, True)
[7, 9, 23, 25]
"""
if all_roots:
return sorted(list(sqrt_mod_iter(a, p)))
try:
p = abs(as_int(p))
it = sqrt_mod_iter(a, p)
r = next(it)
if r > p // 2:
return p - r
elif r < p // 2:
return r
else:
try:
r = next(it)
if r > p // 2:
return p - r
except StopIteration:
pass
return r
except StopIteration:
return None
def _product(*iters):
"""
Cartesian product generator
Notes
=====
Unlike itertools.product, it works also with iterables which do not fit
in memory. See http://bugs.python.org/issue10109
Author: Fernando Sumudu
with small changes
"""
import itertools
inf_iters = tuple(itertools.cycle(enumerate(it)) for it in iters)
num_iters = len(inf_iters)
cur_val = [None]*num_iters
first_v = True
while True:
i, p = 0, num_iters
while p and not i:
p -= 1
i, cur_val[p] = next(inf_iters[p])
if not p and not i:
if first_v:
first_v = False
else:
break
yield cur_val
def sqrt_mod_iter(a, p, domain=int):
"""
Iterate over solutions to ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
domain : integer domain, ``int``, ``ZZ`` or ``Integer``
Examples
========
>>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
>>> list(sqrt_mod_iter(11, 43))
[21, 22]
"""
from sympy.polys.galoistools import gf_crt1, gf_crt2
from sympy.polys.domains import ZZ
a, p = as_int(a), abs(as_int(p))
if isprime(p):
a = a % p
if a == 0:
res = _sqrt_mod1(a, p, 1)
else:
res = _sqrt_mod_prime_power(a, p, 1)
if res:
if domain is ZZ:
for x in res:
yield x
else:
for x in res:
yield domain(x)
else:
f = factorint(p)
v = []
pv = []
for px, ex in f.items():
if a % px == 0:
rx = _sqrt_mod1(a, px, ex)
if not rx:
return
else:
rx = _sqrt_mod_prime_power(a, px, ex)
if not rx:
return
v.append(rx)
pv.append(px**ex)
mm, e, s = gf_crt1(pv, ZZ)
if domain is ZZ:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield r
else:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield domain(r)
def _sqrt_mod_prime_power(a, p, k):
"""
Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0``
Parameters
==========
a : integer
p : prime number
k : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
>>> _sqrt_mod_prime_power(11, 43, 1)
[21, 22]
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 160
.. [2] http://www.numbertheory.org/php/squareroot.html
.. [3] [Gathen99]_
"""
from sympy.core.numbers import igcdex
from sympy.polys.domains import ZZ
pk = p**k
a = a % pk
if k == 1:
if p == 2:
return [ZZ(a)]
if not (a % p < 2 or pow(a, (p - 1) // 2, p) == 1):
return None
if p % 4 == 3:
res = pow(a, (p + 1) // 4, p)
elif p % 8 == 5:
sign = pow(a, (p - 1) // 4, p)
if sign == 1:
res = pow(a, (p + 3) // 8, p)
else:
b = pow(4*a, (p - 5) // 8, p)
x = (2*a*b) % p
if pow(x, 2, p) == a:
res = x
else:
res = _sqrt_mod_tonelli_shanks(a, p)
# ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic;
# sort to get always the same result
return sorted([ZZ(res), ZZ(p - res)])
if k > 1:
# see Ref.[2]
if p == 2:
if a % 8 != 1:
return None
if k <= 3:
s = set()
for i in range(0, pk, 4):
s.add(1 + i)
s.add(-1 + i)
return list(s)
# according to Ref.[2] for k > 2 there are two solutions
# (mod 2**k-1), that is four solutions (mod 2**k), which can be
# obtained from the roots of x**2 = 0 (mod 8)
rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)]
# hensel lift them to solutions of x**2 = 0 (mod 2**k)
# if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1)
# then r + 2**(nx - 1) is a root mod 2**(nx+1)
n = 3
res = []
for r in rv:
nx = n
while nx < k:
r1 = (r**2 - a) >> nx
if r1 % 2:
r = r + (1 << (nx - 1))
#assert (r**2 - a)% (1 << (nx + 1)) == 0
nx += 1
if r not in res:
res.append(r)
x = r + (1 << (k - 1))
#assert (x**2 - a) % pk == 0
if x < (1 << nx) and x not in res:
if (x**2 - a) % pk == 0:
res.append(x)
return res
rv = _sqrt_mod_prime_power(a, p, 1)
if not rv:
return None
r = rv[0]
fr = r**2 - a
# hensel lifting with Newton iteration, see Ref.[3] chapter 9
# with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2
n = 1
px = p
while 1:
n1 = n
n1 *= 2
if n1 > k:
break
n = n1
px = px**2
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
fr = r**2 - a
if n < k:
px = p**k
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
return [r, px - r]
def _sqrt_mod1(a, p, n):
"""
Find solution to ``x**2 == a mod p**n`` when ``a % p == 0``
see http://www.numbertheory.org/php/squareroot.html
"""
pn = p**n
a = a % pn
if a == 0:
# case gcd(a, p**k) = p**n
m = n // 2
if n % 2 == 1:
pm1 = p**(m + 1)
def _iter0a():
i = 0
while i < pn:
yield i
i += pm1
return _iter0a()
else:
pm = p**m
def _iter0b():
i = 0
while i < pn:
yield i
i += pm
return _iter0b()
# case gcd(a, p**k) = p**r, r < n
f = factorint(a)
r = f[p]
if r % 2 == 1:
return None
m = r // 2
a1 = a >> r
if p == 2:
if n - r == 1:
pnm1 = 1 << (n - m + 1)
pm1 = 1 << (m + 1)
def _iter1():
k = 1 << (m + 2)
i = 1 << m
while i < pnm1:
j = i
while j < pn:
yield j
j += k
i += pm1
return _iter1()
if n - r == 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm = 1 << (n - m)
def _iter2():
s = set()
for r in res:
i = 0
while i < pn:
x = (r << m) + i
if x not in s:
s.add(x)
yield x
i += pnm
return _iter2()
if n - r > 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm1 = 1 << (n - m - 1)
def _iter3():
s = set()
for r in res:
i = 0
while i < pn:
x = ((r << m) + i) % pn
if x not in s:
s.add(x)
yield x
i += pnm1
return _iter3()
else:
m = r // 2
a1 = a // p**r
res1 = _sqrt_mod_prime_power(a1, p, n - r)
if res1 is None:
return None
pm = p**m
pnr = p**(n-r)
pnm = p**(n-m)
def _iter4():
s = set()
pm = p**m
for rx in res1:
i = 0
while i < pnm:
x = ((rx + i) % pn)
if x not in s:
s.add(x)
yield x*pm
i += pnr
return _iter4()
def is_quad_residue(a, p):
"""
Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,
i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd
prime, an iterative method is used to make the determination:
>>> from sympy.ntheory import is_quad_residue
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
>>> [j for j in range(7) if is_quad_residue(j, 7)]
[0, 1, 2, 4]
See Also
========
legendre_symbol, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if p < 1:
raise ValueError('p must be > 0')
if a >= p or a < 0:
a = a % p
if a < 2 or p < 3:
return True
if not isprime(p):
if p % 2 and jacobi_symbol(a, p) == -1:
return False
r = sqrt_mod(a, p)
if r is None:
return False
else:
return True
return pow(a, (p - 1) // 2, p) == 1
def is_nthpow_residue(a, n, m):
"""
Returns True if ``x**n == a (mod m)`` has solutions.
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 76
"""
a = a % m
a, n, m = as_int(a), as_int(n), as_int(m)
if m <= 0:
raise ValueError('m must be > 0')
if n < 0:
raise ValueError('n must be >= 0')
if n == 0:
if m == 1:
return False
return a == 1
if a == 0:
return True
if n == 1:
return True
if n == 2:
return is_quad_residue(a, m)
return _is_nthpow_residue_bign(a, n, m)
def _is_nthpow_residue_bign(a, n, m):
"""Returns True if ``x**n == a (mod m)`` has solutions for n > 2."""
# assert n > 2
# assert a > 0 and m > 0
if primitive_root(m) is None or igcd(a, m) != 1:
# assert m >= 8
for prime, power in factorint(m).items():
if not _is_nthpow_residue_bign_prime_power(a, n, prime, power):
return False
return True
f = totient(m)
k = f // igcd(f, n)
return pow(a, k, m) == 1
def _is_nthpow_residue_bign_prime_power(a, n, p, k):
"""Returns True/False if a solution for ``x**n == a (mod(p**k))``
does/doesn't exist."""
# assert a > 0
# assert n > 2
# assert p is prime
# assert k > 0
if a % p:
if p != 2:
return _is_nthpow_residue_bign(a, n, pow(p, k))
if n & 1:
return True
c = trailing(n)
return a % pow(2, min(c + 2, k)) == 1
else:
a %= pow(p, k)
if not a:
return True
mu = multiplicity(p, a)
if mu % n:
return False
pm = pow(p, mu)
return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu)
def _nthroot_mod2(s, q, p):
f = factorint(q)
v = []
for b, e in f.items():
v.extend([b]*e)
for qx in v:
s = _nthroot_mod1(s, qx, p, False)
return s
def _nthroot_mod1(s, q, p, all_roots):
"""
Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1``
References
==========
.. [1] A. M. Johnston "A Generalized qth Root Algorithm"
"""
g = primitive_root(p)
if not isprime(q):
r = _nthroot_mod2(s, q, p)
else:
f = p - 1
assert (p - 1) % q == 0
# determine k
k = 0
while f % q == 0:
k += 1
f = f // q
# find z, x, r1
f1 = igcdex(-f, q)[0] % q
z = f*f1
x = (1 + z) // q
r1 = pow(s, x, p)
s1 = pow(s, f, p)
h = pow(g, f*q, p)
t = discrete_log(p, s1, h)
g2 = pow(g, z*t, p)
g3 = igcdex(g2, p)[0]
r = r1*g3 % p
#assert pow(r, q, p) == s
res = [r]
h = pow(g, (p - 1) // q, p)
#assert pow(h, q, p) == 1
hx = r
for i in range(q - 1):
hx = (hx*h) % p
res.append(hx)
if all_roots:
res.sort()
return res
return min(res)
def _help(m, prime_modulo_method, diff_method, expr_val):
"""
Helper function for _nthroot_mod_composite and polynomial_congruence.
Parameters
==========
m : positive integer
prime_modulo_method : function to calculate the root of the congruence
equation for the prime divisors of m
diff_method : function to calculate derivative of expression at any
given point
expr_val : function to calculate value of the expression at any
given point
"""
from sympy.ntheory.modular import crt
f = factorint(m)
dd = {}
for p, e in f.items():
tot_roots = set()
if e == 1:
tot_roots.update(prime_modulo_method(p))
else:
for root in prime_modulo_method(p):
diff = diff_method(root, p)
if diff != 0:
ppow = p
m_inv = mod_inverse(diff, p)
for j in range(1, e):
ppow *= p
root = (root - expr_val(root, ppow) * m_inv) % ppow
tot_roots.add(root)
else:
new_base = p
roots_in_base = {root}
while new_base < pow(p, e):
new_base *= p
new_roots = set()
for k in roots_in_base:
if expr_val(k, new_base)!= 0:
continue
while k not in new_roots:
new_roots.add(k)
k = (k + (new_base // p)) % new_base
roots_in_base = new_roots
tot_roots = tot_roots | roots_in_base
if tot_roots == set():
return []
dd[pow(p, e)] = tot_roots
a = []
m = []
for x, y in dd.items():
m.append(x)
a.append(list(y))
return sorted(set(crt(m, list(i))[0] for i in cartes(*a)))
def _nthroot_mod_composite(a, n, m):
"""
Find the solutions to ``x**n = a mod m`` when m is not prime.
"""
return _help(m,
lambda p: nthroot_mod(a, n, p, True),
lambda root, p: (pow(root, n - 1, p) * (n % p)) % p,
lambda root, p: (pow(root, n, p) - a) % p)
def nthroot_mod(a, n, p, all_roots=False):
"""
Find the solutions to ``x**n = a mod p``
Parameters
==========
a : integer
n : positive integer
p : positive integer
all_roots : if False returns the smallest root, else the list of roots
Examples
========
>>> from sympy.ntheory.residue_ntheory import nthroot_mod
>>> nthroot_mod(11, 4, 19)
8
>>> nthroot_mod(11, 4, 19, True)
[8, 11]
>>> nthroot_mod(68, 3, 109)
23
"""
from sympy.core.numbers import igcdex
a = a % p
a, n, p = as_int(a), as_int(n), as_int(p)
if n == 2:
return sqrt_mod(a, p, all_roots)
# see Hackman "Elementary Number Theory" (2009), page 76
if not isprime(p):
return _nthroot_mod_composite(a, n, p)
if a % p == 0:
return [0]
if not is_nthpow_residue(a, n, p):
return [] if all_roots else None
if (p - 1) % n == 0:
return _nthroot_mod1(a, n, p, all_roots)
# The roots of ``x**n - a = 0 (mod p)`` are roots of
# ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)``
pa = n
pb = p - 1
b = 1
if pa < pb:
a, pa, b, pb = b, pb, a, pa
while pb:
# x**pa - a = 0; x**pb - b = 0
# x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a =
# b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p
q, r = divmod(pa, pb)
c = pow(b, q, p)
c = igcdex(c, p)[0]
c = (c * a) % p
pa, pb = pb, r
a, b = b, c
if pa == 1:
if all_roots:
res = [a]
else:
res = a
elif pa == 2:
return sqrt_mod(a, p , all_roots)
else:
res = _nthroot_mod1(a, pa, p, all_roots)
return res
def quadratic_residues(p):
"""
Returns the list of quadratic residues.
Examples
========
>>> from sympy.ntheory.residue_ntheory import quadratic_residues
>>> quadratic_residues(7)
[0, 1, 2, 4]
"""
p = as_int(p)
r = set()
for i in range(p // 2 + 1):
r.add(pow(i, 2, p))
return sorted(list(r))
def legendre_symbol(a, p):
r"""
Returns the Legendre symbol `(a / p)`.
For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
defined as
.. math ::
\genfrac(){}{}{a}{p} = \begin{cases}
0 & \text{if } p \text{ divides } a\\
1 & \text{if } a \text{ is a quadratic residue modulo } p\\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
\end{cases}
Parameters
==========
a : integer
p : odd prime
Examples
========
>>> from sympy.ntheory import legendre_symbol
>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
See Also
========
is_quad_residue, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if not isprime(p) or p == 2:
raise ValueError("p should be an odd prime")
a = a % p
if not a:
return 0
if pow(a, (p - 1) // 2, p) == 1:
return 1
return -1
def jacobi_symbol(m, n):
r"""
Returns the Jacobi symbol `(m / n)`.
For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
is defined as the product of the Legendre symbols corresponding to the
prime factors of ``n``:
.. math ::
\genfrac(){}{}{m}{n} =
\genfrac(){}{}{m}{p^{1}}^{\alpha_1}
\genfrac(){}{}{m}{p^{2}}^{\alpha_2}
...
\genfrac(){}{}{m}{p^{k}}^{\alpha_k}
\text{ where } n =
p_1^{\alpha_1}
p_2^{\alpha_2}
...
p_k^{\alpha_k}
Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
then ``m`` is a quadratic nonresidue modulo ``n``.
But, unlike the Legendre symbol, if the Jacobi symbol
`\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
modulo ``n``.
Parameters
==========
m : integer
n : odd positive integer
Examples
========
>>> from sympy.ntheory import jacobi_symbol, legendre_symbol
>>> from sympy import Mul, S
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
be demonstrated as follows:
>>> L = legendre_symbol
>>> S(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
See Also
========
is_quad_residue, legendre_symbol
"""
m, n = as_int(m), as_int(n)
if n < 0 or not n % 2:
raise ValueError("n should be an odd positive integer")
if m < 0 or m > n:
m = m % n
if not m:
return int(n == 1)
if n == 1 or m == 1:
return 1
if igcd(m, n) != 1:
return 0
j = 1
if m < 0:
m = -m
if n % 4 == 3:
j = -j
while m != 0:
while m % 2 == 0 and m > 0:
m >>= 1
if n % 8 in [3, 5]:
j = -j
m, n = n, m
if m % 4 == 3 and n % 4 == 3:
j = -j
m %= n
if n != 1:
j = 0
return j
class mobius(Function):
"""
Mobius function maps natural number to {-1, 0, 1}
It is defined as follows:
1) `1` if `n = 1`.
2) `0` if `n` has a squared prime factor.
3) `(-1)^k` if `n` is a square-free positive integer with `k`
number of prime factors.
It is an important multiplicative function in number theory
and combinatorics. It has applications in mathematical series,
algebraic number theory and also physics (Fermion operator has very
concrete realization with Mobius Function model).
Parameters
==========
n : positive integer
Examples
========
>>> from sympy.ntheory import mobius
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
.. [2] Thomas Koshy "Elementary Number Theory with Applications"
"""
@classmethod
def eval(cls, n):
if n.is_integer:
if n.is_positive is not True:
raise ValueError("n should be a positive integer")
else:
raise TypeError("n should be an integer")
if n.is_prime:
return S.NegativeOne
elif n is S.One:
return S.One
elif n.is_Integer:
a = factorint(n)
if any(i > 1 for i in a.values()):
return S.Zero
return S.NegativeOne**len(a)
def _discrete_log_trial_mul(n, a, b, order=None):
"""
Trial multiplication algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm finds the discrete logarithm using exhaustive search. This
naive method is used as fallback algorithm of ``discrete_log`` when the
group order is very small.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul
>>> _discrete_log_trial_mul(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n
x = 1
for i in range(order):
if x == a:
return i
x = x * b % n
raise ValueError("Log does not exist")
def _discrete_log_shanks_steps(n, a, b, order=None):
"""
Baby-step giant-step algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm is a time-memory trade-off of the method of exhaustive
search. It uses `O(sqrt(m))` memory, where `m` is the group order.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps
>>> _discrete_log_shanks_steps(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
m = isqrt(order) + 1
T = dict()
x = 1
for i in range(m):
T[x] = i
x = x * b % n
z = mod_inverse(b, n)
z = pow(z, m, n)
x = a
for i in range(m):
if x in T:
return i * m + T[x]
x = x * z % n
raise ValueError("Log does not exist")
def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None):
"""
Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
It is a randomized algorithm with the same expected running time as
``_discrete_log_shanks_steps``, but requires a negligible amount of memory.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho
>>> _discrete_log_pollard_rho(227, 3**7, 3)
7
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
prng = Random()
if rseed is not None:
prng.seed(rseed)
for i in range(retries):
aa = prng.randint(1, order - 1)
ba = prng.randint(1, order - 1)
xa = pow(b, aa, n) * pow(a, ba, n) % n
c = xa % 3
if c == 0:
xb = a * xa % n
ab = aa
bb = (ba + 1) % order
elif c == 1:
xb = xa * xa % n
ab = (aa + aa) % order
bb = (ba + ba) % order
else:
xb = b * xa % n
ab = (aa + 1) % order
bb = ba
for j in range(order):
c = xa % 3
if c == 0:
xa = a * xa % n
ba = (ba + 1) % order
elif c == 1:
xa = xa * xa % n
aa = (aa + aa) % order
ba = (ba + ba) % order
else:
xa = b * xa % n
aa = (aa + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
if xa == xb:
r = (ba - bb) % order
try:
e = mod_inverse(r, order) * (ab - aa) % order
if (pow(b, e, n) - a) % n == 0:
return e
except ValueError:
pass
break
raise ValueError("Pollard's Rho failed to find logarithm")
def _discrete_log_pohlig_hellman(n, a, b, order=None):
"""
Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
In order to compute the discrete logarithm, the algorithm takes advantage
of the factorization of the group order. It is more efficient when the
group order factors into many small primes.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman
>>> _discrete_log_pohlig_hellman(251, 210, 71)
197
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
from .modular import crt
a %= n
b %= n
if order is None:
order = n_order(b, n)
f = factorint(order)
l = [0] * len(f)
for i, (pi, ri) in enumerate(f.items()):
for j in range(ri):
gj = pow(b, l[i], n)
aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n)
bj = pow(b, order // pi, n)
cj = discrete_log(n, aj, bj, pi, True)
l[i] += cj * pi**j
d, _ = crt([pi**ri for pi, ri in f.items()], l)
return d
def discrete_log(n, a, b, order=None, prime_order=None):
"""
Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``.
This is a recursive function to reduce the discrete logarithm problem in
cyclic groups of composite order to the problem in cyclic groups of prime
order.
It employs different algorithms depending on the problem (subgroup order
size, prime order or not):
* Trial multiplication
* Baby-step giant-step
* Pollard's Rho
* Pohlig-Hellman
Examples
========
>>> from sympy.ntheory import discrete_log
>>> discrete_log(41, 15, 7)
3
References
==========
.. [1] http://mathworld.wolfram.com/DiscreteLogarithm.html
.. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
n, a, b = as_int(n), as_int(a), as_int(b)
if order is None:
order = n_order(b, n)
if prime_order is None:
prime_order = isprime(order)
if order < 1000:
return _discrete_log_trial_mul(n, a, b, order)
elif prime_order:
if order < 1000000000000:
return _discrete_log_shanks_steps(n, a, b, order)
return _discrete_log_pollard_rho(n, a, b, order)
return _discrete_log_pohlig_hellman(n, a, b, order)
def quadratic_congruence(a, b, c, p):
"""
Find the solutions to ``a x**2 + b x + c = 0 mod p
a : integer
b : integer
c : integer
p : positive integer
"""
from sympy.polys.galoistools import linear_congruence
a = as_int(a)
b = as_int(b)
c = as_int(c)
p = as_int(p)
a = a % p
b = b % p
c = c % p
if a == 0:
return linear_congruence(b, -c, p)
if p == 2:
roots = []
if c % 2 == 0:
roots.append(0)
if (a + b + c) % 2 == 0:
roots.append(1)
return roots
if isprime(p):
inv_a = mod_inverse(a, p)
b *= inv_a
c *= inv_a
if b % 2 == 1:
b = b + p
d = ((b * b) // 4 - c) % p
y = sqrt_mod(d, p, all_roots=True)
res = set()
for i in y:
res.add((i - b // 2) % p)
return sorted(res)
y = sqrt_mod(b * b - 4 * a * c , 4 * a * p, all_roots=True)
res = set()
for i in y:
root = linear_congruence(2 * a, i - b, 4 * a * p)
for j in root:
res.add(j % p)
return sorted(res)
def _polynomial_congruence_prime(coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the root of a polynomial modulo prime number
by naive search from [0, p).
Parameters
==========
coefficients : list of integers
p : prime number
"""
roots = []
rank = len(coefficients)
for i in range(0, p):
f_val = 0
for coeff in range(0,rank - 1):
f_val = (f_val + pow(i, int(rank - coeff - 1), p) * coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
if f_val % p == 0:
roots.append(i)
return roots
def _diff_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the derivative of the polynomial evaluated at the
root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
diff = 0
rank = len(coefficients)
for coeff in range(0, rank - 1):
if not coefficients[coeff]:
continue
diff = (diff + pow(root, rank - coeff - 2, p)*(rank - coeff - 1)*
coefficients[coeff]) % p
return diff % p
def _val_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns value of the polynomial at root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
rank = len(coefficients)
f_val = 0
for coeff in range(0, rank - 1):
f_val = (f_val + pow(root, rank - coeff - 1, p)*
coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
return f_val % p
def _valid_expr(expr):
"""
return coefficients of expr if it is a univariate polynomial
with integer coefficients else raise a ValueError.
"""
from sympy import Poly
from sympy.polys.domains import ZZ
if not expr.is_polynomial():
raise ValueError("The expression should be a polynomial")
polynomial = Poly(expr)
if not polynomial.is_univariate:
raise ValueError("The expression should be univariate")
if not polynomial.domain == ZZ:
raise ValueError("The expression should should have integer coefficients")
return polynomial.all_coeffs()
def polynomial_congruence(expr, m):
"""
Find the solutions to a polynomial congruence equation modulo m.
Parameters
==========
coefficients : Coefficients of the Polynomial
m : positive integer
Examples
========
>>> from sympy.ntheory import polynomial_congruence
>>> from sympy import Poly
>>> from sympy.abc import x
>>> expr = x**6 - 2*x**5 -35
>>> polynomial_congruence(expr, 6125)
[3257]
"""
coefficients = _valid_expr(expr)
coefficients = [num % m for num in coefficients]
rank = len(coefficients)
if rank == 3:
return quadratic_congruence(*coefficients, m)
if rank == 2:
return quadratic_congruence(0, *coefficients, m)
if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients):
return nthroot_mod(-coefficients[-1], rank - 1, m, True)
if isprime(m):
return _polynomial_congruence_prime(coefficients, m)
return _help(m,
lambda p: _polynomial_congruence_prime(coefficients, p),
lambda root, p: _diff_poly(root, coefficients, p),
lambda root, p: _val_poly(root, coefficients, p))
|
b4b7d7cc65d2002035d0243cc0525c0ac222c4d0c92b78a2fe03b73495e3377b | from __future__ import print_function, division
from sympy.core.compatibility import as_int
def binomial_coefficients(n):
"""Return a dictionary containing pairs :math:`{(k1,k2) : C_kn}` where
:math:`C_kn` are binomial coefficients and :math:`n=k1+k2`.
Examples
========
>>> from sympy.ntheory import binomial_coefficients
>>> binomial_coefficients(9)
{(0, 9): 1, (1, 8): 9, (2, 7): 36, (3, 6): 84,
(4, 5): 126, (5, 4): 126, (6, 3): 84, (7, 2): 36, (8, 1): 9, (9, 0): 1}
See Also
========
binomial_coefficients_list, multinomial_coefficients
"""
n = as_int(n)
d = {(0, n): 1, (n, 0): 1}
a = 1
for k in range(1, n//2 + 1):
a = (a * (n - k + 1))//k
d[k, n - k] = d[n - k, k] = a
return d
def binomial_coefficients_list(n):
""" Return a list of binomial coefficients as rows of the Pascal's
triangle.
Examples
========
>>> from sympy.ntheory import binomial_coefficients_list
>>> binomial_coefficients_list(9)
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
See Also
========
binomial_coefficients, multinomial_coefficients
"""
n = as_int(n)
d = [1] * (n + 1)
a = 1
for k in range(1, n//2 + 1):
a = (a * (n - k + 1))//k
d[k] = d[n - k] = a
return d
def multinomial_coefficients(m, n):
r"""Return a dictionary containing pairs ``{(k1,k2,..,km) : C_kn}``
where ``C_kn`` are multinomial coefficients such that
``n=k1+k2+..+km``.
Examples
========
>>> from sympy.ntheory import multinomial_coefficients
>>> multinomial_coefficients(2, 5) # indirect doctest
{(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}
Notes
=====
The algorithm is based on the following result:
.. math::
\binom{n}{k_1, \ldots, k_m} =
\frac{k_1 + 1}{n - k_1} \sum_{i=2}^m \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}
Code contributed to Sage by Yann Laigle-Chapuy, copied with permission
of the author.
See Also
========
binomial_coefficients_list, binomial_coefficients
"""
m = as_int(m)
n = as_int(n)
if not m:
if n:
return {}
return {(): 1}
if m == 2:
return binomial_coefficients(n)
if m >= 2*n and n > 1:
return dict(multinomial_coefficients_iterator(m, n))
t = [n] + [0] * (m - 1)
r = {tuple(t): 1}
if n:
j = 0 # j will be the leftmost nonzero position
else:
j = m
# enumerate tuples in co-lex order
while j < m - 1:
# compute next tuple
tj = t[j]
if j:
t[j] = 0
t[0] = tj
if tj > 1:
t[j + 1] += 1
j = 0
start = 1
v = 0
else:
j += 1
start = j + 1
v = r[tuple(t)]
t[j] += 1
# compute the value
# NB: the initialization of v was done above
for k in range(start, m):
if t[k]:
t[k] -= 1
v += r[tuple(t)]
t[k] += 1
t[0] -= 1
r[tuple(t)] = (v * tj) // (n - t[0])
return r
def multinomial_coefficients_iterator(m, n, _tuple=tuple):
"""multinomial coefficient iterator
This routine has been optimized for `m` large with respect to `n` by taking
advantage of the fact that when the monomial tuples `t` are stripped of
zeros, their coefficient is the same as that of the monomial tuples from
``multinomial_coefficients(n, n)``. Therefore, the latter coefficients are
precomputed to save memory and time.
>>> from sympy.ntheory.multinomial import multinomial_coefficients
>>> m53, m33 = multinomial_coefficients(5,3), multinomial_coefficients(3,3)
>>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)]
True
Examples
========
>>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator
>>> it = multinomial_coefficients_iterator(20,3)
>>> next(it)
((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
"""
m = as_int(m)
n = as_int(n)
if m < 2*n or n == 1:
mc = multinomial_coefficients(m, n)
for k, v in mc.items():
yield(k, v)
else:
mc = multinomial_coefficients(n, n)
mc1 = {}
for k, v in mc.items():
mc1[_tuple(filter(None, k))] = v
mc = mc1
t = [n] + [0] * (m - 1)
t1 = _tuple(t)
b = _tuple(filter(None, t1))
yield (t1, mc[b])
if n:
j = 0 # j will be the leftmost nonzero position
else:
j = m
# enumerate tuples in co-lex order
while j < m - 1:
# compute next tuple
tj = t[j]
if j:
t[j] = 0
t[0] = tj
if tj > 1:
t[j + 1] += 1
j = 0
else:
j += 1
t[j] += 1
t[0] -= 1
t1 = _tuple(t)
b = _tuple(filter(None, t1))
yield (t1, mc[b])
|
83f39374085c73c86a3a449576197c4f27ffc8b67d7d204ac2148190cf230c7b | """
Primality testing
"""
from __future__ import print_function, division
from sympy.core.compatibility import as_int
from mpmath.libmp import bitcount as _bitlength
def _int_tuple(*i):
return tuple(int(_) for _ in i)
def is_euler_pseudoprime(n, b):
"""Returns True if n is prime or an Euler pseudoprime to base b, else False.
Euler Pseudoprime : In arithmetic, an odd composite integer n is called an
euler pseudoprime to base a, if a and n are coprime and satisfy the modular
arithmetic congruence relation :
a ^ (n-1)/2 = + 1(mod n) or
a ^ (n-1)/2 = - 1(mod n)
(where mod refers to the modulo operation).
Examples
========
>>> from sympy.ntheory.primetest import is_euler_pseudoprime
>>> is_euler_pseudoprime(2, 5)
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
"""
from sympy.ntheory.factor_ import trailing
if not mr(n, [b]):
return False
n = as_int(n)
r = n - 1
c = pow(b, r >> trailing(r), n)
if c == 1:
return True
while True:
if c == n - 1:
return True
c = pow(c, 2, n)
if c == 1:
return False
def is_square(n, prep=True):
"""Return True if n == a * a for some integer a, else False.
If n is suspected of *not* being a square then this is a
quick method of confirming that it is not.
Examples
========
>>> from sympy.ntheory.primetest import is_square
>>> is_square(25)
True
>>> is_square(2)
False
References
==========
[1] http://mersenneforum.org/showpost.php?p=110896
See Also
========
sympy.core.power.integer_nthroot
"""
if prep:
n = as_int(n)
if n < 0:
return False
if n in [0, 1]:
return True
m = n & 127
if not ((m*0x8bc40d7d) & (m*0xa1e2f5d1) & 0x14020a):
m = n % 63
if not ((m*0x3d491df7) & (m*0xc824a9f9) & 0x10f14008):
from sympy.core.power import integer_nthroot
return integer_nthroot(n, 2)[1]
return False
def _test(n, base, s, t):
"""Miller-Rabin strong pseudoprime test for one base.
Return False if n is definitely composite, True if n is
probably prime, with a probability greater than 3/4.
"""
# do the Fermat test
b = pow(base, t, n)
if b == 1 or b == n - 1:
return True
else:
for j in range(1, s):
b = pow(b, 2, n)
if b == n - 1:
return True
# see I. Niven et al. "An Introduction to Theory of Numbers", page 78
if b == 1:
return False
return False
def mr(n, bases):
"""Perform a Miller-Rabin strong pseudoprime test on n using a
given list of bases/witnesses.
References
==========
- Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 135-138
A list of thresholds and the bases they require are here:
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test
Examples
========
>>> from sympy.ntheory.primetest import mr
>>> mr(1373651, [2, 3])
False
>>> mr(479001599, [31, 73])
True
"""
from sympy.ntheory.factor_ import trailing
from sympy.polys.domains import ZZ
n = as_int(n)
if n < 2:
return False
# remove powers of 2 from n-1 (= t * 2**s)
s = trailing(n - 1)
t = n >> s
for base in bases:
# Bases >= n are wrapped, bases < 2 are invalid
if base >= n:
base %= n
if base >= 2:
base = ZZ(base)
if not _test(n, base, s, t):
return False
return True
def _lucas_sequence(n, P, Q, k):
"""Return the modular Lucas sequence (U_k, V_k, Q_k).
Given a Lucas sequence defined by P, Q, returns the kth values for
U and V, along with Q^k, all modulo n. This is intended for use with
possibly very large values of n and k, where the combinatorial functions
would be completely unusable.
The modular Lucas sequences are used in numerous places in number theory,
especially in the Lucas compositeness tests and the various n + 1 proofs.
Examples
========
>>> from sympy.ntheory.primetest import _lucas_sequence
>>> N = 10**2000 + 4561
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
(0, 2, 1)
"""
D = P*P - 4*Q
if n < 2:
raise ValueError("n must be >= 2")
if k < 0:
raise ValueError("k must be >= 0")
if D == 0:
raise ValueError("D must not be zero")
if k == 0:
return _int_tuple(0, 2, Q)
U = 1
V = P
Qk = Q
b = _bitlength(k)
if Q == 1:
# Optimization for extra strong tests.
while b > 1:
U = (U*V) % n
V = (V*V - 2) % n
b -= 1
if (k >> (b - 1)) & 1:
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
elif P == 1 and Q == -1:
# Small optimization for 50% of Selfridge parameters.
while b > 1:
U = (U*V) % n
if Qk == 1:
V = (V*V - 2) % n
else:
V = (V*V + 2) % n
Qk = 1
b -= 1
if (k >> (b-1)) & 1:
U, V = U + V, V + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
Qk = -1
else:
# The general case with any P and Q.
while b > 1:
U = (U*V) % n
V = (V*V - 2*Qk) % n
Qk *= Qk
b -= 1
if (k >> (b - 1)) & 1:
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
Qk *= Q
Qk %= n
return _int_tuple(U % n, V % n, Qk)
def _lucas_selfridge_params(n):
"""Calculates the Selfridge parameters (D, P, Q) for n. This is
method A from page 1401 of Baillie and Wagstaff.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
"""
from sympy.core import igcd
from sympy.ntheory.residue_ntheory import jacobi_symbol
D = 5
while True:
g = igcd(abs(D), n)
if g > 1 and g != n:
return (0, 0, 0)
if jacobi_symbol(D, n) == -1:
break
if D > 0:
D = -D - 2
else:
D = -D + 2
return _int_tuple(D, 1, (1 - D)/4)
def _lucas_extrastrong_params(n):
"""Calculates the "extra strong" parameters (D, P, Q) for n.
References
==========
- OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
"""
from sympy.core import igcd
from sympy.ntheory.residue_ntheory import jacobi_symbol
P, Q, D = 3, 1, 5
while True:
g = igcd(D, n)
if g > 1 and g != n:
return (0, 0, 0)
if jacobi_symbol(D, n) == -1:
break
P += 1
D = P*P - 4
return _int_tuple(D, P, Q)
def is_lucas_prp(n):
"""Standard Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a Lucas probable
prime.
This is typically used in combination with the Miller-Rabin test.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- OEIS A217120: Lucas Pseudoprimes
https://oeis.org/A217120
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp
>>> for i in range(10000):
... if is_lucas_prp(i) and not isprime(i):
... print(i)
323
377
1159
1829
3827
5459
5777
9071
9179
"""
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_selfridge_params(n)
if D == 0:
return False
U, V, Qk = _lucas_sequence(n, P, Q, n+1)
return U == 0
def is_strong_lucas_prp(n):
"""Strong Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a strong Lucas
probable prime.
This is often used in combination with the Miller-Rabin test, and
in particular, when combined with M-R base 2 creates the strong BPSW test.
References
==========
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- OEIS A217255: Strong Lucas Pseudoprimes
https://oeis.org/A217255
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
>>> for i in range(20000):
... if is_strong_lucas_prp(i) and not isprime(i):
... print(i)
5459
5777
10877
16109
18971
"""
from sympy.ntheory.factor_ import trailing
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_selfridge_params(n)
if D == 0:
return False
# remove powers of 2 from n+1 (= k * 2**s)
s = trailing(n + 1)
k = (n+1) >> s
U, V, Qk = _lucas_sequence(n, P, Q, k)
if U == 0 or V == 0:
return True
for r in range(1, s):
V = (V*V - 2*Qk) % n
if V == 0:
return True
Qk = pow(Qk, 2, n)
return False
def is_extra_strong_lucas_prp(n):
"""Extra Strong Lucas compositeness test. Returns False if n is
definitely composite, and True if n is a "extra strong" Lucas probable
prime.
The parameters are selected using P = 3, Q = 1, then incrementing P until
(D|n) == -1. The test itself is as defined in Grantham 2000, from the
Mo and Jones preprint. The parameter selection and test are the same as
used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
page on Wikipedia.
With these parameters, there are no counterexamples below 2^64 nor any
known above that range. It is 20-50% faster than the strong test.
Because of the different parameters selected, there is no relationship
between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
In particular, one is not a subset of the other.
References
==========
- "Frobenius Pseudoprimes", Jon Grantham, 2000.
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/
- OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
>>> for i in range(20000):
... if is_extra_strong_lucas_prp(i) and not isprime(i):
... print(i)
989
3239
5777
10877
"""
# Implementation notes:
# 1) the parameters differ from Thomas R. Nicely's. His parameter
# selection leads to pseudoprimes that overlap M-R tests, and
# contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
# sequence must have Q=1. See Grantham theorem 2.3, any of the
# references on the MathWorld page, or run it and see Q=-1 is wrong.
from sympy.ntheory.factor_ import trailing
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if is_square(n, False):
return False
D, P, Q = _lucas_extrastrong_params(n)
if D == 0:
return False
# remove powers of 2 from n+1 (= k * 2**s)
s = trailing(n + 1)
k = (n+1) >> s
U, V, Qk = _lucas_sequence(n, P, Q, k)
if U == 0 and (V == 2 or V == n - 2):
return True
if V == 0:
return True
for r in range(1, s):
V = (V*V - 2) % n
if V == 0:
return True
return False
def isprime(n):
"""
Test if n is a prime number (True) or not (False). For n < 2^64 the
answer is definitive; larger n values have a small probability of actually
being pseudoprimes.
Negative numbers (e.g. -2) are not considered prime.
The first step is looking for trivial factors, which if found enables
a quick return. Next, if the sieve is large enough, use bisection search
on the sieve. For small numbers, a set of deterministic Miller-Rabin
tests are performed with bases that are known to have no counterexamples
in their range. Finally if the number is larger than 2^64, a strong
BPSW test is performed. While this is a probable prime test and we
believe counterexamples exist, there are no known counterexamples.
Examples
========
>>> from sympy.ntheory import isprime
>>> isprime(13)
True
>>> isprime(13.0) # limited precision
False
>>> isprime(15)
False
Notes
=====
This routine is intended only for integer input, not numerical
expressions which may represent numbers. Floats are also
rejected as input because they represent numbers of limited
precision. While it is tempting to permit 7.0 to represent an
integer there are errors that may "pass silently" if this is
allowed:
>>> from sympy import Float, S
>>> int(1e3) == 1e3 == 10**3
True
>>> int(1e23) == 1e23
True
>>> int(1e23) == 10**23
False
>>> near_int = 1 + S(1)/10**19
>>> near_int == int(near_int)
False
>>> n = Float(near_int, 10) # truncated by precision
>>> n == int(n)
True
>>> n = Float(near_int, 20)
>>> n == int(n)
False
See Also
========
sympy.ntheory.generate.primerange : Generates all primes in a given range
sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n
sympy.ntheory.generate.prime : Return the nth prime
References
==========
- https://en.wikipedia.org/wiki/Strong_pseudoprime
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
http://mpqs.free.fr/LucasPseudoprimes.pdf
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
"""
try:
n = as_int(n)
except ValueError:
return False
# Step 1, do quick composite testing via trial division. The individual
# modulo tests benchmark faster than one or two primorial igcds for me.
# The point here is just to speedily handle small numbers and many
# composites. Step 2 only requires that n <= 2 get handled here.
if n in [2, 3, 5]:
return True
if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
return False
if n < 49:
return True
if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
return False
if n < 2809:
return True
if n <= 23001:
return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951]
# bisection search on the sieve if the sieve is large enough
from sympy.ntheory.generate import sieve as s
if n <= s._list[-1]:
l, u = s.search(n)
return l == u
# If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
# This should be a bit faster than our step 2, and for large values will
# be a lot faster than our step 3 (C+GMP vs. Python).
from sympy.core.compatibility import HAS_GMPY
if HAS_GMPY == 2:
from gmpy2 import is_strong_prp, is_strong_selfridge_prp
return is_strong_prp(n, 2) and is_strong_selfridge_prp(n)
# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
# https://miller-rabin.appspot.com/
# for lists. We have made sure the M-R routine will successfully handle
# bases larger than n, so we can use the minimal set.
if n < 341531:
return mr(n, [9345883071009581737])
if n < 885594169:
return mr(n, [725270293939359937, 3569819667048198375])
if n < 350269456337:
return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
if n < 55245642489451:
return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
if n < 7999252175582851:
return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
if n < 585226005592931977:
return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
if n < 18446744073709551616:
return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
# We could do this instead at any point:
#if n < 18446744073709551616:
# return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Here are tests that are safe for MR routines that don't understand
# large bases.
#if n < 9080191:
# return mr(n, [31, 73])
#if n < 19471033:
# return mr(n, [2, 299417])
#if n < 38010307:
# return mr(n, [2, 9332593])
#if n < 316349281:
# return mr(n, [11000544, 31481107])
#if n < 4759123141:
# return mr(n, [2, 7, 61])
#if n < 105936894253:
# return mr(n, [2, 1005905886, 1340600841])
#if n < 31858317218647:
# return mr(n, [2, 642735, 553174392, 3046413974])
#if n < 3071837692357849:
# return mr(n, [2, 75088, 642735, 203659041, 3613982119])
#if n < 18446744073709551616:
# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
# Step 3: BPSW.
#
# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
# 44.0s old isprime using 46 bases
# 5.3s strong BPSW + one random base
# 4.3s extra strong BPSW + one random base
# 4.1s strong BPSW
# 3.2s extra strong BPSW
# Classic BPSW from page 1401 of the paper. See alternate ideas below.
return mr(n, [2]) and is_strong_lucas_prp(n)
# Using extra strong test, which is somewhat faster
#return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Add a random M-R base
#import random
#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
def is_gaussian_prime(num):
r"""Test if num is a Gaussian prime number.
References
==========
.. [1] https://oeis.org/wiki/Gaussian_primes
"""
from sympy import sympify
num = sympify(num)
a, b = num.as_real_imag()
a = as_int(a)
b = as_int(b)
if a == 0:
b = abs(b)
return isprime(b) and b % 4 == 3
elif b == 0:
a = abs(a)
return isprime(a) and a % 4 == 3
return isprime(a**2 + b**2)
|
c62c992d79aa6da58f646c37b7d675b916cbeba99b8f4abbaaef28dc4cedb785 | from __future__ import print_function, division
from sympy import Integer
import sympy.polys
import sys
if sys.version_info < (3,5):
from fractions import gcd
else:
from math import gcd
def egyptian_fraction(r, algorithm="Greedy"):
"""
Return the list of denominators of an Egyptian fraction
expansion [1]_ of the said rational `r`.
Parameters
==========
r : Rational
a positive rational number.
algorithm : { "Greedy", "Graham Jewett", "Takenouchi", "Golomb" }, optional
Denotes the algorithm to be used (the default is "Greedy").
Examples
========
>>> from sympy import Rational
>>> from sympy.ntheory.egyptian_fraction import egyptian_fraction
>>> egyptian_fraction(Rational(3, 7))
[3, 11, 231]
>>> egyptian_fraction(Rational(3, 7), "Graham Jewett")
[7, 8, 9, 56, 57, 72, 3192]
>>> egyptian_fraction(Rational(3, 7), "Takenouchi")
[4, 7, 28]
>>> egyptian_fraction(Rational(3, 7), "Golomb")
[3, 15, 35]
>>> egyptian_fraction(Rational(11, 5), "Golomb")
[1, 2, 3, 4, 9, 234, 1118, 2580]
See Also
========
sympy.core.numbers.Rational
Notes
=====
Currently the following algorithms are supported:
1) Greedy Algorithm
Also called the Fibonacci-Sylvester algorithm [2]_.
At each step, extract the largest unit fraction less
than the target and replace the target with the remainder.
It has some distinct properties:
a) Given `p/q` in lowest terms, generates an expansion of maximum
length `p`. Even as the numerators get large, the number of
terms is seldom more than a handful.
b) Uses minimal memory.
c) The terms can blow up (standard examples of this are 5/121 and
31/311). The denominator is at most squared at each step
(doubly-exponential growth) and typically exhibits
singly-exponential growth.
2) Graham Jewett Algorithm
The algorithm suggested by the result of Graham and Jewett.
Note that this has a tendency to blow up: the length of the
resulting expansion is always ``2**(x/gcd(x, y)) - 1``. See [3]_.
3) Takenouchi Algorithm
The algorithm suggested by Takenouchi (1921).
Differs from the Graham-Jewett algorithm only in the handling
of duplicates. See [3]_.
4) Golomb's Algorithm
A method given by Golumb (1962), using modular arithmetic and
inverses. It yields the same results as a method using continued
fractions proposed by Bleicher (1972). See [4]_.
If the given rational is greater than or equal to 1, a greedy algorithm
of summing the harmonic sequence 1/1 + 1/2 + 1/3 + ... is used, taking
all the unit fractions of this sequence until adding one more would be
greater than the given number. This list of denominators is prefixed
to the result from the requested algorithm used on the remainder. For
example, if r is 8/3, using the Greedy algorithm, we get [1, 2, 3, 4,
5, 6, 7, 14, 420], where the beginning of the sequence, [1, 2, 3, 4, 5,
6, 7] is part of the harmonic sequence summing to 363/140, leaving a
remainder of 31/420, which yields [14, 420] by the Greedy algorithm.
The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, 3,
4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820], and so on.
References
==========
.. [1] https://en.wikipedia.org/wiki/Egyptian_fraction
.. [2] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
.. [3] https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html
.. [4] http://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf
"""
if r <= 0:
raise ValueError("Value must be positive")
prefix, rem = egypt_harmonic(r)
if rem == 0:
return prefix
x, y = rem.as_numer_denom()
if algorithm == "Greedy":
return prefix + egypt_greedy(x, y)
elif algorithm == "Graham Jewett":
return prefix + egypt_graham_jewett(x, y)
elif algorithm == "Takenouchi":
return prefix + egypt_takenouchi(x, y)
elif algorithm == "Golomb":
return prefix + egypt_golomb(x, y)
else:
raise ValueError("Entered invalid algorithm")
def egypt_greedy(x, y):
if x == 1:
return [y]
else:
a = (-y) % (x)
b = y*(y//x + 1)
c = gcd(a, b)
if c > 1:
num, denom = a//c, b//c
else:
num, denom = a, b
return [y//x + 1] + egypt_greedy(num, denom)
def egypt_graham_jewett(x, y):
l = [y] * x
# l is now a list of integers whose reciprocals sum to x/y.
# we shall now proceed to manipulate the elements of l without
# changing the reciprocated sum until all elements are unique.
while len(l) != len(set(l)):
l.sort() # so the list has duplicates. find a smallest pair
for i in range(len(l) - 1):
if l[i] == l[i + 1]:
break
# we have now identified a pair of identical
# elements: l[i] and l[i + 1].
# now comes the application of the result of graham and jewett:
l[i + 1] = l[i] + 1
# and we just iterate that until the list has no duplicates.
l.append(l[i]*(l[i] + 1))
return sorted(l)
def egypt_takenouchi(x, y):
l = [y] * x
while len(l) != len(set(l)):
l.sort()
for i in range(len(l) - 1):
if l[i] == l[i + 1]:
break
k = l[i]
if k % 2 == 0:
l[i] = l[i] // 2
del l[i + 1]
else:
l[i], l[i + 1] = (k + 1)//2, k*(k + 1)//2
return sorted(l)
def egypt_golomb(x, y):
if x == 1:
return [y]
xp = sympy.polys.ZZ.invert(int(x), int(y))
rv = [Integer(xp*y)]
rv.extend(egypt_golomb((x*xp - 1)//y, xp))
return sorted(rv)
def egypt_harmonic(r):
rv = []
d = Integer(1)
acc = Integer(0)
while acc + 1/d <= r:
acc += 1/d
rv.append(d)
d += 1
return (rv, r - acc)
|
bb4ae599ad5707f3fe14e42cd64559528d5448e3f284ae307ece1352d9693887 | """
Integer factorization
"""
from __future__ import print_function, division
from collections import defaultdict
import random
import math
from sympy.core import sympify
from sympy.core.compatibility import as_int, SYMPY_INTS
from sympy.core.containers import Dict
from sympy.core.evalf import bitcount
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.logic import fuzzy_and
from sympy.core.mul import Mul, prod
from sympy.core.numbers import igcd, ilcm, Rational, Integer
from sympy.core.power import integer_nthroot, Pow
from sympy.core.singleton import S
from .primetest import isprime
from .generate import sieve, primerange, nextprime
from sympy.utilities.misc import filldedent
# Note: This list should be updated whenever new Mersenne primes are found.
# Refer: https://www.mersenne.org/
MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933)
# compute more when needed for i in Mersenne prime exponents
PERFECT = [6] # 2**(i-1)*(2**i-1)
MERSENNES = [3] # 2**i - 1
def _ismersenneprime(n):
global MERSENNES
j = len(MERSENNES)
while n > MERSENNES[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
# conservatively grow the list
MERSENNES.append(2**MERSENNE_PRIME_EXPONENTS[j] - 1)
j += 1
return n in MERSENNES
def _isperfect(n):
global PERFECT
if n % 2 == 0:
j = len(PERFECT)
while n > PERFECT[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
# conservatively grow the list
t = 2**(MERSENNE_PRIME_EXPONENTS[j] - 1)
PERFECT.append(t*(2*t - 1))
j += 1
return n in PERFECT
small_trailing = [0] * 256
for j in range(1,8):
small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j))
def smoothness(n):
"""
Return the B-smooth and B-power smooth values of n.
The smoothness of n is the largest prime factor of n; the power-
smoothness is the largest divisor raised to its multiplicity.
Examples
========
>>> from sympy.ntheory.factor_ import smoothness
>>> smoothness(2**7*3**2)
(3, 128)
>>> smoothness(2**4*13)
(13, 16)
>>> smoothness(2)
(2, 2)
See Also
========
factorint, smoothness_p
"""
if n == 1:
return (1, 1) # not prime, but otherwise this causes headaches
facs = factorint(n)
return max(facs), max(m**facs[m] for m in facs)
def smoothness_p(n, m=-1, power=0, visual=None):
"""
Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...]
where:
1. p**M is the base-p divisor of n
2. sm(p + m) is the smoothness of p + m (m = -1 by default)
3. psm(p + m) is the power smoothness of p + m
The list is sorted according to smoothness (default) or by power smoothness
if power=1.
The smoothness of the numbers to the left (m = -1) or right (m = 1) of a
factor govern the results that are obtained from the p +/- 1 type factoring
methods.
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> smoothness_p(10431, m=1)
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
>>> smoothness_p(10431)
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
>>> smoothness_p(10431, power=1)
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
If visual=True then an annotated string will be returned:
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
This string can also be generated directly from a factorization dictionary
and vice versa:
>>> factorint(17*9)
{3: 2, 17: 1}
>>> smoothness_p(_)
'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16'
>>> smoothness_p(_)
{3: 2, 17: 1}
The table of the output logic is:
====== ====== ======= =======
| Visual
------ ----------------------
Input True False other
====== ====== ======= =======
dict str tuple str
str str tuple dict
tuple str tuple str
n str tuple tuple
mul str tuple tuple
====== ====== ======= =======
See Also
========
factorint, smoothness
"""
from sympy.utilities import flatten
# visual must be True, False or other (stored as None)
if visual in (1, 0):
visual = bool(visual)
elif visual not in (True, False):
visual = None
if isinstance(n, str):
if visual:
return n
d = {}
for li in n.splitlines():
k, v = [int(i) for i in
li.split('has')[0].split('=')[1].split('**')]
d[k] = v
if visual is not True and visual is not False:
return d
return smoothness_p(d, visual=False)
elif type(n) is not tuple:
facs = factorint(n, visual=False)
if power:
k = -1
else:
k = 1
if type(n) is not tuple:
rv = (m, sorted([(f,
tuple([M] + list(smoothness(f + m))))
for f, M in [i for i in facs.items()]],
key=lambda x: (x[1][k], x[0])))
else:
rv = n
if visual is False or (visual is not True) and (type(n) in [int, Mul]):
return rv
lines = []
for dat in rv[1]:
dat = flatten(dat)
dat.insert(2, m)
lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat))
return '\n'.join(lines)
def trailing(n):
"""Count the number of trailing zero digits in the binary
representation of n, i.e. determine the largest power of 2
that divides n.
Examples
========
>>> from sympy import trailing
>>> trailing(128)
7
>>> trailing(63)
0
"""
n = abs(int(n))
if not n:
return 0
low_byte = n & 0xff
if low_byte:
return small_trailing[low_byte]
# 2**m is quick for z up through 2**30
z = bitcount(n) - 1
if isinstance(z, SYMPY_INTS):
if n == 1 << z:
return z
if z < 300:
# fixed 8-byte reduction
t = 8
n >>= 8
while not n & 0xff:
n >>= 8
t += 8
return t + small_trailing[n & 0xff]
# binary reduction important when there might be a large
# number of trailing 0s
t = 0
p = 8
while not n & 1:
while not n & ((1 << p) - 1):
n >>= p
t += p
p *= 2
p //= 2
return t
def multiplicity(p, n):
"""
Find the greatest integer m such that p**m divides n.
Examples
========
>>> from sympy.ntheory import multiplicity
>>> from sympy.core.numbers import Rational as R
>>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
[0, 1, 2, 3, 3]
>>> multiplicity(3, R(1, 9))
-2
Note: when checking for the multiplicity of a number in a
large factorial it is most efficient to send it as an unevaluated
factorial or to call ``multiplicity_in_factorial`` directly:
>>> from sympy.ntheory import multiplicity_in_factorial
>>> from sympy import factorial
>>> p = factorial(25)
>>> n = 2**100
>>> nfac = factorial(n, evaluate=False)
>>> multiplicity(p, nfac)
52818775009509558395695966887
>>> _ == multiplicity_in_factorial(p, n)
True
"""
from sympy.functions.combinatorial.factorials import factorial
try:
p, n = as_int(p), as_int(n)
except ValueError:
if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)):
p = Rational(p)
n = Rational(n)
if p.q == 1:
if n.p == 1:
return -multiplicity(p.p, n.q)
return multiplicity(p.p, n.p) - multiplicity(p.p, n.q)
elif p.p == 1:
return multiplicity(p.q, n.q)
else:
like = min(
multiplicity(p.p, n.p),
multiplicity(p.q, n.q))
cross = min(
multiplicity(p.q, n.p),
multiplicity(p.p, n.q))
return like - cross
elif (isinstance(p, (SYMPY_INTS, Integer)) and
isinstance(n, factorial) and
isinstance(n.args[0], Integer) and
n.args[0] >= 0):
return multiplicity_in_factorial(p, n.args[0])
raise ValueError('expecting ints or fractions, got %s and %s' % (p, n))
if n == 0:
raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n))
if p == 2:
return trailing(n)
if p < 2:
raise ValueError('p must be an integer, 2 or larger, but got %s' % p)
if p == n:
return 1
m = 0
n, rem = divmod(n, p)
while not rem:
m += 1
if m > 5:
# The multiplicity could be very large. Better
# to increment in powers of two
e = 2
while 1:
ppow = p**e
if ppow < n:
nnew, rem = divmod(n, ppow)
if not rem:
m += e
e *= 2
n = nnew
continue
return m + multiplicity(p, n)
n, rem = divmod(n, p)
return m
def multiplicity_in_factorial(p, n):
"""return the largest integer ``m`` such that ``p**m`` divides ``n!``
without calculating the factorial of ``n``.
Examples
========
>>> from sympy.ntheory import multiplicity_in_factorial
>>> from sympy import factorial
>>> multiplicity_in_factorial(2, 3)
1
An instructive use of this is to tell how many trailing zeros
a given factorial has. For example, there are 6 in 25!:
>>> factorial(25)
15511210043330985984000000
>>> multiplicity_in_factorial(10, 25)
6
For large factorials, it is much faster/feasible to use
this function rather than computing the actual factorial:
>>> multiplicity_in_factorial(factorial(25), 2**100)
52818775009509558395695966887
"""
p, n = as_int(p), as_int(n)
if p <= 0:
raise ValueError('expecting positive integer got %s' % p )
if n < 0:
raise ValueError('expecting non-negative integer got %s' % n )
factors = factorint(p)
# keep only the largest of a given multiplicity since those
# of a given multiplicity will be goverened by the behavior
# of the largest factor
test = defaultdict(int)
for k, v in factors.items():
test[v] = max(k, test[v])
keep = set(test.values())
# remove others from factors
for k in list(factors.keys()):
if k not in keep:
factors.pop(k)
mp = S.Infinity
for i in factors:
# multiplicity of i in n! is
mi = (n - (sum(digits(n, i)) - i))//(i - 1)
# multiplicity of p in n! depends on multiplicity
# of prime `i` in p, so we floor divide by factors[i]
# and keep it if smaller than the multiplicity of p
# seen so far
mp = min(mp, mi//factors[i])
return mp
def perfect_power(n, candidates=None, big=True, factor=True):
"""
Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a
perfect power with ``e > 1``, else ``False``. A ValueError is
raised if ``n`` is not an integer or is not positive.
By default, the base is recursively decomposed and the exponents
collected so the largest possible ``e`` is sought. If ``big=False``
then the smallest possible ``e`` (thus prime) will be chosen.
If ``factor=True`` then simultaneous factorization of ``n`` is
attempted since finding a factor indicates the only possible root
for ``n``. This is True by default since only a few small factors will
be tested in the course of searching for the perfect power.
The use of ``candidates`` is primarily for internal use; if provided,
False will be returned if ``n`` cannot be written as a power with one
of the candidates as an exponent and factoring (beyond testing for
a factor of 2) will not be attempted.
Examples
========
>>> from sympy import perfect_power
>>> perfect_power(16)
(2, 4)
>>> perfect_power(16, big=False)
(4, 2)
Notes
=====
To know whether an integer is a perfect power of 2 use
>>> is2pow = lambda n: bool(n and not n & (n - 1))
>>> [(i, is2pow(i)) for i in range(5)]
[(0, False), (1, True), (2, True), (3, False), (4, True)]
It is not necessary to provide ``candidates``. When provided
it will be assumed that they are ints. The first one that is
larger than the computed maximum possible exponent will signal
failure for the routine.
>>> perfect_power(3**8, [9])
False
>>> perfect_power(3**8, [2, 4, 8])
(3, 8)
>>> perfect_power(3**8, [4, 8], big=False)
(9, 4)
See Also
========
sympy.core.power.integer_nthroot
sympy.ntheory.primetest.is_square
"""
from sympy.core.power import integer_nthroot
n = as_int(n)
if n < 3:
if n < 1:
raise ValueError('expecting positive n')
return False
logn = math.log(n, 2)
max_possible = int(logn) + 2 # only check values less than this
not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8
min_possible = 2 + not_square
if not candidates:
candidates = primerange(min_possible, max_possible)
else:
candidates = sorted([i for i in candidates
if min_possible <= i < max_possible])
if n%2 == 0:
e = trailing(n)
candidates = [i for i in candidates if e%i == 0]
if big:
candidates = reversed(candidates)
for e in candidates:
r, ok = integer_nthroot(n, e)
if ok:
return (r, e)
return False
def _factors():
rv = 2 + n % 2
while True:
yield rv
rv = nextprime(rv)
for fac, e in zip(_factors(), candidates):
# see if there is a factor present
if factor and n % fac == 0:
# find what the potential power is
if fac == 2:
e = trailing(n)
else:
e = multiplicity(fac, n)
# if it's a trivial power we are done
if e == 1:
return False
# maybe the e-th root of n is exact
r, exact = integer_nthroot(n, e)
if not exact:
# Having a factor, we know that e is the maximal
# possible value for a root of n.
# If n = fac**e*m can be written as a perfect
# power then see if m can be written as r**E where
# gcd(e, E) != 1 so n = (fac**(e//E)*r)**E
m = n//fac**e
rE = perfect_power(m, candidates=divisors(e, generator=True))
if not rE:
return False
else:
r, E = rE
r, e = fac**(e//E)*r, E
if not big:
e0 = primefactors(e)
if e0[0] != e:
r, e = r**(e//e0[0]), e0[0]
return r, e
# Weed out downright impossible candidates
if logn/e < 40:
b = 2.0**(logn/e)
if abs(int(b + 0.5) - b) > 0.01:
continue
# now see if the plausible e makes a perfect power
r, exact = integer_nthroot(n, e)
if exact:
if big:
m = perfect_power(r, big=big, factor=factor)
if m:
r, e = m[0], e*m[1]
return int(r), e
return False
def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None):
r"""
Use Pollard's rho method to try to extract a nontrivial factor
of ``n``. The returned factor may be a composite number. If no
factor is found, ``None`` is returned.
The algorithm generates pseudo-random values of x with a generator
function, replacing x with F(x). If F is not supplied then the
function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``.
Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be
supplied; the ``a`` will be ignored if F was supplied.
The sequence of numbers generated by such functions generally have a
a lead-up to some number and then loop around back to that number and
begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader
and loop look a bit like the Greek letter rho, and thus the name, 'rho'.
For a given function, very different leader-loop values can be obtained
so it is a good idea to allow for retries:
>>> from sympy.ntheory.generate import cycle_length
>>> n = 16843009
>>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n
>>> for s in range(5):
... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s)))
...
loop length = 2489; leader length = 42
loop length = 78; leader length = 120
loop length = 1482; leader length = 99
loop length = 1482; leader length = 285
loop length = 1482; leader length = 100
Here is an explicit example where there is a two element leadup to
a sequence of 3 numbers (11, 14, 4) that then repeat:
>>> x=2
>>> for i in range(9):
... x=(x**2+12)%17
... print(x)
...
16
13
11
14
4
11
14
4
11
>>> next(cycle_length(lambda x: (x**2+12)%17, 2))
(3, 2)
>>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True))
[16, 13, 11, 14, 4]
Instead of checking the differences of all generated values for a gcd
with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd,
2nd and 4th, 3rd and 6th until it has been detected that the loop has been
traversed. Loops may be many thousands of steps long before rho finds a
factor or reports failure. If ``max_steps`` is specified, the iteration
is cancelled with a failure after the specified number of steps.
Examples
========
>>> from sympy import pollard_rho
>>> n=16843009
>>> F=lambda x:(2048*pow(x,2,n) + 32767) % n
>>> pollard_rho(n, F=F)
257
Use the default setting with a bad value of ``a`` and no retries:
>>> pollard_rho(n, a=n-2, retries=0)
If retries is > 0 then perhaps the problem will correct itself when
new values are generated for a:
>>> pollard_rho(n, a=n-2, retries=1)
257
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 229-231
"""
n = int(n)
if n < 5:
raise ValueError('pollard_rho should receive n > 4')
prng = random.Random(seed + retries)
V = s
for i in range(retries + 1):
U = V
if not F:
F = lambda x: (pow(x, 2, n) + a) % n
j = 0
while 1:
if max_steps and (j > max_steps):
break
j += 1
U = F(U)
V = F(F(V)) # V is 2x further along than U
g = igcd(U - V, n)
if g == 1:
continue
if g == n:
break
return int(g)
V = prng.randint(0, n - 1)
a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2
F = None
return None
def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
"""
Use Pollard's p-1 method to try to extract a nontrivial factor
of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.
The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
The default is 2. If ``retries`` > 0 then if no factor is found after the
first attempt, a new ``a`` will be generated randomly (using the ``seed``)
and the process repeated.
Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).
A search is made for factors next to even numbers having a power smoothness
less than ``B``. Choosing a larger B increases the likelihood of finding a
larger factor but takes longer. Whether a factor of n is found or not
depends on ``a`` and the power smoothness of the even number just less than
the factor p (hence the name p - 1).
Although some discussion of what constitutes a good ``a`` some
descriptions are hard to interpret. At the modular.math site referenced
below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
for every prime power divisor of N. But consider the following:
>>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
>>> n=257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
So we should (and can) find a root with B=16:
>>> pollard_pm1(n, B=16, a=3)
1009
If we attempt to increase B to 256 we find that it doesn't work:
>>> pollard_pm1(n, B=256)
>>>
But if the value of ``a`` is changed we find that only multiples of
257 work, e.g.:
>>> pollard_pm1(n, B=256, a=257)
1009
Checking different ``a`` values shows that all the ones that didn't
work had a gcd value not equal to ``n`` but equal to one of the
factors:
>>> from sympy.core.numbers import ilcm, igcd
>>> from sympy import factorint, Pow
>>> M = 1
>>> for i in range(2, 256):
... M = ilcm(M, i)
...
>>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
... igcd(pow(a, M, n) - 1, n) != n])
{1009}
But does aM % d for every divisor of n give 1?
>>> aM = pow(255, M, n)
>>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]
No, only one of them. So perhaps the principle is that a root will
be found for a given value of B provided that:
1) the power smoothness of the p - 1 value next to the root
does not exceed B
2) a**M % p != 1 for any of the divisors of n.
By trying more than one ``a`` it is possible that one of them
will yield a factor.
Examples
========
With the default smoothness bound, this number can't be cracked:
>>> from sympy.ntheory import pollard_pm1, primefactors
>>> pollard_pm1(21477639576571)
Increasing the smoothness bound helps:
>>> pollard_pm1(21477639576571, B=2000)
4410317
Looking at the smoothness of the factors of this number we find:
>>> from sympy.utilities import flatten
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
The B and B-pow are the same for the p - 1 factorizations of the divisors
because those factorizations had a very large prime factor:
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
Note that until B reaches the B-pow value of 1787, the number is not cracked;
>>> pollard_pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
The B value has to do with the factors of the number next to the divisor,
not the divisors themselves. A worst case scenario is that the number next
to the factor p has a large prime divisisor or is a perfect power. If these
conditions apply then the power-smoothness will be about p/2 or p. The more
realistic is that there will be a large prime factor next to p requiring
a B value on the order of p/2. Although primes may have been searched for
up to this level, the p/2 is a factor of p - 1, something that we don't
know. The modular.math reference below states that 15% of numbers in the
range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
percentages are nearly reversed...but in that range the simple trial
division is quite fast.
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 236-238
.. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
.. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
"""
n = int(n)
if n < 4 or B < 3:
raise ValueError('pollard_pm1 should receive n > 3 and B > 2')
prng = random.Random(seed + B)
# computing a**lcm(1,2,3,..B) % n for B > 2
# it looks weird, but it's right: primes run [2, B]
# and the answer's not right until the loop is done.
for i in range(retries + 1):
aM = a
for p in sieve.primerange(2, B + 1):
e = int(math.log(B, p))
aM = pow(aM, pow(p, e), n)
g = igcd(aM - 1, n)
if 1 < g < n:
return int(g)
# get a new a:
# since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1'
# then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will
# give a zero, too, so we set the range as [2, n-2]. Some references
# say 'a' should be coprime to n, but either will detect factors.
a = prng.randint(2, n - 2)
def _trial(factors, n, candidates, verbose=False):
"""
Helper function for integer factorization. Trial factors ``n`
against all integers given in the sequence ``candidates``
and updates the dict ``factors`` in-place. Returns the reduced
value of ``n`` and a flag indicating whether any factors were found.
"""
if verbose:
factors0 = list(factors.keys())
nfactors = len(factors)
for d in candidates:
if n % d == 0:
m = multiplicity(d, n)
n //= d**m
factors[d] = m
if verbose:
for k in sorted(set(factors).difference(set(factors0))):
print(factor_msg % (k, factors[k]))
return int(n), len(factors) != nfactors
def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1,
verbose):
"""
Helper function for integer factorization. Checks if ``n``
is a prime or a perfect power, and in those cases updates
the factorization and raises ``StopIteration``.
"""
if verbose:
print('Check for termination')
# since we've already been factoring there is no need to do
# simultaneous factoring with the power check
p = perfect_power(n, factor=False)
if p is not False:
base, exp = p
if limitp1:
limit = limitp1 - 1
else:
limit = limitp1
facs = factorint(base, limit, use_trial, use_rho, use_pm1,
verbose=False)
for b, e in facs.items():
if verbose:
print(factor_msg % (b, e))
factors[b] = exp*e
raise StopIteration
if isprime(n):
factors[int(n)] = 1
raise StopIteration
if n == 1:
raise StopIteration
trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i"
trial_msg = "Trial division with primes [%i ... %i]"
rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i"
pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i"
factor_msg = '\t%i ** %i'
fermat_msg = 'Close factors satisying Fermat condition found.'
complete_msg = 'Factorization is complete.'
def _factorint_small(factors, n, limit, fail_max):
"""
Return the value of n and either a 0 (indicating that factorization up
to the limit was complete) or else the next near-prime that would have
been tested.
Factoring stops if there are fail_max unsuccessful tests in a row.
If factors of n were found they will be in the factors dictionary as
{factor: multiplicity} and the returned value of n will have had those
factors removed. The factors dictionary is modified in-place.
"""
def done(n, d):
"""return n, d if the sqrt(n) wasn't reached yet, else
n, 0 indicating that factoring is done.
"""
if d*d <= n:
return n, d
return n, 0
d = 2
m = trailing(n)
if m:
factors[d] = m
n >>= m
d = 3
if limit < d:
if n > 1:
factors[n] = 1
return done(n, d)
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
# when d*d exceeds maxx or n we are done; if limit**2 is greater
# than n then maxx is set to zero so the value of n will flag the finish
if limit*limit > n:
maxx = 0
else:
maxx = limit*limit
dd = maxx or n
d = 5
fails = 0
while fails < fail_max:
if d*d > dd:
break
# d = 6*i - 1
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
dd = maxx or n
fails = 0
else:
fails += 1
d += 2
if d*d > dd:
break
# d = 6*i - 1
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
dd = maxx or n
fails = 0
else:
fails += 1
# d = 6*(i + 1) - 1
d += 4
return done(n, d)
def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True,
verbose=False, visual=None, multiple=False):
r"""
Given a positive integer ``n``, ``factorint(n)`` returns a dict containing
the prime factors of ``n`` as keys and their respective multiplicities
as values. For example:
>>> from sympy.ntheory import factorint
>>> factorint(2000) # 2000 = (2**4) * (5**3)
{2: 4, 5: 3}
>>> factorint(65537) # This number is prime
{65537: 1}
For input less than 2, factorint behaves as follows:
- ``factorint(1)`` returns the empty factorization, ``{}``
- ``factorint(0)`` returns ``{0:1}``
- ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n``
Partial Factorization:
If ``limit`` (> 3) is specified, the search is stopped after performing
trial division up to (and including) the limit (or taking a
corresponding number of rho/p-1 steps). This is useful if one has
a large number and only is interested in finding small factors (if
any). Note that setting a limit does not prevent larger factors
from being found early; it simply means that the largest factor may
be composite. Since checking for perfect power is relatively cheap, it is
done regardless of the limit setting.
This number, for example, has two small factors and a huge
semi-prime factor that cannot be reduced easily:
>>> from sympy.ntheory import isprime
>>> a = 1407633717262338957430697921446883
>>> f = factorint(a, limit=10000)
>>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
True
>>> isprime(max(f))
False
This number has a small factor and a residual perfect power whose
base is greater than the limit:
>>> factorint(3*101**7, limit=5)
{3: 1, 101: 7}
List of Factors:
If ``multiple`` is set to ``True`` then a list containing the
prime factors including multiplicities is returned.
>>> factorint(24, multiple=True)
[2, 2, 2, 3]
Visual Factorization:
If ``visual`` is set to ``True``, then it will return a visual
factorization of the integer. For example:
>>> from sympy import pprint
>>> pprint(factorint(4200, visual=True))
3 1 2 1
2 *3 *5 *7
Note that this is achieved by using the evaluate=False flag in Mul
and Pow. If you do other manipulations with an expression where
evaluate=False, it may evaluate. Therefore, you should use the
visual option only for visualization, and use the normal dictionary
returned by visual=False if you want to perform operations on the
factors.
You can easily switch between the two forms by sending them back to
factorint:
>>> from sympy import Mul, Pow
>>> regular = factorint(1764); regular
{2: 2, 3: 2, 7: 2}
>>> pprint(factorint(regular))
2 2 2
2 *3 *7
>>> visual = factorint(1764, visual=True); pprint(visual)
2 2 2
2 *3 *7
>>> print(factorint(visual))
{2: 2, 3: 2, 7: 2}
If you want to send a number to be factored in a partially factored form
you can do so with a dictionary or unevaluated expression:
>>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
{2: 10, 3: 3}
>>> factorint(Mul(4, 12, evaluate=False))
{2: 4, 3: 1}
The table of the output logic is:
====== ====== ======= =======
Visual
------ ----------------------
Input True False other
====== ====== ======= =======
dict mul dict mul
n mul dict dict
mul mul dict dict
====== ====== ======= =======
Notes
=====
Algorithm:
The function switches between multiple algorithms. Trial division
quickly finds small factors (of the order 1-5 digits), and finds
all large factors if given enough time. The Pollard rho and p-1
algorithms are used to find large factors ahead of time; they
will often find factors of the order of 10 digits within a few
seconds:
>>> factors = factorint(12345678910111213141516)
>>> for base, exp in sorted(factors.items()):
... print('%s %s' % (base, exp))
...
2 2
2507191691 1
1231026625769 1
Any of these methods can optionally be disabled with the following
boolean parameters:
- ``use_trial``: Toggle use of trial division
- ``use_rho``: Toggle use of Pollard's rho method
- ``use_pm1``: Toggle use of Pollard's p-1 method
``factorint`` also periodically checks if the remaining part is
a prime number or a perfect power, and in those cases stops.
For unevaluated factorial, it uses Legendre's formula(theorem).
If ``verbose`` is set to ``True``, detailed progress is printed.
See Also
========
smoothness, smoothness_p, divisors
"""
if isinstance(n, Dict):
n = dict(n)
if multiple:
fac = factorint(n, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False, multiple=False)
factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
for p in sorted(fac)), [])
return factorlist
factordict = {}
if visual and not isinstance(n, Mul) and not isinstance(n, dict):
factordict = factorint(n, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False)
elif isinstance(n, Mul):
factordict = {int(k): int(v) for k, v in
n.as_powers_dict().items()}
elif isinstance(n, dict):
factordict = n
if factordict and (isinstance(n, Mul) or isinstance(n, dict)):
# check it
for key in list(factordict.keys()):
if isprime(key):
continue
e = factordict.pop(key)
d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho,
use_pm1=use_pm1, verbose=verbose, visual=False)
for k, v in d.items():
if k in factordict:
factordict[k] += v*e
else:
factordict[k] = v*e
if visual or (type(n) is dict and
visual is not True and
visual is not False):
if factordict == {}:
return S.One
if -1 in factordict:
factordict.pop(-1)
args = [S.NegativeOne]
else:
args = []
args.extend([Pow(*i, evaluate=False)
for i in sorted(factordict.items())])
return Mul(*args, evaluate=False)
elif isinstance(n, dict) or isinstance(n, Mul):
return factordict
assert use_trial or use_rho or use_pm1
from sympy.functions.combinatorial.factorials import factorial
if isinstance(n, factorial):
x = as_int(n.args[0])
if x >= 20:
factors = {}
m = 2 # to initialize the if condition below
for p in sieve.primerange(2, x + 1):
if m > 1:
m, q = 0, x // p
while q != 0:
m += q
q //= p
factors[p] = m
if factors and verbose:
for k in sorted(factors):
print(factor_msg % (k, factors[k]))
if verbose:
print(complete_msg)
return factors
else:
# if n < 20!, direct computation is faster
# since it uses a lookup table
n = n.func(x)
n = as_int(n)
if limit:
limit = int(limit)
# special cases
if n < 0:
factors = factorint(
-n, limit=limit, use_trial=use_trial, use_rho=use_rho,
use_pm1=use_pm1, verbose=verbose, visual=False)
factors[-1] = 1
return factors
if limit and limit < 2:
if n == 1:
return {}
return {n: 1}
elif n < 10:
# doing this we are assured of getting a limit > 2
# when we have to compute it later
return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1},
{2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n]
factors = {}
# do simplistic factorization
if verbose:
sn = str(n)
if len(sn) > 50:
print('Factoring %s' % sn[:5] + \
'..(%i other digits)..' % (len(sn) - 10) + sn[-5:])
else:
print('Factoring', n)
if use_trial:
# this is the preliminary factorization for small factors
small = 2**15
fail_max = 600
small = min(small, limit or small)
if verbose:
print(trial_int_msg % (2, small, fail_max))
n, next_p = _factorint_small(factors, n, small, fail_max)
else:
next_p = 2
if factors and verbose:
for k in sorted(factors):
print(factor_msg % (k, factors[k]))
if next_p == 0:
if n > 1:
factors[int(n)] = 1
if verbose:
print(complete_msg)
return factors
# continue with more advanced factorization methods
# first check if the simplistic run didn't finish
# because of the limit and check for a perfect
# power before exiting
try:
if limit and next_p > limit:
if verbose:
print('Exceeded limit:', limit)
_check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
verbose)
if n > 1:
factors[int(n)] = 1
return factors
else:
# Before quitting (or continuing on)...
# ...do a Fermat test since it's so easy and we need the
# square root anyway. Finding 2 factors is easy if they are
# "close enough." This is the big root equivalent of dividing by
# 2, 3, 5.
sqrt_n = integer_nthroot(n, 2)[0]
a = sqrt_n + 1
a2 = a**2
b2 = a2 - n
for i in range(3):
b, fermat = integer_nthroot(b2, 2)
if fermat:
break
b2 += 2*a + 1 # equiv to (a + 1)**2 - n
a += 1
if fermat:
if verbose:
print(fermat_msg)
if limit:
limit -= 1
for r in [a - b, a + b]:
facs = factorint(r, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose)
for k, v in facs.items():
factors[k] = factors.get(k, 0) + v
raise StopIteration
# ...see if factorization can be terminated
_check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
verbose)
except StopIteration:
if verbose:
print(complete_msg)
return factors
# these are the limits for trial division which will
# be attempted in parallel with pollard methods
low, high = next_p, 2*next_p
limit = limit or sqrt_n
# add 1 to make sure limit is reached in primerange calls
limit += 1
while 1:
try:
high_ = high
if limit < high_:
high_ = limit
# Trial division
if use_trial:
if verbose:
print(trial_msg % (low, high_))
ps = sieve.primerange(low, high_)
n, found_trial = _trial(factors, n, ps, verbose)
if found_trial:
_check_termination(factors, n, limit, use_trial, use_rho,
use_pm1, verbose)
else:
found_trial = False
if high > limit:
if verbose:
print('Exceeded limit:', limit)
if n > 1:
factors[int(n)] = 1
raise StopIteration
# Only used advanced methods when no small factors were found
if not found_trial:
if (use_pm1 or use_rho):
high_root = max(int(math.log(high_**0.7)), low, 3)
# Pollard p-1
if use_pm1:
if verbose:
print(pm1_msg % (high_root, high_))
c = pollard_pm1(n, B=high_root, seed=high_)
if c:
# factor it and let _trial do the update
ps = factorint(c, limit=limit - 1,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
verbose=verbose)
n, _ = _trial(factors, n, ps, verbose=False)
_check_termination(factors, n, limit, use_trial,
use_rho, use_pm1, verbose)
# Pollard rho
if use_rho:
max_steps = high_root
if verbose:
print(rho_msg % (1, max_steps, high_))
c = pollard_rho(n, retries=1, max_steps=max_steps,
seed=high_)
if c:
# factor it and let _trial do the update
ps = factorint(c, limit=limit - 1,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
verbose=verbose)
n, _ = _trial(factors, n, ps, verbose=False)
_check_termination(factors, n, limit, use_trial,
use_rho, use_pm1, verbose)
except StopIteration:
if verbose:
print(complete_msg)
return factors
low, high = high, high*2
def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True,
verbose=False, visual=None, multiple=False):
r"""
Given a Rational ``r``, ``factorrat(r)`` returns a dict containing
the prime factors of ``r`` as keys and their respective multiplicities
as values. For example:
>>> from sympy.ntheory import factorrat
>>> from sympy.core.symbol import S
>>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2)
{2: 3, 3: -2}
>>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1)
{-1: 1, 3: -1, 7: -1, 47: -1}
Please see the docstring for ``factorint`` for detailed explanations
and examples of the following keywords:
- ``limit``: Integer limit up to which trial division is done
- ``use_trial``: Toggle use of trial division
- ``use_rho``: Toggle use of Pollard's rho method
- ``use_pm1``: Toggle use of Pollard's p-1 method
- ``verbose``: Toggle detailed printing of progress
- ``multiple``: Toggle returning a list of factors or dict
- ``visual``: Toggle product form of output
"""
from collections import defaultdict
if multiple:
fac = factorrat(rat, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False, multiple=False)
factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
for p, _ in sorted(fac.items(),
key=lambda elem: elem[0]
if elem[1] > 0
else 1/elem[0])), [])
return factorlist
f = factorint(rat.p, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
f = defaultdict(int, f)
for p, e in factorint(rat.q, limit=limit,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
verbose=verbose).items():
f[p] += -e
if len(f) > 1 and 1 in f:
del f[1]
if not visual:
return dict(f)
else:
if -1 in f:
f.pop(-1)
args = [S.NegativeOne]
else:
args = []
args.extend([Pow(*i, evaluate=False)
for i in sorted(f.items())])
return Mul(*args, evaluate=False)
def primefactors(n, limit=None, verbose=False):
"""Return a sorted list of n's prime factors, ignoring multiplicity
and any composite factor that remains if the limit was set too low
for complete factorization. Unlike factorint(), primefactors() does
not return -1 or 0.
Examples
========
>>> from sympy.ntheory import primefactors, factorint, isprime
>>> primefactors(6)
[2, 3]
>>> primefactors(-5)
[5]
>>> sorted(factorint(123456).items())
[(2, 6), (3, 1), (643, 1)]
>>> primefactors(123456)
[2, 3, 643]
>>> sorted(factorint(10000000001, limit=200).items())
[(101, 1), (99009901, 1)]
>>> isprime(99009901)
False
>>> primefactors(10000000001, limit=300)
[101]
See Also
========
divisors
"""
n = int(n)
factors = sorted(factorint(n, limit=limit, verbose=verbose).keys())
s = [f for f in factors[:-1:] if f not in [-1, 0, 1]]
if factors and isprime(factors[-1]):
s += [factors[-1]]
return s
def _divisors(n, proper=False):
"""Helper function for divisors which generates the divisors."""
factordict = factorint(n)
ps = sorted(factordict.keys())
def rec_gen(n=0):
if n == len(ps):
yield 1
else:
pows = [1]
for j in range(factordict[ps[n]]):
pows.append(pows[-1] * ps[n])
for q in rec_gen(n + 1):
for p in pows:
yield p * q
if proper:
for p in rec_gen():
if p != n:
yield p
else:
for p in rec_gen():
yield p
def divisors(n, generator=False, proper=False):
r"""
Return all divisors of n sorted from 1..n by default.
If generator is ``True`` an unordered generator is returned.
The number of divisors of n can be quite large if there are many
prime factors (counting repeated factors). If only the number of
factors is desired use divisor_count(n).
Examples
========
>>> from sympy import divisors, divisor_count
>>> divisors(24)
[1, 2, 3, 4, 6, 8, 12, 24]
>>> divisor_count(24)
8
>>> list(divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120]
Notes
=====
This is a slightly modified version of Tim Peters referenced at:
https://stackoverflow.com/questions/1010381/python-factorization
See Also
========
primefactors, factorint, divisor_count
"""
n = as_int(abs(n))
if isprime(n):
if proper:
return [1]
return [1, n]
if n == 1:
if proper:
return []
return [1]
if n == 0:
return []
rv = _divisors(n, proper)
if not generator:
return sorted(rv)
return rv
def divisor_count(n, modulus=1, proper=False):
"""
Return the number of divisors of ``n``. If ``modulus`` is not 1 then only
those that are divisible by ``modulus`` are counted. If ``proper`` is True
then the divisor of ``n`` will not be counted.
Examples
========
>>> from sympy import divisor_count
>>> divisor_count(6)
4
>>> divisor_count(6, 2)
2
>>> divisor_count(6, proper=True)
3
See Also
========
factorint, divisors, totient, proper_divisor_count
"""
if not modulus:
return 0
elif modulus != 1:
n, r = divmod(n, modulus)
if r:
return 0
if n == 0:
return 0
n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1])
if n and proper:
n -= 1
return n
def proper_divisors(n, generator=False):
"""
Return all divisors of n except n, sorted by default.
If generator is ``True`` an unordered generator is returned.
Examples
========
>>> from sympy import proper_divisors, proper_divisor_count
>>> proper_divisors(24)
[1, 2, 3, 4, 6, 8, 12]
>>> proper_divisor_count(24)
7
>>> list(proper_divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60]
See Also
========
factorint, divisors, proper_divisor_count
"""
return divisors(n, generator=generator, proper=True)
def proper_divisor_count(n, modulus=1):
"""
Return the number of proper divisors of ``n``.
Examples
========
>>> from sympy import proper_divisor_count
>>> proper_divisor_count(6)
3
>>> proper_divisor_count(6, modulus=2)
1
See Also
========
divisors, proper_divisors, divisor_count
"""
return divisor_count(n, modulus=modulus, proper=True)
def _udivisors(n):
"""Helper function for udivisors which generates the unitary divisors."""
factorpows = [p**e for p, e in factorint(n).items()]
for i in range(2**len(factorpows)):
d, j, k = 1, i, 0
while j:
if (j & 1):
d *= factorpows[k]
j >>= 1
k += 1
yield d
def udivisors(n, generator=False):
r"""
Return all unitary divisors of n sorted from 1..n by default.
If generator is ``True`` an unordered generator is returned.
The number of unitary divisors of n can be quite large if there are many
prime factors. If only the number of unitary divisors is desired use
udivisor_count(n).
Examples
========
>>> from sympy.ntheory.factor_ import udivisors, udivisor_count
>>> udivisors(15)
[1, 3, 5, 15]
>>> udivisor_count(15)
4
>>> sorted(udivisors(120, generator=True))
[1, 3, 5, 8, 15, 24, 40, 120]
See Also
========
primefactors, factorint, divisors, divisor_count, udivisor_count
References
==========
.. [1] https://en.wikipedia.org/wiki/Unitary_divisor
.. [2] http://mathworld.wolfram.com/UnitaryDivisor.html
"""
n = as_int(abs(n))
if isprime(n):
return [1, n]
if n == 1:
return [1]
if n == 0:
return []
rv = _udivisors(n)
if not generator:
return sorted(rv)
return rv
def udivisor_count(n):
"""
Return the number of unitary divisors of ``n``.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory.factor_ import udivisor_count
>>> udivisor_count(120)
8
See Also
========
factorint, divisors, udivisors, divisor_count, totient
References
==========
.. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html
"""
if n == 0:
return 0
return 2**len([p for p in factorint(n) if p > 1])
def _antidivisors(n):
"""Helper function for antidivisors which generates the antidivisors."""
for d in _divisors(n):
y = 2*d
if n > y and n % y:
yield y
for d in _divisors(2*n-1):
if n > d >= 2 and n % d:
yield d
for d in _divisors(2*n+1):
if n > d >= 2 and n % d:
yield d
def antidivisors(n, generator=False):
r"""
Return all antidivisors of n sorted from 1..n by default.
Antidivisors [1]_ of n are numbers that do not divide n by the largest
possible margin. If generator is True an unordered generator is returned.
Examples
========
>>> from sympy.ntheory.factor_ import antidivisors
>>> antidivisors(24)
[7, 16]
>>> sorted(antidivisors(128, generator=True))
[3, 5, 15, 17, 51, 85]
See Also
========
primefactors, factorint, divisors, divisor_count, antidivisor_count
References
==========
.. [1] definition is described in https://oeis.org/A066272/a066272a.html
"""
n = as_int(abs(n))
if n <= 2:
return []
rv = _antidivisors(n)
if not generator:
return sorted(rv)
return rv
def antidivisor_count(n):
"""
Return the number of antidivisors [1]_ of ``n``.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory.factor_ import antidivisor_count
>>> antidivisor_count(13)
4
>>> antidivisor_count(27)
5
See Also
========
factorint, divisors, antidivisors, divisor_count, totient
References
==========
.. [1] formula from https://oeis.org/A066272
"""
n = as_int(abs(n))
if n <= 2:
return 0
return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \
divisor_count(n) - divisor_count(n, 2) - 5
class totient(Function):
r"""
Calculate the Euler totient function phi(n)
``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n
that are relatively prime to n.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory import totient
>>> totient(1)
1
>>> totient(25)
20
>>> totient(45) == totient(5)*totient(9)
True
See Also
========
divisor_count
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function
.. [2] http://mathworld.wolfram.com/TotientFunction.html
"""
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Integer:
if n < 1:
raise ValueError("n must be a positive integer")
factors = factorint(n)
return cls._from_factors(factors)
elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False):
raise ValueError("n must be a positive integer")
def _eval_is_integer(self):
return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
@classmethod
def _from_distinct_primes(self, *args):
"""Subroutine to compute totient from the list of assumed
distinct primes
Examples
========
>>> from sympy.ntheory.factor_ import totient
>>> totient._from_distinct_primes(5, 7)
24
"""
from functools import reduce
return reduce(lambda i, j: i * (j-1), args, 1)
@classmethod
def _from_factors(self, factors):
"""Subroutine to compute totient from already-computed factors
Examples
========
>>> from sympy.ntheory.factor_ import totient
>>> totient._from_factors({5: 2})
20
"""
t = 1
for p, k in factors.items():
t *= (p - 1) * p**(k - 1)
return t
class reduced_totient(Function):
r"""
Calculate the Carmichael reduced totient function lambda(n)
``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that
`k^m \equiv 1 \mod n` for all k relatively prime to n.
Examples
========
>>> from sympy.ntheory import reduced_totient
>>> reduced_totient(1)
1
>>> reduced_totient(8)
2
>>> reduced_totient(30)
4
See Also
========
totient
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_function
.. [2] http://mathworld.wolfram.com/CarmichaelFunction.html
"""
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Integer:
if n < 1:
raise ValueError("n must be a positive integer")
factors = factorint(n)
return cls._from_factors(factors)
@classmethod
def _from_factors(self, factors):
"""Subroutine to compute totient from already-computed factors
"""
t = 1
for p, k in factors.items():
if p == 2 and k > 2:
t = ilcm(t, 2**(k - 2))
else:
t = ilcm(t, (p - 1) * p**(k - 1))
return t
@classmethod
def _from_distinct_primes(self, *args):
"""Subroutine to compute totient from the list of assumed
distinct primes
"""
args = [p - 1 for p in args]
return ilcm(*args)
def _eval_is_integer(self):
return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
class divisor_sigma(Function):
r"""
Calculate the divisor function `\sigma_k(n)` for positive integer n
``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots
+ p_i^{m_ik}).
Parameters
==========
n : integer
k : integer, optional
power of divisors in the sum
for k = 0, 1:
``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)``
``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))``
Default for k is 1.
Examples
========
>>> from sympy.ntheory import divisor_sigma
>>> divisor_sigma(18, 0)
6
>>> divisor_sigma(39, 1)
56
>>> divisor_sigma(12, 2)
210
>>> divisor_sigma(37)
38
See Also
========
divisor_count, totient, divisors, factorint
References
==========
.. [1] https://en.wikipedia.org/wiki/Divisor_function
"""
@classmethod
def eval(cls, n, k=1):
n = sympify(n)
k = sympify(k)
if n.is_prime:
return 1 + n**k
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
elif k.is_Integer:
k = int(k)
return Integer(prod(
(p**(k*(e + 1)) - 1)//(p**k - 1) if k != 0
else e + 1 for p, e in factorint(n).items()))
else:
return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0
else e + 1 for p, e in factorint(n).items()])
if n.is_integer: # symbolic case
args = []
for p, e in (_.as_base_exp() for _ in Mul.make_args(n)):
if p.is_prime and e.is_positive:
args.append((p**(k*(e + 1)) - 1)/(p**k - 1) if
k != 0 else e + 1)
else:
return
return Mul(*args)
def core(n, t=2):
r"""
Calculate core(n, t) = `core_t(n)` of a positive integer n
``core_2(n)`` is equal to the squarefree part of n
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}.
Parameters
==========
n : integer
t : integer
core(n, t) calculates the t-th power free part of n
``core(n, 2)`` is the squarefree part of ``n``
``core(n, 3)`` is the cubefree part of ``n``
Default for t is 2.
Examples
========
>>> from sympy.ntheory.factor_ import core
>>> core(24, 2)
6
>>> core(9424, 3)
1178
>>> core(379238)
379238
>>> core(15**11, 10)
15
See Also
========
factorint, sympy.solvers.diophantine.diophantine.square_factor
References
==========
.. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core
"""
n = as_int(n)
t = as_int(t)
if n <= 0:
raise ValueError("n must be a positive integer")
elif t <= 1:
raise ValueError("t must be >= 2")
else:
y = 1
for p, e in factorint(n).items():
y *= p**(e % t)
return y
def digits(n, b=10):
"""
Return a list of the digits of n in base b. The first element in the list
is b (or -b if n is negative).
Examples
========
>>> from sympy.ntheory.factor_ import digits
>>> digits(35)
[10, 3, 5]
>>> digits(27, 2)
[2, 1, 1, 0, 1, 1]
>>> digits(65536, 256)
[256, 1, 0, 0]
>>> digits(-3958, 27)
[-27, 5, 11, 16]
"""
b = as_int(b)
n = as_int(n)
if b <= 1:
raise ValueError("b must be >= 2")
else:
x, y = abs(n), []
while x >= b:
x, r = divmod(x, b)
y.append(r)
y.append(x)
y.append(-b if n < 0 else b)
y.reverse()
return y
class udivisor_sigma(Function):
r"""
Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n
``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}).
Parameters
==========
k : power of divisors in the sum
for k = 0, 1:
``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)``
``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))``
Default for k is 1.
Examples
========
>>> from sympy.ntheory.factor_ import udivisor_sigma
>>> udivisor_sigma(18, 0)
4
>>> udivisor_sigma(74, 1)
114
>>> udivisor_sigma(36, 3)
47450
>>> udivisor_sigma(111)
152
See Also
========
divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma,
factorint
References
==========
.. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html
"""
@classmethod
def eval(cls, n, k=1):
n = sympify(n)
k = sympify(k)
if n.is_prime:
return 1 + n**k
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return Mul(*[1+p**(k*e) for p, e in factorint(n).items()])
class primenu(Function):
r"""
Calculate the number of distinct prime factors for a positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primenu(n)`` or `\nu(n)` is:
.. math ::
\nu(n) = k.
Examples
========
>>> from sympy.ntheory.factor_ import primenu
>>> primenu(1)
0
>>> primenu(30)
3
See Also
========
factorint
References
==========
.. [1] http://mathworld.wolfram.com/PrimeFactor.html
"""
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return len(factorint(n).keys())
class primeomega(Function):
r"""
Calculate the number of prime factors counting multiplicities for a
positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primeomega(n)`` or `\Omega(n)` is:
.. math ::
\Omega(n) = \sum_{i=1}^k m_i.
Examples
========
>>> from sympy.ntheory.factor_ import primeomega
>>> primeomega(1)
0
>>> primeomega(20)
3
See Also
========
factorint
References
==========
.. [1] http://mathworld.wolfram.com/PrimeFactor.html
"""
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return sum(factorint(n).values())
def mersenne_prime_exponent(nth):
"""Returns the exponent ``i`` for the nth Mersenne prime (which
has the form `2^i - 1`).
Examples
========
>>> from sympy.ntheory.factor_ import mersenne_prime_exponent
>>> mersenne_prime_exponent(1)
2
>>> mersenne_prime_exponent(20)
4423
"""
n = as_int(nth)
if n < 1:
raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2")
if n > 51:
raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51")
return MERSENNE_PRIME_EXPONENTS[n - 1]
def is_perfect(n):
"""Returns True if ``n`` is a perfect number, else False.
A perfect number is equal to the sum of its positive, proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma
>>> is_perfect(20)
False
>>> is_perfect(6)
True
>>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1])
True
References
==========
.. [1] http://mathworld.wolfram.com/PerfectNumber.html
.. [2] https://en.wikipedia.org/wiki/Perfect_number
"""
from sympy.core.power import integer_log
n = as_int(n)
if _isperfect(n):
return True
# all perfect numbers for Mersenne primes with exponents
# less than or equal to 43112609 are known
iknow = MERSENNE_PRIME_EXPONENTS.index(43112609)
if iknow <= len(PERFECT) - 1 and n <= PERFECT[iknow]:
# there may be gaps between this and larger known values
# so only conclude in the range for which all values
# are known
return False
if n%2 == 0:
last2 = n % 100
if last2 != 28 and last2 % 10 != 6:
return False
r, b = integer_nthroot(1 + 8*n, 2)
if not b:
return False
m, x = divmod(1 + r, 4)
if x:
return False
e, b = integer_log(m, 2)
if not b:
return False
else:
if n < 10**2000: # http://www.lirmm.fr/~ochem/opn/
return False
if n % 105 == 0: # not divis by 105
return False
if not any(n%m == r for m, r in [(12, 1), (468, 117), (324, 81)]):
return False
# there are many criteria that the factor structure of n
# must meet; since we will have to factor it to test the
# structure we will have the factors and can then check
# to see whether it is a perfect number or not. So we
# skip the structure checks and go straight to the final
# test below.
rv = divisor_sigma(n) - n
if rv == n:
if n%2 == 0:
raise ValueError(filldedent('''
This even number is perfect and is associated with a
Mersenne Prime, 2^%s - 1. It should be
added to SymPy.''' % (e + 1)))
else:
raise ValueError(filldedent('''In 1888, Sylvester stated: "
...a prolonged meditation on the subject has satisfied
me that the existence of any one such [odd perfect number]
-- its escape, so to say, from the complex web of conditions
which hem it in on all sides -- would be little short of a
miracle." I guess SymPy just found that miracle and it
factors like this: %s''' % factorint(n)))
def is_mersenne_prime(n):
"""Returns True if ``n`` is a Mersenne prime, else False.
A Mersenne prime is a prime number having the form `2^i - 1`.
Examples
========
>>> from sympy.ntheory.factor_ import is_mersenne_prime
>>> is_mersenne_prime(6)
False
>>> is_mersenne_prime(127)
True
References
==========
.. [1] http://mathworld.wolfram.com/MersennePrime.html
"""
from sympy.core.power import integer_log
n = as_int(n)
if _ismersenneprime(n):
return True
if not isprime(n):
return False
r, b = integer_log(n + 1, 2)
if not b:
return False
raise ValueError(filldedent('''
This Mersenne Prime, 2^%s - 1, should
be added to SymPy's known values.''' % r))
def abundance(n):
"""Returns the difference between the sum of the positive
proper divisors of a number and the number.
Examples
========
>>> from sympy.ntheory import abundance, is_perfect, is_abundant
>>> abundance(6)
0
>>> is_perfect(6)
True
>>> abundance(10)
-2
>>> is_abundant(10)
False
"""
return divisor_sigma(n, 1) - 2 * n
def is_abundant(n):
"""Returns True if ``n`` is an abundant number, else False.
A abundant number is smaller than the sum of its positive proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_abundant
>>> is_abundant(20)
True
>>> is_abundant(15)
False
References
==========
.. [1] http://mathworld.wolfram.com/AbundantNumber.html
"""
n = as_int(n)
if is_perfect(n):
return False
return n % 6 == 0 or bool(abundance(n) > 0)
def is_deficient(n):
"""Returns True if ``n`` is a deficient number, else False.
A deficient number is greater than the sum of its positive proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_deficient
>>> is_deficient(20)
False
>>> is_deficient(15)
True
References
==========
.. [1] http://mathworld.wolfram.com/DeficientNumber.html
"""
n = as_int(n)
if is_perfect(n):
return False
return bool(abundance(n) < 0)
def is_amicable(m, n):
"""Returns True if the numbers `m` and `n` are "amicable", else False.
Amicable numbers are two different numbers so related that the sum
of the proper divisors of each is equal to that of the other.
Examples
========
>>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma
>>> is_amicable(220, 284)
True
>>> divisor_sigma(220) == divisor_sigma(284)
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Amicable_numbers
"""
if m == n:
return False
a, b = map(lambda i: divisor_sigma(i), (m, n))
return a == b == (m + n)
def dra(n, b):
"""
Returns the additive digital root of a natural number ``n`` in base ``b``
which is a single digit value obtained by an iterative process of summing
digits, on each iteration using the result from the previous iteration to
compute a digit sum.
Examples
========
>>> from sympy.ntheory.factor_ import dra
>>> dra(3110, 12)
8
References
==========
.. [1] https://en.wikipedia.org/wiki/Digital_root
"""
num = abs(as_int(n))
b = as_int(b)
if b <= 1:
raise ValueError("Base should be an integer greater than 1")
if num == 0:
return 0
return (1 + (num - 1) % (b - 1))
def drm(n, b):
"""
Returns the multiplicative digital root of a natural number ``n`` in a given
base ``b`` which is a single digit value obtained by an iterative process of
multiplying digits, on each iteration using the result from the previous
iteration to compute the digit multiplication.
Examples
========
>>> from sympy.ntheory.factor_ import drm
>>> drm(9876, 10)
0
>>> drm(49, 10)
8
References
==========
.. [1] http://mathworld.wolfram.com/MultiplicativeDigitalRoot.html
"""
n = abs(as_int(n))
b = as_int(b)
if b <= 1:
raise ValueError("Base should be an integer greater than 1")
while n > b:
mul = 1
while n > 1:
n, r = divmod(n, b)
if r == 0:
return 0
mul *= r
n = mul
return n
|
f136108a2187b4fb366a555dbb3efe3a66bb31fc1ef30043c5838641a90c5ffe | from __future__ import print_function, division
from mpmath.libmp import (fzero, from_int, from_rational,
fone, fhalf, bitcount, to_int, to_str, mpf_mul, mpf_div, mpf_sub,
mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
from sympy.core.numbers import igcd
from .residue_ntheory import (_sqrt_mod_prime_power,
legendre_symbol, jacobi_symbol, is_quad_residue)
import math
def _pre():
maxn = 10**5
global _factor
global _totient
_factor = [0]*maxn
_totient = [1]*maxn
lim = int(maxn**0.5) + 5
for i in range(2, lim):
if _factor[i] == 0:
for j in range(i*i, maxn, i):
if _factor[j] == 0:
_factor[j] = i
for i in range(2, maxn):
if _factor[i] == 0:
_factor[i] = i
_totient[i] = i-1
continue
x = _factor[i]
y = i//x
if y % x == 0:
_totient[i] = _totient[y]*x
else:
_totient[i] = _totient[y]*(x - 1)
def _a(n, k, prec):
""" Compute the inner sum in HRR formula [1]_
References
==========
.. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf
"""
if k == 1:
return fone
k1 = k
e = 0
p = _factor[k]
while k1 % p == 0:
k1 //= p
e += 1
k2 = k//k1 # k2 = p^e
v = 1 - 24*n
pi = mpf_pi(prec)
if k1 == 1:
# k = p^e
if p == 2:
mod = 8*k
v = mod + v % mod
v = (v*pow(9, k - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
arg = mpf_div(mpf_mul(
from_int(4*m), pi, prec), from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int((-1)**e*jacobi_symbol(m - 1, m)),
mpf_sqrt(from_int(k), prec), prec),
mpf_sin(arg, prec), prec)
if p == 3:
mod = 3*k
v = mod + v % mod
if e > 1:
v = (v*pow(64, k//3 - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
mpf_sqrt(from_int(k//3), prec), prec),
mpf_sin(arg, prec), prec)
v = k + v % k
if v % p == 0:
if e == 1:
return mpf_mul(
from_int(jacobi_symbol(3, k)),
mpf_sqrt(from_int(k), prec), prec)
return fzero
if not is_quad_residue(v, p):
return fzero
_phi = p**(e - 1)*(p - 1)
v = (v*pow(576, _phi - 1, k))
m = _sqrt_mod_prime_power(v, p, e)[0]
arg = mpf_div(
mpf_mul(from_int(4*m), pi, prec),
from_int(k), prec)
return mpf_mul(mpf_mul(
from_int(2*jacobi_symbol(3, k)),
mpf_sqrt(from_int(k), prec), prec),
mpf_cos(arg, prec), prec)
if p != 2 or e >= 3:
d1, d2 = igcd(k1, 24), igcd(k2, 24)
e = 24//(d1*d2)
n1 = ((d2*e*n + (k2**2 - 1)//d1)*
pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
n2 = ((d1*e*n + (k1**2 - 1)//d2)*
pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
if e == 2:
n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
return mpf_mul(mpf_mul(
from_int(-1),
_a(n1, k1, prec), prec),
_a(n2, k2, prec))
n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
def _d(n, j, prec, sq23pi, sqrt8):
"""
Compute the sinh term in the outer sum of the HRR formula.
The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
"""
j = from_int(j)
pi = mpf_pi(prec)
a = mpf_div(sq23pi, j, prec)
b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
c = mpf_sqrt(b, prec)
ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
D = mpf_div(
mpf_sqrt(j, prec),
mpf_mul(mpf_mul(sqrt8, b), pi), prec)
E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
return mpf_mul(D, E)
def npartitions(n, verbose=False):
"""
Calculate the partition function P(n), i.e. the number of ways that
n can be written as a sum of positive integers.
P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.
The correctness of this implementation has been tested through 10**10.
Examples
========
>>> from sympy.ntheory import npartitions
>>> npartitions(25)
1958
References
==========
.. [1] http://mathworld.wolfram.com/PartitionFunctionP.html
"""
n = int(n)
if n < 0:
return 0
if n <= 5:
return [1, 1, 2, 3, 5, 7][n]
if '_factor' not in globals():
_pre()
# Estimate number of bits in p(n). This formula could be tidied
pbits = int((
math.pi*(2*n/3.)**0.5 -
math.log(4*n))/math.log(10) + 1) * \
math.log(10, 2)
prec = p = int(pbits*1.1 + 100)
s = fzero
M = max(6, int(0.24*n**0.5 + 4))
if M > 10**5:
raise ValueError("Input too big") # Corresponds to n > 1.7e11
sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
sqrt8 = mpf_sqrt(from_int(8), p)
for q in range(1, M):
a = _a(n, q, p)
d = _d(n, q, p, sq23pi, sqrt8)
s = mpf_add(s, mpf_mul(a, d), prec)
if verbose:
print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
# On average, the terms decrease rapidly in magnitude.
# Dynamically reducing the precision greatly improves
# performance.
p = bitcount(abs(to_int(d))) + 50
return int(to_int(mpf_add(s, fhalf, prec)))
__all__ = ['npartitions']
|
c52d492f2bf482b14066e36fcac68ee8cc9a984f481c7dcd72e7ad5cf0b2279a | from sympy.combinatorics import Permutation
from sympy.combinatorics.util import _distribute_gens_by_base
rmul = Permutation.rmul
def _cmp_perm_lists(first, second):
"""
Compare two lists of permutations as sets.
This is used for testing purposes. Since the array form of a
permutation is currently a list, Permutation is not hashable
and cannot be put into a set.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.testutil import _cmp_perm_lists
>>> a = Permutation([0, 2, 3, 4, 1])
>>> b = Permutation([1, 2, 0, 4, 3])
>>> c = Permutation([3, 4, 0, 1, 2])
>>> ls1 = [a, b, c]
>>> ls2 = [b, c, a]
>>> _cmp_perm_lists(ls1, ls2)
True
"""
return {tuple(a) for a in first} == \
{tuple(a) for a in second}
def _naive_list_centralizer(self, other, af=False):
from sympy.combinatorics.perm_groups import PermutationGroup
"""
Return a list of elements for the centralizer of a subgroup/set/element.
This is a brute force implementation that goes over all elements of the
group and checks for membership in the centralizer. It is used to
test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``.
Examples
========
>>> from sympy.combinatorics.testutil import _naive_list_centralizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> _naive_list_centralizer(D, D)
[Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])]
See Also
========
sympy.combinatorics.perm_groups.centralizer
"""
from sympy.combinatorics.permutations import _af_commutes_with
if hasattr(other, 'generators'):
elements = list(self.generate_dimino(af=True))
gens = [x._array_form for x in other.generators]
commutes_with_gens = lambda x: all(_af_commutes_with(x, gen) for gen in gens)
centralizer_list = []
if not af:
for element in elements:
if commutes_with_gens(element):
centralizer_list.append(Permutation._af_new(element))
else:
for element in elements:
if commutes_with_gens(element):
centralizer_list.append(element)
return centralizer_list
elif hasattr(other, 'getitem'):
return _naive_list_centralizer(self, PermutationGroup(other), af)
elif hasattr(other, 'array_form'):
return _naive_list_centralizer(self, PermutationGroup([other]), af)
def _verify_bsgs(group, base, gens):
"""
Verify the correctness of a base and strong generating set.
This is a naive implementation using the definition of a base and a strong
generating set relative to it. There are other procedures for
verifying a base and strong generating set, but this one will
serve for more robust testing.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> _verify_bsgs(A, A.base, A.strong_gens)
True
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
"""
from sympy.combinatorics.perm_groups import PermutationGroup
strong_gens_distr = _distribute_gens_by_base(base, gens)
current_stabilizer = group
for i in range(len(base)):
candidate = PermutationGroup(strong_gens_distr[i])
if current_stabilizer.order() != candidate.order():
return False
current_stabilizer = current_stabilizer.stabilizer(base[i])
if current_stabilizer.order() != 1:
return False
return True
def _verify_centralizer(group, arg, centr=None):
"""
Verify the centralizer of a group/set/element inside another group.
This is used for testing ``.centralizer()`` from
``sympy.combinatorics.perm_groups``
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.testutil import _verify_centralizer
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> centr = PermutationGroup([Permutation([0, 1, 2, 3, 4])])
>>> _verify_centralizer(S, A, centr)
True
See Also
========
_naive_list_centralizer,
sympy.combinatorics.perm_groups.PermutationGroup.centralizer,
_cmp_perm_lists
"""
if centr is None:
centr = group.centralizer(arg)
centr_list = list(centr.generate_dimino(af=True))
centr_list_naive = _naive_list_centralizer(group, arg, af=True)
return _cmp_perm_lists(centr_list, centr_list_naive)
def _verify_normal_closure(group, arg, closure=None):
from sympy.combinatorics.perm_groups import PermutationGroup
"""
Verify the normal closure of a subgroup/subset/element in a group.
This is used to test
sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_normal_closure
>>> S = SymmetricGroup(3)
>>> A = AlternatingGroup(3)
>>> _verify_normal_closure(S, A, closure=A)
True
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
"""
if closure is None:
closure = group.normal_closure(arg)
conjugates = set()
if hasattr(arg, 'generators'):
subgr_gens = arg.generators
elif hasattr(arg, '__getitem__'):
subgr_gens = arg
elif hasattr(arg, 'array_form'):
subgr_gens = [arg]
for el in group.generate_dimino():
for gen in subgr_gens:
conjugates.add(gen ^ el)
naive_closure = PermutationGroup(list(conjugates))
return closure.is_subgroup(naive_closure)
def canonicalize_naive(g, dummies, sym, *v):
"""
Canonicalize tensor formed by tensors of the different types
g permutation representing the tensor
dummies list of dummy indices
msym symmetry of the metric
v is a list of (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i BSGS for tensors of this type
n_i number ot tensors of type `i`
sym_i symmetry under exchange of two component tensors of type `i`
None no symmetry
0 commuting
1 anticommuting
Return 0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Examples
========
>>> from sympy.combinatorics.testutil import canonicalize_naive
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = Permutation([1, 3, 2, 0, 4, 5])
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> canonicalize_naive(g, [2, 3], 0, (base2, gens2, 2, 0))
[0, 2, 1, 3, 4, 5]
"""
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.tensor_can import gens_products, dummy_sgs
from sympy.combinatorics.permutations import Permutation, _af_rmul
v1 = []
for i in range(len(v)):
base_i, gens_i, n_i, sym_i = v[i]
v1.append((base_i, gens_i, [[]]*n_i, sym_i))
size, sbase, sgens = gens_products(*v1)
dgens = dummy_sgs(dummies, sym, size-2)
if isinstance(sym, int):
num_types = 1
dummies = [dummies]
sym = [sym]
else:
num_types = len(sym)
dgens = []
for i in range(num_types):
dgens.extend(dummy_sgs(dummies[i], sym[i], size - 2))
S = PermutationGroup(sgens)
D = PermutationGroup([Permutation(x) for x in dgens])
dlist = list(D.generate(af=True))
g = g.array_form
st = set()
for s in S.generate(af=True):
h = _af_rmul(g, s)
for d in dlist:
q = tuple(_af_rmul(d, h))
st.add(q)
a = list(st)
a.sort()
prev = (0,)*size
for h in a:
if h[:-2] == prev[:-2]:
if h[-1] != prev[-1]:
return 0
prev = h
return list(a[0])
def graph_certificate(gr):
"""
Return a certificate for the graph
gr adjacency list
The graph is assumed to be unoriented and without
external lines.
Associate to each vertex of the graph a symmetric tensor with
number of indices equal to the degree of the vertex; indices
are contracted when they correspond to the same line of the graph.
The canonical form of the tensor gives a certificate for the graph.
This is not an efficient algorithm to get the certificate of a graph.
Examples
========
>>> from sympy.combinatorics.testutil import graph_certificate
>>> gr1 = {0:[1, 2, 3, 5], 1:[0, 2, 4], 2:[0, 1, 3, 4], 3:[0, 2, 4], 4:[1, 2, 3, 5], 5:[0, 4]}
>>> gr2 = {0:[1, 5], 1:[0, 2, 3, 4], 2:[1, 3, 5], 3:[1, 2, 4, 5], 4:[1, 3, 5], 5:[0, 2, 3, 4]}
>>> c1 = graph_certificate(gr1)
>>> c2 = graph_certificate(gr2)
>>> c1
[0, 2, 4, 6, 1, 8, 10, 12, 3, 14, 16, 18, 5, 9, 15, 7, 11, 17, 13, 19, 20, 21]
>>> c1 == c2
True
"""
from sympy.combinatorics.permutations import _af_invert
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize
items = list(gr.items())
items.sort(key=lambda x: len(x[1]), reverse=True)
pvert = [x[0] for x in items]
pvert = _af_invert(pvert)
# the indices of the tensor are twice the number of lines of the graph
num_indices = 0
for v, neigh in items:
num_indices += len(neigh)
# associate to each vertex its indices; for each line
# between two vertices assign the
# even index to the vertex which comes first in items,
# the odd index to the other vertex
vertices = [[] for i in items]
i = 0
for v, neigh in items:
for v2 in neigh:
if pvert[v] < pvert[v2]:
vertices[pvert[v]].append(i)
vertices[pvert[v2]].append(i+1)
i += 2
g = []
for v in vertices:
g.extend(v)
assert len(g) == num_indices
g += [num_indices, num_indices + 1]
size = num_indices + 2
assert sorted(g) == list(range(size))
g = Permutation(g)
vlen = [0]*(len(vertices[0])+1)
for neigh in vertices:
vlen[len(neigh)] += 1
v = []
for i in range(len(vlen)):
n = vlen[i]
if n:
base, gens = get_symmetric_group_sgs(i)
v.append((base, gens, n, 0))
v.reverse()
dummies = list(range(num_indices))
can = canonicalize(g, dummies, 0, *v)
return can
|
83c58d38acf9b397bd4d91093d125ac6dd16ad31f26caa1d1a410faaace6213e | from __future__ import print_function, division
from random import randrange, choice
from math import log
from sympy.ntheory import primefactors
from sympy import multiplicity, factorint
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
_af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
_strip, _strip_af)
from sympy.core import Basic
from sympy.functions.combinatorial.factorials import factorial
from sympy.ntheory import sieve
from sympy.utilities.iterables import has_variety, is_sequence, uniq
from sympy.testing.randtest import _randrange
from itertools import islice
rmul = Permutation.rmul_with_af
_af_new = Permutation._af_new
class PermutationGroup(Basic):
"""The class defining a Permutation group.
PermutationGroup([p1, p2, ..., pn]) returns the permutation group
generated by the list of permutations. This group can be supplied
to Polyhedron if one desires to decorate the elements to which the
indices of the permutation refer.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.permutations import Cycle
>>> from sympy.combinatorics.polyhedron import Polyhedron
>>> from sympy.combinatorics.perm_groups import PermutationGroup
The permutations corresponding to motion of the front, right and
bottom face of a 2x2 Rubik's cube are defined:
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
These are passed as permutations to PermutationGroup:
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
The group can be supplied to a Polyhedron in order to track the
objects being moved. An example involving the 2x2 Rubik's cube is
given there, but here is a simple demonstration:
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
Or one can make a permutation as a product of selected permutations
and apply them to an iterable directly:
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
See Also
========
sympy.combinatorics.polyhedron.Polyhedron,
sympy.combinatorics.permutations.Permutation
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] Seress, A.
"Permutation Group Algorithms"
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
Elements of a Finite Group"
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
.. [7] http://www.algorithmist.com/index.php/Union_Find
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
.. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
.. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
.. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf
"""
is_group = True
def __new__(cls, *args, **kwargs):
"""The default constructor. Accepts Cycle and Permutation forms.
Removes duplicates unless ``dups`` keyword is ``False``.
"""
if not args:
args = [Permutation()]
else:
args = list(args[0] if is_sequence(args[0]) else args)
if not args:
args = [Permutation()]
if any(isinstance(a, Cycle) for a in args):
args = [Permutation(a) for a in args]
if has_variety(a.size for a in args):
degree = kwargs.pop('degree', None)
if degree is None:
degree = max(a.size for a in args)
for i in range(len(args)):
if args[i].size != degree:
args[i] = Permutation(args[i], size=degree)
if kwargs.pop('dups', True):
args = list(uniq([_af_new(list(a)) for a in args]))
if len(args) > 1:
args = [g for g in args if not g.is_identity]
obj = Basic.__new__(cls, *args, **kwargs)
obj._generators = args
obj._order = None
obj._center = []
obj._is_abelian = None
obj._is_transitive = None
obj._is_sym = None
obj._is_alt = None
obj._is_primitive = None
obj._is_nilpotent = None
obj._is_solvable = None
obj._is_trivial = None
obj._transitivity_degree = None
obj._max_div = None
obj._is_perfect = None
obj._is_cyclic = None
obj._r = len(obj._generators)
obj._degree = obj._generators[0].size
# these attributes are assigned after running schreier_sims
obj._base = []
obj._strong_gens = []
obj._strong_gens_slp = []
obj._basic_orbits = []
obj._transversals = []
obj._transversal_slp = []
# these attributes are assigned after running _random_pr_init
obj._random_gens = []
# finite presentation of the group as an instance of `FpGroup`
obj._fp_presentation = None
return obj
def __getitem__(self, i):
return self._generators[i]
def __contains__(self, i):
"""Return ``True`` if *i* is contained in PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
"""
if not isinstance(i, Permutation):
raise TypeError("A PermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return self.contains(i)
def __len__(self):
return len(self._generators)
def __eq__(self, other):
"""Return ``True`` if PermutationGroup generated by elements in the
group are same i.e they represent the same PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G == H
True
"""
if not isinstance(other, PermutationGroup):
return False
set_self_gens = set(self.generators)
set_other_gens = set(other.generators)
# before reaching the general case there are also certain
# optimisation and obvious cases requiring less or no actual
# computation.
if set_self_gens == set_other_gens:
return True
# in the most general case it will check that each generator of
# one group belongs to the other PermutationGroup and vice-versa
for gen1 in set_self_gens:
if not other.contains(gen1):
return False
for gen2 in set_other_gens:
if not self.contains(gen2):
return False
return True
def __hash__(self):
return super(PermutationGroup, self).__hash__()
def __mul__(self, other):
"""
Return the direct product of two permutation groups as a permutation
group.
This implementation realizes the direct product by shifting the index
set for the generators of the second group: so if we have ``G`` acting
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
``n1 + n2`` points.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([
(9)(0 1 2 3 4),
(5 6 7 8 9)])
>>> H.order()
25
"""
gens1 = [perm._array_form for perm in self.generators]
gens2 = [perm._array_form for perm in other.generators]
n1 = self._degree
n2 = other._degree
start = list(range(n1))
end = list(range(n1, n1 + n2))
for i in range(len(gens2)):
gens2[i] = [x + n1 for x in gens2[i]]
gens2 = [start + gen for gen in gens2]
gens1 = [gen + end for gen in gens1]
together = gens1 + gens2
gens = [_af_new(x) for x in together]
return PermutationGroup(gens)
def _random_pr_init(self, r, n, _random_prec_n=None):
r"""Initialize random generators for the product replacement algorithm.
The implementation uses a modification of the original product
replacement algorithm due to Leedham-Green, as described in [1],
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
analysis of the original product replacement algorithm, and [4].
The product replacement algorithm is used for producing random,
uniformly distributed elements of a group `G` with a set of generators
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
`\max\{r, |S|\}` group generators is created as the attribute
``G._random_gens``, repeating elements of `S` if necessary, and the
identity element of `G` is appended to ``R`` - we shall refer to this
last element as the accumulator. Then the function ``random_pr()``
is called ``n`` times, randomizing the list ``R`` while preserving
the generation of `G` by ``R``. The function ``random_pr()`` itself
takes two random elements ``g, h`` among all elements of ``R`` but
the accumulator and replaces ``g`` with a randomly chosen element
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
by whatever ``g`` was replaced by. The new value of the accumulator is
then returned by ``random_pr()``.
The elements returned will eventually (for ``n`` large enough) become
uniformly distributed across `G` ([5]). For practical purposes however,
the values ``n = 50, r = 11`` are suggested in [1].
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
self._random_gens
See Also
========
random_pr
"""
deg = self.degree
random_gens = [x._array_form for x in self.generators]
k = len(random_gens)
if k < r:
for i in range(k, r):
random_gens.append(random_gens[i - k])
acc = list(range(deg))
random_gens.append(acc)
self._random_gens = random_gens
# handle randomized input for testing purposes
if _random_prec_n is None:
for i in range(n):
self.random_pr()
else:
for i in range(n):
self.random_pr(_random_prec=_random_prec_n[i])
def _union_find_merge(self, first, second, ranks, parents, not_rep):
"""Merges two classes in a union-find data structure.
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. The class merging process uses union by rank as an
optimization. ([7])
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, the list of class sizes, ``ranks``, and the list of
elements that are not representatives, ``not_rep``, are changed due to
class merging.
See Also
========
minimal_block, _union_find_rep
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep_first = self._union_find_rep(first, parents)
rep_second = self._union_find_rep(second, parents)
if rep_first != rep_second:
# union by rank
if ranks[rep_first] >= ranks[rep_second]:
new_1, new_2 = rep_first, rep_second
else:
new_1, new_2 = rep_second, rep_first
total_rank = ranks[new_1] + ranks[new_2]
if total_rank > self.max_div:
return -1
parents[new_2] = new_1
ranks[new_1] = total_rank
not_rep.append(new_2)
return 1
return 0
def _union_find_rep(self, num, parents):
"""Find representative of a class in a union-find data structure.
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. After the representative of the class to which ``num``
belongs is found, path compression is performed as an optimization
([7]).
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, is altered due to path compression.
See Also
========
minimal_block, _union_find_merge
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep, parent = num, parents[num]
while parent != rep:
rep = parent
parent = parents[rep]
# path compression
temp, parent = num, parents[num]
while parent != rep:
parents[temp] = rep
temp = parent
parent = parents[temp]
return rep
@property
def base(self):
"""Return a base from the Schreier-Sims algorithm.
For a permutation group `G`, a base is a sequence of points
`B = (b_1, b_2, ..., b_k)` such that no element of `G` apart
from the identity fixes all the points in `B`. The concepts of
a base and strong generating set and their applications are
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of `B` is that it gives the
indices of the stabilizer cosets that contain more than the
identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
See Also
========
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._base == []:
self.schreier_sims()
return self._base
def baseswap(self, base, strong_gens, pos, randomized=False,
transversals=None, basic_orbits=None, strong_gens_distr=None):
r"""Swap two consecutive base points in base and strong generating set.
If a base for a group `G` is given by `(b_1, b_2, ..., b_k)`, this
function returns a base `(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)`,
where `i` is given by ``pos``, and a strong generating set relative
to that base. The original base and strong generating set are not
modified.
The randomized version (default) is of Las Vegas type.
Parameters
==========
base, strong_gens
The base and strong generating set.
pos
The position at which swapping is performed.
randomized
A switch between randomized and deterministic version.
transversals
The transversals for the basic orbits, if known.
basic_orbits
The basic orbits, if known.
strong_gens_distr
The strong generators distributed by basic stabilizers, if known.
Returns
=======
(base, strong_gens)
``base`` is the new base, and ``strong_gens`` is a generating set
relative to it.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
check that base, gens is a BSGS
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
See Also
========
schreier_sims
Notes
=====
The deterministic version of the algorithm is discussed in
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
[2], p.98. It is of Las Vegas type.
Notice that [1] contains a mistake in the pseudocode and
discussion of BASESWAP: on line 3 of the pseudocode,
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
discussion of the algorithm.
"""
# construct the basic orbits, generators for the stabilizer chain
# and transversal elements from whatever was provided
transversals, basic_orbits, strong_gens_distr = \
_handle_precomputed_bsgs(base, strong_gens, transversals,
basic_orbits, strong_gens_distr)
base_len = len(base)
degree = self.degree
# size of orbit of base[pos] under the stabilizer we seek to insert
# in the stabilizer chain at position pos + 1
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
# initialize the wanted stabilizer by a subgroup
if pos + 2 > base_len - 1:
T = []
else:
T = strong_gens_distr[pos + 2][:]
# randomized version
if randomized is True:
stab_pos = PermutationGroup(strong_gens_distr[pos])
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
# add random elements of the stabilizer until they generate it
while len(_orbit(degree, T, base[pos])) != size:
new = stab_pos.random_stab(base[pos + 1],
schreier_vector=schreier_vector)
T.append(new)
# deterministic version
else:
Gamma = set(basic_orbits[pos])
Gamma.remove(base[pos])
if base[pos + 1] in Gamma:
Gamma.remove(base[pos + 1])
# add elements of the stabilizer until they generate it by
# ruling out member of the basic orbit of base[pos] along the way
while len(_orbit(degree, T, base[pos])) != size:
gamma = next(iter(Gamma))
x = transversals[pos][gamma]
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
if temp not in basic_orbits[pos + 1]:
Gamma = Gamma - _orbit(degree, T, gamma)
else:
y = transversals[pos + 1][temp]
el = rmul(x, y)
if el(base[pos]) not in _orbit(degree, T, base[pos]):
T.append(el)
Gamma = Gamma - _orbit(degree, T, base[pos])
# build the new base and strong generating set
strong_gens_new_distr = strong_gens_distr[:]
strong_gens_new_distr[pos + 1] = T
base_new = base[:]
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
for gen in T:
if gen not in strong_gens_new:
strong_gens_new.append(gen)
return base_new, strong_gens_new
@property
def basic_orbits(self):
"""
Return the basic orbits relative to a base and strong generating set.
If `(b_1, b_2, ..., b_k)` is a base for a group `G`, and
`G^{(i)} = G_{b_1, b_2, ..., b_{i-1}}` is the ``i``-th basic stabilizer
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
See Also
========
base, strong_gens, basic_transversals, basic_stabilizers
"""
if self._basic_orbits == []:
self.schreier_sims()
return self._basic_orbits
@property
def basic_stabilizers(self):
"""
Return a chain of stabilizers relative to a base and strong generating
set.
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
`(b_1, b_2, ..., b_k)` is `G_{b_1, b_2, ..., b_{i-1}}`. For more
information, see [1], pp. 87-89.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
...
PermutationGroup([
(3)(0 1 2),
(1 2 3)])
PermutationGroup([
(1 2 3)])
See Also
========
base, strong_gens, basic_orbits, basic_transversals
"""
if self._transversals == []:
self.schreier_sims()
strong_gens = self._strong_gens
base = self._base
if not base: # e.g. if self is trivial
return []
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_stabilizers = []
for gens in strong_gens_distr:
basic_stabilizers.append(PermutationGroup(gens))
return basic_stabilizers
@property
def basic_transversals(self):
"""
Return basic transversals relative to a base and strong generating set.
The basic transversals are transversals of the basic orbits. They
are provided as a list of dictionaries, each dictionary having
keys - the elements of one of the basic orbits, and values - the
corresponding transversal elements. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
See Also
========
strong_gens, base, basic_orbits, basic_stabilizers
"""
if self._transversals == []:
self.schreier_sims()
return self._transversals
def composition_series(self):
r"""
Return the composition series for a group as a list
of permutation groups.
The composition series for a group `G` is defined as a
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
series is a subnormal series such that each factor group
`H(i+1) / H(i)` is simple.
A subnormal series is a composition series only if it is of
maximum length.
The algorithm works as follows:
Starting with the derived series the idea is to fill
the gap between `G = der[i]` and `H = der[i+1]` for each
`i` independently. Since, all subgroups of the abelian group
`G/H` are normal so, first step is to take the generators
`g` of `G` and add them to generators of `H` one by one.
The factor groups formed are not simple in general. Each
group is obtained from the previous one by adding one
generator `g`, if the previous group is denoted by `H`
then the next group `K` is generated by `g` and `H`.
The factor group `K/H` is cyclic and it's order is
`K.order()//G.order()`. The series is then extended between
`K` and `H` by groups generated by powers of `g` and `H`.
The series formed is then prepended to the already existing
series.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
"""
der = self.derived_series()
if not (all(g.is_identity for g in der[-1].generators)):
raise NotImplementedError('Group should be solvable')
series = []
for i in range(len(der)-1):
H = der[i+1]
up_seg = []
for g in der[i].generators:
K = PermutationGroup([g] + H.generators)
order = K.order() // H.order()
down_seg = []
for p, e in factorint(order).items():
for j in range(e):
down_seg.append(PermutationGroup([g] + H.generators))
g = g**p
up_seg = down_seg + up_seg
H = K
up_seg[0] = der[i]
series.extend(up_seg)
series.append(der[-1])
return series
def coset_transversal(self, H):
"""Return a transversal of the right cosets of self by its subgroup H
using the second method described in [1], Subsection 4.6.7
"""
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
if H.order() == 1:
return self._elements
self._schreier_sims(base=H.base) # make G.base an extension of H.base
base = self.base
base_ordering = _base_ordering(base, self.degree)
identity = Permutation(self.degree - 1)
transversals = self.basic_transversals[:]
# transversals is a list of dictionaries. Get rid of the keys
# so that it is a list of lists and sort each list in
# the increasing order of base[l]^x
for l, t in enumerate(transversals):
transversals[l] = sorted(t.values(),
key = lambda x: base_ordering[base[l]^x])
orbits = H.basic_orbits
h_stabs = H.basic_stabilizers
g_stabs = self.basic_stabilizers
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
# T^(l) should be a right transversal of H^(l) in G^(l) for
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
# contains all the elements of G^(l) so we might just as well
# start with l = len(h_stabs)-1
if len(g_stabs) > len(h_stabs):
T = g_stabs[len(h_stabs)]._elements
else:
T = [identity]
l = len(h_stabs)-1
t_len = len(T)
while l > -1:
T_next = []
for u in transversals[l]:
if u == identity:
continue
b = base_ordering[base[l]^u]
for t in T:
p = t*u
if all([base_ordering[h^p] >= b for h in orbits[l]]):
T_next.append(p)
if t_len + len(T_next) == indices[l]:
break
if t_len + len(T_next) == indices[l]:
break
T += T_next
t_len += len(T_next)
l -= 1
T.remove(identity)
T = [identity] + T
return T
def _coset_representative(self, g, H):
"""Return the representative of Hg from the transversal that
would be computed by ``self.coset_transversal(H)``.
"""
if H.order() == 1:
return g
# The base of self must be an extension of H.base.
if not(self.base[:len(H.base)] == H.base):
self._schreier_sims(base=H.base)
orbits = H.basic_orbits[:]
h_transversals = [list(_.values()) for _ in H.basic_transversals]
transversals = [list(_.values()) for _ in self.basic_transversals]
base = self.base
base_ordering = _base_ordering(base, self.degree)
def step(l, x):
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
i = [base[l]^h for h in h_transversals[l]].index(gamma)
x = h_transversals[l][i]*x
if l < len(orbits)-1:
for u in transversals[l]:
if base[l]^u == base[l]^x:
break
x = step(l+1, x*u**-1)*u
return x
return step(0, g)
def coset_table(self, H):
"""Return the standardised (right) coset table of self in H as
a list of lists.
"""
# Maybe this should be made to return an instance of CosetTable
# from fp_groups.py but the class would need to be changed first
# to be compatible with PermutationGroups
from itertools import chain, product
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
T = self.coset_transversal(H)
n = len(T)
A = list(chain.from_iterable((gen, gen**-1)
for gen in self.generators))
table = []
for i in range(n):
row = [self._coset_representative(T[i]*x, H) for x in A]
row = [T.index(r) for r in row]
table.append(row)
# standardize (this is the same as the algorithm used in coset_table)
# If CosetTable is made compatible with PermutationGroups, this
# should be replaced by table.standardize()
A = range(len(A))
gamma = 1
for alpha, a in product(range(n), A):
beta = table[alpha][a]
if beta >= gamma:
if beta > gamma:
for x in A:
z = table[gamma][x]
table[gamma][x] = table[beta][x]
table[beta][x] = z
for i in range(n):
if table[i][x] == beta:
table[i][x] = gamma
elif table[i][x] == gamma:
table[i][x] = beta
gamma += 1
if gamma >= n-1:
return table
def center(self):
r"""
Return the center of a permutation group.
The center for a group `G` is defined as
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
the set of elements of `G` that commute with all elements of `G`.
It is equal to the centralizer of `G` inside `G`, and is naturally a
subgroup of `G` ([9]).
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
See Also
========
centralizer
Notes
=====
This is a naive implementation that is a straightforward application
of ``.centralizer()``
"""
return self.centralizer(self)
def centralizer(self, other):
r"""
Return the centralizer of a group/set/element.
The centralizer of a set of permutations ``S`` inside
a group ``G`` is the set of elements of ``G`` that commute with all
elements of ``S``::
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
the full symmetric group, we allow for ``S`` to have elements outside
``G``.
It is naturally a subgroup of ``G``; the centralizer of a permutation
group is equal to the centralizer of any set of generators for that
group, since any element commuting with the generators commutes with
any product of the generators.
Parameters
==========
other
a permutation group/list of permutations/single permutation
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
See Also
========
subgroup_search
Notes
=====
The implementation is an application of ``.subgroup_search()`` with
tests using a specific base for the group ``G``.
"""
if hasattr(other, 'generators'):
if other.is_trivial or self.is_trivial:
return self
degree = self.degree
identity = _af_new(list(range(degree)))
orbits = other.orbits()
num_orbits = len(orbits)
orbits.sort(key=lambda x: -len(x))
long_base = []
orbit_reps = [None]*num_orbits
orbit_reps_indices = [None]*num_orbits
orbit_descr = [None]*degree
for i in range(num_orbits):
orbit = list(orbits[i])
orbit_reps[i] = orbit[0]
orbit_reps_indices[i] = len(long_base)
for point in orbit:
orbit_descr[point] = i
long_base = long_base + orbit
base, strong_gens = self.schreier_sims_incremental(base=long_base)
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
i = 0
for i in range(len(base)):
if strong_gens_distr[i] == [identity]:
break
base = base[:i]
base_len = i
for j in range(num_orbits):
if base[base_len - 1] in orbits[j]:
break
rel_orbits = orbits[: j + 1]
num_rel_orbits = len(rel_orbits)
transversals = [None]*num_rel_orbits
for j in range(num_rel_orbits):
rep = orbit_reps[j]
transversals[j] = dict(
other.orbit_transversal(rep, pairs=True))
trivial_test = lambda x: True
tests = [None]*base_len
for l in range(base_len):
if base[l] in orbit_reps:
tests[l] = trivial_test
else:
def test(computed_words, l=l):
g = computed_words[l]
rep_orb_index = orbit_descr[base[l]]
rep = orbit_reps[rep_orb_index]
im = g._array_form[base[l]]
im_rep = g._array_form[rep]
tr_el = transversals[rep_orb_index][base[l]]
# using the definition of transversal,
# base[l]^g = rep^(tr_el*g);
# if g belongs to the centralizer, then
# base[l]^g = (rep^g)^tr_el
return im == tr_el._array_form[im_rep]
tests[l] = test
def prop(g):
return [rmul(g, gen) for gen in other.generators] == \
[rmul(gen, g) for gen in other.generators]
return self.subgroup_search(prop, base=base,
strong_gens=strong_gens, tests=tests)
elif hasattr(other, '__getitem__'):
gens = list(other)
return self.centralizer(PermutationGroup(gens))
elif hasattr(other, 'array_form'):
return self.centralizer(PermutationGroup([other]))
def commutator(self, G, H):
"""
Return the commutator of two subgroups.
For a permutation group ``K`` and subgroups ``G``, ``H``, the
commutator of ``G`` and ``H`` is defined as the group generated
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
See Also
========
derived_subgroup
Notes
=====
The commutator of two subgroups `H, G` is equal to the normal closure
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
a generator of `H` and `g` a generator of `G` ([1], p.28)
"""
ggens = G.generators
hgens = H.generators
commutators = []
for ggen in ggens:
for hgen in hgens:
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
if commutator not in commutators:
commutators.append(commutator)
res = self.normal_closure(commutators)
return res
def coset_factor(self, g, factor_index=False):
"""Return ``G``'s (self's) coset factorization of ``g``
If ``g`` is an element of ``G`` then it can be written as the product
of permutations drawn from the Schreier-Sims coset decomposition,
The permutations returned in ``f`` are those for which
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
and ``B = G.base``. f[i] is one of the permutations in
``self._basic_orbits[i]``.
If factor_index==True,
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
belongs to ``self._basic_orbits[i]``
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
Define g:
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
Confirm that it is an element of G:
>>> G.contains(g)
True
Thus, it can be written as a product of factors (up to
3) drawn from u. See below that a factor from u1 and u2
and the Identity permutation have been used:
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
If g is not an element of G then [] is returned:
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
See Also
========
sympy.combinatorics.util._strip
"""
if isinstance(g, (Cycle, Permutation)):
g = g.list()
if len(g) != self._degree:
# this could either adjust the size or return [] immediately
# but we don't choose between the two and just signal a possible
# error
raise ValueError('g should be the same size as permutations of G')
I = list(range(self._degree))
basic_orbits = self.basic_orbits
transversals = self._transversals
factors = []
base = self.base
h = g
for i in range(len(base)):
beta = h[base[i]]
if beta == base[i]:
factors.append(beta)
continue
if beta not in basic_orbits[i]:
return []
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
factors.append(beta)
if h != I:
return []
if factor_index:
return factors
tr = self.basic_transversals
factors = [tr[i][factors[i]] for i in range(len(base))]
return factors
def generator_product(self, g, original=False):
'''
Return a list of strong generators `[s1, ..., sn]`
s.t `g = sn*...*s1`. If `original=True`, make the list
contain only the original group generators
'''
product = []
if g.is_identity:
return []
if g in self.strong_gens:
if not original or g in self.generators:
return [g]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
return product
elif g**-1 in self.strong_gens:
g = g**-1
if not original or g in self.generators:
return [g**-1]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
l = len(product)
product = [product[l-i-1]**-1 for i in range(l)]
return product
f = self.coset_factor(g, True)
for i, j in enumerate(f):
slp = self._transversal_slp[i][j]
for s in slp:
if not original:
product.append(self.strong_gens[s])
else:
s = self.strong_gens[s]
product.extend(self.generator_product(s, original=True))
return product
def coset_rank(self, g):
"""rank using Schreier-Sims representation
The coset rank of ``g`` is the ordering number in which
it appears in the lexicographic listing according to the
coset decomposition
The ordering is the same as in G.generate(method='coset').
If ``g`` does not belong to the group it returns None.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
See Also
========
coset_factor
"""
factors = self.coset_factor(g, True)
if not factors:
return None
rank = 0
b = 1
transversals = self._transversals
base = self._base
basic_orbits = self._basic_orbits
for i in range(len(base)):
k = factors[i]
j = basic_orbits[i].index(k)
rank += b*j
b = b*len(transversals[i])
return rank
def coset_unrank(self, rank, af=False):
"""unrank using Schreier-Sims representation
coset_unrank is the inverse operation of coset_rank
if 0 <= rank < order; otherwise it returns None.
"""
if rank < 0 or rank >= self.order():
return None
base = self.base
transversals = self.basic_transversals
basic_orbits = self.basic_orbits
m = len(base)
v = [0]*m
for i in range(m):
rank, c = divmod(rank, len(transversals[i]))
v[i] = basic_orbits[i][c]
a = [transversals[i][v[i]]._array_form for i in range(m)]
h = _af_rmuln(*a)
if af:
return h
else:
return _af_new(h)
@property
def degree(self):
"""Returns the size of the permutations in the group.
The number of permutations comprising the group is given by
``len(group)``; the number of permutations that can be generated
by the group is given by ``group.order()``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
See Also
========
order
"""
return self._degree
@property
def identity(self):
'''
Return the identity element of the permutation group.
'''
return _af_new(list(range(self.degree)))
@property
def elements(self):
"""Returns all the elements of the permutation group as a set
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
"""
return set(self._elements)
@property
def _elements(self):
"""Returns all the elements of the permutation group as a list
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
"""
return list(islice(self.generate(), None))
def derived_series(self):
r"""Return the derived series for the group.
The derived series for a group `G` is defined as
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
`k\in\mathbb{N}`, the series terminates.
Returns
=======
A list of permutation groups containing the members of the derived
series in the order `G = G_0, G_1, G_2, \ldots`.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
See Also
========
derived_subgroup
"""
res = [self]
current = self
next = self.derived_subgroup()
while not current.is_subgroup(next):
res.append(next)
current = next
next = next.derived_subgroup()
return res
def derived_subgroup(self):
r"""Compute the derived subgroup.
The derived subgroup, or commutator subgroup is the subgroup generated
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
equal to the normal closure of the set of commutators of the generators
([1], p.28, [11]).
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
See Also
========
derived_series
"""
r = self._r
gens = [p._array_form for p in self.generators]
set_commutators = set()
degree = self._degree
rng = list(range(degree))
for i in range(r):
for j in range(r):
p1 = gens[i]
p2 = gens[j]
c = list(range(degree))
for k in rng:
c[p2[p1[k]]] = p1[p2[k]]
ct = tuple(c)
if not ct in set_commutators:
set_commutators.add(ct)
cms = [_af_new(p) for p in set_commutators]
G2 = self.normal_closure(cms)
return G2
def generate(self, method="coset", af=False):
"""Return iterator to generate the elements of the group
Iteration is done with one of these methods::
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
If af = True it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron
The permutation group given in the tetrahedron object is also
true groups:
>>> G = tetrahedron.pgroup
>>> G.is_group
True
Also the group generated by the permutations in the tetrahedron
pgroup -- even the first two -- is a proper group:
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([
(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)])
>>> _.is_group
True
"""
if method == "coset":
return self.generate_schreier_sims(af)
elif method == "dimino":
return self.generate_dimino(af)
else:
raise NotImplementedError('No generation defined for %s' % method)
def generate_dimino(self, af=False):
"""Yield group elements using Dimino's algorithm
If af == True it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
References
==========
.. [1] The Implementation of Various Algorithms for Permutation Groups in
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
"""
idn = list(range(self.degree))
order = 0
element_list = [idn]
set_element_list = {tuple(idn)}
if af:
yield idn
else:
yield _af_new(idn)
gens = [p._array_form for p in self.generators]
for i in range(len(gens)):
# D elements of the subgroup G_i generated by gens[:i]
D = element_list[:]
N = [idn]
while N:
A = N
N = []
for a in A:
for g in gens[:i + 1]:
ag = _af_rmul(a, g)
if tuple(ag) not in set_element_list:
# produce G_i*g
for d in D:
order += 1
ap = _af_rmul(d, ag)
if af:
yield ap
else:
p = _af_new(ap)
yield p
element_list.append(ap)
set_element_list.add(tuple(ap))
N.append(ap)
self._order = len(element_list)
def generate_schreier_sims(self, af=False):
"""Yield group elements using the Schreier-Sims representation
in coset_rank order
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
"""
n = self._degree
u = self.basic_transversals
basic_orbits = self._basic_orbits
if len(u) == 0:
for x in self.generators:
if af:
yield x._array_form
else:
yield x
return
if len(u) == 1:
for i in basic_orbits[0]:
if af:
yield u[0][i]._array_form
else:
yield u[0][i]
return
u = list(reversed(u))
basic_orbits = basic_orbits[::-1]
# stg stack of group elements
stg = [list(range(n))]
posmax = [len(x) for x in u]
n1 = len(posmax) - 1
pos = [0]*n1
h = 0
while 1:
# backtrack when finished iterating over coset
if pos[h] >= posmax[h]:
if h == 0:
return
pos[h] = 0
h -= 1
stg.pop()
continue
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
pos[h] += 1
stg.append(p)
h += 1
if h == n1:
if af:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
yield p
else:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
p1 = _af_new(p)
yield p1
stg.pop()
h -= 1
@property
def generators(self):
"""Returns the generators of the group.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
"""
return self._generators
def contains(self, g, strict=True):
"""Test if permutation ``g`` belong to self, ``G``.
If ``g`` is an element of ``G`` it can be written as a product
of factors drawn from the cosets of ``G``'s stabilizers. To see
if ``g`` is one of the actual generators defining the group use
``G.has(g)``.
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
to match the size of permutations in ``self``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
If strict is False, a permutation will be resized, if
necessary:
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
To test if a given permutation is present in the group:
>>> elem in G.generators
False
>>> G.has(elem)
False
See Also
========
coset_factor, sympy.core.basic.Basic.has, __contains__
"""
if not isinstance(g, Permutation):
return False
if g.size != self.degree:
if strict:
return False
g = Permutation(g, size=self.degree)
if g in self.generators:
return True
return bool(self.coset_factor(g.array_form, True))
@property
def is_perfect(self):
"""Return ``True`` if the group is perfect.
A group is perfect if it equals to its derived subgroup.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1,2,3)(4,5)
>>> b = Permutation(1,2,3,4,5)
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
"""
if self._is_perfect is None:
self._is_perfect = self == self.derived_subgroup()
return self._is_perfect
@property
def is_abelian(self):
"""Test if the group is Abelian.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
"""
if self._is_abelian is not None:
return self._is_abelian
self._is_abelian = True
gens = [p._array_form for p in self.generators]
for x in gens:
for y in gens:
if y <= x:
continue
if not _af_commutes_with(x, y):
self._is_abelian = False
return False
return True
def abelian_invariants(self):
"""
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
"""
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break;
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(0, i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
def is_elementary(self, p):
"""Return ``True`` if the group is elementary abelian. An elementary
abelian group is a finite abelian group, where every nontrivial
element has order `p`, where `p` is a prime.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
"""
return self.is_abelian and all(g.order() == p for g in self.generators)
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
"""A naive test using the group order."""
if only_sym and only_alt:
raise ValueError(
"Both {} and {} cannot be set to True"
.format(only_sym, only_alt))
n = self.degree
sym_order = 1
for i in range(2, n+1):
sym_order *= i
order = self.order()
if order == sym_order:
self._is_sym = True
self._is_alt = False
if only_alt:
return False
return True
elif 2*order == sym_order:
self._is_sym = False
self._is_alt = True
if only_sym:
return False
return True
return False
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
"""A test using monte-carlo algorithm.
Parameters
==========
eps : float, optional
The criterion for the incorrect ``False`` return.
perms : list[Permutation], optional
If explicitly given, it tests over the given candidats
for testing.
If ``None``, it randomly computes ``N_eps`` and chooses
``N_eps`` sample of the permutation from the group.
See Also
========
_check_cycles_alt_sym
"""
if perms is None:
n = self.degree
if n < 17:
c_n = 0.34
else:
c_n = 0.57
d_n = (c_n*log(2))/log(n)
N_eps = int(-log(eps)/d_n)
perms = (self.random_pr() for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
for perm in perms:
if _check_cycles_alt_sym(perm):
return True
return False
def is_alt_sym(self, eps=0.05, _random_prec=None):
r"""Monte Carlo test for the symmetric/alternating group for degrees
>= 8.
More specifically, it is one-sided Monte Carlo with the
answer True (i.e., G is symmetric/alternating) guaranteed to be
correct, and the answer False being incorrect with probability eps.
For degree < 8, the order of the group is checked so the test
is deterministic.
Notes
=====
The algorithm itself uses some nontrivial results from group theory and
number theory:
1) If a transitive group ``G`` of degree ``n`` contains an element
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
symmetric or alternating group ([1], pp. 81-82)
2) The proportion of elements in the symmetric/alternating group having
the property described in 1) is approximately `\log(2)/\log(n)`
([1], p.82; [2], pp. 226-227).
The helper function ``_check_cycles_alt_sym`` is used to
go over the cycles in a permutation and look for ones satisfying 1).
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
See Also
========
_check_cycles_alt_sym
"""
if _random_prec is not None:
N_eps = _random_prec['N_eps']
perms= (_random_prec[i] for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
if self._is_sym or self._is_alt:
return True
if self._is_sym is False and self._is_alt is False:
return False
n = self.degree
if n < 8:
return self._eval_is_alt_sym_naive()
elif self.is_transitive():
return self._eval_is_alt_sym_monte_carlo(eps=eps)
self._is_sym, self._is_alt = False, False
return False
@property
def is_nilpotent(self):
"""Test if the group is nilpotent.
A group `G` is nilpotent if it has a central series of finite length.
Alternatively, `G` is nilpotent if its lower central series terminates
with the trivial group. Every nilpotent group is also solvable
([1], p.29, [12]).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
See Also
========
lower_central_series, is_solvable
"""
if self._is_nilpotent is None:
lcs = self.lower_central_series()
terminator = lcs[len(lcs) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
self._is_nilpotent = True
return True
else:
self._is_nilpotent = False
return False
else:
return self._is_nilpotent
def is_normal(self, gr, strict=True):
"""Test if ``G=self`` is a normal subgroup of ``gr``.
G is normal in gr if
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
It is sufficient to check this for each g1 in gr.generators and
g2 in G.generators.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
"""
if not self.is_subgroup(gr, strict=strict):
return False
d_self = self.degree
d_gr = gr.degree
if self.is_trivial and (d_self == d_gr or not strict):
return True
if self._is_abelian:
return True
new_self = self.copy()
if not strict and d_self != d_gr:
if d_self < d_gr:
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
else:
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
gens2 = [p._array_form for p in new_self.generators]
gens1 = [p._array_form for p in gr.generators]
for g1 in gens1:
for g2 in gens2:
p = _af_rmuln(g1, g2, _af_invert(g1))
if not new_self.coset_factor(p, True):
return False
return True
def is_primitive(self, randomized=True):
r"""Test if a group is primitive.
A permutation group ``G`` acting on a set ``S`` is called primitive if
``S`` contains no nontrivial block under the action of ``G``
(a block is nontrivial if its cardinality is more than ``1``).
Notes
=====
The algorithm is described in [1], p.83, and uses the function
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
ranging over representatives for the orbits of `G_0`, the stabilizer of
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
of the group, and will perform badly if `G_0` is small.
There are two implementations offered: one finds `G_0`
deterministically using the function ``stabilizer``, and the other
(default) produces random elements of `G_0` using ``random_stab``,
hoping that they generate a subgroup of `G_0` with not too many more
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
by the ``randomized`` flag.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
See Also
========
minimal_block, random_stab
"""
if self._is_primitive is not None:
return self._is_primitive
if self.is_transitive() is False:
return False
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
self._is_primitive = False
return False
self._is_primitive = True
return True
def minimal_blocks(self, randomized=True):
'''
For a transitive group, return the list of all minimal
block systems. If a group is intransitive, return `False`.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
>>> G = PermutationGroup(Permutation(1,2,5))
>>> G.minimal_blocks()
False
See Also
========
minimal_block, is_transitive, is_primitive
'''
def _number_blocks(blocks):
# number the blocks of a block system
# in order and return the number of
# blocks and the tuple with the
# reordering
n = len(blocks)
appeared = {}
m = 0
b = [None]*n
for i in range(n):
if blocks[i] not in appeared:
appeared[blocks[i]] = m
b[i] = m
m += 1
else:
b[i] = appeared[blocks[i]]
return tuple(b), m
if not self.is_transitive():
return False
blocks = []
num_blocks = []
rep_blocks = []
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0:
block = self.minimal_block([0, x])
num_block, m = _number_blocks(block)
# a representative block (containing 0)
rep = set(j for j in range(self.degree) if num_block[j] == 0)
# check if the system is minimal with
# respect to the already discovere ones
minimal = True
to_remove = []
for i, r in enumerate(rep_blocks):
if len(r) > len(rep) and rep.issubset(r):
# i-th block system is not minimal
del num_blocks[i], blocks[i]
to_remove.append(rep_blocks[i])
elif len(r) < len(rep) and r.issubset(rep):
# the system being checked is not minimal
minimal = False
break
# remove non-minimal representative blocks
rep_blocks = [r for r in rep_blocks if r not in to_remove]
if minimal and num_block not in num_blocks:
blocks.append(block)
num_blocks.append(num_block)
rep_blocks.append(rep)
return blocks
@property
def is_solvable(self):
"""Test if the group is solvable.
``G`` is solvable if its derived series terminates with the trivial
group ([1], p.29).
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
See Also
========
is_nilpotent, derived_series
"""
if self._is_solvable is None:
if self.order() % 2 != 0:
return True
ds = self.derived_series()
terminator = ds[len(ds) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
return True
else:
self._is_solvable = False
return False
else:
return self._is_solvable
def is_subgroup(self, G, strict=True):
"""Return ``True`` if all elements of ``self`` belong to ``G``.
If ``strict`` is ``False`` then if ``self``'s degree is smaller
than ``G``'s, the elements will be resized to have the same degree.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
Testing is strict by default: the degree of each group must be the
same:
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
To ignore the size, set ``strict`` to ``False``:
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
"""
if not isinstance(G, PermutationGroup):
return False
if self == G or self.generators[0]==Permutation():
return True
if G.order() % self.order() != 0:
return False
if self.degree == G.degree or \
(self.degree < G.degree and not strict):
gens = self.generators
else:
return False
return all(G.contains(g, strict=strict) for g in gens)
@property
def is_polycyclic(self):
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
it has a subnormal series with cyclic factors. For finite groups,
this is the same as if the group is solvable.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
"""
return self.is_solvable
def is_transitive(self, strict=True):
"""Test if the group is transitive.
A group is transitive if it has a single orbit.
If ``strict`` is ``False`` the group is transitive if it has
a single orbit of length different from 1.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
"""
if self._is_transitive: # strict or not, if True then True
return self._is_transitive
if strict:
if self._is_transitive is not None: # we only store strict=True
return self._is_transitive
ans = len(self.orbit(0)) == self.degree
self._is_transitive = ans
return ans
got_orb = False
for x in self.orbits():
if len(x) > 1:
if got_orb:
return False
got_orb = True
return got_orb
@property
def is_trivial(self):
"""Test if the group is the trivial group.
This is true if the group contains only the identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
"""
if self._is_trivial is None:
self._is_trivial = len(self) == 1 and self[0].is_Identity
return self._is_trivial
def lower_central_series(self):
r"""Return the lower central series for the group.
The lower central series for a group `G` is the series
`G = G_0 > G_1 > G_2 > \ldots` where
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
commutator of `G` and the previous term in `G1` ([1], p.29).
Returns
=======
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
Examples
========
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
See Also
========
commutator, derived_series
"""
res = [self]
current = self
next = self.commutator(self, current)
while not current.is_subgroup(next):
res.append(next)
current = next
next = self.commutator(self, current)
return res
@property
def max_div(self):
"""Maximum proper divisor of the degree of a permutation group.
Notes
=====
Obviously, this is the degree divided by its minimal proper divisor
(larger than ``1``, if one exists). As it is guaranteed to be prime,
the ``sieve`` from ``sympy.ntheory`` is used.
This function is also used as an optimization tool for the functions
``minimal_block`` and ``_union_find_merge``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
See Also
========
minimal_block, _union_find_merge
"""
if self._max_div is not None:
return self._max_div
n = self.degree
if n == 1:
return 1
for x in sieve:
if n % x == 0:
d = n//x
self._max_div = d
return d
def minimal_block(self, points):
r"""For a transitive group, finds the block system generated by
``points``.
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
is called a block under the action of ``G`` if for all ``g`` in ``G``
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
partition the set ``S`` and this set of translates is known as a block
system. Moreover, we obviously have that all blocks in the partition
have the same size, hence the block size divides ``|S|`` ([1], p.23).
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
For a transitive group, the equivalence classes of a ``G``-congruence
and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
system (i.e., the one with minimum block size) such that
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1],
and manipulates an equivalence relation on the set ``S`` using a
union-find data structure. The running time is just above
`O(|points||S|)`. ([1], pp. 83-87; [7]).
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
See Also
========
_union_find_rep, _union_find_merge, is_transitive, is_primitive
"""
if not self.is_transitive():
return False
n = self.degree
gens = self.generators
# initialize the list of equivalence class representatives
parents = list(range(n))
ranks = [1]*n
not_rep = []
k = len(points)
# the block size must divide the degree of the group
if k > self.max_div:
return [0]*n
for i in range(k - 1):
parents[points[i + 1]] = points[0]
not_rep.append(points[i + 1])
ranks[points[0]] = k
i = 0
len_not_rep = k - 1
while i < len_not_rep:
gamma = not_rep[i]
i += 1
for gen in gens:
# find has side effects: performs path compression on the list
# of representatives
delta = self._union_find_rep(gamma, parents)
# union has side effects: performs union by rank on the list
# of representatives
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
parents, not_rep)
if temp == -1:
return [0]*n
len_not_rep += temp
for i in range(n):
# force path compression to get the final state of the equivalence
# relation
self._union_find_rep(i, parents)
# rewrite result so that block representatives are minimal
new_reps = {}
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
def conjugacy_class(self, x):
r"""Return the conjugacy class of an element in the group.
The conjugacy class of an element ``g`` in a group ``G`` is the set of
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
``g = xax^{-1}``
for some ``a`` in ``G``.
Note that conjugacy is an equivalence relation, and therefore that
conjugacy classes are partitions of ``G``. For a list of all the
conjugacy classes of the group, use the conjugacy_classes() method.
In a permutation group, each conjugacy class corresponds to a particular
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
* the identity class, ``{()}``
* all transpositions, ``{(1 2), (1 3), (2 3)}``
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
Notes
=====
This procedure computes the conjugacy class directly by finding the
orbit of the element under conjugation in G. This algorithm is only
feasible for permutation groups of relatively small order, but is like
the orbit() function itself in that respect.
"""
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
new_class = set([x])
last_iteration = new_class
while len(last_iteration) > 0:
this_iteration = set()
for y in last_iteration:
for s in self.generators:
conjugated = s * y * (~s)
if conjugated not in new_class:
this_iteration.add(conjugated)
new_class.update(last_iteration)
last_iteration = this_iteration
return new_class
def conjugacy_classes(self):
r"""Return the conjugacy classes of the group.
As described in the documentation for the .conjugacy_class() function,
conjugacy is an equivalence relation on a group G which partitions the
set of elements. This method returns a list of all these conjugacy
classes of G.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
"""
identity = _af_new(list(range(self.degree)))
known_elements = set([identity])
classes = [known_elements.copy()]
for x in self.generate():
if x not in known_elements:
new_class = self.conjugacy_class(x)
classes.append(new_class)
known_elements.update(new_class)
return classes
def normal_closure(self, other, k=10):
r"""Return the normal closure of a subgroup/set of permutations.
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
is defined as the intersection of all normal subgroups of ``G`` that
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
generator of the subgroup ``\left\langle S\right\rangle`` generated by
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
([1], p.73).
Parameters
==========
other
a subgroup/list of permutations/single permutation
k
an implementation-specific parameter that determines the number
of conjugates that are adjoined to ``other`` at once
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
See Also
========
commutator, derived_subgroup, random_pr
Notes
=====
The algorithm is described in [1], pp. 73-74; it makes use of the
generation of random elements for permutation groups by the product
replacement algorithm.
"""
if hasattr(other, 'generators'):
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in other.generators):
return other
Z = PermutationGroup(other.generators[:])
base, strong_gens = Z.schreier_sims_incremental()
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
self._random_pr_init(r=10, n=20)
_loop = True
while _loop:
Z._random_pr_init(r=10, n=10)
for i in range(k):
g = self.random_pr()
h = Z.random_pr()
conj = h^g
res = _strip(conj, base, basic_orbits, basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
gens = Z.generators
gens.append(conj)
Z = PermutationGroup(gens)
strong_gens.append(conj)
temp_base, temp_strong_gens = \
Z.schreier_sims_incremental(base, strong_gens)
base, strong_gens = temp_base, temp_strong_gens
strong_gens_distr = \
_distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base,
strong_gens_distr)
_loop = False
for g in self.generators:
for h in Z.generators:
conj = h^g
res = _strip(conj, base, basic_orbits,
basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
_loop = True
break
if _loop:
break
return Z
elif hasattr(other, '__getitem__'):
return self.normal_closure(PermutationGroup(other))
elif hasattr(other, 'array_form'):
return self.normal_closure(PermutationGroup([other]))
def orbit(self, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit_transversal
"""
return _orbit(self.degree, self.generators, alpha, action)
def orbit_rep(self, alpha, beta, schreier_vector=None):
"""Return a group element which sends ``alpha`` to ``beta``.
If ``beta`` is not in the orbit of ``alpha``, the function returns
``False``. This implementation makes use of the schreier vector.
For a proof of correctness, see [1], p.80
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
See Also
========
schreier_vector
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if schreier_vector[beta] is None:
return False
k = schreier_vector[beta]
gens = [x._array_form for x in self.generators]
a = []
while k != -1:
a.append(gens[k])
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
k = schreier_vector[beta]
if a:
return _af_new(_af_rmuln(*a))
else:
return _af_new(list(range(self._degree)))
def orbit_transversal(self, alpha, pairs=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
For a permutation group `G`, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
See Also
========
orbit
"""
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
def orbits(self, rep=False):
"""Return the orbits of ``self``, ordered according to lowest element
in each orbit.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
"""
return _orbits(self._degree, self._generators)
def order(self):
"""Return the order of the group: the number of permutations that
can be generated from elements of the group.
The number of permutations comprising the group is given by
``len(group)``; the length of each permutation in the group is
given by ``group.size``.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
See Also
========
degree
"""
if self._order is not None:
return self._order
if self._is_sym:
n = self._degree
self._order = factorial(n)
return self._order
if self._is_alt:
n = self._degree
self._order = factorial(n)/2
return self._order
basic_transversals = self.basic_transversals
m = 1
for x in basic_transversals:
m *= len(x)
self._order = m
return m
def index(self, H):
"""
Returns the index of a permutation group.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation(1,2,3)
>>> b =Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
"""
if H.is_subgroup(self):
return self.order()//H.order()
@property
def is_symmetric(self):
"""Return ``True`` if the group is symmetric.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_sym = self._is_sym
if _is_sym is not None:
return _is_sym
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if any(g.is_odd for g in self.generators):
self._is_sym, self._is_alt = True, False
return True
self._is_sym, self._is_alt = False, True
return False
return self._eval_is_alt_sym_naive(only_sym=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_sym=True)
@property
def is_alternating(self):
"""Return ``True`` if the group is alternating.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_alt = self._is_alt
if _is_alt is not None:
return _is_alt
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if all(g.is_even for g in self.generators):
self._is_sym, self._is_alt = False, True
return True
self._is_sym, self._is_alt = True, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
@classmethod
def _distinct_primes_lemma(cls, primes):
"""Subroutine to test if there is only one cyclic group for the
order."""
primes = sorted(primes)
l = len(primes)
for i in range(l):
for j in range(i+1, l):
if primes[j] % primes[i] == 1:
return None
return True
@property
def is_cyclic(self):
r"""
Return ``True`` if the group is Cyclic.
Examples
========
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
Notes
=====
If the order of a group $n$ can be factored into the distinct
primes $p_1, p_2, ... , p_s$ and if
.. math::
\forall i, j \in \{1, 2, \ldots, s \}:
p_i \not \equiv 1 \pmod {p_j}
holds true, there is only one group of the order $n$ which
is a cyclic group. [1]_ This is a generalization of the lemma
that the group of order $15, 35, ...$ are cyclic.
And also, these additional lemmas can be used to test if a
group is cyclic if the order of the group is already found.
- If the group is abelian and the order of the group is
square-free, the group is cyclic.
- If the order of the group is less than $6$ and is not $4$, the
group is cyclic.
- If the order of the group is prime, the group is cyclic.
References
==========
.. [1] 1978: John S. Rose: A Course on Group Theory,
Introduction to Finite Group Theory: 1.4
"""
if self._is_cyclic is not None:
return self._is_cyclic
if len(self.generators) == 1:
self._is_cyclic = True
self._is_abelian = True
return True
if self._is_abelian is False:
self._is_cyclic = False
return False
order = self.order()
if order < 6:
self._is_abelian == True
if order != 4:
self._is_cyclic == True
return True
factors = factorint(order)
if all(v == 1 for v in factors.values()):
if self._is_abelian:
self._is_cyclic = True
return True
primes = list(factors.keys())
if PermutationGroup._distinct_primes_lemma(primes) is True:
self._is_cyclic = True
self._is_abelian = True
return True
for p in factors:
pgens = []
for g in self.generators:
pgens.append(g**p)
if self.index(self.subgroup(pgens)) != p:
self._is_cyclic = False
return False
self._is_cyclic = True
self._is_abelian = True
return True
def pointwise_stabilizer(self, points, incremental=True):
r"""Return the pointwise stabilizer for a set of points.
For a permutation group `G` and a set of points
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
`p_1, p_2, \ldots, p_k` is defined as
`G_{p_1,\ldots, p_k} =
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
It is a subgroup of `G`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
See Also
========
stabilizer, schreier_sims_incremental
Notes
=====
When incremental == True,
rather than the obvious implementation using successive calls to
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
to obtain a base with starting segment - the given points.
"""
if incremental:
base, strong_gens = self.schreier_sims_incremental(base=points)
stab_gens = []
degree = self.degree
for gen in strong_gens:
if [gen(point) for point in points] == points:
stab_gens.append(gen)
if not stab_gens:
stab_gens = _af_new(list(range(degree)))
return PermutationGroup(stab_gens)
else:
gens = self._generators
degree = self.degree
for x in points:
gens = _stabilizer(degree, gens, x)
return PermutationGroup(gens)
def make_perm(self, n, seed=None):
"""
Multiply ``n`` randomly selected permutations from
pgroup together, starting with the identity
permutation. If ``n`` is a list of integers, those
integers will be used to select the permutations and they
will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.
``seed`` is used to set the seed for the random selection
of permutations from pgroup. If this is a list of integers,
the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See Also
========
random
"""
if is_sequence(n):
if seed is not None:
raise ValueError('If n is a sequence, seed should be None')
n, seed = len(n), n
else:
try:
n = int(n)
except TypeError:
raise ValueError('n must be an integer or a sequence.')
randrange = _randrange(seed)
# start with the identity permutation
result = Permutation(list(range(self.degree)))
m = len(self)
for i in range(n):
p = self[randrange(m)]
result = rmul(result, p)
return result
def random(self, af=False):
"""Return a random group element
"""
rank = randrange(self.order())
return self.coset_unrank(rank, af)
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
"""Return a random group element using product replacement.
For the details of the product replacement algorithm, see
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
is performed. Notice that if the attribute ``_random_gens``
is empty, it needs to be initialized by ``_random_pr_init``.
See Also
========
_random_pr_init
"""
if self._random_gens == []:
self._random_pr_init(gen_count, iterations)
random_gens = self._random_gens
r = len(random_gens) - 1
# handle randomized input for testing purposes
if _random_prec is None:
s = randrange(r)
t = randrange(r - 1)
if t == s:
t = r - 1
x = choice([1, 2])
e = choice([-1, 1])
else:
s = _random_prec['s']
t = _random_prec['t']
if t == s:
t = r - 1
x = _random_prec['x']
e = _random_prec['e']
if x == 1:
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
else:
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
return _af_new(random_gens[r])
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
"""Random element from the stabilizer of ``alpha``.
The schreier vector for ``alpha`` is an optional argument used
for speeding up repeated calls. The algorithm is described in [1], p.81
See Also
========
random_pr, orbit_rep
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if _random_prec is None:
rand = self.random_pr()
else:
rand = _random_prec['rand']
beta = rand(alpha)
h = self.orbit_rep(alpha, beta, schreier_vector)
return rmul(~h, rand)
def schreier_sims(self):
"""Schreier-Sims algorithm.
It computes the generators of the chain of stabilizers
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
and the corresponding ``s`` cosets.
An element of the group can be written as the product
`h_1*..*h_s`.
We use the incremental Schreier-Sims algorithm.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{0: (2)(0 1), 1: (2), 2: (1 2)},
{0: (2), 2: (0 2)}]
"""
if self._transversals:
return
self._schreier_sims()
return
def _schreier_sims(self, base=None):
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
base, strong_gens = schreier[:2]
self._base = base
self._strong_gens = strong_gens
self._strong_gens_slp = schreier[2]
if not base:
self._transversals = []
self._basic_orbits = []
return
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
strong_gens_distr, slp=True)
# rewrite the indices stored in slps in terms of strong_gens
for i, slp in enumerate(slps):
gens = strong_gens_distr[i]
for k in slp:
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
self._transversals = transversals
self._basic_orbits = [sorted(x) for x in basic_orbits]
self._transversal_slp = slps
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
_random_prec=None):
r"""Randomized Schreier-Sims algorithm.
The randomized Schreier-Sims algorithm takes the sequence ``base``
and the generating set ``gens``, and extends ``base`` to a base, and
``gens`` to a strong generating set relative to that base with
probability of a wrong answer at most `2^{-consec\_succ}`,
provided the random generators are sufficiently random.
Parameters
==========
base
The sequence to be extended to a base.
gens
The generating set to be extended to a strong generating set.
consec_succ
The parameter defining the probability of a wrong answer.
_random_prec
An internal parameter used for testing purposes.
Returns
=======
(base, strong_gens)
``base`` is the base and ``strong_gens`` is the strong generating
set relative to it.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
True
Notes
=====
The algorithm is described in detail in [1], pp. 97-98. It extends
the orbits ``orbs`` and the permutation groups ``stabs`` to
basic orbits and basic stabilizers for the base and strong generating
set produced in the end.
The idea of the extension process
is to "sift" random group elements through the stabilizer chain
and amend the stabilizers/orbits along the way when a sift
is not successful.
The helper function ``_strip`` is used to attempt
to decompose a random group element according to the current
state of the stabilizer chain and report whether the element was
fully decomposed (successful sift) or not (unsuccessful sift). In
the latter case, the level at which the sift failed is reported and
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
The halting condition is for ``consec_succ`` consecutive successful
sifts to pass. This makes sure that the current ``base`` and ``gens``
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
See Also
========
schreier_sims
"""
if base is None:
base = []
if gens is None:
gens = self.generators
base_len = len(base)
n = self.degree
# make sure no generator fixes all base points
for gen in gens:
if all(gen(x) == x for x in base):
new = 0
while gen._array_form[new] == new:
new += 1
base.append(new)
base_len += 1
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(base, gens)
# initialize the basic stabilizers, basic transversals and basic orbits
transversals = {}
orbs = {}
for i in range(base_len):
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
base[i], pairs=True))
orbs[i] = list(transversals[i].keys())
# initialize the number of consecutive elements sifted
c = 0
# start sifting random elements while the number of consecutive sifts
# is less than consec_succ
while c < consec_succ:
if _random_prec is None:
g = self.random_pr()
else:
g = _random_prec['g'].pop()
h, j = _strip(g, base, orbs, transversals)
y = True
# determine whether a new base point is needed
if j <= base_len:
y = False
elif not h.is_Identity:
y = False
moved = 0
while h(moved) == moved:
moved += 1
base.append(moved)
base_len += 1
strong_gens_distr.append([])
# if the element doesn't sift, amend the strong generators and
# associated stabilizers and orbits
if y is False:
for l in range(1, j):
strong_gens_distr[l].append(h)
transversals[l] = dict(_orbit_transversal(n,
strong_gens_distr[l], base[l], pairs=True))
orbs[l] = list(transversals[l].keys())
c = 0
else:
c += 1
# build the strong generating set
strong_gens = strong_gens_distr[0][:]
for gen in strong_gens_distr[1]:
if gen not in strong_gens:
strong_gens.append(gen)
return base, strong_gens
def schreier_vector(self, alpha):
"""Computes the schreier vector for ``alpha``.
The Schreier vector efficiently stores information
about the orbit of ``alpha``. It can later be used to quickly obtain
elements of the group that send ``alpha`` to a particular element
in the orbit. Notice that the Schreier vector depends on the order
in which the group generators are listed. For a definition, see [3].
Since list indices start from zero, we adopt the convention to use
"None" instead of 0 to signify that an element doesn't belong
to the orbit.
For the algorithm and its correctness, see [2], pp.78-80.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
See Also
========
orbit
"""
n = self.degree
v = [None]*n
v[alpha] = -1
orb = [alpha]
used = [False]*n
used[alpha] = True
gens = self.generators
r = len(gens)
for b in orb:
for i in range(r):
temp = gens[i]._array_form[b]
if used[temp] is False:
orb.append(temp)
used[temp] = True
v[temp] = i
return v
def stabilizer(self, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
(5)(0 4)(1 3)])
See Also
========
orbit
"""
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
@property
def strong_gens(self):
r"""Return a strong generating set from the Schreier-Sims algorithm.
A generating set `S = \{g_1, g_2, ..., g_t\}` for a permutation group
`G` is a strong generating set relative to the sequence of points
(referred to as a "base") `(b_1, b_2, ..., b_k)` if, for
`1 \leq i \leq k` we have that the intersection of the pointwise
stabilizer `G^{(i+1)} := G_{b_1, b_2, ..., b_i}` with `S` generates
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
strong generating set and their applications are discussed in depth
in [1], pp. 87-89 and [2], pp. 55-57.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
See Also
========
base, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._strong_gens == []:
self.schreier_sims()
return self._strong_gens
def subgroup(self, gens):
"""
Return the subgroup generated by `gens` which is a list of
elements of the group
"""
if not all([g in self for g in gens]):
raise ValueError("The group doesn't contain the supplied generators")
G = PermutationGroup(gens)
return G
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
init_subgroup=None):
"""Find the subgroup of all elements satisfying the property ``prop``.
This is done by a depth-first search with respect to base images that
uses several tests to prune the search tree.
Parameters
==========
prop
The property to be used. Has to be callable on group elements
and always return ``True`` or ``False``. It is assumed that
all group elements satisfying ``prop`` indeed form a subgroup.
base
A base for the supergroup.
strong_gens
A strong generating set for the supergroup.
tests
A list of callables of length equal to the length of ``base``.
These are used to rule out group elements by partial base images,
so that ``tests[l](g)`` returns False if the element ``g`` is known
not to satisfy prop base on where g sends the first ``l + 1`` base
points.
init_subgroup
if a subgroup of the sought group is
known in advance, it can be passed to the function as this
parameter.
Returns
=======
res
The subgroup of all elements satisfying ``prop``. The generating
set for this group is guaranteed to be a strong generating set
relative to the base ``base``.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong_gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
Notes
=====
This function is extremely lengthy and complicated and will require
some careful attention. The implementation is described in
[1], pp. 114-117, and the comments for the code here follow the lines
of the pseudocode in the book for clarity.
The complexity is exponential in general, since the search process by
itself visits all members of the supergroup. However, there are a lot
of tests which are used to prune the search tree, and users can define
their own tests via the ``tests`` parameter, so in practice, and for
some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed
(this is line 11 in the pseudocode) in order to obtain a new basic
stabilizer. The book mentiones that this can be done by using
``.baseswap(...)``, however the current implementation uses a more
straightforward way to find the next basic stabilizer - calling the
function ``.stabilizer(...)`` on the previous basic stabilizer.
"""
# initialize BSGS and basic group properties
def get_reps(orbits):
# get the minimal element in the base ordering
return [min(orbit, key = lambda x: base_ordering[x]) \
for orbit in orbits]
def update_nu(l):
temp_index = len(basic_orbits[l]) + 1 -\
len(res_basic_orbits_init_base[l])
# this corresponds to the element larger than all points
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
if base is None:
base, strong_gens = self.schreier_sims_incremental()
base_len = len(base)
degree = self.degree
identity = _af_new(list(range(degree)))
base_ordering = _base_ordering(base, degree)
# add an element larger than all points
base_ordering.append(degree)
# add an element smaller than all points
base_ordering.append(-1)
# compute BSGS-related structures
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
strong_gens_distr)
# handle subgroup initialization and tests
if init_subgroup is None:
init_subgroup = PermutationGroup([identity])
if tests is None:
trivial_test = lambda x: True
tests = []
for i in range(base_len):
tests.append(trivial_test)
# line 1: more initializations.
res = init_subgroup
f = base_len - 1
l = base_len - 1
# line 2: set the base for K to the base for G
res_base = base[:]
# line 3: compute BSGS and related structures for K
res_base, res_strong_gens = res.schreier_sims_incremental(
base=res_base)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_generators = res.generators
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
for i in range(base_len)]
# initialize orbit representatives
orbit_reps = [None]*base_len
# line 4: orbit representatives for f-th basic stabilizer of K
orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(orbits)
# line 5: remove the base point from the representatives to avoid
# getting the identity element as a generator for K
orbit_reps[f].remove(base[f])
# line 6: more initializations
c = [0]*base_len
u = [identity]*base_len
sorted_orbits = [None]*base_len
for i in range(base_len):
sorted_orbits[i] = basic_orbits[i][:]
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
# line 7: initializations
mu = [None]*base_len
nu = [None]*base_len
# this corresponds to the element smaller than all points
mu[l] = degree + 1
update_nu(l)
# initialize computed words
computed_words = [identity]*base_len
# line 8: main loop
while True:
# apply all the tests
while l < base_len - 1 and \
computed_words[l](base[l]) in orbit_reps[l] and \
base_ordering[mu[l]] < \
base_ordering[computed_words[l](base[l])] < \
base_ordering[nu[l]] and \
tests[l](computed_words):
# line 11: change the (partial) base of K
new_point = computed_words[l](base[l])
res_base[l] = new_point
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
new_point)
res_strong_gens_distr[l + 1] = new_stab_gens
# line 12: calculate minimal orbit representatives for the
# l+1-th basic stabilizer
orbits = _orbits(degree, new_stab_gens)
orbit_reps[l + 1] = get_reps(orbits)
# line 13: amend sorted orbits
l += 1
temp_orbit = [computed_words[l - 1](point) for point
in basic_orbits[l]]
temp_orbit.sort(key=lambda point: base_ordering[point])
sorted_orbits[l] = temp_orbit
# lines 14 and 15: update variables used minimality tests
new_mu = degree + 1
for i in range(l):
if base[l] in res_basic_orbits_init_base[i]:
candidate = computed_words[i](base[i])
if base_ordering[candidate] > base_ordering[new_mu]:
new_mu = candidate
mu[l] = new_mu
update_nu(l)
# line 16: determine the new transversal element
c[l] = 0
temp_point = sorted_orbits[l][c[l]]
gamma = computed_words[l - 1]._array_form.index(temp_point)
u[l] = transversals[l][gamma]
# update computed words
computed_words[l] = rmul(computed_words[l - 1], u[l])
# lines 17 & 18: apply the tests to the group element found
g = computed_words[l]
temp_point = g(base[l])
if l == base_len - 1 and \
base_ordering[mu[l]] < \
base_ordering[temp_point] < base_ordering[nu[l]] and \
temp_point in orbit_reps[l] and \
tests[l](computed_words) and \
prop(g):
# line 19: reset the base of K
res_generators.append(g)
res_base = base[:]
# line 20: recalculate basic orbits (and transversals)
res_strong_gens.append(g)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
for i in range(base_len)]
# line 21: recalculate orbit representatives
# line 22: reset the search depth
orbit_reps[f] = get_reps(orbits)
l = f
# line 23: go up the tree until in the first branch not fully
# searched
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
l = l - 1
# line 24: if the entire tree is traversed, return K
if l == -1:
return PermutationGroup(res_generators)
# lines 25-27: update orbit representatives
if l < f:
# line 26
f = l
c[l] = 0
# line 27
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(temp_orbits)
# line 28: update variables used for minimality testing
mu[l] = degree + 1
temp_index = len(basic_orbits[l]) + 1 - \
len(res_basic_orbits_init_base[l])
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
# line 29: set the next element from the current branch and update
# accordingly
c[l] += 1
if l == 0:
gamma = sorted_orbits[l][c[l]]
else:
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
u[l] = transversals[l][gamma]
if l == 0:
computed_words[l] = u[l]
else:
computed_words[l] = rmul(computed_words[l - 1], u[l])
@property
def transitivity_degree(self):
r"""Compute the degree of transitivity of the group.
A permutation group `G` acting on `\Omega = \{0, 1, ..., n-1\}` is
``k``-fold transitive, if, for any k points
`(a_1, a_2, ..., a_k)\in\Omega` and any k points
`(b_1, b_2, ..., b_k)\in\Omega` there exists `g\in G` such that
`g(a_1)=b_1, g(a_2)=b_2, ..., g(a_k)=b_k`
The degree of transitivity of `G` is the maximum ``k`` such that
`G` is ``k``-fold transitive. ([8])
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
See Also
========
is_transitive, orbit
"""
if self._transitivity_degree is None:
n = self.degree
G = self
# if G is k-transitive, a tuple (a_0,..,a_k)
# can be brought to (b_0,...,b_(k-1), b_k)
# where b_0,...,b_(k-1) are fixed points;
# consider the group G_k which stabilizes b_0,...,b_(k-1)
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
# then G is (k+1)-transitive
for i in range(n):
orb = G.orbit((i))
if len(orb) != n - i:
self._transitivity_degree = i
return i
G = G.stabilizer(i)
self._transitivity_degree = n
return n
else:
return self._transitivity_degree
def _p_elements_group(G, p):
'''
For an abelian p-group G return the subgroup consisting of
all elements of order p (and the identity)
'''
gens = G.generators[:]
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
gens_p = [g**(g.order()/p) for g in gens]
gens_r = []
for i in range(len(gens)):
x = gens[i]
x_order = x.order()
# x_p has order p
x_p = x**(x_order/p)
if i > 0:
P = PermutationGroup(gens_p[:i])
else:
P = PermutationGroup(G.identity)
if x**(x_order/p) not in P:
gens_r.append(x**(x_order/p))
else:
# replace x by an element of order (x.order()/p)
# so that gens still generates G
g = P.generator_product(x_p, original=True)
for s in g:
x = x*s**-1
x_order = x_order/p
# insert x to gens so that the sorting is preserved
del gens[i]
del gens_p[i]
j = i - 1
while j < len(gens) and gens[j].order() >= x_order:
j += 1
gens = gens[:j] + [x] + gens[j:]
gens_p = gens_p[:j] + [x] + gens_p[j:]
return PermutationGroup(gens_r)
def _sylow_alt_sym(self, p):
'''
Return a p-Sylow subgroup of a symmetric or an
alternating group.
The algorithm for this is hinted at in [1], Chapter 4,
Exercise 4.
For Sym(n) with n = p^i, the idea is as follows. Partition
the interval [0..n-1] into p equal parts, each of length p^(i-1):
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
of ``self``) acting on each of the parts. Call the subgroups
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
can be obtained from those of P_1 by applying a "shifting"
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
to the second part (the other parts are obtained by using the shift
multiple times). The union of this permutation and the generators
of P_1 is a p-Sylow subgroup of ``self``.
For n not equal to a power of p, partition
[0..n-1] in accordance with how n would be written in base p.
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
take the union of the generators for each of the parts.
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
from the first part, {(8 9)} from the second part and
nothing from the third. This gives 4 generators in total, and
the subgroup they generate is p-Sylow.
Alternating groups are treated the same except when p=2. In this
case, (0 1)(s s+1) should be added for an appropriate s (the start
of a part) for each part in the partitions.
See Also
========
sylow_subgroup, is_alt_sym
'''
n = self.degree
gens = []
identity = Permutation(n-1)
# the case of 2-sylow subgroups of alternating groups
# needs special treatment
alt = p == 2 and all(g.is_even for g in self.generators)
# find the presentation of n in base p
coeffs = []
m = n
while m > 0:
coeffs.append(m % p)
m = m // p
power = len(coeffs)-1
# for a symmetric group, gens[:i] is the generating
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
# alternating groups, the same is given by gens[:2*(i-1)]
for i in range(1, power+1):
if i == 1 and alt:
# (0 1) shouldn't be added for alternating groups
continue
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
gens.append(identity*gen)
if alt:
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
gens.append(gen)
# the first point in the current part (see the algorithm
# description in the docstring)
start = 0
while power > 0:
a = coeffs[power]
# make the permutation shifting the start of the first
# part ([0..p^i-1] for some i) to the current one
for s in range(a):
shift = Permutation()
if start > 0:
for i in range(p**power):
shift = shift(i, start + i)
if alt:
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
gens.append(gen)
j = 2*(power - 1)
else:
j = power
for i, gen in enumerate(gens[:j]):
if alt and i % 2 == 1:
continue
# shift the generator to the start of the
# partition part
gen = shift*gen*shift
gens.append(gen)
start += p**power
power = power-1
return gens
def sylow_subgroup(self, p):
'''
Return a p-Sylow subgroup of the group.
The algorithm is described in [1], Chapter 4, Section 7
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5
>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)
>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)
>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())
>>> len1 == len2
True
>>> len1 < len3
True
'''
from sympy.combinatorics.homomorphisms import (
orbit_homomorphism, block_homomorphism)
from sympy.ntheory.primetest import isprime
if not isprime(p):
raise ValueError("p must be a prime")
def is_p_group(G):
# check if the order of G is a power of p
# and return the power
m = G.order()
n = 0
while m % p == 0:
m = m/p
n += 1
if m == 1:
return True, n
return False, n
def _sylow_reduce(mu, nu):
# reduction based on two homomorphisms
# mu and nu with trivially intersecting
# kernels
Q = mu.image().sylow_subgroup(p)
Q = mu.invert_subgroup(Q)
nu = nu.restrict_to(Q)
R = nu.image().sylow_subgroup(p)
return nu.invert_subgroup(R)
order = self.order()
if order % p != 0:
return PermutationGroup([self.identity])
p_group, n = is_p_group(self)
if p_group:
return self
if self.is_alt_sym():
return PermutationGroup(self._sylow_alt_sym(p))
# if there is a non-trivial orbit with size not divisible
# by p, the sylow subgroup is contained in its stabilizer
# (by orbit-stabilizer theorem)
orbits = self.orbits()
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
if non_p_orbits:
G = self.stabilizer(list(non_p_orbits[0]).pop())
return G.sylow_subgroup(p)
if not self.is_transitive():
# apply _sylow_reduce to orbit actions
orbits = sorted(orbits, key = lambda x: len(x))
omega1 = orbits.pop()
omega2 = orbits[0].union(*orbits)
mu = orbit_homomorphism(self, omega1)
nu = orbit_homomorphism(self, omega2)
return _sylow_reduce(mu, nu)
blocks = self.minimal_blocks()
if len(blocks) > 1:
# apply _sylow_reduce to block system actions
mu = block_homomorphism(self, blocks[0])
nu = block_homomorphism(self, blocks[1])
return _sylow_reduce(mu, nu)
elif len(blocks) == 1:
block = list(blocks)[0]
if any(e != 0 for e in block):
# self is imprimitive
mu = block_homomorphism(self, block)
if not is_p_group(mu.image())[0]:
S = mu.image().sylow_subgroup(p)
return mu.invert_subgroup(S).sylow_subgroup(p)
# find an element of order p
g = self.random()
g_order = g.order()
while g_order % p != 0 or g_order == 0:
g = self.random()
g_order = g.order()
g = g**(g_order // p)
if order % p**2 != 0:
return PermutationGroup(g)
C = self.centralizer(g)
while C.order() % p**n != 0:
S = C.sylow_subgroup(p)
s_order = S.order()
Z = S.center()
P = Z._p_elements_group(p)
h = P.random()
C_h = self.centralizer(h)
while C_h.order() % p*s_order != 0:
h = P.random()
C_h = self.centralizer(h)
C = C_h
return C.sylow_subgroup(p)
def _block_verify(H, L, alpha):
delta = sorted(list(H.orbit(alpha)))
H_gens = H.generators
# p[i] will be the number of the block
# delta[i] belongs to
p = [-1]*len(delta)
blocks = [-1]*len(delta)
B = [[]] # future list of blocks
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
t = L.orbit_transversal(alpha, pairs=True)
for a, beta in t:
B[0].append(a)
i_a = delta.index(a)
p[i_a] = 0
blocks[i_a] = alpha
u[i_a] = beta
rho = 0
m = 0 # number of blocks - 1
while rho <= m:
beta = B[rho][0]
for g in H_gens:
d = beta^g
i_d = delta.index(d)
sigma = p[i_d]
if sigma < 0:
# define a new block
m += 1
sigma = m
u[i_d] = u[delta.index(beta)]*g
p[i_d] = sigma
rep = d
blocks[i_d] = rep
newb = [rep]
for gamma in B[rho][1:]:
i_gamma = delta.index(gamma)
d = gamma^g
i_d = delta.index(d)
if p[i_d] < 0:
u[i_d] = u[i_gamma]*g
p[i_d] = sigma
blocks[i_d] = rep
newb.append(d)
else:
# B[rho] is not a block
s = u[i_gamma]*g*u[i_d]**(-1)
return False, s
B.append(newb)
else:
for h in B[rho][1:]:
if not h^g in B[sigma]:
# B[rho] is not a block
s = u[delta.index(beta)]*g*u[i_d]**(-1)
return False, s
rho += 1
return True, blocks
def _verify(H, K, phi, z, alpha):
'''
Return a list of relators ``rels`` in generators ``gens`_h` that
are mapped to ``H.generators`` by ``phi`` so that given a finite
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
<gens_h | rels_k + rels> is a finite presentation of ``H``.
``H`` should be generated by the union of ``K.generators`` and ``z``
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
canonical injection from a free group into a permutation group
containing ``H``.
The algorithm is described in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z= Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True
See also
========
strong_presentation, presentation, stabilizer
'''
orbit = H.orbit(alpha)
beta = alpha^(z**-1)
K_beta = K.stabilizer(beta)
# orbit representatives of K_beta
gammas = [alpha, beta]
orbits = list(set(tuple(K_beta.orbit(o)) for o in orbit))
orbit_reps = [orb[0] for orb in orbits]
for rep in orbit_reps:
if rep not in gammas:
gammas.append(rep)
# orbit transversal of K
betas = [alpha, beta]
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
for s, g in K.orbit_transversal(beta, pairs=True):
if not s in transversal:
transversal[s] = transversal[beta]*phi.invert(g)
union = K.orbit(alpha).union(K.orbit(beta))
while (len(union) < len(orbit)):
for gamma in gammas:
if gamma in union:
r = gamma^z
if r not in union:
betas.append(r)
transversal[r] = transversal[gamma]*phi.invert(z)
for s, g in K.orbit_transversal(r, pairs=True):
if not s in transversal:
transversal[s] = transversal[r]*phi.invert(g)
union = union.union(K.orbit(r))
break
# compute relators
rels = []
for b in betas:
k_gens = K.stabilizer(b).generators
for y in k_gens:
new_rel = transversal[b]
gens = K.generator_product(y, original=True)
for g in gens[::-1]:
new_rel = new_rel*phi.invert(g)
new_rel = new_rel*transversal[b]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
for gamma in gammas:
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
return True, rels
def strong_presentation(G):
'''
Return a strong finite presentation of `G`. The generators
of the returned group are in the same order as the strong
generators of `G`.
The algorithm is based on Sims' Verify algorithm described
in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
See Also
========
presentation, _verify
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import (block_homomorphism,
homomorphism, GroupHomomorphism)
strong_gens = G.strong_gens[:]
stabs = G.basic_stabilizers[:]
base = G.base[:]
# injection from a free group on len(strong_gens)
# generators into G
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
F = free_group(', '.join(gen_syms))[0]
phi = homomorphism(F, G, F.generators, strong_gens)
H = PermutationGroup(G.identity)
while stabs:
alpha = base.pop()
K = H
H = stabs.pop()
new_gens = [g for g in H.generators if g not in K]
if K.order() == 1:
z = new_gens.pop()
rels = [F.generators[-1]**z.order()]
intermediate_gens = [z]
K = PermutationGroup(intermediate_gens)
# add generators one at a time building up from K to H
while new_gens:
z = new_gens.pop()
intermediate_gens = [z] + intermediate_gens
K_s = PermutationGroup(intermediate_gens)
orbit = K_s.orbit(alpha)
orbit_k = K.orbit(alpha)
# split into cases based on the orbit of K_s
if orbit_k == orbit:
if z in K:
rel = phi.invert(z)
perm = z
else:
t = K.orbit_rep(alpha, alpha^z)
rel = phi.invert(z)*phi.invert(t)**-1
perm = z*t**-1
for g in K.generator_product(perm, original=True):
rel = rel*phi.invert(g)**-1
new_rels = [rel]
elif len(orbit_k) == 1:
# `success` is always true because `strong_gens`
# and `base` are already a verified BSGS. Later
# this could be changed to start with a randomly
# generated (potential) BSGS, and then new elements
# would have to be appended to it when `success`
# is false.
success, new_rels = K_s._verify(K, phi, z, alpha)
else:
# K.orbit(alpha) should be a block
# under the action of K_s on K_s.orbit(alpha)
check, block = K_s._block_verify(K, alpha)
if check:
# apply _verify to the action of K_s
# on the block system; for convenience,
# add the blocks as additional points
# that K_s should act on
t = block_homomorphism(K_s, block)
m = t.codomain.degree # number of blocks
d = K_s.degree
# conjugating with p will shift
# permutations in t.image() to
# higher numbers, e.g.
# p*(0 1)*p = (m m+1)
p = Permutation()
for i in range(m):
p *= Permutation(i, i+d)
t_img = t.images
# combine generators of K_s with their
# action on the block system
images = {g: g*p*t_img[g]*p for g in t_img}
for g in G.strong_gens[:-len(K_s.generators)]:
images[g] = g
K_s_act = PermutationGroup(list(images.values()))
f = GroupHomomorphism(G, K_s_act, images)
K_act = PermutationGroup([f(g) for g in K.generators])
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
for n in new_rels:
if not n in rels:
rels.append(n)
K = K_s
group = FpGroup(F, rels)
return simplify_presentation(group)
def presentation(G, eliminate_gens=True):
'''
Return an `FpGroup` presentation of the group.
The algorithm is described in [1], Chapter 6.1.
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.coset_table import CosetTable
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import homomorphism
from itertools import product
if G._fp_presentation:
return G._fp_presentation
if G._fp_presentation:
return G._fp_presentation
def _factor_group_by_rels(G, rels):
if isinstance(G, FpGroup):
rels.extend(G.relators)
return FpGroup(G.free_group, list(set(rels)))
return FpGroup(G, rels)
gens = G.generators
len_g = len(gens)
if len_g == 1:
order = gens[0].order()
# handle the trivial group
if order == 1:
return free_group([])[0]
F, x = free_group('x')
return FpGroup(F, [x**order])
if G.order() > 20:
half_gens = G.generators[0:(len_g+1)//2]
else:
half_gens = []
H = PermutationGroup(half_gens)
H_p = H.presentation()
len_h = len(H_p.generators)
C = G.coset_table(H)
n = len(C) # subgroup index
gen_syms = [('x_%d'%i) for i in range(len(gens))]
F = free_group(', '.join(gen_syms))[0]
# mapping generators of H_p to those of F
images = [F.generators[i] for i in range(len_h)]
R = homomorphism(H_p, F, H_p.generators, images, check=False)
# rewrite relators
rels = R(H_p.relators)
G_p = FpGroup(F, rels)
# injective homomorphism from G_p into G
T = homomorphism(G_p, G, G_p.generators, gens)
C_p = CosetTable(G_p, [])
C_p.table = [[None]*(2*len_g) for i in range(n)]
# initiate the coset transversal
transversal = [None]*n
transversal[0] = G_p.identity
# fill in the coset table as much as possible
for i in range(2*len_h):
C_p.table[0][i] = 0
gamma = 1
for alpha, x in product(range(0, n), range(2*len_g)):
beta = C[alpha][x]
if beta == gamma:
gen = G_p.generators[x//2]**((-1)**(x % 2))
transversal[beta] = transversal[alpha]*gen
C_p.table[alpha][x] = beta
C_p.table[beta][x + (-1)**(x % 2)] = alpha
gamma += 1
if gamma == n:
break
C_p.p = list(range(n))
beta = x = 0
while not C_p.is_complete():
# find the first undefined entry
while C_p.table[beta][x] == C[beta][x]:
x = (x + 1) % (2*len_g)
if x == 0:
beta = (beta + 1) % n
# define a new relator
gen = G_p.generators[x//2]**((-1)**(x % 2))
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
perm = T(new_rel)
next = G_p.identity
for s in H.generator_product(perm, original=True):
next = next*T.invert(s)**-1
new_rel = new_rel*next
# continue coset enumeration
G_p = _factor_group_by_rels(G_p, [new_rel])
C_p.scan_and_fill(0, new_rel)
C_p = G_p.coset_enumeration([], strategy="coset_table",
draft=C_p, max_cosets=n, incomplete=True)
G._fp_presentation = simplify_presentation(G_p)
return G._fp_presentation
def polycyclic_group(self):
"""
Return the PolycyclicGroup instance with below parameters:
* ``pc_sequence`` : Polycyclic sequence is formed by collecting all
the missing generators between the adjacent groups in the
derived series of given permutation group.
* ``pc_series`` : Polycyclic series is formed by adding all the missing
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
the derived series.
* ``relative_order`` : A list, computed by the ratio of adjacent groups in
pc_series.
"""
from sympy.combinatorics.pc_groups import PolycyclicGroup
if not self.is_polycyclic:
raise ValueError("The group must be solvable")
der = self.derived_series()
pc_series = []
pc_sequence = []
relative_order = []
pc_series.append(der[-1])
der.reverse()
for i in range(len(der)-1):
H = der[i]
for g in der[i+1].generators:
if g not in H:
H = PermutationGroup([g] + H.generators)
pc_series.insert(0, H)
pc_sequence.insert(0, g)
G1 = pc_series[0].order()
G2 = pc_series[1].order()
relative_order.insert(0, G1 // G2)
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
def _orbit(degree, generators, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> _orbit(G.degree, G.generators, 0)
{0, 1, 2}
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit, orbit_transversal
"""
if not hasattr(alpha, '__getitem__'):
alpha = [alpha]
gens = [x._array_form for x in generators]
if len(alpha) == 1 or action == 'union':
orb = alpha
used = [False]*degree
for el in alpha:
used[el] = True
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] == False:
orb.append(temp)
used[temp] = True
return set(orb)
elif action == 'tuples':
alpha = tuple(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = tuple([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return set(orb)
elif action == 'sets':
alpha = frozenset(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = frozenset([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return {tuple(x) for x in orb}
def _orbits(degree, generators):
"""Compute the orbits of G.
If ``rep=False`` it returns a list of sets else it returns a list of
representatives of the orbits
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbits
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> _orbits(a.size, [a, b])
[{0, 1, 2}]
"""
orbs = []
sorted_I = list(range(degree))
I = set(sorted_I)
while I:
i = sorted_I[0]
orb = _orbit(degree, generators, i)
orbs.append(orb)
# remove all indices that are in this orbit
I -= orb
sorted_I = [i for i in sorted_I if i not in orb]
return orbs
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
generators generators of the group ``G``
For a permutation group ``G``, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
if ``af`` is ``True``, the transversal elements are given in
array form.
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
for `\beta \in Orb` where `slp_beta` is a list of indices of the
generators in `generators` s.t. if `slp_beta = [i_1 ... i_n]`
`g_\beta = generators[i_n]*...*generators[i_1]`.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
>>> G = DihedralGroup(6)
>>> _orbit_transversal(G.degree, G.generators, 0, False)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
"""
tr = [(alpha, list(range(degree)))]
slp_dict = {alpha: []}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
for x, px in tr:
px_slp = slp_dict[x]
for gen in gens:
temp = gen[x]
if used[temp] == False:
slp_dict[temp] = [gens.index(gen)] + px_slp
tr.append((temp, _af_rmul(gen, px)))
used[temp] = True
if pairs:
if not af:
tr = [(x, _af_new(y)) for x, y in tr]
if not slp:
return tr
return tr, slp_dict
if af:
tr = [y for _, y in tr]
if not slp:
return tr
return tr, slp_dict
tr = [_af_new(y) for _, y in tr]
if not slp:
return tr
return tr, slp_dict
def _stabilizer(degree, generators, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
degree : degree of G
generators : generators of G
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import _stabilizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> _stabilizer(G.degree, G.generators, 5)
[(5)(0 4)(1 3), (5)]
See Also
========
orbit
"""
orb = [alpha]
table = {alpha: list(range(degree))}
table_inv = {alpha: list(range(degree))}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
stab_gens = []
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] is False:
gen_temp = _af_rmul(gen, table[b])
orb.append(temp)
table[temp] = gen_temp
table_inv[temp] = _af_invert(gen_temp)
used[temp] = True
else:
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
if schreier_gen not in stab_gens:
stab_gens.append(schreier_gen)
return [_af_new(x) for x in stab_gens]
PermGroup = PermutationGroup
|
1c16eecff497f46aafb640565add072944f7713826594ffc5c84404f2353652d | from __future__ import print_function, division
from sympy.combinatorics.permutations import Permutation
from sympy.core.symbol import symbols
from sympy.matrices import Matrix
from sympy.utilities.iterables import variations, rotate_left
def symmetric(n):
"""
Generates the symmetric group of order n, Sn.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.generators import symmetric
>>> list(symmetric(3))
[(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
"""
for perm in variations(list(range(n)), n):
yield Permutation(perm)
def cyclic(n):
"""
Generates the cyclic group of order n, Cn.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.generators import cyclic
>>> list(cyclic(5))
[(4), (0 1 2 3 4), (0 2 4 1 3),
(0 3 1 4 2), (0 4 3 2 1)]
See Also
========
dihedral
"""
gen = list(range(n))
for i in range(n):
yield Permutation(gen)
gen = rotate_left(gen, 1)
def alternating(n):
"""
Generates the alternating group of order n, An.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.generators import alternating
>>> list(alternating(3))
[(2), (0 1 2), (0 2 1)]
"""
for perm in variations(list(range(n)), n):
p = Permutation(perm)
if p.is_even:
yield p
def dihedral(n):
"""
Generates the dihedral group of order 2n, Dn.
The result is given as a subgroup of Sn, except for the special cases n=1
(the group S2) and n=2 (the Klein 4-group) where that's not possible
and embeddings in S2 and S4 respectively are given.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.generators import dihedral
>>> list(dihedral(3))
[(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]
See Also
========
cyclic
"""
if n == 1:
yield Permutation([0, 1])
yield Permutation([1, 0])
elif n == 2:
yield Permutation([0, 1, 2, 3])
yield Permutation([1, 0, 3, 2])
yield Permutation([2, 3, 0, 1])
yield Permutation([3, 2, 1, 0])
else:
gen = list(range(n))
for i in range(n):
yield Permutation(gen)
yield Permutation(gen[::-1])
gen = rotate_left(gen, 1)
def rubik_cube_generators():
"""Return the permutations of the 3x3 Rubik's cube, see
http://www.gap-system.org/Doc/Examples/rubik.html
"""
a = [
[(1, 3, 8, 6), (2, 5, 7, 4), (9, 33, 25, 17), (10, 34, 26, 18),
(11, 35, 27, 19)],
[(9, 11, 16, 14), (10, 13, 15, 12), (1, 17, 41, 40), (4, 20, 44, 37),
(6, 22, 46, 35)],
[(17, 19, 24, 22), (18, 21, 23, 20), (6, 25, 43, 16), (7, 28, 42, 13),
(8, 30, 41, 11)],
[(25, 27, 32, 30), (26, 29, 31, 28), (3, 38, 43, 19), (5, 36, 45, 21),
(8, 33, 48, 24)],
[(33, 35, 40, 38), (34, 37, 39, 36), (3, 9, 46, 32), (2, 12, 47, 29),
(1, 14, 48, 27)],
[(41, 43, 48, 46), (42, 45, 47, 44), (14, 22, 30, 38),
(15, 23, 31, 39), (16, 24, 32, 40)]
]
return [Permutation([[i - 1 for i in xi] for xi in x], size=48) for x in a]
def rubik(n):
"""Return permutations for an nxn Rubik's cube.
Permutations returned are for rotation of each of the slice
from the face up to the last face for each of the 3 sides (in this order):
front, right and bottom. Hence, the first n - 1 permutations are for the
slices from the front.
"""
if n < 2:
raise ValueError('dimension of cube must be > 1')
# 1-based reference to rows and columns in Matrix
def getr(f, i):
return faces[f].col(n - i)
def getl(f, i):
return faces[f].col(i - 1)
def getu(f, i):
return faces[f].row(i - 1)
def getd(f, i):
return faces[f].row(n - i)
def setr(f, i, s):
faces[f][:, n - i] = Matrix(n, 1, s)
def setl(f, i, s):
faces[f][:, i - 1] = Matrix(n, 1, s)
def setu(f, i, s):
faces[f][i - 1, :] = Matrix(1, n, s)
def setd(f, i, s):
faces[f][n - i, :] = Matrix(1, n, s)
# motion of a single face
def cw(F, r=1):
for _ in range(r):
face = faces[F]
rv = []
for c in range(n):
for r in range(n - 1, -1, -1):
rv.append(face[r, c])
faces[F] = Matrix(n, n, rv)
def ccw(F):
cw(F, 3)
# motion of plane i from the F side;
# fcw(0) moves the F face, fcw(1) moves the plane
# just behind the front face, etc...
def fcw(i, r=1):
for _ in range(r):
if i == 0:
cw(F)
i += 1
temp = getr(L, i)
setr(L, i, list((getu(D, i))))
setu(D, i, list(reversed(getl(R, i))))
setl(R, i, list((getd(U, i))))
setd(U, i, list(reversed(temp)))
i -= 1
def fccw(i):
fcw(i, 3)
# motion of the entire cube from the F side
def FCW(r=1):
for _ in range(r):
cw(F)
ccw(B)
cw(U)
t = faces[U]
cw(L)
faces[U] = faces[L]
cw(D)
faces[L] = faces[D]
cw(R)
faces[D] = faces[R]
faces[R] = t
def FCCW():
FCW(3)
# motion of the entire cube from the U side
def UCW(r=1):
for _ in range(r):
cw(U)
ccw(D)
t = faces[F]
faces[F] = faces[R]
faces[R] = faces[B]
faces[B] = faces[L]
faces[L] = t
def UCCW():
UCW(3)
# defining the permutations for the cube
U, F, R, B, L, D = names = symbols('U, F, R, B, L, D')
# the faces are represented by nxn matrices
faces = {}
count = 0
for fi in range(6):
f = []
for a in range(n**2):
f.append(count)
count += 1
faces[names[fi]] = Matrix(n, n, f)
# this will either return the value of the current permutation
# (show != 1) or else append the permutation to the group, g
def perm(show=0):
# add perm to the list of perms
p = []
for f in names:
p.extend(faces[f])
if show:
return p
g.append(Permutation(p))
g = [] # container for the group's permutations
I = list(range(6*n**2)) # the identity permutation used for checking
# define permutations corresponding to cw rotations of the planes
# up TO the last plane from that direction; by not including the
# last plane, the orientation of the cube is maintained.
# F slices
for i in range(n - 1):
fcw(i)
perm()
fccw(i) # restore
assert perm(1) == I
# R slices
# bring R to front
UCW()
for i in range(n - 1):
fcw(i)
# put it back in place
UCCW()
# record
perm()
# restore
# bring face to front
UCW()
fccw(i)
# restore
UCCW()
assert perm(1) == I
# D slices
# bring up bottom
FCW()
UCCW()
FCCW()
for i in range(n - 1):
# turn strip
fcw(i)
# put bottom back on the bottom
FCW()
UCW()
FCCW()
# record
perm()
# restore
# bring up bottom
FCW()
UCCW()
FCCW()
# turn strip
fccw(i)
# put bottom back on the bottom
FCW()
UCW()
FCCW()
assert perm(1) == I
return g
|
7181a8895fc0017ad5889e2c020473ee00339e5cd4ce7acfdc1255dc49721d07 | from __future__ import print_function, division
from sympy.core import Basic
import random
class GrayCode(Basic):
"""
A Gray code is essentially a Hamiltonian walk on
a n-dimensional cube with edge length of one.
The vertices of the cube are represented by vectors
whose values are binary. The Hamilton walk visits
each vertex exactly once. The Gray code for a 3d
cube is ['000','100','110','010','011','111','101',
'001'].
A Gray code solves the problem of sequentially
generating all possible subsets of n objects in such
a way that each subset is obtained from the previous
one by either deleting or adding a single object.
In the above example, 1 indicates that the object is
present, and 0 indicates that its absent.
Gray codes have applications in statistics as well when
we want to compute various statistics related to subsets
in an efficient manner.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> a = GrayCode(4)
>>> list(a.generate_gray())
['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100', \
'1100', '1101', '1111', '1110', '1010', '1011', '1001', '1000']
References
==========
.. [1] Nijenhuis,A. and Wilf,H.S.(1978).
Combinatorial Algorithms. Academic Press.
.. [2] Knuth, D. (2011). The Art of Computer Programming, Vol 4
Addison Wesley
"""
_skip = False
_current = 0
_rank = None
def __new__(cls, n, *args, **kw_args):
"""
Default constructor.
It takes a single argument ``n`` which gives the dimension of the Gray
code. The starting Gray code string (``start``) or the starting ``rank``
may also be given; the default is to start at rank = 0 ('0...0').
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> a
GrayCode(3)
>>> a.n
3
>>> a = GrayCode(3, start='100')
>>> a.current
'100'
>>> a = GrayCode(4, rank=4)
>>> a.current
'0110'
>>> a.rank
4
"""
if n < 1 or int(n) != n:
raise ValueError(
'Gray code dimension must be a positive integer, not %i' % n)
n = int(n)
args = (n,) + args
obj = Basic.__new__(cls, *args)
if 'start' in kw_args:
obj._current = kw_args["start"]
if len(obj._current) > n:
raise ValueError('Gray code start has length %i but '
'should not be greater than %i' % (len(obj._current), n))
elif 'rank' in kw_args:
if int(kw_args["rank"]) != kw_args["rank"]:
raise ValueError('Gray code rank must be a positive integer, '
'not %i' % kw_args["rank"])
obj._rank = int(kw_args["rank"]) % obj.selections
obj._current = obj.unrank(n, obj._rank)
return obj
def next(self, delta=1):
"""
Returns the Gray code a distance ``delta`` (default = 1) from the
current value in canonical order.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3, start='110')
>>> a.next().current
'111'
>>> a.next(-1).current
'010'
"""
return GrayCode(self.n, rank=(self.rank + delta) % self.selections)
@property
def selections(self):
"""
Returns the number of bit vectors in the Gray code.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> a.selections
8
"""
return 2**self.n
@property
def n(self):
"""
Returns the dimension of the Gray code.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(5)
>>> a.n
5
"""
return self.args[0]
def generate_gray(self, **hints):
"""
Generates the sequence of bit vectors of a Gray Code.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(start='011'))
['011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(rank=4))
['110', '111', '101', '100']
See Also
========
skip
References
==========
.. [1] Knuth, D. (2011). The Art of Computer Programming,
Vol 4, Addison Wesley
"""
bits = self.n
start = None
if "start" in hints:
start = hints["start"]
elif "rank" in hints:
start = GrayCode.unrank(self.n, hints["rank"])
if start is not None:
self._current = start
current = self.current
graycode_bin = gray_to_bin(current)
if len(graycode_bin) > self.n:
raise ValueError('Gray code start has length %i but should '
'not be greater than %i' % (len(graycode_bin), bits))
self._current = int(current, 2)
graycode_int = int(''.join(graycode_bin), 2)
for i in range(graycode_int, 1 << bits):
if self._skip:
self._skip = False
else:
yield self.current
bbtc = (i ^ (i + 1))
gbtc = (bbtc ^ (bbtc >> 1))
self._current = (self._current ^ gbtc)
self._current = 0
def skip(self):
"""
Skips the bit generation.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> for i in a.generate_gray():
... if i == '010':
... a.skip()
... print(i)
...
000
001
011
010
111
101
100
See Also
========
generate_gray
"""
self._skip = True
@property
def rank(self):
"""
Ranks the Gray code.
A ranking algorithm determines the position (or rank)
of a combinatorial object among all the objects w.r.t.
a given order. For example, the 4 bit binary reflected
Gray code (BRGC) '0101' has a rank of 6 as it appears in
the 6th position in the canonical ordering of the family
of 4 bit Gray codes.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> GrayCode(3, start='100').rank
7
>>> GrayCode(3, rank=7).current
'100'
See Also
========
unrank
References
==========
.. [1] http://statweb.stanford.edu/~susan/courses/s208/node12.html
"""
if self._rank is None:
self._rank = int(gray_to_bin(self.current), 2)
return self._rank
@property
def current(self):
"""
Returns the currently referenced Gray code as a bit string.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> GrayCode(3, start='100').current
'100'
"""
rv = self._current or '0'
if type(rv) is not str:
rv = bin(rv)[2:]
return rv.rjust(self.n, '0')
@classmethod
def unrank(self, n, rank):
"""
Unranks an n-bit sized Gray code of rank k. This method exists
so that a derivative GrayCode class can define its own code of
a given rank.
The string here is generated in reverse order to allow for tail-call
optimization.
Examples
========
>>> from sympy.combinatorics.graycode import GrayCode
>>> GrayCode(5, rank=3).current
'00010'
>>> GrayCode.unrank(5, 3)
'00010'
See Also
========
rank
"""
def _unrank(k, n):
if n == 1:
return str(k % 2)
m = 2**(n - 1)
if k < m:
return '0' + _unrank(k, n - 1)
return '1' + _unrank(m - (k % m) - 1, n - 1)
return _unrank(rank, n)
def random_bitstring(n):
"""
Generates a random bitlist of length n.
Examples
========
>>> from sympy.combinatorics.graycode import random_bitstring
>>> random_bitstring(3) # doctest: +SKIP
100
"""
return ''.join([random.choice('01') for i in range(n)])
def gray_to_bin(bin_list):
"""
Convert from Gray coding to binary coding.
We assume big endian encoding.
Examples
========
>>> from sympy.combinatorics.graycode import gray_to_bin
>>> gray_to_bin('100')
'111'
See Also
========
bin_to_gray
"""
b = [bin_list[0]]
for i in range(1, len(bin_list)):
b += str(int(b[i - 1] != bin_list[i]))
return ''.join(b)
def bin_to_gray(bin_list):
"""
Convert from binary coding to gray coding.
We assume big endian encoding.
Examples
========
>>> from sympy.combinatorics.graycode import bin_to_gray
>>> bin_to_gray('111')
'100'
See Also
========
gray_to_bin
"""
b = [bin_list[0]]
for i in range(1, len(bin_list)):
b += str(int(bin_list[i]) ^ int(bin_list[i - 1]))
return ''.join(b)
def get_subset_from_bitstring(super_set, bitstring):
"""
Gets the subset defined by the bitstring.
Examples
========
>>> from sympy.combinatorics.graycode import get_subset_from_bitstring
>>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011')
['c', 'd']
>>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100')
['c', 'a']
See Also
========
graycode_subsets
"""
if len(super_set) != len(bitstring):
raise ValueError("The sizes of the lists are not equal")
return [super_set[i] for i, j in enumerate(bitstring)
if bitstring[i] == '1']
def graycode_subsets(gray_code_set):
"""
Generates the subsets as enumerated by a Gray code.
Examples
========
>>> from sympy.combinatorics.graycode import graycode_subsets
>>> list(graycode_subsets(['a', 'b', 'c']))
[[], ['c'], ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], \
['a', 'c'], ['a']]
>>> list(graycode_subsets(['a', 'b', 'c', 'c']))
[[], ['c'], ['c', 'c'], ['c'], ['b', 'c'], ['b', 'c', 'c'], \
['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'c'], \
['a', 'b', 'c'], ['a', 'c'], ['a', 'c', 'c'], ['a', 'c'], ['a']]
See Also
========
get_subset_from_bitstring
"""
for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()):
yield get_subset_from_bitstring(gray_code_set, bitstring)
|
3726d3f27b55f271c42fd89ff5634be6e4fe022f332c2b190df3f3ad47700290 | from __future__ import print_function, division
import random
from collections import defaultdict
from sympy.core.parameters import global_parameters
from sympy.core.basic import Atom
from sympy.core.expr import Expr
from sympy.core.compatibility import \
is_sequence, reduce, as_int, Iterable
from sympy.core.numbers import Integer
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import as_Boolean
from sympy.matrices import zeros
from sympy.polys.polytools import lcm
from sympy.utilities.iterables import (flatten, has_variety, minlex,
has_dups, runs)
from mpmath.libmp.libintmath import ifac
def _af_rmul(a, b):
"""
Return the product b*a; input and output are array forms. The ith value
is a[b[i]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a)
>>> b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmuln
"""
return [a[i] for i in b]
def _af_rmuln(*abc):
"""
Given [a, b, c, ...] return the product of ...*c*b*a using array forms.
The ith value is a[b[c[i]]].
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> _af_rmul(a, b)
[1, 2, 0]
>>> [a[b[i]] for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
See Also
========
rmul, _af_rmul
"""
a = abc
m = len(a)
if m == 3:
p0, p1, p2 = a
return [p0[p1[i]] for i in p2]
if m == 4:
p0, p1, p2, p3 = a
return [p0[p1[p2[i]]] for i in p3]
if m == 5:
p0, p1, p2, p3, p4 = a
return [p0[p1[p2[p3[i]]]] for i in p4]
if m == 6:
p0, p1, p2, p3, p4, p5 = a
return [p0[p1[p2[p3[p4[i]]]]] for i in p5]
if m == 7:
p0, p1, p2, p3, p4, p5, p6 = a
return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6]
if m == 8:
p0, p1, p2, p3, p4, p5, p6, p7 = a
return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7]
if m == 1:
return a[0][:]
if m == 2:
a, b = a
return [a[i] for i in b]
if m == 0:
raise ValueError("String must not be empty")
p0 = _af_rmuln(*a[:m//2])
p1 = _af_rmuln(*a[m//2:])
return [p0[i] for i in p1]
def _af_parity(pi):
"""
Computes the parity of a permutation in array form.
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that x > y but p[x] < p[y].
Examples
========
>>> from sympy.combinatorics.permutations import _af_parity
>>> _af_parity([0, 1, 2, 3])
0
>>> _af_parity([3, 2, 0, 1])
1
See Also
========
Permutation
"""
n = len(pi)
a = [0] * n
c = 0
for j in range(n):
if a[j] == 0:
c += 1
a[j] = 1
i = j
while pi[i] != j:
i = pi[i]
a[i] = 1
return (n - c) % 2
def _af_invert(a):
"""
Finds the inverse, ~A, of a permutation, A, given in array form.
Examples
========
>>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
>>> A = [1, 2, 0, 3]
>>> _af_invert(A)
[2, 0, 1, 3]
>>> _af_rmul(_, A)
[0, 1, 2, 3]
See Also
========
Permutation, __invert__
"""
inv_form = [0] * len(a)
for i, ai in enumerate(a):
inv_form[ai] = i
return inv_form
def _af_pow(a, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation, _af_pow
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> _af_pow(p._array_form, 4)
[0, 1, 2, 3]
"""
if n == 0:
return list(range(len(a)))
if n < 0:
return _af_pow(_af_invert(a), -n)
if n == 1:
return a[:]
elif n == 2:
b = [a[i] for i in a]
elif n == 3:
b = [a[a[i]] for i in a]
elif n == 4:
b = [a[a[a[i]]] for i in a]
else:
# use binary multiplication
b = list(range(len(a)))
while 1:
if n & 1:
b = [b[i] for i in a]
n -= 1
if not n:
break
if n % 4 == 0:
a = [a[a[a[i]]] for i in a]
n = n // 4
elif n % 2 == 0:
a = [a[i] for i in a]
n = n // 2
return b
def _af_commutes_with(a, b):
"""
Checks if the two permutations with array forms
given by ``a`` and ``b`` commute.
Examples
========
>>> from sympy.combinatorics.permutations import _af_commutes_with
>>> _af_commutes_with([1, 2, 0], [0, 2, 1])
False
See Also
========
Permutation, commutes_with
"""
return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
class Cycle(dict):
"""
Wrapper around dict which provides the functionality of a disjoint cycle.
A cycle shows the rule to use to move subsets of elements to obtain
a permutation. The Cycle class is more flexible than Permutation in
that 1) all elements need not be present in order to investigate how
multiple cycles act in sequence and 2) it can contain singletons:
>>> from sympy.combinatorics.permutations import Perm, Cycle
A Cycle will automatically parse a cycle given as a tuple on the rhs:
>>> Cycle(1, 2)(2, 3)
(1 3 2)
The identity cycle, Cycle(), can be used to start a product:
>>> Cycle()(1, 2)(2, 3)
(1 3 2)
The array form of a Cycle can be obtained by calling the list
method (or passing it to the list function) and all elements from
0 will be shown:
>>> a = Cycle(1, 2)
>>> a.list()
[0, 2, 1]
>>> list(a)
[0, 2, 1]
If a larger (or smaller) range is desired use the list method and
provide the desired size -- but the Cycle cannot be truncated to
a size smaller than the largest element that is out of place:
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
>>> b.list()
[0, 2, 1, 3, 4]
>>> b.list(b.size + 1)
[0, 2, 1, 3, 4, 5]
>>> b.list(-1)
[0, 2, 1]
Singletons are not shown when printing with one exception: the largest
element is always shown -- as a singleton if necessary:
>>> Cycle(1, 4, 10)(4, 5)
(1 5 4 10)
>>> Cycle(1, 2)(4)(5)(10)
(1 2)(10)
The array form can be used to instantiate a Permutation so other
properties of the permutation can be investigated:
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
[(1, 2), (3, 4)]
Notes
=====
The underlying structure of the Cycle is a dictionary and although
the __iter__ method has been redefined to give the array form of the
cycle, the underlying dictionary items are still available with the
such methods as items():
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
See Also
========
Permutation
"""
def __missing__(self, arg):
"""Enter arg into dictionary and return arg."""
return as_int(arg)
def __iter__(self):
for i in self.list():
yield i
def __call__(self, *other):
"""Return product of cycles processed from R to L.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle as C
>>> from sympy.combinatorics.permutations import Permutation as Perm
>>> C(1, 2)(2, 3)
(1 3 2)
An instance of a Cycle will automatically parse list-like
objects and Permutations that are on the right. It is more
flexible than the Permutation in that all elements need not
be present:
>>> a = C(1, 2)
>>> a(2, 3)
(1 3 2)
>>> a(2, 3)(4, 5)
(1 3 2)(4 5)
"""
rv = Cycle(*other)
for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]):
rv[k] = v
return rv
def list(self, size=None):
"""Return the cycles as an explicit list starting from 0 up
to the greater of the largest value in the cycles and size.
Truncation of trailing unmoved items will occur when size
is less than the maximum element in the cycle; if this is
desired, setting ``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Cycle(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Cycle(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
if size is not None:
big = max([i for i in self.keys() if self[i] != i] + [0])
size = max(size, big + 1)
else:
size = self.size
return [self[i] for i in range(size)]
def __repr__(self):
"""We want it to print as a Cycle, not as a dict.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> print(_)
(1 2)
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
"""
if not self:
return 'Cycle()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
return 'Cycle%s' % s
def __str__(self):
"""We want it to be printed in a Cycle notation with no
comma in-between.
Examples
========
>>> from sympy.combinatorics import Cycle
>>> Cycle(1, 2)
(1 2)
>>> Cycle(1, 2, 4)(5, 6)
(1 2 4)(5 6)
"""
if not self:
return '()'
cycles = Permutation(self).cyclic_form
s = ''.join(str(tuple(c)) for c in cycles)
big = self.size - 1
if not any(i == big for c in cycles for i in c):
s += '(%s)' % big
s = s.replace(',', '')
return s
def __init__(self, *args):
"""Load up a Cycle instance with the values for the cycle.
Examples
========
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2, 6)
(1 2 6)
"""
if not args:
return
if len(args) == 1:
if isinstance(args[0], Permutation):
for c in args[0].cyclic_form:
self.update(self(*c))
return
elif isinstance(args[0], Cycle):
for k, v in args[0].items():
self[k] = v
return
args = [as_int(a) for a in args]
if any(i < 0 for i in args):
raise ValueError('negative integers are not allowed in a cycle.')
if has_dups(args):
raise ValueError('All elements must be unique in a cycle.')
for i in range(-len(args), 0):
self[args[i]] = args[i + 1]
@property
def size(self):
if not self:
return 0
return max(self.keys()) + 1
def copy(self):
return Cycle(self)
class Permutation(Atom):
"""
A permutation, alternatively known as an 'arrangement number' or 'ordering'
is an arrangement of the elements of an ordered list into a one-to-one
mapping with itself. The permutation of a given arrangement is given by
indicating the positions of the elements after re-arrangement [2]_. For
example, if one started with elements [x, y, a, b] (in that order) and
they were reordered as [x, y, b, a] then the permutation would be
[0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred
to as 0 and the permutation uses the indices of the elements in the
original ordering, not the elements (a, b, etc...) themselves.
>>> from sympy.combinatorics import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations Notation
=====================
Permutations are commonly represented in disjoint cycle or array forms.
Array Notation and 2-line Form
------------------------------------
In the 2-line form, the elements and their final positions are shown
as a matrix with 2 rows:
[0 1 2 ... n-1]
[p(0) p(1) p(2) ... p(n-1)]
Since the first line is always range(n), where n is the size of p,
it is sufficient to represent the permutation by the second line,
referred to as the "array form" of the permutation. This is entered
in brackets as the argument to the Permutation class:
>>> p = Permutation([0, 2, 1]); p
Permutation([0, 2, 1])
Given i in range(p.size), the permutation maps i to i^p
>>> [i^p for i in range(p.size)]
[0, 2, 1]
The composite of two permutations p*q means first apply p, then q, so
i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:
>>> q = Permutation([2, 1, 0])
>>> [i^p^q for i in range(3)]
[2, 0, 1]
>>> [i^(p*q) for i in range(3)]
[2, 0, 1]
One can use also the notation p(i) = i^p, but then the composition
rule is (p*q)(i) = q(p(i)), not p(q(i)):
>>> [(p*q)(i) for i in range(p.size)]
[2, 0, 1]
>>> [q(p(i)) for i in range(p.size)]
[2, 0, 1]
>>> [p(q(i)) for i in range(p.size)]
[1, 2, 0]
Disjoint Cycle Notation
-----------------------
In disjoint cycle notation, only the elements that have shifted are
indicated. In the above case, the 2 and 1 switched places. This can
be entered in two ways:
>>> Permutation(1, 2) == Permutation([[1, 2]]) == p
True
Only the relative ordering of elements in a cycle matter:
>>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
True
The disjoint cycle notation is convenient when representing
permutations that have several cycles in them:
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
True
It also provides some economy in entry when computing products of
permutations that are written in disjoint cycle notation:
>>> Permutation(1, 2)(1, 3)(2, 3)
Permutation([0, 3, 2, 1])
>>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
True
Caution: when the cycles have common elements
between them then the order in which the
permutations are applied matters. The
convention is that the permutations are
applied from *right to left*. In the following, the
transposition of elements 2 and 3 is followed
by the transposition of elements 1 and 2:
>>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)])
True
>>> Permutation(1, 2)(2, 3).list()
[0, 3, 1, 2]
If the first and second elements had been
swapped first, followed by the swapping of the second
and third, the result would have been [0, 2, 3, 1].
If, for some reason, you want to apply the cycles
in the order they are entered, you can simply reverse
the order of cycles:
>>> Permutation([(1, 2), (2, 3)][::-1]).list()
[0, 2, 3, 1]
Entering a singleton in a permutation is a way to indicate the size of the
permutation. The ``size`` keyword can also be used.
Array-form entry:
>>> Permutation([[1, 2], [9]])
Permutation([0, 2, 1], size=10)
>>> Permutation([[1, 2]], size=10)
Permutation([0, 2, 1], size=10)
Cyclic-form entry:
>>> Permutation(1, 2, size=10)
Permutation([0, 2, 1], size=10)
>>> Permutation(9)(1, 2)
Permutation([0, 2, 1], size=10)
Caution: no singleton containing an element larger than the largest
in any previous cycle can be entered. This is an important difference
in how Permutation and Cycle handle the __call__ syntax. A singleton
argument at the start of a Permutation performs instantiation of the
Permutation and is permitted:
>>> Permutation(5)
Permutation([], size=6)
A singleton entered after instantiation is a call to the permutation
-- a function call -- and if the argument is out of range it will
trigger an error. For this reason, it is better to start the cycle
with the singleton:
The following fails because there is is no element 3:
>>> Permutation(1, 2)(3)
Traceback (most recent call last):
...
IndexError: list index out of range
This is ok: only the call to an out of range singleton is prohibited;
otherwise the permutation autosizes:
>>> Permutation(3)(1, 2)
Permutation([0, 2, 1, 3])
>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
True
Equality testing
----------------
The array forms must be the same in order for permutations to be equal:
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
False
Identity Permutation
--------------------
The identity permutation is a permutation in which no element is out of
place. It can be entered in a variety of ways. All the following create
an identity permutation of size 4:
>>> I = Permutation([0, 1, 2, 3])
>>> all(p == I for p in [
... Permutation(3),
... Permutation(range(4)),
... Permutation([], size=4),
... Permutation(size=4)])
True
Watch out for entering the range *inside* a set of brackets (which is
cycle notation):
>>> I == Permutation([range(4)])
False
Permutation Printing
====================
There are a few things to note about how Permutations are printed.
1) If you prefer one form (array or cycle) over another, you can set
``init_printing`` with the ``perm_cyclic`` flag.
>>> from sympy import init_printing
>>> p = Permutation(1, 2)(4, 5)(3, 4)
>>> p
Permutation([0, 2, 1, 4, 5, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(1 2)(3 4 5)
2) Regardless of the setting, a list of elements in the array for cyclic
form can be obtained and either of those can be copied and supplied as
the argument to Permutation:
>>> p.array_form
[0, 2, 1, 4, 5, 3]
>>> p.cyclic_form
[[1, 2], [3, 4, 5]]
>>> Permutation(_) == p
True
3) Printing is economical in that as little as possible is printed while
retaining all information about the size of the permutation:
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation([1, 0, 2, 3])
Permutation([1, 0, 2, 3])
>>> Permutation([1, 0, 2, 3], size=20)
Permutation([1, 0], size=20)
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
Permutation([1, 0, 2, 4, 3], size=20)
>>> p = Permutation([1, 0, 2, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(3)(0 1)
>>> init_printing(perm_cyclic=False, pretty_print=False)
The 2 was not printed but it is still there as can be seen with the
array_form and size methods:
>>> p.array_form
[1, 0, 2, 3]
>>> p.size
4
Short introduction to other methods
===================================
The permutation can act as a bijective function, telling what element is
located at a given position
>>> q = Permutation([5, 2, 3, 4, 1, 0])
>>> q.array_form[1] # the hard way
2
>>> q(1) # the easy way
2
>>> {i: q(i) for i in range(q.size)} # showing the bijection
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
The full cyclic form (including singletons) can be obtained:
>>> p.full_cyclic_form
[[0, 1], [2], [3]]
Any permutation can be factored into transpositions of pairs of elements:
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
[(1, 2), (3, 5), (3, 4)]
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
[[1, 2], [3, 4, 5]]
The number of permutations on a set of n elements is given by n! and is
called the cardinality.
>>> p.size
4
>>> p.cardinality
24
A given permutation has a rank among all the possible permutations of the
same elements, but what that rank is depends on how the permutations are
enumerated. (There are a number of different methods of doing so.) The
lexicographic rank is given by the rank method and this rank is used to
increment a permutation with addition/subtraction:
>>> p.rank()
6
>>> p + 1
Permutation([1, 0, 3, 2])
>>> p.next_lex()
Permutation([1, 0, 3, 2])
>>> _.rank()
7
>>> p.unrank_lex(p.size, rank=7)
Permutation([1, 0, 3, 2])
The product of two permutations p and q is defined as their composition as
functions, (p*q)(i) = q(p(i)) [6]_.
>>> p = Permutation([1, 0, 2, 3])
>>> q = Permutation([2, 3, 1, 0])
>>> list(q*p)
[2, 3, 0, 1]
>>> list(p*q)
[3, 2, 1, 0]
>>> [q(p(i)) for i in range(p.size)]
[3, 2, 1, 0]
The permutation can be 'applied' to any list-like object, not only
Permutations:
>>> p(['zero', 'one', 'four', 'two'])
['one', 'zero', 'four', 'two']
>>> p('zo42')
['o', 'z', '4', '2']
If you have a list of arbitrary elements, the corresponding permutation
can be found with the from_sequence method:
>>> Permutation.from_sequence('SymPy')
Permutation([1, 3, 2, 0, 4])
See Also
========
Cycle
References
==========
.. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics
Combinatorics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, pp. 3-16, 1990.
.. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial
Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
.. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking
permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001),
281-284. DOI=10.1016/S0020-0190(01)00141-7
.. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms'
CRC Press, 1999
.. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O.
Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, MA: Addison-Wesley, 1994.
.. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse
.. [7] https://en.wikipedia.org/wiki/Lehmer_code
"""
is_Permutation = True
_array_form = None
_cyclic_form = None
_cycle_structure = None
_size = None
_rank = None
def __new__(cls, *args, **kwargs):
"""
Constructor for the Permutation object from a list or a
list of lists in which all elements of the permutation may
appear only once.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
Permutations entered in array-form are left unaltered:
>>> Permutation([0, 2, 1])
Permutation([0, 2, 1])
Permutations entered in cyclic form are converted to array form;
singletons need not be entered, but can be entered to indicate the
largest element:
>>> Permutation([[4, 5, 6], [0, 1]])
Permutation([1, 0, 2, 3, 5, 6, 4])
>>> Permutation([[4, 5, 6], [0, 1], [19]])
Permutation([1, 0, 2, 3, 5, 6, 4], size=20)
All manipulation of permutations assumes that the smallest element
is 0 (in keeping with 0-based indexing in Python) so if the 0 is
missing when entering a permutation in array form, an error will be
raised:
>>> Permutation([2, 1])
Traceback (most recent call last):
...
ValueError: Integers 0 through 2 must be present.
If a permutation is entered in cyclic form, it can be entered without
singletons and the ``size`` specified so those values can be filled
in, otherwise the array form will only extend to the maximum value
in the cycles:
>>> Permutation([[1, 4], [3, 5, 2]], size=10)
Permutation([0, 4, 3, 5, 1, 2], size=10)
>>> _.array_form
[0, 4, 3, 5, 1, 2, 6, 7, 8, 9]
"""
size = kwargs.pop('size', None)
if size is not None:
size = int(size)
#a) ()
#b) (1) = identity
#c) (1, 2) = cycle
#d) ([1, 2, 3]) = array form
#e) ([[1, 2]]) = cyclic form
#f) (Cycle) = conversion to permutation
#g) (Permutation) = adjust size or return copy
ok = True
if not args: # a
return cls._af_new(list(range(size or 0)))
elif len(args) > 1: # c
return cls._af_new(Cycle(*args).list(size))
if len(args) == 1:
a = args[0]
if isinstance(a, cls): # g
if size is None or size == a.size:
return a
return cls(a.array_form, size=size)
if isinstance(a, Cycle): # f
return cls._af_new(a.list(size))
if not is_sequence(a): # b
if size is not None and a + 1 > size:
raise ValueError('size is too small when max is %s' % a)
return cls._af_new(list(range(a + 1)))
if has_variety(is_sequence(ai) for ai in a):
ok = False
else:
ok = False
if not ok:
raise ValueError("Permutation argument must be a list of ints, "
"a list of lists, Permutation or Cycle.")
# safe to assume args are valid; this also makes a copy
# of the args
args = list(args[0])
is_cycle = args and is_sequence(args[0])
if is_cycle: # e
args = [[int(i) for i in c] for c in args]
else: # d
args = [int(i) for i in args]
# if there are n elements present, 0, 1, ..., n-1 should be present
# unless a cycle notation has been provided. A 0 will be added
# for convenience in case one wants to enter permutations where
# counting starts from 1.
temp = flatten(args)
if has_dups(temp) and not is_cycle:
raise ValueError('there were repeated elements.')
temp = set(temp)
if not is_cycle:
if any(i not in temp for i in range(len(temp))):
raise ValueError('Integers 0 through %s must be present.' %
max(temp))
if size is not None and temp and max(temp) + 1 > size:
raise ValueError('max element should not exceed %s' % (size - 1))
if is_cycle:
# it's not necessarily canonical so we won't store
# it -- use the array form instead
c = Cycle()
for ci in args:
c = c(*ci)
aform = c.list()
else:
aform = list(args)
if size and size > len(aform):
# don't allow for truncation of permutation which
# might split a cycle and lead to an invalid aform
# but do allow the permutation size to be increased
aform.extend(list(range(len(aform), size)))
return cls._af_new(aform)
def _eval_Eq(self, other):
other = _sympify(other)
if not isinstance(other, Permutation):
return None
if self._size != other._size:
return None
return as_Boolean(self._array_form == other._array_form)
@classmethod
def _af_new(cls, perm):
"""A method to produce a Permutation object from a list;
the list is bound to the _array_form attribute, so it must
not be modified; this method is meant for internal use only;
the list ``a`` is supposed to be generated as a temporary value
in a method, so p = Perm._af_new(a) is the only object
to hold a reference to ``a``::
Examples
========
>>> from sympy.combinatorics.permutations import Perm
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = [2, 1, 3, 0]
>>> p = Perm._af_new(a)
>>> p
Permutation([2, 1, 3, 0])
"""
p = super(Permutation, cls).__new__(cls)
p._array_form = perm
p._size = len(perm)
return p
def _hashable_content(self):
# the array_form (a list) is the Permutation arg, so we need to
# return a tuple, instead
return tuple(self.array_form)
@property
def array_form(self):
"""
Return a copy of the attribute _array_form
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[3, 2, 0, 1]
>>> Permutation([2, 0, 3, 1]).array_form
[2, 0, 3, 1]
>>> Permutation([[1, 2], [4, 5]]).array_form
[0, 2, 1, 3, 5, 4]
"""
return self._array_form[:]
def list(self, size=None):
"""Return the permutation as an explicit list, possibly
trimming unmoved elements if size is less than the maximum
element in the permutation; if this is desired, setting
``size=-1`` will guarantee such trimming.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
Passing a length too small will trim trailing, unchanged elements
in the permutation:
>>> Permutation(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
>>> Permutation(3).list(-1)
[]
"""
if not self and size is None:
raise ValueError('must give size for empty Cycle')
rv = self.array_form
if size is not None:
if size > self.size:
rv.extend(list(range(self.size, size)))
else:
# find first value from rhs where rv[i] != i
i = self.size - 1
while rv:
if rv[-1] != i:
break
rv.pop()
i -= 1
return rv
@property
def cyclic_form(self):
"""
This is used to convert to the cyclic notation
from the canonical notation. Singletons are omitted.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2])
>>> p.cyclic_form
[[1, 3, 2]]
>>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
[[0, 1], [3, 4]]
See Also
========
array_form, full_cyclic_form
"""
if self._cyclic_form is not None:
return list(self._cyclic_form)
array_form = self.array_form
unchecked = [True] * len(array_form)
cyclic_form = []
for i in range(len(array_form)):
if unchecked[i]:
cycle = []
cycle.append(i)
unchecked[i] = False
j = i
while unchecked[array_form[j]]:
j = array_form[j]
cycle.append(j)
unchecked[j] = False
if len(cycle) > 1:
cyclic_form.append(cycle)
assert cycle == list(minlex(cycle, is_set=True))
cyclic_form.sort()
self._cyclic_form = cyclic_form[:]
return cyclic_form
@property
def full_cyclic_form(self):
"""Return permutation in cyclic form including singletons.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation([0, 2, 1]).full_cyclic_form
[[0], [1, 2]]
"""
need = set(range(self.size)) - set(flatten(self.cyclic_form))
rv = self.cyclic_form
rv.extend([[i] for i in need])
rv.sort()
return rv
@property
def size(self):
"""
Returns the number of elements in the permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([[3, 2], [0, 1]]).size
4
See Also
========
cardinality, length, order, rank
"""
return self._size
def support(self):
"""Return the elements in permutation, P, for which P[i] != i.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[3, 2], [0, 1], [4]])
>>> p.array_form
[1, 0, 3, 2, 4]
>>> p.support()
[0, 1, 2, 3]
"""
a = self.array_form
return [i for i, e in enumerate(a) if a[i] != i]
def __add__(self, other):
"""Return permutation that is other higher in rank than self.
The rank is the lexicographical rank, with the identity permutation
having rank of 0.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> I = Permutation([0, 1, 2, 3])
>>> a = Permutation([2, 1, 3, 0])
>>> I + a.rank() == a
True
See Also
========
__sub__, inversion_vector
"""
rank = (self.rank() + other) % self.cardinality
rv = self.unrank_lex(self.size, rank)
rv._rank = rank
return rv
def __sub__(self, other):
"""Return the permutation that is other lower in rank than self.
See Also
========
__add__
"""
return self.__add__(-other)
@staticmethod
def rmul(*args):
"""
Return product of Permutations [a, b, c, ...] as the Permutation whose
ith value is a(b(c(i))).
a, b, c, ... can be Permutation objects or tuples.
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(Permutation.rmul(a, b))
[1, 2, 0]
>>> [a(b(i)) for i in range(3)]
[1, 2, 0]
This handles the operands in reverse order compared to the ``*`` operator:
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
Notes
=====
All items in the sequence will be parsed by Permutation as
necessary as long as the first item is a Permutation:
>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
True
The reverse order of arguments will raise a TypeError.
"""
rv = args[0]
for i in range(1, len(args)):
rv = args[i]*rv
return rv
@classmethod
def rmul_with_af(cls, *args):
"""
same as rmul, but the elements of args are Permutation objects
which have _array_form
"""
a = [x._array_form for x in args]
rv = cls._af_new(_af_rmuln(*a))
return rv
def mul_inv(self, other):
"""
other*~self, self and other have _array_form
"""
a = _af_invert(self._array_form)
b = other._array_form
return self._af_new(_af_rmul(a, b))
def __rmul__(self, other):
"""This is needed to coerce other to Permutation in rmul."""
cls = type(self)
return cls(other)*self
def __mul__(self, other):
"""
Return the product a*b as a Permutation; the ith value is b(a(i)).
Examples
========
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
This handles operands in reverse order compared to _af_rmul and rmul:
>>> al = list(a); bl = list(b)
>>> _af_rmul(al, bl)
[1, 2, 0]
>>> [al[bl[i]] for i in range(3)]
[1, 2, 0]
It is acceptable for the arrays to have different lengths; the shorter
one will be padded to match the longer one:
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> b*Permutation([1, 0])
Permutation([1, 2, 0])
>>> Permutation([1, 0])*b
Permutation([2, 0, 1])
It is also acceptable to allow coercion to handle conversion of a
single list to the left of a Permutation:
>>> [0, 1]*a # no change: 2-element identity
Permutation([1, 0, 2])
>>> [[0, 1]]*a # exchange first two elements
Permutation([0, 1, 2])
You cannot use more than 1 cycle notation in a product of cycles
since coercion can only handle one argument to the left. To handle
multiple cycles it is convenient to use Cycle instead of Permutation:
>>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP
>>> from sympy.combinatorics.permutations import Cycle
>>> Cycle(1, 2)(2, 3)
(1 3 2)
"""
a = self.array_form
# __rmul__ makes sure the other is a Permutation
b = other.array_form
if not b:
perm = a
else:
b.extend(list(range(len(b), len(a))))
perm = [b[i] for i in a] + b[len(a):]
return self._af_new(perm)
def commutes_with(self, other):
"""
Checks if the elements are commuting.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([1, 4, 3, 0, 2, 5])
>>> b = Permutation([0, 1, 2, 3, 4, 5])
>>> a.commutes_with(b)
True
>>> b = Permutation([2, 3, 5, 4, 1, 0])
>>> a.commutes_with(b)
False
"""
a = self.array_form
b = other.array_form
return _af_commutes_with(a, b)
def __pow__(self, n):
"""
Routine for finding powers of a permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1])
>>> p.order()
4
>>> p**4
Permutation([0, 1, 2, 3])
"""
if isinstance(n, Permutation):
raise NotImplementedError(
'p**p is not defined; do you mean p^p (conjugate)?')
n = int(n)
return self._af_new(_af_pow(self.array_form, n))
def __rxor__(self, i):
"""Return self(i) when ``i`` is an int.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> p = Permutation(1, 2, 9)
>>> 2^p == p(2) == 9
True
"""
if int(i) == i:
return self(i)
else:
raise NotImplementedError(
"i^p = p(i) when i is an integer, not %s." % i)
def __xor__(self, h):
"""Return the conjugate permutation ``~h*self*h` `.
If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and
``b = ~h*a*h`` and both have the same cycle structure.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation(1, 2, 9)
>>> q = Permutation(6, 9, 8)
>>> p*q != q*p
True
Calculate and check properties of the conjugate:
>>> c = p^q
>>> c == ~q*p*q and p == q*c*~q
True
The expression q^p^r is equivalent to q^(p*r):
>>> r = Permutation(9)(4, 6, 8)
>>> q^p^r == q^(p*r)
True
If the term to the left of the conjugate operator, i, is an integer
then this is interpreted as selecting the ith element from the
permutation to the right:
>>> all(i^p == p(i) for i in range(p.size))
True
Note that the * operator as higher precedence than the ^ operator:
>>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4)
True
Notes
=====
In Python the precedence rule is p^q^r = (p^q)^r which differs
in general from p^(q^r)
>>> q^p^r
(9)(1 4 8)
>>> q^(p^r)
(9)(1 8 6)
For a given r and p, both of the following are conjugates of p:
~r*p*r and r*p*~r. But these are not necessarily the same:
>>> ~r*p*r == r*p*~r
True
>>> p = Permutation(1, 2, 9)(5, 6)
>>> ~r*p*r == r*p*~r
False
The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent
to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to
this method:
>>> p^~r == r*p*~r
True
"""
if self.size != h.size:
raise ValueError("The permutations must be of equal size.")
a = [None]*self.size
h = h._array_form
p = self._array_form
for i in range(self.size):
a[h[i]] = h[p[i]]
return self._af_new(a)
def transpositions(self):
"""
Return the permutation decomposed into a list of transpositions.
It is always possible to express a permutation as the product of
transpositions, see [1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
>>> t = p.transpositions()
>>> t
[(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
>>> print(''.join(str(c) for c in t))
(0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
"""
a = self.cyclic_form
res = []
for x in a:
nx = len(x)
if nx == 2:
res.append(tuple(x))
elif nx > 2:
first = x[0]
for y in x[nx - 1:0:-1]:
res.append((first, y))
return res
@classmethod
def from_sequence(self, i, key=None):
"""Return the permutation needed to obtain ``i`` from the sorted
elements of ``i``. If custom sorting is desired, a key can be given.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.from_sequence('SymPy')
(4)(0 1 3)
>>> _(sorted("SymPy"))
['S', 'y', 'm', 'P', 'y']
>>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
(4)(0 2)(1 3)
"""
ic = list(zip(i, list(range(len(i)))))
if key:
ic.sort(key=lambda x: key(x[0]))
else:
ic.sort()
return ~Permutation([i[1] for i in ic])
def __invert__(self):
"""
Return the inverse of the permutation.
A permutation multiplied by its inverse is the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([[2, 0], [3, 1]])
>>> ~p
Permutation([2, 3, 0, 1])
>>> _ == p**-1
True
>>> p*~p == ~p*p == Permutation([0, 1, 2, 3])
True
"""
return self._af_new(_af_invert(self._array_form))
def __iter__(self):
"""Yield elements from array form.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> list(Permutation(range(3)))
[0, 1, 2]
"""
for i in self.array_form:
yield i
def __repr__(self):
from sympy.printing.repr import srepr
return srepr(self)
def __call__(self, *i):
"""
Allows applying a permutation instance as a bijective function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> [p(i) for i in range(4)]
[2, 3, 0, 1]
If an array is given then the permutation selects the items
from the array (i.e. the permutation is applied to the array):
>>> from sympy.abc import x
>>> p([x, 1, 0, x**2])
[0, x**2, x, 1]
"""
# list indices can be Integer or int; leave this
# as it is (don't test or convert it) because this
# gets called a lot and should be fast
if len(i) == 1:
i = i[0]
if not isinstance(i, Iterable):
i = as_int(i)
if i < 0 or i > self.size:
raise TypeError(
"{} should be an integer between 0 and {}"
.format(i, self.size-1))
return self._array_form[i]
# P([a, b, c])
if len(i) != self.size:
raise TypeError(
"{} should have the length {}.".format(i, self.size))
return [i[j] for j in self._array_form]
# P(1, 2, 3)
return self*Permutation(Cycle(*i), size=self.size)
def atoms(self):
"""
Returns all the elements of a permutation
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
{0, 1, 2, 3, 4, 5}
>>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
{0, 1, 2, 3, 4, 5}
"""
return set(self.array_form)
def apply(self, i):
r"""Apply the permutation to an expression.
Parameters
==========
i : Expr
It should be an integer between $0$ and $n-1$ where $n$
is the size of the permutation.
If it is a symbol or a symbolic expression that can
have integer values, an ``AppliedPermutation`` object
will be returned which can represent an unevaluated
function.
Notes
=====
Any permutation can be defined as a bijective function
$\sigma : \{ 0, 1, ..., n-1 \} \rightarrow \{ 0, 1, ..., n-1 \}$
where $n$ denotes the size of the permutation.
The definition may even be extended for any set with distinctive
elements, such that the permutation can even be applied for
real numbers or such, however, it is not implemented for now for
computational reasons and the integrity with the group theory
module.
This function is similar to the ``__call__`` magic, however,
``__call__`` magic already has some other applications like
permuting an array or attatching new cycles, which would
not always be mathematically consistent.
This also guarantees that the return type is a SymPy integer,
which guarantees the safety to use assumptions.
"""
i = _sympify(i)
if i.is_integer is False:
raise NotImplementedError("{} should be an integer.".format(i))
n = self.size
if (i < 0) == True or (i >= n) == True:
raise NotImplementedError(
"{} should be an integer between 0 and {}".format(i, n-1))
if i.is_Integer:
return Integer(self._array_form[i])
return AppliedPermutation(self, i)
def next_lex(self):
"""
Returns the next permutation in lexicographical order.
If self is the last permutation in lexicographical order
it returns None.
See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 3, 1, 0])
>>> p = Permutation([2, 3, 1, 0]); p.rank()
17
>>> p = p.next_lex(); p.rank()
18
See Also
========
rank, unrank_lex
"""
perm = self.array_form[:]
n = len(perm)
i = n - 2
while perm[i + 1] < perm[i]:
i -= 1
if i == -1:
return None
else:
j = n - 1
while perm[j] < perm[i]:
j -= 1
perm[j], perm[i] = perm[i], perm[j]
i += 1
j = n - 1
while i < j:
perm[j], perm[i] = perm[i], perm[j]
i += 1
j -= 1
return self._af_new(perm)
@classmethod
def unrank_nonlex(self, n, r):
"""
This is a linear time unranking algorithm that does not
respect lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_nonlex(4, 5)
Permutation([2, 0, 3, 1])
>>> Permutation.unrank_nonlex(4, -1)
Permutation([0, 1, 2, 3])
See Also
========
next_nonlex, rank_nonlex
"""
def _unrank1(n, r, a):
if n > 0:
a[n - 1], a[r % n] = a[r % n], a[n - 1]
_unrank1(n - 1, r//n, a)
id_perm = list(range(n))
n = int(n)
r = r % ifac(n)
_unrank1(n, r, id_perm)
return self._af_new(id_perm)
def rank_nonlex(self, inv_perm=None):
"""
This is a linear time ranking algorithm that does not
enforce lexicographic order [3].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_nonlex()
23
See Also
========
next_nonlex, unrank_nonlex
"""
def _rank1(n, perm, inv_perm):
if n == 1:
return 0
s = perm[n - 1]
t = inv_perm[n - 1]
perm[n - 1], perm[t] = perm[t], s
inv_perm[n - 1], inv_perm[s] = inv_perm[s], t
return s + n*_rank1(n - 1, perm, inv_perm)
if inv_perm is None:
inv_perm = (~self).array_form
if not inv_perm:
return 0
perm = self.array_form[:]
r = _rank1(len(perm), perm, inv_perm)
return r
def next_nonlex(self):
"""
Returns the next permutation in nonlex order [3].
If self is the last permutation in this order it returns None.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
5
>>> p = p.next_nonlex(); p
Permutation([3, 0, 1, 2])
>>> p.rank_nonlex()
6
See Also
========
rank_nonlex, unrank_nonlex
"""
r = self.rank_nonlex()
if r == ifac(self.size) - 1:
return None
return self.unrank_nonlex(self.size, r + 1)
def rank(self):
"""
Returns the lexicographic rank of the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank()
0
>>> p = Permutation([3, 2, 1, 0])
>>> p.rank()
23
See Also
========
next_lex, unrank_lex, cardinality, length, order, size
"""
if not self._rank is None:
return self._rank
rank = 0
rho = self.array_form[:]
n = self.size - 1
size = n + 1
psize = int(ifac(n))
for j in range(size - 1):
rank += rho[j]*psize
for i in range(j + 1, size):
if rho[i] > rho[j]:
rho[i] -= 1
psize //= n
n -= 1
self._rank = rank
return rank
@property
def cardinality(self):
"""
Returns the number of all possible permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.cardinality
24
See Also
========
length, order, rank, size
"""
return int(ifac(self.size))
def parity(self):
"""
Computes the parity of a permutation.
The parity of a permutation reflects the parity of the
number of inversions in the permutation, i.e., the
number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.parity()
0
>>> p = Permutation([3, 2, 0, 1])
>>> p.parity()
1
See Also
========
_af_parity
"""
if self._cyclic_form is not None:
return (self.size - self.cycles) % 2
return _af_parity(self.array_form)
@property
def is_even(self):
"""
Checks if a permutation is even.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_even
True
>>> p = Permutation([3, 2, 1, 0])
>>> p.is_even
True
See Also
========
is_odd
"""
return not self.is_odd
@property
def is_odd(self):
"""
Checks if a permutation is odd.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_odd
False
>>> p = Permutation([3, 2, 0, 1])
>>> p.is_odd
True
See Also
========
is_even
"""
return bool(self.parity() % 2)
@property
def is_Singleton(self):
"""
Checks to see if the permutation contains only one number and is
thus the only possible permutation of this set of numbers
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0]).is_Singleton
True
>>> Permutation([0, 1]).is_Singleton
False
See Also
========
is_Empty
"""
return self.size == 1
@property
def is_Empty(self):
"""
Checks to see if the permutation is a set with zero elements
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([]).is_Empty
True
>>> Permutation([0]).is_Empty
False
See Also
========
is_Singleton
"""
return self.size == 0
@property
def is_identity(self):
return self.is_Identity
@property
def is_Identity(self):
"""
Returns True if the Permutation is an identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([])
>>> p.is_Identity
True
>>> p = Permutation([[0], [1], [2]])
>>> p.is_Identity
True
>>> p = Permutation([0, 1, 2])
>>> p.is_Identity
True
>>> p = Permutation([0, 2, 1])
>>> p.is_Identity
False
See Also
========
order
"""
af = self.array_form
return not af or all(i == af[i] for i in range(self.size))
def ascents(self):
"""
Returns the positions of ascents in a permutation, ie, the location
where p[i] < p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.ascents()
[1, 2]
See Also
========
descents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]]
return pos
def descents(self):
"""
Returns the positions of descents in a permutation, ie, the location
where p[i] > p[i+1]
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.descents()
[0, 3]
See Also
========
ascents, inversions, min, max
"""
a = self.array_form
pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]]
return pos
def max(self):
"""
The maximum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([1, 0, 2, 3, 4])
>>> p.max()
1
See Also
========
min, descents, ascents, inversions
"""
max = 0
a = self.array_form
for i in range(len(a)):
if a[i] != i and a[i] > max:
max = a[i]
return max
def min(self):
"""
The minimum element moved by the permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 4, 3, 2])
>>> p.min()
2
See Also
========
max, descents, ascents, inversions
"""
a = self.array_form
min = len(a)
for i in range(len(a)):
if a[i] != i and a[i] < min:
min = a[i]
return min
def inversions(self):
"""
Computes the number of inversions of a permutation.
An inversion is where i > j but p[i] < p[j].
For small length of p, it iterates over all i and j
values and calculates the number of inversions.
For large length of p, it uses a variation of merge
sort to calculate the number of inversions.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3, 4, 5])
>>> p.inversions()
0
>>> Permutation([3, 2, 1, 0]).inversions()
6
See Also
========
descents, ascents, min, max
References
==========
.. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm
"""
inversions = 0
a = self.array_form
n = len(a)
if n < 130:
for i in range(n - 1):
b = a[i]
for c in a[i + 1:]:
if b > c:
inversions += 1
else:
k = 1
right = 0
arr = a[:]
temp = a[:]
while k < n:
i = 0
while i + k < n:
right = i + k * 2 - 1
if right >= n:
right = n - 1
inversions += _merge(arr, temp, i, i + k, right)
i = i + k * 2
k = k * 2
return inversions
def commutator(self, x):
"""Return the commutator of self and x: ``~x*~self*x*self``
If f and g are part of a group, G, then the commutator of f and g
is the group identity iff f and g commute, i.e. fg == gf.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([0, 2, 3, 1])
>>> x = Permutation([2, 0, 3, 1])
>>> c = p.commutator(x); c
Permutation([2, 1, 3, 0])
>>> c == ~x*~p*x*p
True
>>> I = Permutation(3)
>>> p = [I + i for i in range(6)]
>>> for i in range(len(p)):
... for j in range(len(p)):
... c = p[i].commutator(p[j])
... if p[i]*p[j] == p[j]*p[i]:
... assert c == I
... else:
... assert c != I
...
References
==========
https://en.wikipedia.org/wiki/Commutator
"""
a = self.array_form
b = x.array_form
n = len(a)
if len(b) != n:
raise ValueError("The permutations must be of equal size.")
inva = [None]*n
for i in range(n):
inva[a[i]] = i
invb = [None]*n
for i in range(n):
invb[b[i]] = i
return self._af_new([a[b[inva[i]]] for i in invb])
def signature(self):
"""
Gives the signature of the permutation needed to place the
elements of the permutation in canonical order.
The signature is calculated as (-1)^<number of inversions>
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2])
>>> p.inversions()
0
>>> p.signature()
1
>>> q = Permutation([0,2,1])
>>> q.inversions()
1
>>> q.signature()
-1
See Also
========
inversions
"""
if self.is_even:
return 1
return -1
def order(self):
"""
Computes the order of a permutation.
When the permutation is raised to the power of its
order it equals the identity permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 1, 5, 2, 4, 0])
>>> p.order()
4
>>> (p**(p.order()))
Permutation([], size=6)
See Also
========
identity, cardinality, length, rank, size
"""
return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1)
def length(self):
"""
Returns the number of integers moved by a permutation.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 3, 2, 1]).length()
2
>>> Permutation([[0, 1], [2, 3]]).length()
4
See Also
========
min, max, support, cardinality, order, rank, size
"""
return len(self.support())
@property
def cycle_structure(self):
"""Return the cycle structure of the permutation as a dictionary
indicating the multiplicity of each cycle length.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation(3).cycle_structure
{1: 4}
>>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
{2: 2, 3: 1}
"""
if self._cycle_structure:
rv = self._cycle_structure
else:
rv = defaultdict(int)
singletons = self.size
for c in self.cyclic_form:
rv[len(c)] += 1
singletons -= len(c)
if singletons:
rv[1] = singletons
self._cycle_structure = rv
return dict(rv) # make a copy
@property
def cycles(self):
"""
Returns the number of cycles contained in the permutation
(including singletons).
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2]).cycles
3
>>> Permutation([0, 1, 2]).full_cyclic_form
[[0], [1], [2]]
>>> Permutation(0, 1)(2, 3).cycles
2
See Also
========
sympy.functions.combinatorial.numbers.stirling
"""
return len(self.full_cyclic_form)
def index(self):
"""
Returns the index of a permutation.
The index of a permutation is the sum of all subscripts j such
that p[j] is greater than p[j+1].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([3, 0, 2, 1, 4])
>>> p.index()
2
"""
a = self.array_form
return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]])
def runs(self):
"""
Returns the runs of a permutation.
An ascending sequence in a permutation is called a run [5].
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
>>> p.runs()
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
>>> q = Permutation([1,3,2,0])
>>> q.runs()
[[1, 3], [2], [0]]
"""
return runs(self.array_form)
def inversion_vector(self):
"""Return the inversion vector of the permutation.
The inversion vector consists of elements whose value
indicates the number of elements in the permutation
that are lesser than it and lie on its right hand side.
The inversion vector is the same as the Lehmer encoding of a
permutation.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
>>> p.inversion_vector()
[4, 7, 0, 5, 0, 2, 1, 1]
>>> p = Permutation([3, 2, 1, 0])
>>> p.inversion_vector()
[3, 2, 1]
The inversion vector increases lexicographically with the rank
of the permutation, the -ith element cycling through 0..i.
>>> p = Permutation(2)
>>> while p:
... print('%s %s %s' % (p, p.inversion_vector(), p.rank()))
... p = p.next_lex()
(2) [0, 0] 0
(1 2) [0, 1] 1
(2)(0 1) [1, 0] 2
(0 1 2) [1, 1] 3
(0 2 1) [2, 0] 4
(0 2) [2, 1] 5
See Also
========
from_inversion_vector
"""
self_array_form = self.array_form
n = len(self_array_form)
inversion_vector = [0] * (n - 1)
for i in range(n - 1):
val = 0
for j in range(i + 1, n):
if self_array_form[j] < self_array_form[i]:
val += 1
inversion_vector[i] = val
return inversion_vector
def rank_trotterjohnson(self):
"""
Returns the Trotter Johnson rank, which we get from the minimal
change algorithm. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_trotterjohnson()
0
>>> p = Permutation([0, 2, 1, 3])
>>> p.rank_trotterjohnson()
7
See Also
========
unrank_trotterjohnson, next_trotterjohnson
"""
if self.array_form == [] or self.is_Identity:
return 0
if self.array_form == [1, 0]:
return 1
perm = self.array_form
n = self.size
rank = 0
for j in range(1, n):
k = 1
i = 0
while perm[i] != j:
if perm[i] < j:
k += 1
i += 1
j1 = j + 1
if rank % 2 == 0:
rank = j1*rank + j1 - k
else:
rank = j1*rank + k - 1
return rank
@classmethod
def unrank_trotterjohnson(cls, size, rank):
"""
Trotter Johnson permutation unranking. See [4] section 2.4.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_trotterjohnson(5, 10)
Permutation([0, 3, 1, 2, 4])
See Also
========
rank_trotterjohnson, next_trotterjohnson
"""
perm = [0]*size
r2 = 0
n = ifac(size)
pj = 1
for j in range(2, size + 1):
pj *= j
r1 = (rank * pj) // n
k = r1 - j*r2
if r2 % 2 == 0:
for i in range(j - 1, j - k - 1, -1):
perm[i] = perm[i - 1]
perm[j - k - 1] = j - 1
else:
for i in range(j - 1, k, -1):
perm[i] = perm[i - 1]
perm[k] = j - 1
r2 = r1
return cls._af_new(perm)
def next_trotterjohnson(self):
"""
Returns the next permutation in Trotter-Johnson order.
If self is the last permutation it returns None.
See [4] section 2.4. If it is desired to generate all such
permutations, they can be generated in order more quickly
with the ``generate_bell`` function.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 0, 2, 1])
>>> p.rank_trotterjohnson()
4
>>> p = p.next_trotterjohnson(); p
Permutation([0, 3, 2, 1])
>>> p.rank_trotterjohnson()
5
See Also
========
rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell
"""
pi = self.array_form[:]
n = len(pi)
st = 0
rho = pi[:]
done = False
m = n-1
while m > 0 and not done:
d = rho.index(m)
for i in range(d, m):
rho[i] = rho[i + 1]
par = _af_parity(rho[:m])
if par == 1:
if d == m:
m -= 1
else:
pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d]
done = True
else:
if d == 0:
m -= 1
st += 1
else:
pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d]
done = True
if m == 0:
return None
return self._af_new(pi)
def get_precedence_matrix(self):
"""
Gets the precedence matrix. This is used for computing the
distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation.josephus(3, 6, 1)
>>> p
Permutation([2, 5, 3, 1, 4, 0])
>>> p.get_precedence_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0]])
See Also
========
get_precedence_distance, get_adjacency_matrix, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(m.rows):
for j in range(i + 1, m.cols):
m[perm[i], perm[j]] = 1
return m
def get_precedence_distance(self, other):
"""
Computes the precedence distance between two permutations.
Suppose p and p' represent n jobs. The precedence metric
counts the number of times a job j is preceded by job i
in both p and p'. This metric is commutative.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([2, 0, 4, 3, 1])
>>> q = Permutation([3, 1, 2, 4, 0])
>>> p.get_precedence_distance(q)
7
>>> q.get_precedence_distance(p)
7
See Also
========
get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance
"""
if self.size != other.size:
raise ValueError("The permutations must be of equal size.")
self_prec_mat = self.get_precedence_matrix()
other_prec_mat = other.get_precedence_matrix()
n_prec = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_prec_mat[i, j] * other_prec_mat[i, j] == 1:
n_prec += 1
d = self.size * (self.size - 1)//2 - n_prec
return d
def get_adjacency_matrix(self):
"""
Computes the adjacency matrix of a permutation.
If job i is adjacent to job j in a permutation p
then we set m[i, j] = 1 where m is the adjacency
matrix of p.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation.josephus(3, 6, 1)
>>> p.get_adjacency_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
>>> q = Permutation([0, 1, 2, 3])
>>> q.get_adjacency_matrix()
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_distance
"""
m = zeros(self.size)
perm = self.array_form
for i in range(self.size - 1):
m[perm[i], perm[i + 1]] = 1
return m
def get_adjacency_distance(self, other):
"""
Computes the adjacency distance between two permutations.
This metric counts the number of times a pair i,j of jobs is
adjacent in both p and p'. If n_adj is this quantity then
the adjacency distance is n - n_adj - 1 [1]
[1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals
of Operational Research, 86, pp 473-490. (1999)
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> p.get_adjacency_distance(q)
3
>>> r = Permutation([0, 2, 1, 4, 3])
>>> p.get_adjacency_distance(r)
4
See Also
========
get_precedence_matrix, get_precedence_distance, get_adjacency_matrix
"""
if self.size != other.size:
raise ValueError("The permutations must be of the same size.")
self_adj_mat = self.get_adjacency_matrix()
other_adj_mat = other.get_adjacency_matrix()
n_adj = 0
for i in range(self.size):
for j in range(self.size):
if i == j:
continue
if self_adj_mat[i, j] * other_adj_mat[i, j] == 1:
n_adj += 1
d = self.size - n_adj - 1
return d
def get_positional_distance(self, other):
"""
Computes the positional distance between two permutations.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> r = Permutation([3, 1, 4, 0, 2])
>>> p.get_positional_distance(q)
12
>>> p.get_positional_distance(r)
12
See Also
========
get_precedence_distance, get_adjacency_distance
"""
a = self.array_form
b = other.array_form
if len(a) != len(b):
raise ValueError("The permutations must be of the same size.")
return sum([abs(a[i] - b[i]) for i in range(len(a))])
@classmethod
def josephus(cls, m, n, s=1):
"""Return as a permutation the shuffling of range(n) using the Josephus
scheme in which every m-th item is selected until all have been chosen.
The returned permutation has elements listed by the order in which they
were selected.
The parameter ``s`` stops the selection process when there are ``s``
items remaining and these are selected by continuing the selection,
counting by 1 rather than by ``m``.
Consider selecting every 3rd item from 6 until only 2 remain::
choices chosen
======== ======
012345
01 345 2
01 34 25
01 4 253
0 4 2531
0 25314
253140
Examples
========
>>> from sympy.combinatorics import Permutation
>>> Permutation.josephus(3, 6, 2).array_form
[2, 5, 3, 1, 4, 0]
References
==========
.. [1] https://en.wikipedia.org/wiki/Flavius_Josephus
.. [2] https://en.wikipedia.org/wiki/Josephus_problem
.. [3] http://www.wou.edu/~burtonl/josephus.html
"""
from collections import deque
m -= 1
Q = deque(list(range(n)))
perm = []
while len(Q) > max(s, 1):
for dp in range(m):
Q.append(Q.popleft())
perm.append(Q.popleft())
perm.extend(list(Q))
return cls(perm)
@classmethod
def from_inversion_vector(cls, inversion):
"""
Calculates the permutation from the inversion vector.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
Permutation([3, 2, 1, 0, 4, 5])
"""
size = len(inversion)
N = list(range(size + 1))
perm = []
try:
for k in range(size):
val = N[inversion[k]]
perm.append(val)
N.remove(val)
except IndexError:
raise ValueError("The inversion vector is not valid.")
perm.extend(N)
return cls._af_new(perm)
@classmethod
def random(cls, n):
"""
Generates a random permutation of length ``n``.
Uses the underlying Python pseudo-random number generator.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
True
"""
perm_array = list(range(n))
random.shuffle(perm_array)
return cls._af_new(perm_array)
@classmethod
def unrank_lex(cls, size, rank):
"""
Lexicographic permutation unranking.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = Permutation.unrank_lex(5, 10)
>>> a.rank()
10
>>> a
Permutation([0, 2, 4, 1, 3])
See Also
========
rank, next_lex
"""
perm_array = [0] * size
psize = 1
for i in range(size):
new_psize = psize*(i + 1)
d = (rank % new_psize) // psize
rank -= d*psize
perm_array[size - i - 1] = d
for j in range(size - i, size):
if perm_array[j] > d - 1:
perm_array[j] += 1
psize = new_psize
return cls._af_new(perm_array)
def resize(self, n):
"""Resize the permutation to the new size ``n``.
Parameters
==========
n : int
The new size of the permutation.
Raises
======
ValueError
If the permutation cannot be resized to the given size.
This may only happen when resized to a smaller size than
the original.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
Increasing the size of a permutation:
>>> p = Permutation(0, 1, 2)
>>> p = p.resize(5)
>>> p
(4)(0 1 2)
Decreasing the size of the permutation:
>>> p = p.resize(4)
>>> p
(3)(0 1 2)
If resizing to the specific size breaks the cycles:
>>> p.resize(2)
Traceback (most recent call last):
...
ValueError: The permutation can not be resized to 2 because the
cycle (0, 1, 2) may break.
"""
aform = self.array_form
l = len(aform)
if n > l:
aform += list(range(l, n))
return Permutation._af_new(aform)
elif n < l:
cyclic_form = self.full_cyclic_form
new_cyclic_form = []
for cycle in cyclic_form:
cycle_min = min(cycle)
cycle_max = max(cycle)
if cycle_min <= n-1:
if cycle_max > n-1:
raise ValueError(
"The permutation can not be resized to {} "
"because the cycle {} may break."
.format(n, tuple(cycle)))
new_cyclic_form.append(cycle)
return Permutation(new_cyclic_form)
return self
# XXX Deprecated flag
print_cyclic = None
def _merge(arr, temp, left, mid, right):
"""
Merges two sorted arrays and calculates the inversion count.
Helper function for calculating inversions. This method is
for internal use only.
"""
i = k = left
j = mid
inv_count = 0
while i < mid and j <= right:
if arr[i] < arr[j]:
temp[k] = arr[i]
k += 1
i += 1
else:
temp[k] = arr[j]
k += 1
j += 1
inv_count += (mid -i)
while i < mid:
temp[k] = arr[i]
k += 1
i += 1
if j <= right:
k += right - j + 1
j += right - j + 1
arr[left:k + 1] = temp[left:k + 1]
else:
arr[left:right + 1] = temp[left:right + 1]
return inv_count
Perm = Permutation
_af_new = Perm._af_new
class AppliedPermutation(Expr):
"""A permutation applied to a symbolic variable.
Parameters
==========
perm : Permutation
x : Expr
Examples
========
>>> from sympy import Symbol
>>> from sympy.combinatorics import Permutation
Creating a symbolic permutation function application:
>>> x = Symbol('x')
>>> p = Permutation(0, 1, 2)
>>> p.apply(x)
AppliedPermutation((0 1 2), x)
>>> _.subs(x, 1)
2
"""
def __new__(cls, perm, x, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
perm = _sympify(perm)
x = _sympify(x)
if not isinstance(perm, Permutation):
raise ValueError("{} must be a Permutation instance."
.format(perm))
if evaluate:
if x.is_Integer:
return perm.apply(x)
obj = super(AppliedPermutation, cls).__new__(cls, perm, x)
return obj
|
2cab8b824011af3582ae006654ccc1a2a3845c3dd51947f04df0fbb10b41c6cf | from __future__ import print_function, division
from itertools import combinations
from sympy.combinatorics.graycode import GrayCode
from sympy.core import Basic
class Subset(Basic):
"""
Represents a basic subset object.
We generate subsets using essentially two techniques,
binary enumeration and lexicographic enumeration.
The Subset class takes two arguments, the first one
describes the initial subset to consider and the second
describes the superset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a.prev_binary().subset
['c']
"""
_rank_binary = None
_rank_lex = None
_rank_graycode = None
_subset = None
_superset = None
def __new__(cls, subset, superset):
"""
Default constructor.
It takes the subset and its superset as its parameters.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
>>> a.superset
['a', 'b', 'c', 'd']
>>> a.size
2
"""
if len(subset) > len(superset):
raise ValueError('Invalid arguments have been provided. The '
'superset must be larger than the subset.')
for elem in subset:
if elem not in superset:
raise ValueError('The superset provided is invalid as it does '
'not contain the element {}'.format(elem))
obj = Basic.__new__(cls)
obj._subset = subset
obj._superset = superset
return obj
def iterate_binary(self, k):
"""
This is a helper function. It iterates over the
binary subsets by k steps. This variable can be
both positive or negative.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(-2).subset
['d']
>>> a = Subset(['a', 'b', 'c'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(2).subset
[]
See Also
========
next_binary, prev_binary
"""
bin_list = Subset.bitlist_from_subset(self.subset, self.superset)
n = (int(''.join(bin_list), 2) + k) % 2**self.superset_size
bits = bin(n)[2:].rjust(self.superset_size, '0')
return Subset.subset_from_bitlist(self.superset, bits)
def next_binary(self):
"""
Generates the next binary ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
[]
See Also
========
prev_binary, iterate_binary
"""
return self.iterate_binary(1)
def prev_binary(self):
"""
Generates the previous binary ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['a', 'b', 'c', 'd']
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['c']
See Also
========
next_binary, iterate_binary
"""
return self.iterate_binary(-1)
def next_lexicographic(self):
"""
Generates the next lexicographically ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
['d']
>>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
[]
See Also
========
prev_lexicographic
"""
i = self.superset_size - 1
indices = Subset.subset_indices(self.subset, self.superset)
if i in indices:
if i - 1 in indices:
indices.remove(i - 1)
else:
indices.remove(i)
i = i - 1
while not i in indices and i >= 0:
i = i - 1
if i >= 0:
indices.remove(i)
indices.append(i+1)
else:
while i not in indices and i >= 0:
i = i - 1
indices.append(i + 1)
ret_set = []
super_set = self.superset
for i in indices:
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
def prev_lexicographic(self):
"""
Generates the previous lexicographically ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['d']
>>> a = Subset(['c','d'], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['c']
See Also
========
next_lexicographic
"""
i = self.superset_size - 1
indices = Subset.subset_indices(self.subset, self.superset)
while i not in indices and i >= 0:
i = i - 1
if i - 1 in indices or i == 0:
indices.remove(i)
else:
if i >= 0:
indices.remove(i)
indices.append(i - 1)
indices.append(self.superset_size - 1)
ret_set = []
super_set = self.superset
for i in indices:
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
def iterate_graycode(self, k):
"""
Helper function used for prev_gray and next_gray.
It performs k step overs to get the respective Gray codes.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.iterate_graycode(3).subset
[1, 4]
>>> a.iterate_graycode(-2).subset
[1, 2, 4]
See Also
========
next_gray, prev_gray
"""
unranked_code = GrayCode.unrank(self.superset_size,
(self.rank_gray + k) % self.cardinality)
return Subset.subset_from_bitlist(self.superset,
unranked_code)
def next_gray(self):
"""
Generates the next Gray code ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.next_gray().subset
[1, 3]
See Also
========
iterate_graycode, prev_gray
"""
return self.iterate_graycode(1)
def prev_gray(self):
"""
Generates the previous Gray code ordered subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
>>> a.prev_gray().subset
[2, 3, 4, 5]
See Also
========
iterate_graycode, next_gray
"""
return self.iterate_graycode(-1)
@property
def rank_binary(self):
"""
Computes the binary ordered rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset([], ['a','b','c','d'])
>>> a.rank_binary
0
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
3
See Also
========
iterate_binary, unrank_binary
"""
if self._rank_binary is None:
self._rank_binary = int("".join(
Subset.bitlist_from_subset(self.subset,
self.superset)), 2)
return self._rank_binary
@property
def rank_lexicographic(self):
"""
Computes the lexicographic ranking of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_lexicographic
14
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_lexicographic
43
"""
if self._rank_lex is None:
def _ranklex(self, subset_index, i, n):
if subset_index == [] or i > n:
return 0
if i in subset_index:
subset_index.remove(i)
return 1 + _ranklex(self, subset_index, i + 1, n)
return 2**(n - i - 1) + _ranklex(self, subset_index, i + 1, n)
indices = Subset.subset_indices(self.subset, self.superset)
self._rank_lex = _ranklex(self, indices, 0, self.superset_size)
return self._rank_lex
@property
def rank_gray(self):
"""
Computes the Gray code ranking of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c','d'], ['a','b','c','d'])
>>> a.rank_gray
2
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_gray
27
See Also
========
iterate_graycode, unrank_gray
"""
if self._rank_graycode is None:
bits = Subset.bitlist_from_subset(self.subset, self.superset)
self._rank_graycode = GrayCode(len(bits), start=bits).rank
return self._rank_graycode
@property
def subset(self):
"""
Gets the subset represented by the current instance.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
See Also
========
superset, size, superset_size, cardinality
"""
return self._subset
@property
def size(self):
"""
Gets the size of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.size
2
See Also
========
subset, superset, superset_size, cardinality
"""
return len(self.subset)
@property
def superset(self):
"""
Gets the superset of the subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset
['a', 'b', 'c', 'd']
See Also
========
subset, size, superset_size, cardinality
"""
return self._superset
@property
def superset_size(self):
"""
Returns the size of the superset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset_size
4
See Also
========
subset, superset, size, cardinality
"""
return len(self.superset)
@property
def cardinality(self):
"""
Returns the number of all possible subsets.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.cardinality
16
See Also
========
subset, superset, size, superset_size
"""
return 2**(self.superset_size)
@classmethod
def subset_from_bitlist(self, super_set, bitlist):
"""
Gets the subset defined by the bitlist.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
['c', 'd']
See Also
========
bitlist_from_subset
"""
if len(super_set) != len(bitlist):
raise ValueError("The sizes of the lists are not equal")
ret_set = []
for i in range(len(bitlist)):
if bitlist[i] == '1':
ret_set.append(super_set[i])
return Subset(ret_set, super_set)
@classmethod
def bitlist_from_subset(self, subset, superset):
"""
Gets the bitlist corresponding to a subset.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
'0011'
See Also
========
subset_from_bitlist
"""
bitlist = ['0'] * len(superset)
if type(subset) is Subset:
subset = subset.subset
for i in Subset.subset_indices(subset, superset):
bitlist[i] = '1'
return ''.join(bitlist)
@classmethod
def unrank_binary(self, rank, superset):
"""
Gets the binary ordered subset of the specified rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
['b']
See Also
========
iterate_binary, rank_binary
"""
bits = bin(rank)[2:].rjust(len(superset), '0')
return Subset.subset_from_bitlist(superset, bits)
@classmethod
def unrank_gray(self, rank, superset):
"""
Gets the Gray code ordered subset of the specified rank.
Examples
========
>>> from sympy.combinatorics.subsets import Subset
>>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
['a', 'b']
>>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
[]
See Also
========
iterate_graycode, rank_gray
"""
graycode_bitlist = GrayCode.unrank(len(superset), rank)
return Subset.subset_from_bitlist(superset, graycode_bitlist)
@classmethod
def subset_indices(self, subset, superset):
"""Return indices of subset in superset in a list; the list is empty
if all elements of subset are not in superset.
Examples
========
>>> from sympy.combinatorics import Subset
>>> superset = [1, 3, 2, 5, 4]
>>> Subset.subset_indices([3, 2, 1], superset)
[1, 2, 0]
>>> Subset.subset_indices([1, 6], superset)
[]
>>> Subset.subset_indices([], superset)
[]
"""
a, b = superset, subset
sb = set(b)
d = {}
for i, ai in enumerate(a):
if ai in sb:
d[ai] = i
sb.remove(ai)
if not sb:
break
else:
return list()
return [d[bi] for bi in b]
def ksubsets(superset, k):
"""
Finds the subsets of size k in lexicographic order.
This uses the itertools generator.
Examples
========
>>> from sympy.combinatorics.subsets import ksubsets
>>> list(ksubsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
>>> list(ksubsets([1, 2, 3, 4, 5], 2))
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), \
(2, 5), (3, 4), (3, 5), (4, 5)]
See Also
========
Subset
"""
return combinations(superset, k)
|
7207e6ee823af65143d6a1e0503cc9ab3d3216ee1b970c7cbaeb6356ee346530 | from __future__ import print_function, division
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.iterables import uniq
_af_new = Permutation._af_new
def DirectProduct(*groups):
"""
Returns the direct product of several groups as a permutation group.
This is implemented much like the __mul__ procedure for taking the direct
product of two permutation groups, but the idea of shifting the
generators is realized in the case of an arbitrary number of groups.
A call to DirectProduct(G1, G2, ..., Gn) is generally expected to be faster
than a call to G1*G2*...*Gn (and thus the need for this algorithm).
Examples
========
>>> from sympy.combinatorics.group_constructs import DirectProduct
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> C = CyclicGroup(4)
>>> G = DirectProduct(C, C, C)
>>> G.order()
64
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.__mul__
"""
degrees = []
gens_count = []
total_degree = 0
total_gens = 0
for group in groups:
current_deg = group.degree
current_num_gens = len(group.generators)
degrees.append(current_deg)
total_degree += current_deg
gens_count.append(current_num_gens)
total_gens += current_num_gens
array_gens = []
for i in range(total_gens):
array_gens.append(list(range(total_degree)))
current_gen = 0
current_deg = 0
for i in range(len(gens_count)):
for j in range(current_gen, current_gen + gens_count[i]):
gen = ((groups[i].generators)[j - current_gen]).array_form
array_gens[j][current_deg:current_deg + degrees[i]] = \
[x + current_deg for x in gen]
current_gen += gens_count[i]
current_deg += degrees[i]
perm_gens = list(uniq([_af_new(list(a)) for a in array_gens]))
return PermutationGroup(perm_gens, dups=False)
|
c02919cbd3bdd1a353b5db3fc41b32f88d1ce2c8b395a653e3fc273c1b0f91bb | from __future__ import print_function, division
from typing import Dict, List
from sympy.core import S
from sympy.core.compatibility import is_sequence, as_int
from sympy.core.expr import Expr
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import flatten
from sympy.utilities.magic import pollute
@public
def free_group(symbols):
"""Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1))``.
Parameters
==========
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y, z = free_group("x, y, z")
>>> F
<free group on the generators (x, y, z)>
>>> x**2*y**-1
x**2*y**-1
>>> type(_)
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
"""
_free_group = FreeGroup(symbols)
return (_free_group,) + tuple(_free_group.generators)
@public
def xfree_group(symbols):
"""Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1)))``.
Parameters
==========
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
Examples
========
>>> from sympy.combinatorics.free_groups import xfree_group
>>> F, (x, y, z) = xfree_group("x, y, z")
>>> F
<free group on the generators (x, y, z)>
>>> y**2*x**-2*z**-1
y**2*x**-2*z**-1
>>> type(_)
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
"""
_free_group = FreeGroup(symbols)
return (_free_group, _free_group.generators)
@public
def vfree_group(symbols):
"""Construct a free group and inject ``f_0, f_1, ..., f_(n-1)`` as symbols
into the global namespace.
Parameters
==========
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
Examples
========
>>> from sympy.combinatorics.free_groups import vfree_group
>>> vfree_group("x, y, z")
<free group on the generators (x, y, z)>
>>> x**2*y**-2*z
x**2*y**-2*z
>>> type(_)
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
"""
_free_group = FreeGroup(symbols)
pollute([sym.name for sym in _free_group.symbols], _free_group.generators)
return _free_group
def _parse_symbols(symbols):
if not symbols:
return tuple()
if isinstance(symbols, str):
return _symbols(symbols, seq=True)
elif isinstance(symbols, Expr or FreeGroupElement):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, str) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise ValueError("The type of `symbols` must be one of the following: "
"a str, Symbol/Expr or a sequence of "
"one of these types")
##############################################################################
# FREE GROUP #
##############################################################################
_free_group_cache = {} # type: Dict[int, FreeGroup]
class FreeGroup(DefaultPrinting):
"""
Free group with finite or infinite number of generators. Its input API
is that of a str, Symbol/Expr or a sequence of one of
these types (which may be empty)
See Also
========
sympy.polys.rings.PolyRing
References
==========
.. [1] http://www.gap-system.org/Manuals/doc/ref/chap37.html
.. [2] https://en.wikipedia.org/wiki/Free_group
"""
is_associative = True
is_group = True
is_FreeGroup = True
is_PermutationGroup = False
relators = [] # type: List[Expr]
def __new__(cls, symbols):
symbols = tuple(_parse_symbols(symbols))
rank = len(symbols)
_hash = hash((cls.__name__, symbols, rank))
obj = _free_group_cache.get(_hash)
if obj is None:
obj = object.__new__(cls)
obj._hash = _hash
obj._rank = rank
# dtype method is used to create new instances of FreeGroupElement
obj.dtype = type("FreeGroupElement", (FreeGroupElement,), {"group": obj})
obj.symbols = symbols
obj.generators = obj._generators()
obj._gens_set = set(obj.generators)
for symbol, generator in zip(obj.symbols, obj.generators):
if isinstance(symbol, Symbol):
name = symbol.name
if hasattr(obj, name):
setattr(obj, name, generator)
_free_group_cache[_hash] = obj
return obj
def _generators(group):
"""Returns the generators of the FreeGroup.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y, z = free_group("x, y, z")
>>> F.generators
(x, y, z)
"""
gens = []
for sym in group.symbols:
elm = ((sym, 1),)
gens.append(group.dtype(elm))
return tuple(gens)
def clone(self, symbols=None):
return self.__class__(symbols or self.symbols)
def __contains__(self, i):
"""Return True if ``i`` is contained in FreeGroup."""
if not isinstance(i, FreeGroupElement):
return False
group = i.group
return self == group
def __hash__(self):
return self._hash
def __len__(self):
return self.rank
def __str__(self):
if self.rank > 30:
str_form = "<free group with %s generators>" % self.rank
else:
str_form = "<free group on the generators "
gens = self.generators
str_form += str(gens) + ">"
return str_form
__repr__ = __str__
def __getitem__(self, index):
symbols = self.symbols[index]
return self.clone(symbols=symbols)
def __eq__(self, other):
"""No ``FreeGroup`` is equal to any "other" ``FreeGroup``.
"""
return self is other
def index(self, gen):
"""Return the index of the generator `gen` from ``(f_0, ..., f_(n-1))``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> F.index(y)
1
>>> F.index(x)
0
"""
if isinstance(gen, self.dtype):
return self.generators.index(gen)
else:
raise ValueError("expected a generator of Free Group %s, got %s" % (self, gen))
def order(self):
"""Return the order of the free group.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> F.order()
oo
>>> free_group("")[0].order()
1
"""
if self.rank == 0:
return 1
else:
return S.Infinity
@property
def elements(self):
"""
Return the elements of the free group.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> (z,) = free_group("")
>>> z.elements
{<identity>}
"""
if self.rank == 0:
# A set containing Identity element of `FreeGroup` self is returned
return {self.identity}
else:
raise ValueError("Group contains infinitely many elements"
", hence can't be represented")
@property
def rank(self):
r"""
In group theory, the `rank` of a group `G`, denoted `G.rank`,
can refer to the smallest cardinality of a generating set
for G, that is
\operatorname{rank}(G)=\min\{ |X|: X\subseteq G, \left\langle X\right\rangle =G\}.
"""
return self._rank
@property
def is_abelian(self):
"""Returns if the group is Abelian.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> f.is_abelian
False
"""
if self.rank == 0 or self.rank == 1:
return True
else:
return False
@property
def identity(self):
"""Returns the identity element of free group."""
return self.dtype()
def contains(self, g):
"""Tests if Free Group element ``g`` belong to self, ``G``.
In mathematical terms any linear combination of generators
of a Free Group is contained in it.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> f.contains(x**3*y**2)
True
"""
if not isinstance(g, FreeGroupElement):
return False
elif self != g.group:
return False
else:
return True
def center(self):
"""Returns the center of the free group `self`."""
return {self.identity}
############################################################################
# FreeGroupElement #
############################################################################
class FreeGroupElement(CantSympify, DefaultPrinting, tuple):
"""Used to create elements of FreeGroup. It can not be used directly to
create a free group element. It is called by the `dtype` method of the
`FreeGroup` class.
"""
is_assoc_word = True
def new(self, init):
return self.__class__(init)
_hash = None
def __hash__(self):
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.group, frozenset(tuple(self))))
return _hash
def copy(self):
return self.new(self)
@property
def is_identity(self):
if self.array_form == tuple():
return True
else:
return False
@property
def array_form(self):
"""
SymPy provides two different internal kinds of representation
of associative words. The first one is called the `array_form`
which is a tuple containing `tuples` as its elements, where the
size of each tuple is two. At the first position the tuple
contains the `symbol-generator`, while at the second position
of tuple contains the exponent of that generator at the position.
Since elements (i.e. words) don't commute, the indexing of tuple
makes that property to stay.
The structure in ``array_form`` of ``FreeGroupElement`` is of form:
``( ( symbol_of_gen , exponent ), ( , ), ... ( , ) )``
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> (x*z).array_form
((x, 1), (z, 1))
>>> (x**2*z*y*x**2).array_form
((x, 2), (z, 1), (y, 1), (x, 2))
See Also
========
letter_repr
"""
return tuple(self)
@property
def letter_form(self):
"""
The letter representation of a ``FreeGroupElement`` is a tuple
of generator symbols, with each entry corresponding to a group
generator. Inverses of the generators are represented by
negative generator symbols.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b, c, d = free_group("a b c d")
>>> (a**3).letter_form
(a, a, a)
>>> (a**2*d**-2*a*b**-4).letter_form
(a, a, -d, -d, a, -b, -b, -b, -b)
>>> (a**-2*b**3*d).letter_form
(-a, -a, b, b, b, d)
See Also
========
array_form
"""
return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j)
for i, j in self.array_form]))
def __getitem__(self, i):
group = self.group
r = self.letter_form[i]
if r.is_Symbol:
return group.dtype(((r, 1),))
else:
return group.dtype(((-r, -1),))
def index(self, gen):
if len(gen) != 1:
raise ValueError()
return (self.letter_form).index(gen.letter_form[0])
@property
def letter_form_elm(self):
"""
"""
group = self.group
r = self.letter_form
return [group.dtype(((elm,1),)) if elm.is_Symbol \
else group.dtype(((-elm,-1),)) for elm in r]
@property
def ext_rep(self):
"""This is called the External Representation of ``FreeGroupElement``
"""
return tuple(flatten(self.array_form))
def __contains__(self, gen):
return gen.array_form[0][0] in tuple([r[0] for r in self.array_form])
def __str__(self):
if self.is_identity:
return "<identity>"
str_form = ""
array_form = self.array_form
for i in range(len(array_form)):
if i == len(array_form) - 1:
if array_form[i][1] == 1:
str_form += str(array_form[i][0])
else:
str_form += str(array_form[i][0]) + \
"**" + str(array_form[i][1])
else:
if array_form[i][1] == 1:
str_form += str(array_form[i][0]) + "*"
else:
str_form += str(array_form[i][0]) + \
"**" + str(array_form[i][1]) + "*"
return str_form
__repr__ = __str__
def __pow__(self, n):
n = as_int(n)
group = self.group
if n == 0:
return group.identity
if n < 0:
n = -n
return (self.inverse())**n
result = self
for i in range(n - 1):
result = result*self
# this method can be improved instead of just returning the
# multiplication of elements
return result
def __mul__(self, other):
"""Returns the product of elements belonging to the same ``FreeGroup``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> x*y**2*y**-4
x*y**-2
>>> z*y**-2
z*y**-2
>>> x**2*y*y**-1*x**-2
<identity>
"""
group = self.group
if not isinstance(other, group.dtype):
raise TypeError("only FreeGroup elements of same FreeGroup can "
"be multiplied")
if self.is_identity:
return other
if other.is_identity:
return self
r = list(self.array_form + other.array_form)
zero_mul_simp(r, len(self.array_form) - 1)
return group.dtype(tuple(r))
def __div__(self, other):
group = self.group
if not isinstance(other, group.dtype):
raise TypeError("only FreeGroup elements of same FreeGroup can "
"be multiplied")
return self*(other.inverse())
def __rdiv__(self, other):
group = self.group
if not isinstance(other, group.dtype):
raise TypeError("only FreeGroup elements of same FreeGroup can "
"be multiplied")
return other*(self.inverse())
__truediv__ = __div__
__rtruediv__ = __rdiv__
def __add__(self, other):
return NotImplemented
def inverse(self):
"""
Returns the inverse of a ``FreeGroupElement`` element
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> x.inverse()
x**-1
>>> (x*y).inverse()
y**-1*x**-1
"""
group = self.group
r = tuple([(i, -j) for i, j in self.array_form[::-1]])
return group.dtype(r)
def order(self):
"""Find the order of a ``FreeGroupElement``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y = free_group("x y")
>>> (x**2*y*y**-1*x**-2).order()
1
"""
if self.is_identity:
return 1
else:
return S.Infinity
def commutator(self, other):
"""
Return the commutator of `self` and `x`: ``~x*~self*x*self``
"""
group = self.group
if not isinstance(other, group.dtype):
raise ValueError("commutator of only FreeGroupElement of the same "
"FreeGroup exists")
else:
return self.inverse()*other.inverse()*self*other
def eliminate_words(self, words, _all=False, inverse=True):
'''
Replace each subword from the dictionary `words` by words[subword].
If words is a list, replace the words by the identity.
'''
again = True
new = self
if isinstance(words, dict):
while again:
again = False
for sub in words:
prev = new
new = new.eliminate_word(sub, words[sub], _all=_all, inverse=inverse)
if new != prev:
again = True
else:
while again:
again = False
for sub in words:
prev = new
new = new.eliminate_word(sub, _all=_all, inverse=inverse)
if new != prev:
again = True
return new
def eliminate_word(self, gen, by=None, _all=False, inverse=True):
"""
For an associative word `self`, a subword `gen`, and an associative
word `by` (identity by default), return the associative word obtained by
replacing each occurrence of `gen` in `self` by `by`. If `_all = True`,
the occurrences of `gen` that may appear after the first substitution will
also be replaced and so on until no occurrences are found. This might not
always terminate (e.g. `(x).eliminate_word(x, x**2, _all=True)`).
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y = free_group("x y")
>>> w = x**5*y*x**2*y**-4*x
>>> w.eliminate_word( x, x**2 )
x**10*y*x**4*y**-4*x**2
>>> w.eliminate_word( x, y**-1 )
y**-11
>>> w.eliminate_word(x**5)
y*x**2*y**-4*x
>>> w.eliminate_word(x*y, y)
x**4*y*x**2*y**-4*x
See Also
========
substituted_word
"""
if by is None:
by = self.group.identity
if self.is_independent(gen) or gen == by:
return self
if gen == self:
return by
if gen**-1 == by:
_all = False
word = self
l = len(gen)
try:
i = word.subword_index(gen)
k = 1
except ValueError:
if not inverse:
return word
try:
i = word.subword_index(gen**-1)
k = -1
except ValueError:
return word
word = word.subword(0, i)*by**k*word.subword(i+l, len(word)).eliminate_word(gen, by)
if _all:
return word.eliminate_word(gen, by, _all=True, inverse=inverse)
else:
return word
def __len__(self):
"""
For an associative word `self`, returns the number of letters in it.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> w = a**5*b*a**2*b**-4*a
>>> len(w)
13
>>> len(a**17)
17
>>> len(w**0)
0
"""
return sum(abs(j) for (i, j) in self)
def __eq__(self, other):
"""
Two associative words are equal if they are words over the
same alphabet and if they are sequences of the same letters.
This is equivalent to saying that the external representations
of the words are equal.
There is no "universal" empty word, every alphabet has its own
empty word.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
>>> f
<free group on the generators (swapnil0, swapnil1)>
>>> g, swap0, swap1 = free_group("swap0 swap1")
>>> g
<free group on the generators (swap0, swap1)>
>>> swapnil0 == swapnil1
False
>>> swapnil0*swapnil1 == swapnil1/swapnil1*swapnil0*swapnil1
True
>>> swapnil0*swapnil1 == swapnil1*swapnil0
False
>>> swapnil1**0 == swap0**0
False
"""
group = self.group
if not isinstance(other, group.dtype):
return False
return tuple.__eq__(self, other)
def __lt__(self, other):
"""
The ordering of associative words is defined by length and
lexicography (this ordering is called short-lex ordering), that
is, shorter words are smaller than longer words, and words of the
same length are compared w.r.t. the lexicographical ordering induced
by the ordering of generators. Generators are sorted according
to the order in which they were created. If the generators are
invertible then each generator `g` is larger than its inverse `g^{-1}`,
and `g^{-1}` is larger than every generator that is smaller than `g`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> b < a
False
>>> a < a.inverse()
False
"""
group = self.group
if not isinstance(other, group.dtype):
raise TypeError("only FreeGroup elements of same FreeGroup can "
"be compared")
l = len(self)
m = len(other)
# implement lenlex order
if l < m:
return True
elif l > m:
return False
for i in range(l):
a = self[i].array_form[0]
b = other[i].array_form[0]
p = group.symbols.index(a[0])
q = group.symbols.index(b[0])
if p < q:
return True
elif p > q:
return False
elif a[1] < b[1]:
return True
elif a[1] > b[1]:
return False
return False
def __le__(self, other):
return (self == other or self < other)
def __gt__(self, other):
"""
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, x, y, z = free_group("x y z")
>>> y**2 > x**2
True
>>> y*z > z*y
False
>>> x > x.inverse()
True
"""
group = self.group
if not isinstance(other, group.dtype):
raise TypeError("only FreeGroup elements of same FreeGroup can "
"be compared")
return not self <= other
def __ge__(self, other):
return not self < other
def exponent_sum(self, gen):
"""
For an associative word `self` and a generator or inverse of generator
`gen`, ``exponent_sum`` returns the number of times `gen` appears in
`self` minus the number of times its inverse appears in `self`. If
neither `gen` nor its inverse occur in `self` then 0 is returned.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> w = x**2*y**3
>>> w.exponent_sum(x)
2
>>> w.exponent_sum(x**-1)
-2
>>> w = x**2*y**4*x**-3
>>> w.exponent_sum(x)
-1
See Also
========
generator_count
"""
if len(gen) != 1:
raise ValueError("gen must be a generator or inverse of a generator")
s = gen.array_form[0]
return s[1]*sum([i[1] for i in self.array_form if i[0] == s[0]])
def generator_count(self, gen):
"""
For an associative word `self` and a generator `gen`,
``generator_count`` returns the multiplicity of generator
`gen` in `self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> w = x**2*y**3
>>> w.generator_count(x)
2
>>> w = x**2*y**4*x**-3
>>> w.generator_count(x)
5
See Also
========
exponent_sum
"""
if len(gen) != 1 or gen.array_form[0][1] < 0:
raise ValueError("gen must be a generator")
s = gen.array_form[0]
return s[1]*sum([abs(i[1]) for i in self.array_form if i[0] == s[0]])
def subword(self, from_i, to_j, strict=True):
"""
For an associative word `self` and two positive integers `from_i` and
`to_j`, `subword` returns the subword of `self` that begins at position
`from_i` and ends at `to_j - 1`, indexing is done with origin 0.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> w = a**5*b*a**2*b**-4*a
>>> w.subword(2, 6)
a**3*b
"""
group = self.group
if not strict:
from_i = max(from_i, 0)
to_j = min(len(self), to_j)
if from_i < 0 or to_j > len(self):
raise ValueError("`from_i`, `to_j` must be positive and no greater than "
"the length of associative word")
if to_j <= from_i:
return group.identity
else:
letter_form = self.letter_form[from_i: to_j]
array_form = letter_form_to_array_form(letter_form, group)
return group.dtype(array_form)
def subword_index(self, word, start = 0):
'''
Find the index of `word` in `self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> w = a**2*b*a*b**3
>>> w.subword_index(a*b*a*b)
1
'''
l = len(word)
self_lf = self.letter_form
word_lf = word.letter_form
index = None
for i in range(start,len(self_lf)-l+1):
if self_lf[i:i+l] == word_lf:
index = i
break
if index is not None:
return index
else:
raise ValueError("The given word is not a subword of self")
def is_dependent(self, word):
"""
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> (x**4*y**-3).is_dependent(x**4*y**-2)
True
>>> (x**2*y**-1).is_dependent(x*y)
False
>>> (x*y**2*x*y**2).is_dependent(x*y**2)
True
>>> (x**12).is_dependent(x**-4)
True
See Also
========
is_independent
"""
try:
return self.subword_index(word) is not None
except ValueError:
pass
try:
return self.subword_index(word**-1) is not None
except ValueError:
return False
def is_independent(self, word):
"""
See Also
========
is_dependent
"""
return not self.is_dependent(word)
def contains_generators(self):
"""
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y, z = free_group("x, y, z")
>>> (x**2*y**-1).contains_generators()
{x, y}
>>> (x**3*z).contains_generators()
{x, z}
"""
group = self.group
gens = set()
for syllable in self.array_form:
gens.add(group.dtype(((syllable[0], 1),)))
return set(gens)
def cyclic_subword(self, from_i, to_j):
group = self.group
l = len(self)
letter_form = self.letter_form
period1 = int(from_i/l)
if from_i >= l:
from_i -= l*period1
to_j -= l*period1
diff = to_j - from_i
word = letter_form[from_i: to_j]
period2 = int(to_j/l) - 1
word += letter_form*period2 + letter_form[:diff-l+from_i-l*period2]
word = letter_form_to_array_form(word, group)
return group.dtype(word)
def cyclic_conjugates(self):
"""Returns a words which are cyclic to the word `self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> w = x*y*x*y*x
>>> w.cyclic_conjugates()
{x*y*x**2*y, x**2*y*x*y, y*x*y*x**2, y*x**2*y*x, x*y*x*y*x}
>>> s = x*y*x**2*y*x
>>> s.cyclic_conjugates()
{x**2*y*x**2*y, y*x**2*y*x**2, x*y*x**2*y*x}
References
==========
http://planetmath.org/cyclicpermutation
"""
return {self.cyclic_subword(i, i+len(self)) for i in range(len(self))}
def is_cyclic_conjugate(self, w):
"""
Checks whether words ``self``, ``w`` are cyclic conjugates.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> w1 = x**2*y**5
>>> w2 = x*y**5*x
>>> w1.is_cyclic_conjugate(w2)
True
>>> w3 = x**-1*y**5*x**-1
>>> w3.is_cyclic_conjugate(w2)
False
"""
l1 = len(self)
l2 = len(w)
if l1 != l2:
return False
w1 = self.identity_cyclic_reduction()
w2 = w.identity_cyclic_reduction()
letter1 = w1.letter_form
letter2 = w2.letter_form
str1 = ' '.join(map(str, letter1))
str2 = ' '.join(map(str, letter2))
if len(str1) != len(str2):
return False
return str1 in str2 + ' ' + str2
def number_syllables(self):
"""Returns the number of syllables of the associative word `self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
>>> (swapnil1**3*swapnil0*swapnil1**-1).number_syllables()
3
"""
return len(self.array_form)
def exponent_syllable(self, i):
"""
Returns the exponent of the `i`-th syllable of the associative word
`self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> w = a**5*b*a**2*b**-4*a
>>> w.exponent_syllable( 2 )
2
"""
return self.array_form[i][1]
def generator_syllable(self, i):
"""
Returns the symbol of the generator that is involved in the
i-th syllable of the associative word `self`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a b")
>>> w = a**5*b*a**2*b**-4*a
>>> w.generator_syllable( 3 )
b
"""
return self.array_form[i][0]
def sub_syllables(self, from_i, to_j):
"""
`sub_syllables` returns the subword of the associative word `self` that
consists of syllables from positions `from_to` to `to_j`, where
`from_to` and `to_j` must be positive integers and indexing is done
with origin 0.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> f, a, b = free_group("a, b")
>>> w = a**5*b*a**2*b**-4*a
>>> w.sub_syllables(1, 2)
b
>>> w.sub_syllables(3, 3)
<identity>
"""
if not isinstance(from_i, int) or not isinstance(to_j, int):
raise ValueError("both arguments should be integers")
group = self.group
if to_j <= from_i:
return group.identity
else:
r = tuple(self.array_form[from_i: to_j])
return group.dtype(r)
def substituted_word(self, from_i, to_j, by):
"""
Returns the associative word obtained by replacing the subword of
`self` that begins at position `from_i` and ends at position `to_j - 1`
by the associative word `by`. `from_i` and `to_j` must be positive
integers, indexing is done with origin 0. In other words,
`w.substituted_word(w, from_i, to_j, by)` is the product of the three
words: `w.subword(0, from_i)`, `by`, and
`w.subword(to_j len(w))`.
See Also
========
eliminate_word
"""
lw = len(self)
if from_i >= to_j or from_i > lw or to_j > lw:
raise ValueError("values should be within bounds")
# otherwise there are four possibilities
# first if from=1 and to=lw then
if from_i == 0 and to_j == lw:
return by
elif from_i == 0: # second if from_i=1 (and to_j < lw) then
return by*self.subword(to_j, lw)
elif to_j == lw: # third if to_j=1 (and from_i > 1) then
return self.subword(0, from_i)*by
else: # finally
return self.subword(0, from_i)*by*self.subword(to_j, lw)
def is_cyclically_reduced(self):
r"""Returns whether the word is cyclically reduced or not.
A word is cyclically reduced if by forming the cycle of the
word, the word is not reduced, i.e a word w = `a_1 ... a_n`
is called cyclically reduced if `a_1 \ne a_n^{-1}`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> (x**2*y**-1*x**-1).is_cyclically_reduced()
False
>>> (y*x**2*y**2).is_cyclically_reduced()
True
"""
if not self:
return True
return self[0] != self[-1]**-1
def identity_cyclic_reduction(self):
"""Return a unique cyclically reduced version of the word.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> (x**2*y**2*x**-1).identity_cyclic_reduction()
x*y**2
>>> (x**-3*y**-1*x**5).identity_cyclic_reduction()
x**2*y**-1
References
==========
http://planetmath.org/cyclicallyreduced
"""
word = self.copy()
group = self.group
while not word.is_cyclically_reduced():
exp1 = word.exponent_syllable(0)
exp2 = word.exponent_syllable(-1)
r = exp1 + exp2
if r == 0:
rep = word.array_form[1: word.number_syllables() - 1]
else:
rep = ((word.generator_syllable(0), exp1 + exp2),) + \
word.array_form[1: word.number_syllables() - 1]
word = group.dtype(rep)
return word
def cyclic_reduction(self, removed=False):
"""Return a cyclically reduced version of the word. Unlike
`identity_cyclic_reduction`, this will not cyclically permute
the reduced word - just remove the "unreduced" bits on either
side of it. Compare the examples with those of
`identity_cyclic_reduction`.
When `removed` is `True`, return a tuple `(word, r)` where
self `r` is such that before the reduction the word was either
`r*word*r**-1`.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> (x**2*y**2*x**-1).cyclic_reduction()
x*y**2
>>> (x**-3*y**-1*x**5).cyclic_reduction()
y**-1*x**2
>>> (x**-3*y**-1*x**5).cyclic_reduction(removed=True)
(y**-1*x**2, x**-3)
"""
word = self.copy()
g = self.group.identity
while not word.is_cyclically_reduced():
exp1 = abs(word.exponent_syllable(0))
exp2 = abs(word.exponent_syllable(-1))
exp = min(exp1, exp2)
start = word[0]**abs(exp)
end = word[-1]**abs(exp)
word = start**-1*word*end**-1
g = g*start
if removed:
return word, g
return word
def power_of(self, other):
'''
Check if `self == other**n` for some integer n.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> ((x*y)**2).power_of(x*y)
True
>>> (x**-3*y**-2*x**3).power_of(x**-3*y*x**3)
True
'''
if self.is_identity:
return True
l = len(other)
if l == 1:
# self has to be a power of one generator
gens = self.contains_generators()
s = other in gens or other**-1 in gens
return len(gens) == 1 and s
# if self is not cyclically reduced and it is a power of other,
# other isn't cyclically reduced and the parts removed during
# their reduction must be equal
reduced, r1 = self.cyclic_reduction(removed=True)
if not r1.is_identity:
other, r2 = other.cyclic_reduction(removed=True)
if r1 == r2:
return reduced.power_of(other)
return False
if len(self) < l or len(self) % l:
return False
prefix = self.subword(0, l)
if prefix == other or prefix**-1 == other:
rest = self.subword(l, len(self))
return rest.power_of(other)
return False
def letter_form_to_array_form(array_form, group):
"""
This method converts a list given with possible repetitions of elements in
it. It returns a new list such that repetitions of consecutive elements is
removed and replace with a tuple element of size two such that the first
index contains `value` and the second index contains the number of
consecutive repetitions of `value`.
"""
a = list(array_form[:])
new_array = []
n = 1
symbols = group.symbols
for i in range(len(a)):
if i == len(a) - 1:
if a[i] == a[i - 1]:
if (-a[i]) in symbols:
new_array.append((-a[i], -n))
else:
new_array.append((a[i], n))
else:
if (-a[i]) in symbols:
new_array.append((-a[i], -1))
else:
new_array.append((a[i], 1))
return new_array
elif a[i] == a[i + 1]:
n += 1
else:
if (-a[i]) in symbols:
new_array.append((-a[i], -n))
else:
new_array.append((a[i], n))
n = 1
def zero_mul_simp(l, index):
"""Used to combine two reduced words."""
while index >=0 and index < len(l) - 1 and l[index][0] == l[index + 1][0]:
exp = l[index][1] + l[index + 1][1]
base = l[index][0]
l[index] = (base, exp)
del l[index + 1]
if l[index][1] == 0:
del l[index]
index -= 1
|
88e61a9b7d024360edee8fcc974e231773431438d5d541e90f7ebb72e43638dc | from __future__ import print_function, division
from sympy.combinatorics.permutations import Permutation, _af_rmul, \
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
_orbit_transversal
from sympy.combinatorics.util import _distribute_gens_by_base, \
_orbits_transversals_from_bsgs
"""
References for tensor canonicalization:
[1] R. Portugal "Algorithmic simplification of tensor expressions",
J. Phys. A 32 (1999) 7779-7789
[2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
Tensor Manipulation: I. Free Indices"
arXiv:math-ph/0107031v1
[3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
Tensor Manipulation: II. Dummy Indices"
arXiv:math-ph/0107032v1
[4] xperm.c part of XPerm written by J. M. Martin-Garcia
http://www.xact.es/index.html
"""
def dummy_sgs(dummies, sym, n):
"""
Return the strong generators for dummy indices
Parameters
==========
dummies : list of dummy indices
`dummies[2k], dummies[2k+1]` are paired indices
sym : symmetry under interchange of contracted dummies::
* None no symmetry
* 0 commuting
* 1 anticommuting
n : number of indices
in base form the dummy indices are always in consecutive positions
Examples
========
>>> from sympy.combinatorics.tensor_can import dummy_sgs
>>> dummy_sgs(list(range(2, 8)), 0, 8)
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
"""
if len(dummies) > n:
raise ValueError("List too large")
res = []
# exchange of contravariant and covariant indices
if sym is not None:
for j in dummies[::2]:
a = list(range(n + 2))
if sym == 1:
a[n] = n + 1
a[n + 1] = n
a[j], a[j + 1] = a[j + 1], a[j]
res.append(a)
# rename dummy indices
for j in dummies[:-3:2]:
a = list(range(n + 2))
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
res.append(a)
return res
def _min_dummies(dummies, sym, indices):
"""
Return list of minima of the orbits of indices in group of dummies
see `double_coset_can_rep` for the description of `dummies` and `sym`
indices is the initial list of dummy indices
Examples
========
>>> from sympy.combinatorics.tensor_can import _min_dummies
>>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
[0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
"""
num_types = len(sym)
m = []
for dx in dummies:
if dx:
m.append(min(dx))
else:
m.append(None)
res = indices[:]
for i in range(num_types):
for c, i in enumerate(indices):
for j in range(num_types):
if i in dummies[j]:
res[c] = m[j]
break
return res
def _trace_S(s, j, b, S_cosets):
"""
Return the representative h satisfying s[h[b]] == j
If there is not such a representative return None
"""
for h in S_cosets[b]:
if s[h[b]] == j:
return h
return None
def _trace_D(gj, p_i, Dxtrav):
"""
Return the representative h satisfying h[gj] == p_i
If there is not such a representative return None
"""
for h in Dxtrav:
if h[gj] == p_i:
return h
return None
def _dumx_remove(dumx, dumx_flat, p0):
"""
remove p0 from dumx
"""
res = []
for dx in dumx:
if p0 not in dx:
res.append(dx)
continue
k = dx.index(p0)
if k % 2 == 0:
p0_paired = dx[k + 1]
else:
p0_paired = dx[k - 1]
dx.remove(p0)
dx.remove(p0_paired)
dumx_flat.remove(p0)
dumx_flat.remove(p0_paired)
res.append(dx)
def transversal2coset(size, base, transversal):
a = []
j = 0
for i in range(size):
if i in base:
a.append(sorted(transversal[j].values()))
j += 1
else:
a.append([list(range(size))])
j = len(a) - 1
while a[j] == [list(range(size))]:
j -= 1
return a[:j + 1]
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
"""
Butler-Portugal algorithm for tensor canonicalization with dummy indices
Parameters
==========
dummies
list of lists of dummy indices,
one list for each type of index;
the dummy indices are put in order contravariant, covariant
[d0, -d0, d1, -d1, ...].
sym
list of the symmetries of the index metric for each type.
possible symmetries of the metrics
* 0 symmetric
* 1 antisymmetric
* None no symmetry
b_S
base of a minimal slot symmetry BSGS.
sgens
generators of the slot symmetry BSGS.
S_transversals
transversals for the slot BSGS.
g
permutation representing the tensor.
Returns
=======
Return 0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Notes
=====
A tensor with dummy indices can be represented in a number
of equivalent ways which typically grows exponentially with
the number of indices. To be able to establish if two tensors
with many indices are equal becomes computationally very slow
in absence of an efficient algorithm.
The Butler-Portugal algorithm [3] is an efficient algorithm to
put tensors in canonical form, solving the above problem.
Portugal observed that a tensor can be represented by a permutation,
and that the class of tensors equivalent to it under slot and dummy
symmetries is equivalent to the double coset `D*g*S`
(Note: in this documentation we use the conventions for multiplication
of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
to the one used in the Permutation class)
Using the algorithm by Butler to find a representative of the
double coset one can find a canonical form for the tensor.
To see this correspondence,
let `g` be a permutation in array form; a tensor with indices `ind`
(the indices including both the contravariant and the covariant ones)
can be written as
`t = T(ind[g[0]],..., ind[g[n-1]])`,
where `n= len(ind)`;
`g` has size `n + 2`, the last two indices for the sign of the tensor
(trick introduced in [4]).
A slot symmetry transformation `s` is a permutation acting on the slots
`t -> T(ind[(g*s)[0]],..., ind[(g*s)[n-1]])`
A dummy symmetry transformation acts on `ind`
`t -> T(ind[(d*g)[0]],..., ind[(d*g)[n-1]])`
Being interested only in the transformations of the tensor under
these symmetries, one can represent the tensor by `g`, which transforms
as
`g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
to the set of all permutations allowed by the slot and dummy symmetries.
Let us explain the conventions by an example.
Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
and symmetric metric, find the tensor equivalent to it which
is the lowest under the ordering of indices:
lexicographic ordering `d1, d2, d3` and then contravariant
before covariant index; that is the canonical form of the tensor.
The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
To convert this problem in the input for this function,
use the following ordering of the index names
(- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
`T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
where the last two indices are for the sign
`sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
sgens[0] is the slot symmetry `-(0, 2)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
sgens[1] is the slot symmetry `-(0, 4)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
The dummy symmetry group D is generated by the strong base generators
`[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
where the first three interchange covariant and contravariant
positions of the same index (d1 <-> -d1) and the last two interchange
the dummy indices themselves (d1 <-> d2).
The dummy symmetry acts from the left
`d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 <-> -d1`
`T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
`g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
which differs from `_af_rmul(g, d)`.
The slot symmetry acts from the right
`s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
`T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
`g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
Example in which the tensor is zero, same slot symmetries as above:
`T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
`= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
`= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
`= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
`= 0` since two of these lines have tensors differ only for the sign.
The double coset D*g*S consists of permutations `h = d*g*s` corresponding
to equivalent tensors; if there are two `h` which are the same apart
from the sign, return zero; otherwise
choose as representative the tensor with indices
ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
that is `rep = min(D*g*S) = min([d*g*s for d in D for s in S])`
The indices are fixed one by one; first choose the lowest index
for slot 0, then the lowest remaining index for slot 1, etc.
Doing this one obtains a chain of stabilizers
`S -> S_{b0} -> S_{b0,b1} -> ...` and
`D -> D_{p0} -> D_{p0,p1} -> ...`
where `[b0, b1, ...] = range(b)` is a base of the symmetric group;
the strong base `b_S` of S is an ordered sublist of it;
therefore it is sufficient to compute once the
strong base generators of S using the Schreier-Sims algorithm;
the stabilizers of the strong base generators are the
strong base generators of the stabilizer subgroup.
`dbase = [p0, p1, ...]` is not in general in lexicographic order,
so that one must recompute the strong base generators each time;
however this is trivial, there is no need to use the Schreier-Sims
algorithm for D.
The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
where `h_i = d_i*g*s_i` satisfying `h_i[j] = p_j` for `0 <= j < i`
starting from `s_0 = id, d_0 = id, h_0 = g`.
The equations `h_0[0] = p_0, h_1[1] = p_1,...` are solved in this order,
choosing each time the lowest possible value of p_i
For `j < i`
`d_i*g*s_i*S_{b_0,...,b_{i-1}}*b_j = D_{p_0,...,p_{i-1}}*p_j`
so that for dx in `D_{p_0,...,p_{i-1}}` and sx in
`S_{base[0],...,base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
Search for dx, sx such that this equation holds for `j = i`;
it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
`sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
`dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
`s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
`d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
`h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
`h_n*b_j = p_j` for all j, so that `h_n` is the solution.
Add the found `(s, d, h)` to TAB1.
At the end of the iteration sort TAB1 with respect to the `h`;
if there are two consecutive `h` in TAB1 which differ only for the
sign, the tensor is zero, so return 0;
if there are two consecutive `h` which are equal, keep only one.
Then stabilize the slot generators under `i` and the dummy generators
under `p_i`.
Assign `TAB = TAB1` at the end of the iteration step.
At the end `TAB` contains a unique `(s, d, h)`, since all the slots
of the tensor `h` have been fixed to have the minimum value according
to the symmetries. The algorithm returns `h`.
It is important that the slot BSGS has lexicographic minimal base,
otherwise there is an `i` which does not belong to the slot base
for which `p_i` is fixed by the dummy symmetry only, while `i`
is not invariant from the slot stabilizer, so `p_i` is not in
general the minimal value.
This algorithm differs slightly from the original algorithm [3]:
the canonical form is minimal lexicographically, and
the BSGS has minimal base under lexicographic order.
Equal tensors `h` are eliminated from TAB.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
0
"""
size = g.size
g = g.array_form
num_dummies = size - 2
indices = list(range(num_dummies))
all_metrics_with_sym = all([_ is not None for _ in sym])
num_types = len(sym)
dumx = dummies[:]
dumx_flat = []
for dx in dumx:
dumx_flat.extend(dx)
b_S = b_S[:]
sgensx = [h._array_form for h in sgens]
if b_S:
S_transversals = transversal2coset(size, b_S, S_transversals)
# strong generating set for D
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
idn = list(range(size))
# TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
# for short, in the following d*g*s means _af_rmuln(d,g,s)
TAB = [(idn, idn, g)]
for i in range(size - 2):
b = i
testb = b in b_S and sgensx
if testb:
sgensx1 = [_af_new(_) for _ in sgensx]
deltab = _orbit(size, sgensx1, b)
else:
deltab = {b}
# p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
if all_metrics_with_sym:
md = _min_dummies(dumx, sym, indices)
else:
md = [min(_orbit(size, [_af_new(
ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
dsgsx1 = [_af_new(_) for _ in dsgsx]
Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
if dsgsx else None
if Dxtrav:
Dxtrav = [_af_invert(x) for x in Dxtrav]
# compute the orbit of p_i
for ii in range(num_types):
if p_i in dumx[ii]:
# the orbit is made by all the indices in dum[ii]
if sym[ii] is not None:
deltap = dumx[ii]
else:
# the orbit is made by all the even indices if p_i
# is even, by all the odd indices if p_i is odd
p_i_index = dumx[ii].index(p_i) % 2
deltap = dumx[ii][p_i_index::2]
break
else:
deltap = [p_i]
TAB1 = []
while TAB:
s, d, h = TAB.pop()
if min([md[h[x]] for x in deltab]) != p_i:
continue
deltab1 = [x for x in deltab if md[h[x]] == p_i]
# NEXT = s*deltab1 intersection (d*g)**-1*deltap
dg = _af_rmul(d, g)
dginv = _af_invert(dg)
sdeltab = [s[x] for x in deltab1]
gdeltap = [dginv[x] for x in deltap]
NEXT = [x for x in sdeltab if x in gdeltap]
# d, s satisfy
# d*g*s*base[i-1] = p_{i-1}; using the stabilizers
# d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
# D_{p_0,...,p_{i-1}}*p_{i-1}
# so that to find d1, s1 satisfying d1*g*s1*b = p_i
# one can look for dx in D_{p_0,...,p_{i-1}} and
# sx in S_{base[0],...,base[i-1]}
# d1 = dx*d; s1 = s*sx
# d1*g*s1*b = dx*d*g*s*sx*b = p_i
for j in NEXT:
if testb:
# solve s1*b = j with s1 = s*sx for some element sx
# of the stabilizer of ..., base[i-1]
# sx*b = s**-1*j; sx = _trace_S(s, j,...)
# s1 = s*trace_S(s**-1*j,...)
s1 = _trace_S(s, j, b, S_transversals)
if not s1:
continue
else:
s1 = [s[ix] for ix in s1]
else:
s1 = s
# assert s1[b] == j # invariant
# solve d1*g*j = p_i with d1 = dx*d for some element dg
# of the stabilizer of ..., p_{i-1}
# dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
# d1 = trace_D(d*g*j,...)**-1*d
# to save an inversion in the inner loop; notice we did
# Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
if Dxtrav:
d1 = _trace_D(dg[j], p_i, Dxtrav)
if not d1:
continue
else:
if p_i != dg[j]:
continue
d1 = idn
assert d1[dg[j]] == p_i # invariant
d1 = [d1[ix] for ix in d]
h1 = [d1[g[ix]] for ix in s1]
# assert h1[b] == p_i # invariant
TAB1.append((s1, d1, h1))
# if TAB contains equal permutations, keep only one of them;
# if TAB contains equal permutations up to the sign, return 0
TAB1.sort(key=lambda x: x[-1])
prev = [0] * size
while TAB1:
s, d, h = TAB1.pop()
if h[:-2] == prev[:-2]:
if h[-1] != prev[-1]:
return 0
else:
TAB.append((s, d, h))
prev = h
# stabilize the SGS
sgensx = [h for h in sgensx if h[b] == b]
if b in b_S:
b_S.remove(b)
_dumx_remove(dumx, dumx_flat, p_i)
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
return TAB[0][-1]
def canonical_free(base, gens, g, num_free):
"""
canonicalization of a tensor with respect to free indices
choosing the minimum with respect to lexicographical ordering
in the free indices
``base``, ``gens`` BSGS for slot permutation group
``g`` permutation representing the tensor
``num_free`` number of free indices
The indices must be ordered with first the free indices
see explanation in double_coset_can_rep
The algorithm is a variation of the one given in [2].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import canonical_free
>>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
>>> gens = [Permutation(h) for h in gens]
>>> base = [0, 2]
>>> g = Permutation([2, 1, 0, 3, 4, 5])
>>> canonical_free(base, gens, g, 4)
[0, 3, 1, 2, 5, 4]
Consider the product of Riemann tensors
``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
The permutation corresponding to the tensor is
``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
In particular ``a`` is position ``0``, ``b`` is in position ``9``.
Use the slot symmetries to get `T` is a form which is the minimal
in lexicographic order in the free indices ``a`` and ``b``, e.g.
``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
>>> base, gens = riemann_bsgs
>>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
>>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
>>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
"""
g = g.array_form
size = len(g)
if not base:
return g[:]
transversals = get_transversals(base, gens)
for x in sorted(g[:-2]):
if x not in base:
base.append(x)
h = g
for i, transv in enumerate(transversals):
h_i = [size]*num_free
# find the element s in transversals[i] such that
# _af_rmul(h, s) has its free elements with the lowest position in h
s = None
for sk in transv.values():
h1 = _af_rmul(h, sk)
hi = [h1.index(ix) for ix in range(num_free)]
if hi < h_i:
h_i = hi
s = sk
if s:
h = _af_rmul(h, s)
return h
def _get_map_slots(size, fixed_slots):
res = list(range(size))
pos = 0
for i in range(size):
if i in fixed_slots:
continue
res[i] = pos
pos += 1
return res
def _lift_sgens(size, fixed_slots, free, s):
a = []
j = k = 0
fd = list(zip(fixed_slots, free))
fd = [y for x, y in sorted(fd)]
num_free = len(free)
for i in range(size):
if i in fixed_slots:
a.append(fd[k])
k += 1
else:
a.append(s[j] + num_free)
j += 1
return a
def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if not msym in [0, 1, None]:
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in [0, 1, None] for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for i in range(len(v)):
base_i, gens_i, n_i, sym_i = v[i]
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i in range(len(v)):
free_i = []
base_i, gens_i, n_i, sym_i = v[i]
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
def perm_af_direct_product(gens1, gens2, signed=True):
"""
direct products of the generators gens1 and gens2
Examples
========
>>> from sympy.combinatorics.tensor_can import perm_af_direct_product
>>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
>>> gens2 = [[1, 0]]
>>> perm_af_direct_product(gens1, gens2, False)
[[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
>>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
>>> gens2 = [[1, 0, 2, 3]]
>>> perm_af_direct_product(gens1, gens2, True)
[[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
"""
gens1 = [list(x) for x in gens1]
gens2 = [list(x) for x in gens2]
s = 2 if signed else 0
n1 = len(gens1[0]) - s
n2 = len(gens2[0]) - s
start = list(range(n1))
end = list(range(n1, n1 + n2))
if signed:
gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
else:
gens1 = [gen + end for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
res = gens1 + gens2
return res
def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
"""
Direct product of two BSGS
Parameters
==========
base1 base of the first BSGS.
gens1 strong generating sequence of the first BSGS.
base2, gens2 similarly for the second BSGS.
signed flag for signed permutations.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [(4)(1 2)])
"""
s = 2 if signed else 0
n1 = gens1[0].size - s
base = list(base1)
base += [x + n1 for x in base2]
gens1 = [h._array_form for h in gens1]
gens2 = [h._array_form for h in gens2]
gens = perm_af_direct_product(gens1, gens2, signed)
size = len(gens[0])
id_af = list(range(size))
gens = [h for h in gens if h != id_af]
if not gens:
gens = [id_af]
return base, [_af_new(h) for h in gens]
def get_symmetric_group_sgs(n, antisym=False):
"""
Return base, gens of the minimal BSGS for (anti)symmetric tensor
``n`` rank of the tensor
``antisym = False`` symmetric tensor
``antisym = True`` antisymmetric tensor
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
>>> get_symmetric_group_sgs(3)
([0, 1], [(4)(0 1), (4)(1 2)])
"""
if n == 1:
return [], [_af_new(list(range(3)))]
gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
if antisym == 0:
gens = [x + [n, n + 1] for x in gens]
else:
gens = [x + [n + 1, n] for x in gens]
base = list(range(n - 1))
return base, [_af_new(h) for h in gens]
riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
Permutation(5)(0, 2)(1, 3)]
def get_transversals(base, gens):
"""
Return transversals for the group with BSGS base, gens
"""
if not base:
return []
stabs = _distribute_gens_by_base(base, gens)
orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
transversals = [{x: h._array_form for x, h in y.items()} for y in
transversals]
return transversals
def _is_minimal_bsgs(base, gens):
"""
Check if the BSGS has minimal base under lexigographic order.
base, gens BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
>>> _is_minimal_bsgs(*riemann_bsgs)
True
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> _is_minimal_bsgs(*riemann_bsgs1)
False
"""
base1 = []
sgs1 = gens[:]
size = gens[0].size
for i in range(size):
if not all(h._array_form[i] == i for h in sgs1):
base1.append(i)
sgs1 = [h for h in sgs1 if h._array_form[i] == i]
return base1 == base
def get_minimal_bsgs(base, gens):
"""
Compute a minimal GSGS
base, gens BSGS
If base, gens is a minimal BSGS return it; else return a minimal BSGS
if it fails in finding one, it returns None
TODO: use baseswap in the case in which if it fails in finding a
minimal BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> get_minimal_bsgs(*riemann_bsgs1)
([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
"""
G = PermutationGroup(gens)
base, gens = G.schreier_sims_incremental()
if not _is_minimal_bsgs(base, gens):
return None
return base, gens
def tensor_gens(base, gens, list_free_indices, sym=0):
"""
Returns size, res_base, res_gens BSGS for n tensors of the
same type
base, gens BSGS for tensors of this type
list_free_indices list of the slots occupied by fixed indices
for each of the tensors
sym symmetry under commutation of two tensors
sym None no symmetry
sym 0 commuting
sym 1 anticommuting
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
two symmetric tensors with 3 indices without free indices
>>> base, gens = get_symmetric_group_sgs(3)
>>> tensor_gens(base, gens, [[], []])
(8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
two symmetric tensors with 3 indices with free indices in slot 1 and 0
>>> tensor_gens(base, gens, [[1], [0]])
(8, [0, 4], [(7)(0 2), (7)(4 5)])
four symmetric tensors with 3 indices, two of which with free indices
"""
def _get_bsgs(G, base, gens, free_indices):
"""
return the BSGS for G.pointwise_stabilizer(free_indices)
"""
if not free_indices:
return base[:], gens[:]
else:
H = G.pointwise_stabilizer(free_indices)
base, sgs = H.schreier_sims_incremental()
return base, sgs
# if not base there is no slot symmetry for the component tensors
# if list_free_indices.count([]) < 2 there is no commutation symmetry
# so there is no resulting slot symmetry
if not base and list_free_indices.count([]) < 2:
n = len(list_free_indices)
size = gens[0].size
size = n * (gens[0].size - 2) + 2
return size, [], [_af_new(list(range(size)))]
# if any(list_free_indices) one needs to compute the pointwise
# stabilizer, so G is needed
if any(list_free_indices):
G = PermutationGroup(gens)
else:
G = None
# no_free list of lists of indices for component tensors without fixed
# indices
no_free = []
size = gens[0].size
id_af = list(range(size))
num_indices = size - 2
if not list_free_indices[0]:
no_free.append(list(range(num_indices)))
res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
for i in range(1, len(list_free_indices)):
base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens,
base1, gens1, 1)
if not list_free_indices[i]:
no_free.append(list(range(size - 2, size - 2 + num_indices)))
size += num_indices
nr = size - 2
res_gens = [h for h in res_gens if h._array_form != id_af]
# if sym there are no commuting tensors stop here
if sym is None or not no_free:
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
# if the component tensors have moinimal BSGS, so is their direct
# product P; the slot symmetry group is S = P*C, where C is the group
# to (anti)commute the component tensors with no free indices
# a stabilizer has the property S_i = P_i*C_i;
# the BSGS of P*C has SGS_P + SGS_C and the base is
# the ordered union of the bases of P and C.
# If P has minimal BSGS, so has S with this base.
base_comm = []
for i in range(len(no_free) - 1):
ind1 = no_free[i]
ind2 = no_free[i + 1]
a = list(range(ind1[0]))
a.extend(ind2)
a.extend(ind1)
base_comm.append(ind1[0])
a.extend(list(range(ind2[-1] + 1, nr)))
if sym == 0:
a.extend([nr, nr + 1])
else:
a.extend([nr + 1, nr])
res_gens.append(_af_new(a))
res_base = list(res_base)
# each base is ordered; order the union of the two bases
for i in base_comm:
if i not in res_base:
res_base.append(i)
res_base.sort()
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
def gens_products(*v):
"""
Returns size, res_base, res_gens BSGS for n tensors of different types
v is a sequence of (base_i, gens_i, free_i, sym_i)
where
base_i, gens_i BSGS of tensor of type `i`
free_i list of the fixed slots for each of the tensors
of type `i`; if there are `n_i` tensors of type `i`
and none of them have fixed slots, `free = [[]]*n_i`
sym 0 (1) if the tensors of type `i` (anti)commute among themselves
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
>>> base, gens = get_symmetric_group_sgs(2)
>>> gens_products((base, gens, [[], []], 0))
(6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
>>> gens_products((base, gens, [[1], []], 0))
(6, [2], [(5)(2 3)])
"""
res_size, res_base, res_gens = tensor_gens(*v[0])
for i in range(1, len(v)):
size, base, gens = tensor_gens(*v[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
gens, 1)
res_size = res_gens[0].size
id_af = list(range(res_size))
res_gens = [h for h in res_gens if h != id_af]
if not res_gens:
res_gens = [id_af]
return res_size, res_base, res_gens
|
4935cf168c9efba87cd641dc459c5e69c3570a00bf6f976969a22d69fbb6c650 | from __future__ import print_function, division
from sympy.combinatorics import Permutation as Perm
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core import Basic, Tuple
from sympy.core.compatibility import as_int
from sympy.sets import FiniteSet
from sympy.utilities.iterables import (minlex, unflatten, flatten)
rmul = Perm.rmul
class Polyhedron(Basic):
"""
Represents the polyhedral symmetry group (PSG).
The PSG is one of the symmetry groups of the Platonic solids.
There are three polyhedral groups: the tetrahedral group
of order 12, the octahedral group of order 24, and the
icosahedral group of order 60.
All doctests have been given in the docstring of the
constructor of the object.
References
==========
http://mathworld.wolfram.com/PolyhedralGroup.html
"""
_edges = None
def __new__(cls, corners, faces=[], pgroup=[]):
"""
The constructor of the Polyhedron group object.
It takes up to three parameters: the corners, faces, and
allowed transformations.
The corners/vertices are entered as a list of arbitrary
expressions that are used to identify each vertex.
The faces are entered as a list of tuples of indices; a tuple
of indices identifies the vertices which define the face. They
should be entered in a cw or ccw order; they will be standardized
by reversal and rotation to be give the lowest lexical ordering.
If no faces are given then no edges will be computed.
>>> from sympy.combinatorics.polyhedron import Polyhedron
>>> Polyhedron(list('abc'), [(1, 2, 0)]).faces
FiniteSet((0, 1, 2))
>>> Polyhedron(list('abc'), [(1, 0, 2)]).faces
FiniteSet((0, 1, 2))
The allowed transformations are entered as allowable permutations
of the vertices for the polyhedron. Instance of Permutations
(as with faces) should refer to the supplied vertices by index.
These permutation are stored as a PermutationGroup.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.interactive import init_printing
>>> from sympy.abc import w, x, y, z
>>> init_printing(pretty_print=False, perm_cyclic=False)
Here we construct the Polyhedron object for a tetrahedron.
>>> corners = [w, x, y, z]
>>> faces = [(0, 1, 2), (0, 2, 3), (0, 3, 1), (1, 2, 3)]
Next, allowed transformations of the polyhedron must be given. This
is given as permutations of vertices.
Although the vertices of a tetrahedron can be numbered in 24 (4!)
different ways, there are only 12 different orientations for a
physical tetrahedron. The following permutations, applied once or
twice, will generate all 12 of the orientations. (The identity
permutation, Permutation(range(4)), is not included since it does
not change the orientation of the vertices.)
>>> pgroup = [Permutation([[0, 1, 2], [3]]), \
Permutation([[0, 1, 3], [2]]), \
Permutation([[0, 2, 3], [1]]), \
Permutation([[1, 2, 3], [0]]), \
Permutation([[0, 1], [2, 3]]), \
Permutation([[0, 2], [1, 3]]), \
Permutation([[0, 3], [1, 2]])]
The Polyhedron is now constructed and demonstrated:
>>> tetra = Polyhedron(corners, faces, pgroup)
>>> tetra.size
4
>>> tetra.edges
FiniteSet((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3))
>>> tetra.corners
(w, x, y, z)
It can be rotated with an arbitrary permutation of vertices, e.g.
the following permutation is not in the pgroup:
>>> tetra.rotate(Permutation([0, 1, 3, 2]))
>>> tetra.corners
(w, x, z, y)
An allowed permutation of the vertices can be constructed by
repeatedly applying permutations from the pgroup to the vertices.
Here is a demonstration that applying p and p**2 for every p in
pgroup generates all the orientations of a tetrahedron and no others:
>>> all = ( (w, x, y, z), \
(x, y, w, z), \
(y, w, x, z), \
(w, z, x, y), \
(z, w, y, x), \
(w, y, z, x), \
(y, z, w, x), \
(x, z, y, w), \
(z, y, x, w), \
(y, x, z, w), \
(x, w, z, y), \
(z, x, w, y) )
>>> got = []
>>> for p in (pgroup + [p**2 for p in pgroup]):
... h = Polyhedron(corners)
... h.rotate(p)
... got.append(h.corners)
...
>>> set(got) == set(all)
True
The make_perm method of a PermutationGroup will randomly pick
permutations, multiply them together, and return the permutation that
can be applied to the polyhedron to give the orientation produced
by those individual permutations.
Here, 3 permutations are used:
>>> tetra.pgroup.make_perm(3) # doctest: +SKIP
Permutation([0, 3, 1, 2])
To select the permutations that should be used, supply a list
of indices to the permutations in pgroup in the order they should
be applied:
>>> use = [0, 0, 2]
>>> p002 = tetra.pgroup.make_perm(3, use)
>>> p002
Permutation([1, 0, 3, 2])
Apply them one at a time:
>>> tetra.reset()
>>> for i in use:
... tetra.rotate(pgroup[i])
...
>>> tetra.vertices
(x, w, z, y)
>>> sequentially = tetra.vertices
Apply the composite permutation:
>>> tetra.reset()
>>> tetra.rotate(p002)
>>> tetra.corners
(x, w, z, y)
>>> tetra.corners in all and tetra.corners == sequentially
True
Notes
=====
Defining permutation groups
---------------------------
It is not necessary to enter any permutations, nor is necessary to
enter a complete set of transformations. In fact, for a polyhedron,
all configurations can be constructed from just two permutations.
For example, the orientations of a tetrahedron can be generated from
an axis passing through a vertex and face and another axis passing
through a different vertex or from an axis passing through the
midpoints of two edges opposite of each other.
For simplicity of presentation, consider a square --
not a cube -- with vertices 1, 2, 3, and 4:
1-----2 We could think of axes of rotation being:
| | 1) through the face
| | 2) from midpoint 1-2 to 3-4 or 1-3 to 2-4
3-----4 3) lines 1-4 or 2-3
To determine how to write the permutations, imagine 4 cameras,
one at each corner, labeled A-D:
A B A B
1-----2 1-----3 vertex index:
| | | | 1 0
| | | | 2 1
3-----4 2-----4 3 2
C D C D 4 3
original after rotation
along 1-4
A diagonal and a face axis will be chosen for the "permutation group"
from which any orientation can be constructed.
>>> pgroup = []
Imagine a clockwise rotation when viewing 1-4 from camera A. The new
orientation is (in camera-order): 1, 3, 2, 4 so the permutation is
given using the *indices* of the vertices as:
>>> pgroup.append(Permutation((0, 2, 1, 3)))
Now imagine rotating clockwise when looking down an axis entering the
center of the square as viewed. The new camera-order would be
3, 1, 4, 2 so the permutation is (using indices):
>>> pgroup.append(Permutation((2, 0, 3, 1)))
The square can now be constructed:
** use real-world labels for the vertices, entering them in
camera order
** for the faces we use zero-based indices of the vertices
in *edge-order* as the face is traversed; neither the
direction nor the starting point matter -- the faces are
only used to define edges (if so desired).
>>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup)
To rotate the square with a single permutation we can do:
>>> square.rotate(square.pgroup[0])
>>> square.corners
(1, 3, 2, 4)
To use more than one permutation (or to use one permutation more
than once) it is more convenient to use the make_perm method:
>>> p011 = square.pgroup.make_perm([0, 1, 1]) # diag flip + 2 rotations
>>> square.reset() # return to initial orientation
>>> square.rotate(p011)
>>> square.corners
(4, 2, 3, 1)
Thinking outside the box
------------------------
Although the Polyhedron object has a direct physical meaning, it
actually has broader application. In the most general sense it is
just a decorated PermutationGroup, allowing one to connect the
permutations to something physical. For example, a Rubik's cube is
not a proper polyhedron, but the Polyhedron class can be used to
represent it in a way that helps to visualize the Rubik's cube.
>>> from sympy.utilities.iterables import flatten, unflatten
>>> from sympy import symbols
>>> from sympy.combinatorics import RubikGroup
>>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD'])
>>> def show():
... pairs = unflatten(r2.corners, 2)
... print(pairs[::2])
... print(pairs[1::2])
...
>>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2))
>>> show()
[(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)]
[(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)]
>>> r2.rotate(0) # cw rotation of F
>>> show()
[(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)]
[(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)]
Predefined Polyhedra
====================
For convenience, the vertices and faces are defined for the following
standard solids along with a permutation group for transformations.
When the polyhedron is oriented as indicated below, the vertices in
a given horizontal plane are numbered in ccw direction, starting from
the vertex that will give the lowest indices in a given face. (In the
net of the vertices, indices preceded by "-" indicate replication of
the lhs index in the net.)
tetrahedron, tetrahedron_faces
------------------------------
4 vertices (vertex up) net:
0 0-0
1 2 3-1
4 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 1) (1, 2, 3)
cube, cube_faces
----------------
8 vertices (face up) net:
0 1 2 3-0
4 5 6 7-4
6 faces:
(0, 1, 2, 3)
(0, 1, 5, 4) (1, 2, 6, 5) (2, 3, 7, 6) (0, 3, 7, 4)
(4, 5, 6, 7)
octahedron, octahedron_faces
----------------------------
6 vertices (vertex up) net:
0 0 0-0
1 2 3 4-1
5 5 5-5
8 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 1, 4)
(1, 2, 5) (2, 3, 5) (3, 4, 5) (1, 4, 5)
dodecahedron, dodecahedron_faces
--------------------------------
20 vertices (vertex up) net:
0 1 2 3 4 -0
5 6 7 8 9 -5
14 10 11 12 13-14
15 16 17 18 19-15
12 faces:
(0, 1, 2, 3, 4) (0, 1, 6, 10, 5) (1, 2, 7, 11, 6)
(2, 3, 8, 12, 7) (3, 4, 9, 13, 8) (0, 4, 9, 14, 5)
(5, 10, 16, 15, 14) (6, 10, 16, 17, 11) (7, 11, 17, 18, 12)
(8, 12, 18, 19, 13) (9, 13, 19, 15, 14)(15, 16, 17, 18, 19)
icosahedron, icosahedron_faces
------------------------------
12 vertices (face up) net:
0 0 0 0 -0
1 2 3 4 5 -1
6 7 8 9 10 -6
11 11 11 11 -11
20 faces:
(0, 1, 2) (0, 2, 3) (0, 3, 4)
(0, 4, 5) (0, 1, 5) (1, 2, 6)
(2, 3, 7) (3, 4, 8) (4, 5, 9)
(1, 5, 10) (2, 6, 7) (3, 7, 8)
(4, 8, 9) (5, 9, 10) (1, 6, 10)
(6, 7, 11) (7, 8, 11) (8, 9, 11)
(9, 10, 11) (6, 10, 11)
>>> from sympy.combinatorics.polyhedron import cube
>>> cube.edges
FiniteSet((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7))
If you want to use letters or other names for the corners you
can still use the pre-calculated faces:
>>> corners = list('abcdefgh')
>>> Polyhedron(corners, cube.faces).corners
(a, b, c, d, e, f, g, h)
References
==========
.. [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf
"""
faces = [minlex(f, directed=False, is_set=True) for f in faces]
corners, faces, pgroup = args = \
[Tuple(*a) for a in (corners, faces, pgroup)]
obj = Basic.__new__(cls, *args)
obj._corners = tuple(corners) # in order given
obj._faces = FiniteSet(*faces)
if pgroup and pgroup[0].size != len(corners):
raise ValueError("Permutation size unequal to number of corners.")
# use the identity permutation if none are given
obj._pgroup = PermutationGroup((
pgroup or [Perm(range(len(corners)))] ))
return obj
@property
def corners(self):
"""
Get the corners of the Polyhedron.
The method ``vertices`` is an alias for ``corners``.
Examples
========
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c, d
>>> p = Polyhedron(list('abcd'))
>>> p.corners == p.vertices == (a, b, c, d)
True
See Also
========
array_form, cyclic_form
"""
return self._corners
vertices = corners
@property
def array_form(self):
"""Return the indices of the corners.
The indices are given relative to the original position of corners.
Examples
========
>>> from sympy.combinatorics import Permutation, Cycle
>>> from sympy.combinatorics.polyhedron import tetrahedron
>>> tetrahedron = tetrahedron.copy()
>>> tetrahedron.array_form
[0, 1, 2, 3]
>>> tetrahedron.rotate(0)
>>> tetrahedron.array_form
[0, 2, 3, 1]
>>> tetrahedron.pgroup[0].array_form
[0, 2, 3, 1]
See Also
========
corners, cyclic_form
"""
corners = list(self.args[0])
return [corners.index(c) for c in self.corners]
@property
def cyclic_form(self):
"""Return the indices of the corners in cyclic notation.
The indices are given relative to the original position of corners.
See Also
========
corners, array_form
"""
return Perm._af_new(self.array_form).cyclic_form
@property
def size(self):
"""
Get the number of corners of the Polyhedron.
"""
return len(self._corners)
@property
def faces(self):
"""
Get the faces of the Polyhedron.
"""
return self._faces
@property
def pgroup(self):
"""
Get the permutations of the Polyhedron.
"""
return self._pgroup
@property
def edges(self):
"""
Given the faces of the polyhedra we can get the edges.
Examples
========
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c
>>> corners = (a, b, c)
>>> faces = [(0, 1, 2)]
>>> Polyhedron(corners, faces).edges
FiniteSet((0, 1), (0, 2), (1, 2))
"""
if self._edges is None:
output = set()
for face in self.faces:
for i in range(len(face)):
edge = tuple(sorted([face[i], face[i - 1]]))
output.add(edge)
self._edges = FiniteSet(*output)
return self._edges
def rotate(self, perm):
"""
Apply a permutation to the polyhedron *in place*. The permutation
may be given as a Permutation instance or an integer indicating
which permutation from pgroup of the Polyhedron should be
applied.
This is an operation that is analogous to rotation about
an axis by a fixed increment.
Notes
=====
When a Permutation is applied, no check is done to see if that
is a valid permutation for the Polyhedron. For example, a cube
could be given a permutation which effectively swaps only 2
vertices. A valid permutation (that rotates the object in a
physical way) will be obtained if one only uses
permutations from the ``pgroup`` of the Polyhedron. On the other
hand, allowing arbitrary rotations (applications of permutations)
gives a way to follow named elements rather than indices since
Polyhedron allows vertices to be named while Permutation works
only with indices.
Examples
========
>>> from sympy.combinatorics import Polyhedron, Permutation
>>> from sympy.combinatorics.polyhedron import cube
>>> cube = cube.copy()
>>> cube.corners
(0, 1, 2, 3, 4, 5, 6, 7)
>>> cube.rotate(0)
>>> cube.corners
(1, 2, 3, 0, 5, 6, 7, 4)
A non-physical "rotation" that is not prohibited by this method:
>>> cube.reset()
>>> cube.rotate(Permutation([[1, 2]], size=8))
>>> cube.corners
(0, 2, 1, 3, 4, 5, 6, 7)
Polyhedron can be used to follow elements of set that are
identified by letters instead of integers:
>>> shadow = h5 = Polyhedron(list('abcde'))
>>> p = Permutation([3, 0, 1, 2, 4])
>>> h5.rotate(p)
>>> h5.corners
(d, a, b, c, e)
>>> _ == shadow.corners
True
>>> copy = h5.copy()
>>> h5.rotate(p)
>>> h5.corners == copy.corners
False
"""
if not isinstance(perm, Perm):
perm = self.pgroup[perm]
# and we know it's valid
else:
if perm.size != self.size:
raise ValueError('Polyhedron and Permutation sizes differ.')
a = perm.array_form
corners = [self.corners[a[i]] for i in range(len(self.corners))]
self._corners = tuple(corners)
def reset(self):
"""Return corners to their original positions.
Examples
========
>>> from sympy.combinatorics.polyhedron import tetrahedron as T
>>> T = T.copy()
>>> T.corners
(0, 1, 2, 3)
>>> T.rotate(0)
>>> T.corners
(0, 2, 3, 1)
>>> T.reset()
>>> T.corners
(0, 1, 2, 3)
"""
self._corners = self.args[0]
def _pgroup_calcs():
"""Return the permutation groups for each of the polyhedra and the face
definitions: tetrahedron, cube, octahedron, dodecahedron, icosahedron,
tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces,
icosahedron_faces
(This author didn't find and didn't know of a better way to do it though
there likely is such a way.)
Although only 2 permutations are needed for a polyhedron in order to
generate all the possible orientations, a group of permutations is
provided instead. A set of permutations is called a "group" if::
a*b = c (for any pair of permutations in the group, a and b, their
product, c, is in the group)
a*(b*c) = (a*b)*c (for any 3 permutations in the group associativity holds)
there is an identity permutation, I, such that I*a = a*I for all elements
in the group
a*b = I (the inverse of each permutation is also in the group)
None of the polyhedron groups defined follow these definitions of a group.
Instead, they are selected to contain those permutations whose powers
alone will construct all orientations of the polyhedron, i.e. for
permutations ``a``, ``b``, etc... in the group, ``a, a**2, ..., a**o_a``,
``b, b**2, ..., b**o_b``, etc... (where ``o_i`` is the order of
permutation ``i``) generate all permutations of the polyhedron instead of
mixed products like ``a*b``, ``a*b**2``, etc....
Note that for a polyhedron with n vertices, the valid permutations of the
vertices exclude those that do not maintain its faces. e.g. the
permutation BCDE of a square's four corners, ABCD, is a valid
permutation while CBDE is not (because this would twist the square).
Examples
========
The is_group checks for: closure, the presence of the Identity permutation,
and the presence of the inverse for each of the elements in the group. This
confirms that none of the polyhedra are true groups:
>>> from sympy.combinatorics.polyhedron import (
... tetrahedron, cube, octahedron, dodecahedron, icosahedron)
...
>>> polyhedra = (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
>>> [h.pgroup.is_group for h in polyhedra]
...
[True, True, True, True, True]
Although tests in polyhedron's test suite check that powers of the
permutations in the groups generate all permutations of the vertices
of the polyhedron, here we also demonstrate the powers of the given
permutations create a complete group for the tetrahedron:
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> for h in polyhedra[:1]:
... G = h.pgroup
... perms = set()
... for g in G:
... for e in range(g.order()):
... p = tuple((g**e).array_form)
... perms.add(p)
...
... perms = [Permutation(p) for p in perms]
... assert PermutationGroup(perms).is_group
In addition to doing the above, the tests in the suite confirm that the
faces are all present after the application of each permutation.
References
==========
http://dogschool.tripod.com/trianglegroup.html
"""
def _pgroup_of_double(polyh, ordered_faces, pgroup):
n = len(ordered_faces[0])
# the vertices of the double which sits inside a give polyhedron
# can be found by tracking the faces of the outer polyhedron.
# A map between face and the vertex of the double is made so that
# after rotation the position of the vertices can be located
fmap = dict(zip(ordered_faces,
range(len(ordered_faces))))
flat_faces = flatten(ordered_faces)
new_pgroup = []
for i, p in enumerate(pgroup):
h = polyh.copy()
h.rotate(p)
c = h.corners
# reorder corners in the order they should appear when
# enumerating the faces
reorder = unflatten([c[j] for j in flat_faces], n)
# make them canonical
reorder = [tuple(map(as_int,
minlex(f, directed=False, is_set=True)))
for f in reorder]
# map face to vertex: the resulting list of vertices are the
# permutation that we seek for the double
new_pgroup.append(Perm([fmap[f] for f in reorder]))
return new_pgroup
tetrahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 1), # upper 3
(1, 2, 3), # bottom
]
# cw from top
#
_t_pgroup = [
Perm([[1, 2, 3], [0]]), # cw from top
Perm([[0, 1, 2], [3]]), # cw from front face
Perm([[0, 3, 2], [1]]), # cw from back right face
Perm([[0, 3, 1], [2]]), # cw from back left face
Perm([[0, 1], [2, 3]]), # through front left edge
Perm([[0, 2], [1, 3]]), # through front right edge
Perm([[0, 3], [1, 2]]), # through back edge
]
tetrahedron = Polyhedron(
range(4),
tetrahedron_faces,
_t_pgroup)
cube_faces = [
(0, 1, 2, 3), # upper
(0, 1, 5, 4), (1, 2, 6, 5), (2, 3, 7, 6), (0, 3, 7, 4), # middle 4
(4, 5, 6, 7), # lower
]
# U, D, F, B, L, R = up, down, front, back, left, right
_c_pgroup = [Perm(p) for p in
[
[1, 2, 3, 0, 5, 6, 7, 4], # cw from top, U
[4, 0, 3, 7, 5, 1, 2, 6], # cw from F face
[4, 5, 1, 0, 7, 6, 2, 3], # cw from R face
[1, 0, 4, 5, 2, 3, 7, 6], # cw through UF edge
[6, 2, 1, 5, 7, 3, 0, 4], # cw through UR edge
[6, 7, 3, 2, 5, 4, 0, 1], # cw through UB edge
[3, 7, 4, 0, 2, 6, 5, 1], # cw through UL edge
[4, 7, 6, 5, 0, 3, 2, 1], # cw through FL edge
[6, 5, 4, 7, 2, 1, 0, 3], # cw through FR edge
[0, 3, 7, 4, 1, 2, 6, 5], # cw through UFL vertex
[5, 1, 0, 4, 6, 2, 3, 7], # cw through UFR vertex
[5, 6, 2, 1, 4, 7, 3, 0], # cw through UBR vertex
[7, 4, 0, 3, 6, 5, 1, 2], # cw through UBL
]]
cube = Polyhedron(
range(8),
cube_faces,
_c_pgroup)
octahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 1, 4), # top 4
(1, 2, 5), (2, 3, 5), (3, 4, 5), (1, 4, 5), # bottom 4
]
octahedron = Polyhedron(
range(6),
octahedron_faces,
_pgroup_of_double(cube, cube_faces, _c_pgroup))
dodecahedron_faces = [
(0, 1, 2, 3, 4), # top
(0, 1, 6, 10, 5), (1, 2, 7, 11, 6), (2, 3, 8, 12, 7), # upper 5
(3, 4, 9, 13, 8), (0, 4, 9, 14, 5),
(5, 10, 16, 15, 14), (6, 10, 16, 17, 11), (7, 11, 17, 18,
12), # lower 5
(8, 12, 18, 19, 13), (9, 13, 19, 15, 14),
(15, 16, 17, 18, 19) # bottom
]
def _string_to_perm(s):
rv = [Perm(range(20))]
p = None
for si in s:
if si not in '01':
count = int(si) - 1
else:
count = 1
if si == '0':
p = _f0
elif si == '1':
p = _f1
rv.extend([p]*count)
return Perm.rmul(*rv)
# top face cw
_f0 = Perm([
1, 2, 3, 4, 0, 6, 7, 8, 9, 5, 11,
12, 13, 14, 10, 16, 17, 18, 19, 15])
# front face cw
_f1 = Perm([
5, 0, 4, 9, 14, 10, 1, 3, 13, 15,
6, 2, 8, 19, 16, 17, 11, 7, 12, 18])
# the strings below, like 0104 are shorthand for F0*F1*F0**4 and are
# the remaining 4 face rotations, 15 edge permutations, and the
# 10 vertex rotations.
_dodeca_pgroup = [_f0, _f1] + [_string_to_perm(s) for s in '''
0104 140 014 0410
010 1403 03104 04103 102
120 1304 01303 021302 03130
0412041 041204103 04120410 041204104 041204102
10 01 1402 0140 04102 0412 1204 1302 0130 03120'''.strip().split()]
dodecahedron = Polyhedron(
range(20),
dodecahedron_faces,
_dodeca_pgroup)
icosahedron_faces = [
(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 1, 5),
(1, 6, 7), (1, 2, 7), (2, 7, 8), (2, 3, 8), (3, 8, 9),
(3, 4, 9), (4, 9, 10), (4, 5, 10), (5, 6, 10), (1, 5, 6),
(6, 7, 11), (7, 8, 11), (8, 9, 11), (9, 10, 11), (6, 10, 11)]
icosahedron = Polyhedron(
range(12),
icosahedron_faces,
_pgroup_of_double(
dodecahedron, dodecahedron_faces, _dodeca_pgroup))
return (tetrahedron, cube, octahedron, dodecahedron, icosahedron,
tetrahedron_faces, cube_faces, octahedron_faces,
dodecahedron_faces, icosahedron_faces)
# -----------------------------------------------------------------------
# Standard Polyhedron groups
#
# These are generated using _pgroup_calcs() above. However to save
# import time we encode them explicitly here.
# -----------------------------------------------------------------------
tetrahedron = Polyhedron(
Tuple(0, 1, 2, 3),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 1, 3),
Tuple(1, 2, 3)),
Tuple(
Perm(1, 2, 3),
Perm(3)(0, 1, 2),
Perm(0, 3, 2),
Perm(0, 3, 1),
Perm(0, 1)(2, 3),
Perm(0, 2)(1, 3),
Perm(0, 3)(1, 2)
))
cube = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7),
Tuple(
Tuple(0, 1, 2, 3),
Tuple(0, 1, 5, 4),
Tuple(1, 2, 6, 5),
Tuple(2, 3, 7, 6),
Tuple(0, 3, 7, 4),
Tuple(4, 5, 6, 7)),
Tuple(
Perm(0, 1, 2, 3)(4, 5, 6, 7),
Perm(0, 4, 5, 1)(2, 3, 7, 6),
Perm(0, 4, 7, 3)(1, 5, 6, 2),
Perm(0, 1)(2, 4)(3, 5)(6, 7),
Perm(0, 6)(1, 2)(3, 5)(4, 7),
Perm(0, 6)(1, 7)(2, 3)(4, 5),
Perm(0, 3)(1, 7)(2, 4)(5, 6),
Perm(0, 4)(1, 7)(2, 6)(3, 5),
Perm(0, 6)(1, 5)(2, 4)(3, 7),
Perm(1, 3, 4)(2, 7, 5),
Perm(7)(0, 5, 2)(3, 4, 6),
Perm(0, 5, 7)(1, 6, 3),
Perm(0, 7, 2)(1, 4, 6)))
octahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 3, 4),
Tuple(0, 1, 4),
Tuple(1, 2, 5),
Tuple(2, 3, 5),
Tuple(3, 4, 5),
Tuple(1, 4, 5)),
Tuple(
Perm(5)(1, 2, 3, 4),
Perm(0, 4, 5, 2),
Perm(0, 1, 5, 3),
Perm(0, 1)(2, 4)(3, 5),
Perm(0, 2)(1, 3)(4, 5),
Perm(0, 3)(1, 5)(2, 4),
Perm(0, 4)(1, 3)(2, 5),
Perm(0, 5)(1, 4)(2, 3),
Perm(0, 5)(1, 2)(3, 4),
Perm(0, 4, 1)(2, 3, 5),
Perm(0, 1, 2)(3, 4, 5),
Perm(0, 2, 3)(1, 5, 4),
Perm(0, 4, 3)(1, 5, 2)))
dodecahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
Tuple(
Tuple(0, 1, 2, 3, 4),
Tuple(0, 1, 6, 10, 5),
Tuple(1, 2, 7, 11, 6),
Tuple(2, 3, 8, 12, 7),
Tuple(3, 4, 9, 13, 8),
Tuple(0, 4, 9, 14, 5),
Tuple(5, 10, 16, 15, 14),
Tuple(6, 10, 16, 17, 11),
Tuple(7, 11, 17, 18, 12),
Tuple(8, 12, 18, 19, 13),
Tuple(9, 13, 19, 15, 14),
Tuple(15, 16, 17, 18, 19)),
Tuple(
Perm(0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14)(15, 16, 17, 18, 19),
Perm(0, 5, 10, 6, 1)(2, 4, 14, 16, 11)(3, 9, 15, 17, 7)(8, 13, 19, 18, 12),
Perm(0, 10, 17, 12, 3)(1, 6, 11, 7, 2)(4, 5, 16, 18, 8)(9, 14, 15, 19, 13),
Perm(0, 6, 17, 19, 9)(1, 11, 18, 13, 4)(2, 7, 12, 8, 3)(5, 10, 16, 15, 14),
Perm(0, 2, 12, 19, 14)(1, 7, 18, 15, 5)(3, 8, 13, 9, 4)(6, 11, 17, 16, 10),
Perm(0, 4, 9, 14, 5)(1, 3, 13, 15, 10)(2, 8, 19, 16, 6)(7, 12, 18, 17, 11),
Perm(0, 1)(2, 5)(3, 10)(4, 6)(7, 14)(8, 16)(9, 11)(12, 15)(13, 17)(18, 19),
Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 12)(8, 10)(9, 17)(13, 16)(14, 18)(15, 19),
Perm(0, 12)(1, 8)(2, 3)(4, 7)(5, 18)(6, 13)(9, 11)(10, 19)(14, 17)(15, 16),
Perm(0, 8)(1, 13)(2, 9)(3, 4)(5, 12)(6, 19)(7, 14)(10, 18)(11, 15)(16, 17),
Perm(0, 4)(1, 9)(2, 14)(3, 5)(6, 13)(7, 15)(8, 10)(11, 19)(12, 16)(17, 18),
Perm(0, 5)(1, 14)(2, 15)(3, 16)(4, 10)(6, 9)(7, 19)(8, 17)(11, 13)(12, 18),
Perm(0, 11)(1, 6)(2, 10)(3, 16)(4, 17)(5, 7)(8, 15)(9, 18)(12, 14)(13, 19),
Perm(0, 18)(1, 12)(2, 7)(3, 11)(4, 17)(5, 19)(6, 8)(9, 16)(10, 13)(14, 15),
Perm(0, 18)(1, 19)(2, 13)(3, 8)(4, 12)(5, 17)(6, 15)(7, 9)(10, 16)(11, 14),
Perm(0, 13)(1, 19)(2, 15)(3, 14)(4, 9)(5, 8)(6, 18)(7, 16)(10, 12)(11, 17),
Perm(0, 16)(1, 15)(2, 19)(3, 18)(4, 17)(5, 10)(6, 14)(7, 13)(8, 12)(9, 11),
Perm(0, 18)(1, 17)(2, 16)(3, 15)(4, 19)(5, 12)(6, 11)(7, 10)(8, 14)(9, 13),
Perm(0, 15)(1, 19)(2, 18)(3, 17)(4, 16)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10),
Perm(0, 17)(1, 16)(2, 15)(3, 19)(4, 18)(5, 11)(6, 10)(7, 14)(8, 13)(9, 12),
Perm(0, 19)(1, 18)(2, 17)(3, 16)(4, 15)(5, 13)(6, 12)(7, 11)(8, 10)(9, 14),
Perm(1, 4, 5)(2, 9, 10)(3, 14, 6)(7, 13, 16)(8, 15, 11)(12, 19, 17),
Perm(19)(0, 6, 2)(3, 5, 11)(4, 10, 7)(8, 14, 17)(9, 16, 12)(13, 15, 18),
Perm(0, 11, 8)(1, 7, 3)(4, 6, 12)(5, 17, 13)(9, 10, 18)(14, 16, 19),
Perm(0, 7, 13)(1, 12, 9)(2, 8, 4)(5, 11, 19)(6, 18, 14)(10, 17, 15),
Perm(0, 3, 9)(1, 8, 14)(2, 13, 5)(6, 12, 15)(7, 19, 10)(11, 18, 16),
Perm(0, 14, 10)(1, 9, 16)(2, 13, 17)(3, 19, 11)(4, 15, 6)(7, 8, 18),
Perm(0, 16, 7)(1, 10, 11)(2, 5, 17)(3, 14, 18)(4, 15, 12)(8, 9, 19),
Perm(0, 16, 13)(1, 17, 8)(2, 11, 12)(3, 6, 18)(4, 10, 19)(5, 15, 9),
Perm(0, 11, 15)(1, 17, 14)(2, 18, 9)(3, 12, 13)(4, 7, 19)(5, 6, 16),
Perm(0, 8, 15)(1, 12, 16)(2, 18, 10)(3, 19, 5)(4, 13, 14)(6, 7, 17)))
icosahedron = Polyhedron(
Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
Tuple(
Tuple(0, 1, 2),
Tuple(0, 2, 3),
Tuple(0, 3, 4),
Tuple(0, 4, 5),
Tuple(0, 1, 5),
Tuple(1, 6, 7),
Tuple(1, 2, 7),
Tuple(2, 7, 8),
Tuple(2, 3, 8),
Tuple(3, 8, 9),
Tuple(3, 4, 9),
Tuple(4, 9, 10),
Tuple(4, 5, 10),
Tuple(5, 6, 10),
Tuple(1, 5, 6),
Tuple(6, 7, 11),
Tuple(7, 8, 11),
Tuple(8, 9, 11),
Tuple(9, 10, 11),
Tuple(6, 10, 11)),
Tuple(
Perm(11)(1, 2, 3, 4, 5)(6, 7, 8, 9, 10),
Perm(0, 5, 6, 7, 2)(3, 4, 10, 11, 8),
Perm(0, 1, 7, 8, 3)(4, 5, 6, 11, 9),
Perm(0, 2, 8, 9, 4)(1, 7, 11, 10, 5),
Perm(0, 3, 9, 10, 5)(1, 2, 8, 11, 6),
Perm(0, 4, 10, 6, 1)(2, 3, 9, 11, 7),
Perm(0, 1)(2, 5)(3, 6)(4, 7)(8, 10)(9, 11),
Perm(0, 2)(1, 3)(4, 7)(5, 8)(6, 9)(10, 11),
Perm(0, 3)(1, 9)(2, 4)(5, 8)(6, 11)(7, 10),
Perm(0, 4)(1, 9)(2, 10)(3, 5)(6, 8)(7, 11),
Perm(0, 5)(1, 4)(2, 10)(3, 6)(7, 9)(8, 11),
Perm(0, 6)(1, 5)(2, 10)(3, 11)(4, 7)(8, 9),
Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 8)(9, 10),
Perm(0, 8)(1, 9)(2, 3)(4, 7)(5, 11)(6, 10),
Perm(0, 9)(1, 11)(2, 10)(3, 4)(5, 8)(6, 7),
Perm(0, 10)(1, 9)(2, 11)(3, 6)(4, 5)(7, 8),
Perm(0, 11)(1, 6)(2, 10)(3, 9)(4, 8)(5, 7),
Perm(0, 11)(1, 8)(2, 7)(3, 6)(4, 10)(5, 9),
Perm(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6),
Perm(0, 11)(1, 7)(2, 6)(3, 10)(4, 9)(5, 8),
Perm(0, 11)(1, 9)(2, 8)(3, 7)(4, 6)(5, 10),
Perm(0, 5, 1)(2, 4, 6)(3, 10, 7)(8, 9, 11),
Perm(0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 10, 11),
Perm(0, 2, 3)(1, 8, 4)(5, 7, 9)(6, 11, 10),
Perm(0, 3, 4)(1, 8, 10)(2, 9, 5)(6, 7, 11),
Perm(0, 4, 5)(1, 3, 10)(2, 9, 6)(7, 8, 11),
Perm(0, 10, 7)(1, 5, 6)(2, 4, 11)(3, 9, 8),
Perm(0, 6, 8)(1, 7, 2)(3, 5, 11)(4, 10, 9),
Perm(0, 7, 9)(1, 11, 4)(2, 8, 3)(5, 6, 10),
Perm(0, 8, 10)(1, 7, 6)(2, 11, 5)(3, 9, 4),
Perm(0, 9, 6)(1, 3, 11)(2, 8, 7)(4, 10, 5)))
tetrahedron_faces = list(tuple(arg) for arg in tetrahedron.faces)
cube_faces = list(tuple(arg) for arg in cube.faces)
octahedron_faces = list(tuple(arg) for arg in octahedron.faces)
dodecahedron_faces = list(tuple(arg) for arg in dodecahedron.faces)
icosahedron_faces = list(tuple(arg) for arg in icosahedron.faces)
|
f98a68caac23005257f73f713cc1e7f90ed446cb7405ab56a9bd32f7b478d21a | from __future__ import print_function, division
from sympy.core import Basic, Dict, sympify
from sympy.core.compatibility import as_int, default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.numbers import bell
from sympy.matrices import zeros
from sympy.sets.sets import FiniteSet, Union
from sympy.utilities.iterables import flatten, group
from collections import defaultdict
class Partition(FiniteSet):
"""
This class represents an abstract partition.
A partition is a set of disjoint sets whose union equals a given set.
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
"""
_rank = None
_partition = None
def __new__(cls, *partition):
"""
Generates a new partition object.
This method also verifies if the arguments passed are
valid and raises a ValueError if they are not.
Examples
========
Creating Partition from Python lists:
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a
Partition(FiniteSet(1, 2), FiniteSet(3))
>>> a.partition
[[1, 2], [3]]
>>> len(a)
2
>>> a.members
(1, 2, 3)
Creating Partition from Python sets:
>>> Partition({1, 2, 3}, {4, 5})
Partition(FiniteSet(1, 2, 3), FiniteSet(4, 5))
Creating Partition from SymPy finite sets:
>>> from sympy.sets.sets import FiniteSet
>>> a = FiniteSet(1, 2, 3)
>>> b = FiniteSet(4, 5)
>>> Partition(a, b)
Partition(FiniteSet(1, 2, 3), FiniteSet(4, 5))
"""
args = []
dups = False
for arg in partition:
if isinstance(arg, list):
as_set = set(arg)
if len(as_set) < len(arg):
dups = True
break # error below
arg = as_set
args.append(_sympify(arg))
if not all(isinstance(part, FiniteSet) for part in args):
raise ValueError(
"Each argument to Partition should be " \
"a list, set, or a FiniteSet")
# sort so we have a canonical reference for RGS
U = Union(*args)
if dups or len(U) < sum(len(arg) for arg in args):
raise ValueError("Partition contained duplicate elements.")
obj = FiniteSet.__new__(cls, *args)
obj.members = tuple(U)
obj.size = len(U)
return obj
def sort_key(self, order=None):
"""Return a canonical key that can be used for sorting.
Ordering is based on the size and sorted elements of the partition
and ties are broken with the rank.
Examples
========
>>> from sympy.utilities.iterables import default_sort_key
>>> from sympy.combinatorics.partitions import Partition
>>> from sympy.abc import x
>>> a = Partition([1, 2])
>>> b = Partition([3, 4])
>>> c = Partition([1, x])
>>> d = Partition(list(range(4)))
>>> l = [d, b, a + 1, a, c]
>>> l.sort(key=default_sort_key); l
[Partition(FiniteSet(1, 2)), Partition(FiniteSet(1), FiniteSet(2)), Partition(FiniteSet(1, x)), Partition(FiniteSet(3, 4)), Partition(FiniteSet(0, 1, 2, 3))]
"""
if order is None:
members = self.members
else:
members = tuple(sorted(self.members,
key=lambda w: default_sort_key(w, order)))
return tuple(map(default_sort_key, (self.size, members, self.rank)))
@property
def partition(self):
"""Return partition as a sorted list of lists.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> Partition([1], [2, 3]).partition
[[1], [2, 3]]
"""
if self._partition is None:
self._partition = sorted([sorted(p, key=default_sort_key)
for p in self.args])
return self._partition
def __add__(self, other):
"""
Return permutation whose rank is ``other`` greater than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a + 1).rank
2
>>> (a + 100).rank
1
"""
other = as_int(other)
offset = self.rank + other
result = RGS_unrank((offset) %
RGS_enum(self.size),
self.size)
return Partition.from_rgs(result, self.members)
def __sub__(self, other):
"""
Return permutation whose rank is ``other`` less than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a - 1).rank
0
>>> (a - 100).rank
1
"""
return self.__add__(-other)
def __le__(self, other):
"""
Checks if a partition is less than or equal to
the other based on rank.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a <= a
True
>>> a <= b
True
"""
return self.sort_key() <= sympify(other).sort_key()
def __lt__(self, other):
"""
Checks if a partition is less than the other.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a < b
True
"""
return self.sort_key() < sympify(other).sort_key()
@property
def rank(self):
"""
Gets the rank of a partition.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.rank
13
"""
if self._rank is not None:
return self._rank
self._rank = RGS_rank(self.RGS)
return self._rank
@property
def RGS(self):
"""
Returns the "restricted growth string" of the partition.
The RGS is returned as a list of indices, L, where L[i] indicates
the block in which element i appears. For example, in a partition
of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is
[1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.members
(1, 2, 3, 4, 5)
>>> a.RGS
(0, 0, 1, 2, 2)
>>> a + 1
Partition(FiniteSet(1, 2), FiniteSet(3), FiniteSet(4), FiniteSet(5))
>>> _.RGS
(0, 0, 1, 2, 3)
"""
rgs = {}
partition = self.partition
for i, part in enumerate(partition):
for j in part:
rgs[j] = i
return tuple([rgs[i] for i in sorted(
[i for p in partition for i in p], key=default_sort_key)])
@classmethod
def from_rgs(self, rgs, elements):
"""
Creates a set partition from a restricted growth string.
The indices given in rgs are assumed to be the index
of the element as given in elements *as provided* (the
elements are not sorted by this routine). Block numbering
starts from 0. If any block was not referenced in ``rgs``
an error will be raised.
Examples
========
>>> from sympy.combinatorics.partitions import Partition
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
Partition(FiniteSet(c), FiniteSet(a, d), FiniteSet(b, e))
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
Partition(FiniteSet(e), FiniteSet(a, c), FiniteSet(b, d))
>>> a = Partition([1, 4], [2], [3, 5])
>>> Partition.from_rgs(a.RGS, a.members)
Partition(FiniteSet(1, 4), FiniteSet(2), FiniteSet(3, 5))
"""
if len(rgs) != len(elements):
raise ValueError('mismatch in rgs and element lengths')
max_elem = max(rgs) + 1
partition = [[] for i in range(max_elem)]
j = 0
for i in rgs:
partition[i].append(elements[j])
j += 1
if not all(p for p in partition):
raise ValueError('some blocks of the partition were empty.')
return Partition(*partition)
class IntegerPartition(Basic):
"""
This class represents an integer partition.
In number theory and combinatorics, a partition of a positive integer,
``n``, also called an integer partition, is a way of writing ``n`` as a
list of positive integers that sum to n. Two partitions that differ only
in the order of summands are considered to be the same partition; if order
matters then the partitions are referred to as compositions. For example,
4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1];
the compositions [1, 2, 1] and [1, 1, 2] are the same as partition
[2, 1, 1].
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
References
==========
https://en.wikipedia.org/wiki/Partition_%28number_theory%29
"""
_dict = None
_keys = None
def __new__(cls, partition, integer=None):
"""
Generates a new IntegerPartition object from a list or dictionary.
The partition can be given as a list of positive integers or a
dictionary of (integer, multiplicity) items. If the partition is
preceded by an integer an error will be raised if the partition
does not sum to that given integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([5, 4, 3, 1, 1])
>>> a
IntegerPartition(14, (5, 4, 3, 1, 1))
>>> print(a)
[5, 4, 3, 1, 1]
>>> IntegerPartition({1:3, 2:1})
IntegerPartition(5, (2, 1, 1, 1))
If the value that the partition should sum to is given first, a check
will be made to see n error will be raised if there is a discrepancy:
>>> IntegerPartition(10, [5, 4, 3, 1])
Traceback (most recent call last):
...
ValueError: The partition is not valid
"""
if integer is not None:
integer, partition = partition, integer
if isinstance(partition, (dict, Dict)):
_ = []
for k, v in sorted(list(partition.items()), reverse=True):
if not v:
continue
k, v = as_int(k), as_int(v)
_.extend([k]*v)
partition = tuple(_)
else:
partition = tuple(sorted(map(as_int, partition), reverse=True))
sum_ok = False
if integer is None:
integer = sum(partition)
sum_ok = True
else:
integer = as_int(integer)
if not sum_ok and sum(partition) != integer:
raise ValueError("Partition did not add to %s" % integer)
if any(i < 1 for i in partition):
raise ValueError("The summands must all be positive.")
obj = Basic.__new__(cls, integer, partition)
obj.partition = list(partition)
obj.integer = integer
return obj
def prev_lex(self):
"""Return the previous partition of the integer, n, in lexical order,
wrapping around to [1, ..., 1] if the partition is [n].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([4])
>>> print(p.prev_lex())
[3, 1]
>>> p.partition > p.prev_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
keys = self._keys
if keys == [1]:
return IntegerPartition({self.integer: 1})
if keys[-1] != 1:
d[keys[-1]] -= 1
if keys[-1] == 2:
d[1] = 2
else:
d[keys[-1] - 1] = d[1] = 1
else:
d[keys[-2]] -= 1
left = d[1] + keys[-2]
new = keys[-2]
d[1] = 0
while left:
new -= 1
if left - new >= 0:
d[new] += left//new
left -= d[new]*new
return IntegerPartition(self.integer, d)
def next_lex(self):
"""Return the next partition of the integer, n, in lexical order,
wrapping around to [n] if the partition is [1, ..., 1].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([3, 1])
>>> print(p.next_lex())
[4]
>>> p.partition < p.next_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
key = self._keys
a = key[-1]
if a == self.integer:
d.clear()
d[1] = self.integer
elif a == 1:
if d[a] > 1:
d[a + 1] += 1
d[a] -= 2
else:
b = key[-2]
d[b + 1] += 1
d[1] = (d[b] - 1)*b
d[b] = 0
else:
if d[a] > 1:
if len(key) == 1:
d.clear()
d[a + 1] = 1
d[1] = self.integer - a - 1
else:
a1 = a + 1
d[a1] += 1
d[1] = d[a]*a - a1
d[a] = 0
else:
b = key[-2]
b1 = b + 1
d[b1] += 1
need = d[b]*b + d[a]*a - b1
d[a] = d[b] = 0
d[1] = need
return IntegerPartition(self.integer, d)
def as_dict(self):
"""Return the partition as a dictionary whose keys are the
partition integers and the values are the multiplicity of that
integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
{1: 3, 2: 1, 3: 4}
"""
if self._dict is None:
groups = group(self.partition, multiple=False)
self._keys = [g[0] for g in groups]
self._dict = dict(groups)
return self._dict
@property
def conjugate(self):
"""
Computes the conjugate partition of itself.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([6, 3, 3, 2, 1])
>>> a.conjugate
[5, 4, 3, 1, 1, 1]
"""
j = 1
temp_arr = list(self.partition) + [0]
k = temp_arr[0]
b = [0]*k
while k > 0:
while k > temp_arr[j]:
b[k - 1] = j
k -= 1
j += 1
return b
def __lt__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([3, 1])
>>> a < a
False
>>> b = a.next_lex()
>>> a < b
True
>>> a == b
False
"""
return list(reversed(self.partition)) < list(reversed(other.partition))
def __le__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([4])
>>> a <= a
True
"""
return list(reversed(self.partition)) <= list(reversed(other.partition))
def as_ferrers(self, char='#'):
"""
Prints the ferrer diagram of a partition.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> print(IntegerPartition([1, 1, 5]).as_ferrers())
#####
#
#
"""
return "\n".join([char*i for i in self.partition])
def __str__(self):
return str(list(self.partition))
def random_integer_partition(n, seed=None):
"""
Generates a random integer partition summing to ``n`` as a list
of reverse-sorted integers.
Examples
========
>>> from sympy.combinatorics.partitions import random_integer_partition
For the following, a seed is given so a known value can be shown; in
practice, the seed would not be given.
>>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
[85, 12, 2, 1]
>>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
[5, 3, 1, 1]
>>> random_integer_partition(1)
[1]
"""
from sympy.testing.randtest import _randint
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
randint = _randint(seed)
partition = []
while (n > 0):
k = randint(1, n)
mult = randint(1, n//k)
partition.append((k, mult))
n -= k*mult
partition.sort(reverse=True)
partition = flatten([[k]*m for k, m in partition])
return partition
def RGS_generalized(m):
"""
Computes the m + 1 generalized unrestricted growth strings
and returns them as rows in matrix.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_generalized
>>> RGS_generalized(6)
Matrix([
[ 1, 1, 1, 1, 1, 1, 1],
[ 1, 2, 3, 4, 5, 6, 0],
[ 2, 5, 10, 17, 26, 0, 0],
[ 5, 15, 37, 77, 0, 0, 0],
[ 15, 52, 151, 0, 0, 0, 0],
[ 52, 203, 0, 0, 0, 0, 0],
[203, 0, 0, 0, 0, 0, 0]])
"""
d = zeros(m + 1)
for i in range(0, m + 1):
d[0, i] = 1
for i in range(1, m + 1):
for j in range(m):
if j <= m - i:
d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1]
else:
d[i, j] = 0
return d
def RGS_enum(m):
"""
RGS_enum computes the total number of restricted growth strings
possible for a superset of size m.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_enum
>>> from sympy.combinatorics.partitions import Partition
>>> RGS_enum(4)
15
>>> RGS_enum(5)
52
>>> RGS_enum(6)
203
We can check that the enumeration is correct by actually generating
the partitions. Here, the 15 partitions of 4 items are generated:
>>> a = Partition(list(range(4)))
>>> s = set()
>>> for i in range(20):
... s.add(a)
... a += 1
...
>>> assert len(s) == 15
"""
if (m < 1):
return 0
elif (m == 1):
return 1
else:
return bell(m)
def RGS_unrank(rank, m):
"""
Gives the unranked restricted growth string for a given
superset size.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_unrank
>>> RGS_unrank(14, 4)
[0, 1, 2, 3]
>>> RGS_unrank(0, 4)
[0, 0, 0, 0]
"""
if m < 1:
raise ValueError("The superset size must be >= 1")
if rank < 0 or RGS_enum(m) <= rank:
raise ValueError("Invalid arguments")
L = [1] * (m + 1)
j = 1
D = RGS_generalized(m)
for i in range(2, m + 1):
v = D[m - i, j]
cr = j*v
if cr <= rank:
L[i] = j + 1
rank -= cr
j += 1
else:
L[i] = int(rank / v + 1)
rank %= v
return [x - 1 for x in L[1:]]
def RGS_rank(rgs):
"""
Computes the rank of a restricted growth string.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
>>> RGS_rank([0, 1, 2, 1, 3])
42
>>> RGS_rank(RGS_unrank(4, 7))
4
"""
rgs_size = len(rgs)
rank = 0
D = RGS_generalized(rgs_size)
for i in range(1, rgs_size):
n = len(rgs[(i + 1):])
m = max(rgs[0:i])
rank += D[n, m + 1] * rgs[i]
return rank
|
833592022c59cd01d00c2f1a0506df4440393cfe099b44946f6d5493b0db54da | from __future__ import print_function, division
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.ntheory import isprime
rmul = Permutation.rmul
_af_new = Permutation._af_new
############################################
#
# Utilities for computational group theory
#
############################################
def _base_ordering(base, degree):
r"""
Order `\{0, 1, ..., n-1\}` so that base points come first and in order.
Parameters
==========
``base`` - the base
``degree`` - the degree of the associated permutation group
Returns
=======
A list ``base_ordering`` such that ``base_ordering[point]`` is the
number of ``point`` in the ordering.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.util import _base_ordering
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> _base_ordering(S.base, S.degree)
[0, 1, 2, 3]
Notes
=====
This is used in backtrack searches, when we define a relation `<<` on
the underlying set for a permutation group of degree `n`,
`\{0, 1, ..., n-1\}`, so that if `(b_1, b_2, ..., b_k)` is a base we
have `b_i << b_j` whenever `i<j` and `b_i << a` for all
`i\in\{1,2, ..., k\}` and `a` is not in the base. The idea is developed
and applied to backtracking algorithms in [1], pp.108-132. The points
that are not in the base are taken in increasing order.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
base_len = len(base)
ordering = [0]*degree
for i in range(base_len):
ordering[base[i]] = i
current = base_len
for i in range(degree):
if i not in base:
ordering[i] = current
current += 1
return ordering
def _check_cycles_alt_sym(perm):
"""
Checks for cycles of prime length p with n/2 < p < n-2.
Here `n` is the degree of the permutation. This is a helper function for
the function is_alt_sym from sympy.combinatorics.perm_groups.
Examples
========
>>> from sympy.combinatorics.util import _check_cycles_alt_sym
>>> from sympy.combinatorics.permutations import Permutation
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
>>> _check_cycles_alt_sym(a)
False
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
>>> _check_cycles_alt_sym(b)
True
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym
"""
n = perm.size
af = perm.array_form
current_len = 0
total_len = 0
used = set()
for i in range(n//2):
if not i in used and i < n//2 - total_len:
current_len = 1
used.add(i)
j = i
while af[j] != i:
current_len += 1
j = af[j]
used.add(j)
total_len += current_len
if current_len > n//2 and current_len < n - 2 and isprime(current_len):
return True
return False
def _distribute_gens_by_base(base, gens):
r"""
Distribute the group elements ``gens`` by membership in basic stabilizers.
Notice that for a base `(b_1, b_2, ..., b_k)`, the basic stabilizers
are defined as `G^{(i)} = G_{b_1, ..., b_{i-1}}` for
`i \in\{1, 2, ..., k\}`.
Parameters
==========
``base`` - a sequence of points in `\{0, 1, ..., n-1\}`
``gens`` - a list of elements of a permutation group of degree `n`.
Returns
=======
List of length `k`, where `k` is
the length of ``base``. The `i`-th entry contains those elements in
``gens`` which fix the first `i` elements of ``base`` (so that the
`0`-th entry is equal to ``gens`` itself). If no element fixes the first
`i` elements of ``base``, the `i`-th element is set to a list containing
the identity element.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> D.strong_gens
[(0 1 2), (0 2), (1 2)]
>>> D.base
[0, 1]
>>> _distribute_gens_by_base(D.base, D.strong_gens)
[[(0 1 2), (0 2), (1 2)],
[(1 2)]]
See Also
========
_strong_gens_from_distr, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs
"""
base_len = len(base)
degree = gens[0].size
stabs = [[] for _ in range(base_len)]
max_stab_index = 0
for gen in gens:
j = 0
while j < base_len - 1 and gen._array_form[base[j]] == base[j]:
j += 1
if j > max_stab_index:
max_stab_index = j
for k in range(j + 1):
stabs[k].append(gen)
for i in range(max_stab_index + 1, base_len):
stabs[i].append(_af_new(list(range(degree))))
return stabs
def _handle_precomputed_bsgs(base, strong_gens, transversals=None,
basic_orbits=None, strong_gens_distr=None):
"""
Calculate BSGS-related structures from those present.
The base and strong generating set must be provided; if any of the
transversals, basic orbits or distributed strong generators are not
provided, they will be calculated from the base and strong generating set.
Parameters
==========
``base`` - the base
``strong_gens`` - the strong generators
``transversals`` - basic transversals
``basic_orbits`` - basic orbits
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Returns
=======
``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals``
are the basic transversals, ``basic_orbits`` are the basic orbits, and
``strong_gens_distr`` are the strong generators distributed by membership
in basic stabilizers.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _handle_precomputed_bsgs
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> _handle_precomputed_bsgs(D.base, D.strong_gens,
... basic_orbits=D.basic_orbits)
([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
See Also
========
_orbits_transversals_from_bsgs, _distribute_gens_by_base
"""
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if transversals is None:
if basic_orbits is None:
basic_orbits, transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
else:
transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=True)
else:
if basic_orbits is None:
base_len = len(base)
basic_orbits = [None]*base_len
for i in range(base_len):
basic_orbits[i] = list(transversals[i].keys())
return transversals, basic_orbits, strong_gens_distr
def _orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=False, slp=False):
"""
Compute basic orbits and transversals from a base and strong generating set.
The generators are provided as distributed across the basic stabilizers.
If the optional argument ``transversals_only`` is set to True, only the
transversals are returned.
Parameters
==========
``base`` - the base
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
``transversals_only`` - a flag switching between returning only the
transversals/ both orbits and transversals
``slp`` - if ``True``, return a list of dictionaries containing the
generator presentations of the elements of the transversals,
i.e. the list of indices of generators from `strong_gens_distr[i]`
such that their product is the relevant transversal element
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.util import _orbits_transversals_from_bsgs
>>> from sympy.combinatorics.util import (_orbits_transversals_from_bsgs,
... _distribute_gens_by_base)
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> _orbits_transversals_from_bsgs(S.base, strong_gens_distr)
([[0, 1, 2], [1, 2]], [{0: (2), 1: (0 1 2), 2: (0 2 1)}, {1: (2), 2: (1 2)}])
See Also
========
_distribute_gens_by_base, _handle_precomputed_bsgs
"""
from sympy.combinatorics.perm_groups import _orbit_transversal
base_len = len(base)
degree = strong_gens_distr[0][0].size
transversals = [None]*base_len
slps = [None]*base_len
if transversals_only is False:
basic_orbits = [None]*base_len
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
base[i], pairs=True, slp=True)
transversals[i] = dict(transversals[i])
if transversals_only is False:
basic_orbits[i] = list(transversals[i].keys())
if transversals_only:
return transversals
else:
if not slp:
return basic_orbits, transversals
return basic_orbits, transversals, slps
def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):
"""
Remove redundant generators from a strong generating set.
Parameters
==========
``base`` - a base
``strong_gens`` - a strong generating set relative to ``base``
``basic_orbits`` - basic orbits
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Returns
=======
A strong generating set with respect to ``base`` which is a subset of
``strong_gens``.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.util import _remove_gens
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(15)
>>> base, strong_gens = S.schreier_sims_incremental()
>>> new_gens = _remove_gens(base, strong_gens)
>>> len(new_gens)
14
>>> _verify_bsgs(S, base, new_gens)
True
Notes
=====
This procedure is outlined in [1],p.95.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
from sympy.combinatorics.perm_groups import _orbit
base_len = len(base)
degree = strong_gens[0].size
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if basic_orbits is None:
basic_orbits = []
for i in range(base_len):
basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])
basic_orbits.append(basic_orbit)
strong_gens_distr.append([])
res = strong_gens[:]
for i in range(base_len - 1, -1, -1):
gens_copy = strong_gens_distr[i][:]
for gen in strong_gens_distr[i]:
if gen not in strong_gens_distr[i + 1]:
temp_gens = gens_copy[:]
temp_gens.remove(gen)
if temp_gens == []:
continue
temp_orbit = _orbit(degree, temp_gens, base[i])
if temp_orbit == basic_orbits[i]:
gens_copy.remove(gen)
res.remove(gen)
return res
def _strip(g, base, orbits, transversals):
"""
Attempt to decompose a permutation using a (possibly partial) BSGS
structure.
This is done by treating the sequence ``base`` as an actual base, and
the orbits ``orbits`` and transversals ``transversals`` as basic orbits and
transversals relative to it.
This process is called "sifting". A sift is unsuccessful when a certain
orbit element is not found or when after the sift the decomposition
doesn't end with the identity element.
The argument ``transversals`` is a list of dictionaries that provides
transversal elements for the orbits ``orbits``.
Parameters
==========
``g`` - permutation to be decomposed
``base`` - sequence of points
``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]``
under some subgroup of the pointwise stabilizer of `
`base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit
in this function since the only information we need is encoded in the orbits
and transversals
``transversals`` - a list of orbit transversals associated with the orbits
``orbits``.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.util import _strip
>>> S = SymmetricGroup(5)
>>> S.schreier_sims()
>>> g = Permutation([0, 2, 3, 1, 4])
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
((4), 5)
Notes
=====
The algorithm is described in [1],pp.89-90. The reason for returning
both the current state of the element being decomposed and the level
at which the sifting ends is that they provide important information for
the randomized version of the Schreier-Sims algorithm.
References
==========
[1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random
"""
h = g._array_form
base_len = len(base)
for i in range(base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
return _af_new(h), i + 1
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
return _af_new(h), base_len + 1
def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):
"""
optimized _strip, with h, transversals and result in array form
if the stripped elements is the identity, it returns False, base_len + 1
j h[base[i]] == base[i] for i <= j
"""
base_len = len(base)
for i in range(j+1, base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
if not slp:
return h, i + 1
return h, i + 1, slp
u = transversals[i][beta]
if h == u:
if not slp:
return False, base_len + 1
return False, base_len + 1, slp
h = _af_rmul(_af_invert(u), h)
if slp:
u_slp = slps[i][beta][:]
u_slp.reverse()
u_slp = [(i, (g,)) for g in u_slp]
slp = u_slp + slp
if not slp:
return h, base_len + 1
return h, base_len + 1, slp
def _strong_gens_from_distr(strong_gens_distr):
"""
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic
stabilizers.
Parameters
==========
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.util import (_strong_gens_from_distr,
... _distribute_gens_by_base)
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> S.strong_gens
[(0 1 2), (2)(0 1), (1 2)]
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> _strong_gens_from_distr(strong_gens_distr)
[(0 1 2), (2)(0 1), (1 2)]
See Also
========
_distribute_gens_by_base
"""
if len(strong_gens_distr) == 1:
return strong_gens_distr[0][:]
else:
result = strong_gens_distr[0]
for gen in strong_gens_distr[1]:
if gen not in result:
result.append(gen)
return result
|
1ad29e05e2c5da65bd5f2cc15de290c54f8f78399bae6791c502e533aec04974 | from __future__ import print_function, division
from sympy.combinatorics.group_constructs import DirectProduct
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.permutations import Permutation
_af_new = Permutation._af_new
def AbelianGroup(*cyclic_orders):
"""
Returns the direct product of cyclic groups with the given orders.
According to the structure theorem for finite abelian groups ([1]),
every finite abelian group can be written as the direct product of
finitely many cyclic groups.
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> AbelianGroup(3, 4)
PermutationGroup([
(6)(0 1 2),
(3 4 5 6)])
>>> _.is_group
True
See Also
========
DirectProduct
References
==========
.. [1] http://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups
"""
groups = []
degree = 0
order = 1
for size in cyclic_orders:
degree += size
order *= size
groups.append(CyclicGroup(size))
G = DirectProduct(*groups)
G._is_abelian = True
G._degree = degree
G._order = order
return G
def AlternatingGroup(n):
"""
Generates the alternating group on ``n`` elements as a permutation group.
For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for
``n`` odd
and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.).
After the group is generated, some of its basic properties are set.
The cases ``n = 1, 2`` are handled separately.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(4)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> len(a)
12
>>> all(perm.is_even for perm in a)
True
See Also
========
SymmetricGroup, CyclicGroup, DihedralGroup
References
==========
[1] Armstrong, M. "Groups and Symmetry"
"""
# small cases are special
if n in (1, 2):
return PermutationGroup([Permutation([0])])
a = list(range(n))
a[0], a[1], a[2] = a[1], a[2], a[0]
gen1 = a
if n % 2:
a = list(range(1, n))
a.append(0)
gen2 = a
else:
a = list(range(2, n))
a.append(1)
a.insert(0, 0)
gen2 = a
gens = [gen1, gen2]
if gen1 == gen2:
gens = gens[:1]
G = PermutationGroup([_af_new(a) for a in gens], dups=False)
if n < 4:
G._is_abelian = True
G._is_nilpotent = True
else:
G._is_abelian = False
G._is_nilpotent = False
if n < 5:
G._is_solvable = True
else:
G._is_solvable = False
G._degree = n
G._is_transitive = True
G._is_alt = True
return G
def CyclicGroup(n):
"""
Generates the cyclic group of order ``n`` as a permutation group.
The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)``
(in cycle notation). After the group is generated, some of its basic
properties are set.
Examples
========
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(6)
>>> G.is_group
True
>>> G.order()
6
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
[3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]
See Also
========
SymmetricGroup, DihedralGroup, AlternatingGroup
"""
a = list(range(1, n))
a.append(0)
gen = _af_new(a)
G = PermutationGroup([gen])
G._is_abelian = True
G._is_nilpotent = True
G._is_solvable = True
G._degree = n
G._is_transitive = True
G._order = n
return G
def DihedralGroup(n):
r"""
Generates the dihedral group `D_n` as a permutation group.
The dihedral group `D_n` is the group of symmetries of the regular
``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)``
(a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...``
(a reflection of the ``n``-gon) in cycle rotation. It is easy to see that
these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate
`D_n` (See [1]). After the group is generated, some of its basic properties
are set.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(5)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> [perm.cyclic_form for perm in a]
[[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
[[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
[[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
[[0, 3], [1, 2]]]
See Also
========
SymmetricGroup, CyclicGroup, AlternatingGroup
References
==========
[1] https://en.wikipedia.org/wiki/Dihedral_group
"""
# small cases are special
if n == 1:
return PermutationGroup([Permutation([1, 0])])
if n == 2:
return PermutationGroup([Permutation([1, 0, 3, 2]),
Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])
a = list(range(1, n))
a.append(0)
gen1 = _af_new(a)
a = list(range(n))
a.reverse()
gen2 = _af_new(a)
G = PermutationGroup([gen1, gen2])
# if n is a power of 2, group is nilpotent
if n & (n-1) == 0:
G._is_nilpotent = True
else:
G._is_nilpotent = False
G._is_abelian = False
G._is_solvable = True
G._degree = n
G._is_transitive = True
G._order = 2*n
return G
def SymmetricGroup(n):
"""
Generates the symmetric group on ``n`` elements as a permutation group.
The generators taken are the ``n``-cycle
``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation).
(See [1]). After the group is generated, some of its basic properties
are set.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(4)
>>> G.is_group
True
>>> G.order()
24
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
[1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
[2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
[3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
[0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]
See Also
========
CyclicGroup, DihedralGroup, AlternatingGroup
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations
"""
if n == 1:
G = PermutationGroup([Permutation([0])])
elif n == 2:
G = PermutationGroup([Permutation([1, 0])])
else:
a = list(range(1, n))
a.append(0)
gen1 = _af_new(a)
a = list(range(n))
a[0], a[1] = a[1], a[0]
gen2 = _af_new(a)
G = PermutationGroup([gen1, gen2])
if n < 3:
G._is_abelian = True
G._is_nilpotent = True
else:
G._is_abelian = False
G._is_nilpotent = False
if n < 5:
G._is_solvable = True
else:
G._is_solvable = False
G._degree = n
G._is_transitive = True
G._is_sym = True
return G
def RubikGroup(n):
"""Return a group of Rubik's cube generators
>>> from sympy.combinatorics.named_groups import RubikGroup
>>> RubikGroup(2).is_group
True
"""
from sympy.combinatorics.generators import rubik
if n <= 1:
raise ValueError("Invalid cube. n has to be greater than 1")
return PermutationGroup(rubik(n))
|
db6c5dd3fb9c5b91feef46f9bd1f03f33fefbdc13c46867116bb73066d20b493 | from __future__ import print_function, division
from sympy.core import Basic
from sympy.core.compatibility import iterable, as_int
from sympy.utilities.iterables import flatten
from collections import defaultdict
class Prufer(Basic):
"""
The Prufer correspondence is an algorithm that describes the
bijection between labeled trees and the Prufer code. A Prufer
code of a labeled tree is unique up to isomorphism and has
a length of n - 2.
Prufer sequences were first used by Heinz Prufer to give a
proof of Cayley's formula.
References
==========
.. [1] http://mathworld.wolfram.com/LabeledTree.html
"""
_prufer_repr = None
_tree_repr = None
_nodes = None
_rank = None
@property
def prufer_repr(self):
"""Returns Prufer sequence for the Prufer object.
This sequence is found by removing the highest numbered vertex,
recording the node it was attached to, and continuing until only
two vertices remain. The Prufer sequence is the list of recorded nodes.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
[3, 3, 3, 4]
>>> Prufer([1, 0, 0]).prufer_repr
[1, 0, 0]
See Also
========
to_prufer
"""
if self._prufer_repr is None:
self._prufer_repr = self.to_prufer(self._tree_repr[:], self.nodes)
return self._prufer_repr
@property
def tree_repr(self):
"""Returns the tree representation of the Prufer object.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
[[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
>>> Prufer([1, 0, 0]).tree_repr
[[1, 2], [0, 1], [0, 3], [0, 4]]
See Also
========
to_tree
"""
if self._tree_repr is None:
self._tree_repr = self.to_tree(self._prufer_repr[:])
return self._tree_repr
@property
def nodes(self):
"""Returns the number of nodes in the tree.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
6
>>> Prufer([1, 0, 0]).nodes
5
"""
return self._nodes
@property
def rank(self):
"""Returns the rank of the Prufer sequence.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
>>> p.rank
778
>>> p.next(1).rank
779
>>> p.prev().rank
777
See Also
========
prufer_rank, next, prev, size
"""
if self._rank is None:
self._rank = self.prufer_rank()
return self._rank
@property
def size(self):
"""Return the number of possible trees of this Prufer object.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
True
See Also
========
prufer_rank, rank, next, prev
"""
return self.prev(self.rank).prev().rank + 1
@staticmethod
def to_prufer(tree, n):
"""Return the Prufer sequence for a tree given as a list of edges where
``n`` is the number of nodes in the tree.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_repr
[0, 0]
>>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
[0, 0]
See Also
========
prufer_repr: returns Prufer sequence of a Prufer object.
"""
d = defaultdict(int)
L = []
for edge in tree:
# Increment the value of the corresponding
# node in the degree list as we encounter an
# edge involving it.
d[edge[0]] += 1
d[edge[1]] += 1
for i in range(n - 2):
# find the smallest leaf
for x in range(n):
if d[x] == 1:
break
# find the node it was connected to
y = None
for edge in tree:
if x == edge[0]:
y = edge[1]
elif x == edge[1]:
y = edge[0]
if y is not None:
break
# record and update
L.append(y)
for j in (x, y):
d[j] -= 1
if not d[j]:
d.pop(j)
tree.remove(edge)
return L
@staticmethod
def to_tree(prufer):
"""Return the tree (as a list of edges) of the given Prufer sequence.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([0, 2], 4)
>>> a.tree_repr
[[0, 1], [0, 2], [2, 3]]
>>> Prufer.to_tree([0, 2])
[[0, 1], [0, 2], [2, 3]]
References
==========
- https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation.html
See Also
========
tree_repr: returns tree representation of a Prufer object.
"""
tree = []
last = []
n = len(prufer) + 2
d = defaultdict(lambda: 1)
for p in prufer:
d[p] += 1
for i in prufer:
for j in range(n):
# find the smallest leaf (degree = 1)
if d[j] == 1:
break
# (i, j) is the new edge that we append to the tree
# and remove from the degree dictionary
d[i] -= 1
d[j] -= 1
tree.append(sorted([i, j]))
last = [i for i in range(n) if d[i] == 1] or [0, 1]
tree.append(last)
return tree
@staticmethod
def edges(*runs):
"""Return a list of edges and the number of nodes from the given runs
that connect nodes in an integer-labelled tree.
All node numbers will be shifted so that the minimum node is 0. It is
not a problem if edges are repeated in the runs; only unique edges are
returned. There is no assumption made about what the range of the node
labels should be, but all nodes from the smallest through the largest
must be present.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
Duplicate edges are removed:
>>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
"""
e = set()
nmin = runs[0][0]
for r in runs:
for i in range(len(r) - 1):
a, b = r[i: i + 2]
if b < a:
a, b = b, a
e.add((a, b))
rv = []
got = set()
nmin = nmax = None
for ei in e:
for i in ei:
got.add(i)
nmin = min(ei[0], nmin) if nmin is not None else ei[0]
nmax = max(ei[1], nmax) if nmax is not None else ei[1]
rv.append(list(ei))
missing = set(range(nmin, nmax + 1)) - got
if missing:
missing = [i + nmin for i in missing]
if len(missing) == 1:
msg = 'Node %s is missing.' % missing.pop()
else:
msg = 'Nodes %s are missing.' % list(sorted(missing))
raise ValueError(msg)
if nmin != 0:
for i, ei in enumerate(rv):
rv[i] = [n - nmin for n in ei]
nmax -= nmin
return sorted(rv), nmax + 1
def prufer_rank(self):
"""Computes the rank of a Prufer sequence.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_rank()
0
See Also
========
rank, next, prev, size
"""
r = 0
p = 1
for i in range(self.nodes - 3, -1, -1):
r += p*self.prufer_repr[i]
p *= self.nodes
return r
@classmethod
def unrank(self, rank, n):
"""Finds the unranked Prufer sequence.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer.unrank(0, 4)
Prufer([0, 0])
"""
n, rank = as_int(n), as_int(rank)
L = defaultdict(int)
for i in range(n - 3, -1, -1):
L[i] = rank % n
rank = (rank - L[i])//n
return Prufer([L[i] for i in range(len(L))])
def __new__(cls, *args, **kw_args):
"""The constructor for the Prufer object.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
A Prufer object can be constructed from a list of edges:
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_repr
[0, 0]
If the number of nodes is given, no checking of the nodes will
be performed; it will be assumed that nodes 0 through n - 1 are
present:
>>> Prufer([[0, 1], [0, 2], [0, 3]], 4)
Prufer([[0, 1], [0, 2], [0, 3]], 4)
A Prufer object can be constructed from a Prufer sequence:
>>> b = Prufer([1, 3])
>>> b.tree_repr
[[0, 1], [1, 3], [2, 3]]
"""
ret_obj = Basic.__new__(cls, *args, **kw_args)
args = [list(args[0])]
if args[0] and iterable(args[0][0]):
if not args[0][0]:
raise ValueError(
'Prufer expects at least one edge in the tree.')
if len(args) > 1:
nnodes = args[1]
else:
nodes = set(flatten(args[0]))
nnodes = max(nodes) + 1
if nnodes != len(nodes):
missing = set(range(nnodes)) - nodes
if len(missing) == 1:
msg = 'Node %s is missing.' % missing.pop()
else:
msg = 'Nodes %s are missing.' % list(sorted(missing))
raise ValueError(msg)
ret_obj._tree_repr = [list(i) for i in args[0]]
ret_obj._nodes = nnodes
else:
ret_obj._prufer_repr = args[0]
ret_obj._nodes = len(ret_obj._prufer_repr) + 2
return ret_obj
def next(self, delta=1):
"""Generates the Prufer sequence that is delta beyond the current one.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> b = a.next(1) # == a.next()
>>> b.tree_repr
[[0, 2], [0, 1], [1, 3]]
>>> b.rank
1
See Also
========
prufer_rank, rank, prev, size
"""
return Prufer.unrank(self.rank + delta, self.nodes)
def prev(self, delta=1):
"""Generates the Prufer sequence that is -delta before the current one.
Examples
========
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
>>> a.rank
36
>>> b = a.prev()
>>> b
Prufer([1, 2, 0])
>>> b.rank
35
See Also
========
prufer_rank, rank, next, size
"""
return Prufer.unrank(self.rank -delta, self.nodes)
|
fd024cc375af14856f133ab241396a0206bdddf24bf63d3f77c8d6f83617e62a | """Finitely Presented Groups and its algorithms. """
from __future__ import print_function, division
from sympy import S
from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement,
free_group)
from sympy.combinatorics.rewritingsystem import RewritingSystem
from sympy.combinatorics.coset_table import (CosetTable,
coset_enumeration_r,
coset_enumeration_c)
from sympy.combinatorics import PermutationGroup
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute
from sympy import symbols
from itertools import product
@public
def fp_group(fr_grp, relators=[]):
_fp_group = FpGroup(fr_grp, relators)
return (_fp_group,) + tuple(_fp_group._generators)
@public
def xfp_group(fr_grp, relators=[]):
_fp_group = FpGroup(fr_grp, relators)
return (_fp_group, _fp_group._generators)
# Does not work. Both symbols and pollute are undefined. Never tested.
@public
def vfp_group(fr_grpm, relators):
_fp_group = FpGroup(symbols, relators)
pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators)
return _fp_group
def _parse_relators(rels):
"""Parse the passed relators."""
return rels
###############################################################################
# FINITELY PRESENTED GROUPS #
###############################################################################
class FpGroup(DefaultPrinting):
"""
The FpGroup would take a FreeGroup and a list/tuple of relators, the
relators would be specified in such a way that each of them be equal to the
identity of the provided free group.
"""
is_group = True
is_FpGroup = True
is_PermutationGroup = False
def __init__(self, fr_grp, relators):
relators = _parse_relators(relators)
self.free_group = fr_grp
self.relators = relators
self.generators = self._generators()
self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self})
# CosetTable instance on identity subgroup
self._coset_table = None
# returns whether coset table on identity subgroup
# has been standardized
self._is_standardized = False
self._order = None
self._center = None
self._rewriting_system = RewritingSystem(self)
self._perm_isomorphism = None
return
def _generators(self):
return self.free_group.generators
def make_confluent(self):
'''
Try to make the group's rewriting system confluent
'''
self._rewriting_system.make_confluent()
return
def reduce(self, word):
'''
Return the reduced form of `word` in `self` according to the group's
rewriting system. If it's confluent, the reduced form is the unique normal
form of the word in the group.
'''
return self._rewriting_system.reduce(word)
def equals(self, word1, word2):
'''
Compare `word1` and `word2` for equality in the group
using the group's rewriting system. If the system is
confluent, the returned answer is necessarily correct.
(If it isn't, `False` could be returned in some cases
where in fact `word1 == word2`)
'''
if self.reduce(word1*word2**-1) == self.identity:
return True
elif self._rewriting_system.is_confluent:
return False
return None
@property
def identity(self):
return self.free_group.identity
def __contains__(self, g):
return g in self.free_group
def subgroup(self, gens, C=None, homomorphism=False):
'''
Return the subgroup generated by `gens` using the
Reidemeister-Schreier algorithm
homomorphism -- When set to True, return a dictionary containing the images
of the presentation generators in the original group.
Examples
========
>>> from sympy.combinatorics.fp_groups import (FpGroup, FpSubgroup)
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
>>> H = [x*y, x**-1*y**-1*x*y*x]
>>> K, T = f.subgroup(H, homomorphism=True)
>>> T(K.generators)
[x*y, x**-1*y**2*x**-1]
'''
if not all([isinstance(g, FreeGroupElement) for g in gens]):
raise ValueError("Generators must be `FreeGroupElement`s")
if not all([g.group == self.free_group for g in gens]):
raise ValueError("Given generators are not members of the group")
if homomorphism:
g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True)
else:
g, rels = reidemeister_presentation(self, gens, C=C)
if g:
g = FpGroup(g[0].group, rels)
else:
g = FpGroup(free_group('')[0], [])
if homomorphism:
from sympy.combinatorics.homomorphisms import homomorphism
return g, homomorphism(g, self, g.generators, _gens, check=False)
return g
def coset_enumeration(self, H, strategy="relator_based", max_cosets=None,
draft=None, incomplete=False):
"""
Return an instance of ``coset table``, when Todd-Coxeter algorithm is
run over the ``self`` with ``H`` as subgroup, using ``strategy``
argument as strategy. The returned coset table is compressed but not
standardized.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
"""
if not max_cosets:
max_cosets = CosetTable.coset_table_max_limit
if strategy == 'relator_based':
C = coset_enumeration_r(self, H, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
else:
C = coset_enumeration_c(self, H, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
if C.is_complete():
C.compress()
return C
def standardize_coset_table(self):
"""
Standardized the coset table ``self`` and makes the internal variable
``_is_standardized`` equal to ``True``.
"""
self._coset_table.standardize()
self._is_standardized = True
def coset_table(self, H, strategy="relator_based", max_cosets=None,
draft=None, incomplete=False):
"""
Return the mathematical coset table of ``self`` in ``H``.
"""
if not H:
if self._coset_table is not None:
if not self._is_standardized:
self.standardize_coset_table()
else:
C = self.coset_enumeration([], strategy, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
self._coset_table = C
self.standardize_coset_table()
return self._coset_table.table
else:
C = self.coset_enumeration(H, strategy, max_cosets=max_cosets,
draft=draft, incomplete=incomplete)
C.standardize()
return C.table
def order(self, strategy="relator_based"):
"""
Returns the order of the finitely presented group ``self``. It uses
the coset enumeration with identity group as subgroup, i.e ``H=[]``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x, y**2])
>>> f.order(strategy="coset_table_based")
2
"""
from sympy import S, gcd
if self._order is not None:
return self._order
if self._coset_table is not None:
self._order = len(self._coset_table.table)
elif len(self.relators) == 0:
self._order = self.free_group.order()
elif len(self.generators) == 1:
self._order = abs(gcd([r.array_form[0][1] for r in self.relators]))
elif self._is_infinite():
self._order = S.Infinity
else:
gens, C = self._finite_index_subgroup()
if C:
ind = len(C.table)
self._order = ind*self.subgroup(gens, C=C).order()
else:
self._order = self.index([])
return self._order
def _is_infinite(self):
'''
Test if the group is infinite. Return `True` if the test succeeds
and `None` otherwise
'''
used_gens = set()
for r in self.relators:
used_gens.update(r.contains_generators())
if any([g not in used_gens for g in self.generators]):
return True
# Abelianisation test: check is the abelianisation is infinite
abelian_rels = []
from sympy.polys.solvers import RawMatrix as Matrix
from sympy.polys.domains import ZZ
from sympy.matrices.normalforms import invariant_factors
for rel in self.relators:
abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
m = Matrix(abelian_rels)
setattr(m, "ring", ZZ)
if 0 in invariant_factors(m):
return True
else:
return None
def _finite_index_subgroup(self, s=[]):
'''
Find the elements of `self` that generate a finite index subgroup
and, if found, return the list of elements and the coset table of `self` by
the subgroup, otherwise return `(None, None)`
'''
gen = self.most_frequent_generator()
rels = list(self.generators)
rels.extend(self.relators)
if not s:
if len(self.generators) == 2:
s = [gen] + [g for g in self.generators if g != gen]
else:
rand = self.free_group.identity
i = 0
while ((rand in rels or rand**-1 in rels or rand.is_identity)
and i<10):
rand = self.random()
i += 1
s = [gen, rand] + [g for g in self.generators if g != gen]
mid = (len(s)+1)//2
half1 = s[:mid]
half2 = s[mid:]
draft1 = None
draft2 = None
m = 200
C = None
while not C and (m/2 < CosetTable.coset_table_max_limit):
m = min(m, CosetTable.coset_table_max_limit)
draft1 = self.coset_enumeration(half1, max_cosets=m,
draft=draft1, incomplete=True)
if draft1.is_complete():
C = draft1
half = half1
else:
draft2 = self.coset_enumeration(half2, max_cosets=m,
draft=draft2, incomplete=True)
if draft2.is_complete():
C = draft2
half = half2
if not C:
m *= 2
if not C:
return None, None
C.compress()
return half, C
def most_frequent_generator(self):
gens = self.generators
rels = self.relators
freqs = [sum([r.generator_count(g) for r in rels]) for g in gens]
return gens[freqs.index(max(freqs))]
def random(self):
import random
r = self.free_group.identity
for i in range(random.randint(2,3)):
r = r*random.choice(self.generators)**random.choice([1,-1])
return r
def index(self, H, strategy="relator_based"):
"""
Return the index of subgroup ``H`` in group ``self``.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3])
>>> f.index([x])
4
"""
# TODO: use |G:H| = |G|/|H| (currently H can't be made into a group)
# when we know |G| and |H|
if H == []:
return self.order()
else:
C = self.coset_enumeration(H, strategy)
return len(C.table)
def __str__(self):
if self.free_group.rank > 30:
str_form = "<fp group with %s generators>" % self.free_group.rank
else:
str_form = "<fp group on the generators %s>" % str(self.generators)
return str_form
__repr__ = __str__
#==============================================================================
# PERMUTATION GROUP METHODS
#==============================================================================
def _to_perm_group(self):
'''
Return an isomorphic permutation group and the isomorphism.
The implementation is dependent on coset enumeration so
will only terminate for finite groups.
'''
from sympy.combinatorics import Permutation, PermutationGroup
from sympy.combinatorics.homomorphisms import homomorphism
if self.order() is S.Infinity:
raise NotImplementedError("Permutation presentation of infinite "
"groups is not implemented")
if self._perm_isomorphism:
T = self._perm_isomorphism
P = T.image()
else:
C = self.coset_table([])
gens = self.generators
images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens]
images = [Permutation(i) for i in images]
P = PermutationGroup(images)
T = homomorphism(self, P, gens, images, check=False)
self._perm_isomorphism = T
return P, T
def _perm_group_list(self, method_name, *args):
'''
Given the name of a `PermutationGroup` method (returning a subgroup
or a list of subgroups) and (optionally) additional arguments it takes,
return a list or a list of lists containing the generators of this (or
these) subgroups in terms of the generators of `self`.
'''
P, T = self._to_perm_group()
perm_result = getattr(P, method_name)(*args)
single = False
if isinstance(perm_result, PermutationGroup):
perm_result, single = [perm_result], True
result = []
for group in perm_result:
gens = group.generators
result.append(T.invert(gens))
return result[0] if single else result
def derived_series(self):
'''
Return the list of lists containing the generators
of the subgroups in the derived series of `self`.
'''
return self._perm_group_list('derived_series')
def lower_central_series(self):
'''
Return the list of lists containing the generators
of the subgroups in the lower central series of `self`.
'''
return self._perm_group_list('lower_central_series')
def center(self):
'''
Return the list of generators of the center of `self`.
'''
return self._perm_group_list('center')
def derived_subgroup(self):
'''
Return the list of generators of the derived subgroup of `self`.
'''
return self._perm_group_list('derived_subgroup')
def centralizer(self, other):
'''
Return the list of generators of the centralizer of `other`
(a list of elements of `self`) in `self`.
'''
T = self._to_perm_group()[1]
other = T(other)
return self._perm_group_list('centralizer', other)
def normal_closure(self, other):
'''
Return the list of generators of the normal closure of `other`
(a list of elements of `self`) in `self`.
'''
T = self._to_perm_group()[1]
other = T(other)
return self._perm_group_list('normal_closure', other)
def _perm_property(self, attr):
'''
Given an attribute of a `PermutationGroup`, return
its value for a permutation group isomorphic to `self`.
'''
P = self._to_perm_group()[0]
return getattr(P, attr)
@property
def is_abelian(self):
'''
Check if `self` is abelian.
'''
return self._perm_property("is_abelian")
@property
def is_nilpotent(self):
'''
Check if `self` is nilpotent.
'''
return self._perm_property("is_nilpotent")
@property
def is_solvable(self):
'''
Check if `self` is solvable.
'''
return self._perm_property("is_solvable")
@property
def elements(self):
'''
List the elements of `self`.
'''
P, T = self._to_perm_group()
return T.invert(P._elements)
@property
def is_cyclic(self):
"""
Return ``True`` if group is Cyclic.
"""
if len(self.generators) <= 1:
return True
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("Check for infinite Cyclic group "
"is not implemented")
return P.is_cyclic
def abelian_invariants(self):
"""
Return Abelian Invariants of a group.
"""
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("abelian invariants is not implemented"
"for infinite group")
return P.abelian_invariants()
def composition_series(self):
"""
Return subnormal series of maximum length for a group.
"""
try:
P, T = self._to_perm_group()
except NotImplementedError:
raise NotImplementedError("composition series is not implemented"
"for infinite group")
return P.composition_series()
class FpSubgroup(DefaultPrinting):
'''
The class implementing a subgroup of an FpGroup or a FreeGroup
(only finite index subgroups are supported at this point). This
is to be used if one wishes to check if an element of the original
group belongs to the subgroup
'''
def __init__(self, G, gens, normal=False):
super(FpSubgroup,self).__init__()
self.parent = G
self.generators = list(set([g for g in gens if g != G.identity]))
self._min_words = None #for use in __contains__
self.C = None
self.normal = normal
def __contains__(self, g):
if isinstance(self.parent, FreeGroup):
if self._min_words is None:
# make _min_words - a list of subwords such that
# g is in the subgroup if and only if it can be
# partitioned into these subwords. Infinite families of
# subwords are presented by tuples, e.g. (r, w)
# stands for the family of subwords r*w**n*r**-1
def _process(w):
# this is to be used before adding new words
# into _min_words; if the word w is not cyclically
# reduced, it will generate an infinite family of
# subwords so should be written as a tuple;
# if it is, w**-1 should be added to the list
# as well
p, r = w.cyclic_reduction(removed=True)
if not r.is_identity:
return [(r, p)]
else:
return [w, w**-1]
# make the initial list
gens = []
for w in self.generators:
if self.normal:
w = w.cyclic_reduction()
gens.extend(_process(w))
for w1 in gens:
for w2 in gens:
# if w1 and w2 are equal or are inverses, continue
if w1 == w2 or (not isinstance(w1, tuple)
and w1**-1 == w2):
continue
# if the start of one word is the inverse of the
# end of the other, their multiple should be added
# to _min_words because of cancellation
if isinstance(w1, tuple):
# start, end
s1, s2 = w1[0][0], w1[0][0]**-1
else:
s1, s2 = w1[0], w1[len(w1)-1]
if isinstance(w2, tuple):
# start, end
r1, r2 = w2[0][0], w2[0][0]**-1
else:
r1, r2 = w2[0], w2[len(w1)-1]
# p1 and p2 are w1 and w2 or, in case when
# w1 or w2 is an infinite family, a representative
p1, p2 = w1, w2
if isinstance(w1, tuple):
p1 = w1[0]*w1[1]*w1[0]**-1
if isinstance(w2, tuple):
p2 = w2[0]*w2[1]*w2[0]**-1
# add the product of the words to the list is necessary
if r1**-1 == s2 and not (p1*p2).is_identity:
new = _process(p1*p2)
if not new in gens:
gens.extend(new)
if r2**-1 == s1 and not (p2*p1).is_identity:
new = _process(p2*p1)
if not new in gens:
gens.extend(new)
self._min_words = gens
min_words = self._min_words
def _is_subword(w):
# check if w is a word in _min_words or one of
# the infinite families in it
w, r = w.cyclic_reduction(removed=True)
if r.is_identity or self.normal:
return w in min_words
else:
t = [s[1] for s in min_words if isinstance(s, tuple)
and s[0] == r]
return [s for s in t if w.power_of(s)] != []
# store the solution of words for which the result of
# _word_break (below) is known
known = {}
def _word_break(w):
# check if w can be written as a product of words
# in min_words
if len(w) == 0:
return True
i = 0
while i < len(w):
i += 1
prefix = w.subword(0, i)
if not _is_subword(prefix):
continue
rest = w.subword(i, len(w))
if rest not in known:
known[rest] = _word_break(rest)
if known[rest]:
return True
return False
if self.normal:
g = g.cyclic_reduction()
return _word_break(g)
else:
if self.C is None:
C = self.parent.coset_enumeration(self.generators)
self.C = C
i = 0
C = self.C
for j in range(len(g)):
i = C.table[i][C.A_dict[g[j]]]
return i == 0
def order(self):
from sympy import S
if not self.generators:
return 1
if isinstance(self.parent, FreeGroup):
return S.Infinity
if self.C is None:
C = self.parent.coset_enumeration(self.generators)
self.C = C
# This is valid because `len(self.C.table)` (the index of the subgroup)
# will always be finite - otherwise coset enumeration doesn't terminate
return self.parent.order()/len(self.C.table)
def to_FpGroup(self):
if isinstance(self.parent, FreeGroup):
gen_syms = [('x_%d'%i) for i in range(len(self.generators))]
return free_group(', '.join(gen_syms))[0]
return self.parent.subgroup(C=self.C)
def __str__(self):
if len(self.generators) > 30:
str_form = "<fp subgroup with %s generators>" % len(self.generators)
else:
str_form = "<fp subgroup on the generators %s>" % str(self.generators)
return str_form
__repr__ = __str__
###############################################################################
# LOW INDEX SUBGROUPS #
###############################################################################
def low_index_subgroups(G, N, Y=[]):
"""
Implements the Low Index Subgroups algorithm, i.e find all subgroups of
``G`` upto a given index ``N``. This implements the method described in
[Sim94]. This procedure involves a backtrack search over incomplete Coset
Tables, rather than over forced coincidences.
Parameters
==========
G: An FpGroup < X|R >
N: positive integer, representing the maximum index value for subgroups
Y: (an optional argument) specifying a list of subgroup generators, such
that each of the resulting subgroup contains the subgroup generated by Y.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
>>> L = low_index_subgroups(f, 4)
>>> for coset_table in L:
... print(coset_table.table)
[[0, 0, 0, 0]]
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
[[1, 1, 0, 0], [0, 0, 1, 1]]
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
Section 5.4
.. [2] Marston Conder and Peter Dobcsanyi
"Applications and Adaptions of the Low Index Subgroups Procedure"
"""
C = CosetTable(G, [])
R = G.relators
# length chosen for the length of the short relators
len_short_rel = 5
# elements of R2 only checked at the last step for complete
# coset tables
R2 = set([rel for rel in R if len(rel) > len_short_rel])
# elements of R1 are used in inner parts of the process to prune
# branches of the search tree,
R1 = set([rel.identity_cyclic_reduction() for rel in set(R) - R2])
R1_c_list = C.conjugates(R1)
S = []
descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y)
return S
def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y):
A_dict = C.A_dict
A_dict_inv = C.A_dict_inv
if C.is_complete():
# if C is complete then it only needs to test
# whether the relators in R2 are satisfied
for w, alpha in product(R2, C.omega):
if not C.scan_check(alpha, w):
return
# relators in R2 are satisfied, append the table to list
S.append(C)
else:
# find the first undefined entry in Coset Table
for alpha, x in product(range(len(C.table)), C.A):
if C.table[alpha][A_dict[x]] is None:
# this is "x" in pseudo-code (using "y" makes it clear)
undefined_coset, undefined_gen = alpha, x
break
# for filling up the undefine entry we try all possible values
# of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined
reach = C.omega + [C.n]
for beta in reach:
if beta < N:
if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None:
try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \
undefined_gen, beta, Y)
def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y):
r"""
Solves the problem of trying out each individual possibility
for `\alpha^x.
"""
D = C.copy()
if beta == D.n and beta < N:
D.table.append([None]*len(D.A))
D.p.append(beta)
D.table[alpha][D.A_dict[x]] = beta
D.table[beta][D.A_dict_inv[x]] = alpha
D.deduction_stack.append((alpha, x))
if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \
R1_c_list[D.A_dict_inv[x]]):
return
for w in Y:
if not D.scan_check(0, w):
return
if first_in_class(D, Y):
descendant_subgroups(S, D, R1_c_list, x, R2, N, Y)
def first_in_class(C, Y=[]):
"""
Checks whether the subgroup ``H=G1`` corresponding to the Coset Table
could possibly be the canonical representative of its conjugacy class.
Parameters
==========
C: CosetTable
Returns
=======
bool: True/False
If this returns False, then no descendant of C can have that property, and
so we can abandon C. If it returns True, then we need to process further
the node of the search tree corresponding to C, and so we call
``descendant_subgroups`` recursively on C.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
>>> C = CosetTable(f, [])
>>> C.table = [[0, 0, None, None]]
>>> first_in_class(C)
True
>>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1]
>>> first_in_class(C)
True
>>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]]
>>> C.p = [0, 1, 2]
>>> first_in_class(C)
False
>>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]]
>>> first_in_class(C)
False
# TODO:: Sims points out in [Sim94] that performance can be improved by
# remembering some of the information computed by ``first_in_class``. If
# the ``continue alpha`` statement is executed at line 14, then the same thing
# will happen for that value of alpha in any descendant of the table C, and so
# the values the values of alpha for which this occurs could profitably be
# stored and passed through to the descendants of C. Of course this would
# make the code more complicated.
# The code below is taken directly from the function on page 208 of [Sim94]
# nu[alpha]
"""
n = C.n
# lamda is the largest numbered point in Omega_c_alpha which is currently defined
lamda = -1
# for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha
nu = [None]*n
# for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha
mu = [None]*n
# mutually nu and mu are the mutually-inverse equivalence maps between
# Omega_c_alpha and Omega_c
next_alpha = False
# For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent
# standardized coset table C_alpha corresponding to H_alpha
for alpha in range(1, n):
# reset nu to "None" after previous value of alpha
for beta in range(lamda+1):
nu[mu[beta]] = None
# we only want to reject our current table in favour of a preceding
# table in the ordering in which 1 is replaced by alpha, if the subgroup
# G_alpha corresponding to this preceding table definitely contains the
# given subgroup
for w in Y:
# TODO: this should support input of a list of general words
# not just the words which are in "A" (i.e gen and gen^-1)
if C.table[alpha][C.A_dict[w]] != alpha:
# continue with alpha
next_alpha = True
break
if next_alpha:
next_alpha = False
continue
# try alpha as the new point 0 in Omega_C_alpha
mu[0] = alpha
nu[alpha] = 0
# compare corresponding entries in C and C_alpha
lamda = 0
for beta in range(n):
for x in C.A:
gamma = C.table[beta][C.A_dict[x]]
delta = C.table[mu[beta]][C.A_dict[x]]
# if either of the entries is undefined,
# we move with next alpha
if gamma is None or delta is None:
# continue with alpha
next_alpha = True
break
if nu[delta] is None:
# delta becomes the next point in Omega_C_alpha
lamda += 1
nu[delta] = lamda
mu[lamda] = delta
if nu[delta] < gamma:
return False
if nu[delta] > gamma:
# continue with alpha
next_alpha = True
break
if next_alpha:
next_alpha = False
break
return True
#========================================================================
# Simplifying Presentation
#========================================================================
def simplify_presentation(*args, **kwargs):
'''
For an instance of `FpGroup`, return a simplified isomorphic copy of
the group (e.g. remove redundant generators or relators). Alternatively,
a list of generators and relators can be passed in which case the
simplified lists will be returned.
By default, the generators of the group are unchanged. If you would
like to remove redundant generators, set the keyword argument
`change_gens = True`.
'''
change_gens = kwargs.get("change_gens", False)
if len(args) == 1:
if not isinstance(args[0], FpGroup):
raise TypeError("The argument must be an instance of FpGroup")
G = args[0]
gens, rels = simplify_presentation(G.generators, G.relators,
change_gens=change_gens)
if gens:
return FpGroup(gens[0].group, rels)
return FpGroup(FreeGroup([]), [])
elif len(args) == 2:
gens, rels = args[0][:], args[1][:]
if not gens:
return gens, rels
identity = gens[0].group.identity
else:
if len(args) == 0:
m = "Not enough arguments"
else:
m = "Too many arguments"
raise RuntimeError(m)
prev_gens = []
prev_rels = []
while not set(prev_rels) == set(rels):
prev_rels = rels
while change_gens and not set(prev_gens) == set(gens):
prev_gens = gens
gens, rels = elimination_technique_1(gens, rels, identity)
rels = _simplify_relators(rels, identity)
if change_gens:
syms = [g.array_form[0][0] for g in gens]
F = free_group(syms)[0]
identity = F.identity
gens = F.generators
subs = dict(zip(syms, gens))
for j, r in enumerate(rels):
a = r.array_form
rel = identity
for sym, p in a:
rel = rel*subs[sym]**p
rels[j] = rel
return gens, rels
def _simplify_relators(rels, identity):
"""Relies upon ``_simplification_technique_1`` for its functioning. """
rels = rels[:]
rels = list(set(_simplification_technique_1(rels)))
rels.sort()
rels = [r.identity_cyclic_reduction() for r in rels]
try:
rels.remove(identity)
except ValueError:
pass
return rels
# Pg 350, section 2.5.1 from [2]
def elimination_technique_1(gens, rels, identity):
rels = rels[:]
# the shorter relators are examined first so that generators selected for
# elimination will have shorter strings as equivalent
rels.sort()
gens = gens[:]
redundant_gens = {}
redundant_rels = []
used_gens = set()
# examine each relator in relator list for any generator occurring exactly
# once
for rel in rels:
# don't look for a redundant generator in a relator which
# depends on previously found ones
contained_gens = rel.contains_generators()
if any([g in contained_gens for g in redundant_gens]):
continue
contained_gens = list(contained_gens)
contained_gens.sort(reverse = True)
for gen in contained_gens:
if rel.generator_count(gen) == 1 and gen not in used_gens:
k = rel.exponent_sum(gen)
gen_index = rel.index(gen**k)
bk = rel.subword(gen_index + 1, len(rel))
fw = rel.subword(0, gen_index)
chi = bk*fw
redundant_gens[gen] = chi**(-1*k)
used_gens.update(chi.contains_generators())
redundant_rels.append(rel)
break
rels = [r for r in rels if r not in redundant_rels]
# eliminate the redundant generators from remaining relators
rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels]
rels = list(set(rels))
try:
rels.remove(identity)
except ValueError:
pass
gens = [g for g in gens if g not in redundant_gens]
return gens, rels
def _simplification_technique_1(rels):
"""
All relators are checked to see if they are of the form `gen^n`. If any
such relators are found then all other relators are processed for strings
in the `gen` known order.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import _simplification_technique_1
>>> F, x, y = free_group("x, y")
>>> w1 = [x**2*y**4, x**3]
>>> _simplification_technique_1(w1)
[x**-1*y**4, x**3]
>>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5]
>>> _simplification_technique_1(w2)
[x**-1*y*x**-1, x**3, x**-1*y**-2, y**5]
>>> w3 = [x**6*y**4, x**4]
>>> _simplification_technique_1(w3)
[x**2*y**4, x**4]
"""
from sympy import gcd
rels = rels[:]
# dictionary with "gen: n" where gen^n is one of the relators
exps = {}
for i in range(len(rels)):
rel = rels[i]
if rel.number_syllables() == 1:
g = rel[0]
exp = abs(rel.array_form[0][1])
if rel.array_form[0][1] < 0:
rels[i] = rels[i]**-1
g = g**-1
if g in exps:
exp = gcd(exp, exps[g].array_form[0][1])
exps[g] = g**exp
one_syllables_words = exps.values()
# decrease some of the exponents in relators, making use of the single
# syllable relators
for i in range(len(rels)):
rel = rels[i]
if rel in one_syllables_words:
continue
rel = rel.eliminate_words(one_syllables_words, _all = True)
# if rels[i] contains g**n where abs(n) is greater than half of the power p
# of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0)
for g in rel.contains_generators():
if g in exps:
exp = exps[g].array_form[0][1]
max_exp = (exp + 1)//2
rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True)
rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True)
rels[i] = rel
rels = [r.identity_cyclic_reduction() for r in rels]
return rels
###############################################################################
# SUBGROUP PRESENTATIONS #
###############################################################################
# Pg 175 [1]
def define_schreier_generators(C, homomorphism=False):
'''
Parameters
==========
C -- Coset table.
homomorphism -- When set to True, return a dictionary containing the images
of the presentation generators in the original group.
'''
y = []
gamma = 1
f = C.fp_group
X = f.generators
if homomorphism:
# `_gens` stores the elements of the parent group to
# to which the schreier generators correspond to.
_gens = {}
# compute the schreier Traversal
tau = {}
tau[0] = f.identity
C.P = [[None]*len(C.A) for i in range(C.n)]
for alpha, x in product(C.omega, C.A):
beta = C.table[alpha][C.A_dict[x]]
if beta == gamma:
C.P[alpha][C.A_dict[x]] = "<identity>"
C.P[beta][C.A_dict_inv[x]] = "<identity>"
gamma += 1
if homomorphism:
tau[beta] = tau[alpha]*x
elif x in X and C.P[alpha][C.A_dict[x]] is None:
y_alpha_x = '%s_%s' % (x, alpha)
y.append(y_alpha_x)
C.P[alpha][C.A_dict[x]] = y_alpha_x
if homomorphism:
_gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1
grp_gens = list(free_group(', '.join(y)))
C._schreier_free_group = grp_gens.pop(0)
C._schreier_generators = grp_gens
if homomorphism:
C._schreier_gen_elem = _gens
# replace all elements of P by, free group elements
for i, j in product(range(len(C.P)), range(len(C.A))):
# if equals "<identity>", replace by identity element
if C.P[i][j] == "<identity>":
C.P[i][j] = C._schreier_free_group.identity
elif isinstance(C.P[i][j], str):
r = C._schreier_generators[y.index(C.P[i][j])]
C.P[i][j] = r
beta = C.table[i][j]
C.P[beta][j + 1] = r**-1
def reidemeister_relators(C):
R = C.fp_group.relators
rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)]
order_1_gens = set([i for i in rels if len(i) == 1])
# remove all the order 1 generators from relators
rels = list(filter(lambda rel: rel not in order_1_gens, rels))
# replace order 1 generators by identity element in reidemeister relators
for i in range(len(rels)):
w = rels[i]
w = w.eliminate_words(order_1_gens, _all=True)
rels[i] = w
C._schreier_generators = [i for i in C._schreier_generators
if not (i in order_1_gens or i**-1 in order_1_gens)]
# Tietze transformation 1 i.e TT_1
# remove cyclic conjugate elements from relators
i = 0
while i < len(rels):
w = rels[i]
j = i + 1
while j < len(rels):
if w.is_cyclic_conjugate(rels[j]):
del rels[j]
else:
j += 1
i += 1
C._reidemeister_relators = rels
def rewrite(C, alpha, w):
"""
Parameters
==========
C: CosetTable
alpha: A live coset
w: A word in `A*`
Returns
=======
rho(tau(alpha), w)
Examples
========
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite
>>> from sympy.combinatorics.free_groups import free_group
>>> F, x, y = free_group("x ,y")
>>> f = FpGroup(F, [x**2, y**3, (x*y)**6])
>>> C = CosetTable(f, [])
>>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]]
>>> C.p = [0, 1, 2, 3, 4, 5]
>>> define_schreier_generators(C)
>>> rewrite(C, 0, (x*y)**6)
x_4*y_2*x_3*x_1*x_2*y_4*x_5
"""
v = C._schreier_free_group.identity
for i in range(len(w)):
x_i = w[i]
v = v*C.P[alpha][C.A_dict[x_i]]
alpha = C.table[alpha][C.A_dict[x_i]]
return v
# Pg 350, section 2.5.2 from [2]
def elimination_technique_2(C):
"""
This technique eliminates one generator at a time. Heuristically this
seems superior in that we may select for elimination the generator with
shortest equivalent string at each stage.
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \
reidemeister_relators, define_schreier_generators, elimination_technique_2
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x]
>>> C = coset_enumeration_r(f, H)
>>> C.compress(); C.standardize()
>>> define_schreier_generators(C)
>>> reidemeister_relators(C)
>>> elimination_technique_2(C)
([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2])
"""
rels = C._reidemeister_relators
rels.sort(reverse=True)
gens = C._schreier_generators
for i in range(len(gens) - 1, -1, -1):
rel = rels[i]
for j in range(len(gens) - 1, -1, -1):
gen = gens[j]
if rel.generator_count(gen) == 1:
k = rel.exponent_sum(gen)
gen_index = rel.index(gen**k)
bk = rel.subword(gen_index + 1, len(rel))
fw = rel.subword(0, gen_index)
rep_by = (bk*fw)**(-1*k)
del rels[i]; del gens[j]
for l in range(len(rels)):
rels[l] = rels[l].eliminate_word(gen, rep_by)
break
C._reidemeister_relators = rels
C._schreier_generators = gens
return C._schreier_generators, C._reidemeister_relators
def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False):
"""
Parameters
==========
fp_group: A finitely presented group, an instance of FpGroup
H: A subgroup whose presentation is to be found, given as a list
of words in generators of `fp_grp`
homomorphism: When set to True, return a homomorphism from the subgroup
to the parent group
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation
>>> F, x, y = free_group("x, y")
Example 5.6 Pg. 177 from [1]
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
>>> H = [x*y, x**-1*y**-1*x*y*x]
>>> reidemeister_presentation(f, H)
((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))
Example 5.8 Pg. 183 from [1]
>>> f = FpGroup(F, [x**3, y**3, (x*y)**3])
>>> H = [x*y, x*y**-1]
>>> reidemeister_presentation(f, H)
((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))
Exercises Q2. Pg 187 from [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> H = [x]
>>> reidemeister_presentation(f, H)
((x_0,), (x_0**4,))
Example 5.9 Pg. 183 from [1]
>>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
>>> H = [x]
>>> reidemeister_presentation(f, H)
((x_0,), (x_0**6,))
"""
if not C:
C = coset_enumeration_r(fp_grp, H)
C.compress(); C.standardize()
define_schreier_generators(C, homomorphism=homomorphism)
reidemeister_relators(C)
gens, rels = C._schreier_generators, C._reidemeister_relators
gens, rels = simplify_presentation(gens, rels, change_gens=True)
C.schreier_generators = tuple(gens)
C.reidemeister_relators = tuple(rels)
if homomorphism:
_gens = []
for gen in gens:
_gens.append(C._schreier_gen_elem[str(gen)])
return C.schreier_generators, C.reidemeister_relators, _gens
return C.schreier_generators, C.reidemeister_relators
FpGroupElement = FreeGroupElement
|
9e1b9e673fde5971c6bf4783ae573be42e037a8d7a036259d7f874bf78842635 | from __future__ import print_function, division
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
from sympy.core.exprtools import factor_terms
from sympy.functions.elementary.exponential import exp, log
from sympy.polys import quo, roots
from sympy.simplify import powsimp
class Product(ExprWithIntLimits):
r"""Represents unevaluated products.
``Product`` represents a finite or infinite product, with the first
argument being the general form of terms in the series, and the second
argument being ``(dummy_variable, start, end)``, with ``dummy_variable``
taking all integer values from ``start`` through ``end``. In accordance
with long-standing mathematical convention, the end term is included in
the product.
Finite products
===============
For finite products (and products with symbolic limits assumed to be finite)
we follow the analogue of the summation convention described by Karr [1],
especially definition 3 of section 1.4. The product:
.. math::
\prod_{m \leq i < n} f(i)
has *the obvious meaning* for `m < n`, namely:
.. math::
\prod_{m \leq i < n} f(i) = f(m) f(m+1) \cdot \ldots \cdot f(n-2) f(n-1)
with the upper limit value `f(n)` excluded. The product over an empty set is
one if and only if `m = n`:
.. math::
\prod_{m \leq i < n} f(i) = 1 \quad \mathrm{for} \quad m = n
Finally, for all other products over empty sets we assume the following
definition:
.. math::
\prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \quad \mathrm{for} \quad m > n
It is important to note that above we define all products with the upper
limit being exclusive. This is in contrast to the usual mathematical notation,
but does not affect the product convention. Indeed we have:
.. math::
\prod_{m \leq i < n} f(i) = \prod_{i = m}^{n - 1} f(i)
where the difference in notation is intentional to emphasize the meaning,
with limits typeset on the top being inclusive.
Examples
========
>>> from sympy.abc import a, b, i, k, m, n, x
>>> from sympy import Product, factorial, oo
>>> Product(k, (k, 1, m))
Product(k, (k, 1, m))
>>> Product(k, (k, 1, m)).doit()
factorial(m)
>>> Product(k**2,(k, 1, m))
Product(k**2, (k, 1, m))
>>> Product(k**2,(k, 1, m)).doit()
factorial(m)**2
Wallis' product for pi:
>>> W = Product(2*i/(2*i-1) * 2*i/(2*i+1), (i, 1, oo))
>>> W
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
Direct computation currently fails:
>>> W.doit()
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
But we can approach the infinite product by a limit of finite products:
>>> from sympy import limit
>>> W2 = Product(2*i/(2*i-1)*2*i/(2*i+1), (i, 1, n))
>>> W2
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n))
>>> W2e = W2.doit()
>>> W2e
2**(-2*n)*4**n*factorial(n)**2/(RisingFactorial(1/2, n)*RisingFactorial(3/2, n))
>>> limit(W2e, n, oo)
pi/2
By the same formula we can compute sin(pi/2):
>>> from sympy import pi, gamma, simplify
>>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n))
>>> P = P.subs(x, pi/2)
>>> P
pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2
>>> Pe = P.doit()
>>> Pe
pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/(2*factorial(n)**2)
>>> Pe = Pe.rewrite(gamma)
>>> Pe
pi**2*gamma(n + 1 + pi/2)*gamma(n - pi/2 + 1)/(2*gamma(1 - pi/2)*gamma(1 + pi/2)*gamma(n + 1)**2)
>>> Pe = simplify(Pe)
>>> Pe
sin(pi**2/2)*gamma(n + 1 + pi/2)*gamma(n - pi/2 + 1)/gamma(n + 1)**2
>>> limit(Pe, n, oo)
sin(pi**2/2)
Products with the lower limit being larger than the upper one:
>>> Product(1/i, (i, 6, 1)).doit()
120
>>> Product(i, (i, 2, 5)).doit()
120
The empty product:
>>> Product(i, (i, n, n-1)).doit()
1
An example showing that the symbolic result of a product is still
valid for seemingly nonsensical values of the limits. Then the Karr
convention allows us to give a perfectly valid interpretation to
those products by interchanging the limits according to the above rules:
>>> P = Product(2, (i, 10, n)).doit()
>>> P
2**(n - 9)
>>> P.subs(n, 5)
1/16
>>> Product(2, (i, 10, 5)).doit()
1/16
>>> 1/Product(2, (i, 6, 9)).doit()
1/16
An explicit example of the Karr summation convention applied to products:
>>> P1 = Product(x, (i, a, b)).doit()
>>> P1
x**(-a + b + 1)
>>> P2 = Product(x, (i, b+1, a-1)).doit()
>>> P2
x**(a - b - 1)
>>> simplify(P1 * P2)
1
And another one:
>>> P1 = Product(i, (i, b, a)).doit()
>>> P1
RisingFactorial(b, a - b + 1)
>>> P2 = Product(i, (i, a+1, b-1)).doit()
>>> P2
RisingFactorial(a + 1, -a + b - 1)
>>> P1 * P2
RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1)
>>> simplify(P1 * P2)
1
See Also
========
Sum, summation
product
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
.. [2] https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
.. [3] https://en.wikipedia.org/wiki/Empty_product
"""
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
obj = ExprWithIntLimits.__new__(cls, function, *symbols, **assumptions)
return obj
def _eval_rewrite_as_Sum(self, *args, **kwargs):
from sympy.concrete.summations import Sum
return exp(Sum(log(self.function), *self.limits))
@property
def term(self):
return self._args[0]
function = term
def _eval_is_zero(self):
if self.has_empty_sequence:
return False
z = self.term.is_zero
if z is True:
return True
if self.has_finite_limits:
# A Product is zero only if its term is zero assuming finite limits.
return z
def _eval_is_extended_real(self):
if self.has_empty_sequence:
return True
return self.function.is_extended_real
def _eval_is_positive(self):
if self.has_empty_sequence:
return True
if self.function.is_positive and self.has_finite_limits:
return True
def _eval_is_nonnegative(self):
if self.has_empty_sequence:
return True
if self.function.is_nonnegative and self.has_finite_limits:
return True
def _eval_is_extended_nonnegative(self):
if self.has_empty_sequence:
return True
if self.function.is_extended_nonnegative:
return True
def _eval_is_extended_nonpositive(self):
if self.has_empty_sequence:
return True
def _eval_is_finite(self):
if self.has_finite_limits and self.function.is_finite:
return True
def doit(self, **hints):
# first make sure any definite limits have product
# variables with matching assumptions
reps = {}
for xab in self.limits:
# Must be imported here to avoid circular imports
from .summations import _dummy_with_inherited_properties_concrete
d = _dummy_with_inherited_properties_concrete(xab)
if d:
reps[xab[0]] = d
if reps:
undo = dict([(v, k) for k, v in reps.items()])
did = self.xreplace(reps).doit(**hints)
if type(did) is tuple: # when separate=True
did = tuple([i.xreplace(undo) for i in did])
else:
did = did.xreplace(undo)
return did
f = self.function
for index, limit in enumerate(self.limits):
i, a, b = limit
dif = b - a
if dif.is_integer and dif.is_negative:
a, b = b + 1, a - 1
f = 1 / f
g = self._eval_product(f, (i, a, b))
if g in (None, S.NaN):
return self.func(powsimp(f), *self.limits[index:])
else:
f = g
if hints.get('deep', True):
return f.doit(**hints)
else:
return powsimp(f)
def _eval_adjoint(self):
if self.is_commutative:
return self.func(self.function.adjoint(), *self.limits)
return None
def _eval_conjugate(self):
return self.func(self.function.conjugate(), *self.limits)
def _eval_product(self, term, limits):
from sympy.concrete.delta import deltaproduct, _has_simple_delta
from sympy.concrete.summations import summation
from sympy.functions import KroneckerDelta, RisingFactorial
(k, a, n) = limits
if k not in term.free_symbols:
if (term - 1).is_zero:
return S.One
return term**(n - a + 1)
if a == n:
return term.subs(k, a)
if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
return deltaproduct(term, limits)
dif = n - a
definite = dif.is_Integer
if definite and (dif < 100):
return self._eval_product_direct(term, limits)
elif term.is_polynomial(k):
poly = term.as_poly(k)
A = B = Q = S.One
all_roots = roots(poly)
M = 0
for r, m in all_roots.items():
M += m
A *= RisingFactorial(a - r, n - a + 1)**m
Q *= (n - r)**m
if M < poly.degree():
arg = quo(poly, Q.as_poly(k))
B = self.func(arg, (k, a, n)).doit()
return poly.LC()**(n - a + 1) * A * B
elif term.is_Add:
factored = factor_terms(term, fraction=True)
if factored.is_Mul:
return self._eval_product(factored, (k, a, n))
elif term.is_Mul:
# Factor in part without the summation variable and part with
without_k, with_k = term.as_coeff_mul(k)
if len(with_k) >= 2:
# More than one term including k, so still a multiplication
exclude, include = [], []
for t in with_k:
p = self._eval_product(t, (k, a, n))
if p is not None:
exclude.append(p)
else:
include.append(t)
if not exclude:
return None
else:
arg = term._new_rawargs(*include)
A = Mul(*exclude)
B = self.func(arg, (k, a, n)).doit()
return without_k**(n - a + 1)*A * B
else:
# Just a single term
p = self._eval_product(with_k[0], (k, a, n))
if p is None:
p = self.func(with_k[0], (k, a, n)).doit()
return without_k**(n - a + 1)*p
elif term.is_Pow:
if not term.base.has(k):
s = summation(term.exp, (k, a, n))
return term.base**s
elif not term.exp.has(k):
p = self._eval_product(term.base, (k, a, n))
if p is not None:
return p**term.exp
elif isinstance(term, Product):
evaluated = term.doit()
f = self._eval_product(evaluated, limits)
if f is None:
return self.func(evaluated, limits)
else:
return f
if definite:
return self._eval_product_direct(term, limits)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import product_simplify
rv = product_simplify(self)
return rv.doit() if kwargs['doit'] else rv
def _eval_transpose(self):
if self.is_commutative:
return self.func(self.function.transpose(), *self.limits)
return None
def _eval_product_direct(self, term, limits):
(k, a, n) = limits
return Mul(*[term.subs(k, a + i) for i in range(n - a + 1)])
def is_convergent(self):
r"""
See docs of :obj:`.Sum.is_convergent()` for explanation of convergence
in SymPy.
The infinite product:
.. math::
\prod_{1 \leq i < \infty} f(i)
is defined by the sequence of partial products:
.. math::
\prod_{i=1}^{n} f(i) = f(1) f(2) \cdots f(n)
as n increases without bound. The product converges to a non-zero
value if and only if the sum:
.. math::
\sum_{1 \leq i < \infty} \log{f(n)}
converges.
Examples
========
>>> from sympy import Interval, S, Product, Symbol, cos, pi, exp, oo
>>> n = Symbol('n', integer=True)
>>> Product(n/(n + 1), (n, 1, oo)).is_convergent()
False
>>> Product(1/n**2, (n, 1, oo)).is_convergent()
False
>>> Product(cos(pi/n), (n, 1, oo)).is_convergent()
True
>>> Product(exp(-n**2), (n, 1, oo)).is_convergent()
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinite_product
"""
from sympy.concrete.summations import Sum
sequence_term = self.function
log_sum = log(sequence_term)
lim = self.limits
try:
is_conv = Sum(log_sum, *lim).is_convergent()
except NotImplementedError:
if Sum(sequence_term - 1, *lim).is_absolutely_convergent() is S.true:
return S.true
raise NotImplementedError("The algorithm to find the product convergence of %s "
"is not yet implemented" % (sequence_term))
return is_conv
def reverse_order(expr, *indices):
"""
Reverse the order of a limit in a Product.
Usage
=====
``reverse_order(expr, *indices)`` reverses some limits in the expression
``expr`` which can be either a ``Sum`` or a ``Product``. The selectors in
the argument ``indices`` specify some indices whose limits get reversed.
These selectors are either variable names or numerical indices counted
starting from the inner-most limit tuple.
Examples
========
>>> from sympy import Product, simplify, RisingFactorial, gamma, Sum
>>> from sympy.abc import x, y, a, b, c, d
>>> P = Product(x, (x, a, b))
>>> Pr = P.reverse_order(x)
>>> Pr
Product(1/x, (x, b + 1, a - 1))
>>> Pr = Pr.doit()
>>> Pr
1/RisingFactorial(b + 1, a - b - 1)
>>> simplify(Pr)
gamma(b + 1)/gamma(a)
>>> P = P.doit()
>>> P
RisingFactorial(a, -a + b + 1)
>>> simplify(P)
gamma(b + 1)/gamma(a)
While one should prefer variable names when specifying which limits
to reverse, the index counting notation comes in handy in case there
are several symbols with the same name.
>>> S = Sum(x*y, (x, a, b), (y, c, d))
>>> S
Sum(x*y, (x, a, b), (y, c, d))
>>> S0 = S.reverse_order(0)
>>> S0
Sum(-x*y, (x, b + 1, a - 1), (y, c, d))
>>> S1 = S0.reverse_order(1)
>>> S1
Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1))
Of course we can mix both notations:
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
reorder_limit,
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
"""
l_indices = list(indices)
for i, indx in enumerate(l_indices):
if not isinstance(indx, int):
l_indices[i] = expr.index(indx)
e = 1
limits = []
for i, limit in enumerate(expr.limits):
l = limit
if i in l_indices:
e = -e
l = (limit[0], limit[2] + 1, limit[1] - 1)
limits.append(l)
return Product(expr.function ** e, *limits)
def product(*args, **kwargs):
r"""
Compute the product.
The notation for symbols is similar to the notation used in Sum or
Integral. product(f, (i, a, b)) computes the product of f with
respect to i from a to b, i.e.,
::
b
_____
product(f(n), (i, a, b)) = | | f(n)
| |
i = a
If it cannot compute the product, it returns an unevaluated Product object.
Repeated products can be computed by introducing additional symbols tuples::
>>> from sympy import product, symbols
>>> i, n, m, k = symbols('i n m k', integer=True)
>>> product(i, (i, 1, k))
factorial(k)
>>> product(m, (i, 1, k))
m**k
>>> product(i, (i, 1, k), (k, 1, n))
Product(factorial(k), (k, 1, n))
"""
prod = Product(*args, **kwargs)
if isinstance(prod, Product):
return prod.doit(deep=False)
else:
return prod
|
c4664f69e0a281c22a0537dbefee8f7e5b2ea9818af7c9da37622bb7fef9d639 | """
This module implements sums and products containing the Kronecker Delta function.
References
==========
- http://mathworld.wolfram.com/KroneckerDelta.html
"""
from __future__ import print_function, division
from sympy.core import Add, Mul, S, Dummy
from sympy.core.cache import cacheit
from sympy.core.compatibility import default_sort_key
from sympy.functions import KroneckerDelta, Piecewise, piecewise_fold
from sympy.sets import Interval
@cacheit
def _expand_delta(expr, index):
"""
Expand the first Add containing a simple KroneckerDelta.
"""
if not expr.is_Mul:
return expr
delta = None
func = Add
terms = [S.One]
for h in expr.args:
if delta is None and h.is_Add and _has_simple_delta(h, index):
delta = True
func = h.func
terms = [terms[0]*t for t in h.args]
else:
terms = [t*h for t in terms]
return func(*terms)
@cacheit
def _extract_delta(expr, index):
"""
Extract a simple KroneckerDelta from the expression.
Returns the tuple ``(delta, newexpr)`` where:
- ``delta`` is a simple KroneckerDelta expression if one was found,
or ``None`` if no simple KroneckerDelta expression was found.
- ``newexpr`` is a Mul containing the remaining terms; ``expr`` is
returned unchanged if no simple KroneckerDelta expression was found.
Examples
========
>>> from sympy import KroneckerDelta
>>> from sympy.concrete.delta import _extract_delta
>>> from sympy.abc import x, y, i, j, k
>>> _extract_delta(4*x*y*KroneckerDelta(i, j), i)
(KroneckerDelta(i, j), 4*x*y)
>>> _extract_delta(4*x*y*KroneckerDelta(i, j), k)
(None, 4*x*y*KroneckerDelta(i, j))
See Also
========
sympy.functions.special.tensor_functions.KroneckerDelta
deltaproduct
deltasummation
"""
if not _has_simple_delta(expr, index):
return (None, expr)
if isinstance(expr, KroneckerDelta):
return (expr, S.One)
if not expr.is_Mul:
raise ValueError("Incorrect expr")
delta = None
terms = []
for arg in expr.args:
if delta is None and _is_simple_delta(arg, index):
delta = arg
else:
terms.append(arg)
return (delta, expr.func(*terms))
@cacheit
def _has_simple_delta(expr, index):
"""
Returns True if ``expr`` is an expression that contains a KroneckerDelta
that is simple in the index ``index``, meaning that this KroneckerDelta
is nonzero for a single value of the index ``index``.
"""
if expr.has(KroneckerDelta):
if _is_simple_delta(expr, index):
return True
if expr.is_Add or expr.is_Mul:
for arg in expr.args:
if _has_simple_delta(arg, index):
return True
return False
@cacheit
def _is_simple_delta(delta, index):
"""
Returns True if ``delta`` is a KroneckerDelta and is nonzero for a single
value of the index ``index``.
"""
if isinstance(delta, KroneckerDelta) and delta.has(index):
p = (delta.args[0] - delta.args[1]).as_poly(index)
if p:
return p.degree() == 1
return False
@cacheit
def _remove_multiple_delta(expr):
"""
Evaluate products of KroneckerDelta's.
"""
from sympy.solvers import solve
if expr.is_Add:
return expr.func(*list(map(_remove_multiple_delta, expr.args)))
if not expr.is_Mul:
return expr
eqs = []
newargs = []
for arg in expr.args:
if isinstance(arg, KroneckerDelta):
eqs.append(arg.args[0] - arg.args[1])
else:
newargs.append(arg)
if not eqs:
return expr
solns = solve(eqs, dict=True)
if len(solns) == 0:
return S.Zero
elif len(solns) == 1:
for key in solns[0].keys():
newargs.append(KroneckerDelta(key, solns[0][key]))
expr2 = expr.func(*newargs)
if expr != expr2:
return _remove_multiple_delta(expr2)
return expr
@cacheit
def _simplify_delta(expr):
"""
Rewrite a KroneckerDelta's indices in its simplest form.
"""
from sympy.solvers import solve
if isinstance(expr, KroneckerDelta):
try:
slns = solve(expr.args[0] - expr.args[1], dict=True)
if slns and len(slns) == 1:
return Mul(*[KroneckerDelta(*(key, value))
for key, value in slns[0].items()])
except NotImplementedError:
pass
return expr
@cacheit
def deltaproduct(f, limit):
"""
Handle products containing a KroneckerDelta.
See Also
========
deltasummation
sympy.functions.special.tensor_functions.KroneckerDelta
sympy.concrete.products.product
"""
from sympy.concrete.products import product
if ((limit[2] - limit[1]) < 0) == True:
return S.One
if not f.has(KroneckerDelta):
return product(f, limit)
if f.is_Add:
# Identify the term in the Add that has a simple KroneckerDelta
delta = None
terms = []
for arg in sorted(f.args, key=default_sort_key):
if delta is None and _has_simple_delta(arg, limit[0]):
delta = arg
else:
terms.append(arg)
newexpr = f.func(*terms)
k = Dummy("kprime", integer=True)
if isinstance(limit[1], int) and isinstance(limit[2], int):
result = deltaproduct(newexpr, limit) + sum([
deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) *
delta.subs(limit[0], ik) *
deltaproduct(newexpr, (limit[0], ik + 1, limit[2])) for ik in range(int(limit[1]), int(limit[2] + 1))]
)
else:
result = deltaproduct(newexpr, limit) + deltasummation(
deltaproduct(newexpr, (limit[0], limit[1], k - 1)) *
delta.subs(limit[0], k) *
deltaproduct(newexpr, (limit[0], k + 1, limit[2])),
(k, limit[1], limit[2]),
no_piecewise=_has_simple_delta(newexpr, limit[0])
)
return _remove_multiple_delta(result)
delta, _ = _extract_delta(f, limit[0])
if not delta:
g = _expand_delta(f, limit[0])
if f != g:
from sympy import factor
try:
return factor(deltaproduct(g, limit))
except AssertionError:
return deltaproduct(g, limit)
return product(f, limit)
return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \
S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1))
@cacheit
def deltasummation(f, limit, no_piecewise=False):
"""
Handle summations containing a KroneckerDelta.
The idea for summation is the following:
- If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
we try to simplify it.
If we could simplify it, then we sum the resulting expression.
We already know we can sum a simplified expression, because only
simple KroneckerDelta expressions are involved.
If we couldn't simplify it, there are two cases:
1) The expression is a simple expression: we return the summation,
taking care if we are dealing with a Derivative or with a proper
KroneckerDelta.
2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
nothing at all.
- If the expr is a multiplication expr having a KroneckerDelta term:
First we expand it.
If the expansion did work, then we try to sum the expansion.
If not, we try to extract a simple KroneckerDelta term, then we have two
cases:
1) We have a simple KroneckerDelta term, so we return the summation.
2) We didn't have a simple term, but we do have an expression with
simplified KroneckerDelta terms, so we sum this expression.
Examples
========
>>> from sympy import oo, symbols
>>> from sympy.abc import k
>>> i, j = symbols('i, j', integer=True, finite=True)
>>> from sympy.concrete.delta import deltasummation
>>> from sympy import KroneckerDelta, Piecewise
>>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
1
>>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
Piecewise((1, i >= 0), (0, True))
>>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
Piecewise((1, (i >= 1) & (i <= 3)), (0, True))
>>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
j*KroneckerDelta(i, j)
>>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
i
>>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
j
See Also
========
deltaproduct
sympy.functions.special.tensor_functions.KroneckerDelta
sympy.concrete.sums.summation
"""
from sympy.concrete.summations import summation
from sympy.solvers import solve
if ((limit[2] - limit[1]) < 0) == True:
return S.Zero
if not f.has(KroneckerDelta):
return summation(f, limit)
x = limit[0]
g = _expand_delta(f, x)
if g.is_Add:
return piecewise_fold(
g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))
# try to extract a simple KroneckerDelta term
delta, expr = _extract_delta(g, x)
if (delta is not None) and (delta.delta_range is not None):
dinf, dsup = delta.delta_range
if (limit[1] - dinf <= 0) == True and (limit[2] - dsup >= 0) == True:
no_piecewise = True
if not delta:
return summation(f, limit)
solns = solve(delta.args[0] - delta.args[1], x)
if len(solns) == 0:
return S.Zero
elif len(solns) != 1:
from sympy.concrete.summations import Sum
return Sum(f, limit)
value = solns[0]
if no_piecewise:
return expr.subs(x, value)
return Piecewise(
(expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
(S.Zero, True)
)
|
eca9eb1f0ba27754b5a78abde4afdfd88d65e6a5c97c64284147cff29536c27f | """Gosper's algorithm for hypergeometric summation. """
from __future__ import print_function, division
from sympy.core import S, Dummy, symbols
from sympy.core.compatibility import is_sequence
from sympy.polys import Poly, parallel_poly_from_expr, factor
from sympy.solvers import solve
from sympy.simplify import hypersimp
def gosper_normal(f, g, n, polys=True):
r"""
Compute the Gosper's normal form of ``f`` and ``g``.
Given relatively prime univariate polynomials ``f`` and ``g``,
rewrite their quotient to a normal form defined as follows:
.. math::
\frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}
where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
monic polynomials in ``n`` with the following properties:
1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
2. `\gcd(B(n), C(n+1)) = 1`
3. `\gcd(A(n), C(n)) = 1`
This normal form, or rational factorization in other words, is a
crucial step in Gosper's algorithm and in solving of difference
equations. It can be also used to decide if two hypergeometric
terms are similar or not.
This procedure will return a tuple containing elements of this
factorization in the form ``(Z*A, B, C)``.
Examples
========
>>> from sympy.concrete.gosper import gosper_normal
>>> from sympy.abc import n
>>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
(1/4, n + 3/2, n + 1/4)
"""
(p, q), opt = parallel_poly_from_expr(
(f, g), n, field=True, extension=True)
a, A = p.LC(), p.monic()
b, B = q.LC(), q.monic()
C, Z = A.one, a/b
h = Dummy('h')
D = Poly(n + h, n, h, domain=opt.domain)
R = A.resultant(B.compose(D))
roots = set(R.ground_roots().keys())
for r in set(roots):
if not r.is_Integer or r < 0:
roots.remove(r)
for i in sorted(roots):
d = A.gcd(B.shift(+i))
A = A.quo(d)
B = B.quo(d.shift(-i))
for j in range(1, i + 1):
C *= d.shift(-j)
A = A.mul_ground(Z)
if not polys:
A = A.as_expr()
B = B.as_expr()
C = C.as_expr()
return A, B, C
def gosper_term(f, n):
r"""
Compute Gosper's hypergeometric term for ``f``.
Suppose ``f`` is a hypergeometric term such that:
.. math::
s_n = \sum_{k=0}^{n-1} f_k
and `f_k` doesn't depend on `n`. Returns a hypergeometric
term `g_n` such that `g_{n+1} - g_n = f_n`.
Examples
========
>>> from sympy.concrete.gosper import gosper_term
>>> from sympy.functions import factorial
>>> from sympy.abc import n
>>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
(-n - 1/2)/(n + 1/4)
"""
r = hypersimp(f, n)
if r is None:
return None # 'f' is *not* a hypergeometric term
p, q = r.as_numer_denom()
A, B, C = gosper_normal(p, q, n)
B = B.shift(-1)
N = S(A.degree())
M = S(B.degree())
K = S(C.degree())
if (N != M) or (A.LC() != B.LC()):
D = {K - max(N, M)}
elif not N:
D = {K - N + 1, S.Zero}
else:
D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()}
for d in set(D):
if not d.is_Integer or d < 0:
D.remove(d)
if not D:
return None # 'f(n)' is *not* Gosper-summable
d = max(D)
coeffs = symbols('c:%s' % (d + 1), cls=Dummy)
domain = A.get_domain().inject(*coeffs)
x = Poly(coeffs, n, domain=domain)
H = A*x.shift(1) - B*x - C
solution = solve(H.coeffs(), coeffs)
if solution is None:
return None # 'f(n)' is *not* Gosper-summable
x = x.as_expr().subs(solution)
for coeff in coeffs:
if coeff not in solution:
x = x.subs(coeff, 0)
if x.is_zero:
return None # 'f(n)' is *not* Gosper-summable
else:
return B.as_expr()*x/C.as_expr()
def gosper_sum(f, k):
r"""
Gosper's hypergeometric summation algorithm.
Given a hypergeometric term ``f`` such that:
.. math ::
s_n = \sum_{k=0}^{n-1} f_k
and `f(n)` doesn't depend on `n`, returns `g_{n} - g(0)` where
`g_{n+1} - g_n = f_n`, or ``None`` if `s_n` can not be expressed
in closed form as a sum of hypergeometric terms.
Examples
========
>>> from sympy.concrete.gosper import gosper_sum
>>> from sympy.functions import factorial
>>> from sympy.abc import i, n, k
>>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
>>> gosper_sum(f, (k, 0, n))
(-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
>>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
True
>>> gosper_sum(f, (k, 3, n))
(-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
>>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
True
References
==========
.. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100
"""
indefinite = False
if is_sequence(k):
k, a, b = k
else:
indefinite = True
g = gosper_term(f, k)
if g is None:
return None
if indefinite:
result = f*g
else:
result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a)
if result is S.NaN:
try:
result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a)
except NotImplementedError:
result = None
return factor(result)
|
46d992e537edb533a9b687a73b28751ddfeb26dc3615bd619cba30bc4a2ecd3b | """Various algorithms for helping identifying numbers and sequences."""
from __future__ import print_function, division
from sympy.utilities import public
from sympy.core import Function, Symbol
from sympy.core.numbers import Zero
from sympy import (sympify, floor, lcm, denom, Integer, Rational,
exp, integrate, symbols, Product, product)
from sympy.polys.polyfuncs import rational_interpolate as rinterp
@public
def find_simple_recurrence_vector(l):
"""
This function is used internally by other functions from the
sympy.concrete.guess module. While most users may want to rather use the
function find_simple_recurrence when looking for recurrence relations
among rational numbers, the current function may still be useful when
some post-processing has to be done.
The function returns a vector of length n when a recurrence relation of
order n is detected in the sequence of rational numbers v.
If the returned vector has a length 1, then the returned value is always
the list [0], which means that no relation has been found.
While the functions is intended to be used with rational numbers, it should
work for other kinds of real numbers except for some cases involving
quadratic numbers; for that reason it should be used with some caution when
the argument is not a list of rational numbers.
Examples
========
>>> from sympy.concrete.guess import find_simple_recurrence_vector
>>> from sympy import fibonacci
>>> find_simple_recurrence_vector([fibonacci(k) for k in range(12)])
[1, -1, -1]
See Also
========
See the function sympy.concrete.guess.find_simple_recurrence which is more
user-friendly.
"""
q1 = [0]
q2 = [Integer(1)]
b, z = 0, len(l) >> 1
while len(q2) <= z:
while l[b]==0:
b += 1
if b == len(l):
c = 1
for x in q2:
c = lcm(c, denom(x))
if q2[0]*c < 0: c = -c
for k in range(len(q2)):
q2[k] = int(q2[k]*c)
return q2
a = Integer(1)/l[b]
m = [a]
for k in range(b+1, len(l)):
m.append(-sum(l[j+1]*m[b-j-1] for j in range(b, k))*a)
l, m = m, [0] * max(len(q2), b+len(q1))
for k in range(len(q2)):
m[k] = a*q2[k]
for k in range(b, b+len(q1)):
m[k] += q1[k-b]
while m[-1]==0: m.pop() # because trailing zeros can occur
q1, q2, b = q2, m, 1
return [0]
@public
def find_simple_recurrence(v, A=Function('a'), N=Symbol('n')):
"""
Detects and returns a recurrence relation from a sequence of several integer
(or rational) terms. The name of the function in the returned expression is
'a' by default; the main variable is 'n' by default. The smallest index in
the returned expression is always n (and never n-1, n-2, etc.).
Examples
========
>>> from sympy.concrete.guess import find_simple_recurrence
>>> from sympy import fibonacci
>>> find_simple_recurrence([fibonacci(k) for k in range(12)])
-a(n) - a(n + 1) + a(n + 2)
>>> from sympy import Function, Symbol
>>> a = [1, 1, 1]
>>> for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
>>> find_simple_recurrence(a, A=Function('f'), N=Symbol('i'))
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3)
"""
p = find_simple_recurrence_vector(v)
n = len(p)
if n <= 1: return Zero()
rel = Zero()
for k in range(n):
rel += A(N+n-1-k)*p[k]
return rel
@public
def rationalize(x, maxcoeff=10000):
"""
Helps identifying a rational number from a float (or mpmath.mpf) value by
using a continued fraction. The algorithm stops as soon as a large partial
quotient is detected (greater than 10000 by default).
Examples
========
>>> from sympy.concrete.guess import rationalize
>>> from mpmath import cos, pi
>>> rationalize(cos(pi/3))
1/2
>>> from mpmath import mpf
>>> rationalize(mpf("0.333333333333333"))
1/3
While the function is rather intended to help 'identifying' rational
values, it may be used in some cases for approximating real numbers.
(Though other functions may be more relevant in that case.)
>>> rationalize(pi, maxcoeff = 250)
355/113
See Also
========
Several other methods can approximate a real number as a rational, like:
* fractions.Fraction.from_decimal
* fractions.Fraction.from_float
* mpmath.identify
* mpmath.pslq by using the following syntax: mpmath.pslq([x, 1])
* mpmath.findpoly by using the following syntax: mpmath.findpoly(x, 1)
* sympy.simplify.nsimplify (which is a more general function)
The main difference between the current function and all these variants is
that control focuses on magnitude of partial quotients here rather than on
global precision of the approximation. If the real is "known to be" a
rational number, the current function should be able to detect it correctly
with the default settings even when denominator is great (unless its
expansion contains unusually big partial quotients) which may occur
when studying sequences of increasing numbers. If the user cares more
on getting simple fractions, other methods may be more convenient.
"""
p0, p1 = 0, 1
q0, q1 = 1, 0
a = floor(x)
while a < maxcoeff or q1==0:
p = a*p1 + p0
q = a*q1 + q0
p0, p1 = p1, p
q0, q1 = q1, q
if x==a: break
x = 1/(x-a)
a = floor(x)
return sympify(p) / q
@public
def guess_generating_function_rational(v, X=Symbol('x')):
"""
Tries to "guess" a rational generating function for a sequence of rational
numbers v.
Examples
========
>>> from sympy.concrete.guess import guess_generating_function_rational
>>> from sympy import fibonacci
>>> l = [fibonacci(k) for k in range(5,15)]
>>> guess_generating_function_rational(l)
(3*x + 5)/(-x**2 - x + 1)
See Also
========
sympy.series.approximants
mpmath.pade
"""
# a) compute the denominator as q
q = find_simple_recurrence_vector(v)
n = len(q)
if n <= 1: return None
# b) compute the numerator as p
p = [sum(v[i-k]*q[k] for k in range(min(i+1, n)))
for i in range(len(v)>>1)]
return (sum(p[k]*X**k for k in range(len(p)))
/ sum(q[k]*X**k for k in range(n)))
@public
def guess_generating_function(v, X=Symbol('x'), types=['all'], maxsqrtn=2):
"""
Tries to "guess" a generating function for a sequence of rational numbers v.
Only a few patterns are implemented yet.
The function returns a dictionary where keys are the name of a given type of
generating function. Six types are currently implemented:
type | formal definition
-------+----------------------------------------------------------------
ogf | f(x) = Sum( a_k * x^k , k: 0..infinity )
egf | f(x) = Sum( a_k * x^k / k! , k: 0..infinity )
lgf | f(x) = Sum( (-1)^(k+1) a_k * x^k / k , k: 1..infinity )
| (with initial index being hold as 1 rather than 0)
hlgf | f(x) = Sum( a_k * x^k / k , k: 1..infinity )
| (with initial index being hold as 1 rather than 0)
lgdogf | f(x) = derivate( log(Sum( a_k * x^k, k: 0..infinity )), x)
lgdegf | f(x) = derivate( log(Sum( a_k * x^k / k!, k: 0..infinity )), x)
In order to spare time, the user can select only some types of generating
functions (default being ['all']). While forgetting to use a list in the
case of a single type may seem to work most of the time as in: types='ogf'
this (convenient) syntax may lead to unexpected extra results in some cases.
Discarding a type when calling the function does not mean that the type will
not be present in the returned dictionary; it only means that no extra
computation will be performed for that type, but the function may still add
it in the result when it can be easily converted from another type.
Two generating functions (lgdogf and lgdegf) are not even computed if the
initial term of the sequence is 0; it may be useful in that case to try
again after having removed the leading zeros.
Examples
========
>>> from sympy.concrete.guess import guess_generating_function as ggf
>>> ggf([k+1 for k in range(12)], types=['ogf', 'lgf', 'hlgf'])
{'hlgf': 1/(1 - x), 'lgf': 1/(x + 1), 'ogf': 1/(x**2 - 2*x + 1)}
>>> from sympy import sympify
>>> l = sympify("[3/2, 11/2, 0, -121/2, -363/2, 121]")
>>> ggf(l)
{'ogf': (x + 3/2)/(11*x**2 - 3*x + 1)}
>>> from sympy import fibonacci
>>> ggf([fibonacci(k) for k in range(5, 15)], types=['ogf'])
{'ogf': (3*x + 5)/(-x**2 - x + 1)}
>>> from sympy import simplify, factorial
>>> ggf([factorial(k) for k in range(12)], types=['ogf', 'egf', 'lgf'])
{'egf': 1/(1 - x)}
>>> ggf([k+1 for k in range(12)], types=['egf'])
{'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
N-th root of a rational function can also be detected (below is an example
coming from the sequence A108626 from http://oeis.org).
The greatest n-th root to be tested is specified as maxsqrtn (default 2).
>>> ggf([1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf']
sqrt(1/(x**4 + 2*x**2 - 4*x + 1))
References
==========
.. [1] "Concrete Mathematics", R.L. Graham, D.E. Knuth, O. Patashnik
.. [2] https://oeis.org/wiki/Generating_functions
"""
# List of all types of all g.f. known by the algorithm
if 'all' in types:
types = ['ogf', 'egf', 'lgf', 'hlgf', 'lgdogf', 'lgdegf']
result = {}
# Ordinary Generating Function (ogf)
if 'ogf' in types:
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(v))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*v[i] for i in range(n+1)) for n in range(len(v))]
g = guess_generating_function_rational(t, X=X)
if g:
result['ogf'] = g**Rational(1, d+1)
break
# Exponential Generating Function (egf)
if 'egf' in types:
# Transform sequence (division by factorial)
w, f = [], Integer(1)
for i, k in enumerate(v):
f *= i if i else 1
w.append(k/f)
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(w))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['egf'] = g**Rational(1, d+1)
break
# Logarithmic Generating Function (lgf)
if 'lgf' in types:
# Transform sequence (multiplication by (-1)^(n+1) / n)
w, f = [], Integer(-1)
for i, k in enumerate(v):
f = -f
w.append(f*k/Integer(i+1))
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(w))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgf'] = g**Rational(1, d+1)
break
# Hyperbolic logarithmic Generating Function (hlgf)
if 'hlgf' in types:
# Transform sequence (division by n+1)
w = []
for i, k in enumerate(v):
w.append(k/Integer(i+1))
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(w))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['hlgf'] = g**Rational(1, d+1)
break
# Logarithmic derivative of ordinary generating Function (lgdogf)
if v[0] != 0 and ('lgdogf' in types
or ('ogf' in types and 'ogf' not in result)):
# Transform sequence by computing f'(x)/f(x)
# because log(f(x)) = integrate( f'(x)/f(x) )
a, w = sympify(v[0]), []
for n in range(len(v)-1):
w.append(
(v[n+1]*(n+1) - sum(w[-i-1]*v[i+1] for i in range(n)))/a)
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(w))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgdogf'] = g**Rational(1, d+1)
if 'ogf' not in result:
result['ogf'] = exp(integrate(result['lgdogf'], X))
break
# Logarithmic derivative of exponential generating Function (lgdegf)
if v[0] != 0 and ('lgdegf' in types
or ('egf' in types and 'egf' not in result)):
# Transform sequence / step 1 (division by factorial)
z, f = [], Integer(1)
for i, k in enumerate(v):
f *= i if i else 1
z.append(k/f)
# Transform sequence / step 2 by computing f'(x)/f(x)
# because log(f(x)) = integrate( f'(x)/f(x) )
a, w = z[0], []
for n in range(len(z)-1):
w.append(
(z[n+1]*(n+1) - sum(w[-i-1]*z[i+1] for i in range(n)))/a)
# Perform some convolutions of the sequence with itself
t = [1 if k==0 else 0 for k in range(len(w))]
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgdegf'] = g**Rational(1, d+1)
if 'egf' not in result:
result['egf'] = exp(integrate(result['lgdegf'], X))
break
return result
@public
def guess(l, all=False, evaluate=True, niter=2, variables=None):
"""
This function is adapted from the Rate.m package for Mathematica
written by Christian Krattenthaler.
It tries to guess a formula from a given sequence of rational numbers.
In order to speed up the process, the 'all' variable is set to False by
default, stopping the computation as some results are returned during an
iteration; the variable can be set to True if more iterations are needed
(other formulas may be found; however they may be equivalent to the first
ones).
Another option is the 'evaluate' variable (default is True); setting it
to False will leave the involved products unevaluated.
By default, the number of iterations is set to 2 but a greater value (up
to len(l)-1) can be specified with the optional 'niter' variable.
More and more convoluted results are found when the order of the
iteration gets higher:
* first iteration returns polynomial or rational functions;
* second iteration returns products of rising factorials and their
inverses;
* third iteration returns products of products of rising factorials
and their inverses;
* etc.
The returned formulas contain symbols i0, i1, i2, ... where the main
variables is i0 (and auxiliary variables are i1, i2, ...). A list of
other symbols can be provided in the 'variables' option; the length of
the least should be the value of 'niter' (more is acceptable but only
the first symbols will be used); in this case, the main variable will be
the first symbol in the list.
Examples
========
>>> from sympy.concrete.guess import guess
>>> guess([1,2,6,24,120], evaluate=False)
[Product(i1 + 1, (i1, 1, i0 - 1))]
>>> from sympy import symbols
>>> r = guess([1,2,7,42,429,7436,218348,10850216], niter=4)
>>> i0 = symbols("i0")
>>> [r[0].subs(i0,n).doit() for n in range(1,10)]
[1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460]
"""
if any(a==0 for a in l[:-1]):
return []
N = len(l)
niter = min(N-1, niter)
myprod = product if evaluate else Product
g = []
res = []
if variables is None:
symb = symbols('i:'+str(niter))
else:
symb = variables
for k, s in enumerate(symb):
g.append(l)
n, r = len(l), []
for i in range(n-2-1, -1, -1):
ri = rinterp(enumerate(g[k][:-1], start=1), i, X=s)
if ((denom(ri).subs({s:n}) != 0)
and (ri.subs({s:n}) - g[k][-1] == 0)
and ri not in r):
r.append(ri)
if r:
for i in range(k-1, -1, -1):
r = list(map(lambda v: g[i][0]
* myprod(v, (symb[i+1], 1, symb[i]-1)), r))
if not all: return r
res += r
l = [Rational(l[i+1], l[i]) for i in range(N-k-1)]
return res
|
b1b8eba17baea611e3fa8ee57d0d7359609257c91a682305762aa218131f7414 | from __future__ import print_function, division
from sympy.core.add import Add
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.relational import Equality, Relational
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import sympify
from sympy.functions.elementary.piecewise import (piecewise_fold,
Piecewise)
from sympy.logic.boolalg import BooleanFunction
from sympy.tensor.indexed import Idx
from sympy.sets.sets import Interval
from sympy.sets.fancysets import Range
from sympy.utilities import flatten
from sympy.utilities.iterables import sift
from sympy.utilities.exceptions import SymPyDeprecationWarning
def _common_new(cls, function, *symbols, **assumptions):
"""Return either a special return value or the tuple,
(function, limits, orientation). This code is common to
both ExprWithLimits and AddWithLimits."""
function = sympify(function)
if isinstance(function, Equality):
# This transforms e.g. Integral(Eq(x, y)) to Eq(Integral(x), Integral(y))
# but that is only valid for definite integrals.
limits, orientation = _process_limits(*symbols)
if not (limits and all(len(limit) == 3 for limit in limits)):
SymPyDeprecationWarning(
feature='Integral(Eq(x, y))',
useinstead='Eq(Integral(x, z), Integral(y, z))',
issue=18053,
deprecated_since_version=1.6,
).warn()
lhs = function.lhs
rhs = function.rhs
return Equality(cls(lhs, *symbols, **assumptions), \
cls(rhs, *symbols, **assumptions))
if function is S.NaN:
return S.NaN
if symbols:
limits, orientation = _process_limits(*symbols)
for i, li in enumerate(limits):
if len(li) == 4:
function = function.subs(li[0], li[-1])
limits[i] = Tuple(*li[:-1])
else:
# symbol not provided -- we can still try to compute a general form
free = function.free_symbols
if len(free) != 1:
raise ValueError(
"specify dummy variables for %s" % function)
limits, orientation = [Tuple(s) for s in free], 1
# denest any nested calls
while cls == type(function):
limits = list(function.limits) + limits
function = function.function
# Any embedded piecewise functions need to be brought out to the
# top level. We only fold Piecewise that contain the integration
# variable.
reps = {}
symbols_of_integration = set([i[0] for i in limits])
for p in function.atoms(Piecewise):
if not p.has(*symbols_of_integration):
reps[p] = Dummy()
# mask off those that don't
function = function.xreplace(reps)
# do the fold
function = piecewise_fold(function)
# remove the masking
function = function.xreplace({v: k for k, v in reps.items()})
return function, limits, orientation
def _process_limits(*symbols):
"""Process the list of symbols and convert them to canonical limits,
storing them as Tuple(symbol, lower, upper). The orientation of
the function is also returned when the upper limit is missing
so (x, 1, None) becomes (x, None, 1) and the orientation is changed.
"""
limits = []
orientation = 1
for V in symbols:
if isinstance(V, (Relational, BooleanFunction)):
variable = V.atoms(Symbol).pop()
V = (variable, V.as_set())
if isinstance(V, Symbol) or getattr(V, '_diff_wrt', False):
if isinstance(V, Idx):
if V.lower is None or V.upper is None:
limits.append(Tuple(V))
else:
limits.append(Tuple(V, V.lower, V.upper))
else:
limits.append(Tuple(V))
continue
elif is_sequence(V, Tuple):
if len(V) == 2 and isinstance(V[1], Range):
lo = V[1].inf
hi = V[1].sup
dx = abs(V[1].step)
V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo]
V = sympify(flatten(V)) # a list of sympified elements
if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False):
newsymbol = V[0]
if len(V) == 2 and isinstance(V[1], Interval): # 2 -> 3
# Interval
V[1:] = [V[1].start, V[1].end]
elif len(V) == 3:
# general case
if V[2] is None and not V[1] is None:
orientation *= -1
V = [newsymbol] + [i for i in V[1:] if i is not None]
if not isinstance(newsymbol, Idx) or len(V) == 3:
if len(V) == 4:
limits.append(Tuple(*V))
continue
if len(V) == 3:
if isinstance(newsymbol, Idx):
# Idx represents an integer which may have
# specified values it can take on; if it is
# given such a value, an error is raised here
# if the summation would try to give it a larger
# or smaller value than permitted. None and Symbolic
# values will not raise an error.
lo, hi = newsymbol.lower, newsymbol.upper
try:
if lo is not None and not bool(V[1] >= lo):
raise ValueError("Summation will set Idx value too low.")
except TypeError:
pass
try:
if hi is not None and not bool(V[2] <= hi):
raise ValueError("Summation will set Idx value too high.")
except TypeError:
pass
limits.append(Tuple(*V))
continue
if len(V) == 1 or (len(V) == 2 and V[1] is None):
limits.append(Tuple(newsymbol))
continue
elif len(V) == 2:
limits.append(Tuple(newsymbol, V[1]))
continue
raise ValueError('Invalid limits given: %s' % str(symbols))
return limits, orientation
class ExprWithLimits(Expr):
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
pre = _common_new(cls, function, *symbols, **assumptions)
if type(pre) is tuple:
function, limits, _ = pre
else:
return pre
# limits must have upper and lower bounds; the indefinite form
# is not supported. This restriction does not apply to AddWithLimits
if any(len(l) != 3 or None in l for l in limits):
raise ValueError('ExprWithLimits requires values for lower and upper bounds.')
obj = Expr.__new__(cls, **assumptions)
arglist = [function]
arglist.extend(limits)
obj._args = tuple(arglist)
obj.is_commutative = function.is_commutative # limits already checked
return obj
@property
def function(self):
"""Return the function applied across limits.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x
>>> Integral(x**2, (x,)).function
x**2
See Also
========
limits, variables, free_symbols
"""
return self._args[0]
@property
def limits(self):
"""Return the limits of expression.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, i
>>> Integral(x**i, (i, 1, 3)).limits
((i, 1, 3),)
See Also
========
function, variables, free_symbols
"""
return self._args[1:]
@property
def variables(self):
"""Return a list of the limit variables.
>>> from sympy import Sum
>>> from sympy.abc import x, i
>>> Sum(x**i, (i, 1, 3)).variables
[i]
See Also
========
function, limits, free_symbols
as_dummy : Rename dummy variables
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
"""
return [l[0] for l in self.limits]
@property
def bound_symbols(self):
"""Return only variables that are dummy variables.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, i, j, k
>>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols
[i, j]
See Also
========
function, limits, free_symbols
as_dummy : Rename dummy variables
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
"""
return [l[0] for l in self.limits if len(l) != 1]
@property
def free_symbols(self):
"""
This method returns the symbols in the object, excluding those
that take on a specific value (i.e. the dummy symbols).
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y
>>> Sum(x, (x, y, 1)).free_symbols
{y}
"""
# don't test for any special values -- nominal free symbols
# should be returned, e.g. don't return set() if the
# function is zero -- treat it like an unevaluated expression.
function, limits = self.function, self.limits
isyms = function.free_symbols
for xab in limits:
if len(xab) == 1:
isyms.add(xab[0])
continue
# take out the target symbol
if xab[0] in isyms:
isyms.remove(xab[0])
# add in the new symbols
for i in xab[1:]:
isyms.update(i.free_symbols)
return isyms
@property
def is_number(self):
"""Return True if the Sum has no free symbols, else False."""
return not self.free_symbols
def _eval_interval(self, x, a, b):
limits = [(i if i[0] != x else (x, a, b)) for i in self.limits]
integrand = self.function
return self.func(integrand, *limits)
def _eval_subs(self, old, new):
"""
Perform substitutions over non-dummy variables
of an expression with limits. Also, can be used
to specify point-evaluation of an abstract antiderivative.
Examples
========
>>> from sympy import Sum, oo
>>> from sympy.abc import s, n
>>> Sum(1/n**s, (n, 1, oo)).subs(s, 2)
Sum(n**(-2), (n, 1, oo))
>>> from sympy import Integral
>>> from sympy.abc import x, a
>>> Integral(a*x**2, x).subs(x, 4)
Integral(a*x**2, (x, 4))
See Also
========
variables : Lists the integration variables
transform : Perform mapping on the dummy variable for integrals
change_index : Perform mapping on the sum and product dummy variables
"""
from sympy.core.function import AppliedUndef, UndefinedFunction
func, limits = self.function, list(self.limits)
# If one of the expressions we are replacing is used as a func index
# one of two things happens.
# - the old variable first appears as a free variable
# so we perform all free substitutions before it becomes
# a func index.
# - the old variable first appears as a func index, in
# which case we ignore. See change_index.
# Reorder limits to match standard mathematical practice for scoping
limits.reverse()
if not isinstance(old, Symbol) or \
old.free_symbols.intersection(self.free_symbols):
sub_into_func = True
for i, xab in enumerate(limits):
if 1 == len(xab) and old == xab[0]:
if new._diff_wrt:
xab = (new,)
else:
xab = (old, old)
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0:
sub_into_func = False
break
if isinstance(old, AppliedUndef) or isinstance(old, UndefinedFunction):
sy2 = set(self.variables).intersection(set(new.atoms(Symbol)))
sy1 = set(self.variables).intersection(set(old.args))
if not sy2.issubset(sy1):
raise ValueError(
"substitution can not create dummy dependencies")
sub_into_func = True
if sub_into_func:
func = func.subs(old, new)
else:
# old is a Symbol and a dummy variable of some limit
for i, xab in enumerate(limits):
if len(xab) == 3:
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
if old == xab[0]:
break
# simplify redundant limits (x, x) to (x, )
for i, xab in enumerate(limits):
if len(xab) == 2 and (xab[0] - xab[1]).is_zero:
limits[i] = Tuple(xab[0], )
# Reorder limits back to representation-form
limits.reverse()
return self.func(func, *limits)
@property
def has_finite_limits(self):
"""
Returns True if the limits are known to be finite, either by the
explicit bounds, assumptions on the bounds, or assumptions on the
variables. False if known to be infinite, based on the bounds.
None if not enough information is available to determine.
Examples
========
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 1, 8)).has_finite_limits
True
>>> Integral(x, (x, 1, oo)).has_finite_limits
False
>>> M = Symbol('M')
>>> Sum(x, (x, 1, M)).has_finite_limits
>>> N = Symbol('N', integer=True)
>>> Product(x, (x, 1, N)).has_finite_limits
True
See Also
========
has_reversed_limits
"""
ret_None = False
for lim in self.limits:
if len(lim) == 3:
if any(l.is_infinite for l in lim[1:]):
# Any of the bounds are +/-oo
return False
elif any(l.is_infinite is None for l in lim[1:]):
# Maybe there are assumptions on the variable?
if lim[0].is_infinite is None:
ret_None = True
else:
if lim[0].is_infinite is None:
ret_None = True
if ret_None:
return None
return True
@property
def has_reversed_limits(self):
"""
Returns True if the limits are known to be in reversed order, either
by the explicit bounds, assumptions on the bounds, or assumptions on the
variables. False if known to be in normal order, based on the bounds.
None if not enough information is available to determine.
Examples
========
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 8, 1)).has_reversed_limits
True
>>> Sum(x, (x, 1, oo)).has_reversed_limits
False
>>> M = Symbol('M')
>>> Integral(x, (x, 1, M)).has_reversed_limits
>>> N = Symbol('N', integer=True, positive=True)
>>> Sum(x, (x, 1, N)).has_reversed_limits
False
>>> Product(x, (x, 2, N)).has_reversed_limits
>>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits
False
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence
"""
ret_None = False
for lim in self.limits:
if len(lim) == 3:
var, a, b = lim
dif = b - a
if dif.is_extended_negative:
return True
elif dif.is_extended_nonnegative:
continue
else:
ret_None = True
else:
return None
if ret_None:
return None
return False
class AddWithLimits(ExprWithLimits):
r"""Represents unevaluated oriented additions.
Parent class for Integral and Sum.
"""
def __new__(cls, function, *symbols, **assumptions):
pre = _common_new(cls, function, *symbols, **assumptions)
if type(pre) is tuple:
function, limits, orientation = pre
else:
return pre
obj = Expr.__new__(cls, **assumptions)
arglist = [orientation*function] # orientation not used in ExprWithLimits
arglist.extend(limits)
obj._args = tuple(arglist)
obj.is_commutative = function.is_commutative # limits already checked
return obj
def _eval_adjoint(self):
if all([x.is_real for x in flatten(self.limits)]):
return self.func(self.function.adjoint(), *self.limits)
return None
def _eval_conjugate(self):
if all([x.is_real for x in flatten(self.limits)]):
return self.func(self.function.conjugate(), *self.limits)
return None
def _eval_transpose(self):
if all([x.is_real for x in flatten(self.limits)]):
return self.func(self.function.transpose(), *self.limits)
return None
def _eval_factor(self, **hints):
if 1 == len(self.limits):
summand = self.function.factor(**hints)
if summand.is_Mul:
out = sift(summand.args, lambda w: w.is_commutative \
and not set(self.variables) & w.free_symbols)
return Mul(*out[True])*self.func(Mul(*out[False]), \
*self.limits)
else:
summand = self.func(self.function, *self.limits[0:-1]).factor()
if not summand.has(self.variables[-1]):
return self.func(1, [self.limits[-1]]).doit()*summand
elif isinstance(summand, Mul):
return self.func(summand, self.limits[-1]).factor()
return self
def _eval_expand_basic(self, **hints):
from sympy.matrices.matrices import MatrixBase
summand = self.function.expand(**hints)
if summand.is_Add and summand.is_commutative:
return Add(*[self.func(i, *self.limits) for i in summand.args])
elif isinstance(summand, MatrixBase):
return summand.applyfunc(lambda x: self.func(x, *self.limits))
elif summand != self.function:
return self.func(summand, *self.limits)
return self
|
de5e66834274fd40a3f4234d9ed76954ccde423a71b6cf8bba68ba778bc01614 | from __future__ import print_function, division
from sympy.calculus.singularities import is_decreasing
from sympy.calculus.util import AccumulationBounds
from sympy.concrete.expr_with_limits import AddWithLimits
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
from sympy.concrete.gosper import gosper_sum
from sympy.core.add import Add
from sympy.core.function import Derivative
from sympy.core.mul import Mul
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Wild, Symbol
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import And
from sympy.polys import apart, PolynomialError, together
from sympy.series.limitseq import limit_seq
from sympy.series.order import O
from sympy.sets.sets import FiniteSet
from sympy.simplify import denom
from sympy.simplify.combsimp import combsimp
from sympy.simplify.powsimp import powsimp
from sympy.solvers import solve
from sympy.solvers.solveset import solveset
import itertools
class Sum(AddWithLimits, ExprWithIntLimits):
r"""Represents unevaluated summation.
``Sum`` represents a finite or infinite series, with the first argument
being the general form of terms in the series, and the second argument
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
all integer values from ``start`` through ``end``. In accordance with
long-standing mathematical convention, the end term is included in the
summation.
Finite sums
===========
For finite sums (and sums with symbolic limits assumed to be finite) we
follow the summation convention described by Karr [1], especially
definition 3 of section 1.4. The sum:
.. math::
\sum_{m \leq i < n} f(i)
has *the obvious meaning* for `m < n`, namely:
.. math::
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
with the upper limit value `f(n)` excluded. The sum over an empty set is
zero if and only if `m = n`:
.. math::
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
Finally, for all other sums over empty sets we assume the following
definition:
.. math::
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
It is important to note that Karr defines all sums with the upper
limit being exclusive. This is in contrast to the usual mathematical notation,
but does not affect the summation convention. Indeed we have:
.. math::
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
where the difference in notation is intentional to emphasize the meaning,
with limits typeset on the top being inclusive.
Examples
========
>>> from sympy.abc import i, k, m, n, x
>>> from sympy import Sum, factorial, oo, IndexedBase, Function
>>> Sum(k, (k, 1, m))
Sum(k, (k, 1, m))
>>> Sum(k, (k, 1, m)).doit()
m**2/2 + m/2
>>> Sum(k**2, (k, 1, m))
Sum(k**2, (k, 1, m))
>>> Sum(k**2, (k, 1, m)).doit()
m**3/3 + m**2/2 + m/6
>>> Sum(x**k, (k, 0, oo))
Sum(x**k, (k, 0, oo))
>>> Sum(x**k, (k, 0, oo)).doit()
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
exp(x)
Here are examples to do summation with symbolic indices. You
can use either Function of IndexedBase classes:
>>> f = Function('f')
>>> Sum(f(n), (n, 0, 3)).doit()
f(0) + f(1) + f(2) + f(3)
>>> Sum(f(n), (n, 0, oo)).doit()
Sum(f(n), (n, 0, oo))
>>> f = IndexedBase('f')
>>> Sum(f[n]**2, (n, 0, 3)).doit()
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
An example showing that the symbolic result of a summation is still
valid for seemingly nonsensical values of the limits. Then the Karr
convention allows us to give a perfectly valid interpretation to
those sums by interchanging the limits according to the above rules:
>>> S = Sum(i, (i, 1, n)).doit()
>>> S
n**2/2 + n/2
>>> S.subs(n, -4)
6
>>> Sum(i, (i, 1, -4)).doit()
6
>>> Sum(-i, (i, -3, 0)).doit()
6
An explicit example of the Karr summation convention:
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
>>> S1
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
>>> S2
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
>>> S1 + S2
0
>>> S3 = Sum(i, (i, m, m-1)).doit()
>>> S3
0
See Also
========
summation
Product, sympy.concrete.products.product
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
.. [3] https://en.wikipedia.org/wiki/Empty_sum
"""
__slots__ = ('is_commutative',)
def __new__(cls, function, *symbols, **assumptions):
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
if not hasattr(obj, 'limits'):
return obj
if any(len(l) != 3 or None in l for l in obj.limits):
raise ValueError('Sum requires values for lower and upper bounds.')
return obj
def _eval_is_zero(self):
# a Sum is only zero if its function is zero or if all terms
# cancel out. This only answers whether the summand is zero; if
# not then None is returned since we don't analyze whether all
# terms cancel out.
if self.function.is_zero or self.has_empty_sequence:
return True
def _eval_is_extended_real(self):
if self.has_empty_sequence:
return True
return self.function.is_extended_real
def _eval_is_positive(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_positive
def _eval_is_negative(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_negative
def _eval_is_finite(self):
if self.has_finite_limits and self.function.is_finite:
return True
def doit(self, **hints):
if hints.get('deep', True):
f = self.function.doit(**hints)
else:
f = self.function
# first make sure any definite limits have summation
# variables with matching assumptions
reps = {}
for xab in self.limits:
d = _dummy_with_inherited_properties_concrete(xab)
if d:
reps[xab[0]] = d
if reps:
undo = dict([(v, k) for k, v in reps.items()])
did = self.xreplace(reps).doit(**hints)
if type(did) is tuple: # when separate=True
did = tuple([i.xreplace(undo) for i in did])
elif did is not None:
did = did.xreplace(undo)
else:
did = self
return did
if self.function.is_Matrix:
expanded = self.expand()
if self != expanded:
return expanded.doit()
return _eval_matrix_sum(self)
for n, limit in enumerate(self.limits):
i, a, b = limit
dif = b - a
if dif == -1:
# Any summation over an empty set is zero
return S.Zero
if dif.is_integer and dif.is_negative:
a, b = b + 1, a - 1
f = -f
newf = eval_sum(f, (i, a, b))
if newf is None:
if f == self.function:
zeta_function = self.eval_zeta_function(f, (i, a, b))
if zeta_function is not None:
return zeta_function
return self
else:
return self.func(f, *self.limits[n:])
f = newf
if hints.get('deep', True):
# eval_sum could return partially unevaluated
# result with Piecewise. In this case we won't
# doit() recursively.
if not isinstance(f, Piecewise):
return f.doit(**hints)
return f
def eval_zeta_function(self, f, limits):
"""
Check whether the function matches with the zeta function.
If it matches, then return a `Piecewise` expression because
zeta function does not converge unless `s > 1` and `q > 0`
"""
i, a, b = limits
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
result = f.match((w * i + y) ** (-z))
if result is not None and b is S.Infinity:
coeff = 1 / result[w] ** result[z]
s = result[z]
q = result[y] / result[w] + a
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
def _eval_derivative(self, x):
"""
Differentiate wrt x as long as x is not in the free symbols of any of
the upper or lower limits.
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
since the value of the sum is discontinuous in `a`. In a case
involving a limit variable, the unevaluated derivative is returned.
"""
# diff already confirmed that x is in the free symbols of self, but we
# don't want to differentiate wrt any free symbol in the upper or lower
# limits
# XXX remove this test for free_symbols when the default _eval_derivative is in
if isinstance(x, Symbol) and x not in self.free_symbols:
return S.Zero
# get limits and the function
f, limits = self.function, list(self.limits)
limit = limits.pop(-1)
if limits: # f is the argument to a Sum
f = self.func(f, *limits)
_, a, b = limit
if x in a.free_symbols or x in b.free_symbols:
return None
df = Derivative(f, x, evaluate=True)
rv = self.func(df, limit)
return rv
def _eval_difference_delta(self, n, step):
k, _, upper = self.args[-1]
new_upper = upper.subs(n, n + step)
if len(self.args) == 2:
f = self.args[0]
else:
f = self.func(*self.args[:-1])
return Sum(f, (k, upper + 1, new_upper)).doit()
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import factor_sum, sum_combine
from sympy.core.function import expand
from sympy.core.mul import Mul
# split the function into adds
terms = Add.make_args(expand(self.function))
s_t = [] # Sum Terms
o_t = [] # Other Terms
for term in terms:
if term.has(Sum):
# if there is an embedded sum here
# it is of the form x * (Sum(whatever))
# hence we make a Mul out of it, and simplify all interior sum terms
subterms = Mul.make_args(expand(term))
out_terms = []
for subterm in subterms:
# go through each term
if isinstance(subterm, Sum):
# if it's a sum, simplify it
out_terms.append(subterm._eval_simplify())
else:
# otherwise, add it as is
out_terms.append(subterm)
# turn it back into a Mul
s_t.append(Mul(*out_terms))
else:
o_t.append(term)
# next try to combine any interior sums for further simplification
result = Add(sum_combine(s_t), *o_t)
return factor_sum(result, limits=self.limits)
def is_convergent(self):
r"""Checks for the convergence of a Sum.
We divide the study of convergence of infinite sums and products in
two parts.
First Part:
One part is the question whether all the terms are well defined, i.e.,
they are finite in a sum and also non-zero in a product. Zero
is the analogy of (minus) infinity in products as
:math:`e^{-\infty} = 0`.
Second Part:
The second part is the question of convergence after infinities,
and zeros in products, have been omitted assuming that their number
is finite. This means that we only consider the tail of the sum or
product, starting from some point after which all terms are well
defined.
For example, in a sum of the form:
.. math::
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
where a and b are numbers. The routine will return true, even if there
are infinities in the term sequence (at most two). An analogous
product would be:
.. math::
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
This is how convergence is interpreted. It is concerned with what
happens at the limit. Finding the bad terms is another independent
matter.
Note: It is responsibility of user to see that the sum or product
is well defined.
There are various tests employed to check the convergence like
divergence test, root test, integral test, alternating series test,
comparison tests, Dirichlet tests. It returns true if Sum is convergent
and false if divergent and NotImplementedError if it can not be checked.
References
==========
.. [1] https://en.wikipedia.org/wiki/Convergence_tests
Examples
========
>>> from sympy import factorial, S, Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
True
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
False
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
False
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
True
See Also
========
Sum.is_absolutely_convergent()
sympy.concrete.products.Product.is_convergent()
"""
from sympy import Interval, Integral, log, symbols, simplify
p, q, r = symbols('p q r', cls=Wild)
sym = self.limits[0][0]
lower_limit = self.limits[0][1]
upper_limit = self.limits[0][2]
sequence_term = self.function
if len(sequence_term.free_symbols) > 1:
raise NotImplementedError("convergence checking for more than one symbol "
"containing series is not handled")
if lower_limit.is_finite and upper_limit.is_finite:
return S.true
# transform sym -> -sym and swap the upper_limit = S.Infinity
# and lower_limit = - upper_limit
if lower_limit is S.NegativeInfinity:
if upper_limit is S.Infinity:
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
lower_limit = -upper_limit
upper_limit = S.Infinity
sym_ = Dummy(sym.name, integer=True, positive=True)
sequence_term = sequence_term.xreplace({sym: sym_})
sym = sym_
interval = Interval(lower_limit, upper_limit)
# Piecewise function handle
if sequence_term.is_Piecewise:
for func, cond in sequence_term.args:
# see if it represents something going to oo
if cond == True or cond.as_set().sup is S.Infinity:
s = Sum(func, (sym, lower_limit, upper_limit))
return s.is_convergent()
return S.true
### -------- Divergence test ----------- ###
try:
lim_val = limit_seq(sequence_term, sym)
if lim_val is not None and lim_val.is_zero is False:
return S.false
except NotImplementedError:
pass
try:
lim_val_abs = limit_seq(abs(sequence_term), sym)
if lim_val_abs is not None and lim_val_abs.is_zero is False:
return S.false
except NotImplementedError:
pass
order = O(sequence_term, (sym, S.Infinity))
### --------- p-series test (1/n**p) ---------- ###
p_series_test = order.expr.match(sym**p)
if p_series_test is not None:
if p_series_test[p] < -1:
return S.true
if p_series_test[p] >= -1:
return S.false
### ------------- comparison test ------------- ###
# 1/(n**p*log(n)**q*log(log(n))**r) comparison
n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r))
if n_log_test is not None:
if (n_log_test[p] > 1 or
(n_log_test[p] == 1 and n_log_test[q] > 1) or
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
return S.true
return S.false
### ------------- Limit comparison test -----------###
# (1/n) comparison
try:
lim_comp = limit_seq(sym*sequence_term, sym)
if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
return S.false
except NotImplementedError:
pass
### ----------- ratio test ---------------- ###
next_sequence_term = sequence_term.xreplace({sym: sym + 1})
ratio = combsimp(powsimp(next_sequence_term/sequence_term))
try:
lim_ratio = limit_seq(ratio, sym)
if lim_ratio is not None and lim_ratio.is_number:
if abs(lim_ratio) > 1:
return S.false
if abs(lim_ratio) < 1:
return S.true
except NotImplementedError:
pass
### ----------- root test ---------------- ###
# lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
try:
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
if lim_evaluated is not None and lim_evaluated.is_number:
if lim_evaluated < 1:
return S.true
if lim_evaluated > 1:
return S.false
except NotImplementedError:
pass
### ------------- alternating series test ----------- ###
dict_val = sequence_term.match((-1)**(sym + p)*q)
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
return S.true
### ------------- integral test -------------- ###
check_interval = None
maxima = solveset(sequence_term.diff(sym), sym, interval)
if not maxima:
check_interval = interval
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
check_interval = Interval(maxima.sup, interval.sup)
if (check_interval is not None and
(is_decreasing(sequence_term, check_interval) or
is_decreasing(-sequence_term, check_interval))):
integral_val = Integral(
sequence_term, (sym, lower_limit, upper_limit))
try:
integral_val_evaluated = integral_val.doit()
if integral_val_evaluated.is_number:
return S(integral_val_evaluated.is_finite)
except NotImplementedError:
pass
### ----- Dirichlet and bounded times convergent tests ----- ###
# TODO
#
# Dirichlet_test
# https://en.wikipedia.org/wiki/Dirichlet%27s_test
#
# Bounded times convergent test
# It is based on comparison theorems for series.
# In particular, if the general term of a series can
# be written as a product of two terms a_n and b_n
# and if a_n is bounded and if Sum(b_n) is absolutely
# convergent, then the original series Sum(a_n * b_n)
# is absolutely convergent and so convergent.
#
# The following code can grows like 2**n where n is the
# number of args in order.expr
# Possibly combined with the potentially slow checks
# inside the loop, could make this test extremely slow
# for larger summation expressions.
if order.expr.is_Mul:
args = order.expr.args
argset = set(args)
### -------------- Dirichlet tests -------------- ###
m = Dummy('m', integer=True)
def _dirichlet_test(g_n):
try:
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
if ing_val is not None and ing_val.is_finite:
return S.true
except NotImplementedError:
pass
### -------- bounded times convergent test ---------###
def _bounded_convergent_test(g1_n, g2_n):
try:
lim_val = limit_seq(g1_n, sym)
if lim_val is not None and (lim_val.is_finite or (
isinstance(lim_val, AccumulationBounds)
and (lim_val.max - lim_val.min).is_finite)):
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
return S.true
except NotImplementedError:
pass
for n in range(1, len(argset)):
for a_tuple in itertools.combinations(args, n):
b_set = argset - set(a_tuple)
a_n = Mul(*a_tuple)
b_n = Mul(*b_set)
if is_decreasing(a_n, interval):
dirich = _dirichlet_test(b_n)
if dirich is not None:
return dirich
bc_test = _bounded_convergent_test(a_n, b_n)
if bc_test is not None:
return bc_test
_sym = self.limits[0][0]
sequence_term = sequence_term.xreplace({sym: _sym})
raise NotImplementedError("The algorithm to find the Sum convergence of %s "
"is not yet implemented" % (sequence_term))
def is_absolutely_convergent(self):
"""
Checks for the absolute convergence of an infinite series.
Same as checking convergence of absolute value of sequence_term of
an infinite series.
References
==========
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence
Examples
========
>>> from sympy import Sum, Symbol, sin, oo
>>> n = Symbol('n', integer=True)
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
False
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
True
See Also
========
Sum.is_convergent()
"""
return Sum(abs(self.function), self.limits).is_convergent()
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
"""
Return an Euler-Maclaurin approximation of self, where m is the
number of leading terms to sum directly and n is the number of
terms in the tail.
With m = n = 0, this is simply the corresponding integral
plus a first-order endpoint correction.
Returns (s, e) where s is the Euler-Maclaurin approximation
and e is the estimated error (taken to be the magnitude of
the first omitted term in the tail):
>>> from sympy.abc import k, a, b
>>> from sympy import Sum
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
1.28333333333333
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
>>> s
-log(2) + 7/20 + log(5)
>>> from sympy import sstr
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
(1.26629073187415, 0.0175000000000000)
The endpoints may be symbolic:
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
If the function is a polynomial of degree at most 2n+1, the
Euler-Maclaurin formula becomes exact (and e = 0 is returned):
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)
>>> Sum(k, (k, 2, b)).doit()
b**2/2 + b/2 - 1
With a nonzero eps specified, the summation is ended
as soon as the remainder term is less than the epsilon.
"""
from sympy.functions import bernoulli, factorial
from sympy.integrals import Integral
m = int(m)
n = int(n)
f = self.function
if len(self.limits) != 1:
raise ValueError("More than 1 limit")
i, a, b = self.limits[0]
if (a > b) == True:
if a - b == 1:
return S.Zero, S.Zero
a, b = b + 1, a - 1
f = -f
s = S.Zero
if m:
if b.is_Integer and a.is_Integer:
m = min(m, b - a + 1)
if not eps or f.is_polynomial(i):
for k in range(m):
s += f.subs(i, a + k)
else:
term = f.subs(i, a)
if term:
test = abs(term.evalf(3)) < eps
if test == True:
return s, abs(term)
elif not (test == False):
# a symbolic Relational class, can't go further
return term, S.Zero
s += term
for k in range(1, m):
term = f.subs(i, a + k)
if abs(term.evalf(3)) < eps and term != 0:
return s, abs(term)
s += term
if b - a + 1 == m:
return s, S.Zero
a += m
x = Dummy('x')
I = Integral(f.subs(i, x), (x, a, b))
if eval_integral:
I = I.doit()
s += I
def fpoint(expr):
if b is S.Infinity:
return expr.subs(i, a), 0
return expr.subs(i, a), expr.subs(i, b)
fa, fb = fpoint(f)
iterm = (fa + fb)/2
g = f.diff(i)
for k in range(1, n + 2):
ga, gb = fpoint(g)
term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
break
s += term
g = g.diff(i, 2, simplify=False)
return s + iterm, abs(term)
def reverse_order(self, *indices):
"""
Reverse the order of a limit in a Sum.
Usage
=====
``reverse_order(self, *indices)`` reverses some limits in the expression
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
the argument ``indices`` specify some indices whose limits get reversed.
These selectors are either variable names or numerical indices counted
starting from the inner-most limit tuple.
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y, a, b, c, d
>>> Sum(x, (x, 0, 3)).reverse_order(x)
Sum(-x, (x, 4, -1))
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
Sum(x*y, (x, 6, 0), (y, 7, -1))
>>> Sum(x, (x, a, b)).reverse_order(x)
Sum(-x, (x, b + 1, a - 1))
>>> Sum(x, (x, a, b)).reverse_order(0)
Sum(-x, (x, b + 1, a - 1))
While one should prefer variable names when specifying which limits
to reverse, the index counting notation comes in handy in case there
are several symbols with the same name.
>>> S = Sum(x**2, (x, a, b), (x, c, d))
>>> S
Sum(x**2, (x, a, b), (x, c, d))
>>> S0 = S.reverse_order(0)
>>> S0
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
>>> S1 = S0.reverse_order(1)
>>> S1
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
Of course we can mix both notations:
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
"""
l_indices = list(indices)
for i, indx in enumerate(l_indices):
if not isinstance(indx, int):
l_indices[i] = self.index(indx)
e = 1
limits = []
for i, limit in enumerate(self.limits):
l = limit
if i in l_indices:
e = -e
l = (limit[0], limit[2] + 1, limit[1] - 1)
limits.append(l)
return Sum(e * self.function, *limits)
def summation(f, *symbols, **kwargs):
r"""
Compute the summation of f with respect to symbols.
The notation for symbols is similar to the notation used in Integral.
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
i.e.,
::
b
____
\ `
summation(f, (i, a, b)) = ) f
/___,
i = a
If it cannot compute the sum, it returns an unevaluated Sum object.
Repeated sums can be computed by introducing additional symbols tuples::
>>> from sympy import summation, oo, symbols, log
>>> i, n, m = symbols('i n m', integer=True)
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
>>> from sympy.abc import x
>>> from sympy import factorial
>>> summation(x**n/factorial(n), (n, 0, oo))
exp(x)
See Also
========
Sum
Product, sympy.concrete.products.product
"""
return Sum(f, *symbols, **kwargs).doit(deep=False)
def telescopic_direct(L, R, n, limits):
"""Returns the direct summation of the terms of a telescopic sum
L is the term with lower index
R is the term with higher index
n difference between the indexes of L and R
For example:
>>> from sympy.concrete.summations import telescopic_direct
>>> from sympy.abc import k, a, b
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
"""
(i, a, b) = limits
s = 0
for m in range(n):
s += L.subs(i, a + m) + R.subs(i, b - m)
return s
def telescopic(L, R, limits):
'''Tries to perform the summation using the telescopic property
return None if not possible
'''
(i, a, b) = limits
if L.is_Add or R.is_Add:
return None
# We want to solve(L.subs(i, i + m) + R, m)
# First we try a simple match since this does things that
# solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails
k = Wild("k")
sol = (-R).match(L.subs(i, i + k))
s = None
if sol and k in sol:
s = sol[k]
if not (s.is_Integer and L.subs(i, i + s) == -R):
# sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
s = None
# But there are things that match doesn't do that solve
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
if s is None:
m = Dummy('m')
try:
sol = solve(L.subs(i, i + m) + R, m) or []
except NotImplementedError:
return None
sol = [si for si in sol if si.is_Integer and
(L.subs(i, i + si) + R).expand().is_zero]
if len(sol) != 1:
return None
s = sol[0]
if s < 0:
return telescopic_direct(R, L, abs(s), (i, a, b))
elif s > 0:
return telescopic_direct(L, R, s, (i, a, b))
def eval_sum(f, limits):
from sympy.concrete.delta import deltasummation, _has_simple_delta
from sympy.functions import KroneckerDelta
(i, a, b) = limits
if f.is_zero:
return S.Zero
if i not in f.free_symbols:
return f*(b - a + 1)
if a == b:
return f.subs(i, a)
if isinstance(f, Piecewise):
if not any(i in arg.args[1].free_symbols for arg in f.args):
# Piecewise conditions do not depend on the dummy summation variable,
# therefore we can fold: Sum(Piecewise((e, c), ...), limits)
# --> Piecewise((Sum(e, limits), c), ...)
newargs = []
for arg in f.args:
newexpr = eval_sum(arg.expr, limits)
if newexpr is None:
return None
newargs.append((newexpr, arg.cond))
return f.func(*newargs)
if f.has(KroneckerDelta):
f = f.replace(
lambda x: isinstance(x, Sum),
lambda x: x.factor()
)
if _has_simple_delta(f, limits[0]):
return deltasummation(f, limits)
dif = b - a
definite = dif.is_Integer
# Doing it directly may be faster if there are very few terms.
if definite and (dif < 100):
return eval_sum_direct(f, (i, a, b))
if isinstance(f, Piecewise):
return None
# Try to do it symbolically. Even when the number of terms is known,
# this can save time when b-a is big.
# We should try to transform to partial fractions
value = eval_sum_symbolic(f.expand(), (i, a, b))
if value is not None:
return value
# Do it directly
if definite:
return eval_sum_direct(f, (i, a, b))
def eval_sum_direct(expr, limits):
"""
Evaluate expression directly, but perform some simple checks first
to possibly result in a smaller expression and faster execution.
"""
from sympy.core import Add
(i, a, b) = limits
dif = b - a
# Linearity
if expr.is_Mul:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 1:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
if not L.has(i):
sR = eval_sum_direct(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_direct(L, (i, a, b))
if sL:
return sL*R
try:
expr = apart(expr, i) # see if it becomes an Add
except PolynomialError:
pass
if expr.is_Add:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 0:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*(dif + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
lsum = eval_sum_direct(L, (i, a, b))
rsum = eval_sum_direct(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
def eval_sum_symbolic(f, limits):
from sympy.functions import harmonic, bernoulli
f_orig = f
(i, a, b) = limits
if not f.has(i):
return f*(b - a + 1)
# Linearity
if f.is_Mul:
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 1:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = f.as_two_terms()
if not L.has(i):
sR = eval_sum_symbolic(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_symbolic(L, (i, a, b))
if sL:
return sL*R
try:
f = apart(f, i) # see if it becomes an Add
except PolynomialError:
pass
if f.is_Add:
L, R = f.as_two_terms()
lrsum = telescopic(L, R, (i, a, b))
if lrsum:
return lrsum
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 0:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*(b - a + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
lsum = eval_sum_symbolic(L, (i, a, b))
rsum = eval_sum_symbolic(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
# Polynomial terms with Faulhaber's formula
n = Wild('n')
result = f.match(i**n)
if result is not None:
n = result[n]
if n.is_Integer:
if n >= 0:
if (b is S.Infinity and not a is S.NegativeInfinity) or \
(a is S.NegativeInfinity and not b is S.Infinity):
return S.Infinity
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
elif a.is_Integer and a >= 1:
if n == -1:
return harmonic(b) - harmonic(a - 1)
else:
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
if not (a.has(S.Infinity, S.NegativeInfinity) or
b.has(S.Infinity, S.NegativeInfinity)):
# Geometric terms
c1 = Wild('c1', exclude=[i])
c2 = Wild('c2', exclude=[i])
c3 = Wild('c3', exclude=[i])
wexp = Wild('wexp')
# Here we first attempt powsimp on f for easier matching with the
# exponential pattern, and attempt expansion on the exponent for easier
# matching with the linear pattern.
e = f.powsimp().match(c1 ** wexp)
if e is not None:
e_exp = e.pop(wexp).expand().match(c2*i + c3)
if e_exp is not None:
e.update(e_exp)
if e is not None:
p = (c1**c3).subs(e)
q = (c1**c2).subs(e)
r = p*(q**a - q**(b + 1))/(1 - q)
l = p*(b - a + 1)
return Piecewise((l, Eq(q, S.One)), (r, True))
r = gosper_sum(f, (i, a, b))
if isinstance(r, (Mul,Add)):
from sympy import ordered, Tuple
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
den = denom(together(r))
den_sym = non_limit & den.free_symbols
args = []
for v in ordered(den_sym):
try:
s = solve(den, v)
m = Eq(v, s[0]) if s else S.false
if m != False:
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
break
except NotImplementedError:
continue
args.append((r, True))
return Piecewise(*args)
if not r in (None, S.NaN):
return r
h = eval_sum_hyper(f_orig, (i, a, b))
if h is not None:
return h
factored = f_orig.factor()
if factored != f_orig:
return eval_sum_symbolic(factored, (i, a, b))
def _eval_sum_hyper(f, i, a):
""" Returns (res, cond). Sums from a to oo. """
from sympy.functions import hyper
from sympy.simplify import hyperexpand, hypersimp, fraction, simplify
from sympy.polys.polytools import Poly, factor
from sympy.core.numbers import Float
if a != 0:
return _eval_sum_hyper(f.subs(i, i + a), i, 0)
if f.subs(i, 0) == 0:
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
return S.Zero, True
return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
hs = hypersimp(f, i)
if hs is None:
return None
if isinstance(hs, Float):
from sympy.simplify.simplify import nsimplify
hs = nsimplify(hs)
numer, denom = fraction(factor(hs))
top, topl = numer.as_coeff_mul(i)
bot, botl = denom.as_coeff_mul(i)
ab = [top, bot]
factors = [topl, botl]
params = [[], []]
for k in range(2):
for fac in factors[k]:
mul = 1
if fac.is_Pow:
mul = fac.exp
fac = fac.base
if not mul.is_Integer:
return None
p = Poly(fac, i)
if p.degree() != 1:
return None
m, n = p.all_coeffs()
ab[k] *= m**mul
params[k] += [n/m]*mul
# Add "1" to numerator parameters, to account for implicit n! in
# hypergeometric series.
ap = params[0] + [1]
bq = params[1]
x = ab[0]/ab[1]
h = hyper(ap, bq, x)
f = combsimp(f)
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
def eval_sum_hyper(f, i_a_b):
from sympy.logic.boolalg import And
i, a, b = i_a_b
if (b - a).is_Integer:
# We are never going to do better than doing the sum in the obvious way
return None
old_sum = Sum(f, (i, a, b))
if b != S.Infinity:
if a is S.NegativeInfinity:
res = _eval_sum_hyper(f.subs(i, -i), i, -b)
if res is not None:
return Piecewise(res, (old_sum, True))
else:
res1 = _eval_sum_hyper(f, i, a)
res2 = _eval_sum_hyper(f, i, b + 1)
if res1 is None or res2 is None:
return None
(res1, cond1), (res2, cond2) = res1, res2
cond = And(cond1, cond2)
if cond == False:
return None
return Piecewise((res1 - res2, cond), (old_sum, True))
if a is S.NegativeInfinity:
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
res2 = _eval_sum_hyper(f, i, 0)
if res1 is None or res2 is None:
return None
res1, cond1 = res1
res2, cond2 = res2
cond = And(cond1, cond2)
if cond == False or cond.as_set() == S.EmptySet:
return None
return Piecewise((res1 + res2, cond), (old_sum, True))
# Now b == oo, a != -oo
res = _eval_sum_hyper(f, i, a)
if res is not None:
r, c = res
if c == False:
if r.is_number:
f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
if f.is_positive or f.is_zero:
return S.Infinity
elif f.is_negative:
return S.NegativeInfinity
return None
return Piecewise(res, (old_sum, True))
def _eval_matrix_sum(expression):
f = expression.function
for n, limit in enumerate(expression.limits):
i, a, b = limit
dif = b - a
if dif.is_Integer:
if (dif < 0) == True:
a, b = b + 1, a - 1
f = -f
newf = eval_sum_direct(f, (i, a, b))
if newf is not None:
return newf.doit()
def _dummy_with_inherited_properties_concrete(limits):
"""
Return a Dummy symbol that inherits as much assumptions based on the
provided symbol and limits as possible.
If the symbol already has all possible assumptions, return None.
"""
x, a, b = limits
l = [a, b]
assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
'extended_nonpositive', 'nonpositive',
'extended_positive', 'positive',
'extended_negative', 'negative',
'integer', 'rational', 'finite',
'zero', 'real', 'extended_real']
assumptions_to_keep = {}
assumptions_to_add = {}
for assum in assumptions_to_consider:
assum_true = x._assumptions.get(assum, None)
if assum_true:
assumptions_to_keep[assum] = True
elif all([getattr(i, 'is_' + assum) for i in l]):
assumptions_to_add[assum] = True
if assumptions_to_add:
assumptions_to_keep.update(assumptions_to_add)
return Dummy('d', **assumptions_to_keep)
else:
return None
|
0a77cc2b14dc769d45169292fd06a5da22959a0819998e65eda6a266956c4932 | """Tools to assist importing optional external modules."""
from __future__ import print_function, division
import sys
from distutils.version import LooseVersion
# Override these in the module to change the default warning behavior.
# For example, you might set both to False before running the tests so that
# warnings are not printed to the console, or set both to True for debugging.
WARN_NOT_INSTALLED = None # Default is False
WARN_OLD_VERSION = None # Default is True
def __sympy_debug():
# helper function from sympy/__init__.py
# We don't just import SYMPY_DEBUG from that file because we don't want to
# import all of sympy just to use this module.
import os
debug_str = os.getenv('SYMPY_DEBUG', 'False')
if debug_str in ('True', 'False'):
return eval(debug_str)
else:
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
debug_str)
if __sympy_debug():
WARN_OLD_VERSION = True
WARN_NOT_INSTALLED = True
def import_module(module, min_module_version=None, min_python_version=None,
warn_not_installed=None, warn_old_version=None,
module_version_attr='__version__', module_version_attr_call_args=None,
import_kwargs={}, catch=()):
"""
Import and return a module if it is installed.
If the module is not installed, it returns None.
A minimum version for the module can be given as the keyword argument
min_module_version. This should be comparable against the module version.
By default, module.__version__ is used to get the module version. To
override this, set the module_version_attr keyword argument. If the
attribute of the module to get the version should be called (e.g.,
module.version()), then set module_version_attr_call_args to the args such
that module.module_version_attr(*module_version_attr_call_args) returns the
module's version.
If the module version is less than min_module_version using the Python <
comparison, None will be returned, even if the module is installed. You can
use this to keep from importing an incompatible older version of a module.
You can also specify a minimum Python version by using the
min_python_version keyword argument. This should be comparable against
sys.version_info.
If the keyword argument warn_not_installed is set to True, the function will
emit a UserWarning when the module is not installed.
If the keyword argument warn_old_version is set to True, the function will
emit a UserWarning when the library is installed, but cannot be imported
because of the min_module_version or min_python_version options.
Note that because of the way warnings are handled, a warning will be
emitted for each module only once. You can change the default warning
behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION
in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and
WARN_OLD_VERSION is True.
This function uses __import__() to import the module. To pass additional
options to __import__(), use the import_kwargs keyword argument. For
example, to import a submodule A.B, you must pass a nonempty fromlist option
to __import__. See the docstring of __import__().
This catches ImportError to determine if the module is not installed. To
catch additional errors, pass them as a tuple to the catch keyword
argument.
Examples
========
>>> from sympy.external import import_module
>>> numpy = import_module('numpy')
>>> numpy = import_module('numpy', min_python_version=(2, 7),
... warn_old_version=False)
>>> numpy = import_module('numpy', min_module_version='1.5',
... warn_old_version=False) # numpy.__version__ is a string
>>> # gmpy does not have __version__, but it does have gmpy.version()
>>> gmpy = import_module('gmpy', min_module_version='1.14',
... module_version_attr='version', module_version_attr_call_args=(),
... warn_old_version=False)
>>> # To import a submodule, you must pass a nonempty fromlist to
>>> # __import__(). The values do not matter.
>>> p3 = import_module('mpl_toolkits.mplot3d',
... import_kwargs={'fromlist':['something']})
>>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened
>>> matplotlib = import_module('matplotlib',
... import_kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,))
"""
# keyword argument overrides default, and global variable overrides
# keyword argument.
warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None
else warn_old_version or True)
warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None
else warn_not_installed or False)
import warnings
# Check Python first so we don't waste time importing a module we can't use
if min_python_version:
if sys.version_info < min_python_version:
if warn_old_version:
warnings.warn("Python version is too old to use %s "
"(%s or newer required)" % (
module, '.'.join(map(str, min_python_version))),
UserWarning, stacklevel=2)
return
# PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it
if module == 'numpy' and '__pypy__' in sys.builtin_module_names:
return
try:
mod = __import__(module, **import_kwargs)
## there's something funny about imports with matplotlib and py3k. doing
## from matplotlib import collections
## gives python's stdlib collections module. explicitly re-importing
## the module fixes this.
from_list = import_kwargs.get('fromlist', tuple())
for submod in from_list:
if submod == 'collections' and mod.__name__ == 'matplotlib':
__import__(module + '.' + submod)
except ImportError:
if warn_not_installed:
warnings.warn("%s module is not installed" % module, UserWarning,
stacklevel=2)
return
except catch as e:
if warn_not_installed:
warnings.warn(
"%s module could not be used (%s)" % (module, repr(e)),
stacklevel=2)
return
if min_module_version:
modversion = getattr(mod, module_version_attr)
if module_version_attr_call_args is not None:
modversion = modversion(*module_version_attr_call_args)
if LooseVersion(modversion) < LooseVersion(min_module_version):
if warn_old_version:
# Attempt to create a pretty string version of the version
if isinstance(min_module_version, str):
verstr = min_module_version
elif isinstance(min_module_version, (tuple, list)):
verstr = '.'.join(map(str, min_module_version))
else:
# Either don't know what this is. Hopefully
# it's something that has a nice str version, like an int.
verstr = str(min_module_version)
warnings.warn("%s version is too old to use "
"(%s or newer required)" % (module, verstr),
UserWarning, stacklevel=2)
return
return mod
|
8360a2c86e80cc82a8f1b73a87c1efefe2f2eb0b7fde6d5035d4c07177ee9080 | from __future__ import print_function, division
from sympy import Integer
from sympy.core import Symbol
from sympy.utilities import public
@public
def approximants(l, X=Symbol('x'), simplify=False):
"""
Return a generator for consecutive Pade approximants for a series.
It can also be used for computing the rational generating function of a
series when possible, since the last approximant returned by the generator
will be the generating function (if any).
The input list can contain more complex expressions than integer or rational
numbers; symbols may also be involved in the computation. An example below
show how to compute the generating function of the whole Pascal triangle.
The generator can be asked to apply the sympy.simplify function on each
generated term, which will make the computation slower; however it may be
useful when symbols are involved in the expressions.
Examples
========
>>> from sympy.series import approximants
>>> from sympy import lucas, fibonacci, symbols, binomial
>>> g = [lucas(k) for k in range(16)]
>>> [e for e in approximants(g)]
[2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]
>>> h = [fibonacci(k) for k in range(16)]
>>> [e for e in approximants(h)]
[x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]
>>> x, t = symbols("x,t")
>>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
>>> y = approximants(p, t)
>>> for k in range(3): print(next(y))
1
(x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
nan
>>> y = approximants(p, t, simplify=True)
>>> for k in range(3): print(next(y))
1
-1/(t*(x + 1) - 1)
nan
See Also
========
See function sympy.concrete.guess.guess_generating_function_rational and
function mpmath.pade
"""
p1, q1 = [Integer(1)], [Integer(0)]
p2, q2 = [Integer(0)], [Integer(1)]
while len(l):
b = 0
while l[b]==0:
b += 1
if b == len(l):
return
m = [Integer(1)/l[b]]
for k in range(b+1, len(l)):
s = 0
for j in range(b, k):
s -= l[j+1] * m[b-j-1]
m.append(s/l[b])
l = m
a, l[0] = l[0], 0
p = [0] * max(len(p2), b+len(p1))
q = [0] * max(len(q2), b+len(q1))
for k in range(len(p2)):
p[k] = a*p2[k]
for k in range(b, b+len(p1)):
p[k] += p1[k-b]
for k in range(len(q2)):
q[k] = a*q2[k]
for k in range(b, b+len(q1)):
q[k] += q1[k-b]
while p[-1]==0: p.pop()
while q[-1]==0: q.pop()
p1, p2 = p2, p
q1, q2 = q2, q
# yield result
from sympy import denom, lcm, simplify as simp
c = 1
for x in p:
c = lcm(c, denom(x))
for x in q:
c = lcm(c, denom(x))
out = ( sum(c*e*X**k for k, e in enumerate(p))
/ sum(c*e*X**k for k, e in enumerate(q)) )
if simplify: yield(simp(out))
else: yield out
return
|
518ace8dd5eb90c3ff08818c08effcea36e937abeb1274155f50a578ae02ec22 | """
Contains the base class for series
Made using sequences in mind
"""
from __future__ import print_function, division
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.cache import cacheit
class SeriesBase(Expr):
"""Base Class for series"""
@property
def interval(self):
"""The interval on which the series is defined"""
raise NotImplementedError("(%s).interval" % self)
@property
def start(self):
"""The starting point of the series. This point is included"""
raise NotImplementedError("(%s).start" % self)
@property
def stop(self):
"""The ending point of the series. This point is included"""
raise NotImplementedError("(%s).stop" % self)
@property
def length(self):
"""Length of the series expansion"""
raise NotImplementedError("(%s).length" % self)
@property
def variables(self):
"""Returns a tuple of variables that are bounded"""
return ()
@property
def free_symbols(self):
"""
This method returns the symbols in the object, excluding those
that take on a specific value (i.e. the dummy symbols).
"""
return (set(j for i in self.args for j in i.free_symbols)
.difference(self.variables))
@cacheit
def term(self, pt):
"""Term at point pt of a series"""
if pt < self.start or pt > self.stop:
raise IndexError("Index %s out of bounds %s" % (pt, self.interval))
return self._eval_term(pt)
def _eval_term(self, pt):
raise NotImplementedError("The _eval_term method should be added to"
"%s to return series term so it is available"
"when 'term' calls it."
% self.func)
def _ith_point(self, i):
"""
Returns the i'th point of a series
If start point is negative infinity, point is returned from the end.
Assumes the first point to be indexed zero.
Examples
========
TODO
"""
if self.start is S.NegativeInfinity:
initial = self.stop
step = -1
else:
initial = self.start
step = 1
return initial + i*step
def __iter__(self):
i = 0
while i < self.length:
pt = self._ith_point(i)
yield self.term(pt)
i += 1
def __getitem__(self, index):
if isinstance(index, int):
index = self._ith_point(index)
return self.term(index)
elif isinstance(index, slice):
start, stop = index.start, index.stop
if start is None:
start = 0
if stop is None:
stop = self.length
return [self.term(self._ith_point(i)) for i in
range(start, stop, index.step or 1)]
|
ea7a78849ec568575dd8def498ec16ac14d5025f1586f3af690ccaf38f51e329 | """
Convergence acceleration / extrapolation methods for series and
sequences.
References:
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
Springer 1999. (Shanks transformation: pp. 368-375, Richardson
extrapolation: pp. 375-377.)
"""
from __future__ import print_function, division
from sympy import factorial, Integer, S
def richardson(A, k, n, N):
"""
Calculate an approximation for lim k->oo A(k) using Richardson
extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
Choosing N ~= 2*n often gives good results.
A simple example is to calculate exp(1) using the limit definition.
This limit converges slowly; n = 100 only produces two accurate
digits:
>>> from sympy.abc import n
>>> e = (1 + 1/n)**n
>>> print(round(e.subs(n, 100).evalf(), 10))
2.7048138294
Richardson extrapolation with 11 appropriately chosen terms gives
a value that is accurate to the indicated precision:
>>> from sympy import E
>>> from sympy.series.acceleration import richardson
>>> print(round(richardson(e, n, 10, 20).evalf(), 10))
2.7182818285
>>> print(round(E.evalf(), 10))
2.7182818285
Another useful application is to speed up convergence of series.
Computing 100 terms of the zeta(2) series 1/k**2 yields only
two accurate digits:
>>> from sympy.abc import k, n
>>> from sympy import Sum
>>> A = Sum(k**-2, (k, 1, n))
>>> print(round(A.subs(n, 100).evalf(), 10))
1.6349839002
Richardson extrapolation performs much better:
>>> from sympy import pi
>>> print(round(richardson(A, n, 10, 20).evalf(), 10))
1.6449340668
>>> print(round(((pi**2)/6).evalf(), 10)) # Exact value
1.6449340668
"""
s = S.Zero
for j in range(0, N + 1):
s += A.subs(k, Integer(n + j)).doit() * (n + j)**N * (-1)**(j + N) / \
(factorial(j) * factorial(N - j))
return s
def shanks(A, k, n, m=1):
"""
Calculate an approximation for lim k->oo A(k) using the n-term Shanks
transformation S(A)(n). With m > 1, calculate the m-fold recursive
Shanks transformation S(S(...S(A)...))(n).
The Shanks transformation is useful for summing Taylor series that
converge slowly near a pole or singularity, e.g. for log(2):
>>> from sympy.abc import k, n
>>> from sympy import Sum, Integer
>>> from sympy.series.acceleration import shanks
>>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
>>> print(round(A.subs(n, 100).doit().evalf(), 10))
0.6881721793
>>> print(round(shanks(A, n, 25).evalf(), 10))
0.6931396564
>>> print(round(shanks(A, n, 25, 5).evalf(), 10))
0.6931471806
The correct value is 0.6931471805599453094172321215.
"""
table = [A.subs(k, Integer(j)).doit() for j in range(n + m + 2)]
table2 = table[:]
for i in range(1, m + 1):
for j in range(i, n + m + 1):
x, y, z = table[j - 1], table[j], table[j + 1]
table2[j] = (z*x - y**2) / (z + x - 2*y)
table = table2[:]
return table[n]
|
eba227c0bc0ff600d43ff83ddea2da7505d1dcee8d4f1e1bb7fed6fcdcbfdfd4 | from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import is_sequence, iterable, ordered
from sympy.core.containers import Tuple
from sympy.core.decorators import call_highest_priority
from sympy.core.parameters import global_parameters
from sympy.core.function import AppliedUndef
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.relational import Eq
from sympy.core.singleton import S, Singleton
from sympy.core.symbol import Dummy, Symbol, Wild
from sympy.core.sympify import sympify
from sympy.polys import lcm, factor
from sympy.sets.sets import Interval, Intersection
from sympy.simplify import simplify
from sympy.tensor.indexed import Idx
from sympy.utilities.iterables import flatten
from sympy import expand
###############################################################################
# SEQUENCES #
###############################################################################
class SeqBase(Basic):
"""Base class for sequences"""
is_commutative = True
_op_priority = 15
@staticmethod
def _start_key(expr):
"""Return start (if possible) else S.Infinity.
adapted from Set._infimum_key
"""
try:
start = expr.start
except (NotImplementedError,
AttributeError, ValueError):
start = S.Infinity
return start
def _intersect_interval(self, other):
"""Returns start and stop.
Takes intersection over the two intervals.
"""
interval = Intersection(self.interval, other.interval)
return interval.inf, interval.sup
@property
def gen(self):
"""Returns the generator for the sequence"""
raise NotImplementedError("(%s).gen" % self)
@property
def interval(self):
"""The interval on which the sequence is defined"""
raise NotImplementedError("(%s).interval" % self)
@property
def start(self):
"""The starting point of the sequence. This point is included"""
raise NotImplementedError("(%s).start" % self)
@property
def stop(self):
"""The ending point of the sequence. This point is included"""
raise NotImplementedError("(%s).stop" % self)
@property
def length(self):
"""Length of the sequence"""
raise NotImplementedError("(%s).length" % self)
@property
def variables(self):
"""Returns a tuple of variables that are bounded"""
return ()
@property
def free_symbols(self):
"""
This method returns the symbols in the object, excluding those
that take on a specific value (i.e. the dummy symbols).
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n, m
>>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols
{m}
"""
return (set(j for i in self.args for j in i.free_symbols
.difference(self.variables)))
@cacheit
def coeff(self, pt):
"""Returns the coefficient at point pt"""
if pt < self.start or pt > self.stop:
raise IndexError("Index %s out of bounds %s" % (pt, self.interval))
return self._eval_coeff(pt)
def _eval_coeff(self, pt):
raise NotImplementedError("The _eval_coeff method should be added to"
"%s to return coefficient so it is available"
"when coeff calls it."
% self.func)
def _ith_point(self, i):
"""Returns the i'th point of a sequence.
If start point is negative infinity, point is returned from the end.
Assumes the first point to be indexed zero.
Examples
=========
>>> from sympy import oo
>>> from sympy.series.sequences import SeqPer
bounded
>>> SeqPer((1, 2, 3), (-10, 10))._ith_point(0)
-10
>>> SeqPer((1, 2, 3), (-10, 10))._ith_point(5)
-5
End is at infinity
>>> SeqPer((1, 2, 3), (0, oo))._ith_point(5)
5
Starts at negative infinity
>>> SeqPer((1, 2, 3), (-oo, 0))._ith_point(5)
-5
"""
if self.start is S.NegativeInfinity:
initial = self.stop
else:
initial = self.start
if self.start is S.NegativeInfinity:
step = -1
else:
step = 1
return initial + i*step
def _add(self, other):
"""
Should only be used internally.
self._add(other) returns a new, term-wise added sequence if self
knows how to add with other, otherwise it returns ``None``.
``other`` should only be a sequence object.
Used within :class:`SeqAdd` class.
"""
return None
def _mul(self, other):
"""
Should only be used internally.
self._mul(other) returns a new, term-wise multiplied sequence if self
knows how to multiply with other, otherwise it returns ``None``.
``other`` should only be a sequence object.
Used within :class:`SeqMul` class.
"""
return None
def coeff_mul(self, other):
"""
Should be used when ``other`` is not a sequence. Should be
defined to define custom behaviour.
Examples
========
>>> from sympy import S, oo, SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2).coeff_mul(2)
SeqFormula(2*n**2, (n, 0, oo))
Notes
=====
'*' defines multiplication of sequences with sequences only.
"""
return Mul(self, other)
def __add__(self, other):
"""Returns the term-wise addition of 'self' and 'other'.
``other`` should be a sequence.
Examples
========
>>> from sympy import S, oo, SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) + SeqFormula(n**3)
SeqFormula(n**3 + n**2, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot add sequence and %s' % type(other))
return SeqAdd(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
def __sub__(self, other):
"""Returns the term-wise subtraction of 'self' and 'other'.
``other`` should be a sequence.
Examples
========
>>> from sympy import S, oo, SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) - (SeqFormula(n))
SeqFormula(n**2 - n, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot subtract sequence and %s' % type(other))
return SeqAdd(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return (-self) + other
def __neg__(self):
"""Negates the sequence.
Examples
========
>>> from sympy import S, oo, SeqFormula
>>> from sympy.abc import n
>>> -SeqFormula(n**2)
SeqFormula(-n**2, (n, 0, oo))
"""
return self.coeff_mul(-1)
def __mul__(self, other):
"""Returns the term-wise multiplication of 'self' and 'other'.
``other`` should be a sequence. For ``other`` not being a
sequence see :func:`coeff_mul` method.
Examples
========
>>> from sympy import S, oo, SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) * (SeqFormula(n))
SeqFormula(n**3, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot multiply sequence and %s' % type(other))
return SeqMul(self, other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self * other
def __iter__(self):
for i in range(self.length):
pt = self._ith_point(i)
yield self.coeff(pt)
def __getitem__(self, index):
if isinstance(index, int):
index = self._ith_point(index)
return self.coeff(index)
elif isinstance(index, slice):
start, stop = index.start, index.stop
if start is None:
start = 0
if stop is None:
stop = self.length
return [self.coeff(self._ith_point(i)) for i in
range(start, stop, index.step or 1)]
def find_linear_recurrence(self,n,d=None,gfvar=None):
r"""
Finds the shortest linear recurrence that satisfies the first n
terms of sequence of order `\leq` n/2 if possible.
If d is specified, find shortest linear recurrence of order
`\leq` min(d, n/2) if possible.
Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the
recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...``
Returns ``[]`` if no recurrence is found.
If gfvar is specified, also returns ordinary generating function as a
function of gfvar.
Examples
========
>>> from sympy import sequence, sqrt, oo, lucas
>>> from sympy.abc import n, x, y
>>> sequence(n**2).find_linear_recurrence(10, 2)
[]
>>> sequence(n**2).find_linear_recurrence(10)
[3, -3, 1]
>>> sequence(2**n).find_linear_recurrence(10)
[2]
>>> sequence(23*n**4+91*n**2).find_linear_recurrence(10)
[5, -10, 10, -5, 1]
>>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10)
[1, 1]
>>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30)
[1/2, 1/2]
>>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x)
([6, -5], 3*(5 - 21*x)/((x - 1)*(5*x - 1)))
>>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x)
([1, 1], (x - 2)/(x**2 + x - 1))
"""
from sympy.matrices import Matrix
x = [simplify(expand(t)) for t in self[:n]]
lx = len(x)
if d is None:
r = lx//2
else:
r = min(d,lx//2)
coeffs = []
for l in range(1, r+1):
l2 = 2*l
mlist = []
for k in range(l):
mlist.append(x[k:k+l])
m = Matrix(mlist)
if m.det() != 0:
y = simplify(m.LUsolve(Matrix(x[l:l2])))
if lx == l2:
coeffs = flatten(y[::-1])
break
mlist = []
for k in range(l,lx-l):
mlist.append(x[k:k+l])
m = Matrix(mlist)
if m*y == Matrix(x[l2:]):
coeffs = flatten(y[::-1])
break
if gfvar is None:
return coeffs
else:
l = len(coeffs)
if l == 0:
return [], None
else:
n, d = x[l-1]*gfvar**(l-1), 1 - coeffs[l-1]*gfvar**l
for i in range(l-1):
n += x[i]*gfvar**i
for j in range(l-i-1):
n -= coeffs[i]*x[j]*gfvar**(i+j+1)
d -= coeffs[i]*gfvar**(i+1)
return coeffs, simplify(factor(n)/factor(d))
class EmptySequence(SeqBase, metaclass=Singleton):
"""Represents an empty sequence.
The empty sequence is also available as a singleton as
``S.EmptySequence``.
Examples
========
>>> from sympy import EmptySequence, SeqPer, oo
>>> from sympy.abc import x
>>> EmptySequence
EmptySequence
>>> SeqPer((1, 2), (x, 0, 10)) + EmptySequence
SeqPer((1, 2), (x, 0, 10))
>>> SeqPer((1, 2)) * EmptySequence
EmptySequence
>>> EmptySequence.coeff_mul(-1)
EmptySequence
"""
@property
def interval(self):
return S.EmptySet
@property
def length(self):
return S.Zero
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
return self
def __iter__(self):
return iter([])
class SeqExpr(SeqBase):
"""Sequence expression class.
Various sequences should inherit from this class.
Examples
========
>>> from sympy.series.sequences import SeqExpr
>>> from sympy.abc import x
>>> s = SeqExpr((1, 2, 3), (x, 0, 10))
>>> s.gen
(1, 2, 3)
>>> s.interval
Interval(0, 10)
>>> s.length
11
See Also
========
sympy.series.sequences.SeqPer
sympy.series.sequences.SeqFormula
"""
@property
def gen(self):
return self.args[0]
@property
def interval(self):
return Interval(self.args[1][1], self.args[1][2])
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def length(self):
return self.stop - self.start + 1
@property
def variables(self):
return (self.args[1][0],)
class SeqPer(SeqExpr):
"""Represents a periodic sequence.
The elements are repeated after a given period.
Examples
========
>>> from sympy import SeqPer, oo
>>> from sympy.abc import k
>>> s = SeqPer((1, 2, 3), (0, 5))
>>> s.periodical
(1, 2, 3)
>>> s.period
3
For value at a particular point
>>> s.coeff(3)
1
supports slicing
>>> s[:]
[1, 2, 3, 1, 2, 3]
iterable
>>> list(s)
[1, 2, 3, 1, 2, 3]
sequence starts from negative infinity
>>> SeqPer((1, 2, 3), (-oo, 0))[0:6]
[1, 2, 3, 1, 2, 3]
Periodic formulas
>>> SeqPer((k, k**2, k**3), (k, 0, oo))[0:6]
[0, 1, 8, 3, 16, 125]
See Also
========
sympy.series.sequences.SeqFormula
"""
def __new__(cls, periodical, limits=None):
periodical = sympify(periodical)
def _find_x(periodical):
free = periodical.free_symbols
if len(periodical.free_symbols) == 1:
return free.pop()
else:
return Dummy('k')
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(periodical), 0, S.Infinity
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(periodical)
start, stop = limits
if not isinstance(x, (Symbol, Idx)) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
if start is S.NegativeInfinity and stop is S.Infinity:
raise ValueError("Both the start and end value"
"cannot be unbounded")
limits = sympify((x, start, stop))
if is_sequence(periodical, Tuple):
periodical = sympify(tuple(flatten(periodical)))
else:
raise ValueError("invalid period %s should be something "
"like e.g (1, 2) " % periodical)
if Interval(limits[1], limits[2]) is S.EmptySet:
return S.EmptySequence
return Basic.__new__(cls, periodical, limits)
@property
def period(self):
return len(self.gen)
@property
def periodical(self):
return self.gen
def _eval_coeff(self, pt):
if self.start is S.NegativeInfinity:
idx = (self.stop - pt) % self.period
else:
idx = (pt - self.start) % self.period
return self.periodical[idx].subs(self.variables[0], pt)
def _add(self, other):
"""See docstring of SeqBase._add"""
if isinstance(other, SeqPer):
per1, lper1 = self.periodical, self.period
per2, lper2 = other.periodical, other.period
per_length = lcm(lper1, lper2)
new_per = []
for x in range(per_length):
ele1 = per1[x % lper1]
ele2 = per2[x % lper2]
new_per.append(ele1 + ele2)
start, stop = self._intersect_interval(other)
return SeqPer(new_per, (self.variables[0], start, stop))
def _mul(self, other):
"""See docstring of SeqBase._mul"""
if isinstance(other, SeqPer):
per1, lper1 = self.periodical, self.period
per2, lper2 = other.periodical, other.period
per_length = lcm(lper1, lper2)
new_per = []
for x in range(per_length):
ele1 = per1[x % lper1]
ele2 = per2[x % lper2]
new_per.append(ele1 * ele2)
start, stop = self._intersect_interval(other)
return SeqPer(new_per, (self.variables[0], start, stop))
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
coeff = sympify(coeff)
per = [x * coeff for x in self.periodical]
return SeqPer(per, self.args[1])
class SeqFormula(SeqExpr):
"""Represents sequence based on a formula.
Elements are generated using a formula.
Examples
========
>>> from sympy import SeqFormula, oo, Symbol
>>> n = Symbol('n')
>>> s = SeqFormula(n**2, (n, 0, 5))
>>> s.formula
n**2
For value at a particular point
>>> s.coeff(3)
9
supports slicing
>>> s[:]
[0, 1, 4, 9, 16, 25]
iterable
>>> list(s)
[0, 1, 4, 9, 16, 25]
sequence starts from negative infinity
>>> SeqFormula(n**2, (-oo, 0))[0:6]
[0, 1, 4, 9, 16, 25]
See Also
========
sympy.series.sequences.SeqPer
"""
def __new__(cls, formula, limits=None):
formula = sympify(formula)
def _find_x(formula):
free = formula.free_symbols
if len(free) == 1:
return free.pop()
elif not free:
return Dummy('k')
else:
raise ValueError(
" specify dummy variables for %s. If the formula contains"
" more than one free symbol, a dummy variable should be"
" supplied explicitly e.g., SeqFormula(m*n**2, (n, 0, 5))"
% formula)
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(formula), 0, S.Infinity
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(formula)
start, stop = limits
if not isinstance(x, (Symbol, Idx)) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
if start is S.NegativeInfinity and stop is S.Infinity:
raise ValueError("Both the start and end value "
"cannot be unbounded")
limits = sympify((x, start, stop))
if Interval(limits[1], limits[2]) is S.EmptySet:
return S.EmptySequence
return Basic.__new__(cls, formula, limits)
@property
def formula(self):
return self.gen
def _eval_coeff(self, pt):
d = self.variables[0]
return self.formula.subs(d, pt)
def _add(self, other):
"""See docstring of SeqBase._add"""
if isinstance(other, SeqFormula):
form1, v1 = self.formula, self.variables[0]
form2, v2 = other.formula, other.variables[0]
formula = form1 + form2.subs(v2, v1)
start, stop = self._intersect_interval(other)
return SeqFormula(formula, (v1, start, stop))
def _mul(self, other):
"""See docstring of SeqBase._mul"""
if isinstance(other, SeqFormula):
form1, v1 = self.formula, self.variables[0]
form2, v2 = other.formula, other.variables[0]
formula = form1 * form2.subs(v2, v1)
start, stop = self._intersect_interval(other)
return SeqFormula(formula, (v1, start, stop))
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
coeff = sympify(coeff)
formula = self.formula * coeff
return SeqFormula(formula, self.args[1])
def expand(self, *args, **kwargs):
return SeqFormula(expand(self.formula, *args, **kwargs), self.args[1])
class RecursiveSeq(SeqBase):
"""A finite degree recursive sequence.
That is, a sequence a(n) that depends on a fixed, finite number of its
previous values. The general form is
a(n) = f(a(n - 1), a(n - 2), ..., a(n - d))
for some fixed, positive integer d, where f is some function defined by a
SymPy expression.
Parameters
==========
recurrence : SymPy expression defining recurrence
This is *not* an equality, only the expression that the nth term is
equal to. For example, if :code:`a(n) = f(a(n - 1), ..., a(n - d))`,
then the expression should be :code:`f(a(n - 1), ..., a(n - d))`.
yn : applied undefined function
Represents the nth term of the sequence as e.g. :code:`y(n)` where
:code:`y` is an undefined function and `n` is the sequence index.
n : symbolic argument
The name of the variable that the recurrence is in, e.g., :code:`n` if
the recurrence function is :code:`y(n)`.
initial : iterable with length equal to the degree of the recurrence
The initial values of the recurrence.
start : start value of sequence (inclusive)
Examples
========
>>> from sympy import Function, symbols
>>> from sympy.series.sequences import RecursiveSeq
>>> y = Function("y")
>>> n = symbols("n")
>>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1])
>>> fib.coeff(3) # Value at a particular point
2
>>> fib[:6] # supports slicing
[0, 1, 1, 2, 3, 5]
>>> fib.recurrence # inspect recurrence
Eq(y(n), y(n - 2) + y(n - 1))
>>> fib.degree # automatically determine degree
2
>>> for x in zip(range(10), fib): # supports iteration
... print(x)
(0, 0)
(1, 1)
(2, 1)
(3, 2)
(4, 3)
(5, 5)
(6, 8)
(7, 13)
(8, 21)
(9, 34)
See Also
========
sympy.series.sequences.SeqFormula
"""
def __new__(cls, recurrence, yn, n, initial=None, start=0):
if not isinstance(yn, AppliedUndef):
raise TypeError("recurrence sequence must be an applied undefined function"
", found `{}`".format(yn))
if not isinstance(n, Basic) or not n.is_symbol:
raise TypeError("recurrence variable must be a symbol"
", found `{}`".format(n))
if yn.args != (n,):
raise TypeError("recurrence sequence does not match symbol")
y = yn.func
k = Wild("k", exclude=(n,))
degree = 0
# Find all applications of y in the recurrence and check that:
# 1. The function y is only being used with a single argument; and
# 2. All arguments are n + k for constant negative integers k.
prev_ys = recurrence.find(y)
for prev_y in prev_ys:
if len(prev_y.args) != 1:
raise TypeError("Recurrence should be in a single variable")
shift = prev_y.args[0].match(n + k)[k]
if not (shift.is_constant() and shift.is_integer and shift < 0):
raise TypeError("Recurrence should have constant,"
" negative, integer shifts"
" (found {})".format(prev_y))
if -shift > degree:
degree = -shift
if not initial:
initial = [Dummy("c_{}".format(k)) for k in range(degree)]
if len(initial) != degree:
raise ValueError("Number of initial terms must equal degree")
degree = Integer(degree)
start = sympify(start)
initial = Tuple(*(sympify(x) for x in initial))
seq = Basic.__new__(cls, recurrence, yn, n, initial, start)
seq.cache = {y(start + k): init for k, init in enumerate(initial)}
seq.degree = degree
return seq
@property
def _recurrence(self):
"""Equation defining recurrence."""
return self.args[0]
@property
def recurrence(self):
"""Equation defining recurrence."""
return Eq(self.yn, self.args[0])
@property
def yn(self):
"""Applied function representing the nth term"""
return self.args[1]
@property
def y(self):
"""Undefined function for the nth term of the sequence"""
return self.yn.func
@property
def n(self):
"""Sequence index symbol"""
return self.args[2]
@property
def initial(self):
"""The initial values of the sequence"""
return self.args[3]
@property
def start(self):
"""The starting point of the sequence. This point is included"""
return self.args[4]
@property
def stop(self):
"""The ending point of the sequence. (oo)"""
return S.Infinity
@property
def interval(self):
"""Interval on which sequence is defined."""
return (self.start, S.Infinity)
def _eval_coeff(self, index):
if index - self.start < len(self.cache):
return self.cache[self.y(index)]
for current in range(len(self.cache), index + 1):
# Use xreplace over subs for performance.
# See issue #10697.
seq_index = self.start + current
current_recurrence = self._recurrence.xreplace({self.n: seq_index})
new_term = current_recurrence.xreplace(self.cache)
self.cache[self.y(seq_index)] = new_term
return self.cache[self.y(self.start + current)]
def __iter__(self):
index = self.start
while True:
yield self._eval_coeff(index)
index += 1
def sequence(seq, limits=None):
"""Returns appropriate sequence object.
If ``seq`` is a sympy sequence, returns :class:`SeqPer` object
otherwise returns :class:`SeqFormula` object.
Examples
========
>>> from sympy import sequence, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> sequence(n**2, (n, 0, 5))
SeqFormula(n**2, (n, 0, 5))
>>> sequence((1, 2, 3), (n, 0, 5))
SeqPer((1, 2, 3), (n, 0, 5))
See Also
========
sympy.series.sequences.SeqPer
sympy.series.sequences.SeqFormula
"""
seq = sympify(seq)
if is_sequence(seq, Tuple):
return SeqPer(seq, limits)
else:
return SeqFormula(seq, limits)
###############################################################################
# OPERATIONS #
###############################################################################
class SeqExprOp(SeqBase):
"""Base class for operations on sequences.
Examples
========
>>> from sympy.series.sequences import SeqExprOp, sequence
>>> from sympy.abc import n
>>> s1 = sequence(n**2, (n, 0, 10))
>>> s2 = sequence((1, 2, 3), (n, 5, 10))
>>> s = SeqExprOp(s1, s2)
>>> s.gen
(n**2, (1, 2, 3))
>>> s.interval
Interval(5, 10)
>>> s.length
6
See Also
========
sympy.series.sequences.SeqAdd
sympy.series.sequences.SeqMul
"""
@property
def gen(self):
"""Generator for the sequence.
returns a tuple of generators of all the argument sequences.
"""
return tuple(a.gen for a in self.args)
@property
def interval(self):
"""Sequence is defined on the intersection
of all the intervals of respective sequences
"""
return Intersection(*(a.interval for a in self.args))
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def variables(self):
"""Cumulative of all the bound variables"""
return tuple(flatten([a.variables for a in self.args]))
@property
def length(self):
return self.stop - self.start + 1
class SeqAdd(SeqExprOp):
"""Represents term-wise addition of sequences.
Rules:
* The interval on which sequence is defined is the intersection
of respective intervals of sequences.
* Anything + :class:`EmptySequence` remains unchanged.
* Other rules are defined in ``_add`` methods of sequence classes.
Examples
========
>>> from sympy import EmptySequence, oo, SeqAdd, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
SeqPer((1, 2), (n, 0, oo))
>>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo)))
SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**3 + n**2, (n, 0, oo))
See Also
========
sympy.series.sequences.SeqMul
"""
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs
args = list(args)
# adapted from sympy.sets.sets.Union
def _flatten(arg):
if isinstance(arg, SeqBase):
if isinstance(arg, SeqAdd):
return sum(map(_flatten, arg.args), [])
else:
return [arg]
if iterable(arg):
return sum(map(_flatten, arg), [])
raise TypeError("Input must be Sequences or "
" iterables of Sequences")
args = _flatten(args)
args = [a for a in args if a is not S.EmptySequence]
# Addition of no sequences is EmptySequence
if not args:
return S.EmptySequence
if Intersection(*(a.interval for a in args)) is S.EmptySet:
return S.EmptySequence
# reduce using known rules
if evaluate:
return SeqAdd.reduce(args)
args = list(ordered(args, SeqBase._start_key))
return Basic.__new__(cls, *args)
@staticmethod
def reduce(args):
"""Simplify :class:`SeqAdd` using known rules.
Iterates through all pairs and ask the constituent
sequences if they can simplify themselves with any other constituent.
Notes
=====
adapted from ``Union.reduce``
"""
new_args = True
while new_args:
for id1, s in enumerate(args):
new_args = False
for id2, t in enumerate(args):
if id1 == id2:
continue
new_seq = s._add(t)
# This returns None if s does not know how to add
# with t. Returns the newly added sequence otherwise
if new_seq is not None:
new_args = [a for a in args if a not in (s, t)]
new_args.append(new_seq)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return SeqAdd(args, evaluate=False)
def _eval_coeff(self, pt):
"""adds up the coefficients of all the sequences at point pt"""
return sum(a.coeff(pt) for a in self.args)
class SeqMul(SeqExprOp):
r"""Represents term-wise multiplication of sequences.
Handles multiplication of sequences only. For multiplication
with other objects see :func:`SeqBase.coeff_mul`.
Rules:
* The interval on which sequence is defined is the intersection
of respective intervals of sequences.
* Anything \* :class:`EmptySequence` returns :class:`EmptySequence`.
* Other rules are defined in ``_mul`` methods of sequence classes.
Examples
========
>>> from sympy import EmptySequence, oo, SeqMul, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2))
SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqMul(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**5, (n, 0, oo))
See Also
========
sympy.series.sequences.SeqAdd
"""
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs
args = list(args)
# adapted from sympy.sets.sets.Union
def _flatten(arg):
if isinstance(arg, SeqBase):
if isinstance(arg, SeqMul):
return sum(map(_flatten, arg.args), [])
else:
return [arg]
elif iterable(arg):
return sum(map(_flatten, arg), [])
raise TypeError("Input must be Sequences or "
" iterables of Sequences")
args = _flatten(args)
# Multiplication of no sequences is EmptySequence
if not args:
return S.EmptySequence
if Intersection(*(a.interval for a in args)) is S.EmptySet:
return S.EmptySequence
# reduce using known rules
if evaluate:
return SeqMul.reduce(args)
args = list(ordered(args, SeqBase._start_key))
return Basic.__new__(cls, *args)
@staticmethod
def reduce(args):
"""Simplify a :class:`SeqMul` using known rules.
Iterates through all pairs and ask the constituent
sequences if they can simplify themselves with any other constituent.
Notes
=====
adapted from ``Union.reduce``
"""
new_args = True
while new_args:
for id1, s in enumerate(args):
new_args = False
for id2, t in enumerate(args):
if id1 == id2:
continue
new_seq = s._mul(t)
# This returns None if s does not know how to multiply
# with t. Returns the newly multiplied sequence otherwise
if new_seq is not None:
new_args = [a for a in args if a not in (s, t)]
new_args.append(new_seq)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return SeqMul(args, evaluate=False)
def _eval_coeff(self, pt):
"""multiplies the coefficients of all the sequences at point pt"""
val = 1
for a in self.args:
val *= a.coeff(pt)
return val
|
559f36f558a4f0ceaca21543f88d8d3c9f4935f679a82844505e9ef308300c2b | from __future__ import print_function, division
from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import GoldenRatio
from sympy.core.symbol import Dummy
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.functions.special.gamma_functions import gamma
from sympy.polys import PolynomialError, factor
from sympy.series.order import Order
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import together
from .gruntz import gruntz
def limit(e, z, z0, dir="+"):
"""Computes the limit of ``e(z)`` at the point ``z0``.
Parameters
==========
e : expression, the limit of which is to be taken
z : symbol representing the variable in the limit.
Other symbols are treated as constants. Multivariate limits
are not supported.
z0 : the value toward which ``z`` tends. Can be any expression,
including ``oo`` and ``-oo``.
dir : string, optional (default: "+")
The limit is bi-directional if ``dir="+-"``, from the right
(z->z0+) if ``dir="+"``, and from the left (z->z0-) if
``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir``
argument is determined from the direction of the infinity
(i.e., ``dir="-"`` for ``oo``).
Examples
========
>>> from sympy import limit, sin, Symbol, oo
>>> from sympy.abc import x
>>> limit(sin(x)/x, x, 0)
1
>>> limit(1/x, x, 0) # default dir='+'
oo
>>> limit(1/x, x, 0, dir="-")
-oo
>>> limit(1/x, x, 0, dir='+-')
Traceback (most recent call last):
...
ValueError: The limit does not exist since left hand limit = -oo and right hand limit = oo
>>> limit(1/x, x, oo)
0
Notes
=====
First we try some heuristics for easy and frequent cases like "x", "1/x",
"x**2" and similar, so that it's fast. For all other cases, we use the
Gruntz algorithm (see the gruntz() function).
See Also
========
limit_seq : returns the limit of a sequence.
"""
return Limit(e, z, z0, dir).doit(deep=False)
def heuristics(e, z, z0, dir):
"""Computes the limit of an expression term-wise.
Parameters are the same as for the ``limit`` function.
Works with the arguments of expression ``e`` one by one, computing
the limit of each and then combining the results. This approach
works only for simple limits, but it is fast.
"""
from sympy.calculus.util import AccumBounds
rv = None
if abs(z0) is S.Infinity:
rv = limit(e.subs(z, 1/z), z, S.Zero, "+" if z0 is S.Infinity else "-")
if isinstance(rv, Limit):
return
elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function:
r = []
for a in e.args:
l = limit(a, z, z0, dir)
if l.has(S.Infinity) and l.is_finite is None:
if isinstance(e, Add):
m = factor_terms(e)
if not isinstance(m, Mul): # try together
m = together(m)
if not isinstance(m, Mul): # try factor if the previous methods failed
m = factor(e)
if isinstance(m, Mul):
return heuristics(m, z, z0, dir)
return
return
elif isinstance(l, Limit):
return
elif l is S.NaN:
return
else:
r.append(l)
if r:
rv = e.func(*r)
if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r):
r2 = []
e2 = []
for ii in range(len(r)):
if isinstance(r[ii], AccumBounds):
r2.append(r[ii])
else:
e2.append(e.args[ii])
if len(e2) > 0:
e3 = Mul(*e2).simplify()
l = limit(e3, z, z0, dir)
rv = l * Mul(*r2)
if rv is S.NaN:
try:
rat_e = ratsimp(e)
except PolynomialError:
return
if rat_e is S.NaN or rat_e == e:
return
return limit(rat_e, z, z0, dir)
return rv
class Limit(Expr):
"""Represents an unevaluated limit.
Examples
========
>>> from sympy import Limit, sin, Symbol
>>> from sympy.abc import x
>>> Limit(sin(x)/x, x, 0)
Limit(sin(x)/x, x, 0)
>>> Limit(1/x, x, 0, dir="-")
Limit(1/x, x, 0, dir='-')
"""
def __new__(cls, e, z, z0, dir="+"):
e = sympify(e)
z = sympify(z)
z0 = sympify(z0)
if z0 is S.Infinity:
dir = "-"
elif z0 is S.NegativeInfinity:
dir = "+"
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("direction must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-', '+-'):
raise ValueError("direction must be one of '+', '-' "
"or '+-', not %s" % dir)
obj = Expr.__new__(cls)
obj._args = (e, z, z0, dir)
return obj
@property
def free_symbols(self):
e = self.args[0]
isyms = e.free_symbols
isyms.difference_update(self.args[1].free_symbols)
isyms.update(self.args[2].free_symbols)
return isyms
def doit(self, **hints):
"""Evaluates the limit.
Parameters
==========
deep : bool, optional (default: True)
Invoke the ``doit`` method of the expressions involved before
taking the limit.
hints : optional keyword arguments
To be passed to ``doit`` methods; only used if deep is True.
"""
from sympy.functions import RisingFactorial
e, z, z0, dir = self.args
if z0 is S.ComplexInfinity:
raise NotImplementedError("Limits at complex "
"infinity are not implemented")
if hints.get('deep', True):
e = e.doit(**hints)
z = z.doit(**hints)
z0 = z0.doit(**hints)
if e == z:
return z0
if not e.has(z):
return e
# gruntz fails on factorials but works with the gamma function
# If no factorial term is present, e should remain unchanged.
# factorial is defined to be zero for negative inputs (which
# differs from gamma) so only rewrite for positive z0.
if z0.is_extended_positive:
e = e.rewrite([factorial, RisingFactorial], gamma)
if e.is_Mul:
if abs(z0) is S.Infinity:
e = factor_terms(e)
e = e.rewrite(fibonacci, GoldenRatio)
ok = lambda w: (z in w.free_symbols and
any(a.is_polynomial(z) or
any(z in m.free_symbols and m.is_polynomial(z)
for m in Mul.make_args(a))
for a in Add.make_args(w)))
if all(ok(w) for w in e.as_numer_denom()):
u = Dummy(positive=True)
if z0 is S.NegativeInfinity:
inve = e.subs(z, -1/u)
else:
inve = e.subs(z, 1/u)
try:
r = limit(inve.as_leading_term(u), u, S.Zero, "+")
if isinstance(r, Limit):
return self
else:
return r
except ValueError:
pass
if e.is_Order:
return Order(limit(e.expr, z, z0), *e.args[1:])
l = None
try:
if str(dir) == '+-':
r = gruntz(e, z, z0, '+')
l = gruntz(e, z, z0, '-')
if l != r:
raise ValueError("The limit does not exist since "
"left hand limit = %s and right hand limit = %s"
% (l, r))
else:
r = gruntz(e, z, z0, dir)
if r is S.NaN or l is S.NaN:
raise PoleError()
except (PoleError, ValueError):
if l is not None:
raise
r = heuristics(e, z, z0, dir)
if r is None:
return self
return r
|
18bc1a7a71d2a3a815c87838ed6ad6ddbeed3399c7b99068d1010a63d099dccd | """Fourier Series"""
from __future__ import print_function, division
from sympy import pi, oo, Wild
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import sin, cos, sinc
from sympy.series.series_class import SeriesBase
from sympy.series.sequences import SeqFormula
from sympy.sets.sets import Interval
from sympy.simplify.fu import TR2, TR1, TR10, sincos_to_sum
def fourier_cos_seq(func, limits, n):
"""Returns the cos sequence in a Fourier series"""
from sympy.integrals import integrate
x, L = limits[0], limits[2] - limits[1]
cos_term = cos(2*n*pi*x / L)
formula = 2 * cos_term * integrate(func * cos_term, limits) / L
a0 = formula.subs(n, S.Zero) / 2
return a0, SeqFormula(2 * cos_term * integrate(func * cos_term, limits)
/ L, (n, 1, oo))
def fourier_sin_seq(func, limits, n):
"""Returns the sin sequence in a Fourier series"""
from sympy.integrals import integrate
x, L = limits[0], limits[2] - limits[1]
sin_term = sin(2*n*pi*x / L)
return SeqFormula(2 * sin_term * integrate(func * sin_term, limits)
/ L, (n, 1, oo))
def _process_limits(func, limits):
"""
Limits should be of the form (x, start, stop).
x should be a symbol. Both start and stop should be bounded.
* If x is not given, x is determined from func.
* If limits is None. Limit of the form (x, -pi, pi) is returned.
Examples
========
>>> from sympy import pi
>>> from sympy.series.fourier import _process_limits as pari
>>> from sympy.abc import x
>>> pari(x**2, (x, -2, 2))
(x, -2, 2)
>>> pari(x**2, (-2, 2))
(x, -2, 2)
>>> pari(x**2, None)
(x, -pi, pi)
"""
def _find_x(func):
free = func.free_symbols
if len(free) == 1:
return free.pop()
elif not free:
return Dummy('k')
else:
raise ValueError(
" specify dummy variables for %s. If the function contains"
" more than one free symbol, a dummy variable should be"
" supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi))"
% func)
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(func), -pi, pi
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(func)
start, stop = limits
if not isinstance(x, Symbol) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
unbounded = [S.NegativeInfinity, S.Infinity]
if start in unbounded or stop in unbounded:
raise ValueError("Both the start and end value should be bounded")
return sympify((x, start, stop))
def finite_check(f, x, L):
def check_fx(exprs, x):
return x not in exprs.free_symbols
def check_sincos(_expr, x, L):
if isinstance(_expr, (sin, cos)):
sincos_args = _expr.args[0]
if sincos_args.match(a*(pi/L)*x + b) is not None:
return True
else:
return False
_expr = sincos_to_sum(TR2(TR1(f)))
add_coeff = _expr.as_coeff_add()
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k != S.Zero, ])
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
for s in add_coeff[1]:
mul_coeffs = s.as_coeff_mul()[1]
for t in mul_coeffs:
if not (check_fx(t, x) or check_sincos(t, x, L)):
return False, f
return True, _expr
class FourierSeries(SeriesBase):
r"""Represents Fourier sine/cosine series.
This class only represents a fourier series.
No computation is performed.
For how to compute Fourier series, see the :func:`fourier_series`
docstring.
See Also
========
sympy.series.fourier.fourier_series
"""
def __new__(cls, *args):
args = map(sympify, args)
return Expr.__new__(cls, *args)
@property
def function(self):
return self.args[0]
@property
def x(self):
return self.args[1][0]
@property
def period(self):
return (self.args[1][1], self.args[1][2])
@property
def a0(self):
return self.args[2][0]
@property
def an(self):
return self.args[2][1]
@property
def bn(self):
return self.args[2][2]
@property
def interval(self):
return Interval(0, oo)
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def length(self):
return oo
@property
def L(self):
return abs(self.period[1] - self.period[0]) / 2
def _eval_subs(self, old, new):
x = self.x
if old.has(x):
return self
def truncate(self, n=3):
"""
Return the first n nonzero terms of the series.
If n is None return an iterator.
Parameters
==========
n : int or None
Amount of non-zero terms in approximation or None.
Returns
=======
Expr or iterator
Approximation of function expanded into Fourier series.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.truncate(4)
2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2
See Also
========
sympy.series.fourier.FourierSeries.sigma_approximation
"""
if n is None:
return iter(self)
terms = []
for t in self:
if len(terms) == n:
break
if t is not S.Zero:
terms.append(t)
return Add(*terms)
def sigma_approximation(self, n=3):
r"""
Return :math:`\sigma`-approximation of Fourier series with respect
to order n.
Sigma approximation adjusts a Fourier summation to eliminate the Gibbs
phenomenon which would otherwise occur at discontinuities.
A sigma-approximated summation for a Fourier series of a T-periodical
function can be written as
.. math::
s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1}
\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot
\left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr)
+ b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right],
where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier
series coefficients and
:math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos
:math:`\sigma` factor (expressed in terms of normalized
:math:`\operatorname{sinc}` function).
Parameters
==========
n : int
Highest order of the terms taken into account in approximation.
Returns
=======
Expr
Sigma approximation of function expanded into Fourier series.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.sigma_approximation(4)
2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3
See Also
========
sympy.series.fourier.FourierSeries.truncate
Notes
=====
The behaviour of
:meth:`~sympy.series.fourier.FourierSeries.sigma_approximation`
is different from :meth:`~sympy.series.fourier.FourierSeries.truncate`
- it takes all nonzero terms of degree smaller than n, rather than
first n nonzero ones.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon
.. [2] https://en.wikipedia.org/wiki/Sigma_approximation
"""
terms = [sinc(pi * i / n) * t for i, t in enumerate(self[:n])
if t is not S.Zero]
return Add(*terms)
def shift(self, s):
"""Shift the function by a term independent of x.
f(x) -> f(x) + s
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
a0 = self.a0 + s
sfunc = self.function + s
return self.func(sfunc, self.args[1], (a0, self.an, self.bn))
def shiftx(self, s):
"""Shift x by a term independent of x.
f(x) -> f(x + s)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.subs(x, x + s)
bn = self.bn.subs(x, x + s)
sfunc = self.function.subs(x, x + s)
return self.func(sfunc, self.args[1], (self.a0, an, bn))
def scale(self, s):
"""Scale the function by a term independent of x.
f(x) -> s * f(x)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.coeff_mul(s)
bn = self.bn.coeff_mul(s)
a0 = self.a0 * s
sfunc = self.args[0] * s
return self.func(sfunc, self.args[1], (a0, an, bn))
def scalex(self, s):
"""Scale x by a term independent of x.
f(x) -> f(s*x)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.subs(x, x * s)
bn = self.bn.subs(x, x * s)
sfunc = self.function.subs(x, x * s)
return self.func(sfunc, self.args[1], (self.a0, an, bn))
def _eval_as_leading_term(self, x):
for t in self:
if t is not S.Zero:
return t
def _eval_term(self, pt):
if pt == 0:
return self.a0
return self.an.coeff(pt) + self.bn.coeff(pt)
def __neg__(self):
return self.scale(-1)
def __add__(self, other):
if isinstance(other, FourierSeries):
if self.period != other.period:
raise ValueError("Both the series should have same periods")
x, y = self.x, other.x
function = self.function + other.function.subs(y, x)
if self.x not in function.free_symbols:
return function
an = self.an + other.an
bn = self.bn + other.bn
a0 = self.a0 + other.a0
return self.func(function, self.args[1], (a0, an, bn))
return Add(self, other)
def __sub__(self, other):
return self.__add__(-other)
class FiniteFourierSeries(FourierSeries):
r"""Represents Finite Fourier sine/cosine series.
For how to compute Fourier series, see the :func:`fourier_series`
docstring.
Parameters
==========
f : Expr
Expression for finding fourier_series
limits : ( x, start, stop)
x is the independent variable for the expression f
(start, stop) is the period of the fourier series
exprs: (a0, an, bn) or Expr
a0 is the constant term a0 of the fourier series
an is a dictionary of coefficients of cos terms
an[k] = coefficient of cos(pi*(k/L)*x)
bn is a dictionary of coefficients of sin terms
bn[k] = coefficient of sin(pi*(k/L)*x)
or exprs can be an expression to be converted to fourier form
Methods
=======
This class is an extension of FourierSeries class.
Please refer to sympy.series.fourier.FourierSeries for
further information.
See Also
========
sympy.series.fourier.FourierSeries
sympy.series.fourier.fourier_series
"""
def __new__(cls, f, limits, exprs):
f = sympify(f)
limits = sympify(limits)
exprs = sympify(exprs)
if not (type(exprs) == Tuple and len(exprs) == 3): # exprs is not of form (a0, an, bn)
# Converts the expression to fourier form
c, e = exprs.as_coeff_add()
rexpr = c + Add(*[TR10(i) for i in e])
a0, exp_ls = rexpr.expand(trig=False, power_base=False, power_exp=False, log=False).as_coeff_add()
x = limits[0]
L = abs(limits[2] - limits[1]) / 2
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k is not S.Zero, ])
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
an = dict()
bn = dict()
# separates the coefficients of sin and cos terms in dictionaries an, and bn
for p in exp_ls:
t = p.match(b * cos(a * (pi / L) * x))
q = p.match(b * sin(a * (pi / L) * x))
if t:
an[t[a]] = t[b] + an.get(t[a], S.Zero)
elif q:
bn[q[a]] = q[b] + bn.get(q[a], S.Zero)
else:
a0 += p
exprs = Tuple(a0, an, bn)
return Expr.__new__(cls, f, limits, exprs)
@property
def interval(self):
_length = 1 if self.a0 else 0
_length += max(set(self.an.keys()).union(set(self.bn.keys()))) + 1
return Interval(0, _length)
@property
def length(self):
return self.stop - self.start
def shiftx(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate().subs(x, x + s)
sfunc = self.function.subs(x, x + s)
return self.func(sfunc, self.args[1], _expr)
def scale(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate() * s
sfunc = self.function * s
return self.func(sfunc, self.args[1], _expr)
def scalex(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate().subs(x, x * s)
sfunc = self.function.subs(x, x * s)
return self.func(sfunc, self.args[1], _expr)
def _eval_term(self, pt):
if pt == 0:
return self.a0
_term = self.an.get(pt, S.Zero) * cos(pt * (pi / self.L) * self.x) \
+ self.bn.get(pt, S.Zero) * sin(pt * (pi / self.L) * self.x)
return _term
def __add__(self, other):
if isinstance(other, FourierSeries):
return other.__add__(fourier_series(self.function, self.args[1],\
finite=False))
elif isinstance(other, FiniteFourierSeries):
if self.period != other.period:
raise ValueError("Both the series should have same periods")
x, y = self.x, other.x
function = self.function + other.function.subs(y, x)
if self.x not in function.free_symbols:
return function
return fourier_series(function, limits=self.args[1])
def fourier_series(f, limits=None, finite=True):
"""Computes Fourier sine/cosine series expansion.
Returns a :class:`FourierSeries` object.
Examples
========
>>> from sympy import fourier_series, pi, cos
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.truncate(n=3)
-4*cos(x) + cos(2*x) + pi**2/3
Shifting
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
Scaling
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
Notes
=====
Computing Fourier series can be slow
due to the integration required in computing
an, bn.
It is faster to compute Fourier series of a function
by using shifting and scaling on an already
computed Fourier series rather than computing
again.
e.g. If the Fourier series of ``x**2`` is known
the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``.
See Also
========
sympy.series.fourier.FourierSeries
References
==========
.. [1] mathworld.wolfram.com/FourierSeries.html
"""
f = sympify(f)
limits = _process_limits(f, limits)
x = limits[0]
if x not in f.free_symbols:
return f
if finite:
L = abs(limits[2] - limits[1]) / 2
is_finite, res_f = finite_check(f, x, L)
if is_finite:
return FiniteFourierSeries(f, limits, res_f)
n = Dummy('n')
neg_f = f.subs(x, -x)
if f == neg_f:
a0, an = fourier_cos_seq(f, limits, n)
bn = SeqFormula(0, (1, oo))
elif f == -neg_f:
a0 = S.Zero
an = SeqFormula(0, (1, oo))
bn = fourier_sin_seq(f, limits, n)
else:
a0, an = fourier_cos_seq(f, limits, n)
bn = fourier_sin_seq(f, limits, n)
return FourierSeries(f, limits, (a0, an, bn))
|
4a24dab12479de5d069f68c42efc8a84f754bf1f7f89f3f06c2b1e7344fe2145 | from __future__ import print_function, division
from sympy.core import S, sympify, Expr, Rational, Dummy
from sympy.core import Add, Mul, expand_power_base, expand_log
from sympy.core.cache import cacheit
from sympy.core.compatibility import default_sort_key, is_sequence
from sympy.core.containers import Tuple
from sympy.sets.sets import Complement
from sympy.utilities.iterables import uniq
class Order(Expr):
r""" Represents the limiting behavior of some function
The order of a function characterizes the function based on the limiting
behavior of the function as it goes to some limit. Only taking the limit
point to be a number is currently supported. This is expressed in
big O notation [1]_.
The formal definition for the order of a function `g(x)` about a point `a`
is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if for any
`\delta > 0` there exists a `M > 0` such that `|g(x)| \leq M|f(x)|` for
`|x-a| < \delta`. This is equivalent to `\lim_{x \rightarrow a}
\sup |g(x)/f(x)| < \infty`.
Let's illustrate it on the following example by taking the expansion of
`\sin(x)` about 0:
.. math ::
\sin(x) = x - x^3/3! + O(x^5)
where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition
of `O`, for any `\delta > 0` there is an `M` such that:
.. math ::
|x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta
or by the alternate definition:
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty
which surely is true, because
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5!
As it is usually used, the order of a function can be intuitively thought
of representing all terms of powers greater than the one specified. For
example, `O(x^3)` corresponds to any terms proportional to `x^3,
x^4,\ldots` and any higher power. For a polynomial, this leaves terms
proportional to `x^2`, `x` and constants.
Examples
========
>>> from sympy import O, oo, cos, pi
>>> from sympy.abc import x, y
>>> O(x + x**2)
O(x)
>>> O(x + x**2, (x, 0))
O(x)
>>> O(x + x**2, (x, oo))
O(x**2, (x, oo))
>>> O(1 + x*y)
O(1, x, y)
>>> O(1 + x*y, (x, 0), (y, 0))
O(1, x, y)
>>> O(1 + x*y, (x, oo), (y, oo))
O(x*y, (x, oo), (y, oo))
>>> O(1) in O(1, x)
True
>>> O(1, x) in O(1)
False
>>> O(x) in O(1, x)
True
>>> O(x**2) in O(x)
True
>>> O(x)*x
O(x**2)
>>> O(x) - O(x)
O(x)
>>> O(cos(x))
O(1)
>>> O(cos(x), (x, pi/2))
O(x - pi/2, (x, pi/2))
References
==========
.. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_
Notes
=====
In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading
term. ``O(f(x), x)`` is automatically transformed to
``O(f(x).as_leading_term(x),x)``.
``O(expr*f(x), x)`` is ``O(f(x), x)``
``O(expr, x)`` is ``O(1)``
``O(0, x)`` is 0.
Multivariate O is also supported:
``O(f(x, y), x, y)`` is transformed to
``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)``
In the multivariate case, it is assumed the limits w.r.t. the various
symbols commute.
If no symbols are passed then all symbols in the expression are used
and the limit point is assumed to be zero.
"""
is_Order = True
__slots__ = ()
@cacheit
def __new__(cls, expr, *args, **kwargs):
expr = sympify(expr)
if not args:
if expr.is_Order:
variables = expr.variables
point = expr.point
else:
variables = list(expr.free_symbols)
point = [S.Zero]*len(variables)
else:
args = list(args if is_sequence(args) else [args])
variables, point = [], []
if is_sequence(args[0]):
for a in args:
v, p = list(map(sympify, a))
variables.append(v)
point.append(p)
else:
variables = list(map(sympify, args))
point = [S.Zero]*len(variables)
if not all(v.is_symbol for v in variables):
raise TypeError('Variables are not symbols, got %s' % variables)
if len(list(uniq(variables))) != len(variables):
raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)
if expr.is_Order:
expr_vp = dict(expr.args[1:])
new_vp = dict(expr_vp)
vp = dict(zip(variables, point))
for v, p in vp.items():
if v in new_vp.keys():
if p != new_vp[v]:
raise NotImplementedError(
"Mixing Order at different points is not supported.")
else:
new_vp[v] = p
if set(expr_vp.keys()) == set(new_vp.keys()):
return expr
else:
variables = list(new_vp.keys())
point = [new_vp[v] for v in variables]
if expr is S.NaN:
return S.NaN
if any(x in p.free_symbols for x in variables for p in point):
raise ValueError('Got %s as a point.' % point)
if variables:
if any(p != point[0] for p in point):
raise NotImplementedError(
"Multivariable orders at different points are not supported.")
if point[0] is S.Infinity:
s = {k: 1/Dummy() for k in variables}
rs = {1/v: 1/k for k, v in s.items()}
elif point[0] is S.NegativeInfinity:
s = {k: -1/Dummy() for k in variables}
rs = {-1/v: -1/k for k, v in s.items()}
elif point[0] is not S.Zero:
s = dict((k, Dummy() + point[0]) for k in variables)
rs = dict((v - point[0], k - point[0]) for k, v in s.items())
else:
s = ()
rs = ()
expr = expr.subs(s)
if expr.is_Add:
from sympy import expand_multinomial
expr = expand_multinomial(expr)
if s:
args = tuple([r[0] for r in rs.items()])
else:
args = tuple(variables)
if len(variables) > 1:
# XXX: better way? We need this expand() to
# workaround e.g: expr = x*(x + y).
# (x*(x + y)).as_leading_term(x, y) currently returns
# x*y (wrong order term!). That's why we want to deal with
# expand()'ed expr (handled in "if expr.is_Add" branch below).
expr = expr.expand()
old_expr = None
while old_expr != expr:
old_expr = expr
if expr.is_Add:
lst = expr.extract_leading_order(args)
expr = Add(*[f.expr for (e, f) in lst])
elif expr:
expr = expr.as_leading_term(*args)
expr = expr.as_independent(*args, as_Add=False)[1]
expr = expand_power_base(expr)
expr = expand_log(expr)
if len(args) == 1:
# The definition of O(f(x)) symbol explicitly stated that
# the argument of f(x) is irrelevant. That's why we can
# combine some power exponents (only "on top" of the
# expression tree for f(x)), e.g.:
# x**p * (-x)**q -> x**(p+q) for real p, q.
x = args[0]
margs = list(Mul.make_args(
expr.as_independent(x, as_Add=False)[1]))
for i, t in enumerate(margs):
if t.is_Pow:
b, q = t.args
if b in (x, -x) and q.is_real and not q.has(x):
margs[i] = x**q
elif b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
elif b.is_Mul and b.args[0] is S.NegativeOne:
b = -b
if b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
expr = Mul(*margs)
expr = expr.subs(rs)
if expr.is_Order:
expr = expr.expr
if not expr.has(*variables) and not expr.is_zero:
expr = S.One
# create Order instance:
vp = dict(zip(variables, point))
variables.sort(key=default_sort_key)
point = [vp[v] for v in variables]
args = (expr,) + Tuple(*zip(variables, point))
obj = Expr.__new__(cls, *args)
return obj
def _eval_nseries(self, x, n, logx):
return self
@property
def expr(self):
return self.args[0]
@property
def variables(self):
if self.args[1:]:
return tuple(x[0] for x in self.args[1:])
else:
return ()
@property
def point(self):
if self.args[1:]:
return tuple(x[1] for x in self.args[1:])
else:
return ()
@property
def free_symbols(self):
return self.expr.free_symbols | set(self.variables)
def _eval_power(b, e):
if e.is_Number and e.is_nonnegative:
return b.func(b.expr ** e, *b.args[1:])
if e == O(1):
return b
return
def as_expr_variables(self, order_symbols):
if order_symbols is None:
order_symbols = self.args[1:]
else:
if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and
not all(p == self.point[0] for p in self.point)): # pragma: no cover
raise NotImplementedError('Order at points other than 0 '
'or oo not supported, got %s as a point.' % self.point)
if order_symbols and order_symbols[0][1] != self.point[0]:
raise NotImplementedError(
"Multiplying Order at different points is not supported.")
order_symbols = dict(order_symbols)
for s, p in dict(self.args[1:]).items():
if s not in order_symbols.keys():
order_symbols[s] = p
order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
return self.expr, tuple(order_symbols)
def removeO(self):
return S.Zero
def getO(self):
return self
@cacheit
def contains(self, expr):
r"""
Return True if expr belongs to Order(self.expr, \*self.variables).
Return False if self belongs to expr.
Return None if the inclusion relation cannot be determined
(e.g. when self and expr have different symbols).
"""
from sympy import powsimp
if expr.is_zero:
return True
if expr is S.NaN:
return False
point = self.point[0] if self.point else S.Zero
if expr.is_Order:
if (any(p != point for p in expr.point) or
any(p != point for p in self.point)):
return None
if expr.expr == self.expr:
# O(1) + O(1), O(1) + O(1, x), etc.
return all([x in self.args[1:] for x in expr.args[1:]])
if expr.expr.is_Add:
return all([self.contains(x) for x in expr.expr.args])
if self.expr.is_Add and point.is_zero:
return any([self.func(x, *self.args[1:]).contains(expr)
for x in self.expr.args])
if self.variables and expr.variables:
common_symbols = tuple(
[s for s in self.variables if s in expr.variables])
elif self.variables:
common_symbols = self.variables
else:
common_symbols = expr.variables
if not common_symbols:
return None
if (self.expr.is_Pow and len(self.variables) == 1
and self.variables == expr.variables):
symbol = self.variables[0]
other = expr.expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
r = None
ratio = self.expr/expr.expr
ratio = powsimp(ratio, deep=True, combine='exp')
for s in common_symbols:
from sympy.series.limits import Limit
l = Limit(ratio, s, point).doit(heuristics=False)
if not isinstance(l, Limit):
l = l != 0
else:
l = None
if r is None:
r = l
else:
if r != l:
return
return r
if self.expr.is_Pow and len(self.variables) == 1:
symbol = self.variables[0]
other = expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
obj = self.func(expr, *self.args[1:])
return self.contains(obj)
def __contains__(self, other):
result = self.contains(other)
if result is None:
raise TypeError('contains did not evaluate to a bool')
return result
def _eval_subs(self, old, new):
if old in self.variables:
newexpr = self.expr.subs(old, new)
i = self.variables.index(old)
newvars = list(self.variables)
newpt = list(self.point)
if new.is_symbol:
newvars[i] = new
else:
syms = new.free_symbols
if len(syms) == 1 or old in syms:
if old in syms:
var = self.variables[i]
else:
var = syms.pop()
# First, try to substitute self.point in the "new"
# expr to see if this is a fixed point.
# E.g. O(y).subs(y, sin(x))
point = new.subs(var, self.point[i])
if point != self.point[i]:
from sympy.solvers.solveset import solveset
d = Dummy()
sol = solveset(old - new.subs(var, d), d)
if isinstance(sol, Complement):
e1 = sol.args[0]
e2 = sol.args[1]
sol = set(e1) - set(e2)
res = [dict(zip((d, ), sol))]
point = d.subs(res[0]).limit(old, self.point[i])
newvars[i] = var
newpt[i] = point
elif old not in syms:
del newvars[i], newpt[i]
if not syms and new == self.point[i]:
newvars.extend(syms)
newpt.extend([S.Zero]*len(syms))
else:
return
return Order(newexpr, *zip(newvars, newpt))
def _eval_conjugate(self):
expr = self.expr._eval_conjugate()
if expr is not None:
return self.func(expr, *self.args[1:])
def _eval_derivative(self, x):
return self.func(self.expr.diff(x), *self.args[1:]) or self
def _eval_transpose(self):
expr = self.expr._eval_transpose()
if expr is not None:
return self.func(expr, *self.args[1:])
def _sage_(self):
#XXX: SAGE doesn't have Order yet. Let's return 0 instead.
return Rational(0)._sage_()
def __neg__(self):
return self
O = Order
|
2a451c6164bc8f61db18a248684ef39a53b1f826d0300444d02cde363c21e3f9 | """
Expand Hypergeometric (and Meijer G) functions into named
special functions.
The algorithm for doing this uses a collection of lookup tables of
hypergeometric functions, and various of their properties, to expand
many hypergeometric functions in terms of special functions.
It is based on the following paper:
Kelly B. Roach. Meijer G Function Representations.
In: Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, pages 205-211, New York, 1997. ACM.
It is described in great(er) detail in the Sphinx documentation.
"""
# SUMMARY OF EXTENSIONS FOR MEIJER G FUNCTIONS
#
# o z**rho G(ap, bq; z) = G(ap + rho, bq + rho; z)
#
# o denote z*d/dz by D
#
# o It is helpful to keep in mind that ap and bq play essentially symmetric
# roles: G(1/z) has slightly altered parameters, with ap and bq interchanged.
#
# o There are four shift operators:
# A_J = b_J - D, J = 1, ..., n
# B_J = 1 - a_j + D, J = 1, ..., m
# C_J = -b_J + D, J = m+1, ..., q
# D_J = a_J - 1 - D, J = n+1, ..., p
#
# A_J, C_J increment b_J
# B_J, D_J decrement a_J
#
# o The corresponding four inverse-shift operators are defined if there
# is no cancellation. Thus e.g. an index a_J (upper or lower) can be
# incremented if a_J != b_i for i = 1, ..., q.
#
# o Order reduction: if b_j - a_i is a non-negative integer, where
# j <= m and i > n, the corresponding quotient of gamma functions reduces
# to a polynomial. Hence the G function can be expressed using a G-function
# of lower order.
# Similarly if j > m and i <= n.
#
# Secondly, there are paired index theorems [Adamchik, The evaluation of
# integrals of Bessel functions via G-function identities]. Suppose there
# are three parameters a, b, c, where a is an a_i, i <= n, b is a b_j,
# j <= m and c is a denominator parameter (i.e. a_i, i > n or b_j, j > m).
# Suppose further all three differ by integers.
# Then the order can be reduced.
# TODO work this out in detail.
#
# o An index quadruple is called suitable if its order cannot be reduced.
# If there exists a sequence of shift operators transforming one index
# quadruple into another, we say one is reachable from the other.
#
# o Deciding if one index quadruple is reachable from another is tricky. For
# this reason, we use hand-built routines to match and instantiate formulas.
#
from __future__ import print_function, division
from collections import defaultdict
from itertools import product
from sympy import SYMPY_DEBUG
from sympy.core import (S, Dummy, symbols, sympify, Tuple, expand, I, pi, Mul,
EulerGamma, oo, zoo, expand_func, Add, nan, Expr, Rational)
from sympy.core.compatibility import default_sort_key, reduce
from sympy.core.mod import Mod
from sympy.functions import (exp, sqrt, root, log, lowergamma, cos,
besseli, gamma, uppergamma, expint, erf, sin, besselj, Ei, Ci, Si, Shi,
sinh, cosh, Chi, fresnels, fresnelc, polar_lift, exp_polar, floor, ceiling,
rf, factorial, lerchphi, Piecewise, re, elliptic_k, elliptic_e)
from sympy.functions.elementary.complexes import polarify, unpolarify
from sympy.functions.special.hyper import (hyper, HyperRep_atanh,
HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
HyperRep_cosasin, HyperRep_sinasin, meijerg)
from sympy.polys import poly, Poly
from sympy.series import residue
from sympy.simplify import simplify # type: ignore
from sympy.simplify.powsimp import powdenest
from sympy.utilities.iterables import sift
# function to define "buckets"
def _mod1(x):
# TODO see if this can work as Mod(x, 1); this will require
# different handling of the "buckets" since these need to
# be sorted and that fails when there is a mixture of
# integers and expressions with parameters. With the current
# Mod behavior, Mod(k, 1) == Mod(1, 1) == 0 if k is an integer.
# Although the sorting can be done with Basic.compare, this may
# still require different handling of the sorted buckets.
if x.is_Number:
return Mod(x, 1)
c, x = x.as_coeff_Add()
return Mod(c, 1) + x
# leave add formulae at the top for easy reference
def add_formulae(formulae):
""" Create our knowledge base. """
from sympy.matrices import Matrix
a, b, c, z = symbols('a b c, z', cls=Dummy)
def add(ap, bq, res):
func = Hyper_Function(ap, bq)
formulae.append(Formula(func, z, res, (a, b, c)))
def addb(ap, bq, B, C, M):
func = Hyper_Function(ap, bq)
formulae.append(Formula(func, z, None, (a, b, c), B, C, M))
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
# 0F0
add((), (), exp(z))
# 1F0
add((a, ), (), HyperRep_power1(-a, z))
# 2F1
addb((a, a - S.Half), (2*a, ),
Matrix([HyperRep_power2(a, z),
HyperRep_power2(a + S.Half, z)/2]),
Matrix([[1, 0]]),
Matrix([[(a - S.Half)*z/(1 - z), (S.Half - a)*z/(1 - z)],
[a/(1 - z), a*(z - 2)/(1 - z)]]))
addb((1, 1), (2, ),
Matrix([HyperRep_log1(z), 1]), Matrix([[-1/z, 0]]),
Matrix([[0, z/(z - 1)], [0, 0]]))
addb((S.Half, 1), (S('3/2'), ),
Matrix([HyperRep_atanh(z), 1]),
Matrix([[1, 0]]),
Matrix([[Rational(-1, 2), 1/(1 - z)/2], [0, 0]]))
addb((S.Half, S.Half), (S('3/2'), ),
Matrix([HyperRep_asin1(z), HyperRep_power1(Rational(-1, 2), z)]),
Matrix([[1, 0]]),
Matrix([[Rational(-1, 2), S.Half], [0, z/(1 - z)/2]]))
addb((a, S.Half + a), (S.Half, ),
Matrix([HyperRep_sqrts1(-a, z), -HyperRep_sqrts2(-a - S.Half, z)]),
Matrix([[1, 0]]),
Matrix([[0, -a],
[z*(-2*a - 1)/2/(1 - z), S.Half - z*(-2*a - 1)/(1 - z)]]))
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
# Integrals and Series: More Special Functions, Vol. 3,.
# Gordon and Breach Science Publisher
addb([a, -a], [S.Half],
Matrix([HyperRep_cosasin(a, z), HyperRep_sinasin(a, z)]),
Matrix([[1, 0]]),
Matrix([[0, -a], [a*z/(1 - z), 1/(1 - z)/2]]))
addb([1, 1], [3*S.Half],
Matrix([HyperRep_asin2(z), 1]), Matrix([[1, 0]]),
Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]]))
# Complete elliptic integrals K(z) and E(z), both a 2F1 function
addb([S.Half, S.Half], [S.One],
Matrix([elliptic_k(z), elliptic_e(z)]),
Matrix([[2/pi, 0]]),
Matrix([[Rational(-1, 2), -1/(2*z-2)],
[Rational(-1, 2), S.Half]]))
addb([Rational(-1, 2), S.Half], [S.One],
Matrix([elliptic_k(z), elliptic_e(z)]),
Matrix([[0, 2/pi]]),
Matrix([[Rational(-1, 2), -1/(2*z-2)],
[Rational(-1, 2), S.Half]]))
# 3F2
addb([Rational(-1, 2), 1, 1], [S.Half, 2],
Matrix([z*HyperRep_atanh(z), HyperRep_log1(z), 1]),
Matrix([[Rational(-2, 3), -S.One/(3*z), Rational(2, 3)]]),
Matrix([[S.Half, 0, z/(1 - z)/2],
[0, 0, z/(z - 1)],
[0, 0, 0]]))
# actually the formula for 3/2 is much nicer ...
addb([Rational(-1, 2), 1, 1], [2, 2],
Matrix([HyperRep_power1(S.Half, z), HyperRep_log2(z), 1]),
Matrix([[Rational(4, 9) - 16/(9*z), 4/(3*z), 16/(9*z)]]),
Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]]))
# 1F1
addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]),
Matrix([[b - 1, 0]]), Matrix([[1 - b + z, 1], [0, 0]]))
addb([a], [2*a],
Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a),
z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a)]),
Matrix([[1, 0]]),
Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]]))
mz = polar_lift(-1)*z
addb([a], [a + 1],
Matrix([mz**(-a)*a*lowergamma(a, mz), a*exp(z)]),
Matrix([[1, 0]]),
Matrix([[-a, 1], [0, z]]))
# This one is redundant.
add([Rational(-1, 2)], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z)))
# Added to get nice results for Laplace transform of Fresnel functions
# http://functions.wolfram.com/07.22.03.6437.01
# Basic rule
#add([1], [Rational(3, 4), Rational(5, 4)],
# sqrt(pi) * (cos(2*sqrt(polar_lift(-1)*z))*fresnelc(2*root(polar_lift(-1)*z,4)/sqrt(pi)) +
# sin(2*sqrt(polar_lift(-1)*z))*fresnels(2*root(polar_lift(-1)*z,4)/sqrt(pi)))
# / (2*root(polar_lift(-1)*z,4)))
# Manually tuned rule
addb([1], [Rational(3, 4), Rational(5, 4)],
Matrix([ sqrt(pi)*(I*sinh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
+ cosh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
* exp(-I*pi/4)/(2*root(z, 4)),
sqrt(pi)*root(z, 4)*(sinh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
+ I*cosh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
*exp(-I*pi/4)/2,
1 ]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 4), 1, Rational(1, 4)],
[ z, Rational(1, 4), 0],
[ 0, 0, 0]]))
# 2F2
addb([S.Half, a], [Rational(3, 2), a + 1],
Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)),
a/(2*a - 1)*(polar_lift(-1)*z)**(-a)*
lowergamma(a, polar_lift(-1)*z),
a/(2*a - 1)*exp(z)]),
Matrix([[1, -1, 0]]),
Matrix([[Rational(-1, 2), 0, 1], [0, -a, 1], [0, 0, z]]))
# We make a "basis" of four functions instead of three, and give EulerGamma
# an extra slot (it could just be a coefficient to 1). The advantage is
# that this way Polys will not see multivariate polynomials (it treats
# EulerGamma as an indeterminate), which is *way* faster.
addb([1, 1], [2, 2],
Matrix([Ei(z) - log(z), exp(z), 1, EulerGamma]),
Matrix([[1/z, 0, 0, -1/z]]),
Matrix([[0, 1, -1, 0], [0, z, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))
# 0F1
add((), (S.Half, ), cosh(2*sqrt(z)))
addb([], [b],
Matrix([gamma(b)*z**((1 - b)/2)*besseli(b - 1, 2*sqrt(z)),
gamma(b)*z**(1 - b/2)*besseli(b, 2*sqrt(z))]),
Matrix([[1, 0]]), Matrix([[0, 1], [z, (1 - b)]]))
# 0F3
x = 4*z**Rational(1, 4)
def fp(a, z):
return besseli(a, x) + besselj(a, x)
def fm(a, z):
return besseli(a, x) - besselj(a, x)
# TODO branching
addb([], [S.Half, a, a + S.Half],
Matrix([fp(2*a - 1, z), fm(2*a, z)*z**Rational(1, 4),
fm(2*a - 1, z)*sqrt(z), fp(2*a, z)*z**Rational(3, 4)])
* 2**(-2*a)*gamma(2*a)*z**((1 - 2*a)/4),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, 1, 0, 0],
[0, S.Half - a, 1, 0],
[0, 0, S.Half, 1],
[z, 0, 0, 1 - a]]))
x = 2*(4*z)**Rational(1, 4)*exp_polar(I*pi/4)
addb([], [a, a + S.Half, 2*a],
(2*sqrt(polar_lift(-1)*z))**(1 - 2*a)*gamma(2*a)**2 *
Matrix([besselj(2*a - 1, x)*besseli(2*a - 1, x),
x*(besseli(2*a, x)*besselj(2*a - 1, x)
- besseli(2*a - 1, x)*besselj(2*a, x)),
x**2*besseli(2*a, x)*besselj(2*a, x),
x**3*(besseli(2*a, x)*besselj(2*a - 1, x)
+ besseli(2*a - 1, x)*besselj(2*a, x))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, Rational(1, 4), 0, 0],
[0, (1 - 2*a)/2, Rational(-1, 2), 0],
[0, 0, 1 - 2*a, Rational(1, 4)],
[-32*z, 0, 0, 1 - a]]))
# 1F2
addb([a], [a - S.Half, 2*a],
Matrix([z**(S.Half - a)*besseli(a - S.Half, sqrt(z))**2,
z**(1 - a)*besseli(a - S.Half, sqrt(z))
*besseli(a - Rational(3, 2), sqrt(z)),
z**(Rational(3, 2) - a)*besseli(a - Rational(3, 2), sqrt(z))**2]),
Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a),
2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a),
0]]),
Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]]))
addb([S.Half], [b, 2 - b],
pi*(1 - b)/sin(pi*b)*
Matrix([besseli(1 - b, sqrt(z))*besseli(b - 1, sqrt(z)),
sqrt(z)*(besseli(-b, sqrt(z))*besseli(b - 1, sqrt(z))
+ besseli(1 - b, sqrt(z))*besseli(b, sqrt(z))),
besseli(-b, sqrt(z))*besseli(b, sqrt(z))]),
Matrix([[1, 0, 0]]),
Matrix([[b - 1, S.Half, 0],
[z, 0, z],
[0, S.Half, -b]]))
addb([S.Half], [Rational(3, 2), Rational(3, 2)],
Matrix([Shi(2*sqrt(z))/2/sqrt(z), sinh(2*sqrt(z))/2/sqrt(z),
cosh(2*sqrt(z))]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 2), S.Half, 0], [0, Rational(-1, 2), S.Half], [0, 2*z, 0]]))
# FresnelS
# Basic rule
#add([Rational(3, 4)], [Rational(3, 2),Rational(7, 4)], 6*fresnels( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( pi * (exp(pi*I/4)*root(z,4)*2/sqrt(pi))**3 ) )
# Manually tuned rule
addb([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)],
Matrix(
[ fresnels(
exp(
pi*I/4)*root(
z, 4)*2/sqrt(
pi) ) / (
pi * (exp(pi*I/4)*root(z, 4)*2/sqrt(pi))**3 ),
sinh(2*sqrt(z))/sqrt(z),
cosh(2*sqrt(z)) ]),
Matrix([[6, 0, 0]]),
Matrix([[Rational(-3, 4), Rational(1, 16), 0],
[ 0, Rational(-1, 2), 1],
[ 0, z, 0]]))
# FresnelC
# Basic rule
#add([Rational(1, 4)], [S.Half,Rational(5, 4)], fresnelc( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) )
# Manually tuned rule
addb([Rational(1, 4)], [S.Half, Rational(5, 4)],
Matrix(
[ sqrt(
pi)*exp(
-I*pi/4)*fresnelc(
2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(2*root(z, 4)),
cosh(2*sqrt(z)),
sinh(2*sqrt(z))*sqrt(z) ]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 4), Rational(1, 4), 0 ],
[ 0, 0, 1 ],
[ 0, z, S.Half]]))
# 2F3
# XXX with this five-parameter formula is pretty slow with the current
# Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000
# instantiations ... But it's not too bad.
addb([a, a + S.Half], [2*a, b, 2*a - b + 1],
gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1 - 2*a) *
Matrix([besseli(b - 1, sqrt(z))*besseli(2*a - b, sqrt(z)),
sqrt(z)*besseli(b, sqrt(z))*besseli(2*a - b, sqrt(z)),
sqrt(z)*besseli(b - 1, sqrt(z))*besseli(2*a - b + 1, sqrt(z)),
besseli(b, sqrt(z))*besseli(2*a - b + 1, sqrt(z))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, S.Half, S.Half, 0],
[z/2, 1 - b, 0, z/2],
[z/2, 0, b - 2*a, z/2],
[0, S.Half, S.Half, -2*a]]))
# (C/f above comment about eulergamma in the basis).
addb([1, 1], [2, 2, Rational(3, 2)],
Matrix([Chi(2*sqrt(z)) - log(2*sqrt(z)),
cosh(2*sqrt(z)), sqrt(z)*sinh(2*sqrt(z)), 1, EulerGamma]),
Matrix([[1/z, 0, 0, 0, -1/z]]),
Matrix([[0, S.Half, 0, Rational(-1, 2), 0],
[0, 0, 1, 0, 0],
[0, z, S.Half, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]))
# 3F3
# This is rule: http://functions.wolfram.com/07.31.03.0134.01
# Initial reason to add it was a nice solution for
# integrate(erf(a*z)/z**2, z) and same for erfc and erfi.
# Basic rule
# add([1, 1, a], [2, 2, a+1], (a/(z*(a-1)**2)) *
# (1 - (-z)**(1-a) * (gamma(a) - uppergamma(a,-z))
# - (a-1) * (EulerGamma + uppergamma(0,-z) + log(-z))
# - exp(z)))
# Manually tuned rule
addb([1, 1, a], [2, 2, a+1],
Matrix([a*(log(-z) + expint(1, -z) + EulerGamma)/(z*(a**2 - 2*a + 1)),
a*(-z)**(-a)*(gamma(a) - uppergamma(a, -z))/(a - 1)**2,
a*exp(z)/(a**2 - 2*a + 1),
a/(z*(a**2 - 2*a + 1))]),
Matrix([[1-a, 1, -1/z, 1]]),
Matrix([[-1,0,-1/z,1],
[0,-a,1,0],
[0,0,z,0],
[0,0,0,-1]]))
def add_meijerg_formulae(formulae):
from sympy.matrices import Matrix
a, b, c, z = list(map(Dummy, 'abcz'))
rho = Dummy('rho')
def add(an, ap, bm, bq, B, C, M, matcher):
formulae.append(MeijerFormula(an, ap, bm, bq, z, [a, b, c, rho],
B, C, M, matcher))
def detect_uppergamma(func):
x = func.an[0]
y, z = func.bm
swapped = False
if not _mod1((x - y).simplify()):
swapped = True
(y, z) = (z, y)
if _mod1((x - z).simplify()) or x - z > 0:
return None
l = [y, x]
if swapped:
l = [x, y]
return {rho: y, a: x - y}, G_Function([x], [], l, [])
add([a + rho], [], [rho, a + rho], [],
Matrix([gamma(1 - a)*z**rho*exp(z)*uppergamma(a, z),
gamma(1 - a)*z**(a + rho)]),
Matrix([[1, 0]]),
Matrix([[rho + z, -1], [0, a + rho]]),
detect_uppergamma)
def detect_3113(func):
"""http://functions.wolfram.com/07.34.03.0984.01"""
x = func.an[0]
u, v, w = func.bm
if _mod1((u - v).simplify()) == 0:
if _mod1((v - w).simplify()) == 0:
return
sig = (S.Half, S.Half, S.Zero)
x1, x2, y = u, v, w
else:
if _mod1((x - u).simplify()) == 0:
sig = (S.Half, S.Zero, S.Half)
x1, y, x2 = u, v, w
else:
sig = (S.Zero, S.Half, S.Half)
y, x1, x2 = u, v, w
if (_mod1((x - x1).simplify()) != 0 or
_mod1((x - x2).simplify()) != 0 or
_mod1((x - y).simplify()) != S.Half or
x - x1 > 0 or x - x2 > 0):
return
return {a: x}, G_Function([x], [], [x - S.Half + t for t in sig], [])
s = sin(2*sqrt(z))
c_ = cos(2*sqrt(z))
S_ = Si(2*sqrt(z)) - pi/2
C = Ci(2*sqrt(z))
add([a], [], [a, a, a - S.Half], [],
Matrix([sqrt(pi)*z**(a - S.Half)*(c_*S_ - s*C),
sqrt(pi)*z**a*(s*S_ + c_*C),
sqrt(pi)*z**a]),
Matrix([[-2, 0, 0]]),
Matrix([[a - S.Half, -1, 0], [z, a, S.Half], [0, 0, a]]),
detect_3113)
def make_simp(z):
""" Create a function that simplifies rational functions in ``z``. """
def simp(expr):
""" Efficiently simplify the rational function ``expr``. """
numer, denom = expr.as_numer_denom()
numer = numer.expand()
# denom = denom.expand() # is this needed?
c, numer, denom = poly(numer, z).cancel(poly(denom, z))
return c * numer.as_expr() / denom.as_expr()
return simp
def debug(*args):
if SYMPY_DEBUG:
for a in args:
print(a, end="")
print()
class Hyper_Function(Expr):
""" A generalized hypergeometric function. """
def __new__(cls, ap, bq):
obj = super(Hyper_Function, cls).__new__(cls)
obj.ap = Tuple(*list(map(expand, ap)))
obj.bq = Tuple(*list(map(expand, bq)))
return obj
@property
def args(self):
return (self.ap, self.bq)
@property
def sizes(self):
return (len(self.ap), len(self.bq))
@property
def gamma(self):
"""
Number of upper parameters that are negative integers
This is a transformation invariant.
"""
return sum(bool(x.is_integer and x.is_negative) for x in self.ap)
def _hashable_content(self):
return super(Hyper_Function, self)._hashable_content() + (self.ap,
self.bq)
def __call__(self, arg):
return hyper(self.ap, self.bq, arg)
def build_invariants(self):
"""
Compute the invariant vector.
The invariant vector is:
(gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr)))
where gamma is the number of integer a < 0,
s1 < ... < sk
nl is the number of parameters a_i congruent to sl mod 1
t1 < ... < tr
ml is the number of parameters b_i congruent to tl mod 1
If the index pair contains parameters, then this is not truly an
invariant, since the parameters cannot be sorted uniquely mod1.
Examples
========
>>> from sympy.simplify.hyperexpand import Hyper_Function
>>> from sympy import S
>>> ap = (S.Half, S.One/3, S(-1)/2, -2)
>>> bq = (1, 2)
Here gamma = 1,
k = 3, s1 = 0, s2 = 1/3, s3 = 1/2
n1 = 1, n2 = 1, n2 = 2
r = 1, t1 = 0
m1 = 2:
>>> Hyper_Function(ap, bq).build_invariants()
(1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),))
"""
abuckets, bbuckets = sift(self.ap, _mod1), sift(self.bq, _mod1)
def tr(bucket):
bucket = list(bucket.items())
if not any(isinstance(x[0], Mod) for x in bucket):
bucket.sort(key=lambda x: default_sort_key(x[0]))
bucket = tuple([(mod, len(values)) for mod, values in bucket if
values])
return bucket
return (self.gamma, tr(abuckets), tr(bbuckets))
def difficulty(self, func):
""" Estimate how many steps it takes to reach ``func`` from self.
Return -1 if impossible. """
if self.gamma != func.gamma:
return -1
oabuckets, obbuckets, abuckets, bbuckets = [sift(params, _mod1) for
params in (self.ap, self.bq, func.ap, func.bq)]
diff = 0
for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]:
for mod in set(list(bucket.keys()) + list(obucket.keys())):
if (not mod in bucket) or (not mod in obucket) \
or len(bucket[mod]) != len(obucket[mod]):
return -1
l1 = list(bucket[mod])
l2 = list(obucket[mod])
l1.sort()
l2.sort()
for i, j in zip(l1, l2):
diff += abs(i - j)
return diff
def _is_suitable_origin(self):
"""
Decide if ``self`` is a suitable origin.
A function is a suitable origin iff:
* none of the ai equals bj + n, with n a non-negative integer
* none of the ai is zero
* none of the bj is a non-positive integer
Note that this gives meaningful results only when none of the indices
are symbolic.
"""
for a in self.ap:
for b in self.bq:
if (a - b).is_integer and (a - b).is_negative is False:
return False
for a in self.ap:
if a == 0:
return False
for b in self.bq:
if b.is_integer and b.is_nonpositive:
return False
return True
class G_Function(Expr):
""" A Meijer G-function. """
def __new__(cls, an, ap, bm, bq):
obj = super(G_Function, cls).__new__(cls)
obj.an = Tuple(*list(map(expand, an)))
obj.ap = Tuple(*list(map(expand, ap)))
obj.bm = Tuple(*list(map(expand, bm)))
obj.bq = Tuple(*list(map(expand, bq)))
return obj
@property
def args(self):
return (self.an, self.ap, self.bm, self.bq)
def _hashable_content(self):
return super(G_Function, self)._hashable_content() + self.args
def __call__(self, z):
return meijerg(self.an, self.ap, self.bm, self.bq, z)
def compute_buckets(self):
"""
Compute buckets for the fours sets of parameters.
We guarantee that any two equal Mod objects returned are actually the
same, and that the buckets are sorted by real part (an and bq
descendending, bm and ap ascending).
Examples
========
>>> from sympy.simplify.hyperexpand import G_Function
>>> from sympy.abc import y
>>> from sympy import S, symbols
>>> a, b = [1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3]
>>> G_Function(a, b, [2], [y]).compute_buckets()
({0: [3, 2, 1], 1/2: [3/2]},
{0: [2], y: [y, y + 1, y + 3]}, {0: [2]}, {y: [y]})
"""
dicts = pan, pap, pbm, pbq = [defaultdict(list) for i in range(4)]
for dic, lis in zip(dicts, (self.an, self.ap, self.bm, self.bq)):
for x in lis:
dic[_mod1(x)].append(x)
for dic, flip in zip(dicts, (True, False, False, True)):
for m, items in dic.items():
x0 = items[0]
items.sort(key=lambda x: x - x0, reverse=flip)
dic[m] = items
return tuple([dict(w) for w in dicts])
@property
def signature(self):
return (len(self.an), len(self.ap), len(self.bm), len(self.bq))
# Dummy variable.
_x = Dummy('x')
class Formula(object):
"""
This class represents hypergeometric formulae.
Its data members are:
- z, the argument
- closed_form, the closed form expression
- symbols, the free symbols (parameters) in the formula
- func, the function
- B, C, M (see _compute_basis)
Examples
========
>>> from sympy.abc import a, b, z
>>> from sympy.simplify.hyperexpand import Formula, Hyper_Function
>>> func = Hyper_Function((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7))
>>> f = Formula(func, z, None, [a, b])
"""
def _compute_basis(self, closed_form):
"""
Compute a set of functions B=(f1, ..., fn), a nxn matrix M
and a 1xn matrix C such that:
closed_form = C B
z d/dz B = M B.
"""
from sympy.matrices import Matrix, eye, zeros
afactors = [_x + a for a in self.func.ap]
bfactors = [_x + b - 1 for b in self.func.bq]
expr = _x*Mul(*bfactors) - self.z*Mul(*afactors)
poly = Poly(expr, _x)
n = poly.degree() - 1
b = [closed_form]
for _ in range(n):
b.append(self.z*b[-1].diff(self.z))
self.B = Matrix(b)
self.C = Matrix([[1] + [0]*n])
m = eye(n)
m = m.col_insert(0, zeros(n, 1))
l = poly.all_coeffs()[1:]
l.reverse()
self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0])
def __init__(self, func, z, res, symbols, B=None, C=None, M=None):
z = sympify(z)
res = sympify(res)
symbols = [x for x in sympify(symbols) if func.has(x)]
self.z = z
self.symbols = symbols
self.B = B
self.C = C
self.M = M
self.func = func
# TODO with symbolic parameters, it could be advantageous
# (for prettier answers) to compute a basis only *after*
# instantiation
if res is not None:
self._compute_basis(res)
@property
def closed_form(self):
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
def find_instantiations(self, func):
"""
Find substitutions of the free symbols that match ``func``.
Return the substitution dictionaries as a list. Note that the returned
instantiations need not actually match, or be valid!
"""
from sympy.solvers import solve
ap = func.ap
bq = func.bq
if len(ap) != len(self.func.ap) or len(bq) != len(self.func.bq):
raise TypeError('Cannot instantiate other number of parameters')
symbol_values = []
for a in self.symbols:
if a in self.func.ap.args:
symbol_values.append(ap)
elif a in self.func.bq.args:
symbol_values.append(bq)
else:
raise ValueError("At least one of the parameters of the "
"formula must be equal to %s" % (a,))
base_repl = [dict(list(zip(self.symbols, values)))
for values in product(*symbol_values)]
abuckets, bbuckets = [sift(params, _mod1) for params in [ap, bq]]
a_inv, b_inv = [dict((a, len(vals)) for a, vals in bucket.items())
for bucket in [abuckets, bbuckets]]
critical_values = [[0] for _ in self.symbols]
result = []
_n = Dummy()
for repl in base_repl:
symb_a, symb_b = [sift(params, lambda x: _mod1(x.xreplace(repl)))
for params in [self.func.ap, self.func.bq]]
for bucket, obucket in [(abuckets, symb_a), (bbuckets, symb_b)]:
for mod in set(list(bucket.keys()) + list(obucket.keys())):
if (not mod in bucket) or (not mod in obucket) \
or len(bucket[mod]) != len(obucket[mod]):
break
for a, vals in zip(self.symbols, critical_values):
if repl[a].free_symbols:
continue
exprs = [expr for expr in obucket[mod] if expr.has(a)]
repl0 = repl.copy()
repl0[a] += _n
for expr in exprs:
for target in bucket[mod]:
n0, = solve(expr.xreplace(repl0) - target, _n)
if n0.free_symbols:
raise ValueError("Value should not be true")
vals.append(n0)
else:
values = []
for a, vals in zip(self.symbols, critical_values):
a0 = repl[a]
min_ = floor(min(vals))
max_ = ceiling(max(vals))
values.append([a0 + n for n in range(min_, max_ + 1)])
result.extend(dict(list(zip(self.symbols, l))) for l in product(*values))
return result
class FormulaCollection(object):
""" A collection of formulae to use as origins. """
def __init__(self):
""" Doing this globally at module init time is a pain ... """
self.symbolic_formulae = {}
self.concrete_formulae = {}
self.formulae = []
add_formulae(self.formulae)
# Now process the formulae into a helpful form.
# These dicts are indexed by (p, q).
for f in self.formulae:
sizes = f.func.sizes
if len(f.symbols) > 0:
self.symbolic_formulae.setdefault(sizes, []).append(f)
else:
inv = f.func.build_invariants()
self.concrete_formulae.setdefault(sizes, {})[inv] = f
def lookup_origin(self, func):
"""
Given the suitable target ``func``, try to find an origin in our
knowledge base.
Examples
========
>>> from sympy.simplify.hyperexpand import (FormulaCollection,
... Hyper_Function)
>>> f = FormulaCollection()
>>> f.lookup_origin(Hyper_Function((), ())).closed_form
exp(_z)
>>> f.lookup_origin(Hyper_Function([1], ())).closed_form
HyperRep_power1(-1, _z)
>>> from sympy import S
>>> i = Hyper_Function([S('1/4'), S('3/4 + 4')], [S.Half])
>>> f.lookup_origin(i).closed_form
HyperRep_sqrts1(-1/4, _z)
"""
inv = func.build_invariants()
sizes = func.sizes
if sizes in self.concrete_formulae and \
inv in self.concrete_formulae[sizes]:
return self.concrete_formulae[sizes][inv]
# We don't have a concrete formula. Try to instantiate.
if not sizes in self.symbolic_formulae:
return None # Too bad...
possible = []
for f in self.symbolic_formulae[sizes]:
repls = f.find_instantiations(func)
for repl in repls:
func2 = f.func.xreplace(repl)
if not func2._is_suitable_origin():
continue
diff = func2.difficulty(func)
if diff == -1:
continue
possible.append((diff, repl, f, func2))
# find the nearest origin
possible.sort(key=lambda x: x[0])
for _, repl, f, func2 in possible:
f2 = Formula(func2, f.z, None, [], f.B.subs(repl),
f.C.subs(repl), f.M.subs(repl))
if not any(e.has(S.NaN, oo, -oo, zoo) for e in [f2.B, f2.M, f2.C]):
return f2
return None
class MeijerFormula(object):
"""
This class represents a Meijer G-function formula.
Its data members are:
- z, the argument
- symbols, the free symbols (parameters) in the formula
- func, the function
- B, C, M (c/f ordinary Formula)
"""
def __init__(self, an, ap, bm, bq, z, symbols, B, C, M, matcher):
an, ap, bm, bq = [Tuple(*list(map(expand, w))) for w in [an, ap, bm, bq]]
self.func = G_Function(an, ap, bm, bq)
self.z = z
self.symbols = symbols
self._matcher = matcher
self.B = B
self.C = C
self.M = M
@property
def closed_form(self):
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
def try_instantiate(self, func):
"""
Try to instantiate the current formula to (almost) match func.
This uses the _matcher passed on init.
"""
if func.signature != self.func.signature:
return None
res = self._matcher(func)
if res is not None:
subs, newfunc = res
return MeijerFormula(newfunc.an, newfunc.ap, newfunc.bm, newfunc.bq,
self.z, [],
self.B.subs(subs), self.C.subs(subs),
self.M.subs(subs), None)
class MeijerFormulaCollection(object):
"""
This class holds a collection of meijer g formulae.
"""
def __init__(self):
formulae = []
add_meijerg_formulae(formulae)
self.formulae = defaultdict(list)
for formula in formulae:
self.formulae[formula.func.signature].append(formula)
self.formulae = dict(self.formulae)
def lookup_origin(self, func):
""" Try to find a formula that matches func. """
if not func.signature in self.formulae:
return None
for formula in self.formulae[func.signature]:
res = formula.try_instantiate(func)
if res is not None:
return res
class Operator(object):
"""
Base class for operators to be applied to our functions.
These operators are differential operators. They are by convention
expressed in the variable D = z*d/dz (although this base class does
not actually care).
Note that when the operator is applied to an object, we typically do
*not* blindly differentiate but instead use a different representation
of the z*d/dz operator (see make_derivative_operator).
To subclass from this, define a __init__ method that initializes a
self._poly variable. This variable stores a polynomial. By convention
the generator is z*d/dz, and acts to the right of all coefficients.
Thus this poly
x**2 + 2*z*x + 1
represents the differential operator
(z*d/dz)**2 + 2*z**2*d/dz.
This class is used only in the implementation of the hypergeometric
function expansion algorithm.
"""
def apply(self, obj, op):
"""
Apply ``self`` to the object ``obj``, where the generator is ``op``.
Examples
========
>>> from sympy.simplify.hyperexpand import Operator
>>> from sympy.polys.polytools import Poly
>>> from sympy.abc import x, y, z
>>> op = Operator()
>>> op._poly = Poly(x**2 + z*x + y, x)
>>> op.apply(z**7, lambda f: f.diff(z))
y*z**7 + 7*z**7 + 42*z**5
"""
coeffs = self._poly.all_coeffs()
coeffs.reverse()
diffs = [obj]
for c in coeffs[1:]:
diffs.append(op(diffs[-1]))
r = coeffs[0]*diffs[0]
for c, d in zip(coeffs[1:], diffs[1:]):
r += c*d
return r
class MultOperator(Operator):
""" Simply multiply by a "constant" """
def __init__(self, p):
self._poly = Poly(p, _x)
class ShiftA(Operator):
""" Increment an upper index. """
def __init__(self, ai):
ai = sympify(ai)
if ai == 0:
raise ValueError('Cannot increment zero upper index.')
self._poly = Poly(_x/ai + 1, _x)
def __str__(self):
return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0])
class ShiftB(Operator):
""" Decrement a lower index. """
def __init__(self, bi):
bi = sympify(bi)
if bi == 1:
raise ValueError('Cannot decrement unit lower index.')
self._poly = Poly(_x/(bi - 1) + 1, _x)
def __str__(self):
return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1)
class UnShiftA(Operator):
""" Decrement an upper index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = list(map(sympify, [ap, bq, i]))
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
ai = ap.pop(i) - 1
if ai == 0:
raise ValueError('Cannot decrement unit upper index.')
m = Poly(z*ai, _x)
for a in ap:
m *= Poly(_x + a, _x)
A = Dummy('A')
n = D = Poly(ai*A - ai, A)
for b in bq:
n *= D + (b - 1).as_poly(A)
b0 = -n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement upper index: '
'cancels with lower')
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, _x/ai + 1), _x)
self._poly = Poly((n - m)/b0, _x)
def __str__(self):
return '<Decrement upper index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class UnShiftB(Operator):
""" Increment a lower index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = list(map(sympify, [ap, bq, i]))
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
bi = bq.pop(i) + 1
if bi == 0:
raise ValueError('Cannot increment -1 lower index.')
m = Poly(_x*(bi - 1), _x)
for b in bq:
m *= Poly(_x + b - 1, _x)
B = Dummy('B')
D = Poly((bi - 1)*B - bi + 1, B)
n = Poly(z, B)
for a in ap:
n *= (D + a.as_poly(B))
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment index: cancels with upper')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, _x/(bi - 1) + 1), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment lower index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class MeijerShiftA(Operator):
""" Increment an upper b index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(bi - _x, _x)
def __str__(self):
return '<Increment upper b=%s.>' % (self._poly.all_coeffs()[1])
class MeijerShiftB(Operator):
""" Decrement an upper a index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(1 - bi + _x, _x)
def __str__(self):
return '<Decrement upper a=%s.>' % (1 - self._poly.all_coeffs()[1])
class MeijerShiftC(Operator):
""" Increment a lower b index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(-bi + _x, _x)
def __str__(self):
return '<Increment lower b=%s.>' % (-self._poly.all_coeffs()[1])
class MeijerShiftD(Operator):
""" Decrement a lower a index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(bi - 1 - _x, _x)
def __str__(self):
return '<Decrement lower a=%s.>' % (self._poly.all_coeffs()[1] + 1)
class MeijerUnShiftA(Operator):
""" Decrement an upper b index. """
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
bi = bm.pop(i) - 1
m = Poly(1, _x)
for b in bm:
m *= Poly(b - _x, _x)
for b in bq:
m *= Poly(_x - b, _x)
A = Dummy('A')
D = Poly(bi - A, A)
n = Poly(z, A)
for a in an:
n *= (D + 1 - a)
for a in ap:
n *= (-D + a - 1)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement upper b index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, bi - _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Decrement upper b index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftB(Operator):
""" Increment an upper a index. """
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
ai = an.pop(i) + 1
m = Poly(z, _x)
for a in an:
m *= Poly(1 - a + _x, _x)
for a in ap:
m *= Poly(a - 1 - _x, _x)
B = Dummy('B')
D = Poly(B + ai - 1, B)
n = Poly(1, B)
for b in bm:
n *= (-D + b)
for b in bq:
n *= (D - b)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment upper a index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, 1 - ai + _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment upper a index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftC(Operator):
""" Decrement a lower b index. """
# XXX this is "essentially" the same as MeijerUnShiftA. This "essentially"
# can be made rigorous using the functional equation G(1/z) = G'(z),
# where G' denotes a G function of slightly altered parameters.
# However, sorting out the details seems harder than just coding it
# again.
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
bi = bq.pop(i) - 1
m = Poly(1, _x)
for b in bm:
m *= Poly(b - _x, _x)
for b in bq:
m *= Poly(_x - b, _x)
C = Dummy('C')
D = Poly(bi + C, C)
n = Poly(z, C)
for a in an:
n *= (D + 1 - a)
for a in ap:
n *= (-D + a - 1)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement lower b index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], C).as_expr().subs(C, _x - bi), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Decrement lower b index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftD(Operator):
""" Increment a lower a index. """
# XXX This is essentially the same as MeijerUnShiftA.
# See comment at MeijerUnShiftC.
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
ai = ap.pop(i) + 1
m = Poly(z, _x)
for a in an:
m *= Poly(1 - a + _x, _x)
for a in ap:
m *= Poly(a - 1 - _x, _x)
B = Dummy('B') # - this is the shift operator `D_I`
D = Poly(ai - 1 - B, B)
n = Poly(1, B)
for b in bm:
n *= (-D + b)
for b in bq:
n *= (D - b)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment lower a index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, ai - 1 - _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment lower a index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class ReduceOrder(Operator):
""" Reduce Order by cancelling an upper and a lower index. """
def __new__(cls, ai, bj):
""" For convenience if reduction is not possible, return None. """
ai = sympify(ai)
bj = sympify(bj)
n = ai - bj
if not n.is_Integer or n < 0:
return None
if bj.is_integer and bj.is_nonpositive:
return None
expr = Operator.__new__(cls)
p = S.One
for k in range(n):
p *= (_x + bj + k)/(bj + k)
expr._poly = Poly(p, _x)
expr._a = ai
expr._b = bj
return expr
@classmethod
def _meijer(cls, b, a, sign):
""" Cancel b + sign*s and a + sign*s
This is for meijer G functions. """
b = sympify(b)
a = sympify(a)
n = b - a
if n.is_negative or not n.is_Integer:
return None
expr = Operator.__new__(cls)
p = S.One
for k in range(n):
p *= (sign*_x + a + k)
expr._poly = Poly(p, _x)
if sign == -1:
expr._a = b
expr._b = a
else:
expr._b = Add(1, a - 1, evaluate=False)
expr._a = Add(1, b - 1, evaluate=False)
return expr
@classmethod
def meijer_minus(cls, b, a):
return cls._meijer(b, a, -1)
@classmethod
def meijer_plus(cls, a, b):
return cls._meijer(1 - a, 1 - b, 1)
def __str__(self):
return '<Reduce order by cancelling upper %s with lower %s.>' % \
(self._a, self._b)
def _reduce_order(ap, bq, gen, key):
""" Order reduction algorithm used in Hypergeometric and Meijer G """
ap = list(ap)
bq = list(bq)
ap.sort(key=key)
bq.sort(key=key)
nap = []
# we will edit bq in place
operators = []
for a in ap:
op = None
for i in range(len(bq)):
op = gen(a, bq[i])
if op is not None:
bq.pop(i)
break
if op is None:
nap.append(a)
else:
operators.append(op)
return nap, bq, operators
def reduce_order(func):
"""
Given the hypergeometric function ``func``, find a sequence of operators to
reduces order as much as possible.
Return (newfunc, [operators]), where applying the operators to the
hypergeometric function newfunc yields func.
Examples
========
>>> from sympy.simplify.hyperexpand import reduce_order, Hyper_Function
>>> reduce_order(Hyper_Function((1, 2), (3, 4)))
(Hyper_Function((1, 2), (3, 4)), [])
>>> reduce_order(Hyper_Function((1,), (1,)))
(Hyper_Function((), ()), [<Reduce order by cancelling upper 1 with lower 1.>])
>>> reduce_order(Hyper_Function((2, 4), (3, 3)))
(Hyper_Function((2,), (3,)), [<Reduce order by cancelling
upper 4 with lower 3.>])
"""
nap, nbq, operators = _reduce_order(func.ap, func.bq, ReduceOrder, default_sort_key)
return Hyper_Function(Tuple(*nap), Tuple(*nbq)), operators
def reduce_order_meijer(func):
"""
Given the Meijer G function parameters, ``func``, find a sequence of
operators that reduces order as much as possible.
Return newfunc, [operators].
Examples
========
>>> from sympy.simplify.hyperexpand import (reduce_order_meijer,
... G_Function)
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 2]))[0]
G_Function((4, 3), (5, 6), (3, 4), (2, 1))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 8]))[0]
G_Function((3,), (5, 6), (3, 4), (1,))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [1, 5]))[0]
G_Function((3,), (), (), (1,))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [5, 3]))[0]
G_Function((), (), (), ())
"""
nan, nbq, ops1 = _reduce_order(func.an, func.bq, ReduceOrder.meijer_plus,
lambda x: default_sort_key(-x))
nbm, nap, ops2 = _reduce_order(func.bm, func.ap, ReduceOrder.meijer_minus,
default_sort_key)
return G_Function(nan, nap, nbm, nbq), ops1 + ops2
def make_derivative_operator(M, z):
""" Create a derivative operator, to be passed to Operator.apply. """
def doit(C):
r = z*C.diff(z) + C*M
r = r.applyfunc(make_simp(z))
return r
return doit
def apply_operators(obj, ops, op):
"""
Apply the list of operators ``ops`` to object ``obj``, substituting
``op`` for the generator.
"""
res = obj
for o in reversed(ops):
res = o.apply(res, op)
return res
def devise_plan(target, origin, z):
"""
Devise a plan (consisting of shift and un-shift operators) to be applied
to the hypergeometric function ``target`` to yield ``origin``.
Returns a list of operators.
Examples
========
>>> from sympy.simplify.hyperexpand import devise_plan, Hyper_Function
>>> from sympy.abc import z
Nothing to do:
>>> devise_plan(Hyper_Function((1, 2), ()), Hyper_Function((1, 2), ()), z)
[]
>>> devise_plan(Hyper_Function((), (1, 2)), Hyper_Function((), (1, 2)), z)
[]
Very simple plans:
>>> devise_plan(Hyper_Function((2,), ()), Hyper_Function((1,), ()), z)
[<Increment upper 1.>]
>>> devise_plan(Hyper_Function((), (2,)), Hyper_Function((), (1,)), z)
[<Increment lower index #0 of [], [1].>]
Several buckets:
>>> from sympy import S
>>> devise_plan(Hyper_Function((1, S.Half), ()),
... Hyper_Function((2, S('3/2')), ()), z) #doctest: +NORMALIZE_WHITESPACE
[<Decrement upper index #0 of [3/2, 1], [].>,
<Decrement upper index #0 of [2, 3/2], [].>]
A slightly more complicated plan:
>>> devise_plan(Hyper_Function((1, 3), ()), Hyper_Function((2, 2), ()), z)
[<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>]
Another more complicated plan: (note that the ap have to be shifted first!)
>>> devise_plan(Hyper_Function((1, -1), (2,)), Hyper_Function((3, -2), (4,)), z)
[<Decrement lower 3.>, <Decrement lower 4.>,
<Decrement upper index #1 of [-1, 2], [4].>,
<Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>]
"""
abuckets, bbuckets, nabuckets, nbbuckets = [sift(params, _mod1) for
params in (target.ap, target.bq, origin.ap, origin.bq)]
if len(list(abuckets.keys())) != len(list(nabuckets.keys())) or \
len(list(bbuckets.keys())) != len(list(nbbuckets.keys())):
raise ValueError('%s not reachable from %s' % (target, origin))
ops = []
def do_shifts(fro, to, inc, dec):
ops = []
for i in range(len(fro)):
if to[i] - fro[i] > 0:
sh = inc
ch = 1
else:
sh = dec
ch = -1
while to[i] != fro[i]:
ops += [sh(fro, i)]
fro[i] += ch
return ops
def do_shifts_a(nal, nbk, al, aother, bother):
""" Shift us from (nal, nbk) to (al, nbk). """
return do_shifts(nal, al, lambda p, i: ShiftA(p[i]),
lambda p, i: UnShiftA(p + aother, nbk + bother, i, z))
def do_shifts_b(nal, nbk, bk, aother, bother):
""" Shift us from (nal, nbk) to (nal, bk). """
return do_shifts(nbk, bk,
lambda p, i: UnShiftB(nal + aother, p + bother, i, z),
lambda p, i: ShiftB(p[i]))
for r in sorted(list(abuckets.keys()) + list(bbuckets.keys()), key=default_sort_key):
al = ()
nal = ()
bk = ()
nbk = ()
if r in abuckets:
al = abuckets[r]
nal = nabuckets[r]
if r in bbuckets:
bk = bbuckets[r]
nbk = nbbuckets[r]
if len(al) != len(nal) or len(bk) != len(nbk):
raise ValueError('%s not reachable from %s' % (target, origin))
al, nal, bk, nbk = [sorted(list(w), key=default_sort_key)
for w in [al, nal, bk, nbk]]
def others(dic, key):
l = []
for k, value in dic.items():
if k != key:
l += list(dic[k])
return l
aother = others(nabuckets, r)
bother = others(nbbuckets, r)
if len(al) == 0:
# there can be no complications, just shift the bs as we please
ops += do_shifts_b([], nbk, bk, aother, bother)
elif len(bk) == 0:
# there can be no complications, just shift the as as we please
ops += do_shifts_a(nal, [], al, aother, bother)
else:
namax = nal[-1]
amax = al[-1]
if nbk[0] - namax <= 0 or bk[0] - amax <= 0:
raise ValueError('Non-suitable parameters.')
if namax - amax > 0:
# we are going to shift down - first do the as, then the bs
ops += do_shifts_a(nal, nbk, al, aother, bother)
ops += do_shifts_b(al, nbk, bk, aother, bother)
else:
# we are going to shift up - first do the bs, then the as
ops += do_shifts_b(nal, nbk, bk, aother, bother)
ops += do_shifts_a(nal, bk, al, aother, bother)
nabuckets[r] = al
nbbuckets[r] = bk
ops.reverse()
return ops
def try_shifted_sum(func, z):
""" Try to recognise a hypergeometric sum that starts from k > 0. """
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
if len(abuckets[S.Zero]) != 1:
return None
r = abuckets[S.Zero][0]
if r <= 0:
return None
if not S.Zero in bbuckets:
return None
l = list(bbuckets[S.Zero])
l.sort()
k = l[0]
if k <= 0:
return None
nap = list(func.ap)
nap.remove(r)
nbq = list(func.bq)
nbq.remove(k)
k -= 1
nap = [x - k for x in nap]
nbq = [x - k for x in nbq]
ops = []
for n in range(r - 1):
ops.append(ShiftA(n + 1))
ops.reverse()
fac = factorial(k)/z**k
for a in nap:
fac /= rf(a, k)
for b in nbq:
fac *= rf(b, k)
ops += [MultOperator(fac)]
p = 0
for n in range(k):
m = z**n/factorial(n)
for a in nap:
m *= rf(a, n)
for b in nbq:
m /= rf(b, n)
p += m
return Hyper_Function(nap, nbq), ops, -p
def try_polynomial(func, z):
""" Recognise polynomial cases. Returns None if not such a case.
Requires order to be fully reduced. """
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
a0 = abuckets[S.Zero]
b0 = bbuckets[S.Zero]
a0.sort()
b0.sort()
al0 = [x for x in a0 if x <= 0]
bl0 = [x for x in b0 if x <= 0]
if bl0 and all(a < bl0[-1] for a in al0):
return oo
if not al0:
return None
a = al0[-1]
fac = 1
res = S.One
for n in Tuple(*list(range(-a))):
fac *= z
fac /= n + 1
for a in func.ap:
fac *= a + n
for b in func.bq:
fac /= b + n
res += fac
return res
def try_lerchphi(func):
"""
Try to find an expression for Hyper_Function ``func`` in terms of Lerch
Transcendents.
Return None if no such expression can be found.
"""
# This is actually quite simple, and is described in Roach's paper,
# section 18.
# We don't need to implement the reduction to polylog here, this
# is handled by expand_func.
from sympy.matrices import Matrix, zeros
from sympy.polys import apart
# First we need to figure out if the summation coefficient is a rational
# function of the summation index, and construct that rational function.
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
paired = {}
for key, value in abuckets.items():
if key != 0 and not key in bbuckets:
return None
bvalue = bbuckets[key]
paired[key] = (list(value), list(bvalue))
bbuckets.pop(key, None)
if bbuckets != {}:
return None
if not S.Zero in abuckets:
return None
aints, bints = paired[S.Zero]
# Account for the additional n! in denominator
paired[S.Zero] = (aints, bints + [1])
t = Dummy('t')
numer = S.One
denom = S.One
for key, (avalue, bvalue) in paired.items():
if len(avalue) != len(bvalue):
return None
# Note that since order has been reduced fully, all the b are
# bigger than all the a they differ from by an integer. In particular
# if there are any negative b left, this function is not well-defined.
for a, b in zip(avalue, bvalue):
if (a - b).is_positive:
k = a - b
numer *= rf(b + t, k)
denom *= rf(b, k)
else:
k = b - a
numer *= rf(a, k)
denom *= rf(a + t, k)
# Now do a partial fraction decomposition.
# We assemble two structures: a list monomials of pairs (a, b) representing
# a*t**b (b a non-negative integer), and a dict terms, where
# terms[a] = [(b, c)] means that there is a term b/(t-a)**c.
part = apart(numer/denom, t)
args = Add.make_args(part)
monomials = []
terms = {}
for arg in args:
numer, denom = arg.as_numer_denom()
if not denom.has(t):
p = Poly(numer, t)
if not p.is_monomial:
raise TypeError("p should be monomial")
((b, ), a) = p.LT()
monomials += [(a/denom, b)]
continue
if numer.has(t):
raise NotImplementedError('Need partial fraction decomposition'
' with linear denominators')
indep, [dep] = denom.as_coeff_mul(t)
n = 1
if dep.is_Pow:
n = dep.exp
dep = dep.base
if dep == t:
a == 0
elif dep.is_Add:
a, tmp = dep.as_independent(t)
b = 1
if tmp != t:
b, _ = tmp.as_independent(t)
if dep != b*t + a:
raise NotImplementedError('unrecognised form %s' % dep)
a /= b
indep *= b**n
else:
raise NotImplementedError('unrecognised form of partial fraction')
terms.setdefault(a, []).append((numer/indep, n))
# Now that we have this information, assemble our formula. All the
# monomials yield rational functions and go into one basis element.
# The terms[a] are related by differentiation. If the largest exponent is
# n, we need lerchphi(z, k, a) for k = 1, 2, ..., n.
# deriv maps a basis to its derivative, expressed as a C(z)-linear
# combination of other basis elements.
deriv = {}
coeffs = {}
z = Dummy('z')
monomials.sort(key=lambda x: x[1])
mon = {0: 1/(1 - z)}
if monomials:
for k in range(monomials[-1][1]):
mon[k + 1] = z*mon[k].diff(z)
for a, n in monomials:
coeffs.setdefault(S.One, []).append(a*mon[n])
for a, l in terms.items():
for c, k in l:
coeffs.setdefault(lerchphi(z, k, a), []).append(c)
l.sort(key=lambda x: x[1])
for k in range(2, l[-1][1] + 1):
deriv[lerchphi(z, k, a)] = [(-a, lerchphi(z, k, a)),
(1, lerchphi(z, k - 1, a))]
deriv[lerchphi(z, 1, a)] = [(-a, lerchphi(z, 1, a)),
(1/(1 - z), S.One)]
trans = {}
for n, b in enumerate([S.One] + list(deriv.keys())):
trans[b] = n
basis = [expand_func(b) for (b, _) in sorted(list(trans.items()),
key=lambda x:x[1])]
B = Matrix(basis)
C = Matrix([[0]*len(B)])
for b, c in coeffs.items():
C[trans[b]] = Add(*c)
M = zeros(len(B))
for b, l in deriv.items():
for c, b2 in l:
M[trans[b], trans[b2]] = c
return Formula(func, z, None, [], B, C, M)
def build_hypergeometric_formula(func):
"""
Create a formula object representing the hypergeometric function ``func``.
"""
# We know that no `ap` are negative integers, otherwise "detect poly"
# would have kicked in. However, `ap` could be empty. In this case we can
# use a different basis.
# I'm not aware of a basis that works in all cases.
from sympy import zeros, Matrix, eye
z = Dummy('z')
if func.ap:
afactors = [_x + a for a in func.ap]
bfactors = [_x + b - 1 for b in func.bq]
expr = _x*Mul(*bfactors) - z*Mul(*afactors)
poly = Poly(expr, _x)
n = poly.degree()
basis = []
M = zeros(n)
for k in range(n):
a = func.ap[0] + k
basis += [hyper([a] + list(func.ap[1:]), func.bq, z)]
if k < n - 1:
M[k, k] = -a
M[k, k + 1] = a
B = Matrix(basis)
C = Matrix([[1] + [0]*(n - 1)])
derivs = [eye(n)]
for k in range(n):
derivs.append(M*derivs[k])
l = poly.all_coeffs()
l.reverse()
res = [0]*n
for k, c in enumerate(l):
for r, d in enumerate(C*derivs[k]):
res[r] += c*d
for k, c in enumerate(res):
M[n - 1, k] = -c/derivs[n - 1][0, n - 1]/poly.all_coeffs()[0]
return Formula(func, z, None, [], B, C, M)
else:
# Since there are no `ap`, none of the `bq` can be non-positive
# integers.
basis = []
bq = list(func.bq[:])
for i in range(len(bq)):
basis += [hyper([], bq, z)]
bq[i] += 1
basis += [hyper([], bq, z)]
B = Matrix(basis)
n = len(B)
C = Matrix([[1] + [0]*(n - 1)])
M = zeros(n)
M[0, n - 1] = z/Mul(*func.bq)
for k in range(1, n):
M[k, k - 1] = func.bq[k - 1]
M[k, k] = -func.bq[k - 1]
return Formula(func, z, None, [], B, C, M)
def hyperexpand_special(ap, bq, z):
"""
Try to find a closed-form expression for hyper(ap, bq, z), where ``z``
is supposed to be a "special" value, e.g. 1.
This function tries various of the classical summation formulae
(Gauss, Saalschuetz, etc).
"""
# This code is very ad-hoc. There are many clever algorithms
# (notably Zeilberger's) related to this problem.
# For now we just want a few simple cases to work.
p, q = len(ap), len(bq)
z_ = z
z = unpolarify(z)
if z == 0:
return S.One
if p == 2 and q == 1:
# 2F1
a, b, c = ap + bq
if z == 1:
# Gauss
return gamma(c - a - b)*gamma(c)/gamma(c - a)/gamma(c - b)
if z == -1 and simplify(b - a + c) == 1:
b, a = a, b
if z == -1 and simplify(a - b + c) == 1:
# Kummer
if b.is_integer and b.is_negative:
return 2*cos(pi*b/2)*gamma(-b)*gamma(b - a + 1) \
/gamma(-b/2)/gamma(b/2 - a + 1)
else:
return gamma(b/2 + 1)*gamma(b - a + 1) \
/gamma(b + 1)/gamma(b/2 - a + 1)
# TODO tons of more formulae
# investigate what algorithms exist
return hyper(ap, bq, z_)
_collection = None
def _hyperexpand(func, z, ops0=[], z0=Dummy('z0'), premult=1, prem=0,
rewrite='default'):
"""
Try to find an expression for the hypergeometric function ``func``.
The result is expressed in terms of a dummy variable z0. Then it
is multiplied by premult. Then ops0 is applied.
premult must be a*z**prem for some a independent of z.
"""
if z.is_zero:
return S.One
z = polarify(z, subs=False)
if rewrite == 'default':
rewrite = 'nonrepsmall'
def carryout_plan(f, ops):
C = apply_operators(f.C.subs(f.z, z0), ops,
make_derivative_operator(f.M.subs(f.z, z0), z0))
from sympy import eye
C = apply_operators(C, ops0,
make_derivative_operator(f.M.subs(f.z, z0)
+ prem*eye(f.M.shape[0]), z0))
if premult == 1:
C = C.applyfunc(make_simp(z0))
r = reduce(lambda s,m: s+m[0]*m[1], zip(C, f.B.subs(f.z, z0)), S.Zero)*premult
res = r.subs(z0, z)
if rewrite:
res = res.rewrite(rewrite)
return res
# TODO
# The following would be possible:
# *) PFD Duplication (see Kelly Roach's paper)
# *) In a similar spirit, try_lerchphi() can be generalised considerably.
global _collection
if _collection is None:
_collection = FormulaCollection()
debug('Trying to expand hypergeometric function ', func)
# First reduce order as much as possible.
func, ops = reduce_order(func)
if ops:
debug(' Reduced order to ', func)
else:
debug(' Could not reduce order.')
# Now try polynomial cases
res = try_polynomial(func, z0)
if res is not None:
debug(' Recognised polynomial.')
p = apply_operators(res, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
return unpolarify(simplify(p).subs(z0, z))
# Try to recognise a shifted sum.
p = S.Zero
res = try_shifted_sum(func, z0)
if res is not None:
func, nops, p = res
debug(' Recognised shifted sum, reduced order to ', func)
ops += nops
# apply the plan for poly
p = apply_operators(p, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
p = simplify(p).subs(z0, z)
# Try special expansions early.
if unpolarify(z) in [1, -1] and (len(func.ap), len(func.bq)) == (2, 1):
f = build_hypergeometric_formula(func)
r = carryout_plan(f, ops).replace(hyper, hyperexpand_special)
if not r.has(hyper):
return r + p
# Try to find a formula in our collection
formula = _collection.lookup_origin(func)
# Now try a lerch phi formula
if formula is None:
formula = try_lerchphi(func)
if formula is None:
debug(' Could not find an origin. ',
'Will return answer in terms of '
'simpler hypergeometric functions.')
formula = build_hypergeometric_formula(func)
debug(' Found an origin: ', formula.closed_form, ' ', formula.func)
# We need to find the operators that convert formula into func.
ops += devise_plan(func, formula.func, z0)
# Now carry out the plan.
r = carryout_plan(formula, ops) + p
return powdenest(r, polar=True).replace(hyper, hyperexpand_special)
def devise_plan_meijer(fro, to, z):
"""
Find operators to convert G-function ``fro`` into G-function ``to``.
It is assumed that fro and to have the same signatures, and that in fact
any corresponding pair of parameters differs by integers, and a direct path
is possible. I.e. if there are parameters a1 b1 c1 and a2 b2 c2 it is
assumed that a1 can be shifted to a2, etc. The only thing this routine
determines is the order of shifts to apply, nothing clever will be tried.
It is also assumed that fro is suitable.
Examples
========
>>> from sympy.simplify.hyperexpand import (devise_plan_meijer,
... G_Function)
>>> from sympy.abc import z
Empty plan:
>>> devise_plan_meijer(G_Function([1], [2], [3], [4]),
... G_Function([1], [2], [3], [4]), z)
[]
Very simple plans:
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([1], [], [], []), z)
[<Increment upper a index #0 of [0], [], [], [].>]
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([-1], [], [], []), z)
[<Decrement upper a=0.>]
>>> devise_plan_meijer(G_Function([], [1], [], []),
... G_Function([], [2], [], []), z)
[<Increment lower a index #0 of [], [1], [], [].>]
Slightly more complicated plans:
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([2], [], [], []), z)
[<Increment upper a index #0 of [1], [], [], [].>,
<Increment upper a index #0 of [0], [], [], [].>]
>>> devise_plan_meijer(G_Function([0], [], [0], []),
... G_Function([-1], [], [1], []), z)
[<Increment upper b=0.>, <Decrement upper a=0.>]
Order matters:
>>> devise_plan_meijer(G_Function([0], [], [0], []),
... G_Function([1], [], [1], []), z)
[<Increment upper a index #0 of [0], [], [1], [].>, <Increment upper b=0.>]
"""
# TODO for now, we use the following simple heuristic: inverse-shift
# when possible, shift otherwise. Give up if we cannot make progress.
def try_shift(f, t, shifter, diff, counter):
""" Try to apply ``shifter`` in order to bring some element in ``f``
nearer to its counterpart in ``to``. ``diff`` is +/- 1 and
determines the effect of ``shifter``. Counter is a list of elements
blocking the shift.
Return an operator if change was possible, else None.
"""
for idx, (a, b) in enumerate(zip(f, t)):
if (
(a - b).is_integer and (b - a)/diff > 0 and
all(a != x for x in counter)):
sh = shifter(idx)
f[idx] += diff
return sh
fan = list(fro.an)
fap = list(fro.ap)
fbm = list(fro.bm)
fbq = list(fro.bq)
ops = []
change = True
while change:
change = False
op = try_shift(fan, to.an,
lambda i: MeijerUnShiftB(fan, fap, fbm, fbq, i, z),
1, fbm + fbq)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fap, to.ap,
lambda i: MeijerUnShiftD(fan, fap, fbm, fbq, i, z),
1, fbm + fbq)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbm, to.bm,
lambda i: MeijerUnShiftA(fan, fap, fbm, fbq, i, z),
-1, fan + fap)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbq, to.bq,
lambda i: MeijerUnShiftC(fan, fap, fbm, fbq, i, z),
-1, fan + fap)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fan, to.an, lambda i: MeijerShiftB(fan[i]), -1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fap, to.ap, lambda i: MeijerShiftD(fap[i]), -1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbm, to.bm, lambda i: MeijerShiftA(fbm[i]), 1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbq, to.bq, lambda i: MeijerShiftC(fbq[i]), 1, [])
if op is not None:
ops += [op]
change = True
continue
if fan != list(to.an) or fap != list(to.ap) or fbm != list(to.bm) or \
fbq != list(to.bq):
raise NotImplementedError('Could not devise plan.')
ops.reverse()
return ops
_meijercollection = None
def _meijergexpand(func, z0, allow_hyper=False, rewrite='default',
place=None):
"""
Try to find an expression for the Meijer G function specified
by the G_Function ``func``. If ``allow_hyper`` is True, then returning
an expression in terms of hypergeometric functions is allowed.
Currently this just does Slater's theorem.
If expansions exist both at zero and at infinity, ``place``
can be set to ``0`` or ``zoo`` for the preferred choice.
"""
global _meijercollection
if _meijercollection is None:
_meijercollection = MeijerFormulaCollection()
if rewrite == 'default':
rewrite = None
func0 = func
debug('Try to expand Meijer G function corresponding to ', func)
# We will play games with analytic continuation - rather use a fresh symbol
z = Dummy('z')
func, ops = reduce_order_meijer(func)
if ops:
debug(' Reduced order to ', func)
else:
debug(' Could not reduce order.')
# Try to find a direct formula
f = _meijercollection.lookup_origin(func)
if f is not None:
debug(' Found a Meijer G formula: ', f.func)
ops += devise_plan_meijer(f.func, func, z)
# Now carry out the plan.
C = apply_operators(f.C.subs(f.z, z), ops,
make_derivative_operator(f.M.subs(f.z, z), z))
C = C.applyfunc(make_simp(z))
r = C*f.B.subs(f.z, z)
r = r[0].subs(z, z0)
return powdenest(r, polar=True)
debug(" Could not find a direct formula. Trying Slater's theorem.")
# TODO the following would be possible:
# *) Paired Index Theorems
# *) PFD Duplication
# (See Kelly Roach's paper for details on either.)
#
# TODO Also, we tend to create combinations of gamma functions that can be
# simplified.
def can_do(pbm, pap):
""" Test if slater applies. """
for i in pbm:
if len(pbm[i]) > 1:
l = 0
if i in pap:
l = len(pap[i])
if l + 1 < len(pbm[i]):
return False
return True
def do_slater(an, bm, ap, bq, z, zfinal):
# zfinal is the value that will eventually be substituted for z.
# We pass it to _hyperexpand to improve performance.
func = G_Function(an, bm, ap, bq)
_, pbm, pap, _ = func.compute_buckets()
if not can_do(pbm, pap):
return S.Zero, False
cond = len(an) + len(ap) < len(bm) + len(bq)
if len(an) + len(ap) == len(bm) + len(bq):
cond = abs(z) < 1
if cond is False:
return S.Zero, False
res = S.Zero
for m in pbm:
if len(pbm[m]) == 1:
bh = pbm[m][0]
fac = 1
bo = list(bm)
bo.remove(bh)
for bj in bo:
fac *= gamma(bj - bh)
for aj in an:
fac *= gamma(1 + bh - aj)
for bj in bq:
fac /= gamma(1 + bh - bj)
for aj in ap:
fac /= gamma(aj - bh)
nap = [1 + bh - a for a in list(an) + list(ap)]
nbq = [1 + bh - b for b in list(bo) + list(bq)]
k = polar_lift(S.NegativeOne**(len(ap) - len(bm)))
harg = k*zfinal
# NOTE even though k "is" +-1, this has to be t/k instead of
# t*k ... we are using polar numbers for consistency!
premult = (t/k)**bh
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
t, premult, bh, rewrite=None)
res += fac * hyp
else:
b_ = pbm[m][0]
ki = [bi - b_ for bi in pbm[m][1:]]
u = len(ki)
li = [ai - b_ for ai in pap[m][:u + 1]]
bo = list(bm)
for b in pbm[m]:
bo.remove(b)
ao = list(ap)
for a in pap[m][:u]:
ao.remove(a)
lu = li[-1]
di = [l - k for (l, k) in zip(li, ki)]
# We first work out the integrand:
s = Dummy('s')
integrand = z**s
for b in bm:
if not Mod(b, 1) and b.is_Number:
b = int(round(b))
integrand *= gamma(b - s)
for a in an:
integrand *= gamma(1 - a + s)
for b in bq:
integrand /= gamma(1 - b + s)
for a in ap:
integrand /= gamma(a - s)
# Now sum the finitely many residues:
# XXX This speeds up some cases - is it a good idea?
integrand = expand_func(integrand)
for r in range(int(round(lu))):
resid = residue(integrand, s, b_ + r)
resid = apply_operators(resid, ops, lambda f: z*f.diff(z))
res -= resid
# Now the hypergeometric term.
au = b_ + lu
k = polar_lift(S.NegativeOne**(len(ao) + len(bo) + 1))
harg = k*zfinal
premult = (t/k)**au
nap = [1 + au - a for a in list(an) + list(ap)] + [1]
nbq = [1 + au - b for b in list(bm) + list(bq)]
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
t, premult, au, rewrite=None)
C = S.NegativeOne**(lu)/factorial(lu)
for i in range(u):
C *= S.NegativeOne**di[i]/rf(lu - li[i] + 1, di[i])
for a in an:
C *= gamma(1 - a + au)
for b in bo:
C *= gamma(b - au)
for a in ao:
C /= gamma(a - au)
for b in bq:
C /= gamma(1 - b + au)
res += C*hyp
return res, cond
t = Dummy('t')
slater1, cond1 = do_slater(func.an, func.bm, func.ap, func.bq, z, z0)
def tr(l):
return [1 - x for x in l]
for op in ops:
op._poly = Poly(op._poly.subs({z: 1/t, _x: -_x}), _x)
slater2, cond2 = do_slater(tr(func.bm), tr(func.an), tr(func.bq), tr(func.ap),
t, 1/z0)
slater1 = powdenest(slater1.subs(z, z0), polar=True)
slater2 = powdenest(slater2.subs(t, 1/z0), polar=True)
if not isinstance(cond2, bool):
cond2 = cond2.subs(t, 1/z)
m = func(z)
if m.delta > 0 or \
(m.delta == 0 and len(m.ap) == len(m.bq) and
(re(m.nu) < -1) is not False and polar_lift(z0) == polar_lift(1)):
# The condition delta > 0 means that the convergence region is
# connected. Any expression we find can be continued analytically
# to the entire convergence region.
# The conditions delta==0, p==q, re(nu) < -1 imply that G is continuous
# on the positive reals, so the values at z=1 agree.
if cond1 is not False:
cond1 = True
if cond2 is not False:
cond2 = True
if cond1 is True:
slater1 = slater1.rewrite(rewrite or 'nonrep')
else:
slater1 = slater1.rewrite(rewrite or 'nonrepsmall')
if cond2 is True:
slater2 = slater2.rewrite(rewrite or 'nonrep')
else:
slater2 = slater2.rewrite(rewrite or 'nonrepsmall')
if cond1 is not False and cond2 is not False:
# If one condition is False, there is no choice.
if place == 0:
cond2 = False
if place == zoo:
cond1 = False
if not isinstance(cond1, bool):
cond1 = cond1.subs(z, z0)
if not isinstance(cond2, bool):
cond2 = cond2.subs(z, z0)
def weight(expr, cond):
if cond is True:
c0 = 0
elif cond is False:
c0 = 1
else:
c0 = 2
if expr.has(oo, zoo, -oo, nan):
# XXX this actually should not happen, but consider
# S('meijerg(((0, -1/2, 0, -1/2, 1/2), ()), ((0,),
# (-1/2, -1/2, -1/2, -1)), exp_polar(I*pi))/4')
c0 = 3
return (c0, expr.count(hyper), expr.count_ops())
w1 = weight(slater1, cond1)
w2 = weight(slater2, cond2)
if min(w1, w2) <= (0, 1, oo):
if w1 < w2:
return slater1
else:
return slater2
if max(w1[0], w2[0]) <= 1 and max(w1[1], w2[1]) <= 1:
return Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
# We couldn't find an expression without hypergeometric functions.
# TODO it would be helpful to give conditions under which the integral
# is known to diverge.
r = Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
if r.has(hyper) and not allow_hyper:
debug(' Could express using hypergeometric functions, '
'but not allowed.')
if not r.has(hyper) or allow_hyper:
return r
return func0(z0)
def hyperexpand(f, allow_hyper=False, rewrite='default', place=None):
"""
Expand hypergeometric functions. If allow_hyper is True, allow partial
simplification (that is a result different from input,
but still containing hypergeometric functions).
If a G-function has expansions both at zero and at infinity,
``place`` can be set to ``0`` or ``zoo`` to indicate the
preferred choice.
Examples
========
>>> from sympy.simplify.hyperexpand import hyperexpand
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyperexpand(hyper([], [], z))
exp(z)
Non-hyperegeometric parts of the expression and hypergeometric expressions
that are not recognised are left unchanged:
>>> hyperexpand(1 + hyper([1, 1, 1], [], z))
hyper((1, 1, 1), (), z) + 1
"""
f = sympify(f)
def do_replace(ap, bq, z):
r = _hyperexpand(Hyper_Function(ap, bq), z, rewrite=rewrite)
if r is None:
return hyper(ap, bq, z)
else:
return r
def do_meijer(ap, bq, z):
r = _meijergexpand(G_Function(ap[0], ap[1], bq[0], bq[1]), z,
allow_hyper, rewrite=rewrite, place=place)
if not r.has(nan, zoo, oo, -oo):
return r
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
|
6fbe20c0ed2db7488a6f8ade3858604cfb6bcd792e314961a3c089c90004b5e2 | from __future__ import print_function, division
from collections import defaultdict
from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify,
expand_func, Function, Dummy, Expr, factor_terms,
expand_power_exp, Eq)
from sympy.core.compatibility import iterable, ordered, as_int
from sympy.core.parameters import global_parameters
from sympy.core.function import (expand_log, count_ops, _mexpand, _coeff_isneg,
nfloat, expand_mul)
from sympy.core.numbers import Float, I, pi, Rational, Integer
from sympy.core.relational import Relational
from sympy.core.rules import Transform
from sympy.core.sympify import _sympify
from sympy.functions import gamma, exp, sqrt, log, exp_polar, re
from sympy.functions.combinatorial.factorials import CombinatorialFunction
from sympy.functions.elementary.complexes import unpolarify
from sympy.functions.elementary.exponential import ExpBase
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.functions.special.bessel import besselj, besseli, besselk, jn, bessely
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.polys import together, cancel, factor
from sympy.simplify.combsimp import combsimp
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.simplify.powsimp import powsimp
from sympy.simplify.radsimp import radsimp, fraction, collect_abs
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.simplify.trigsimp import trigsimp, exptrigsimp
from sympy.utilities.iterables import has_variety, sift
import mpmath
def separatevars(expr, symbols=[], dict=False, force=False):
"""
Separates variables in an expression, if possible. By
default, it separates with respect to all symbols in an
expression and collects constant coefficients that are
independent of symbols.
If dict=True then the separated terms will be returned
in a dictionary keyed to their corresponding symbols.
By default, all symbols in the expression will appear as
keys; if symbols are provided, then all those symbols will
be used as keys, and any terms in the expression containing
other symbols or non-symbols will be returned keyed to the
string 'coeff'. (Passing None for symbols will return the
expression in a dictionary keyed to 'coeff'.)
If force=True, then bases of powers will be separated regardless
of assumptions on the symbols involved.
Notes
=====
The order of the factors is determined by Mul, so that the
separated expressions may not necessarily be grouped together.
Although factoring is necessary to separate variables in some
expressions, it is not necessary in all cases, so one should not
count on the returned factors being factored.
Examples
========
>>> from sympy.abc import x, y, z, alpha
>>> from sympy import separatevars, sin
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
>>> e = 2*x**2*z*sin(y)+2*z*x**2
>>> separatevars(e)
2*x**2*z*(sin(y) + 1)
>>> separatevars(e, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(e, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
If the expression is not really separable, or is only partially
separable, separatevars will do the best it can to separate it
by using factoring.
>>> separatevars(x + x*y - 3*x**2)
-x*(3*x - y - 1)
If the expression is not separable then expr is returned unchanged
or (if dict=True) then None is returned.
>>> eq = 2*x + y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
True
"""
expr = sympify(expr)
if dict:
return _separatevars_dict(_separatevars(expr, force), symbols)
else:
return _separatevars(expr, force)
def _separatevars(expr, force):
from sympy.functions.elementary.complexes import Abs
if isinstance(expr, Abs):
arg = expr.args[0]
if arg.is_Mul and not arg.is_number:
s = separatevars(arg, dict=True, force=force)
if s is not None:
return Mul(*map(expr.func, s.values()))
else:
return expr
if len(expr.free_symbols) < 2:
return expr
# don't destroy a Mul since much of the work may already be done
if expr.is_Mul:
args = list(expr.args)
changed = False
for i, a in enumerate(args):
args[i] = separatevars(a, force)
changed = changed or args[i] != a
if changed:
expr = expr.func(*args)
return expr
# get a Pow ready for expansion
if expr.is_Pow:
expr = Pow(separatevars(expr.base, force=force), expr.exp)
# First try other expansion methods
expr = expr.expand(mul=False, multinomial=False, force=force)
_expr, reps = posify(expr) if force else (expr, {})
expr = factor(_expr).subs(reps)
if not expr.is_Add:
return expr
# Find any common coefficients to pull out
args = list(expr.args)
commonc = args[0].args_cnc(cset=True, warn=False)[0]
for i in args[1:]:
commonc &= i.args_cnc(cset=True, warn=False)[0]
commonc = Mul(*commonc)
commonc = commonc.as_coeff_Mul()[1] # ignore constants
commonc_set = commonc.args_cnc(cset=True, warn=False)[0]
# remove them
for i, a in enumerate(args):
c, nc = a.args_cnc(cset=True, warn=False)
c = c - commonc_set
args[i] = Mul(*c)*Mul(*nc)
nonsepar = Add(*args)
if len(nonsepar.free_symbols) > 1:
_expr = nonsepar
_expr, reps = posify(_expr) if force else (_expr, {})
_expr = (factor(_expr)).subs(reps)
if not _expr.is_Add:
nonsepar = _expr
return commonc*nonsepar
def _separatevars_dict(expr, symbols):
if symbols:
if not all((t.is_Atom for t in symbols)):
raise ValueError("symbols must be Atoms.")
symbols = list(symbols)
elif symbols is None:
return {'coeff': expr}
else:
symbols = list(expr.free_symbols)
if not symbols:
return None
ret = dict(((i, []) for i in symbols + ['coeff']))
for i in Mul.make_args(expr):
expsym = i.free_symbols
intersection = set(symbols).intersection(expsym)
if len(intersection) > 1:
return None
if len(intersection) == 0:
# There are no symbols, so it is part of the coefficient
ret['coeff'].append(i)
else:
ret[intersection.pop()].append(i)
# rebuild
for k, v in ret.items():
ret[k] = Mul(*v)
return ret
def _is_sum_surds(p):
args = p.args if p.is_Add else [p]
for y in args:
if not ((y**2).is_Rational and y.is_extended_real):
return False
return True
def posify(eq):
"""Return eq (with generic symbols made positive) and a
dictionary containing the mapping between the old and new
symbols.
Any symbol that has positive=None will be replaced with a positive dummy
symbol having the same name. This replacement will allow more symbolic
processing of expressions, especially those involving powers and
logarithms.
A dictionary that can be sent to subs to restore eq to its original
symbols is also returned.
>>> from sympy import posify, Symbol, log, solve
>>> from sympy.abc import x
>>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
(_x + n + p, {_x: x})
>>> eq = 1/x
>>> log(eq).expand()
log(1/x)
>>> log(posify(eq)[0]).expand()
-log(_x)
>>> p, rep = posify(eq)
>>> log(p).expand().subs(rep)
-log(x)
It is possible to apply the same transformations to an iterable
of expressions:
>>> eq = x**2 - 4
>>> solve(eq, x)
[-2, 2]
>>> eq_x, reps = posify([eq, x]); eq_x
[_x**2 - 4, _x]
>>> solve(*eq_x)
[2]
"""
eq = sympify(eq)
if iterable(eq):
f = type(eq)
eq = list(eq)
syms = set()
for e in eq:
syms = syms.union(e.atoms(Symbol))
reps = {}
for s in syms:
reps.update(dict((v, k) for k, v in posify(s)[1].items()))
for i, e in enumerate(eq):
eq[i] = e.subs(reps)
return f(eq), {r: s for s, r in reps.items()}
reps = {s: Dummy(s.name, positive=True, **s.assumptions0)
for s in eq.free_symbols if s.is_positive is None}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def hypersimp(f, k):
"""Given combinatorial term f(k) simplify its consecutive term ratio
i.e. f(k+1)/f(k). The input term can be composed of functions and
integer sequences which have equivalent representation in terms
of gamma special function.
The algorithm performs three basic steps:
1. Rewrite all functions in terms of gamma, if possible.
2. Rewrite all occurrences of gamma in terms of products
of gamma and rising factorial with integer, absolute
constant exponent.
3. Perform simplification of nested fractions, powers
and if the resulting expression is a quotient of
polynomials, reduce their total degree.
If f(k) is hypergeometric then as result we arrive with a
quotient of polynomials of minimal degree. Otherwise None
is returned.
For more information on the implemented algorithm refer to:
1. W. Koepf, Algorithms for m-fold Hypergeometric Summation,
Journal of Symbolic Computation (1995) 20, 399-417
"""
f = sympify(f)
g = f.subs(k, k + 1) / f
g = g.rewrite(gamma)
g = expand_func(g)
g = powsimp(g, deep=True, combine='exp')
if g.is_rational_function(k):
return simplify(g, ratio=S.Infinity)
else:
return None
def hypersimilar(f, g, k):
"""Returns True if 'f' and 'g' are hyper-similar.
Similarity in hypergeometric sense means that a quotient of
f(k) and g(k) is a rational function in k. This procedure
is useful in solving recurrence relations.
For more information see hypersimp().
"""
f, g = list(map(sympify, (f, g)))
h = (f/g).rewrite(gamma)
h = h.expand(func=True, basic=False)
return h.is_rational_function(k)
def signsimp(expr, evaluate=None):
"""Make all Add sub-expressions canonical wrt sign.
If an Add subexpression, ``a``, can have a sign extracted,
as determined by could_extract_minus_sign, it is replaced
with Mul(-1, a, evaluate=False). This allows signs to be
extracted from powers and products.
Examples
========
>>> from sympy import signsimp, exp, symbols
>>> from sympy.abc import x, y
>>> i = symbols('i', odd=True)
>>> n = -1 + 1/x
>>> n/x/(-n)**2 - 1/n/x
(-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x))
>>> signsimp(_)
0
>>> x*n + x*-n
x*(-1 + 1/x) + x*(1 - 1/x)
>>> signsimp(_)
0
Since powers automatically handle leading signs
>>> (-2)**i
-2**i
signsimp can be used to put the base of a power with an integer
exponent into canonical form:
>>> n**i
(-1 + 1/x)**i
By default, signsimp doesn't leave behind any hollow simplification:
if making an Add canonical wrt sign didn't change the expression, the
original Add is restored. If this is not desired then the keyword
``evaluate`` can be set to False:
>>> e = exp(y - x)
>>> signsimp(e) == e
True
>>> signsimp(e, evaluate=False)
exp(-(x - y))
"""
if evaluate is None:
evaluate = global_parameters.evaluate
expr = sympify(expr)
if not isinstance(expr, (Expr, Relational)) or expr.is_Atom:
return expr
e = sub_post(sub_pre(expr))
if not isinstance(e, (Expr, Relational)) or e.is_Atom:
return e
if e.is_Add:
return e.func(*[signsimp(a, evaluate) for a in e.args])
if evaluate:
e = e.xreplace({m: -(-m) for m in e.atoms(Mul) if -(-m) != m})
return e
def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs):
"""Simplifies the given expression.
Simplification is not a well defined term and the exact strategies
this function tries can change in the future versions of SymPy. If
your algorithm relies on "simplification" (whatever it is), try to
determine what you need exactly - is it powsimp()?, radsimp()?,
together()?, logcombine()?, or something else? And use this particular
function directly, because those are well defined and thus your algorithm
will be robust.
Nonetheless, especially for interactive use, or when you don't know
anything about the structure of the expression, simplify() tries to apply
intelligent heuristics to make the input expression "simpler". For
example:
>>> from sympy import simplify, cos, sin
>>> from sympy.abc import x, y
>>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
>>> a
(x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
>>> simplify(a)
x + 1
Note that we could have obtained the same result by using specific
simplification functions:
>>> from sympy import trigsimp, cancel
>>> trigsimp(a)
(x**2 + x)/x
>>> cancel(_)
x + 1
In some cases, applying :func:`simplify` may actually result in some more
complicated expression. The default ``ratio=1.7`` prevents more extreme
cases: if (result length)/(input length) > ratio, then input is returned
unmodified. The ``measure`` parameter lets you specify the function used
to determine how complex an expression is. The function should take a
single argument as an expression and return a number such that if
expression ``a`` is more complex than expression ``b``, then
``measure(a) > measure(b)``. The default measure function is
:func:`~.count_ops`, which returns the total number of operations in the
expression.
For example, if ``ratio=1``, ``simplify`` output can't be longer
than input.
::
>>> from sympy import sqrt, simplify, count_ops, oo
>>> root = 1/(sqrt(2)+3)
Since ``simplify(root)`` would result in a slightly longer expression,
root is returned unchanged instead::
>>> simplify(root, ratio=1) == root
True
If ``ratio=oo``, simplify will be applied anyway::
>>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
True
Note that the shortest expression is not necessary the simplest, so
setting ``ratio`` to 1 may not be a good idea.
Heuristically, the default value ``ratio=1.7`` seems like a reasonable
choice.
You can easily define your own measure function based on what you feel
should represent the "size" or "complexity" of the input expression. Note
that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
good metrics, but have other problems (in this case, the measure function
may slow down simplify too much for very large expressions). If you don't
know what a good metric would be, the default, ``count_ops``, is a good
one.
For example:
>>> from sympy import symbols, log
>>> a, b = symbols('a b', positive=True)
>>> g = log(a) + log(b) + log(a)*log(1/b)
>>> h = simplify(g)
>>> h
log(a*b**(1 - log(a)))
>>> count_ops(g)
8
>>> count_ops(h)
5
So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
However, we may not like how ``simplify`` (in this case, using
``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way
to reduce this would be to give more weight to powers as operations in
``count_ops``. We can do this by using the ``visual=True`` option:
>>> print(count_ops(g, visual=True))
2*ADD + DIV + 4*LOG + MUL
>>> print(count_ops(h, visual=True))
2*LOG + MUL + POW + SUB
>>> from sympy import Symbol, S
>>> def my_measure(expr):
... POW = Symbol('POW')
... # Discourage powers by giving POW a weight of 10
... count = count_ops(expr, visual=True).subs(POW, 10)
... # Every other operation gets a weight of 1 (the default)
... count = count.replace(Symbol, type(S.One))
... return count
>>> my_measure(g)
8
>>> my_measure(h)
14
>>> 15./8 > 1.7 # 1.7 is the default ratio
True
>>> simplify(g, measure=my_measure)
-log(a)*log(b) + log(a) + log(b)
Note that because ``simplify()`` internally tries many different
simplification strategies and then compares them using the measure
function, we get a completely different result that is still different
from the input expression by doing this.
If rational=True, Floats will be recast as Rationals before simplification.
If rational=None, Floats will be recast as Rationals but the result will
be recast as Floats. If rational=False(default) then nothing will be done
to the Floats.
If inverse=True, it will be assumed that a composition of inverse
functions, such as sin and asin, can be cancelled in any order.
For example, ``asin(sin(x))`` will yield ``x`` without checking whether
x belongs to the set where this relation is true. The default is
False.
Note that ``simplify()`` automatically calls ``doit()`` on the final
expression. You can avoid this behavior by passing ``doit=False`` as
an argument.
"""
def shorter(*choices):
"""
Return the choice that has the fewest ops. In case of a tie,
the expression listed first is selected.
"""
if not has_variety(choices):
return choices[0]
return min(choices, key=measure)
def done(e):
rv = e.doit() if doit else e
return shorter(rv, collect_abs(rv))
expr = sympify(expr)
kwargs = dict(
ratio=kwargs.get('ratio', ratio),
measure=kwargs.get('measure', measure),
rational=kwargs.get('rational', rational),
inverse=kwargs.get('inverse', inverse),
doit=kwargs.get('doit', doit))
# no routine for Expr needs to check for is_zero
if isinstance(expr, Expr) and expr.is_zero and expr*0 == S.Zero:
return S.Zero
_eval_simplify = getattr(expr, '_eval_simplify', None)
if _eval_simplify is not None:
return _eval_simplify(**kwargs)
original_expr = expr = collect_abs(signsimp(expr))
if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack
return expr
if inverse and expr.has(Function):
expr = inversecombine(expr)
if not expr.args: # simplified to atomic
return expr
# do deep simplification
handled = Add, Mul, Pow, ExpBase
expr = expr.replace(
# here, checking for x.args is not enough because Basic has
# args but Basic does not always play well with replace, e.g.
# when simultaneous is True found expressions will be masked
# off with a Dummy but not all Basic objects in an expression
# can be replaced with a Dummy
lambda x: isinstance(x, Expr) and x.args and not isinstance(
x, handled),
lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]),
simultaneous=False)
if not isinstance(expr, handled):
return done(expr)
if not expr.is_commutative:
expr = nc_simplify(expr)
# TODO: Apply different strategies, considering expression pattern:
# is it a purely rational function? Is there any trigonometric function?...
# See also https://github.com/sympy/sympy/pull/185.
# rationalize Floats
floats = False
if rational is not False and expr.has(Float):
floats = True
expr = nsimplify(expr, rational=True)
expr = bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)())
expr = Mul(*powsimp(expr).as_content_primitive())
_e = cancel(expr)
expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829
expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))
if ratio is S.Infinity:
expr = expr2
else:
expr = shorter(expr2, expr1, expr)
if not isinstance(expr, Basic): # XXX: temporary hack
return expr
expr = factor_terms(expr, sign=False)
from sympy.simplify.hyperexpand import hyperexpand
from sympy.functions.special.bessel import BesselBase
from sympy import Sum, Product, Integral
# Deal with Piecewise separately to avoid recursive growth of expressions
if expr.has(Piecewise):
# Fold into a single Piecewise
expr = piecewise_fold(expr)
# Apply doit, if doit=True
expr = done(expr)
# Still a Piecewise?
if expr.has(Piecewise):
# Fold into a single Piecewise, in case doit lead to some
# expressions being Piecewise
expr = piecewise_fold(expr)
# kroneckersimp also affects Piecewise
if expr.has(KroneckerDelta):
expr = kroneckersimp(expr)
# Still a Piecewise?
if expr.has(Piecewise):
from sympy.functions.elementary.piecewise import piecewise_simplify
# Do not apply doit on the segments as it has already
# been done above, but simplify
expr = piecewise_simplify(expr, deep=True, doit=False)
# Still a Piecewise?
if expr.has(Piecewise):
# Try factor common terms
expr = shorter(expr, factor_terms(expr))
# As all expressions have been simplified above with the
# complete simplify, nothing more needs to be done here
return expr
# hyperexpand automatically only works on hypergeometric terms
# Do this after the Piecewise part to avoid recursive expansion
expr = hyperexpand(expr)
if expr.has(KroneckerDelta):
expr = kroneckersimp(expr)
if expr.has(BesselBase):
expr = besselsimp(expr)
if expr.has(TrigonometricFunction, HyperbolicFunction):
expr = trigsimp(expr, deep=True)
if expr.has(log):
expr = shorter(expand_log(expr, deep=True), logcombine(expr))
if expr.has(CombinatorialFunction, gamma):
# expression with gamma functions or non-integer arguments is
# automatically passed to gammasimp
expr = combsimp(expr)
if expr.has(Sum):
expr = sum_simplify(expr, **kwargs)
if expr.has(Integral):
expr = expr.xreplace(dict([
(i, factor_terms(i)) for i in expr.atoms(Integral)]))
if expr.has(Product):
expr = product_simplify(expr)
from sympy.physics.units import Quantity
from sympy.physics.units.util import quantity_simplify
if expr.has(Quantity):
expr = quantity_simplify(expr)
short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
short = shorter(short, cancel(short))
short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
short = exptrigsimp(short)
# get rid of hollow 2-arg Mul factorization
hollow_mul = Transform(
lambda x: Mul(*x.args),
lambda x:
x.is_Mul and
len(x.args) == 2 and
x.args[0].is_Number and
x.args[1].is_Add and
x.is_commutative)
expr = short.xreplace(hollow_mul)
numer, denom = expr.as_numer_denom()
if denom.is_Add:
n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
if n is not S.One:
expr = (numer*n).expand()/d
if expr.could_extract_minus_sign():
n, d = fraction(expr)
if d != 0:
expr = signsimp(-n/(-d))
if measure(expr) > ratio*measure(original_expr):
expr = original_expr
# restore floats
if floats and rational is None:
expr = nfloat(expr, exponent=False)
return done(expr)
def sum_simplify(s, **kwargs):
"""Main function for Sum simplification"""
from sympy.concrete.summations import Sum
from sympy.core.function import expand
if not isinstance(s, Add):
s = s.xreplace(dict([(a, sum_simplify(a, **kwargs))
for a in s.atoms(Add) if a.has(Sum)]))
s = expand(s)
if not isinstance(s, Add):
return s
terms = s.args
s_t = [] # Sum Terms
o_t = [] # Other Terms
for term in terms:
sum_terms, other = sift(Mul.make_args(term),
lambda i: isinstance(i, Sum), binary=True)
if not sum_terms:
o_t.append(term)
continue
other = [Mul(*other)]
s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms])))
result = Add(sum_combine(s_t), *o_t)
return result
def sum_combine(s_t):
"""Helper function for Sum simplification
Attempts to simplify a list of sums, by combining limits / sum function's
returns the simplified sum
"""
from sympy.concrete.summations import Sum
used = [False] * len(s_t)
for method in range(2):
for i, s_term1 in enumerate(s_t):
if not used[i]:
for j, s_term2 in enumerate(s_t):
if not used[j] and i != j:
temp = sum_add(s_term1, s_term2, method)
if isinstance(temp, Sum) or isinstance(temp, Mul):
s_t[i] = temp
s_term1 = s_t[i]
used[j] = True
result = S.Zero
for i, s_term in enumerate(s_t):
if not used[i]:
result = Add(result, s_term)
return result
def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True):
"""Return Sum with constant factors extracted.
If ``limits`` is specified then ``self`` is the summand; the other
keywords are passed to ``factor_terms``.
Examples
========
>>> from sympy import Sum, Integral
>>> from sympy.abc import x, y
>>> from sympy.simplify.simplify import factor_sum
>>> s = Sum(x*y, (x, 1, 3))
>>> factor_sum(s)
y*Sum(x, (x, 1, 3))
>>> factor_sum(s.function, s.limits)
y*Sum(x, (x, 1, 3))
"""
# XXX deprecate in favor of direct call to factor_terms
from sympy.concrete.summations import Sum
kwargs = dict(radical=radical, clear=clear,
fraction=fraction, sign=sign)
expr = Sum(self, *limits) if limits else self
return factor_terms(expr, **kwargs)
def sum_add(self, other, method=0):
"""Helper function for Sum simplification"""
from sympy.concrete.summations import Sum
from sympy import Mul
#we know this is something in terms of a constant * a sum
#so we temporarily put the constants inside for simplification
#then simplify the result
def __refactor(val):
args = Mul.make_args(val)
sumv = next(x for x in args if isinstance(x, Sum))
constant = Mul(*[x for x in args if x != sumv])
return Sum(constant * sumv.function, *sumv.limits)
if isinstance(self, Mul):
rself = __refactor(self)
else:
rself = self
if isinstance(other, Mul):
rother = __refactor(other)
else:
rother = other
if type(rself) == type(rother):
if method == 0:
if rself.limits == rother.limits:
return factor_sum(Sum(rself.function + rother.function, *rself.limits))
elif method == 1:
if simplify(rself.function - rother.function) == 0:
if len(rself.limits) == len(rother.limits) == 1:
i = rself.limits[0][0]
x1 = rself.limits[0][1]
y1 = rself.limits[0][2]
j = rother.limits[0][0]
x2 = rother.limits[0][1]
y2 = rother.limits[0][2]
if i == j:
if x2 == y1 + 1:
return factor_sum(Sum(rself.function, (i, x1, y2)))
elif x1 == y2 + 1:
return factor_sum(Sum(rself.function, (i, x2, y1)))
return Add(self, other)
def product_simplify(s):
"""Main function for Product simplification"""
from sympy.concrete.products import Product
terms = Mul.make_args(s)
p_t = [] # Product Terms
o_t = [] # Other Terms
for term in terms:
if isinstance(term, Product):
p_t.append(term)
else:
o_t.append(term)
used = [False] * len(p_t)
for method in range(2):
for i, p_term1 in enumerate(p_t):
if not used[i]:
for j, p_term2 in enumerate(p_t):
if not used[j] and i != j:
if isinstance(product_mul(p_term1, p_term2, method), Product):
p_t[i] = product_mul(p_term1, p_term2, method)
used[j] = True
result = Mul(*o_t)
for i, p_term in enumerate(p_t):
if not used[i]:
result = Mul(result, p_term)
return result
def product_mul(self, other, method=0):
"""Helper function for Product simplification"""
from sympy.concrete.products import Product
if type(self) == type(other):
if method == 0:
if self.limits == other.limits:
return Product(self.function * other.function, *self.limits)
elif method == 1:
if simplify(self.function - other.function) == 0:
if len(self.limits) == len(other.limits) == 1:
i = self.limits[0][0]
x1 = self.limits[0][1]
y1 = self.limits[0][2]
j = other.limits[0][0]
x2 = other.limits[0][1]
y2 = other.limits[0][2]
if i == j:
if x2 == y1 + 1:
return Product(self.function, (i, x1, y2))
elif x1 == y2 + 1:
return Product(self.function, (i, x2, y1))
return Mul(self, other)
def _nthroot_solve(p, n, prec):
"""
helper function for ``nthroot``
It denests ``p**Rational(1, n)`` using its minimal polynomial
"""
from sympy.polys.numberfields import _minimal_polynomial_sq
from sympy.solvers import solve
while n % 2 == 0:
p = sqrtdenest(sqrt(p))
n = n // 2
if n == 1:
return p
pn = p**Rational(1, n)
x = Symbol('x')
f = _minimal_polynomial_sq(p, n, x)
if f is None:
return None
sols = solve(f, x)
for sol in sols:
if abs(sol - pn).n() < 1./10**prec:
sol = sqrtdenest(sol)
if _mexpand(sol**n) == p:
return sol
def logcombine(expr, force=False):
"""
Takes logarithms and combines them using the following rules:
- log(x) + log(y) == log(x*y) if both are positive
- a*log(x) == log(x**a) if x is positive and a is real
If ``force`` is True then the assumptions above will be assumed to hold if
there is no assumption already in place on a quantity. For example, if
``a`` is imaginary or the argument negative, force will not perform a
combination but if ``a`` is a symbol with no assumptions the change will
take place.
Examples
========
>>> from sympy import Symbol, symbols, log, logcombine, I
>>> from sympy.abc import a, x, y, z
>>> logcombine(a*log(x) + log(y) - log(z))
a*log(x) + log(y) - log(z)
>>> logcombine(a*log(x) + log(y) - log(z), force=True)
log(x**a*y/z)
>>> x,y,z = symbols('x,y,z', positive=True)
>>> a = Symbol('a', real=True)
>>> logcombine(a*log(x) + log(y) - log(z))
log(x**a*y/z)
The transformation is limited to factors and/or terms that
contain logs, so the result depends on the initial state of
expansion:
>>> eq = (2 + 3*I)*log(x)
>>> logcombine(eq, force=True) == eq
True
>>> logcombine(eq.expand(), force=True)
log(x**2) + I*log(x**3)
See Also
========
posify: replace all symbols with symbols having positive assumptions
sympy.core.function.expand_log: expand the logarithms of products
and powers; the opposite of logcombine
"""
def f(rv):
if not (rv.is_Add or rv.is_Mul):
return rv
def gooda(a):
# bool to tell whether the leading ``a`` in ``a*log(x)``
# could appear as log(x**a)
return (a is not S.NegativeOne and # -1 *could* go, but we disallow
(a.is_extended_real or force and a.is_extended_real is not False))
def goodlog(l):
# bool to tell whether log ``l``'s argument can combine with others
a = l.args[0]
return a.is_positive or force and a.is_nonpositive is not False
other = []
logs = []
log1 = defaultdict(list)
for a in Add.make_args(rv):
if isinstance(a, log) and goodlog(a):
log1[()].append(([], a))
elif not a.is_Mul:
other.append(a)
else:
ot = []
co = []
lo = []
for ai in a.args:
if ai.is_Rational and ai < 0:
ot.append(S.NegativeOne)
co.append(-ai)
elif isinstance(ai, log) and goodlog(ai):
lo.append(ai)
elif gooda(ai):
co.append(ai)
else:
ot.append(ai)
if len(lo) > 1:
logs.append((ot, co, lo))
elif lo:
log1[tuple(ot)].append((co, lo[0]))
else:
other.append(a)
# if there is only one log in other, put it with the
# good logs
if len(other) == 1 and isinstance(other[0], log):
log1[()].append(([], other.pop()))
# if there is only one log at each coefficient and none have
# an exponent to place inside the log then there is nothing to do
if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1):
return rv
# collapse multi-logs as far as possible in a canonical way
# TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))?
# -- in this case, it's unambiguous, but if it were were a log(c) in
# each term then it's arbitrary whether they are grouped by log(a) or
# by log(c). So for now, just leave this alone; it's probably better to
# let the user decide
for o, e, l in logs:
l = list(ordered(l))
e = log(l.pop(0).args[0]**Mul(*e))
while l:
li = l.pop(0)
e = log(li.args[0]**e)
c, l = Mul(*o), e
if isinstance(l, log): # it should be, but check to be sure
log1[(c,)].append(([], l))
else:
other.append(c*l)
# logs that have the same coefficient can multiply
for k in list(log1.keys()):
log1[Mul(*k)] = log(logcombine(Mul(*[
l.args[0]**Mul(*c) for c, l in log1.pop(k)]),
force=force), evaluate=False)
# logs that have oppositely signed coefficients can divide
for k in ordered(list(log1.keys())):
if not k in log1: # already popped as -k
continue
if -k in log1:
# figure out which has the minus sign; the one with
# more op counts should be the one
num, den = k, -k
if num.count_ops() > den.count_ops():
num, den = den, num
other.append(
num*log(log1.pop(num).args[0]/log1.pop(den).args[0],
evaluate=False))
else:
other.append(k*log1.pop(k))
return Add(*other)
return bottom_up(expr, f)
def inversecombine(expr):
"""Simplify the composition of a function and its inverse.
No attention is paid to whether the inverse is a left inverse or a
right inverse; thus, the result will in general not be equivalent
to the original expression.
Examples
========
>>> from sympy.simplify.simplify import inversecombine
>>> from sympy import asin, sin, log, exp
>>> from sympy.abc import x
>>> inversecombine(asin(sin(x)))
x
>>> inversecombine(2*log(exp(3*x)))
6*x
"""
def f(rv):
if rv.is_Function and hasattr(rv, "inverse"):
if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and
isinstance(rv.args[0], rv.inverse(argindex=1))):
rv = rv.args[0].args[0]
return rv
return bottom_up(expr, f)
def walk(e, *target):
"""iterate through the args that are the given types (target) and
return a list of the args that were traversed; arguments
that are not of the specified types are not traversed.
Examples
========
>>> from sympy.simplify.simplify import walk
>>> from sympy import Min, Max
>>> from sympy.abc import x, y, z
>>> list(walk(Min(x, Max(y, Min(1, z))), Min))
[Min(x, Max(y, Min(1, z)))]
>>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max))
[Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)]
See Also
========
bottom_up
"""
if isinstance(e, target):
yield e
for i in e.args:
for w in walk(i, *target):
yield w
def bottom_up(rv, F, atoms=False, nonbasic=False):
"""Apply ``F`` to all expressions in an expression tree from the
bottom up. If ``atoms`` is True, apply ``F`` even if there are no args;
if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects.
"""
args = getattr(rv, 'args', None)
if args is not None:
if args:
args = tuple([bottom_up(a, F, atoms, nonbasic) for a in args])
if args != rv.args:
rv = rv.func(*args)
rv = F(rv)
elif atoms:
rv = F(rv)
else:
if nonbasic:
try:
rv = F(rv)
except TypeError:
pass
return rv
def kroneckersimp(expr):
"""
Simplify expressions with KroneckerDelta.
The only simplification currently attempted is to identify multiplicative cancellation:
>>> from sympy import KroneckerDelta, kroneckersimp
>>> from sympy.abc import i, j
>>> kroneckersimp(1 + KroneckerDelta(0, j) * KroneckerDelta(1, j))
1
"""
def args_cancel(args1, args2):
for i1 in range(2):
for i2 in range(2):
a1 = args1[i1]
a2 = args2[i2]
a3 = args1[(i1 + 1) % 2]
a4 = args2[(i2 + 1) % 2]
if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false:
return True
return False
def cancel_kronecker_mul(m):
from sympy.utilities.iterables import subsets
args = m.args
deltas = [a for a in args if isinstance(a, KroneckerDelta)]
for delta1, delta2 in subsets(deltas, 2):
args1 = delta1.args
args2 = delta2.args
if args_cancel(args1, args2):
return 0*m
return m
if not expr.has(KroneckerDelta):
return expr
if expr.has(Piecewise):
expr = expr.rewrite(KroneckerDelta)
newexpr = expr
expr = None
while newexpr != expr:
expr = newexpr
newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul)
return expr
def besselsimp(expr):
"""
Simplify bessel-type functions.
This routine tries to simplify bessel-type functions. Currently it only
works on the Bessel J and I functions, however. It works by looking at all
such functions in turn, and eliminating factors of "I" and "-1" (actually
their polar equivalents) in front of the argument. Then, functions of
half-integer order are rewritten using strigonometric functions and
functions of integer order (> 1) are rewritten using functions
of low order. Finally, if the expression was changed, compute
factorization of the result with factor().
>>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
>>> from sympy.abc import z, nu
>>> besselsimp(besselj(nu, z*polar_lift(-1)))
exp(I*pi*nu)*besselj(nu, z)
>>> besselsimp(besseli(nu, z*polar_lift(-I)))
exp(-I*pi*nu/2)*besselj(nu, z)
>>> besselsimp(besseli(S(-1)/2, z))
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
>>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
3*z*besseli(0, z)/2
"""
# TODO
# - better algorithm?
# - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ...
# - use contiguity relations?
def replacer(fro, to, factors):
factors = set(factors)
def repl(nu, z):
if factors.intersection(Mul.make_args(z)):
return to(nu, z)
return fro(nu, z)
return repl
def torewrite(fro, to):
def tofunc(nu, z):
return fro(nu, z).rewrite(to)
return tofunc
def tominus(fro):
def tofunc(nu, z):
return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
return tofunc
orig_expr = expr
ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)]
expr = expr.replace(
besselj, replacer(besselj,
torewrite(besselj, besseli), ifactors))
expr = expr.replace(
besseli, replacer(besseli,
torewrite(besseli, besselj), ifactors))
minusfactors = [-1, exp_polar(I*pi)]
expr = expr.replace(
besselj, replacer(besselj, tominus(besselj), minusfactors))
expr = expr.replace(
besseli, replacer(besseli, tominus(besseli), minusfactors))
z0 = Dummy('z')
def expander(fro):
def repl(nu, z):
if (nu % 1) == S.Half:
return simplify(trigsimp(unpolarify(
fro(nu, z0).rewrite(besselj).rewrite(jn).expand(
func=True)).subs(z0, z)))
elif nu.is_Integer and nu > 1:
return fro(nu, z).expand(func=True)
return fro(nu, z)
return repl
expr = expr.replace(besselj, expander(besselj))
expr = expr.replace(bessely, expander(bessely))
expr = expr.replace(besseli, expander(besseli))
expr = expr.replace(besselk, expander(besselk))
def _bessel_simp_recursion(expr):
def _use_recursion(bessel, expr):
while True:
bessels = expr.find(lambda x: isinstance(x, bessel))
try:
for ba in sorted(bessels, key=lambda x: re(x.args[0])):
a, x = ba.args
bap1 = bessel(a+1, x)
bap2 = bessel(a+2, x)
if expr.has(bap1) and expr.has(bap2):
expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2)
break
else:
return expr
except (ValueError, TypeError):
return expr
if expr.has(besselj):
expr = _use_recursion(besselj, expr)
if expr.has(bessely):
expr = _use_recursion(bessely, expr)
return expr
expr = _bessel_simp_recursion(expr)
if expr != orig_expr:
expr = expr.factor()
return expr
def nthroot(expr, n, max_len=4, prec=15):
"""
compute a real nth-root of a sum of surds
Parameters
==========
expr : sum of surds
n : integer
max_len : maximum number of surds passed as constants to ``nsimplify``
Algorithm
=========
First ``nsimplify`` is used to get a candidate root; if it is not a
root the minimal polynomial is computed; the answer is one of its
roots.
Examples
========
>>> from sympy.simplify.simplify import nthroot
>>> from sympy import Rational, sqrt
>>> nthroot(90 + 34*sqrt(7), 3)
sqrt(7) + 3
"""
expr = sympify(expr)
n = sympify(n)
p = expr**Rational(1, n)
if not n.is_integer:
return p
if not _is_sum_surds(expr):
return p
surds = []
coeff_muls = [x.as_coeff_Mul() for x in expr.args]
for x, y in coeff_muls:
if not x.is_rational:
return p
if y is S.One:
continue
if not (y.is_Pow and y.exp == S.Half and y.base.is_integer):
return p
surds.append(y)
surds.sort()
surds = surds[:max_len]
if expr < 0 and n % 2 == 1:
p = (-expr)**Rational(1, n)
a = nsimplify(p, constants=surds)
res = a if _mexpand(a**n) == _mexpand(-expr) else p
return -res
a = nsimplify(p, constants=surds)
if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr):
return _mexpand(a)
expr = _nthroot_solve(expr, n, prec)
if expr is None:
return p
return expr
def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None,
rational_conversion='base10'):
"""
Find a simple representation for a number or, if there are free symbols or
if rational=True, then replace Floats with their Rational equivalents. If
no change is made and rational is not False then Floats will at least be
converted to Rationals.
For numerical expressions, a simple formula that numerically matches the
given numerical expression is sought (and the input should be possible
to evalf to a precision of at least 30 digits).
Optionally, a list of (rationally independent) constants to
include in the formula may be given.
A lower tolerance may be set to find less exact matches. If no tolerance
is given then the least precise value will set the tolerance (e.g. Floats
default to 15 digits of precision, so would be tolerance=10**-15).
With full=True, a more extensive search is performed
(this is useful to find simpler numbers when the tolerance
is set low).
When converting to rational, if rational_conversion='base10' (the default), then
convert floats to rationals using their base-10 (string) representation.
When rational_conversion='exact' it uses the exact, base-2 representation.
Examples
========
>>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, exp, pi
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify((1/(exp(3*pi*I/5)+1)))
1/2 - I*sqrt(sqrt(5)/10 + 1/4)
>>> nsimplify(I**I, [pi])
exp(-pi/2)
>>> nsimplify(pi, tolerance=0.01)
22/7
>>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact')
6004799503160655/18014398509481984
>>> nsimplify(0.333333333333333, rational=True)
1/3
See Also
========
sympy.core.function.nfloat
"""
try:
return sympify(as_int(expr))
except (TypeError, ValueError):
pass
expr = sympify(expr).xreplace({
Float('inf'): S.Infinity,
Float('-inf'): S.NegativeInfinity,
})
if expr is S.Infinity or expr is S.NegativeInfinity:
return expr
if rational or expr.free_symbols:
return _real_to_rational(expr, tolerance, rational_conversion)
# SymPy's default tolerance for Rationals is 15; other numbers may have
# lower tolerances set, so use them to pick the largest tolerance if None
# was given
if tolerance is None:
tolerance = 10**-min([15] +
[mpmath.libmp.libmpf.prec_to_dps(n._prec)
for n in expr.atoms(Float)])
# XXX should prec be set independent of tolerance or should it be computed
# from tolerance?
prec = 30
bprec = int(prec*3.33)
constants_dict = {}
for constant in constants:
constant = sympify(constant)
v = constant.evalf(prec)
if not v.is_Float:
raise ValueError("constants must be real-valued")
constants_dict[str(constant)] = v._to_mpmath(bprec)
exprval = expr.evalf(prec, chop=True)
re, im = exprval.as_real_imag()
# safety check to make sure that this evaluated to a number
if not (re.is_Number and im.is_Number):
return expr
def nsimplify_real(x):
orig = mpmath.mp.dps
xv = x._to_mpmath(bprec)
try:
# We'll be happy with low precision if a simple fraction
if not (tolerance or full):
mpmath.mp.dps = 15
rat = mpmath.pslq([xv, 1])
if rat is not None:
return Rational(-int(rat[1]), int(rat[0]))
mpmath.mp.dps = prec
newexpr = mpmath.identify(xv, constants=constants_dict,
tol=tolerance, full=full)
if not newexpr:
raise ValueError
if full:
newexpr = newexpr[0]
expr = sympify(newexpr)
if x and not expr: # don't let x become 0
raise ValueError
if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]:
raise ValueError
return expr
finally:
# even though there are returns above, this is executed
# before leaving
mpmath.mp.dps = orig
try:
if re:
re = nsimplify_real(re)
if im:
im = nsimplify_real(im)
except ValueError:
if rational is None:
return _real_to_rational(expr, rational_conversion=rational_conversion)
return expr
rv = re + im*S.ImaginaryUnit
# if there was a change or rational is explicitly not wanted
# return the value, else return the Rational representation
if rv != expr or rational is False:
return rv
return _real_to_rational(expr, rational_conversion=rational_conversion)
def _real_to_rational(expr, tolerance=None, rational_conversion='base10'):
"""
Replace all reals in expr with rationals.
Examples
========
>>> from sympy import Rational
>>> from sympy.simplify.simplify import _real_to_rational
>>> from sympy.abc import x
>>> _real_to_rational(.76 + .1*x**.5)
sqrt(x)/10 + 19/25
If rational_conversion='base10', this uses the base-10 string. If
rational_conversion='exact', the exact, base-2 representation is used.
>>> _real_to_rational(0.333333333333333, rational_conversion='exact')
6004799503160655/18014398509481984
>>> _real_to_rational(0.333333333333333)
1/3
"""
expr = _sympify(expr)
inf = Float('inf')
p = expr
reps = {}
reduce_num = None
if tolerance is not None and tolerance < 1:
reduce_num = ceiling(1/tolerance)
for fl in p.atoms(Float):
key = fl
if reduce_num is not None:
r = Rational(fl).limit_denominator(reduce_num)
elif (tolerance is not None and tolerance >= 1 and
fl.is_Integer is False):
r = Rational(tolerance*round(fl/tolerance)
).limit_denominator(int(tolerance))
else:
if rational_conversion == 'exact':
r = Rational(fl)
reps[key] = r
continue
elif rational_conversion != 'base10':
raise ValueError("rational_conversion must be 'base10' or 'exact'")
r = nsimplify(fl, rational=False)
# e.g. log(3).n() -> log(3) instead of a Rational
if fl and not r:
r = Rational(fl)
elif not r.is_Rational:
if fl == inf or fl == -inf:
r = S.ComplexInfinity
elif fl < 0:
fl = -fl
d = Pow(10, int((mpmath.log(fl)/mpmath.log(10))))
r = -Rational(str(fl/d))*d
elif fl > 0:
d = Pow(10, int((mpmath.log(fl)/mpmath.log(10))))
r = Rational(str(fl/d))*d
else:
r = Integer(0)
reps[key] = r
return p.subs(reps, simultaneous=True)
def clear_coefficients(expr, rhs=S.Zero):
"""Return `p, r` where `p` is the expression obtained when Rational
additive and multiplicative coefficients of `expr` have been stripped
away in a naive fashion (i.e. without simplification). The operations
needed to remove the coefficients will be applied to `rhs` and returned
as `r`.
Examples
========
>>> from sympy.simplify.simplify import clear_coefficients
>>> from sympy.abc import x, y
>>> from sympy import Dummy
>>> expr = 4*y*(6*x + 3)
>>> clear_coefficients(expr - 2)
(y*(2*x + 1), 1/6)
When solving 2 or more expressions like `expr = a`,
`expr = b`, etc..., it is advantageous to provide a Dummy symbol
for `rhs` and simply replace it with `a`, `b`, etc... in `r`.
>>> rhs = Dummy('rhs')
>>> clear_coefficients(expr, rhs)
(y*(2*x + 1), _rhs/12)
>>> _[1].subs(rhs, 2)
1/6
"""
was = None
free = expr.free_symbols
if expr.is_Rational:
return (S.Zero, rhs - expr)
while expr and was != expr:
was = expr
m, expr = (
expr.as_content_primitive()
if free else
factor_terms(expr).as_coeff_Mul(rational=True))
rhs /= m
c, expr = expr.as_coeff_Add(rational=True)
rhs -= c
expr = signsimp(expr, evaluate = False)
if _coeff_isneg(expr):
expr = -expr
rhs = -rhs
return expr, rhs
def nc_simplify(expr, deep=True):
'''
Simplify a non-commutative expression composed of multiplication
and raising to a power by grouping repeated subterms into one power.
Priority is given to simplifications that give the fewest number
of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying
to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3).
If `expr` is a sum of such terms, the sum of the simplified terms
is returned.
Keyword argument `deep` controls whether or not subexpressions
nested deeper inside the main expression are simplified. See examples
below. Setting `deep` to `False` can save time on nested expressions
that don't need simplifying on all levels.
Examples
========
>>> from sympy import symbols
>>> from sympy.simplify.simplify import nc_simplify
>>> a, b, c = symbols("a b c", commutative=False)
>>> nc_simplify(a*b*a*b*c*a*b*c)
a*b*(a*b*c)**2
>>> expr = a**2*b*a**4*b*a**4
>>> nc_simplify(expr)
a**2*(b*a**4)**2
>>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2)
((a*b)**2*c**2)**2
>>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a)
(a*b)**2 + 2*(a*c*a)**3
>>> nc_simplify(b**-1*a**-1*(a*b)**2)
a*b
>>> nc_simplify(a**-1*b**-1*c*a)
(b*a)**(-1)*c*a
>>> expr = (a*b*a*b)**2*a*c*a*c
>>> nc_simplify(expr)
(a*b)**4*(a*c)**2
>>> nc_simplify(expr, deep=False)
(a*b*a*b)**2*(a*c)**2
'''
from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul,
MatPow, MatrixSymbol)
from sympy.core.exprtools import factor_nc
if isinstance(expr, MatrixExpr):
expr = expr.doit(inv_expand=False)
_Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol
else:
_Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol
# =========== Auxiliary functions ========================
def _overlaps(args):
# Calculate a list of lists m such that m[i][j] contains the lengths
# of all possible overlaps between args[:i+1] and args[i+1+j:].
# An overlap is a suffix of the prefix that matches a prefix
# of the suffix.
# For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains
# the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps
# are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0].
# All overlaps rather than only the longest one are recorded
# because this information helps calculate other overlap lengths.
m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]]
for i in range(1, len(args)):
overlaps = []
j = 0
for j in range(len(args) - i - 1):
overlap = []
for v in m[i-1][j+1]:
if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]:
overlap.append(v + 1)
overlap += [0]
overlaps.append(overlap)
m.append(overlaps)
return m
def _reduce_inverses(_args):
# replace consecutive negative powers by an inverse
# of a product of positive powers, e.g. a**-1*b**-1*c
# will simplify to (a*b)**-1*c;
# return that new args list and the number of negative
# powers in it (inv_tot)
inv_tot = 0 # total number of inverses
inverses = []
args = []
for arg in _args:
if isinstance(arg, _Pow) and arg.args[1] < 0:
inverses = [arg**-1] + inverses
inv_tot += 1
else:
if len(inverses) == 1:
args.append(inverses[0]**-1)
elif len(inverses) > 1:
args.append(_Pow(_Mul(*inverses), -1))
inv_tot -= len(inverses) - 1
inverses = []
args.append(arg)
if inverses:
args.append(_Pow(_Mul(*inverses), -1))
inv_tot -= len(inverses) - 1
return inv_tot, tuple(args)
def get_score(s):
# compute the number of arguments of s
# (including in nested expressions) overall
# but ignore exponents
if isinstance(s, _Pow):
return get_score(s.args[0])
elif isinstance(s, (_Add, _Mul)):
return sum([get_score(a) for a in s.args])
return 1
def compare(s, alt_s):
# compare two possible simplifications and return a
# "better" one
if s != alt_s and get_score(alt_s) < get_score(s):
return alt_s
return s
# ========================================================
if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative:
return expr
args = expr.args[:]
if isinstance(expr, _Pow):
if deep:
return _Pow(nc_simplify(args[0]), args[1]).doit()
else:
return expr
elif isinstance(expr, _Add):
return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit()
else:
# get the non-commutative part
c_args, args = expr.args_cnc()
com_coeff = Mul(*c_args)
if com_coeff != 1:
return com_coeff*nc_simplify(expr/com_coeff, deep=deep)
inv_tot, args = _reduce_inverses(args)
# if most arguments are negative, work with the inverse
# of the expression, e.g. a**-1*b*a**-1*c**-1 will become
# (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a
invert = False
if inv_tot > len(args)/2:
invert = True
args = [a**-1 for a in args[::-1]]
if deep:
args = tuple(nc_simplify(a) for a in args)
m = _overlaps(args)
# simps will be {subterm: end} where `end` is the ending
# index of a sequence of repetitions of subterm;
# this is for not wasting time with subterms that are part
# of longer, already considered sequences
simps = {}
post = 1
pre = 1
# the simplification coefficient is the number of
# arguments by which contracting a given sequence
# would reduce the word; e.g. in a*b*a*b*c*a*b*c,
# contracting a*b*a*b to (a*b)**2 removes 3 arguments
# while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's
# better to contract the latter so simplification
# with a maximum simplification coefficient will be chosen
max_simp_coeff = 0
simp = None # information about future simplification
for i in range(1, len(args)):
simp_coeff = 0
l = 0 # length of a subterm
p = 0 # the power of a subterm
if i < len(args) - 1:
rep = m[i][0]
start = i # starting index of the repeated sequence
end = i+1 # ending index of the repeated sequence
if i == len(args)-1 or rep == [0]:
# no subterm is repeated at this stage, at least as
# far as the arguments are concerned - there may be
# a repetition if powers are taken into account
if (isinstance(args[i], _Pow) and
not isinstance(args[i].args[0], _Symbol)):
subterm = args[i].args[0].args
l = len(subterm)
if args[i-l:i] == subterm:
# e.g. a*b in a*b*(a*b)**2 is not repeated
# in args (= [a, b, (a*b)**2]) but it
# can be matched here
p += 1
start -= l
if args[i+1:i+1+l] == subterm:
# e.g. a*b in (a*b)**2*a*b
p += 1
end += l
if p:
p += args[i].args[1]
else:
continue
else:
l = rep[0] # length of the longest repeated subterm at this point
start -= l - 1
subterm = args[start:end]
p = 2
end += l
if subterm in simps and simps[subterm] >= start:
# the subterm is part of a sequence that
# has already been considered
continue
# count how many times it's repeated
while end < len(args):
if l in m[end-1][0]:
p += 1
end += l
elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm:
# for cases like a*b*a*b*(a*b)**2*a*b
p += args[end].args[1]
end += 1
else:
break
# see if another match can be made, e.g.
# for b*a**2 in b*a**2*b*a**3 or a*b in
# a**2*b*a*b
pre_exp = 0
pre_arg = 1
if start - l >= 0 and args[start-l+1:start] == subterm[1:]:
if isinstance(subterm[0], _Pow):
pre_arg = subterm[0].args[0]
exp = subterm[0].args[1]
else:
pre_arg = subterm[0]
exp = 1
if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg:
pre_exp = args[start-l].args[1] - exp
start -= l
p += 1
elif args[start-l] == pre_arg:
pre_exp = 1 - exp
start -= l
p += 1
post_exp = 0
post_arg = 1
if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]:
if isinstance(subterm[-1], _Pow):
post_arg = subterm[-1].args[0]
exp = subterm[-1].args[1]
else:
post_arg = subterm[-1]
exp = 1
if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg:
post_exp = args[end+l-1].args[1] - exp
end += l
p += 1
elif args[end+l-1] == post_arg:
post_exp = 1 - exp
end += l
p += 1
# Consider a*b*a**2*b*a**2*b*a:
# b*a**2 is explicitly repeated, but note
# that in this case a*b*a is also repeated
# so there are two possible simplifications:
# a*(b*a**2)**3*a**-1 or (a*b*a)**3
# The latter is obviously simpler.
# But in a*b*a**2*b**2*a**2 the simplifications are
# a*(b*a**2)**2 and (a*b*a)**3*a in which case
# it's better to stick with the shorter subterm
if post_exp and exp % 2 == 0 and start > 0:
exp = exp/2
_pre_exp = 1
_post_exp = 1
if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg:
_post_exp = post_exp + exp
_pre_exp = args[start-1].args[1] - exp
elif args[start-1] == post_arg:
_post_exp = post_exp + exp
_pre_exp = 1 - exp
if _pre_exp == 0 or _post_exp == 0:
if not pre_exp:
start -= 1
post_exp = _post_exp
pre_exp = _pre_exp
pre_arg = post_arg
subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,)
simp_coeff += end-start
if post_exp:
simp_coeff -= 1
if pre_exp:
simp_coeff -= 1
simps[subterm] = end
if simp_coeff > max_simp_coeff:
max_simp_coeff = simp_coeff
simp = (start, _Mul(*subterm), p, end, l)
pre = pre_arg**pre_exp
post = post_arg**post_exp
if simp:
subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2])
pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep)
post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep)
simp = pre*subterm*post
if pre != 1 or post != 1:
# new simplifications may be possible but no need
# to recurse over arguments
simp = nc_simplify(simp, deep=False)
else:
simp = _Mul(*args)
if invert:
simp = _Pow(simp, -1)
# see if factor_nc(expr) is simplified better
if not isinstance(expr, MatrixExpr):
f_expr = factor_nc(expr)
if f_expr != expr:
alt_simp = nc_simplify(f_expr, deep=deep)
simp = compare(simp, alt_simp)
else:
simp = simp.doit(inv_expand=False)
return simp
def dotprodsimp(expr, withsimp=False):
"""Simplification for a sum of products targeted at the kind of blowup that
occurs during summation of products. Intended to reduce expression blowup
during matrix multiplication or other similar operations. Only works with
algebraic expressions and does not recurse into non.
Parameters
==========
withsimp : bool, optional
Specifies whether a flag should be returned along with the expression
to indicate roughly whether simplification was successful. It is used
in ``MatrixArithmetic._eval_pow_by_recursion`` to avoid attempting to
simplify an expression repetitively which does not simplify.
"""
def count_ops_alg(expr):
"""Optimized count algebraic operations with no recursion into
non-algebraic args that ``core.function.count_ops`` does. Also returns
whether rational functions may be present according to negative
exponents of powers or non-number fractions.
Returns
=======
ops, ratfunc : int, bool
``ops`` is the number of algebraic operations starting at the top
level expression (not recursing into non-alg children). ``ratfunc``
specifies whether the expression MAY contain rational functions
which ``cancel`` MIGHT optimize.
"""
ops = 0
args = [expr]
ratfunc = False
while args:
a = args.pop()
if not isinstance(a, Basic):
continue
if a.is_Rational:
if a is not S.One: # -1/3 = NEG + DIV
ops += bool (a.p < 0) + bool (a.q != 1)
elif a.is_Mul:
if _coeff_isneg(a):
ops += 1
if a.args[0] is S.NegativeOne:
a = a.as_two_terms()[1]
else:
a = -a
n, d = fraction(a)
if n.is_Integer:
ops += 1 + bool (n < 0)
args.append(d) # won't be -Mul but could be Add
elif d is not S.One:
if not d.is_Integer:
args.append(d)
ratfunc=True
ops += 1
args.append(n) # could be -Mul
else:
ops += len(a.args) - 1
args.extend(a.args)
elif a.is_Add:
laargs = len(a.args)
negs = 0
for ai in a.args:
if _coeff_isneg(ai):
negs += 1
ai = -ai
args.append(ai)
ops += laargs - (negs != laargs) # -x - y = NEG + SUB
elif a.is_Pow:
ops += 1
args.append(a.base)
if not ratfunc:
ratfunc = a.exp.is_negative is not False
return ops, ratfunc
def nonalg_subs_dummies(expr, dummies):
"""Substitute dummy variables for non-algebraic expressions to avoid
evaluation of non-algebraic terms that ``polys.polytools.cancel`` does.
"""
if not expr.args:
return expr
if expr.is_Add or expr.is_Mul or expr.is_Pow:
args = None
for i, a in enumerate(expr.args):
c = nonalg_subs_dummies(a, dummies)
if c is a:
continue
if args is None:
args = list(expr.args)
args[i] = c
if args is None:
return expr
return expr.func(*args)
return dummies.setdefault(expr, Dummy())
simplified = False # doesn't really mean simplified, rather "can simplify again"
if isinstance(expr, Basic) and (expr.is_Add or expr.is_Mul or expr.is_Pow):
expr2 = expr.expand(deep=True, modulus=None, power_base=False,
power_exp=False, mul=True, log=False, multinomial=True, basic=False)
if expr2 != expr:
expr = expr2
simplified = True
exprops, ratfunc = count_ops_alg(expr)
if exprops >= 6: # empirically tested cutoff for expensive simplification
if ratfunc:
dummies = {}
expr2 = nonalg_subs_dummies(expr, dummies)
if expr2 is expr or count_ops_alg(expr2)[0] >= 6: # check again after substitution
expr3 = cancel(expr2)
if expr3 != expr2:
expr = expr3.subs([(d, e) for e, d in dummies.items()])
simplified = True
# very special case: x/(x-1) - 1/(x-1) -> 1
elif (exprops == 5 and expr.is_Add and expr.args [0].is_Mul and
expr.args [1].is_Mul and expr.args [0].args [-1].is_Pow and
expr.args [1].args [-1].is_Pow and
expr.args [0].args [-1].exp is S.NegativeOne and
expr.args [1].args [-1].exp is S.NegativeOne):
expr2 = together (expr)
expr2ops = count_ops_alg(expr2)[0]
if expr2ops < exprops:
expr = expr2
simplified = True
else:
simplified = True
return (expr, simplified) if withsimp else expr
|
d5b01d7046e8c82bfbb587df8e7a74633fa2c6b3c09abd168f73aad06852c3e5 | """The module helps converting SymPy expressions into shorter forms of them.
for example:
the expression E**(pi*I) will be converted into -1
the expression (x+x)**2 will be converted into 4*x**2
"""
from .simplify import (simplify, hypersimp, hypersimilar,
logcombine, separatevars, posify, besselsimp, kroneckersimp,
signsimp, bottom_up, nsimplify)
from .fu import FU, fu
from .sqrtdenest import sqrtdenest
from .cse_main import cse
from .traversaltools import use
from .epathtools import epath, EPath
from .hyperexpand import hyperexpand
from .radsimp import collect, rcollect, radsimp, collect_const, fraction, numer, denom
from .trigsimp import trigsimp, exptrigsimp
from .powsimp import powsimp, powdenest
from .combsimp import combsimp
from .gammasimp import gammasimp
from .ratsimp import ratsimp, ratsimpmodprime
__all__ = [
'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars',
'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'bottom_up',
'nsimplify',
'FU', 'fu',
'sqrtdenest',
'cse',
'use',
'epath', 'EPath',
'hyperexpand',
'collect', 'rcollect', 'radsimp', 'collect_const', 'fraction', 'numer',
'denom',
'trigsimp', 'exptrigsimp',
'powsimp', 'powdenest',
'combsimp',
'gammasimp',
'ratsimp', 'ratsimpmodprime',
]
|
27e6e3855be4cb2bafc402bf42abbaf41daf5ae756ceb1557a21b671761ef843 | """Tools for manipulation of expressions using paths. """
from __future__ import print_function, division
from sympy.core import Basic
class EPath(object):
r"""
Manipulate expressions using paths.
EPath grammar in EBNF notation::
literal ::= /[A-Za-z_][A-Za-z_0-9]*/
number ::= /-?\d+/
type ::= literal
attribute ::= literal "?"
all ::= "*"
slice ::= "[" number? (":" number? (":" number?)?)? "]"
range ::= all | slice
query ::= (type | attribute) ("|" (type | attribute))*
selector ::= range | query range?
path ::= "/" selector ("/" selector)*
See the docstring of the epath() function.
"""
__slots__ = ("_path", "_epath")
def __new__(cls, path):
"""Construct new EPath. """
if isinstance(path, EPath):
return path
if not path:
raise ValueError("empty EPath")
_path = path
if path[0] == '/':
path = path[1:]
else:
raise NotImplementedError("non-root EPath")
epath = []
for selector in path.split('/'):
selector = selector.strip()
if not selector:
raise ValueError("empty selector")
index = 0
for c in selector:
if c.isalnum() or c == '_' or c == '|' or c == '?':
index += 1
else:
break
attrs = []
types = []
if index:
elements = selector[:index]
selector = selector[index:]
for element in elements.split('|'):
element = element.strip()
if not element:
raise ValueError("empty element")
if element.endswith('?'):
attrs.append(element[:-1])
else:
types.append(element)
span = None
if selector == '*':
pass
else:
if selector.startswith('['):
try:
i = selector.index(']')
except ValueError:
raise ValueError("expected ']', got EOL")
_span, span = selector[1:i], []
if ':' not in _span:
span = int(_span)
else:
for elt in _span.split(':', 3):
if not elt:
span.append(None)
else:
span.append(int(elt))
span = slice(*span)
selector = selector[i + 1:]
if selector:
raise ValueError("trailing characters in selector")
epath.append((attrs, types, span))
obj = object.__new__(cls)
obj._path = _path
obj._epath = epath
return obj
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._path)
def _get_ordered_args(self, expr):
"""Sort ``expr.args`` using printing order. """
if expr.is_Add:
return expr.as_ordered_terms()
elif expr.is_Mul:
return expr.as_ordered_factors()
else:
return expr.args
def _hasattrs(self, expr, attrs):
"""Check if ``expr`` has any of ``attrs``. """
for attr in attrs:
if not hasattr(expr, attr):
return False
return True
def _hastypes(self, expr, types):
"""Check if ``expr`` is any of ``types``. """
_types = [ cls.__name__ for cls in expr.__class__.mro() ]
return bool(set(_types).intersection(types))
def _has(self, expr, attrs, types):
"""Apply ``_hasattrs`` and ``_hastypes`` to ``expr``. """
if not (attrs or types):
return True
if attrs and self._hasattrs(expr, attrs):
return True
if types and self._hastypes(expr, types):
return True
return False
def apply(self, expr, func, args=None, kwargs=None):
"""
Modify parts of an expression selected by a path.
Examples
========
>>> from sympy.simplify.epathtools import EPath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t
>>> path = EPath("/*/[0]/Symbol")
>>> expr = [((x, 1), 2), ((3, y), z)]
>>> path.apply(expr, lambda expr: expr**2)
[((x**2, 1), 2), ((3, y**2), z)]
>>> path = EPath("/*/*/Symbol")
>>> expr = t + sin(x + 1) + cos(x + y + E)
>>> path.apply(expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
"""
def _apply(path, expr, func):
if not path:
return func(expr)
else:
selector, path = path[0], path[1:]
attrs, types, span = selector
if isinstance(expr, Basic):
if not expr.is_Atom:
args, basic = self._get_ordered_args(expr), True
else:
return expr
elif hasattr(expr, '__iter__'):
args, basic = expr, False
else:
return expr
args = list(args)
if span is not None:
if type(span) == slice:
indices = range(*span.indices(len(args)))
else:
indices = [span]
else:
indices = range(len(args))
for i in indices:
try:
arg = args[i]
except IndexError:
continue
if self._has(arg, attrs, types):
args[i] = _apply(path, arg, func)
if basic:
return expr.func(*args)
else:
return expr.__class__(args)
_args, _kwargs = args or (), kwargs or {}
_func = lambda expr: func(expr, *_args, **_kwargs)
return _apply(self._epath, expr, _func)
def select(self, expr):
"""
Retrieve parts of an expression selected by a path.
Examples
========
>>> from sympy.simplify.epathtools import EPath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t
>>> path = EPath("/*/[0]/Symbol")
>>> expr = [((x, 1), 2), ((3, y), z)]
>>> path.select(expr)
[x, y]
>>> path = EPath("/*/*/Symbol")
>>> expr = t + sin(x + 1) + cos(x + y + E)
>>> path.select(expr)
[x, x, y]
"""
result = []
def _select(path, expr):
if not path:
result.append(expr)
else:
selector, path = path[0], path[1:]
attrs, types, span = selector
if isinstance(expr, Basic):
args = self._get_ordered_args(expr)
elif hasattr(expr, '__iter__'):
args = expr
else:
return
if span is not None:
if type(span) == slice:
args = args[span]
else:
try:
args = [args[span]]
except IndexError:
return
for arg in args:
if self._has(arg, attrs, types):
_select(path, arg)
_select(self._epath, expr)
return result
def epath(path, expr=None, func=None, args=None, kwargs=None):
r"""
Manipulate parts of an expression selected by a path.
This function allows to manipulate large nested expressions in single
line of code, utilizing techniques to those applied in XML processing
standards (e.g. XPath).
If ``func`` is ``None``, :func:`epath` retrieves elements selected by
the ``path``. Otherwise it applies ``func`` to each matching element.
Note that it is more efficient to create an EPath object and use the select
and apply methods of that object, since this will compile the path string
only once. This function should only be used as a convenient shortcut for
interactive use.
This is the supported syntax:
* select all: ``/*``
Equivalent of ``for arg in args:``.
* select slice: ``/[0]`` or ``/[1:5]`` or ``/[1:5:2]``
Supports standard Python's slice syntax.
* select by type: ``/list`` or ``/list|tuple``
Emulates ``isinstance()``.
* select by attribute: ``/__iter__?``
Emulates ``hasattr()``.
Parameters
==========
path : str | EPath
A path as a string or a compiled EPath.
expr : Basic | iterable
An expression or a container of expressions.
func : callable (optional)
A callable that will be applied to matching parts.
args : tuple (optional)
Additional positional arguments to ``func``.
kwargs : dict (optional)
Additional keyword arguments to ``func``.
Examples
========
>>> from sympy.simplify.epathtools import epath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t
>>> path = "/*/[0]/Symbol"
>>> expr = [((x, 1), 2), ((3, y), z)]
>>> epath(path, expr)
[x, y]
>>> epath(path, expr, lambda expr: expr**2)
[((x**2, 1), 2), ((3, y**2), z)]
>>> path = "/*/*/Symbol"
>>> expr = t + sin(x + 1) + cos(x + y + E)
>>> epath(path, expr)
[x, x, y]
>>> epath(path, expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
"""
_epath = EPath(path)
if expr is None:
return _epath
if func is None:
return _epath.select(expr)
else:
return _epath.apply(expr, func, args, kwargs)
|
6995ea4efdb2c275a050bbaaefa45b4fb1d20eb883975c03c0056b2f7f18e5c5 | from __future__ import print_function, division
from sympy.core import S, sympify, Mul, Add, Expr
from sympy.core.function import expand_mul, count_ops, _mexpand
from sympy.core.symbol import Dummy
from sympy.functions import sqrt, sign, root
from sympy.polys import Poly, PolynomialError
from sympy.utilities import default_sort_key
def is_sqrt(expr):
"""Return True if expr is a sqrt, otherwise False."""
return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half
def sqrt_depth(p):
"""Return the maximum depth of any square root argument of p.
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import sqrt_depth
Neither of these square roots contains any other square roots
so the depth is 1:
>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3)))
1
The sqrt(3) is contained within a square root so the depth is
2:
>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3)))
2
"""
if p is S.ImaginaryUnit:
return 1
if p.is_Atom:
return 0
elif p.is_Add or p.is_Mul:
return max([sqrt_depth(x) for x in p.args], key=default_sort_key)
elif is_sqrt(p):
return sqrt_depth(p.base) + 1
else:
return 0
def is_algebraic(p):
"""Return True if p is comprised of only Rationals or square roots
of Rationals and algebraic operations.
Examples
========
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import is_algebraic
>>> from sympy import cos
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2))))
True
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2))))
False
"""
if p.is_Rational:
return True
elif p.is_Atom:
return False
elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer:
return is_algebraic(p.base)
elif p.is_Add or p.is_Mul:
return all(is_algebraic(x) for x in p.args)
else:
return False
def _subsets(n):
"""
Returns all possible subsets of the set (0, 1, ..., n-1) except the
empty set, listed in reversed lexicographical order according to binary
representation, so that the case of the fourth root is treated last.
Examples
========
>>> from sympy.simplify.sqrtdenest import _subsets
>>> _subsets(2)
[[1, 0], [0, 1], [1, 1]]
"""
if n == 1:
a = [[1]]
elif n == 2:
a = [[1, 0], [0, 1], [1, 1]]
elif n == 3:
a = [[1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
else:
b = _subsets(n - 1)
a0 = [x + [0] for x in b]
a1 = [x + [1] for x in b]
a = a0 + [[0]*(n - 1) + [1]] + a1
return a
def sqrtdenest(expr, max_iter=3):
"""Denests sqrts in an expression that contain other square roots
if possible, otherwise returns the expr unchanged. This is based on the
algorithms of [1].
Examples
========
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> from sympy import sqrt
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
sqrt(2) + sqrt(3)
See Also
========
sympy.solvers.solvers.unrad
References
==========
.. [1] http://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf
.. [2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots
by Denesting' (available at http://www.cybertester.com/data/denest.pdf)
"""
expr = expand_mul(sympify(expr))
for i in range(max_iter):
z = _sqrtdenest0(expr)
if expr == z:
return expr
expr = z
return expr
def _sqrt_match(p):
"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
matching, sqrt(r) also has then maximal sqrt_depth among addends of p.
Examples
========
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match
>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5)))
[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
"""
from sympy.simplify.radsimp import split_surds
p = _mexpand(p)
if p.is_Number:
res = (p, S.Zero, S.Zero)
elif p.is_Add:
pargs = sorted(p.args, key=default_sort_key)
sqargs = [x**2 for x in pargs]
if all(sq.is_Rational and sq.is_positive for sq in sqargs):
r, b, a = split_surds(p)
res = a, b, r
return list(res)
# to make the process canonical, the argument is included in the tuple
# so when the max is selected, it will be the largest arg having a
# given depth
v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
nmax = max(v, key=default_sort_key)
if nmax[0] == 0:
res = []
else:
# select r
depth, _, i = nmax
r = pargs.pop(i)
v.pop(i)
b = S.One
if r.is_Mul:
bv = []
rv = []
for x in r.args:
if sqrt_depth(x) < depth:
bv.append(x)
else:
rv.append(x)
b = Mul._from_args(bv)
r = Mul._from_args(rv)
# collect terms comtaining r
a1 = []
b1 = [b]
for x in v:
if x[0] < depth:
a1.append(x[1])
else:
x1 = x[1]
if x1 == r:
b1.append(1)
else:
if x1.is_Mul:
x1args = list(x1.args)
if r in x1args:
x1args.remove(r)
b1.append(Mul(*x1args))
else:
a1.append(x[1])
else:
a1.append(x[1])
a = Add(*a1)
b = Add(*b1)
res = (a, b, r**2)
else:
b, r = p.as_coeff_Mul()
if is_sqrt(r):
res = (S.Zero, b, r**2)
else:
res = []
return list(res)
class SqrtdenestStopIteration(StopIteration):
pass
def _sqrtdenest0(expr):
"""Returns expr after denesting its arguments."""
if is_sqrt(expr):
n, d = expr.as_numer_denom()
if d is S.One: # n is a square root
if n.base.is_Add:
args = sorted(n.base.args, key=default_sort_key)
if len(args) > 2 and all((x**2).is_Integer for x in args):
try:
return _sqrtdenest_rec(n)
except SqrtdenestStopIteration:
pass
expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args])))
return _sqrtdenest1(expr)
else:
n, d = [_sqrtdenest0(i) for i in (n, d)]
return n/d
if isinstance(expr, Add):
cs = []
args = []
for arg in expr.args:
c, a = arg.as_coeff_Mul()
cs.append(c)
args.append(a)
if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args):
return _sqrt_ratcomb(cs, args)
if isinstance(expr, Expr):
args = expr.args
if args:
return expr.func(*[_sqrtdenest0(a) for a in args])
return expr
def _sqrtdenest_rec(expr):
"""Helper that denests the square root of three or more surds.
It returns the denested expression; if it cannot be denested it
throws SqrtdenestStopIteration
Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
See [1], section 6.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
>>> _sqrtdenest_rec(sqrt(w))
-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
if not expr.is_Pow:
return sqrtdenest(expr)
if expr.base < 0:
return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
g, a, b = split_surds(expr.base)
a = a*sqrt(g)
if a < b:
a, b = b, a
c2 = _mexpand(a**2 - b**2)
if len(c2.args) > 2:
g, a1, b1 = split_surds(c2)
a1 = a1*sqrt(g)
if a1 < b1:
a1, b1 = b1, a1
c2_1 = _mexpand(a1**2 - b1**2)
c_1 = _sqrtdenest_rec(sqrt(c2_1))
d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
num, den = rad_rationalize(b1, d_1)
c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
else:
c = _sqrtdenest1(sqrt(c2))
if sqrt_depth(c) > 1:
raise SqrtdenestStopIteration
ac = a + c
if len(ac.args) >= len(expr.args):
if count_ops(ac) >= count_ops(expr.base):
raise SqrtdenestStopIteration
d = sqrtdenest(sqrt(ac))
if sqrt_depth(d) > 1:
raise SqrtdenestStopIteration
num, den = rad_rationalize(b, d)
r = d/sqrt(2) + num/(den*sqrt(2))
r = radsimp(r)
return _mexpand(r)
def _sqrtdenest1(expr, denester=True):
"""Return denested expr after denesting with simpler methods or, that
failing, using the denester."""
from sympy.simplify.simplify import radsimp
if not is_sqrt(expr):
return expr
a = expr.base
if a.is_Atom:
return expr
val = _sqrt_match(a)
if not val:
return expr
a, b, r = val
# try a quick numeric denesting
d2 = _mexpand(a**2 - b**2*r)
if d2.is_Rational:
if d2.is_positive:
z = _sqrt_numeric_denest(a, b, r, d2)
if z is not None:
return z
else:
# fourth root case
# sqrtdenest(sqrt(3 + 2*sqrt(3))) =
# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
dr2 = _mexpand(-d2*r)
dr = sqrt(dr2)
if dr.is_Rational:
z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
if z is not None:
return z/root(r, 4)
else:
z = _sqrt_symbolic_denest(a, b, r)
if z is not None:
return z
if not denester or not is_algebraic(expr):
return expr
res = sqrt_biquadratic_denest(expr, a, b, r, d2)
if res:
return res
# now call to the denester
av0 = [a, b, r, d2]
z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
if av0[1] is None:
return expr
if z is not None:
if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
return expr
return z
return expr
def _sqrt_symbolic_denest(a, b, r):
"""Given an expression, sqrt(a + b*sqrt(b)), return the denested
expression or None.
Algorithm:
If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).
Examples
========
>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
>>> from sympy import sqrt, Symbol
>>> from sympy.abc import x
>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
>>> _sqrt_symbolic_denest(a, b, r)
sqrt(11 - 2*sqrt(29)) + sqrt(5)
If the expression is numeric, it will be simplified:
>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
>>> sqrtdenest(sqrt((w**2).expand()))
1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))
Otherwise, it will only be simplified if assumptions allow:
>>> w = w.subs(sqrt(3), sqrt(x + 3))
>>> sqrtdenest(sqrt((w**2).expand()))
sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)
Notice that the argument of the sqrt is a square. If x is made positive
then the sqrt of the square is resolved:
>>> _.subs(x, Symbol('x', positive=True))
sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
"""
a, b, r = map(sympify, (a, b, r))
rval = _sqrt_match(r)
if not rval:
return None
ra, rb, rr = rval
if rb:
y = Dummy('y', positive=True)
try:
newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
except PolynomialError:
return None
if newa.degree() == 2:
ca, cb, cc = newa.all_coeffs()
cb += b
if _mexpand(cb**2 - 4*ca*cc).equals(0):
z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
if z.is_number:
z = _mexpand(Mul._from_args(z.as_content_primitive()))
return z
def _sqrt_numeric_denest(a, b, r, d2):
"""Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
or returns None if not denested.
"""
from sympy.simplify.simplify import radsimp
depthr = sqrt_depth(r)
d = sqrt(d2)
vad = a + d
# sqrt_depth(res) <= sqrt_depth(vad) + 1
# sqrt_depth(expr) = depthr + 2
# there is denesting if sqrt_depth(vad)+1 < depthr + 2
# if vad**2 is Number there is a fourth root
if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
vad1 = radsimp(1/vad)
return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()
def sqrt_biquadratic_denest(expr, a, b, r, d2):
"""denest expr = sqrt(a + b*sqrt(r))
where a, b, r are linear combinations of square roots of
positive rationals on the rationals (SQRR) and r > 0, b != 0,
d2 = a**2 - b**2*r > 0
If it cannot denest it returns None.
ALGORITHM
Search for a solution A of type SQRR of the biquadratic equation
4*A**4 - 4*a*A**2 + b**2*r = 0 (1)
sqd = sqrt(a**2 - b**2*r)
Choosing the sqrt to be positive, the possible solutions are
A = sqrt(a/2 +/- sqd/2)
Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
so if sqd can be denested, it is done by
_sqrtdenest_rec, and the result is a SQRR.
Similarly for A.
Examples of solutions (in both cases a and sqd are positive):
Example of expr with solution sqrt(a/2 + sqd/2) but not
solution sqrt(a/2 - sqd/2):
expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)
Example of expr with solution sqrt(a/2 - sqd/2) but not
solution sqrt(a/2 + sqd/2):
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
expr = sqrt((w**2).expand())
a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
sqd = 29 + 20*sqrt(3)
Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
>>> a, b, r = _sqrt_match(z**2)
>>> d2 = a**2 - b**2*r
>>> sqrt_biquadratic_denest(z, a, b, r, d2)
sqrt(2) + sqrt(sqrt(2) + 2) + 2
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize
if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
return None
for x in (a, b, r):
for y in x.args:
y2 = y**2
if not y2.is_Integer or not y2.is_positive:
return None
sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
if sqrt_depth(sqd) > 1:
return None
x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
# look for a solution A with depth 1
for x in (x1, x2):
A = sqrtdenest(sqrt(x))
if sqrt_depth(A) > 1:
continue
Bn, Bd = rad_rationalize(b, _mexpand(2*A))
B = Bn/Bd
z = A + B*sqrt(r)
if z < 0:
z = -z
return _mexpand(z)
return None
def _denester(nested, av0, h, max_depth_level):
"""Denests a list of expressions that contain nested square roots.
Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.
It is assumed that all of the elements of 'nested' share the same
bottom-level radicand. (This is stated in the paper, on page 177, in
the paragraph immediately preceding the algorithm.)
When evaluating all of the arguments in parallel, the bottom-level
radicand only needs to be denested once. This means that calling
_denester with x arguments results in a recursive invocation with x+1
arguments; hence _denester has polynomial complexity.
However, if the arguments were evaluated separately, each call would
result in two recursive invocations, and the algorithm would have
exponential complexity.
This is discussed in the paper in the middle paragraph of page 179.
"""
from sympy.simplify.simplify import radsimp
if h > max_depth_level:
return None, None
if av0[1] is None:
return None, None
if (av0[0] is None and
all(n.is_Number for n in nested)): # no arguments are nested
for f in _subsets(len(nested)): # test subset 'f' of nested
p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
if f.count(1) > 1 and f[-1]:
p = -p
sqp = sqrt(p)
if sqp.is_Rational:
return sqp, f # got a perfect square so return its square root.
# Otherwise, return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
else:
R = None
if av0[0] is not None:
values = [av0[:2]]
R = av0[2]
nested2 = [av0[3], R]
av0[0] = None
else:
values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
for v in values:
if v[2]: # Since if b=0, r is not defined
if R is not None:
if R != v[2]:
av0[1] = None
return None, None
else:
R = v[2]
if R is None:
# return the radicand from the previous invocation
return sqrt(nested[-1]), [0]*len(nested)
nested2 = [_mexpand(v[0]**2) -
_mexpand(R*v[1]**2) for v in values] + [R]
d, f = _denester(nested2, av0, h + 1, max_depth_level)
if not f:
return None, None
if not any(f[i] for i in range(len(nested))):
v = values[-1]
return sqrt(v[0] + _mexpand(v[1]*d)), f
else:
p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
v = _sqrt_match(p)
if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
v[0] = -v[0]
v[1] = -v[1]
if not f[len(nested)]: # Solution denests with square roots
vad = _mexpand(v[0] + d)
if vad <= 0:
# return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
(vad**2).is_Number):
av0[1] = None
return None, None
sqvad = _sqrtdenest1(sqrt(vad), denester=False)
if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
av0[1] = None
return None, None
sqvad1 = radsimp(1/sqvad)
res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
return res, f
# sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
else: # Solution requires a fourth root
s2 = _mexpand(v[1]*R) + d
if s2 <= 0:
return sqrt(nested[-1]), [0]*len(nested)
FR, s = root(_mexpand(R), 4), sqrt(s2)
return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
def _sqrt_ratcomb(cs, args):
"""Denest rational combinations of radicals.
Based on section 5 of [1].
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
>>> sqrtdenest(z)
0
"""
from sympy.simplify.radsimp import radsimp
# check if there exists a pair of sqrt that can be denested
def find(a):
n = len(a)
for i in range(n - 1):
for j in range(i + 1, n):
s1 = a[i].base
s2 = a[j].base
p = _mexpand(s1 * s2)
s = sqrtdenest(sqrt(p))
if s != sqrt(p):
return s, i, j
indices = find(args)
if indices is None:
return Add(*[c * arg for c, arg in zip(cs, args)])
s, i1, i2 = indices
c2 = cs.pop(i2)
args.pop(i2)
a1 = args[i1]
# replace a2 by s/a1
cs[i1] += radsimp(c2 * s / a1.base)
return _sqrt_ratcomb(cs, args)
|
95c9a16da0491ebeb1aa85eb0b43ad8369d957ebde91fd2d34c3e6ce59c09414 | """ Tools for doing common subexpression elimination.
"""
from __future__ import print_function, division
from sympy.core import Basic, Mul, Add, Pow, sympify, Symbol
from sympy.core.compatibility import iterable
from sympy.core.containers import Tuple, OrderedSet
from sympy.core.exprtools import factor_terms
from sympy.core.function import _coeff_isneg
from sympy.core.singleton import S
from sympy.utilities.iterables import numbered_symbols, sift, \
topological_sort, ordered
from . import cse_opts
# (preprocessor, postprocessor) pairs which are commonly useful. They should
# each take a sympy expression and return a possibly transformed expression.
# When used in the function ``cse()``, the target expressions will be transformed
# by each of the preprocessor functions in order. After the common
# subexpressions are eliminated, each resulting expression will have the
# postprocessor functions transform them in *reverse* order in order to undo the
# transformation if necessary. This allows the algorithm to operate on
# a representation of the expressions that allows for more optimization
# opportunities.
# ``None`` can be used to specify no transformation for either the preprocessor or
# postprocessor.
basic_optimizations = [(cse_opts.sub_pre, cse_opts.sub_post),
(factor_terms, None)]
# sometimes we want the output in a different format; non-trivial
# transformations can be put here for users
# ===============================================================
def reps_toposort(r):
"""Sort replacements `r` so (k1, v1) appears before (k2, v2)
if k2 is in v1's free symbols. This orders items in the
way that cse returns its results (hence, in order to use the
replacements in a substitution option it would make sense
to reverse the order).
Examples
========
>>> from sympy.simplify.cse_main import reps_toposort
>>> from sympy.abc import x, y
>>> from sympy import Eq
>>> for l, r in reps_toposort([(x, y + 1), (y, 2)]):
... print(Eq(l, r))
...
Eq(y, 2)
Eq(x, y + 1)
"""
r = sympify(r)
E = []
for c1, (k1, v1) in enumerate(r):
for c2, (k2, v2) in enumerate(r):
if k1 in v2.free_symbols:
E.append((c1, c2))
return [r[i] for i in topological_sort((range(len(r)), E))]
def cse_separate(r, e):
"""Move expressions that are in the form (symbol, expr) out of the
expressions and sort them into the replacements using the reps_toposort.
Examples
========
>>> from sympy.simplify.cse_main import cse_separate
>>> from sympy.abc import x, y, z
>>> from sympy import cos, exp, cse, Eq, symbols
>>> x0, x1 = symbols('x:2')
>>> eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
>>> cse([eq, Eq(x, z + 1), z - 2], postprocess=cse_separate) in [
... [[(x0, y + 1), (x, z + 1), (x1, x + 1)],
... [x1 + exp(x1/x0) + cos(x0), z - 2]],
... [[(x1, y + 1), (x, z + 1), (x0, x + 1)],
... [x0 + exp(x0/x1) + cos(x1), z - 2]]]
...
True
"""
d = sift(e, lambda w: w.is_Equality and w.lhs.is_Symbol)
r = r + [w.args for w in d[True]]
e = d[False]
return [reps_toposort(r), e]
# ====end of cse postprocess idioms===========================
def preprocess_for_cse(expr, optimizations):
""" Preprocess an expression to optimize for common subexpression
elimination.
Parameters
==========
expr : sympy expression
The target expression to optimize.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs.
Returns
=======
expr : sympy expression
The transformed expression.
"""
for pre, post in optimizations:
if pre is not None:
expr = pre(expr)
return expr
def postprocess_for_cse(expr, optimizations):
""" Postprocess an expression after common subexpression elimination to
return the expression to canonical sympy form.
Parameters
==========
expr : sympy expression
The target expression to transform.
optimizations : list of (callable, callable) pairs, optional
The (preprocessor, postprocessor) pairs. The postprocessors will be
applied in reversed order to undo the effects of the preprocessors
correctly.
Returns
=======
expr : sympy expression
The transformed expression.
"""
for pre, post in reversed(optimizations):
if post is not None:
expr = post(expr)
return expr
class FuncArgTracker(object):
"""
A class which manages a mapping from functions to arguments and an inverse
mapping from arguments to functions.
"""
def __init__(self, funcs):
# To minimize the number of symbolic comparisons, all function arguments
# get assigned a value number.
self.value_numbers = {}
self.value_number_to_value = []
# Both of these maps use integer indices for arguments / functions.
self.arg_to_funcset = []
self.func_to_argset = []
for func_i, func in enumerate(funcs):
func_argset = OrderedSet()
for func_arg in func.args:
arg_number = self.get_or_add_value_number(func_arg)
func_argset.add(arg_number)
self.arg_to_funcset[arg_number].add(func_i)
self.func_to_argset.append(func_argset)
def get_args_in_value_order(self, argset):
"""
Return the list of arguments in sorted order according to their value
numbers.
"""
return [self.value_number_to_value[argn] for argn in sorted(argset)]
def get_or_add_value_number(self, value):
"""
Return the value number for the given argument.
"""
nvalues = len(self.value_numbers)
value_number = self.value_numbers.setdefault(value, nvalues)
if value_number == nvalues:
self.value_number_to_value.append(value)
self.arg_to_funcset.append(OrderedSet())
return value_number
def stop_arg_tracking(self, func_i):
"""
Remove the function func_i from the argument to function mapping.
"""
for arg in self.func_to_argset[func_i]:
self.arg_to_funcset[arg].remove(func_i)
def get_common_arg_candidates(self, argset, min_func_i=0):
"""Return a dict whose keys are function numbers. The entries of the dict are
the number of arguments said function has in common with
`argset`. Entries have at least 2 items in common. All keys have
value at least `min_func_i`.
"""
from collections import defaultdict
count_map = defaultdict(lambda: 0)
funcsets = [self.arg_to_funcset[arg] for arg in argset]
# As an optimization below, we handle the largest funcset separately from
# the others.
largest_funcset = max(funcsets, key=len)
for funcset in funcsets:
if largest_funcset is funcset:
continue
for func_i in funcset:
if func_i >= min_func_i:
count_map[func_i] += 1
# We pick the smaller of the two containers (count_map, largest_funcset)
# to iterate over to reduce the number of iterations needed.
(smaller_funcs_container,
larger_funcs_container) = sorted(
[largest_funcset, count_map],
key=len)
for func_i in smaller_funcs_container:
# Not already in count_map? It can't possibly be in the output, so
# skip it.
if count_map[func_i] < 1:
continue
if func_i in larger_funcs_container:
count_map[func_i] += 1
return dict((k, v) for k, v in count_map.items() if v >= 2)
def get_subset_candidates(self, argset, restrict_to_funcset=None):
"""
Return a set of functions each of which whose argument list contains
``argset``, optionally filtered only to contain functions in
``restrict_to_funcset``.
"""
iarg = iter(argset)
indices = OrderedSet(
fi for fi in self.arg_to_funcset[next(iarg)])
if restrict_to_funcset is not None:
indices &= restrict_to_funcset
for arg in iarg:
indices &= self.arg_to_funcset[arg]
return indices
def update_func_argset(self, func_i, new_argset):
"""
Update a function with a new set of arguments.
"""
new_args = OrderedSet(new_argset)
old_args = self.func_to_argset[func_i]
for deleted_arg in old_args - new_args:
self.arg_to_funcset[deleted_arg].remove(func_i)
for added_arg in new_args - old_args:
self.arg_to_funcset[added_arg].add(func_i)
self.func_to_argset[func_i].clear()
self.func_to_argset[func_i].update(new_args)
class Unevaluated(object):
def __init__(self, func, args):
self.func = func
self.args = args
def __str__(self):
return "Uneval<{}>({})".format(
self.func, ", ".join(str(a) for a in self.args))
def as_unevaluated_basic(self):
return self.func(*self.args, evaluate=False)
@property
def free_symbols(self):
return set().union(*[a.free_symbols for a in self.args])
__repr__ = __str__
def match_common_args(func_class, funcs, opt_subs):
"""
Recognize and extract common subexpressions of function arguments within a
set of function calls. For instance, for the following function calls::
x + z + y
sin(x + y)
this will extract a common subexpression of `x + y`::
w = x + y
w + z
sin(w)
The function we work with is assumed to be associative and commutative.
Parameters
==========
func_class: class
The function class (e.g. Add, Mul)
funcs: list of functions
A list of function calls
opt_subs: dict
A dictionary of substitutions which this function may update
"""
# Sort to ensure that whole-function subexpressions come before the items
# that use them.
funcs = sorted(funcs, key=lambda f: len(f.args))
arg_tracker = FuncArgTracker(funcs)
changed = OrderedSet()
for i in range(len(funcs)):
common_arg_candidates_counts = arg_tracker.get_common_arg_candidates(
arg_tracker.func_to_argset[i], min_func_i=i + 1)
# Sort the candidates in order of match size.
# This makes us try combining smaller matches first.
common_arg_candidates = OrderedSet(sorted(
common_arg_candidates_counts.keys(),
key=lambda k: (common_arg_candidates_counts[k], k)))
while common_arg_candidates:
j = common_arg_candidates.pop(last=False)
com_args = arg_tracker.func_to_argset[i].intersection(
arg_tracker.func_to_argset[j])
if len(com_args) <= 1:
# This may happen if a set of common arguments was already
# combined in a previous iteration.
continue
# For all sets, replace the common symbols by the function
# over them, to allow recursive matches.
diff_i = arg_tracker.func_to_argset[i].difference(com_args)
if diff_i:
# com_func needs to be unevaluated to allow for recursive matches.
com_func = Unevaluated(
func_class, arg_tracker.get_args_in_value_order(com_args))
com_func_number = arg_tracker.get_or_add_value_number(com_func)
arg_tracker.update_func_argset(i, diff_i | OrderedSet([com_func_number]))
changed.add(i)
else:
# Treat the whole expression as a CSE.
#
# The reason this needs to be done is somewhat subtle. Within
# tree_cse(), to_eliminate only contains expressions that are
# seen more than once. The problem is unevaluated expressions
# do not compare equal to the evaluated equivalent. So
# tree_cse() won't mark funcs[i] as a CSE if we use an
# unevaluated version.
com_func_number = arg_tracker.get_or_add_value_number(funcs[i])
diff_j = arg_tracker.func_to_argset[j].difference(com_args)
arg_tracker.update_func_argset(j, diff_j | OrderedSet([com_func_number]))
changed.add(j)
for k in arg_tracker.get_subset_candidates(
com_args, common_arg_candidates):
diff_k = arg_tracker.func_to_argset[k].difference(com_args)
arg_tracker.update_func_argset(k, diff_k | OrderedSet([com_func_number]))
changed.add(k)
if i in changed:
opt_subs[funcs[i]] = Unevaluated(func_class,
arg_tracker.get_args_in_value_order(arg_tracker.func_to_argset[i]))
arg_tracker.stop_arg_tracking(i)
def opt_cse(exprs, order='canonical'):
"""Find optimization opportunities in Adds, Muls, Pows and negative
coefficient Muls
Parameters
==========
exprs : list of sympy expressions
The expressions to optimize.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
Returns
=======
opt_subs : dictionary of expression substitutions
The expression substitutions which can be useful to optimize CSE.
Examples
========
>>> from sympy.simplify.cse_main import opt_cse
>>> from sympy.abc import x
>>> opt_subs = opt_cse([x**-2])
>>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0]
>>> print((k, v.as_unevaluated_basic()))
(x**(-2), 1/(x**2))
"""
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
opt_subs = dict()
adds = OrderedSet()
muls = OrderedSet()
seen_subexp = set()
def _find_opts(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if expr.is_Atom or expr.is_Order:
return
if iterable(expr):
list(map(_find_opts, expr))
return
if expr in seen_subexp:
return expr
seen_subexp.add(expr)
list(map(_find_opts, expr.args))
if _coeff_isneg(expr):
neg_expr = -expr
if not neg_expr.is_Atom:
opt_subs[expr] = Unevaluated(Mul, (S.NegativeOne, neg_expr))
seen_subexp.add(neg_expr)
expr = neg_expr
if isinstance(expr, (Mul, MatMul)):
muls.add(expr)
elif isinstance(expr, (Add, MatAdd)):
adds.add(expr)
elif isinstance(expr, (Pow, MatPow)):
base, exp = expr.base, expr.exp
if _coeff_isneg(exp):
opt_subs[expr] = Unevaluated(Pow, (Pow(base, -exp), -1))
for e in exprs:
if isinstance(e, (Basic, Unevaluated)):
_find_opts(e)
# split muls into commutative
commutative_muls = OrderedSet()
for m in muls:
c, nc = m.args_cnc(cset=False)
if c:
c_mul = m.func(*c)
if nc:
if c_mul == 1:
new_obj = m.func(*nc)
else:
new_obj = m.func(c_mul, m.func(*nc), evaluate=False)
opt_subs[m] = new_obj
if len(c) > 1:
commutative_muls.add(c_mul)
match_common_args(Add, adds, opt_subs)
match_common_args(Mul, commutative_muls, opt_subs)
return opt_subs
def tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=()):
"""Perform raw CSE on expression tree, taking opt_subs into account.
Parameters
==========
exprs : list of sympy expressions
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out.
opt_subs : dictionary of expression substitutions
The expressions to be substituted before any CSE action is performed.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
"""
from sympy.matrices.expressions import MatrixExpr, MatrixSymbol, MatMul, MatAdd
from sympy.polys.rootoftools import RootOf
if opt_subs is None:
opt_subs = dict()
## Find repeated sub-expressions
to_eliminate = set()
seen_subexp = set()
excluded_symbols = set()
def _find_repeated(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if isinstance(expr, RootOf):
return
if isinstance(expr, Basic) and (expr.is_Atom or expr.is_Order):
if expr.is_Symbol:
excluded_symbols.add(expr)
return
if iterable(expr):
args = expr
else:
if expr in seen_subexp:
for ign in ignore:
if ign in expr.free_symbols:
break
else:
to_eliminate.add(expr)
return
seen_subexp.add(expr)
if expr in opt_subs:
expr = opt_subs[expr]
args = expr.args
list(map(_find_repeated, args))
for e in exprs:
if isinstance(e, Basic):
_find_repeated(e)
## Rebuild tree
# Remove symbols from the generator that conflict with names in the expressions.
symbols = (symbol for symbol in symbols if symbol not in excluded_symbols)
replacements = []
subs = dict()
def _rebuild(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return expr
if not expr.args:
return expr
if iterable(expr):
new_args = [_rebuild(arg) for arg in expr]
return expr.func(*new_args)
if expr in subs:
return subs[expr]
orig_expr = expr
if expr in opt_subs:
expr = opt_subs[expr]
# If enabled, parse Muls and Adds arguments by order to ensure
# replacement order independent from hashes
if order != 'none':
if isinstance(expr, (Mul, MatMul)):
c, nc = expr.args_cnc()
if c == [1]:
args = nc
else:
args = list(ordered(c)) + nc
elif isinstance(expr, (Add, MatAdd)):
args = list(ordered(expr.args))
else:
args = expr.args
else:
args = expr.args
new_args = list(map(_rebuild, args))
if isinstance(expr, Unevaluated) or new_args != args:
new_expr = expr.func(*new_args)
else:
new_expr = expr
if orig_expr in to_eliminate:
try:
sym = next(symbols)
except StopIteration:
raise ValueError("Symbols iterator ran out of symbols.")
if isinstance(orig_expr, MatrixExpr):
sym = MatrixSymbol(sym.name, orig_expr.rows,
orig_expr.cols)
subs[orig_expr] = sym
replacements.append((sym, new_expr))
return sym
else:
return new_expr
reduced_exprs = []
for e in exprs:
if isinstance(e, Basic):
reduced_e = _rebuild(e)
else:
reduced_e = e
reduced_exprs.append(reduced_e)
return replacements, reduced_exprs
def cse(exprs, symbols=None, optimizations=None, postprocess=None,
order='canonical', ignore=()):
""" Perform common subexpression elimination on an expression.
Parameters
==========
exprs : list of sympy expressions, or a single sympy expression
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out. The ``numbered_symbols`` generator is useful. The default is a
stream of symbols of the form "x0", "x1", etc. This must be an
infinite iterator.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs of external optimization
functions. Optionally 'basic' can be passed for a set of predefined
basic optimizations. Such 'basic' optimizations were used by default
in old implementation, however they can be really slow on larger
expressions. Now, no pre or post optimizations are made by default.
postprocess : a function which accepts the two return values of cse and
returns the desired form of output from cse, e.g. if you want the
replacements reversed the function might be the following lambda:
lambda r, e: return reversed(r), e
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. If set to
'canonical', arguments will be canonically ordered. If set to 'none',
ordering will be faster but dependent on expressions hashes, thus
machine dependent and variable. For large expressions where speed is a
concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of sympy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
Note that currently, y + z will not get substituted if -y - z is used.
>>> cse(((w + x + y + z)*(w - y - z))/(w + x)**3)
([(x0, w + x)], [(w - y - z)*(x0 + y + z)/x0**3])
List of expressions with recursive substitutions:
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
Note: the type and mutability of input matrices is retained.
>>> isinstance(_[1][-1], SparseMatrix)
True
The user may disallow substitutions containing certain symbols:
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
"""
from sympy.matrices import (MatrixBase, Matrix, ImmutableMatrix,
SparseMatrix, ImmutableSparseMatrix)
if isinstance(exprs, (int, float)):
exprs = sympify(exprs)
# Handle the case if just one expression was passed.
if isinstance(exprs, (Basic, MatrixBase)):
exprs = [exprs]
copy = exprs
temp = []
for e in exprs:
if isinstance(e, (Matrix, ImmutableMatrix)):
temp.append(Tuple(*e._mat))
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
temp.append(Tuple(*e._smat.items()))
else:
temp.append(e)
exprs = temp
del temp
if optimizations is None:
optimizations = list()
elif optimizations == 'basic':
optimizations = basic_optimizations
# Preprocess the expressions to give us better optimization opportunities.
reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs]
if symbols is None:
symbols = numbered_symbols(cls=Symbol)
else:
# In case we get passed an iterable with an __iter__ method instead of
# an actual iterator.
symbols = iter(symbols)
# Find other optimization opportunities.
opt_subs = opt_cse(reduced_exprs, order)
# Main CSE algorithm.
replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs,
order, ignore)
# Postprocess the expressions to return the expressions to canonical form.
exprs = copy
for i, (sym, subtree) in enumerate(replacements):
subtree = postprocess_for_cse(subtree, optimizations)
replacements[i] = (sym, subtree)
reduced_exprs = [postprocess_for_cse(e, optimizations)
for e in reduced_exprs]
# Get the matrices back
for i, e in enumerate(exprs):
if isinstance(e, (Matrix, ImmutableMatrix)):
reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i])
if isinstance(e, ImmutableMatrix):
reduced_exprs[i] = reduced_exprs[i].as_immutable()
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
m = SparseMatrix(e.rows, e.cols, {})
for k, v in reduced_exprs[i]:
m[k] = v
if isinstance(e, ImmutableSparseMatrix):
m = m.as_immutable()
reduced_exprs[i] = m
if postprocess is None:
return replacements, reduced_exprs
return postprocess(replacements, reduced_exprs)
|
646a296a6e69f6ad3874d121d6c7ddf78df50ea0da355dd59948e70a9574b460 | """
Implementation of the trigsimp algorithm by Fu et al.
The idea behind the ``fu`` algorithm is to use a sequence of rules, applied
in what is heuristically known to be a smart order, to select a simpler
expression that is equivalent to the input.
There are transform rules in which a single rule is applied to the
expression tree. The following are just mnemonic in nature; see the
docstrings for examples.
TR0 - simplify expression
TR1 - sec-csc to cos-sin
TR2 - tan-cot to sin-cos ratio
TR2i - sin-cos ratio to tan
TR3 - angle canonicalization
TR4 - functions at special angles
TR5 - powers of sin to powers of cos
TR6 - powers of cos to powers of sin
TR7 - reduce cos power (increase angle)
TR8 - expand products of sin-cos to sums
TR9 - contract sums of sin-cos to products
TR10 - separate sin-cos arguments
TR10i - collect sin-cos arguments
TR11 - reduce double angles
TR12 - separate tan arguments
TR12i - collect tan arguments
TR13 - expand product of tan-cot
TRmorrie - prod(cos(x*2**i), (i, 0, k - 1)) -> sin(2**k*x)/(2**k*sin(x))
TR14 - factored powers of sin or cos to cos or sin power
TR15 - negative powers of sin to cot power
TR16 - negative powers of cos to tan power
TR22 - tan-cot powers to negative powers of sec-csc functions
TR111 - negative sin-cos-tan powers to csc-sec-cot
There are 4 combination transforms (CTR1 - CTR4) in which a sequence of
transformations are applied and the simplest expression is selected from
a few options.
Finally, there are the 2 rule lists (RL1 and RL2), which apply a
sequence of transformations and combined transformations, and the ``fu``
algorithm itself, which applies rules and rule lists and selects the
best expressions. There is also a function ``L`` which counts the number
of trigonometric functions that appear in the expression.
Other than TR0, re-writing of expressions is not done by the transformations.
e.g. TR10i finds pairs of terms in a sum that are in the form like
``cos(x)*cos(y) + sin(x)*sin(y)``. Such expression are targeted in a bottom-up
traversal of the expression, but no manipulation to make them appear is
attempted. For example,
Set-up for examples below:
>>> from sympy.simplify.fu import fu, L, TR9, TR10i, TR11
>>> from sympy import factor, sin, cos, powsimp
>>> from sympy.abc import x, y, z, a
>>> from time import time
>>> eq = cos(x + y)/cos(x)
>>> TR10i(eq.expand(trig=True))
-sin(x)*sin(y)/cos(x) + cos(y)
If the expression is put in "normal" form (with a common denominator) then
the transformation is successful:
>>> TR10i(_.normal())
cos(x + y)/cos(x)
TR11's behavior is similar. It rewrites double angles as smaller angles but
doesn't do any simplification of the result.
>>> TR11(sin(2)**a*cos(1)**(-a), 1)
(2*sin(1)*cos(1))**a*cos(1)**(-a)
>>> powsimp(_)
(2*sin(1))**a
The temptation is to try make these TR rules "smarter" but that should really
be done at a higher level; the TR rules should try maintain the "do one thing
well" principle. There is one exception, however. In TR10i and TR9 terms are
recognized even when they are each multiplied by a common factor:
>>> fu(a*cos(x)*cos(y) + a*sin(x)*sin(y))
a*cos(x - y)
Factoring with ``factor_terms`` is used but it it "JIT"-like, being delayed
until it is deemed necessary. Furthermore, if the factoring does not
help with the simplification, it is not retained, so
``a*cos(x)*cos(y) + a*sin(x)*sin(z)`` does not become the factored
(but unsimplified in the trigonometric sense) expression:
>>> fu(a*cos(x)*cos(y) + a*sin(x)*sin(z))
a*sin(x)*sin(z) + a*cos(x)*cos(y)
In some cases factoring might be a good idea, but the user is left
to make that decision. For example:
>>> expr=((15*sin(2*x) + 19*sin(x + y) + 17*sin(x + z) + 19*cos(x - z) +
... 25)*(20*sin(2*x) + 15*sin(x + y) + sin(y + z) + 14*cos(x - z) +
... 14*cos(y - z))*(9*sin(2*y) + 12*sin(y + z) + 10*cos(x - y) + 2*cos(y -
... z) + 18)).expand(trig=True).expand()
In the expanded state, there are nearly 1000 trig functions:
>>> L(expr)
932
If the expression where factored first, this would take time but the
resulting expression would be transformed very quickly:
>>> def clock(f, n=2):
... t=time(); f(); return round(time()-t, n)
...
>>> clock(lambda: factor(expr)) # doctest: +SKIP
0.86
>>> clock(lambda: TR10i(expr), 3) # doctest: +SKIP
0.016
If the unexpanded expression is used, the transformation takes longer but
not as long as it took to factor it and then transform it:
>>> clock(lambda: TR10i(expr), 2) # doctest: +SKIP
0.28
So neither expansion nor factoring is used in ``TR10i``: if the
expression is already factored (or partially factored) then expansion
with ``trig=True`` would destroy what is already known and take
longer; if the expression is expanded, factoring may take longer than
simply applying the transformation itself.
Although the algorithms should be canonical, always giving the same
result, they may not yield the best result. This, in general, is
the nature of simplification where searching all possible transformation
paths is very expensive. Here is a simple example. There are 6 terms
in the following sum:
>>> expr = (sin(x)**2*cos(y)*cos(z) + sin(x)*sin(y)*cos(x)*cos(z) +
... sin(x)*sin(z)*cos(x)*cos(y) + sin(y)*sin(z)*cos(x)**2 + sin(y)*sin(z) +
... cos(y)*cos(z))
>>> args = expr.args
Serendipitously, fu gives the best result:
>>> fu(expr)
3*cos(y - z)/2 - cos(2*x + y + z)/2
But if different terms were combined, a less-optimal result might be
obtained, requiring some additional work to get better simplification,
but still less than optimal. The following shows an alternative form
of ``expr`` that resists optimal simplification once a given step
is taken since it leads to a dead end:
>>> TR9(-cos(x)**2*cos(y + z) + 3*cos(y - z)/2 +
... cos(y + z)/2 + cos(-2*x + y + z)/4 - cos(2*x + y + z)/4)
sin(2*x)*sin(y + z)/2 - cos(x)**2*cos(y + z) + 3*cos(y - z)/2 + cos(y + z)/2
Here is a smaller expression that exhibits the same behavior:
>>> a = sin(x)*sin(z)*cos(x)*cos(y) + sin(x)*sin(y)*cos(x)*cos(z)
>>> TR10i(a)
sin(x)*sin(y + z)*cos(x)
>>> newa = _
>>> TR10i(expr - a) # this combines two more of the remaining terms
sin(x)**2*cos(y)*cos(z) + sin(y)*sin(z)*cos(x)**2 + cos(y - z)
>>> TR10i(_ + newa) == _ + newa # but now there is no more simplification
True
Without getting lucky or trying all possible pairings of arguments, the
final result may be less than optimal and impossible to find without
better heuristics or brute force trial of all possibilities.
Notes
=====
This work was started by Dimitar Vlahovski at the Technological School
"Electronic systems" (30.11.2011).
References
==========
Fu, Hongguang, Xiuqin Zhong, and Zhenbing Zeng. "Automated and readable
simplification of trigonometric expressions." Mathematical and computer
modelling 44.11 (2006): 1169-1177.
http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/ACDCA/DESTIME2006/DES_contribs/Fu/simplification.pdf
http://www.sosmath.com/trig/Trig5/trig5/pdf/pdf.html gives a formula sheet.
"""
from __future__ import print_function, division
from collections import defaultdict
from sympy.core.add import Add
from sympy.core.basic import S
from sympy.core.compatibility import ordered
from sympy.core.expr import Expr
from sympy.core.exprtools import Factors, gcd_terms, factor_terms
from sympy.core.function import expand_mul
from sympy.core.mul import Mul
from sympy.core.numbers import pi, I
from sympy.core.power import Pow
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.hyperbolic import (
cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction)
from sympy.functions.elementary.trigonometric import (
cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction)
from sympy.ntheory.factor_ import perfect_power
from sympy.polys.polytools import factor
from sympy.simplify.simplify import bottom_up
from sympy.strategies.tree import greedy
from sympy.strategies.core import identity, debug
from sympy import SYMPY_DEBUG
# ================== Fu-like tools ===========================
def TR0(rv):
"""Simplification of rational polynomials, trying to simplify
the expression, e.g. combine things like 3*x + 2*x, etc....
"""
# although it would be nice to use cancel, it doesn't work
# with noncommutatives
return rv.normal().factor().expand()
def TR1(rv):
"""Replace sec, csc with 1/cos, 1/sin
Examples
========
>>> from sympy.simplify.fu import TR1, sec, csc
>>> from sympy.abc import x
>>> TR1(2*csc(x) + sec(x))
1/cos(x) + 2/sin(x)
"""
def f(rv):
if isinstance(rv, sec):
a = rv.args[0]
return S.One/cos(a)
elif isinstance(rv, csc):
a = rv.args[0]
return S.One/sin(a)
return rv
return bottom_up(rv, f)
def TR2(rv):
"""Replace tan and cot with sin/cos and cos/sin
Examples
========
>>> from sympy.simplify.fu import TR2
>>> from sympy.abc import x
>>> from sympy import tan, cot, sin, cos
>>> TR2(tan(x))
sin(x)/cos(x)
>>> TR2(cot(x))
cos(x)/sin(x)
>>> TR2(tan(tan(x) - sin(x)/cos(x)))
0
"""
def f(rv):
if isinstance(rv, tan):
a = rv.args[0]
return sin(a)/cos(a)
elif isinstance(rv, cot):
a = rv.args[0]
return cos(a)/sin(a)
return rv
return bottom_up(rv, f)
def TR2i(rv, half=False):
"""Converts ratios involving sin and cos as follows::
sin(x)/cos(x) -> tan(x)
sin(x)/(cos(x) + 1) -> tan(x/2) if half=True
Examples
========
>>> from sympy.simplify.fu import TR2i
>>> from sympy.abc import x, a
>>> from sympy import sin, cos
>>> TR2i(sin(x)/cos(x))
tan(x)
Powers of the numerator and denominator are also recognized
>>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True)
tan(x/2)**2
The transformation does not take place unless assumptions allow
(i.e. the base must be positive or the exponent must be an integer
for both numerator and denominator)
>>> TR2i(sin(x)**a/(cos(x) + 1)**a)
(cos(x) + 1)**(-a)*sin(x)**a
"""
def f(rv):
if not rv.is_Mul:
return rv
n, d = rv.as_numer_denom()
if n.is_Atom or d.is_Atom:
return rv
def ok(k, e):
# initial filtering of factors
return (
(e.is_integer or k.is_positive) and (
k.func in (sin, cos) or (half and
k.is_Add and
len(k.args) >= 2 and
any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos
for ai in Mul.make_args(a)) for a in k.args))))
n = n.as_powers_dict()
ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])]
if not n:
return rv
d = d.as_powers_dict()
ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])]
if not d:
return rv
# factoring if necessary
def factorize(d, ddone):
newk = []
for k in d:
if k.is_Add and len(k.args) > 1:
knew = factor(k) if half else factor_terms(k)
if knew != k:
newk.append((k, knew))
if newk:
for i, (k, knew) in enumerate(newk):
del d[k]
newk[i] = knew
newk = Mul(*newk).as_powers_dict()
for k in newk:
v = d[k] + newk[k]
if ok(k, v):
d[k] = v
else:
ddone.append((k, v))
del newk
factorize(n, ndone)
factorize(d, ddone)
# joining
t = []
for k in n:
if isinstance(k, sin):
a = cos(k.args[0], evaluate=False)
if a in d and d[a] == n[k]:
t.append(tan(k.args[0])**n[k])
n[k] = d[a] = None
elif half:
a1 = 1 + a
if a1 in d and d[a1] == n[k]:
t.append((tan(k.args[0]/2))**n[k])
n[k] = d[a1] = None
elif isinstance(k, cos):
a = sin(k.args[0], evaluate=False)
if a in d and d[a] == n[k]:
t.append(tan(k.args[0])**-n[k])
n[k] = d[a] = None
elif half and k.is_Add and k.args[0] is S.One and \
isinstance(k.args[1], cos):
a = sin(k.args[1].args[0], evaluate=False)
if a in d and d[a] == n[k] and (d[a].is_integer or \
a.is_positive):
t.append(tan(a.args[0]/2)**-n[k])
n[k] = d[a] = None
if t:
rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\
Mul(*[b**e for b, e in d.items() if e])
rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone])
return rv
return bottom_up(rv, f)
def TR3(rv):
"""Induced formula: example sin(-a) = -sin(a)
Examples
========
>>> from sympy.simplify.fu import TR3
>>> from sympy.abc import x, y
>>> from sympy import pi
>>> from sympy import cos
>>> TR3(cos(y - x*(y - x)))
cos(x*(x - y) + y)
>>> cos(pi/2 + x)
-sin(x)
>>> cos(30*pi/2 + x)
-cos(x)
"""
from sympy.simplify.simplify import signsimp
# Negative argument (already automatic for funcs like sin(-x) -> -sin(x)
# but more complicated expressions can use it, too). Also, trig angles
# between pi/4 and pi/2 are not reduced to an angle between 0 and pi/4.
# The following are automatically handled:
# Argument of type: pi/2 +/- angle
# Argument of type: pi +/- angle
# Argument of type : 2k*pi +/- angle
def f(rv):
if not isinstance(rv, TrigonometricFunction):
return rv
rv = rv.func(signsimp(rv.args[0]))
if not isinstance(rv, TrigonometricFunction):
return rv
if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True:
fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec}
rv = fmap[rv.func](S.Pi/2 - rv.args[0])
return rv
return bottom_up(rv, f)
def TR4(rv):
"""Identify values of special angles.
a= 0 pi/6 pi/4 pi/3 pi/2
----------------------------------------------------
cos(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1
sin(a) 1 sqrt(3)/2 sqrt(2)/2 1/2 0
tan(a) 0 sqt(3)/3 1 sqrt(3) --
Examples
========
>>> from sympy.simplify.fu import TR4
>>> from sympy import pi
>>> from sympy import cos, sin, tan, cot
>>> for s in (0, pi/6, pi/4, pi/3, pi/2):
... print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s)))
...
1 0 0 zoo
sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3)
sqrt(2)/2 sqrt(2)/2 1 1
1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3
0 1 zoo 0
"""
# special values at 0, pi/6, pi/4, pi/3, pi/2 already handled
return rv
def _TR56(rv, f, g, h, max, pow):
"""Helper for TR5 and TR6 to replace f**2 with h(g**2)
Options
=======
max : controls size of exponent that can appear on f
e.g. if max=4 then f**4 will be changed to h(g**2)**2.
pow : controls whether the exponent must be a perfect power of 2
e.g. if pow=True (and max >= 6) then f**6 will not be changed
but f**8 will be changed to h(g**2)**4
>>> from sympy.simplify.fu import _TR56 as T
>>> from sympy.abc import x
>>> from sympy import sin, cos
>>> h = lambda x: 1 - x
>>> T(sin(x)**3, sin, cos, h, 4, False)
sin(x)**3
>>> T(sin(x)**6, sin, cos, h, 6, False)
(1 - cos(x)**2)**3
>>> T(sin(x)**6, sin, cos, h, 6, True)
sin(x)**6
>>> T(sin(x)**8, sin, cos, h, 10, True)
(1 - cos(x)**2)**4
"""
def _f(rv):
# I'm not sure if this transformation should target all even powers
# or only those expressible as powers of 2. Also, should it only
# make the changes in powers that appear in sums -- making an isolated
# change is not going to allow a simplification as far as I can tell.
if not (rv.is_Pow and rv.base.func == f):
return rv
if not rv.exp.is_real:
return rv
if (rv.exp < 0) == True:
return rv
if (rv.exp > max) == True:
return rv
if rv.exp == 2:
return h(g(rv.base.args[0])**2)
else:
if rv.exp == 4:
e = 2
elif not pow:
if rv.exp % 2:
return rv
e = rv.exp//2
else:
p = perfect_power(rv.exp)
if not p:
return rv
e = rv.exp//2
return h(g(rv.base.args[0])**2)**e
return bottom_up(rv, _f)
def TR5(rv, max=4, pow=False):
"""Replacement of sin**2 with 1 - cos(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR5
>>> from sympy.abc import x
>>> from sympy import sin
>>> TR5(sin(x)**2)
1 - cos(x)**2
>>> TR5(sin(x)**-2) # unchanged
sin(x)**(-2)
>>> TR5(sin(x)**4)
(1 - cos(x)**2)**2
"""
return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow)
def TR6(rv, max=4, pow=False):
"""Replacement of cos**2 with 1 - sin(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR6
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR6(cos(x)**2)
1 - sin(x)**2
>>> TR6(cos(x)**-2) #unchanged
cos(x)**(-2)
>>> TR6(cos(x)**4)
(1 - sin(x)**2)**2
"""
return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow)
def TR7(rv):
"""Lowering the degree of cos(x)**2
Examples
========
>>> from sympy.simplify.fu import TR7
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR7(cos(x)**2)
cos(2*x)/2 + 1/2
>>> TR7(cos(x)**2 + 1)
cos(2*x)/2 + 3/2
"""
def f(rv):
if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2):
return rv
return (1 + cos(2*rv.base.args[0]))/2
return bottom_up(rv, f)
def TR8(rv, first=True):
"""Converting products of ``cos`` and/or ``sin`` to a sum or
difference of ``cos`` and or ``sin`` terms.
Examples
========
>>> from sympy.simplify.fu import TR8, TR7
>>> from sympy import cos, sin
>>> TR8(cos(2)*cos(3))
cos(5)/2 + cos(1)/2
>>> TR8(cos(2)*sin(3))
sin(5)/2 + sin(1)/2
>>> TR8(sin(2)*sin(3))
-cos(5)/2 + cos(1)/2
"""
def f(rv):
if not (
rv.is_Mul or
rv.is_Pow and
rv.base.func in (cos, sin) and
(rv.exp.is_integer or rv.base.is_positive)):
return rv
if first:
n, d = [expand_mul(i) for i in rv.as_numer_denom()]
newn = TR8(n, first=False)
newd = TR8(d, first=False)
if newn != n or newd != d:
rv = gcd_terms(newn/newd)
if rv.is_Mul and rv.args[0].is_Rational and \
len(rv.args) == 2 and rv.args[1].is_Add:
rv = Mul(*rv.as_coeff_Mul())
return rv
args = {cos: [], sin: [], None: []}
for a in ordered(Mul.make_args(rv)):
if a.func in (cos, sin):
args[a.func].append(a.args[0])
elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \
a.base.func in (cos, sin)):
# XXX this is ok but pathological expression could be handled
# more efficiently as in TRmorrie
args[a.base.func].extend([a.base.args[0]]*a.exp)
else:
args[None].append(a)
c = args[cos]
s = args[sin]
if not (c and s or len(c) > 1 or len(s) > 1):
return rv
args = args[None]
n = min(len(c), len(s))
for i in range(n):
a1 = s.pop()
a2 = c.pop()
args.append((sin(a1 + a2) + sin(a1 - a2))/2)
while len(c) > 1:
a1 = c.pop()
a2 = c.pop()
args.append((cos(a1 + a2) + cos(a1 - a2))/2)
if c:
args.append(cos(c.pop()))
while len(s) > 1:
a1 = s.pop()
a2 = s.pop()
args.append((-cos(a1 + a2) + cos(a1 - a2))/2)
if s:
args.append(sin(s.pop()))
return TR8(expand_mul(Mul(*args)))
return bottom_up(rv, f)
def TR9(rv):
"""Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``.
Examples
========
>>> from sympy.simplify.fu import TR9
>>> from sympy import cos, sin
>>> TR9(cos(1) + cos(2))
2*cos(1/2)*cos(3/2)
>>> TR9(cos(1) + 2*sin(1) + 2*sin(2))
cos(1) + 4*sin(3/2)*cos(1/2)
If no change is made by TR9, no re-arrangement of the
expression will be made. For example, though factoring
of common term is attempted, if the factored expression
wasn't changed, the original expression will be returned:
>>> TR9(cos(3) + cos(3)*cos(2))
cos(3) + cos(2)*cos(3)
"""
def f(rv):
if not rv.is_Add:
return rv
def do(rv, first=True):
# cos(a)+/-cos(b) can be combined into a product of cosines and
# sin(a)+/-sin(b) can be combined into a product of cosine and
# sine.
#
# If there are more than two args, the pairs which "work" will
# have a gcd extractable and the remaining two terms will have
# the above structure -- all pairs must be checked to find the
# ones that work. args that don't have a common set of symbols
# are skipped since this doesn't lead to a simpler formula and
# also has the arbitrariness of combining, for example, the x
# and y term instead of the y and z term in something like
# cos(x) + cos(y) + cos(z).
if not rv.is_Add:
return rv
args = list(ordered(rv.args))
if len(args) != 2:
hit = False
for i in range(len(args)):
ai = args[i]
if ai is None:
continue
for j in range(i + 1, len(args)):
aj = args[j]
if aj is None:
continue
was = ai + aj
new = do(was)
if new != was:
args[i] = new # update in place
args[j] = None
hit = True
break # go to next i
if hit:
rv = Add(*[_f for _f in args if _f])
if rv.is_Add:
rv = do(rv)
return rv
# two-arg Add
split = trig_split(*args)
if not split:
return rv
gcd, n1, n2, a, b, iscos = split
# application of rule if possible
if iscos:
if n1 == n2:
return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2)
if n1 < 0:
a, b = b, a
return -2*gcd*sin((a + b)/2)*sin((a - b)/2)
else:
if n1 == n2:
return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2)
if n1 < 0:
a, b = b, a
return 2*gcd*cos((a + b)/2)*sin((a - b)/2)
return process_common_addends(rv, do) # DON'T sift by free symbols
return bottom_up(rv, f)
def TR10(rv, first=True):
"""Separate sums in ``cos`` and ``sin``.
Examples
========
>>> from sympy.simplify.fu import TR10
>>> from sympy.abc import a, b, c
>>> from sympy import cos, sin
>>> TR10(cos(a + b))
-sin(a)*sin(b) + cos(a)*cos(b)
>>> TR10(sin(a + b))
sin(a)*cos(b) + sin(b)*cos(a)
>>> TR10(sin(a + b + c))
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
"""
def f(rv):
if not rv.func in (cos, sin):
return rv
f = rv.func
arg = rv.args[0]
if arg.is_Add:
if first:
args = list(ordered(arg.args))
else:
args = list(arg.args)
a = args.pop()
b = Add._from_args(args)
if b.is_Add:
if f == sin:
return sin(a)*TR10(cos(b), first=False) + \
cos(a)*TR10(sin(b), first=False)
else:
return cos(a)*TR10(cos(b), first=False) - \
sin(a)*TR10(sin(b), first=False)
else:
if f == sin:
return sin(a)*cos(b) + cos(a)*sin(b)
else:
return cos(a)*cos(b) - sin(a)*sin(b)
return rv
return bottom_up(rv, f)
def TR10i(rv):
"""Sum of products to function of sum.
Examples
========
>>> from sympy.simplify.fu import TR10i
>>> from sympy import cos, sin, pi, Add, Mul, sqrt, Symbol
>>> from sympy.abc import x, y
>>> TR10i(cos(1)*cos(3) + sin(1)*sin(3))
cos(2)
>>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3))
cos(3) + sin(4)
>>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x)
2*sqrt(2)*x*sin(x + pi/6)
"""
global _ROOT2, _ROOT3, _invROOT3
if _ROOT2 is None:
_roots()
def f(rv):
if not rv.is_Add:
return rv
def do(rv, first=True):
# args which can be expressed as A*(cos(a)*cos(b)+/-sin(a)*sin(b))
# or B*(cos(a)*sin(b)+/-cos(b)*sin(a)) can be combined into
# A*f(a+/-b) where f is either sin or cos.
#
# If there are more than two args, the pairs which "work" will have
# a gcd extractable and the remaining two terms will have the above
# structure -- all pairs must be checked to find the ones that
# work.
if not rv.is_Add:
return rv
args = list(ordered(rv.args))
if len(args) != 2:
hit = False
for i in range(len(args)):
ai = args[i]
if ai is None:
continue
for j in range(i + 1, len(args)):
aj = args[j]
if aj is None:
continue
was = ai + aj
new = do(was)
if new != was:
args[i] = new # update in place
args[j] = None
hit = True
break # go to next i
if hit:
rv = Add(*[_f for _f in args if _f])
if rv.is_Add:
rv = do(rv)
return rv
# two-arg Add
split = trig_split(*args, two=True)
if not split:
return rv
gcd, n1, n2, a, b, same = split
# identify and get c1 to be cos then apply rule if possible
if same: # coscos, sinsin
gcd = n1*gcd
if n1 == n2:
return gcd*cos(a - b)
return gcd*cos(a + b)
else: #cossin, cossin
gcd = n1*gcd
if n1 == n2:
return gcd*sin(a + b)
return gcd*sin(b - a)
rv = process_common_addends(
rv, do, lambda x: tuple(ordered(x.free_symbols)))
# need to check for inducible pairs in ratio of sqrt(3):1 that
# appeared in different lists when sorting by coefficient
while rv.is_Add:
byrad = defaultdict(list)
for a in rv.args:
hit = 0
if a.is_Mul:
for ai in a.args:
if ai.is_Pow and ai.exp is S.Half and \
ai.base.is_Integer:
byrad[ai].append(a)
hit = 1
break
if not hit:
byrad[S.One].append(a)
# no need to check all pairs -- just check for the onees
# that have the right ratio
args = []
for a in byrad:
for b in [_ROOT3*a, _invROOT3]:
if b in byrad:
for i in range(len(byrad[a])):
if byrad[a][i] is None:
continue
for j in range(len(byrad[b])):
if byrad[b][j] is None:
continue
was = Add(byrad[a][i] + byrad[b][j])
new = do(was)
if new != was:
args.append(new)
byrad[a][i] = None
byrad[b][j] = None
break
if args:
rv = Add(*(args + [Add(*[_f for _f in v if _f])
for v in byrad.values()]))
else:
rv = do(rv) # final pass to resolve any new inducible pairs
break
return rv
return bottom_up(rv, f)
def TR11(rv, base=None):
"""Function of double angle to product. The ``base`` argument can be used
to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base
then cosine and sine functions with argument 6*pi/7 will be replaced.
Examples
========
>>> from sympy.simplify.fu import TR11
>>> from sympy import cos, sin, pi
>>> from sympy.abc import x
>>> TR11(sin(2*x))
2*sin(x)*cos(x)
>>> TR11(cos(2*x))
-sin(x)**2 + cos(x)**2
>>> TR11(sin(4*x))
4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x)
>>> TR11(sin(4*x/3))
4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3)
If the arguments are simply integers, no change is made
unless a base is provided:
>>> TR11(cos(2))
cos(2)
>>> TR11(cos(4), 2)
-sin(2)**2 + cos(2)**2
There is a subtle issue here in that autosimplification will convert
some higher angles to lower angles
>>> cos(6*pi/7) + cos(3*pi/7)
-cos(pi/7) + cos(3*pi/7)
The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying
the 3*pi/7 base:
>>> TR11(_, 3*pi/7)
-sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7)
"""
def f(rv):
if not rv.func in (cos, sin):
return rv
if base:
f = rv.func
t = f(base*2)
co = S.One
if t.is_Mul:
co, t = t.as_coeff_Mul()
if not t.func in (cos, sin):
return rv
if rv.args[0] == t.args[0]:
c = cos(base)
s = sin(base)
if f is cos:
return (c**2 - s**2)/co
else:
return 2*c*s/co
return rv
elif not rv.args[0].is_Number:
# make a change if the leading coefficient's numerator is
# divisible by 2
c, m = rv.args[0].as_coeff_Mul(rational=True)
if c.p % 2 == 0:
arg = c.p//2*m/c.q
c = TR11(cos(arg))
s = TR11(sin(arg))
if rv.func == sin:
rv = 2*s*c
else:
rv = c**2 - s**2
return rv
return bottom_up(rv, f)
def TR12(rv, first=True):
"""Separate sums in ``tan``.
Examples
========
>>> from sympy.simplify.fu import TR12
>>> from sympy.abc import x, y
>>> from sympy import tan
>>> from sympy.simplify.fu import TR12
>>> TR12(tan(x + y))
(tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
"""
def f(rv):
if not rv.func == tan:
return rv
arg = rv.args[0]
if arg.is_Add:
if first:
args = list(ordered(arg.args))
else:
args = list(arg.args)
a = args.pop()
b = Add._from_args(args)
if b.is_Add:
tb = TR12(tan(b), first=False)
else:
tb = tan(b)
return (tan(a) + tb)/(1 - tan(a)*tb)
return rv
return bottom_up(rv, f)
def TR12i(rv):
"""Combine tan arguments as
(tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y)
Examples
========
>>> from sympy.simplify.fu import TR12i
>>> from sympy import tan
>>> from sympy.abc import a, b, c
>>> ta, tb, tc = [tan(i) for i in (a, b, c)]
>>> TR12i((ta + tb)/(-ta*tb + 1))
tan(a + b)
>>> TR12i((ta + tb)/(ta*tb - 1))
-tan(a + b)
>>> TR12i((-ta - tb)/(ta*tb - 1))
tan(a + b)
>>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
>>> TR12i(eq.expand())
-3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1))
"""
from sympy import factor
def f(rv):
if not (rv.is_Add or rv.is_Mul or rv.is_Pow):
return rv
n, d = rv.as_numer_denom()
if not d.args or not n.args:
return rv
dok = {}
def ok(di):
m = as_f_sign_1(di)
if m:
g, f, s = m
if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \
all(isinstance(fi, tan) for fi in f.args):
return g, f
d_args = list(Mul.make_args(d))
for i, di in enumerate(d_args):
m = ok(di)
if m:
g, t = m
s = Add(*[_.args[0] for _ in t.args])
dok[s] = S.One
d_args[i] = g
continue
if di.is_Add:
di = factor(di)
if di.is_Mul:
d_args.extend(di.args)
d_args[i] = S.One
elif di.is_Pow and (di.exp.is_integer or di.base.is_positive):
m = ok(di.base)
if m:
g, t = m
s = Add(*[_.args[0] for _ in t.args])
dok[s] = di.exp
d_args[i] = g**di.exp
else:
di = factor(di)
if di.is_Mul:
d_args.extend(di.args)
d_args[i] = S.One
if not dok:
return rv
def ok(ni):
if ni.is_Add and len(ni.args) == 2:
a, b = ni.args
if isinstance(a, tan) and isinstance(b, tan):
return a, b
n_args = list(Mul.make_args(factor_terms(n)))
hit = False
for i, ni in enumerate(n_args):
m = ok(ni)
if not m:
m = ok(-ni)
if m:
n_args[i] = S.NegativeOne
else:
if ni.is_Add:
ni = factor(ni)
if ni.is_Mul:
n_args.extend(ni.args)
n_args[i] = S.One
continue
elif ni.is_Pow and (
ni.exp.is_integer or ni.base.is_positive):
m = ok(ni.base)
if m:
n_args[i] = S.One
else:
ni = factor(ni)
if ni.is_Mul:
n_args.extend(ni.args)
n_args[i] = S.One
continue
else:
continue
else:
n_args[i] = S.One
hit = True
s = Add(*[_.args[0] for _ in m])
ed = dok[s]
newed = ed.extract_additively(S.One)
if newed is not None:
if newed:
dok[s] = newed
else:
dok.pop(s)
n_args[i] *= -tan(s)
if hit:
rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[
tan(a) for a in i.args]) - 1)**e for i, e in dok.items()])
return rv
return bottom_up(rv, f)
def TR13(rv):
"""Change products of ``tan`` or ``cot``.
Examples
========
>>> from sympy.simplify.fu import TR13
>>> from sympy import tan, cot, cos
>>> TR13(tan(3)*tan(2))
-tan(2)/tan(5) - tan(3)/tan(5) + 1
>>> TR13(cot(3)*cot(2))
cot(2)*cot(5) + 1 + cot(3)*cot(5)
"""
def f(rv):
if not rv.is_Mul:
return rv
# XXX handle products of powers? or let power-reducing handle it?
args = {tan: [], cot: [], None: []}
for a in ordered(Mul.make_args(rv)):
if a.func in (tan, cot):
args[a.func].append(a.args[0])
else:
args[None].append(a)
t = args[tan]
c = args[cot]
if len(t) < 2 and len(c) < 2:
return rv
args = args[None]
while len(t) > 1:
t1 = t.pop()
t2 = t.pop()
args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2)))
if t:
args.append(tan(t.pop()))
while len(c) > 1:
t1 = c.pop()
t2 = c.pop()
args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2))
if c:
args.append(cot(c.pop()))
return Mul(*args)
return bottom_up(rv, f)
def TRmorrie(rv):
"""Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))
Examples
========
>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
>>> from sympy.abc import x
>>> from sympy import Mul, cos, pi
>>> TRmorrie(cos(x)*cos(2*x))
sin(4*x)/(4*sin(x))
>>> TRmorrie(7*Mul(*[cos(x) for x in range(10)]))
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
Sometimes autosimplification will cause a power to be
not recognized. e.g. in the following, cos(4*pi/7) automatically
simplifies to -cos(3*pi/7) so only 2 of the 3 terms are
recognized:
>>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7))
-sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7))
A touch by TR8 resolves the expression to a Rational
>>> TR8(_)
-1/8
In this case, if eq is unsimplified, the answer is obtained
directly:
>>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)
>>> TRmorrie(eq)
1/16
But if angles are made canonical with TR3 then the answer
is not simplified without further work:
>>> TR3(eq)
sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2
>>> TRmorrie(_)
sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9))
>>> TR8(_)
cos(7*pi/18)/(16*sin(pi/9))
>>> TR3(_)
1/16
The original expression would have resolve to 1/16 directly with TR8,
however:
>>> TR8(eq)
1/16
References
==========
https://en.wikipedia.org/wiki/Morrie%27s_law
"""
def f(rv, first=True):
if not rv.is_Mul:
return rv
if first:
n, d = rv.as_numer_denom()
return f(n, 0)/f(d, 0)
args = defaultdict(list)
coss = {}
other = []
for c in rv.args:
b, e = c.as_base_exp()
if e.is_Integer and isinstance(b, cos):
co, a = b.args[0].as_coeff_Mul()
args[a].append(co)
coss[b] = e
else:
other.append(c)
new = []
for a in args:
c = args[a]
c.sort()
no = []
while c:
k = 0
cc = ci = c[0]
while cc in c:
k += 1
cc *= 2
if k > 1:
newarg = sin(2**k*ci*a)/2**k/sin(ci*a)
# see how many times this can be taken
take = None
ccs = []
for i in range(k):
cc /= 2
key = cos(a*cc, evaluate=False)
ccs.append(cc)
take = min(coss[key], take or coss[key])
# update exponent counts
for i in range(k):
cc = ccs.pop()
key = cos(a*cc, evaluate=False)
coss[key] -= take
if not coss[key]:
c.remove(cc)
new.append(newarg**take)
else:
no.append(c.pop(0))
c[:] = no
if new:
rv = Mul(*(new + other + [
cos(k*a, evaluate=False) for a in args for k in args[a]]))
return rv
return bottom_up(rv, f)
def TR14(rv, first=True):
"""Convert factored powers of sin and cos identities into simpler
expressions.
Examples
========
>>> from sympy.simplify.fu import TR14
>>> from sympy.abc import x, y
>>> from sympy import cos, sin
>>> TR14((cos(x) - 1)*(cos(x) + 1))
-sin(x)**2
>>> TR14((sin(x) - 1)*(sin(x) + 1))
-cos(x)**2
>>> p1 = (cos(x) + 1)*(cos(x) - 1)
>>> p2 = (cos(y) - 1)*2*(cos(y) + 1)
>>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
>>> TR14(p1*p2*p3*(x - 1))
-18*(x - 1)*sin(x)**2*sin(y)**4
"""
def f(rv):
if not rv.is_Mul:
return rv
if first:
# sort them by location in numerator and denominator
# so the code below can just deal with positive exponents
n, d = rv.as_numer_denom()
if d is not S.One:
newn = TR14(n, first=False)
newd = TR14(d, first=False)
if newn != n or newd != d:
rv = newn/newd
return rv
other = []
process = []
for a in rv.args:
if a.is_Pow:
b, e = a.as_base_exp()
if not (e.is_integer or b.is_positive):
other.append(a)
continue
a = b
else:
e = S.One
m = as_f_sign_1(a)
if not m or m[1].func not in (cos, sin):
if e is S.One:
other.append(a)
else:
other.append(a**e)
continue
g, f, si = m
process.append((g, e.is_Number, e, f, si, a))
# sort them to get like terms next to each other
process = list(ordered(process))
# keep track of whether there was any change
nother = len(other)
# access keys
keys = (g, t, e, f, si, a) = list(range(6))
while process:
A = process.pop(0)
if process:
B = process[0]
if A[e].is_Number and B[e].is_Number:
# both exponents are numbers
if A[f] == B[f]:
if A[si] != B[si]:
B = process.pop(0)
take = min(A[e], B[e])
# reinsert any remainder
# the B will likely sort after A so check it first
if B[e] != take:
rem = [B[i] for i in keys]
rem[e] -= take
process.insert(0, rem)
elif A[e] != take:
rem = [A[i] for i in keys]
rem[e] -= take
process.insert(0, rem)
if isinstance(A[f], cos):
t = sin
else:
t = cos
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
continue
elif A[e] == B[e]:
# both exponents are equal symbols
if A[f] == B[f]:
if A[si] != B[si]:
B = process.pop(0)
take = A[e]
if isinstance(A[f], cos):
t = sin
else:
t = cos
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
continue
# either we are done or neither condition above applied
other.append(A[a]**A[e])
if len(other) != nother:
rv = Mul(*other)
return rv
return bottom_up(rv, f)
def TR15(rv, max=4, pow=False):
"""Convert sin(x)*-2 to 1 + cot(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR15
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TR15(1 - 1/sin(x)**2)
-cot(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, sin)):
return rv
ia = 1/rv
a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow)
if a != ia:
rv = a
return rv
return bottom_up(rv, f)
def TR16(rv, max=4, pow=False):
"""Convert cos(x)*-2 to 1 + tan(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR16
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TR16(1 - 1/cos(x)**2)
-tan(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, cos)):
return rv
ia = 1/rv
a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow)
if a != ia:
rv = a
return rv
return bottom_up(rv, f)
def TR111(rv):
"""Convert f(x)**-i to g(x)**i where either ``i`` is an integer
or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.
Examples
========
>>> from sympy.simplify.fu import TR111
>>> from sympy.abc import x
>>> from sympy import tan
>>> TR111(1 - 1/tan(x)**2)
1 - cot(x)**2
"""
def f(rv):
if not (
isinstance(rv, Pow) and
(rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)):
return rv
if isinstance(rv.base, tan):
return cot(rv.base.args[0])**-rv.exp
elif isinstance(rv.base, sin):
return csc(rv.base.args[0])**-rv.exp
elif isinstance(rv.base, cos):
return sec(rv.base.args[0])**-rv.exp
return rv
return bottom_up(rv, f)
def TR22(rv, max=4, pow=False):
"""Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR22
>>> from sympy.abc import x
>>> from sympy import tan, cot
>>> TR22(1 + tan(x)**2)
sec(x)**2
>>> TR22(1 + cot(x)**2)
csc(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)):
return rv
rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow)
rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow)
return rv
return bottom_up(rv, f)
def TRpower(rv):
"""Convert sin(x)**n and cos(x)**n with positive n to sums.
Examples
========
>>> from sympy.simplify.fu import TRpower
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TRpower(sin(x)**6)
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
>>> TRpower(sin(x)**3*cos(2*x)**4)
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)
References
==========
https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))):
return rv
b, n = rv.as_base_exp()
x = b.args[0]
if n.is_Integer and n.is_positive:
if n.is_odd and isinstance(b, cos):
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
for k in range((n + 1)/2)])
elif n.is_odd and isinstance(b, sin):
rv = 2**(1-n)*(-1)**((n-1)/2)*Add(*[binomial(n, k)*
(-1)**k*sin((n - 2*k)*x) for k in range((n + 1)/2)])
elif n.is_even and isinstance(b, cos):
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
for k in range(n/2)])
elif n.is_even and isinstance(b, sin):
rv = 2**(1-n)*(-1)**(n/2)*Add(*[binomial(n, k)*
(-1)**k*cos((n - 2*k)*x) for k in range(n/2)])
if n.is_even:
rv += 2**(-n)*binomial(n, n/2)
return rv
return bottom_up(rv, f)
def L(rv):
"""Return count of trigonometric functions in expression.
Examples
========
>>> from sympy.simplify.fu import L
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> L(cos(x)+sin(x))
2
"""
return S(rv.count(TrigonometricFunction))
# ============== end of basic Fu-like tools =====================
if SYMPY_DEBUG:
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22
)= list(map(debug,
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22)))
# tuples are chains -- (f, g) -> lambda x: g(f(x))
# lists are choices -- [f, g] -> lambda x: min(f(x), g(x), key=objective)
CTR1 = [(TR5, TR0), (TR6, TR0), identity]
CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0])
CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity]
CTR4 = [(TR4, TR10i), identity]
RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0)
# XXX it's a little unclear how this one is to be implemented
# see Fu paper of reference, page 7. What is the Union symbol referring to?
# The diagram shows all these as one chain of transformations, but the
# text refers to them being applied independently. Also, a break
# if L starts to increase has not been implemented.
RL2 = [
(TR4, TR3, TR10, TR4, TR3, TR11),
(TR5, TR7, TR11, TR4),
(CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4),
identity,
]
def fu(rv, measure=lambda x: (L(x), x.count_ops())):
"""Attempt to simplify expression by using transformation rules given
in the algorithm by Fu et al.
:func:`fu` will try to minimize the objective function ``measure``.
By default this first minimizes the number of trig terms and then minimizes
the number of total operations.
Examples
========
>>> from sympy.simplify.fu import fu
>>> from sympy import cos, sin, tan, pi, S, sqrt
>>> from sympy.abc import x, y, a, b
>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
3/2
>>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x))
2*sqrt(2)*sin(x + pi/3)
CTR1 example
>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
>>> fu(eq)
cos(x)**4 - 2*cos(y)**2 + 2
CTR2 example
>>> fu(S.Half - cos(2*x)/2)
sin(x)**2
CTR3 example
>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
sqrt(2)*sin(a + b + pi/4)
CTR4 example
>>> fu(sqrt(3)*cos(x)/2 + sin(x)/2)
sin(x + pi/3)
Example 1
>>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4)
-cos(x)**2 + cos(y)**2
Example 2
>>> fu(cos(4*pi/9))
sin(pi/18)
>>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
1/16
Example 3
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18))
-sqrt(3)
Objective function example
>>> fu(sin(x)/cos(x)) # default objective function
tan(x)
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count
sin(x)/cos(x)
References
==========
http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/ACDCA/
DESTIME2006/DES_contribs/Fu/simplification.pdf
"""
fRL1 = greedy(RL1, measure)
fRL2 = greedy(RL2, measure)
was = rv
rv = sympify(rv)
if not isinstance(rv, Expr):
return rv.func(*[fu(a, measure=measure) for a in rv.args])
rv = TR1(rv)
if rv.has(tan, cot):
rv1 = fRL1(rv)
if (measure(rv1) < measure(rv)):
rv = rv1
if rv.has(tan, cot):
rv = TR2(rv)
if rv.has(sin, cos):
rv1 = fRL2(rv)
rv2 = TR8(TRmorrie(rv1))
rv = min([was, rv, rv1, rv2], key=measure)
return min(TR2i(rv), rv, key=measure)
def process_common_addends(rv, do, key2=None, key1=True):
"""Apply ``do`` to addends of ``rv`` that (if key1=True) share at least
a common absolute value of their coefficient and the value of ``key2`` when
applied to the argument. If ``key1`` is False ``key2`` must be supplied and
will be the only key applied.
"""
# collect by absolute value of coefficient and key2
absc = defaultdict(list)
if key1:
for a in rv.args:
c, a = a.as_coeff_Mul()
if c < 0:
c = -c
a = -a # put the sign on `a`
absc[(c, key2(a) if key2 else 1)].append(a)
elif key2:
for a in rv.args:
absc[(S.One, key2(a))].append(a)
else:
raise ValueError('must have at least one key')
args = []
hit = False
for k in absc:
v = absc[k]
c, _ = k
if len(v) > 1:
e = Add(*v, evaluate=False)
new = do(e)
if new != e:
e = new
hit = True
args.append(c*e)
else:
args.append(c*v[0])
if hit:
rv = Add(*args)
return rv
fufuncs = '''
TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11
TR12 TR13 L TR2i TRmorrie TR12i
TR14 TR15 TR16 TR111 TR22'''.split()
FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs)))))
def _roots():
global _ROOT2, _ROOT3, _invROOT3
_ROOT2, _ROOT3 = sqrt(2), sqrt(3)
_invROOT3 = 1/_ROOT3
_ROOT2 = None
def trig_split(a, b, two=False):
"""Return the gcd, s1, s2, a1, a2, bool where
If two is False (default) then::
a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin
else:
if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals
n1*gcd*cos(a - b) if n1 == n2 else
n1*gcd*cos(a + b)
else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals
n1*gcd*sin(a + b) if n1 = n2 else
n1*gcd*sin(b - a)
Examples
========
>>> from sympy.simplify.fu import trig_split
>>> from sympy.abc import x, y, z
>>> from sympy import cos, sin, sqrt
>>> trig_split(cos(x), cos(y))
(1, 1, 1, x, y, True)
>>> trig_split(2*cos(x), -2*cos(y))
(2, 1, -1, x, y, True)
>>> trig_split(cos(x)*sin(y), cos(y)*sin(y))
(sin(y), 1, 1, x, y, True)
>>> trig_split(cos(x), -sqrt(3)*sin(x), two=True)
(2, 1, -1, x, pi/6, False)
>>> trig_split(cos(x), sin(x), two=True)
(sqrt(2), 1, 1, x, pi/4, False)
>>> trig_split(cos(x), -sin(x), two=True)
(sqrt(2), 1, -1, x, pi/4, False)
>>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True)
(2*sqrt(2), 1, -1, x, pi/6, False)
>>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True)
(-2*sqrt(2), 1, 1, x, pi/3, False)
>>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True)
(sqrt(6)/3, 1, 1, x, pi/6, False)
>>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True)
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
>>> trig_split(cos(x), sin(x))
>>> trig_split(cos(x), sin(z))
>>> trig_split(2*cos(x), -sin(x))
>>> trig_split(cos(x), -sqrt(3)*sin(x))
>>> trig_split(cos(x)*cos(y), sin(x)*sin(z))
>>> trig_split(cos(x)*cos(y), sin(x)*sin(y))
>>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True)
"""
global _ROOT2, _ROOT3, _invROOT3
if _ROOT2 is None:
_roots()
a, b = [Factors(i) for i in (a, b)]
ua, ub = a.normal(b)
gcd = a.gcd(b).as_expr()
n1 = n2 = 1
if S.NegativeOne in ua.factors:
ua = ua.quo(S.NegativeOne)
n1 = -n1
elif S.NegativeOne in ub.factors:
ub = ub.quo(S.NegativeOne)
n2 = -n2
a, b = [i.as_expr() for i in (ua, ub)]
def pow_cos_sin(a, two):
"""Return ``a`` as a tuple (r, c, s) such that
``a = (r or 1)*(c or 1)*(s or 1)``.
Three arguments are returned (radical, c-factor, s-factor) as
long as the conditions set by ``two`` are met; otherwise None is
returned. If ``two`` is True there will be one or two non-None
values in the tuple: c and s or c and r or s and r or s or c with c
being a cosine function (if possible) else a sine, and s being a sine
function (if possible) else oosine. If ``two`` is False then there
will only be a c or s term in the tuple.
``two`` also require that either two cos and/or sin be present (with
the condition that if the functions are the same the arguments are
different or vice versa) or that a single cosine or a single sine
be present with an optional radical.
If the above conditions dictated by ``two`` are not met then None
is returned.
"""
c = s = None
co = S.One
if a.is_Mul:
co, a = a.as_coeff_Mul()
if len(a.args) > 2 or not two:
return None
if a.is_Mul:
args = list(a.args)
else:
args = [a]
a = args.pop(0)
if isinstance(a, cos):
c = a
elif isinstance(a, sin):
s = a
elif a.is_Pow and a.exp is S.Half: # autoeval doesn't allow -1/2
co *= a
else:
return None
if args:
b = args[0]
if isinstance(b, cos):
if c:
s = b
else:
c = b
elif isinstance(b, sin):
if s:
c = b
else:
s = b
elif b.is_Pow and b.exp is S.Half:
co *= b
else:
return None
return co if co is not S.One else None, c, s
elif isinstance(a, cos):
c = a
elif isinstance(a, sin):
s = a
if c is None and s is None:
return
co = co if co is not S.One else None
return co, c, s
# get the parts
m = pow_cos_sin(a, two)
if m is None:
return
coa, ca, sa = m
m = pow_cos_sin(b, two)
if m is None:
return
cob, cb, sb = m
# check them
if (not ca) and cb or ca and isinstance(ca, sin):
coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa
n1, n2 = n2, n1
if not two: # need cos(x) and cos(y) or sin(x) and sin(y)
c = ca or sa
s = cb or sb
if not isinstance(c, s.func):
return None
return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos)
else:
if not coa and not cob:
if (ca and cb and sa and sb):
if isinstance(ca, sa.func) is not isinstance(cb, sb.func):
return
args = {j.args for j in (ca, sa)}
if not all(i.args in args for i in (cb, sb)):
return
return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func)
if ca and sa or cb and sb or \
two and (ca is None and sa is None or cb is None and sb is None):
return
c = ca or sa
s = cb or sb
if c.args != s.args:
return
if not coa:
coa = S.One
if not cob:
cob = S.One
if coa is cob:
gcd *= _ROOT2
return gcd, n1, n2, c.args[0], pi/4, False
elif coa/cob == _ROOT3:
gcd *= 2*cob
return gcd, n1, n2, c.args[0], pi/3, False
elif coa/cob == _invROOT3:
gcd *= 2*coa
return gcd, n1, n2, c.args[0], pi/6, False
def as_f_sign_1(e):
"""If ``e`` is a sum that can be written as ``g*(a + s)`` where
``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does
not have a leading negative coefficient.
Examples
========
>>> from sympy.simplify.fu import as_f_sign_1
>>> from sympy.abc import x
>>> as_f_sign_1(x + 1)
(1, x, 1)
>>> as_f_sign_1(x - 1)
(1, x, -1)
>>> as_f_sign_1(-x + 1)
(-1, x, -1)
>>> as_f_sign_1(-x - 1)
(-1, x, 1)
>>> as_f_sign_1(2*x + 2)
(2, x, 1)
"""
if not e.is_Add or len(e.args) != 2:
return
# exact match
a, b = e.args
if a in (S.NegativeOne, S.One):
g = S.One
if b.is_Mul and b.args[0].is_Number and b.args[0] < 0:
a, b = -a, -b
g = -g
return g, b, a
# gcd match
a, b = [Factors(i) for i in e.args]
ua, ub = a.normal(b)
gcd = a.gcd(b).as_expr()
if S.NegativeOne in ua.factors:
ua = ua.quo(S.NegativeOne)
n1 = -1
n2 = 1
elif S.NegativeOne in ub.factors:
ub = ub.quo(S.NegativeOne)
n1 = 1
n2 = -1
else:
n1 = n2 = 1
a, b = [i.as_expr() for i in (ua, ub)]
if a is S.One:
a, b = b, a
n1, n2 = n2, n1
if n1 == -1:
gcd = -gcd
n2 = -n2
if b is S.One:
return gcd, a, n2
def _osborne(e, d):
"""Replace all hyperbolic functions with trig functions using
the Osborne rule.
Notes
=====
``d`` is a dummy variable to prevent automatic evaluation
of trigonometric/hyperbolic functions.
References
==========
https://en.wikipedia.org/wiki/Hyperbolic_function
"""
def f(rv):
if not isinstance(rv, HyperbolicFunction):
return rv
a = rv.args[0]
a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args])
if isinstance(rv, sinh):
return I*sin(a)
elif isinstance(rv, cosh):
return cos(a)
elif isinstance(rv, tanh):
return I*tan(a)
elif isinstance(rv, coth):
return cot(a)/I
elif isinstance(rv, sech):
return sec(a)
elif isinstance(rv, csch):
return csc(a)/I
else:
raise NotImplementedError('unhandled %s' % rv.func)
return bottom_up(e, f)
def _osbornei(e, d):
"""Replace all trig functions with hyperbolic functions using
the Osborne rule.
Notes
=====
``d`` is a dummy variable to prevent automatic evaluation
of trigonometric/hyperbolic functions.
References
==========
https://en.wikipedia.org/wiki/Hyperbolic_function
"""
def f(rv):
if not isinstance(rv, TrigonometricFunction):
return rv
const, x = rv.args[0].as_independent(d, as_Add=True)
a = x.xreplace({d: S.One}) + const*I
if isinstance(rv, sin):
return sinh(a)/I
elif isinstance(rv, cos):
return cosh(a)
elif isinstance(rv, tan):
return tanh(a)/I
elif isinstance(rv, cot):
return coth(a)*I
elif isinstance(rv, sec):
return sech(a)
elif isinstance(rv, csc):
return csch(a)*I
else:
raise NotImplementedError('unhandled %s' % rv.func)
return bottom_up(e, f)
def hyper_as_trig(rv):
"""Return an expression containing hyperbolic functions in terms
of trigonometric functions. Any trigonometric functions initially
present are replaced with Dummy symbols and the function to undo
the masking and the conversion back to hyperbolics is also returned. It
should always be true that::
t, f = hyper_as_trig(expr)
expr == f(t)
Examples
========
>>> from sympy.simplify.fu import hyper_as_trig, fu
>>> from sympy.abc import x
>>> from sympy import cosh, sinh
>>> eq = sinh(x)**2 + cosh(x)**2
>>> t, f = hyper_as_trig(eq)
>>> f(fu(t))
cosh(2*x)
References
==========
https://en.wikipedia.org/wiki/Hyperbolic_function
"""
from sympy.simplify.simplify import signsimp
from sympy.simplify.radsimp import collect
# mask off trig functions
trigs = rv.atoms(TrigonometricFunction)
reps = [(t, Dummy()) for t in trigs]
masked = rv.xreplace(dict(reps))
# get inversion substitutions in place
reps = [(v, k) for k, v in reps]
d = Dummy()
return _osborne(masked, d), lambda x: collect(signsimp(
_osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit)
def sincos_to_sum(expr):
"""Convert products and powers of sin and cos to sums.
Applied power reduction TRpower first, then expands products, and
converts products to sums with TR8.
Examples
========
>>> from sympy.simplify.fu import sincos_to_sum
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2)
7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x)
"""
if not expr.has(cos, sin):
return expr
else:
return TR8(expand_mul(TRpower(expr)))
|
c0fcb9fc335a95f656437c3145e973441ad144c0048b74c4d0afd9afda6dc69f | r"""
This module contains the functionality to arrange the nodes of a
diagram on an abstract grid, and then to produce a graphical
representation of the grid.
The currently supported back-ends are Xy-pic [Xypic].
Layout Algorithm
================
This section provides an overview of the algorithms implemented in
:class:`DiagramGrid` to lay out diagrams.
The first step of the algorithm is the removal composite and identity
morphisms which do not have properties in the supplied diagram. The
premises and conclusions of the diagram are then merged.
The generic layout algorithm begins with the construction of the
"skeleton" of the diagram. The skeleton is an undirected graph which
has the objects of the diagram as vertices and has an (undirected)
edge between each pair of objects between which there exist morphisms.
The direction of the morphisms does not matter at this stage. The
skeleton also includes an edge between each pair of vertices `A` and
`C` such that there exists an object `B` which is connected via
a morphism to `A`, and via a morphism to `C`.
The skeleton constructed in this way has the property that every
object is a vertex of a triangle formed by three edges of the
skeleton. This property lies at the base of the generic layout
algorithm.
After the skeleton has been constructed, the algorithm lists all
triangles which can be formed. Note that some triangles will not have
all edges corresponding to morphisms which will actually be drawn.
Triangles which have only one edge or less which will actually be
drawn are immediately discarded.
The list of triangles is sorted according to the number of edges which
correspond to morphisms, then the triangle with the least number of such
edges is selected. One of such edges is picked and the corresponding
objects are placed horizontally, on a grid. This edge is recorded to
be in the fringe. The algorithm then finds a "welding" of a triangle
to the fringe. A welding is an edge in the fringe where a triangle
could be attached. If the algorithm succeeds in finding such a
welding, it adds to the grid that vertex of the triangle which was not
yet included in any edge in the fringe and records the two new edges in
the fringe. This process continues iteratively until all objects of
the diagram has been placed or until no more weldings can be found.
An edge is only removed from the fringe when a welding to this edge
has been found, and there is no room around this edge to place
another vertex.
When no more weldings can be found, but there are still triangles
left, the algorithm searches for a possibility of attaching one of the
remaining triangles to the existing structure by a vertex. If such a
possibility is found, the corresponding edge of the found triangle is
placed in the found space and the iterative process of welding
triangles restarts.
When logical groups are supplied, each of these groups is laid out
independently. Then a diagram is constructed in which groups are
objects and any two logical groups between which there exist morphisms
are connected via a morphism. This diagram is laid out. Finally,
the grid which includes all objects of the initial diagram is
constructed by replacing the cells which contain logical groups with
the corresponding laid out grids, and by correspondingly expanding the
rows and columns.
The sequential layout algorithm begins by constructing the
underlying undirected graph defined by the morphisms obtained after
simplifying premises and conclusions and merging them (see above).
The vertex with the minimal degree is then picked up and depth-first
search is started from it. All objects which are located at distance
`n` from the root in the depth-first search tree, are positioned in
the `n`-th column of the resulting grid. The sequential layout will
therefore attempt to lay the objects out along a line.
References
==========
[Xypic] http://xy-pic.sourceforge.net/
"""
from __future__ import print_function, division
from sympy.categories import (CompositeMorphism, IdentityMorphism,
NamedMorphism, Diagram)
from sympy.core import Dict, Symbol
from sympy.core.compatibility import iterable
from sympy.printing import latex
from sympy.sets import FiniteSet
from sympy.utilities import default_sort_key
from sympy.utilities.decorator import doctest_depends_on
from itertools import chain
__doctest_requires__ = {('preview_diagram',): 'pyglet'}
class _GrowableGrid(object):
"""
Holds a growable grid of objects.
It is possible to append or prepend a row or a column to the grid
using the corresponding methods. Prepending rows or columns has
the effect of changing the coordinates of the already existing
elements.
This class currently represents a naive implementation of the
functionality with little attempt at optimisation.
"""
def __init__(self, width, height):
self._width = width
self._height = height
self._array = [[None for j in range(width)] for i in range(height)]
@property
def width(self):
return self._width
@property
def height(self):
return self._height
def __getitem__(self, i_j):
"""
Returns the element located at in the i-th line and j-th
column.
"""
i, j = i_j
return self._array[i][j]
def __setitem__(self, i_j, newvalue):
"""
Sets the element located at in the i-th line and j-th
column.
"""
i, j = i_j
self._array[i][j] = newvalue
def append_row(self):
"""
Appends an empty row to the grid.
"""
self._height += 1
self._array.append([None for j in range(self._width)])
def append_column(self):
"""
Appends an empty column to the grid.
"""
self._width += 1
for i in range(self._height):
self._array[i].append(None)
def prepend_row(self):
"""
Prepends the grid with an empty row.
"""
self._height += 1
self._array.insert(0, [None for j in range(self._width)])
def prepend_column(self):
"""
Prepends the grid with an empty column.
"""
self._width += 1
for i in range(self._height):
self._array[i].insert(0, None)
class DiagramGrid(object):
r"""
Constructs and holds the fitting of the diagram into a grid.
The mission of this class is to analyse the structure of the
supplied diagram and to place its objects on a grid such that,
when the objects and the morphisms are actually drawn, the diagram
would be "readable", in the sense that there will not be many
intersections of moprhisms. This class does not perform any
actual drawing. It does strive nevertheless to offer sufficient
metadata to draw a diagram.
Consider the following simple diagram.
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> from sympy import pprint
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
The simplest way to have a diagram laid out is the following:
>>> grid = DiagramGrid(diagram)
>>> (grid.width, grid.height)
(2, 2)
>>> pprint(grid)
A B
<BLANKLINE>
C
Sometimes one sees the diagram as consisting of logical groups.
One can advise ``DiagramGrid`` as to such groups by employing the
``groups`` keyword argument.
Consider the following diagram:
>>> D = Object("D")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> h = NamedMorphism(D, A, "h")
>>> k = NamedMorphism(D, B, "k")
>>> diagram = Diagram([f, g, h, k])
Lay it out with generic layout:
>>> grid = DiagramGrid(diagram)
>>> pprint(grid)
A B D
<BLANKLINE>
C
Now, we can group the objects `A` and `D` to have them near one
another:
>>> grid = DiagramGrid(diagram, groups=[[A, D], B, C])
>>> pprint(grid)
B C
<BLANKLINE>
A D
Note how the positioning of the other objects changes.
Further indications can be supplied to the constructor of
:class:`DiagramGrid` using keyword arguments. The currently
supported hints are explained in the following paragraphs.
:class:`DiagramGrid` does not automatically guess which layout
would suit the supplied diagram better. Consider, for example,
the following linear diagram:
>>> E = Object("E")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> h = NamedMorphism(C, D, "h")
>>> i = NamedMorphism(D, E, "i")
>>> diagram = Diagram([f, g, h, i])
When laid out with the generic layout, it does not get to look
linear:
>>> grid = DiagramGrid(diagram)
>>> pprint(grid)
A B
<BLANKLINE>
C D
<BLANKLINE>
E
To get it laid out in a line, use ``layout="sequential"``:
>>> grid = DiagramGrid(diagram, layout="sequential")
>>> pprint(grid)
A B C D E
One may sometimes need to transpose the resulting layout. While
this can always be done by hand, :class:`DiagramGrid` provides a
hint for that purpose:
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
>>> pprint(grid)
A
<BLANKLINE>
B
<BLANKLINE>
C
<BLANKLINE>
D
<BLANKLINE>
E
Separate hints can also be provided for each group. For an
example, refer to ``tests/test_drawing.py``, and see the different
ways in which the five lemma [FiveLemma] can be laid out.
See Also
========
Diagram
References
==========
[FiveLemma] https://en.wikipedia.org/wiki/Five_lemma
"""
@staticmethod
def _simplify_morphisms(morphisms):
"""
Given a dictionary mapping morphisms to their properties,
returns a new dictionary in which there are no morphisms which
do not have properties, and which are compositions of other
morphisms included in the dictionary. Identities are dropped
as well.
"""
newmorphisms = {}
for morphism, props in morphisms.items():
if isinstance(morphism, CompositeMorphism) and not props:
continue
elif isinstance(morphism, IdentityMorphism):
continue
else:
newmorphisms[morphism] = props
return newmorphisms
@staticmethod
def _merge_premises_conclusions(premises, conclusions):
"""
Given two dictionaries of morphisms and their properties,
produces a single dictionary which includes elements from both
dictionaries. If a morphism has some properties in premises
and also in conclusions, the properties in conclusions take
priority.
"""
return dict(chain(premises.items(), conclusions.items()))
@staticmethod
def _juxtapose_edges(edge1, edge2):
"""
If ``edge1`` and ``edge2`` have precisely one common endpoint,
returns an edge which would form a triangle with ``edge1`` and
``edge2``.
If ``edge1`` and ``edge2`` don't have a common endpoint,
returns ``None``.
If ``edge1`` and ``edge`` are the same edge, returns ``None``.
"""
intersection = edge1 & edge2
if len(intersection) != 1:
# The edges either have no common points or are equal.
return None
# The edges have a common endpoint. Extract the different
# endpoints and set up the new edge.
return (edge1 - intersection) | (edge2 - intersection)
@staticmethod
def _add_edge_append(dictionary, edge, elem):
"""
If ``edge`` is not in ``dictionary``, adds ``edge`` to the
dictionary and sets its value to ``[elem]``. Otherwise
appends ``elem`` to the value of existing entry.
Note that edges are undirected, thus `(A, B) = (B, A)`.
"""
if edge in dictionary:
dictionary[edge].append(elem)
else:
dictionary[edge] = [elem]
@staticmethod
def _build_skeleton(morphisms):
"""
Creates a dictionary which maps edges to corresponding
morphisms. Thus for a morphism `f:A\rightarrow B`, the edge
`(A, B)` will be associated with `f`. This function also adds
to the list those edges which are formed by juxtaposition of
two edges already in the list. These new edges are not
associated with any morphism and are only added to assure that
the diagram can be decomposed into triangles.
"""
edges = {}
# Create edges for morphisms.
for morphism in morphisms:
DiagramGrid._add_edge_append(
edges, frozenset([morphism.domain, morphism.codomain]), morphism)
# Create new edges by juxtaposing existing edges.
edges1 = dict(edges)
for w in edges1:
for v in edges1:
wv = DiagramGrid._juxtapose_edges(w, v)
if wv and wv not in edges:
edges[wv] = []
return edges
@staticmethod
def _list_triangles(edges):
"""
Builds the set of triangles formed by the supplied edges. The
triangles are arbitrary and need not be commutative. A
triangle is a set that contains all three of its sides.
"""
triangles = set()
for w in edges:
for v in edges:
wv = DiagramGrid._juxtapose_edges(w, v)
if wv and wv in edges:
triangles.add(frozenset([w, v, wv]))
return triangles
@staticmethod
def _drop_redundant_triangles(triangles, skeleton):
"""
Returns a list which contains only those triangles who have
morphisms associated with at least two edges.
"""
return [tri for tri in triangles
if len([e for e in tri if skeleton[e]]) >= 2]
@staticmethod
def _morphism_length(morphism):
"""
Returns the length of a morphism. The length of a morphism is
the number of components it consists of. A non-composite
morphism is of length 1.
"""
if isinstance(morphism, CompositeMorphism):
return len(morphism.components)
else:
return 1
@staticmethod
def _compute_triangle_min_sizes(triangles, edges):
r"""
Returns a dictionary mapping triangles to their minimal sizes.
The minimal size of a triangle is the sum of maximal lengths
of morphisms associated to the sides of the triangle. The
length of a morphism is the number of components it consists
of. A non-composite morphism is of length 1.
Sorting triangles by this metric attempts to address two
aspects of layout. For triangles with only simple morphisms
in the edge, this assures that triangles with all three edges
visible will get typeset after triangles with less visible
edges, which sometimes minimizes the necessity in diagonal
arrows. For triangles with composite morphisms in the edges,
this assures that objects connected with shorter morphisms
will be laid out first, resulting the visual proximity of
those objects which are connected by shorter morphisms.
"""
triangle_sizes = {}
for triangle in triangles:
size = 0
for e in triangle:
morphisms = edges[e]
if morphisms:
size += max(DiagramGrid._morphism_length(m)
for m in morphisms)
triangle_sizes[triangle] = size
return triangle_sizes
@staticmethod
def _triangle_objects(triangle):
"""
Given a triangle, returns the objects included in it.
"""
# A triangle is a frozenset of three two-element frozensets
# (the edges). This chains the three edges together and
# creates a frozenset from the iterator, thus producing a
# frozenset of objects of the triangle.
return frozenset(chain(*tuple(triangle)))
@staticmethod
def _other_vertex(triangle, edge):
"""
Given a triangle and an edge of it, returns the vertex which
opposes the edge.
"""
# This gets the set of objects of the triangle and then
# subtracts the set of objects employed in ``edge`` to get the
# vertex opposite to ``edge``.
return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0]
@staticmethod
def _empty_point(pt, grid):
"""
Checks if the cell at coordinates ``pt`` is either empty or
out of the bounds of the grid.
"""
if (pt[0] < 0) or (pt[1] < 0) or \
(pt[0] >= grid.height) or (pt[1] >= grid.width):
return True
return grid[pt] is None
@staticmethod
def _put_object(coords, obj, grid, fringe):
"""
Places an object at the coordinate ``cords`` in ``grid``,
growing the grid and updating ``fringe``, if necessary.
Returns (0, 0) if no row or column has been prepended, (1, 0)
if a row was prepended, (0, 1) if a column was prepended and
(1, 1) if both a column and a row were prepended.
"""
(i, j) = coords
offset = (0, 0)
if i == -1:
grid.prepend_row()
i = 0
offset = (1, 0)
for k in range(len(fringe)):
((i1, j1), (i2, j2)) = fringe[k]
fringe[k] = ((i1 + 1, j1), (i2 + 1, j2))
elif i == grid.height:
grid.append_row()
if j == -1:
j = 0
offset = (offset[0], 1)
grid.prepend_column()
for k in range(len(fringe)):
((i1, j1), (i2, j2)) = fringe[k]
fringe[k] = ((i1, j1 + 1), (i2, j2 + 1))
elif j == grid.width:
grid.append_column()
grid[i, j] = obj
return offset
@staticmethod
def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid):
"""
Given two points, ``pt1`` and ``pt2``, and the welding edge
``edge``, chooses one of the two points to place the opposing
vertex ``obj`` of the triangle. If neither of this points
fits, returns ``None``.
"""
pt1_empty = DiagramGrid._empty_point(pt1, grid)
pt2_empty = DiagramGrid._empty_point(pt2, grid)
if pt1_empty and pt2_empty:
# Both cells are empty. Of these two, choose that cell
# which will assure that a visible edge of the triangle
# will be drawn perpendicularly to the current welding
# edge.
A = grid[edge[0]]
if skeleton.get(frozenset([A, obj])):
return pt1
else:
return pt2
if pt1_empty:
return pt1
elif pt2_empty:
return pt2
else:
return None
@staticmethod
def _find_triangle_to_weld(triangles, fringe, grid):
"""
Finds, if possible, a triangle and an edge in the fringe to
which the triangle could be attached. Returns the tuple
containing the triangle and the index of the corresponding
edge in the fringe.
This function relies on the fact that objects are unique in
the diagram.
"""
for triangle in triangles:
for (a, b) in fringe:
if frozenset([grid[a], grid[b]]) in triangle:
return (triangle, (a, b))
return None
@staticmethod
def _weld_triangle(tri, welding_edge, fringe, grid, skeleton):
"""
If possible, welds the triangle ``tri`` to ``fringe`` and
returns ``False``. If this method encounters a degenerate
situation in the fringe and corrects it such that a restart of
the search is required, it returns ``True`` (which means that
a restart in finding triangle weldings is required).
A degenerate situation is a situation when an edge listed in
the fringe does not belong to the visual boundary of the
diagram.
"""
a, b = welding_edge
target_cell = None
obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b]))
# We now have a triangle and an edge where it can be welded to
# the fringe. Decide where to place the other vertex of the
# triangle and check for degenerate situations en route.
if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1):
# A diagonal edge.
target_cell = (a[0], b[1])
if grid[target_cell]:
# That cell is already occupied.
target_cell = (b[0], a[1])
if grid[target_cell]:
# Degenerate situation, this edge is not
# on the actual fringe. Correct the
# fringe and go on.
fringe.remove((a, b))
return True
elif a[0] == b[0]:
# A horizontal edge. We first attempt to build the
# triangle in the downward direction.
down_left = a[0] + 1, a[1]
down_right = a[0] + 1, b[1]
target_cell = DiagramGrid._choose_target_cell(
down_left, down_right, (a, b), obj, skeleton, grid)
if not target_cell:
# No room below this edge. Check above.
up_left = a[0] - 1, a[1]
up_right = a[0] - 1, b[1]
target_cell = DiagramGrid._choose_target_cell(
up_left, up_right, (a, b), obj, skeleton, grid)
if not target_cell:
# This edge is not in the fringe, remove it
# and restart.
fringe.remove((a, b))
return True
elif a[1] == b[1]:
# A vertical edge. We will attempt to place the other
# vertex of the triangle to the right of this edge.
right_up = a[0], a[1] + 1
right_down = b[0], a[1] + 1
target_cell = DiagramGrid._choose_target_cell(
right_up, right_down, (a, b), obj, skeleton, grid)
if not target_cell:
# No room to the left. See what's to the right.
left_up = a[0], a[1] - 1
left_down = b[0], a[1] - 1
target_cell = DiagramGrid._choose_target_cell(
left_up, left_down, (a, b), obj, skeleton, grid)
if not target_cell:
# This edge is not in the fringe, remove it
# and restart.
fringe.remove((a, b))
return True
# We now know where to place the other vertex of the
# triangle.
offset = DiagramGrid._put_object(target_cell, obj, grid, fringe)
# Take care of the displacement of coordinates if a row or
# a column was prepended.
target_cell = (target_cell[0] + offset[0],
target_cell[1] + offset[1])
a = (a[0] + offset[0], a[1] + offset[1])
b = (b[0] + offset[0], b[1] + offset[1])
fringe.extend([(a, target_cell), (b, target_cell)])
# No restart is required.
return False
@staticmethod
def _triangle_key(tri, triangle_sizes):
"""
Returns a key for the supplied triangle. It should be the
same independently of the hash randomisation.
"""
objects = sorted(
DiagramGrid._triangle_objects(tri), key=default_sort_key)
return (triangle_sizes[tri], default_sort_key(objects))
@staticmethod
def _pick_root_edge(tri, skeleton):
"""
For a given triangle always picks the same root edge. The
root edge is the edge that will be placed first on the grid.
"""
candidates = [sorted(e, key=default_sort_key)
for e in tri if skeleton[e]]
sorted_candidates = sorted(candidates, key=default_sort_key)
# Don't forget to assure the proper ordering of the vertices
# in this edge.
return tuple(sorted(sorted_candidates[0], key=default_sort_key))
@staticmethod
def _drop_irrelevant_triangles(triangles, placed_objects):
"""
Returns only those triangles whose set of objects is not
completely included in ``placed_objects``.
"""
return [tri for tri in triangles if not placed_objects.issuperset(
DiagramGrid._triangle_objects(tri))]
@staticmethod
def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects):
"""
Starting from an object in the existing structure on the grid,
adds an edge to which a triangle from ``triangles`` could be
welded. If this method has found a way to do so, it returns
the object it has just added.
This method should be applied when ``_weld_triangle`` cannot
find weldings any more.
"""
for i in range(grid.height):
for j in range(grid.width):
obj = grid[i, j]
if not obj:
continue
# Here we need to choose a triangle which has only
# ``obj`` in common with the existing structure. The
# situations when this is not possible should be
# handled elsewhere.
def good_triangle(tri):
objs = DiagramGrid._triangle_objects(tri)
return obj in objs and \
placed_objects & (objs - {obj}) == set()
tris = [tri for tri in triangles if good_triangle(tri)]
if not tris:
# This object is not interesting.
continue
# Pick the "simplest" of the triangles which could be
# attached. Remember that the list of triangles is
# sorted according to their "simplicity" (see
# _compute_triangle_min_sizes for the metric).
#
# Note that ``tris`` are sequentially built from
# ``triangles``, so we don't have to worry about hash
# randomisation.
tri = tris[0]
# We have found a triangle which could be attached to
# the existing structure by a vertex.
candidates = sorted([e for e in tri if skeleton[e]],
key=lambda e: FiniteSet(*e).sort_key())
edges = [e for e in candidates if obj in e]
# Note that a meaningful edge (i.e., and edge that is
# associated with a morphism) containing ``obj``
# always exists. That's because all triangles are
# guaranteed to have at least two meaningful edges.
# See _drop_redundant_triangles.
# Get the object at the other end of the edge.
edge = edges[0]
other_obj = tuple(edge - frozenset([obj]))[0]
# Now check for free directions. When checking for
# free directions, prefer the horizontal and vertical
# directions.
neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1),
(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)]
for pt in neighbours:
if DiagramGrid._empty_point(pt, grid):
# We have a found a place to grow the
# pseudopod into.
offset = DiagramGrid._put_object(
pt, other_obj, grid, fringe)
i += offset[0]
j += offset[1]
pt = (pt[0] + offset[0], pt[1] + offset[1])
fringe.append(((i, j), pt))
return other_obj
# This diagram is actually cooler that I can handle. Fail cowardly.
return None
@staticmethod
def _handle_groups(diagram, groups, merged_morphisms, hints):
"""
Given the slightly preprocessed morphisms of the diagram,
produces a grid laid out according to ``groups``.
If a group has hints, it is laid out with those hints only,
without any influence from ``hints``. Otherwise, it is laid
out with ``hints``.
"""
def lay_out_group(group, local_hints):
"""
If ``group`` is a set of objects, uses a ``DiagramGrid``
to lay it out and returns the grid. Otherwise returns the
object (i.e., ``group``). If ``local_hints`` is not
empty, it is supplied to ``DiagramGrid`` as the dictionary
of hints. Otherwise, the ``hints`` argument of
``_handle_groups`` is used.
"""
if isinstance(group, FiniteSet):
# Set up the corresponding object-to-group
# mappings.
for obj in group:
obj_groups[obj] = group
# Lay out the current group.
if local_hints:
groups_grids[group] = DiagramGrid(
diagram.subdiagram_from_objects(group), **local_hints)
else:
groups_grids[group] = DiagramGrid(
diagram.subdiagram_from_objects(group), **hints)
else:
obj_groups[group] = group
def group_to_finiteset(group):
"""
Converts ``group`` to a :class:``FiniteSet`` if it is an
iterable.
"""
if iterable(group):
return FiniteSet(*group)
else:
return group
obj_groups = {}
groups_grids = {}
# We would like to support various containers to represent
# groups. To achieve that, before laying each group out, it
# should be converted to a FiniteSet, because that is what the
# following code expects.
if isinstance(groups, dict) or isinstance(groups, Dict):
finiteset_groups = {}
for group, local_hints in groups.items():
finiteset_group = group_to_finiteset(group)
finiteset_groups[finiteset_group] = local_hints
lay_out_group(group, local_hints)
groups = finiteset_groups
else:
finiteset_groups = []
for group in groups:
finiteset_group = group_to_finiteset(group)
finiteset_groups.append(finiteset_group)
lay_out_group(finiteset_group, None)
groups = finiteset_groups
new_morphisms = []
for morphism in merged_morphisms:
dom = obj_groups[morphism.domain]
cod = obj_groups[morphism.codomain]
# Note that we are not really interested in morphisms
# which do not employ two different groups, because
# these do not influence the layout.
if dom != cod:
# These are essentially unnamed morphisms; they are
# not going to mess in the final layout. By giving
# them the same names, we avoid unnecessary
# duplicates.
new_morphisms.append(NamedMorphism(dom, cod, "dummy"))
# Lay out the new diagram. Since these are dummy morphisms,
# properties and conclusions are irrelevant.
top_grid = DiagramGrid(Diagram(new_morphisms))
# We now have to substitute the groups with the corresponding
# grids, laid out at the beginning of this function. Compute
# the size of each row and column in the grid, so that all
# nested grids fit.
def group_size(group):
"""
For the supplied group (or object, eventually), returns
the size of the cell that will hold this group (object).
"""
if group in groups_grids:
grid = groups_grids[group]
return (grid.height, grid.width)
else:
return (1, 1)
row_heights = [max(group_size(top_grid[i, j])[0]
for j in range(top_grid.width))
for i in range(top_grid.height)]
column_widths = [max(group_size(top_grid[i, j])[1]
for i in range(top_grid.height))
for j in range(top_grid.width)]
grid = _GrowableGrid(sum(column_widths), sum(row_heights))
real_row = 0
real_column = 0
for logical_row in range(top_grid.height):
for logical_column in range(top_grid.width):
obj = top_grid[logical_row, logical_column]
if obj in groups_grids:
# This is a group. Copy the corresponding grid in
# place.
local_grid = groups_grids[obj]
for i in range(local_grid.height):
for j in range(local_grid.width):
grid[real_row + i,
real_column + j] = local_grid[i, j]
else:
# This is an object. Just put it there.
grid[real_row, real_column] = obj
real_column += column_widths[logical_column]
real_column = 0
real_row += row_heights[logical_row]
return grid
@staticmethod
def _generic_layout(diagram, merged_morphisms):
"""
Produces the generic layout for the supplied diagram.
"""
all_objects = set(diagram.objects)
if len(all_objects) == 1:
# There only one object in the diagram, just put in on 1x1
# grid.
grid = _GrowableGrid(1, 1)
grid[0, 0] = tuple(all_objects)[0]
return grid
skeleton = DiagramGrid._build_skeleton(merged_morphisms)
grid = _GrowableGrid(2, 1)
if len(skeleton) == 1:
# This diagram contains only one morphism. Draw it
# horizontally.
objects = sorted(all_objects, key=default_sort_key)
grid[0, 0] = objects[0]
grid[0, 1] = objects[1]
return grid
triangles = DiagramGrid._list_triangles(skeleton)
triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton)
triangle_sizes = DiagramGrid._compute_triangle_min_sizes(
triangles, skeleton)
triangles = sorted(triangles, key=lambda tri:
DiagramGrid._triangle_key(tri, triangle_sizes))
# Place the first edge on the grid.
root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton)
grid[0, 0], grid[0, 1] = root_edge
fringe = [((0, 0), (0, 1))]
# Record which objects we now have on the grid.
placed_objects = set(root_edge)
while placed_objects != all_objects:
welding = DiagramGrid._find_triangle_to_weld(
triangles, fringe, grid)
if welding:
(triangle, welding_edge) = welding
restart_required = DiagramGrid._weld_triangle(
triangle, welding_edge, fringe, grid, skeleton)
if restart_required:
continue
placed_objects.update(
DiagramGrid._triangle_objects(triangle))
else:
# No more weldings found. Try to attach triangles by
# vertices.
new_obj = DiagramGrid._grow_pseudopod(
triangles, fringe, grid, skeleton, placed_objects)
if not new_obj:
# No more triangles can be attached, not even by
# the edge. We will set up a new diagram out of
# what has been left, laid it out independently,
# and then attach it to this one.
remaining_objects = all_objects - placed_objects
remaining_diagram = diagram.subdiagram_from_objects(
FiniteSet(*remaining_objects))
remaining_grid = DiagramGrid(remaining_diagram)
# Now, let's glue ``remaining_grid`` to ``grid``.
final_width = grid.width + remaining_grid.width
final_height = max(grid.height, remaining_grid.height)
final_grid = _GrowableGrid(final_width, final_height)
for i in range(grid.width):
for j in range(grid.height):
final_grid[i, j] = grid[i, j]
start_j = grid.width
for i in range(remaining_grid.height):
for j in range(remaining_grid.width):
final_grid[i, start_j + j] = remaining_grid[i, j]
return final_grid
placed_objects.add(new_obj)
triangles = DiagramGrid._drop_irrelevant_triangles(
triangles, placed_objects)
return grid
@staticmethod
def _get_undirected_graph(objects, merged_morphisms):
"""
Given the objects and the relevant morphisms of a diagram,
returns the adjacency lists of the underlying undirected
graph.
"""
adjlists = {}
for obj in objects:
adjlists[obj] = []
for morphism in merged_morphisms:
adjlists[morphism.domain].append(morphism.codomain)
adjlists[morphism.codomain].append(morphism.domain)
# Assure that the objects in the adjacency list are always in
# the same order.
for obj in adjlists.keys():
adjlists[obj].sort(key=default_sort_key)
return adjlists
@staticmethod
def _sequential_layout(diagram, merged_morphisms):
r"""
Lays out the diagram in "sequential" layout. This method
will attempt to produce a result as close to a line as
possible. For linear diagrams, the result will actually be a
line.
"""
objects = diagram.objects
sorted_objects = sorted(objects, key=default_sort_key)
# Set up the adjacency lists of the underlying undirected
# graph of ``merged_morphisms``.
adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
# Find an object with the minimal degree. This is going to be
# the root.
root = sorted_objects[0]
mindegree = len(adjlists[root])
for obj in sorted_objects:
current_degree = len(adjlists[obj])
if current_degree < mindegree:
root = obj
mindegree = current_degree
grid = _GrowableGrid(1, 1)
grid[0, 0] = root
placed_objects = {root}
def place_objects(pt, placed_objects):
"""
Does depth-first search in the underlying graph of the
diagram and places the objects en route.
"""
# We will start placing new objects from here.
new_pt = (pt[0], pt[1] + 1)
for adjacent_obj in adjlists[grid[pt]]:
if adjacent_obj in placed_objects:
# This object has already been placed.
continue
DiagramGrid._put_object(new_pt, adjacent_obj, grid, [])
placed_objects.add(adjacent_obj)
placed_objects.update(place_objects(new_pt, placed_objects))
new_pt = (new_pt[0] + 1, new_pt[1])
return placed_objects
place_objects((0, 0), placed_objects)
return grid
@staticmethod
def _drop_inessential_morphisms(merged_morphisms):
r"""
Removes those morphisms which should appear in the diagram,
but which have no relevance to object layout.
Currently this removes "loop" morphisms: the non-identity
morphisms with the same domains and codomains.
"""
morphisms = [m for m in merged_morphisms if m.domain != m.codomain]
return morphisms
@staticmethod
def _get_connected_components(objects, merged_morphisms):
"""
Given a container of morphisms, returns a list of connected
components formed by these morphisms. A connected component
is represented by a diagram consisting of the corresponding
morphisms.
"""
component_index = {}
for o in objects:
component_index[o] = None
# Get the underlying undirected graph of the diagram.
adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
def traverse_component(object, current_index):
"""
Does a depth-first search traversal of the component
containing ``object``.
"""
component_index[object] = current_index
for o in adjlist[object]:
if component_index[o] is None:
traverse_component(o, current_index)
# Traverse all components.
current_index = 0
for o in adjlist:
if component_index[o] is None:
traverse_component(o, current_index)
current_index += 1
# List the objects of the components.
component_objects = [[] for i in range(current_index)]
for o, idx in component_index.items():
component_objects[idx].append(o)
# Finally, list the morphisms belonging to each component.
#
# Note: If some objects are isolated, they will not get any
# morphisms at this stage, and since the layout algorithm
# relies, we are essentially going to lose this object.
# Therefore, check if there are isolated objects and, for each
# of them, provide the trivial identity morphism. It will get
# discarded later, but the object will be there.
component_morphisms = []
for component in component_objects:
current_morphisms = {}
for m in merged_morphisms:
if (m.domain in component) and (m.codomain in component):
current_morphisms[m] = merged_morphisms[m]
if len(component) == 1:
# Let's add an identity morphism, for the sake of
# surely having morphisms in this component.
current_morphisms[IdentityMorphism(component[0])] = FiniteSet()
component_morphisms.append(Diagram(current_morphisms))
return component_morphisms
def __init__(self, diagram, groups=None, **hints):
premises = DiagramGrid._simplify_morphisms(diagram.premises)
conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions)
all_merged_morphisms = DiagramGrid._merge_premises_conclusions(
premises, conclusions)
merged_morphisms = DiagramGrid._drop_inessential_morphisms(
all_merged_morphisms)
# Store the merged morphisms for later use.
self._morphisms = all_merged_morphisms
components = DiagramGrid._get_connected_components(
diagram.objects, all_merged_morphisms)
if groups and (groups != diagram.objects):
# Lay out the diagram according to the groups.
self._grid = DiagramGrid._handle_groups(
diagram, groups, merged_morphisms, hints)
elif len(components) > 1:
# Note that we check for connectedness _before_ checking
# the layout hints because the layout strategies don't
# know how to deal with disconnected diagrams.
# The diagram is disconnected. Lay out the components
# independently.
grids = []
# Sort the components to eventually get the grids arranged
# in a fixed, hash-independent order.
components = sorted(components, key=default_sort_key)
for component in components:
grid = DiagramGrid(component, **hints)
grids.append(grid)
# Throw the grids together, in a line.
total_width = sum(g.width for g in grids)
total_height = max(g.height for g in grids)
grid = _GrowableGrid(total_width, total_height)
start_j = 0
for g in grids:
for i in range(g.height):
for j in range(g.width):
grid[i, start_j + j] = g[i, j]
start_j += g.width
self._grid = grid
elif "layout" in hints:
if hints["layout"] == "sequential":
self._grid = DiagramGrid._sequential_layout(
diagram, merged_morphisms)
else:
self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms)
if hints.get("transpose"):
# Transpose the resulting grid.
grid = _GrowableGrid(self._grid.height, self._grid.width)
for i in range(self._grid.height):
for j in range(self._grid.width):
grid[j, i] = self._grid[i, j]
self._grid = grid
@property
def width(self):
"""
Returns the number of columns in this diagram layout.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.width
2
"""
return self._grid.width
@property
def height(self):
"""
Returns the number of rows in this diagram layout.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.height
2
"""
return self._grid.height
def __getitem__(self, i_j):
"""
Returns the object placed in the row ``i`` and column ``j``.
The indices are 0-based.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> (grid[0, 0], grid[0, 1])
(Object("A"), Object("B"))
>>> (grid[1, 0], grid[1, 1])
(None, Object("C"))
"""
i, j = i_j
return self._grid[i, j]
@property
def morphisms(self):
"""
Returns those morphisms (and their properties) which are
sufficiently meaningful to be drawn.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.morphisms
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
"""
return self._morphisms
def __str__(self):
"""
Produces a string representation of this class.
This method returns a string representation of the underlying
list of lists of objects.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> print(grid)
[[Object("A"), Object("B")],
[None, Object("C")]]
"""
return repr(self._grid._array)
class ArrowStringDescription(object):
r"""
Stores the information necessary for producing an Xy-pic
description of an arrow.
The principal goal of this class is to abstract away the string
representation of an arrow and to also provide the functionality
to produce the actual Xy-pic string.
``unit`` sets the unit which will be used to specify the amount of
curving and other distances. ``horizontal_direction`` should be a
string of ``"r"`` or ``"l"`` specifying the horizontal offset of the
target cell of the arrow relatively to the current one.
``vertical_direction`` should specify the vertical offset using a
series of either ``"d"`` or ``"u"``. ``label_position`` should be
either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should
be positioned above the arrow, below the arrow or just over the arrow,
in a break. Note that the notions "above" and "below" are relative
to arrow direction. ``label`` stores the morphism label.
This works as follows (disregard the yet unexplained arguments):
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
>>> astr = ArrowStringDescription(
... unit="mm", curving=None, curving_amount=None,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar[dr]_{f}
``curving`` should be one of ``"^"``, ``"_"`` to specify in which
direction the arrow is going to curve. ``curving_amount`` is a number
describing how many ``unit``'s the morphism is going to curve:
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar@/^12mm/[dr]_{f}
``looping_start`` and ``looping_end`` are currently only used for
loop morphisms, those which have the same domain and codomain.
These two attributes should store a valid Xy-pic direction and
specify, correspondingly, the direction the arrow gets out into
and the direction the arrow gets back from:
>>> astr = ArrowStringDescription(
... unit="mm", curving=None, curving_amount=None,
... looping_start="u", looping_end="l", horizontal_direction="",
... vertical_direction="", label_position="_", label="f")
>>> print(str(astr))
\ar@(u,l)[]_{f}
``label_displacement`` controls how far the arrow label is from
the ends of the arrow. For example, to position the arrow label
near the arrow head, use ">":
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> astr.label_displacement = ">"
>>> print(str(astr))
\ar@/^12mm/[dr]_>{f}
Finally, ``arrow_style`` is used to specify the arrow style. To
get a dashed arrow, for example, use "{-->}" as arrow style:
>>> astr = ArrowStringDescription(
... unit="mm", curving="^", curving_amount=12,
... looping_start=None, looping_end=None, horizontal_direction="d",
... vertical_direction="r", label_position="_", label="f")
>>> astr.arrow_style = "{-->}"
>>> print(str(astr))
\ar@/^12mm/@{-->}[dr]_{f}
Notes
=====
Instances of :class:`ArrowStringDescription` will be constructed
by :class:`XypicDiagramDrawer` and provided for further use in
formatters. The user is not expected to construct instances of
:class:`ArrowStringDescription` themselves.
To be able to properly utilise this class, the reader is encouraged
to checkout the Xy-pic user guide, available at [Xypic].
See Also
========
XypicDiagramDrawer
References
==========
[Xypic] http://xy-pic.sourceforge.net/
"""
def __init__(self, unit, curving, curving_amount, looping_start,
looping_end, horizontal_direction, vertical_direction,
label_position, label):
self.unit = unit
self.curving = curving
self.curving_amount = curving_amount
self.looping_start = looping_start
self.looping_end = looping_end
self.horizontal_direction = horizontal_direction
self.vertical_direction = vertical_direction
self.label_position = label_position
self.label = label
self.label_displacement = ""
self.arrow_style = ""
# This flag shows that the position of the label of this
# morphism was set while typesetting a curved morphism and
# should not be modified later.
self.forced_label_position = False
def __str__(self):
if self.curving:
curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount,
self.unit)
else:
curving_str = ""
if self.looping_start and self.looping_end:
looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end)
else:
looping_str = ""
if self.arrow_style:
style_str = "@" + self.arrow_style
else:
style_str = ""
return "\\ar%s%s%s[%s%s]%s%s{%s}" % \
(curving_str, looping_str, style_str, self.horizontal_direction,
self.vertical_direction, self.label_position,
self.label_displacement, self.label)
class XypicDiagramDrawer(object):
r"""
Given a :class:`~.Diagram` and the corresponding
:class:`DiagramGrid`, produces the Xy-pic representation of the
diagram.
The most important method in this class is ``draw``. Consider the
following triangle diagram:
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
To draw this diagram, its objects need to be laid out with a
:class:`DiagramGrid`::
>>> grid = DiagramGrid(diagram)
Finally, the drawing:
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
For further details see the docstring of this method.
To control the appearance of the arrows, formatters are used. The
dictionary ``arrow_formatters`` maps morphisms to formatter
functions. A formatter is accepts an
:class:`ArrowStringDescription` and is allowed to modify any of
the arrow properties exposed thereby. For example, to have all
morphisms with the property ``unique`` appear as dashed arrows,
and to have their names prepended with `\exists !`, the following
should be done:
>>> def formatter(astr):
... astr.label = r"\exists !" + astr.label
... astr.arrow_style = "{-->}"
>>> drawer.arrow_formatters["unique"] = formatter
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
To modify the appearance of all arrows in the diagram, set
``default_arrow_formatter``. For example, to place all morphism
labels a little bit farther from the arrow head so that they look
more centred, do as follows:
>>> def default_formatter(astr):
... astr.label_displacement = "(0.45)"
>>> drawer.default_arrow_formatter = default_formatter
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\
C &
}
In some diagrams some morphisms are drawn as curved arrows.
Consider the following diagram:
>>> D = Object("D")
>>> E = Object("E")
>>> h = NamedMorphism(D, A, "h")
>>> k = NamedMorphism(D, B, "k")
>>> diagram = Diagram([f, g, h, k])
>>> grid = DiagramGrid(diagram)
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\
& C &
}
To control how far the morphisms are curved by default, one can
use the ``unit`` and ``default_curving_amount`` attributes:
>>> drawer.unit = "cm"
>>> drawer.default_curving_amount = 1
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\
& C &
}
In some diagrams, there are multiple curved morphisms between the
same two objects. To control by how much the curving changes
between two such successive morphisms, use
``default_curving_step``:
>>> drawer.default_curving_step = 1
>>> h1 = NamedMorphism(A, D, "h1")
>>> diagram = Diagram([f, g, h, k, h1])
>>> grid = DiagramGrid(diagram)
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\
& C &
}
The default value of ``default_curving_step`` is 4 units.
See Also
========
draw, ArrowStringDescription
"""
def __init__(self):
self.unit = "mm"
self.default_curving_amount = 3
self.default_curving_step = 4
# This dictionary maps properties to the corresponding arrow
# formatters.
self.arrow_formatters = {}
# This is the default arrow formatter which will be applied to
# each arrow independently of its properties.
self.default_arrow_formatter = None
@staticmethod
def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords):
"""
Produces the information required for constructing the string
representation of a loop morphism. This function is invoked
from ``_process_morphism``.
See Also
========
_process_morphism
"""
curving = ""
label_pos = "^"
looping_start = ""
looping_end = ""
# This is a loop morphism. Count how many morphisms stick
# in each of the four quadrants. Note that straight
# vertical and horizontal morphisms count in two quadrants
# at the same time (i.e., a morphism going up counts both
# in the first and the second quadrants).
# The usual numbering (counterclockwise) of quadrants
# applies.
quadrant = [0, 0, 0, 0]
obj = grid[i, j]
for m, m_str_info in morphisms_str_info.items():
if (m.domain == obj) and (m.codomain == obj):
# That's another loop morphism. Check how it
# loops and mark the corresponding quadrants as
# busy.
(l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end)
if (l_s, l_e) == ("r", "u"):
quadrant[0] += 1
elif (l_s, l_e) == ("u", "l"):
quadrant[1] += 1
elif (l_s, l_e) == ("l", "d"):
quadrant[2] += 1
elif (l_s, l_e) == ("d", "r"):
quadrant[3] += 1
continue
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
goes_out = True
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
goes_out = False
else:
continue
d_i = end_i - i
d_j = end_j - j
m_curving = m_str_info.curving
if (d_i != 0) and (d_j != 0):
# This is really a diagonal morphism. Detect the
# quadrant.
if (d_i > 0) and (d_j > 0):
quadrant[0] += 1
elif (d_i > 0) and (d_j < 0):
quadrant[1] += 1
elif (d_i < 0) and (d_j < 0):
quadrant[2] += 1
elif (d_i < 0) and (d_j > 0):
quadrant[3] += 1
elif d_i == 0:
# Knowing where the other end of the morphism is
# and which way it goes, we now have to decide
# which quadrant is now the upper one and which is
# the lower one.
if d_j > 0:
if goes_out:
upper_quadrant = 0
lower_quadrant = 3
else:
upper_quadrant = 3
lower_quadrant = 0
else:
if goes_out:
upper_quadrant = 2
lower_quadrant = 1
else:
upper_quadrant = 1
lower_quadrant = 2
if m_curving:
if m_curving == "^":
quadrant[upper_quadrant] += 1
elif m_curving == "_":
quadrant[lower_quadrant] += 1
else:
# This morphism counts in both upper and lower
# quadrants.
quadrant[upper_quadrant] += 1
quadrant[lower_quadrant] += 1
elif d_j == 0:
# Knowing where the other end of the morphism is
# and which way it goes, we now have to decide
# which quadrant is now the left one and which is
# the right one.
if d_i < 0:
if goes_out:
left_quadrant = 1
right_quadrant = 0
else:
left_quadrant = 0
right_quadrant = 1
else:
if goes_out:
left_quadrant = 3
right_quadrant = 2
else:
left_quadrant = 2
right_quadrant = 3
if m_curving:
if m_curving == "^":
quadrant[left_quadrant] += 1
elif m_curving == "_":
quadrant[right_quadrant] += 1
else:
# This morphism counts in both upper and lower
# quadrants.
quadrant[left_quadrant] += 1
quadrant[right_quadrant] += 1
# Pick the freest quadrant to curve our morphism into.
freest_quadrant = 0
for i in range(4):
if quadrant[i] < quadrant[freest_quadrant]:
freest_quadrant = i
# Now set up proper looping.
(looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"),
("d", "r")][freest_quadrant]
return (curving, label_pos, looping_start, looping_end)
@staticmethod
def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info,
object_coords):
"""
Produces the information required for constructing the string
representation of a horizontal morphism. This function is
invoked from ``_process_morphism``.
See Also
========
_process_morphism
"""
# The arrow is horizontal. Check if it goes from left to
# right (``backwards == False``) or from right to left
# (``backwards == True``).
backwards = False
start = j
end = target_j
if end < start:
(start, end) = (end, start)
backwards = True
# Let's see which objects are there between ``start`` and
# ``end``, and then count how many morphisms stick out
# upwards, and how many stick out downwards.
#
# For example, consider the situation:
#
# B1 C1
# | |
# A--B--C--D
# |
# B2
#
# Between the objects `A` and `D` there are two objects:
# `B` and `C`. Further, there are two morphisms which
# stick out upward (the ones between `B1` and `B` and
# between `C` and `C1`) and one morphism which sticks out
# downward (the one between `B and `B2`).
#
# We need this information to decide how to curve the
# arrow between `A` and `D`. First of all, since there
# are two objects between `A` and `D``, we must curve the
# arrow. Then, we will have it curve downward, because
# there is more space (less morphisms stick out downward
# than upward).
up = []
down = []
straight_horizontal = []
for k in range(start + 1, end):
obj = grid[i, k]
if not obj:
continue
for m in morphisms_str_info:
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
else:
continue
if end_i > i:
down.append(m)
elif end_i < i:
up.append(m)
elif not morphisms_str_info[m].curving:
# This is a straight horizontal morphism,
# because it has no curving.
straight_horizontal.append(m)
if len(up) < len(down):
# More morphisms stick out downward than upward, let's
# curve the morphism up.
if backwards:
curving = "_"
label_pos = "_"
else:
curving = "^"
label_pos = "^"
# Assure that the straight horizontal morphisms have
# their labels on the lower side of the arrow.
for m in straight_horizontal:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if j1 < j2:
m_str_info.label_position = "_"
else:
m_str_info.label_position = "^"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
else:
# More morphisms stick out downward than upward, let's
# curve the morphism up.
if backwards:
curving = "^"
label_pos = "^"
else:
curving = "_"
label_pos = "_"
# Assure that the straight horizontal morphisms have
# their labels on the upper side of the arrow.
for m in straight_horizontal:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if j1 < j2:
m_str_info.label_position = "^"
else:
m_str_info.label_position = "_"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
return (curving, label_pos)
@staticmethod
def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info,
object_coords):
"""
Produces the information required for constructing the string
representation of a vertical morphism. This function is
invoked from ``_process_morphism``.
See Also
========
_process_morphism
"""
# This arrow is vertical. Check if it goes from top to
# bottom (``backwards == False``) or from bottom to top
# (``backwards == True``).
backwards = False
start = i
end = target_i
if end < start:
(start, end) = (end, start)
backwards = True
# Let's see which objects are there between ``start`` and
# ``end``, and then count how many morphisms stick out to
# the left, and how many stick out to the right.
#
# See the corresponding comment in the previous branch of
# this if-statement for more details.
left = []
right = []
straight_vertical = []
for k in range(start + 1, end):
obj = grid[k, j]
if not obj:
continue
for m in morphisms_str_info:
if m.domain == obj:
(end_i, end_j) = object_coords[m.codomain]
elif m.codomain == obj:
(end_i, end_j) = object_coords[m.domain]
else:
continue
if end_j > j:
right.append(m)
elif end_j < j:
left.append(m)
elif not morphisms_str_info[m].curving:
# This is a straight vertical morphism,
# because it has no curving.
straight_vertical.append(m)
if len(left) < len(right):
# More morphisms stick out to the left than to the
# right, let's curve the morphism to the right.
if backwards:
curving = "^"
label_pos = "^"
else:
curving = "_"
label_pos = "_"
# Assure that the straight vertical morphisms have
# their labels on the left side of the arrow.
for m in straight_vertical:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if i1 < i2:
m_str_info.label_position = "^"
else:
m_str_info.label_position = "_"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
else:
# More morphisms stick out to the right than to the
# left, let's curve the morphism to the left.
if backwards:
curving = "_"
label_pos = "_"
else:
curving = "^"
label_pos = "^"
# Assure that the straight vertical morphisms have
# their labels on the right side of the arrow.
for m in straight_vertical:
(i1, j1) = object_coords[m.domain]
(i2, j2) = object_coords[m.codomain]
m_str_info = morphisms_str_info[m]
if i1 < i2:
m_str_info.label_position = "_"
else:
m_str_info.label_position = "^"
# Don't allow any further modifications of the
# position of this label.
m_str_info.forced_label_position = True
return (curving, label_pos)
def _process_morphism(self, diagram, grid, morphism, object_coords,
morphisms, morphisms_str_info):
"""
Given the required information, produces the string
representation of ``morphism``.
"""
def repeat_string_cond(times, str_gt, str_lt):
"""
If ``times > 0``, repeats ``str_gt`` ``times`` times.
Otherwise, repeats ``str_lt`` ``-times`` times.
"""
if times > 0:
return str_gt * times
else:
return str_lt * (-times)
def count_morphisms_undirected(A, B):
"""
Counts how many processed morphisms there are between the
two supplied objects.
"""
return len([m for m in morphisms_str_info
if set([m.domain, m.codomain]) == set([A, B])])
def count_morphisms_filtered(dom, cod, curving):
"""
Counts the processed morphisms which go out of ``dom``
into ``cod`` with curving ``curving``.
"""
return len([m for m, m_str_info in morphisms_str_info.items()
if (m.domain, m.codomain) == (dom, cod) and
(m_str_info.curving == curving)])
(i, j) = object_coords[morphism.domain]
(target_i, target_j) = object_coords[morphism.codomain]
# We now need to determine the direction of
# the arrow.
delta_i = target_i - i
delta_j = target_j - j
vertical_direction = repeat_string_cond(delta_i,
"d", "u")
horizontal_direction = repeat_string_cond(delta_j,
"r", "l")
curving = ""
label_pos = "^"
looping_start = ""
looping_end = ""
if (delta_i == 0) and (delta_j == 0):
# This is a loop morphism.
(curving, label_pos, looping_start,
looping_end) = XypicDiagramDrawer._process_loop_morphism(
i, j, grid, morphisms_str_info, object_coords)
elif (delta_i == 0) and (abs(j - target_j) > 1):
# This is a horizontal morphism.
(curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism(
i, j, target_j, grid, morphisms_str_info, object_coords)
elif (delta_j == 0) and (abs(i - target_i) > 1):
# This is a vertical morphism.
(curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism(
i, j, target_i, grid, morphisms_str_info, object_coords)
count = count_morphisms_undirected(morphism.domain, morphism.codomain)
curving_amount = ""
if curving:
# This morphisms should be curved anyway.
curving_amount = self.default_curving_amount + count * \
self.default_curving_step
elif count:
# There are no objects between the domain and codomain of
# the current morphism, but this is not there already are
# some morphisms with the same domain and codomain, so we
# have to curve this one.
curving = "^"
filtered_morphisms = count_morphisms_filtered(
morphism.domain, morphism.codomain, curving)
curving_amount = self.default_curving_amount + \
filtered_morphisms * \
self.default_curving_step
# Let's now get the name of the morphism.
morphism_name = ""
if isinstance(morphism, IdentityMorphism):
morphism_name = "id_{%s}" + latex(grid[i, j])
elif isinstance(morphism, CompositeMorphism):
component_names = [latex(Symbol(component.name)) for
component in morphism.components]
component_names.reverse()
morphism_name = "\\circ ".join(component_names)
elif isinstance(morphism, NamedMorphism):
morphism_name = latex(Symbol(morphism.name))
return ArrowStringDescription(
self.unit, curving, curving_amount, looping_start,
looping_end, horizontal_direction, vertical_direction,
label_pos, morphism_name)
@staticmethod
def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid):
"""
For a horizontal morphism, checks whether there is free space
(i.e., space not occupied by any objects) above the morphism
or below it.
"""
if dom_j < cod_j:
(start, end) = (dom_j, cod_j)
backwards = False
else:
(start, end) = (cod_j, dom_j)
backwards = True
# Check for free space above.
if dom_i == 0:
free_up = True
else:
free_up = all([grid[dom_i - 1, j] for j in
range(start, end + 1)])
# Check for free space below.
if dom_i == grid.height - 1:
free_down = True
else:
free_down = all([not grid[dom_i + 1, j] for j in
range(start, end + 1)])
return (free_up, free_down, backwards)
@staticmethod
def _check_free_space_vertical(dom_i, cod_i, dom_j, grid):
"""
For a vertical morphism, checks whether there is free space
(i.e., space not occupied by any objects) to the left of the
morphism or to the right of it.
"""
if dom_i < cod_i:
(start, end) = (dom_i, cod_i)
backwards = False
else:
(start, end) = (cod_i, dom_i)
backwards = True
# Check if there's space to the left.
if dom_j == 0:
free_left = True
else:
free_left = all([not grid[i, dom_j - 1] for i in
range(start, end + 1)])
if dom_j == grid.width - 1:
free_right = True
else:
free_right = all([not grid[i, dom_j + 1] for i in
range(start, end + 1)])
return (free_left, free_right, backwards)
@staticmethod
def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid):
"""
For a diagonal morphism, checks whether there is free space
(i.e., space not occupied by any objects) above the morphism
or below it.
"""
def abs_xrange(start, end):
if start < end:
return range(start, end + 1)
else:
return range(end, start + 1)
if dom_i < cod_i and dom_j < cod_j:
# This morphism goes from top-left to
# bottom-right.
(start_i, start_j) = (dom_i, dom_j)
(end_i, end_j) = (cod_i, cod_j)
backwards = False
elif dom_i > cod_i and dom_j > cod_j:
# This morphism goes from bottom-right to
# top-left.
(start_i, start_j) = (cod_i, cod_j)
(end_i, end_j) = (dom_i, dom_j)
backwards = True
if dom_i < cod_i and dom_j > cod_j:
# This morphism goes from top-right to
# bottom-left.
(start_i, start_j) = (dom_i, dom_j)
(end_i, end_j) = (cod_i, cod_j)
backwards = True
elif dom_i > cod_i and dom_j < cod_j:
# This morphism goes from bottom-left to
# top-right.
(start_i, start_j) = (cod_i, cod_j)
(end_i, end_j) = (dom_i, dom_j)
backwards = False
# This is an attempt at a fast and furious strategy to
# decide where there is free space on the two sides of
# a diagonal morphism. For a diagonal morphism
# starting at ``(start_i, start_j)`` and ending at
# ``(end_i, end_j)`` the rectangle defined by these
# two points is considered. The slope of the diagonal
# ``alpha`` is then computed. Then, for every cell
# ``(i, j)`` within the rectangle, the slope
# ``alpha1`` of the line through ``(start_i,
# start_j)`` and ``(i, j)`` is considered. If
# ``alpha1`` is between 0 and ``alpha``, the point
# ``(i, j)`` is above the diagonal, if ``alpha1`` is
# between ``alpha`` and infinity, the point is below
# the diagonal. Also note that, with some beforehand
# precautions, this trick works for both the main and
# the secondary diagonals of the rectangle.
# I have considered the possibility to only follow the
# shorter diagonals immediately above and below the
# main (or secondary) diagonal. This, however,
# wouldn't have resulted in much performance gain or
# better detection of outer edges, because of
# relatively small sizes of diagram grids, while the
# code would have become harder to understand.
alpha = float(end_i - start_i)/(end_j - start_j)
free_up = True
free_down = True
for i in abs_xrange(start_i, end_i):
if not free_up and not free_down:
break
for j in abs_xrange(start_j, end_j):
if not free_up and not free_down:
break
if (i, j) == (start_i, start_j):
continue
if j == start_j:
alpha1 = "inf"
else:
alpha1 = float(i - start_i)/(j - start_j)
if grid[i, j]:
if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)):
free_down = False
elif abs(alpha1) < abs(alpha):
free_up = False
return (free_up, free_down, backwards)
def _push_labels_out(self, morphisms_str_info, grid, object_coords):
"""
For all straight morphisms which form the visual boundary of
the laid out diagram, puts their labels on their outer sides.
"""
def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info):
"""
Given the information about room available to one side and
to the other side of a morphism (``free1`` and ``free2``),
sets the position of the morphism label in such a way that
it is on the freer side. This latter operations involves
choice between ``pos1`` and ``pos2``, taking ``backwards``
in consideration.
Thus this function will do nothing if either both ``free1
== True`` and ``free2 == True`` or both ``free1 == False``
and ``free2 == False``. In either case, choosing one side
over the other presents no advantage.
"""
if backwards:
(pos1, pos2) = (pos2, pos1)
if free1 and not free2:
m_str_info.label_position = pos1
elif free2 and not free1:
m_str_info.label_position = pos2
for m, m_str_info in morphisms_str_info.items():
if m_str_info.curving or m_str_info.forced_label_position:
# This is either a curved morphism, and curved
# morphisms have other magic, or the position of this
# label has already been fixed.
continue
if m.domain == m.codomain:
# This is a loop morphism, their labels, again have a
# different magic.
continue
(dom_i, dom_j) = object_coords[m.domain]
(cod_i, cod_j) = object_coords[m.codomain]
if dom_i == cod_i:
# Horizontal morphism.
(free_up, free_down,
backwards) = XypicDiagramDrawer._check_free_space_horizontal(
dom_i, dom_j, cod_j, grid)
set_label_position(free_up, free_down, "^", "_",
backwards, m_str_info)
elif dom_j == cod_j:
# Vertical morphism.
(free_left, free_right,
backwards) = XypicDiagramDrawer._check_free_space_vertical(
dom_i, cod_i, dom_j, grid)
set_label_position(free_left, free_right, "_", "^",
backwards, m_str_info)
else:
# A diagonal morphism.
(free_up, free_down,
backwards) = XypicDiagramDrawer._check_free_space_diagonal(
dom_i, cod_i, dom_j, cod_j, grid)
set_label_position(free_up, free_down, "^", "_",
backwards, m_str_info)
@staticmethod
def _morphism_sort_key(morphism, object_coords):
"""
Provides a morphism sorting key such that horizontal or
vertical morphisms between neighbouring objects come
first, then horizontal or vertical morphisms between more
far away objects, and finally, all other morphisms.
"""
(i, j) = object_coords[morphism.domain]
(target_i, target_j) = object_coords[morphism.codomain]
if morphism.domain == morphism.codomain:
# Loop morphisms should get after diagonal morphisms
# so that the proper direction in which to curve the
# loop can be determined.
return (3, 0, default_sort_key(morphism))
if target_i == i:
return (1, abs(target_j - j), default_sort_key(morphism))
if target_j == j:
return (1, abs(target_i - i), default_sort_key(morphism))
# Diagonal morphism.
return (2, 0, default_sort_key(morphism))
@staticmethod
def _build_xypic_string(diagram, grid, morphisms,
morphisms_str_info, diagram_format):
"""
Given a collection of :class:`ArrowStringDescription`
describing the morphisms of a diagram and the object layout
information of a diagram, produces the final Xy-pic picture.
"""
# Build the mapping between objects and morphisms which have
# them as domains.
object_morphisms = {}
for obj in diagram.objects:
object_morphisms[obj] = []
for morphism in morphisms:
object_morphisms[morphism.domain].append(morphism)
result = "\\xymatrix%s{\n" % diagram_format
for i in range(grid.height):
for j in range(grid.width):
obj = grid[i, j]
if obj:
result += latex(obj) + " "
morphisms_to_draw = object_morphisms[obj]
for morphism in morphisms_to_draw:
result += str(morphisms_str_info[morphism]) + " "
# Don't put the & after the last column.
if j < grid.width - 1:
result += "& "
# Don't put the line break after the last row.
if i < grid.height - 1:
result += "\\\\"
result += "\n"
result += "}\n"
return result
def draw(self, diagram, grid, masked=None, diagram_format=""):
r"""
Returns the Xy-pic representation of ``diagram`` laid out in
``grid``.
Consider the following simple triangle diagram.
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
To draw this diagram, its objects need to be laid out with a
:class:`DiagramGrid`::
>>> grid = DiagramGrid(diagram)
Finally, the drawing:
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
The argument ``masked`` can be used to skip morphisms in the
presentation of the diagram:
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
\xymatrix{
A \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
Finally, the ``diagram_format`` argument can be used to
specify the format string of the diagram. For example, to
increase the spacing by 1 cm, proceeding as follows:
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
\xymatrix@+1cm{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
"""
# This method works in several steps. It starts by removing
# the masked morphisms, if necessary, and then maps objects to
# their positions in the grid (coordinate tuples). Remember
# that objects are unique in ``Diagram`` and in the layout
# produced by ``DiagramGrid``, so every object is mapped to a
# single coordinate pair.
#
# The next step is the central step and is concerned with
# analysing the morphisms of the diagram and deciding how to
# draw them. For example, how to curve the arrows is decided
# at this step. The bulk of the analysis is implemented in
# ``_process_morphism``, to the result of which the
# appropriate formatters are applied.
#
# The result of the previous step is a list of
# ``ArrowStringDescription``. After the analysis and
# application of formatters, some extra logic tries to assure
# better positioning of morphism labels (for example, an
# attempt is made to avoid the situations when arrows cross
# labels). This functionality constitutes the next step and
# is implemented in ``_push_labels_out``. Note that label
# positions which have been set via a formatter are not
# affected in this step.
#
# Finally, at the closing step, the array of
# ``ArrowStringDescription`` and the layout information
# incorporated in ``DiagramGrid`` are combined to produce the
# resulting Xy-pic picture. This part of code lies in
# ``_build_xypic_string``.
if not masked:
morphisms_props = grid.morphisms
else:
morphisms_props = {}
for m, props in grid.morphisms.items():
if m in masked:
continue
morphisms_props[m] = props
# Build the mapping between objects and their position in the
# grid.
object_coords = {}
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
object_coords[grid[i, j]] = (i, j)
morphisms = sorted(morphisms_props,
key=lambda m: XypicDiagramDrawer._morphism_sort_key(
m, object_coords))
# Build the tuples defining the string representations of
# morphisms.
morphisms_str_info = {}
for morphism in morphisms:
string_description = self._process_morphism(
diagram, grid, morphism, object_coords, morphisms,
morphisms_str_info)
if self.default_arrow_formatter:
self.default_arrow_formatter(string_description)
for prop in morphisms_props[morphism]:
# prop is a Symbol. TODO: Find out why.
if prop.name in self.arrow_formatters:
formatter = self.arrow_formatters[prop.name]
formatter(string_description)
morphisms_str_info[morphism] = string_description
# Reposition the labels a bit.
self._push_labels_out(morphisms_str_info, grid, object_coords)
return XypicDiagramDrawer._build_xypic_string(
diagram, grid, morphisms, morphisms_str_info, diagram_format)
def xypic_draw_diagram(diagram, masked=None, diagram_format="",
groups=None, **hints):
r"""
Provides a shortcut combining :class:`DiagramGrid` and
:class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of
``diagram``. The argument ``masked`` is a list of morphisms which
will be not be drawn. The argument ``diagram_format`` is the
format string inserted after "\xymatrix". ``groups`` should be a
set of logical groups. The ``hints`` will be passed directly to
the constructor of :class:`DiagramGrid`.
For more information about the arguments, see the docstrings of
:class:`DiagramGrid` and ``XypicDiagramDrawer.draw``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import xypic_draw_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
>>> print(xypic_draw_diagram(diagram))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
See Also
========
XypicDiagramDrawer, DiagramGrid
"""
grid = DiagramGrid(diagram, groups, **hints)
drawer = XypicDiagramDrawer()
return drawer.draw(diagram, grid, masked, diagram_format)
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',))
def preview_diagram(diagram, masked=None, diagram_format="", groups=None,
output='png', viewer=None, euler=True, **hints):
"""
Combines the functionality of ``xypic_draw_diagram`` and
``sympy.printing.preview``. The arguments ``masked``,
``diagram_format``, ``groups``, and ``hints`` are passed to
``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler``
are passed to ``preview``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import preview_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> preview_diagram(d)
See Also
========
XypicDiagramDrawer
"""
from sympy.printing import preview
latex_output = xypic_draw_diagram(diagram, masked, diagram_format,
groups, **hints)
preview(latex_output, output, viewer, euler, ("xypic",))
|
b727f90a1a3a80e7cb1b4a743e19563461d3b717722a6e0dcaa6806056721a66 | from __future__ import print_function, division
from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify
from sympy.core.compatibility import iterable
from sympy.sets import Set, FiniteSet, EmptySet
class Class(Set):
r"""
The base class for any kind of class in the set-theoretic sense.
In axiomatic set theories, everything is a class. A class which
can be a member of another class is a set. A class which is not a
member of another class is a proper class. The class `\{1, 2\}`
is a set; the class of all sets is a proper class.
This class is essentially a synonym for :class:`sympy.core.Set`.
The goal of this class is to assure easier migration to the
eventual proper implementation of set theory.
"""
is_proper = False
class Object(Symbol):
"""
The base class for any kind of object in an abstract category.
While technically any instance of :class:`~.Basic` will do, this
class is the recommended way to create abstract objects in
abstract categories.
"""
class Morphism(Basic):
"""
The base class for any morphism in an abstract category.
In abstract categories, a morphism is an arrow between two
category objects. The object where the arrow starts is called the
domain, while the object where the arrow ends is called the
codomain.
Two morphisms between the same pair of objects are considered to
be the same morphisms. To distinguish between morphisms between
the same objects use :class:`NamedMorphism`.
It is prohibited to instantiate this class. Use one of the
derived classes instead.
See Also
========
IdentityMorphism, NamedMorphism, CompositeMorphism
"""
def __new__(cls, domain, codomain):
raise(NotImplementedError(
"Cannot instantiate Morphism. Use derived classes instead."))
@property
def domain(self):
"""
Returns the domain of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.domain
Object("A")
"""
return self.args[0]
@property
def codomain(self):
"""
Returns the codomain of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.codomain
Object("B")
"""
return self.args[1]
def compose(self, other):
r"""
Composes self with the supplied morphism.
The order of elements in the composition is the usual order,
i.e., to construct `g\circ f` use ``g.compose(f)``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g")))
>>> (g * f).domain
Object("A")
>>> (g * f).codomain
Object("C")
"""
return CompositeMorphism(other, self)
def __mul__(self, other):
r"""
Composes self with the supplied morphism.
The semantics of this operation is given by the following
equation: ``g * f == g.compose(f)`` for composable morphisms
``g`` and ``f``.
See Also
========
compose
"""
return self.compose(other)
class IdentityMorphism(Morphism):
"""
Represents an identity morphism.
An identity morphism is a morphism with equal domain and codomain,
which acts as an identity with respect to composition.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> f * id_A == f
True
>>> id_B * f == f
True
See Also
========
Morphism
"""
def __new__(cls, domain):
return Basic.__new__(cls, domain)
@property
def codomain(self):
return self.domain
class NamedMorphism(Morphism):
"""
Represents a morphism which has a name.
Names are used to distinguish between morphisms which have the
same domain and codomain: two named morphisms are equal if they
have the same domains, codomains, and names.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f
NamedMorphism(Object("A"), Object("B"), "f")
>>> f.name
'f'
See Also
========
Morphism
"""
def __new__(cls, domain, codomain, name):
if not name:
raise ValueError("Empty morphism names not allowed.")
if not isinstance(name, Symbol):
name = Symbol(name)
return Basic.__new__(cls, domain, codomain, name)
@property
def name(self):
"""
Returns the name of the morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.name
'f'
"""
return self.args[2].name
class CompositeMorphism(Morphism):
r"""
Represents a morphism which is a composition of other morphisms.
Two composite morphisms are equal if the morphisms they were
obtained from (components) are the same and were listed in the
same order.
The arguments to the constructor for this class should be listed
in diagram order: to obtain the composition `g\circ f` from the
instances of :class:`Morphism` ``g`` and ``f`` use
``CompositeMorphism(f, g)``.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g")))
>>> CompositeMorphism(f, g) == g * f
True
"""
@staticmethod
def _add_morphism(t, morphism):
"""
Intelligently adds ``morphism`` to tuple ``t``.
If ``morphism`` is a composite morphism, its components are
added to the tuple. If ``morphism`` is an identity, nothing
is added to the tuple.
No composability checks are performed.
"""
if isinstance(morphism, CompositeMorphism):
# ``morphism`` is a composite morphism; we have to
# denest its components.
return t + morphism.components
elif isinstance(morphism, IdentityMorphism):
# ``morphism`` is an identity. Nothing happens.
return t
else:
return t + Tuple(morphism)
def __new__(cls, *components):
if components and not isinstance(components[0], Morphism):
# Maybe the user has explicitly supplied a list of
# morphisms.
return CompositeMorphism.__new__(cls, *components[0])
normalised_components = Tuple()
for current, following in zip(components, components[1:]):
if not isinstance(current, Morphism) or \
not isinstance(following, Morphism):
raise TypeError("All components must be morphisms.")
if current.codomain != following.domain:
raise ValueError("Uncomposable morphisms.")
normalised_components = CompositeMorphism._add_morphism(
normalised_components, current)
# We haven't added the last morphism to the list of normalised
# components. Add it now.
normalised_components = CompositeMorphism._add_morphism(
normalised_components, components[-1])
if not normalised_components:
# If ``normalised_components`` is empty, only identities
# were supplied. Since they all were composable, they are
# all the same identities.
return components[0]
elif len(normalised_components) == 1:
# No sense to construct a whole CompositeMorphism.
return normalised_components[0]
return Basic.__new__(cls, normalised_components)
@property
def components(self):
"""
Returns the components of this composite morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).components
(NamedMorphism(Object("A"), Object("B"), "f"),
NamedMorphism(Object("B"), Object("C"), "g"))
"""
return self.args[0]
@property
def domain(self):
"""
Returns the domain of this composite morphism.
The domain of the composite morphism is the domain of its
first component.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).domain
Object("A")
"""
return self.components[0].domain
@property
def codomain(self):
"""
Returns the codomain of this composite morphism.
The codomain of the composite morphism is the codomain of its
last component.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).codomain
Object("C")
"""
return self.components[-1].codomain
def flatten(self, new_name):
"""
Forgets the composite structure of this morphism.
If ``new_name`` is not empty, returns a :class:`NamedMorphism`
with the supplied name, otherwise returns a :class:`Morphism`.
In both cases the domain of the new morphism is the domain of
this composite morphism and the codomain of the new morphism
is the codomain of this composite morphism.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).flatten("h")
NamedMorphism(Object("A"), Object("C"), "h")
"""
return NamedMorphism(self.domain, self.codomain, new_name)
class Category(Basic):
r"""
An (abstract) category.
A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id,
\circ)` consisting of
* a (set-theoretical) class `O`, whose members are called
`K`-objects,
* for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose
members are called `K`-morphisms from `A` to `B`,
* for a each `K`-object `A`, a morphism `id:A\rightarrow A`,
called the `K`-identity of `A`,
* a composition law `\circ` associating with every `K`-morphisms
`f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ
f:A\rightarrow C`, called the composite of `f` and `g`.
Composition is associative, `K`-identities are identities with
respect to composition, and the sets `\hom(A, B)` are pairwise
disjoint.
This class knows nothing about its objects and morphisms.
Concrete cases of (abstract) categories should be implemented as
classes derived from this one.
Certain instances of :class:`Diagram` can be asserted to be
commutative in a :class:`Category` by supplying the argument
``commutative_diagrams`` in the constructor.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
See Also
========
Diagram
"""
def __new__(cls, symbol, objects=EmptySet, commutative_diagrams=EmptySet):
if not symbol:
raise ValueError("A Category cannot have an empty name.")
if not isinstance(symbol, Symbol):
symbol = Symbol(symbol)
if not isinstance(objects, Class):
objects = Class(objects)
new_category = Basic.__new__(cls, symbol, objects,
FiniteSet(*commutative_diagrams))
return new_category
@property
def name(self):
"""
Returns the name of this category.
Examples
========
>>> from sympy.categories import Category
>>> K = Category("K")
>>> K.name
'K'
"""
return self.args[0].name
@property
def objects(self):
"""
Returns the class of objects of this category.
Examples
========
>>> from sympy.categories import Object, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> K = Category("K", FiniteSet(A, B))
>>> K.objects
Class(FiniteSet(Object("A"), Object("B")))
"""
return self.args[1]
@property
def commutative_diagrams(self):
"""
Returns the :class:`~.FiniteSet` of diagrams which are known to
be commutative in this category.
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
"""
return self.args[2]
def hom(self, A, B):
raise NotImplementedError(
"hom-sets are not implemented in Category.")
def all_morphisms(self):
raise NotImplementedError(
"Obtaining the class of morphisms is not implemented in Category.")
class Diagram(Basic):
r"""
Represents a diagram in a certain category.
Informally, a diagram is a collection of objects of a category and
certain morphisms between them. A diagram is still a monoid with
respect to morphism composition; i.e., identity morphisms, as well
as all composites of morphisms included in the diagram belong to
the diagram. For a more formal approach to this notion see
[Pare1970].
The components of composite morphisms are also added to the
diagram. No properties are assigned to such morphisms by default.
A commutative diagram is often accompanied by a statement of the
following kind: "if such morphisms with such properties exist,
then such morphisms which such properties exist and the diagram is
commutative". To represent this, an instance of :class:`Diagram`
includes a collection of morphisms which are the premises and
another collection of conclusions. ``premises`` and
``conclusions`` associate morphisms belonging to the corresponding
categories with the :class:`~.FiniteSet`'s of their properties.
The set of properties of a composite morphism is the intersection
of the sets of properties of its components. The domain and
codomain of a conclusion morphism should be among the domains and
codomains of the morphisms listed as the premises of a diagram.
No checks are carried out of whether the supplied object and
morphisms do belong to one and the same category.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import FiniteSet, pprint, default_sort_key
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
>>> pprint(premises_keys, use_unicode=False)
[g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C]
>>> pprint(d.premises, use_unicode=False)
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: EmptyS
et, f:A-->B: EmptySet, g:B-->C: EmptySet}
>>> d = Diagram([f, g], {g * f: "unique"})
>>> pprint(d.conclusions)
{g*f:A-->C: {unique}}
References
==========
[Pare1970] B. Pareigis: Categories and functors. Academic Press,
1970.
"""
@staticmethod
def _set_dict_union(dictionary, key, value):
"""
If ``key`` is in ``dictionary``, set the new value of ``key``
to be the union between the old value and ``value``.
Otherwise, set the value of ``key`` to ``value.
Returns ``True`` if the key already was in the dictionary and
``False`` otherwise.
"""
if key in dictionary:
dictionary[key] = dictionary[key] | value
return True
else:
dictionary[key] = value
return False
@staticmethod
def _add_morphism_closure(morphisms, morphism, props, add_identities=True,
recurse_composites=True):
"""
Adds a morphism and its attributes to the supplied dictionary
``morphisms``. If ``add_identities`` is True, also adds the
identity morphisms for the domain and the codomain of
``morphism``.
"""
if not Diagram._set_dict_union(morphisms, morphism, props):
# We have just added a new morphism.
if isinstance(morphism, IdentityMorphism):
if props:
# Properties for identity morphisms don't really
# make sense, because very much is known about
# identity morphisms already, so much that they
# are trivial. Having properties for identity
# morphisms would only be confusing.
raise ValueError(
"Instances of IdentityMorphism cannot have properties.")
return
if add_identities:
empty = EmptySet
id_dom = IdentityMorphism(morphism.domain)
id_cod = IdentityMorphism(morphism.codomain)
Diagram._set_dict_union(morphisms, id_dom, empty)
Diagram._set_dict_union(morphisms, id_cod, empty)
for existing_morphism, existing_props in list(morphisms.items()):
new_props = existing_props & props
if morphism.domain == existing_morphism.codomain:
left = morphism * existing_morphism
Diagram._set_dict_union(morphisms, left, new_props)
if morphism.codomain == existing_morphism.domain:
right = existing_morphism * morphism
Diagram._set_dict_union(morphisms, right, new_props)
if isinstance(morphism, CompositeMorphism) and recurse_composites:
# This is a composite morphism, add its components as
# well.
empty = EmptySet
for component in morphism.components:
Diagram._add_morphism_closure(morphisms, component, empty,
add_identities)
def __new__(cls, *args):
"""
Construct a new instance of Diagram.
If no arguments are supplied, an empty diagram is created.
If at least an argument is supplied, ``args[0]`` is
interpreted as the premises of the diagram. If ``args[0]`` is
a list, it is interpreted as a list of :class:`Morphism`'s, in
which each :class:`Morphism` has an empty set of properties.
If ``args[0]`` is a Python dictionary or a :class:`Dict`, it
is interpreted as a dictionary associating to some
:class:`Morphism`'s some properties.
If at least two arguments are supplied ``args[1]`` is
interpreted as the conclusions of the diagram. The type of
``args[1]`` is interpreted in exactly the same way as the type
of ``args[0]``. If only one argument is supplied, the diagram
has no conclusions.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> IdentityMorphism(A) in d.premises.keys()
True
>>> g * f in d.premises.keys()
True
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d.conclusions[g * f]
FiniteSet(unique)
"""
premises = {}
conclusions = {}
# Here we will keep track of the objects which appear in the
# premises.
objects = EmptySet
if len(args) >= 1:
# We've got some premises in the arguments.
premises_arg = args[0]
if isinstance(premises_arg, list):
# The user has supplied a list of morphisms, none of
# which have any attributes.
empty = EmptySet
for morphism in premises_arg:
objects |= FiniteSet(morphism.domain, morphism.codomain)
Diagram._add_morphism_closure(premises, morphism, empty)
elif isinstance(premises_arg, dict) or isinstance(premises_arg, Dict):
# The user has supplied a dictionary of morphisms and
# their properties.
for morphism, props in premises_arg.items():
objects |= FiniteSet(morphism.domain, morphism.codomain)
Diagram._add_morphism_closure(
premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props))
if len(args) >= 2:
# We also have some conclusions.
conclusions_arg = args[1]
if isinstance(conclusions_arg, list):
# The user has supplied a list of morphisms, none of
# which have any attributes.
empty = EmptySet
for morphism in conclusions_arg:
# Check that no new objects appear in conclusions.
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
# No need to add identities and recurse
# composites this time.
Diagram._add_morphism_closure(
conclusions, morphism, empty, add_identities=False,
recurse_composites=False)
elif isinstance(conclusions_arg, dict) or \
isinstance(conclusions_arg, Dict):
# The user has supplied a dictionary of morphisms and
# their properties.
for morphism, props in conclusions_arg.items():
# Check that no new objects appear in conclusions.
if (morphism.domain in objects) and \
(morphism.codomain in objects):
# No need to add identities and recurse
# composites this time.
Diagram._add_morphism_closure(
conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props),
add_identities=False, recurse_composites=False)
return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects)
@property
def premises(self):
"""
Returns the premises of this diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> from sympy import pretty
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> d = Diagram([f])
>>> print(pretty(d.premises, use_unicode=False))
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
"""
return self.args[0]
@property
def conclusions(self):
"""
Returns the conclusions of this diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> IdentityMorphism(A) in d.premises.keys()
True
>>> g * f in d.premises.keys()
True
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d.conclusions[g * f] == FiniteSet("unique")
True
"""
return self.args[1]
@property
def objects(self):
"""
Returns the :class:`~.FiniteSet` of objects that appear in this
diagram.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> d.objects
FiniteSet(Object("A"), Object("B"), Object("C"))
"""
return self.args[2]
def hom(self, A, B):
"""
Returns a 2-tuple of sets of morphisms between objects A and
B: one set of morphisms listed as premises, and the other set
of morphisms listed as conclusions.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import pretty
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> print(pretty(d.hom(A, C), use_unicode=False))
({g*f:A-->C}, {g*f:A-->C})
See Also
========
Object, Morphism
"""
premises = EmptySet
conclusions = EmptySet
for morphism in self.premises.keys():
if (morphism.domain == A) and (morphism.codomain == B):
premises |= FiniteSet(morphism)
for morphism in self.conclusions.keys():
if (morphism.domain == A) and (morphism.codomain == B):
conclusions |= FiniteSet(morphism)
return (premises, conclusions)
def is_subdiagram(self, diagram):
"""
Checks whether ``diagram`` is a subdiagram of ``self``.
Diagram `D'` is a subdiagram of `D` if all premises
(conclusions) of `D'` are contained in the premises
(conclusions) of `D`. The morphisms contained
both in `D'` and `D` should have the same properties for `D'`
to be a subdiagram of `D`.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d1 = Diagram([f])
>>> d.is_subdiagram(d1)
True
>>> d1.is_subdiagram(d)
False
"""
premises = all([(m in self.premises) and
(diagram.premises[m] == self.premises[m])
for m in diagram.premises])
if not premises:
return False
conclusions = all([(m in self.conclusions) and
(diagram.conclusions[m] == self.conclusions[m])
for m in diagram.conclusions])
# Premises is surely ``True`` here.
return conclusions
def subdiagram_from_objects(self, objects):
"""
If ``objects`` is a subset of the objects of ``self``, returns
a diagram which has as premises all those premises of ``self``
which have a domains and codomains in ``objects``, likewise
for conclusions. Properties are preserved.
Examples
========
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
>>> d1 == Diagram([f], {f: "unique"})
True
"""
if not objects.is_subset(self.objects):
raise ValueError(
"Supplied objects should all belong to the diagram.")
new_premises = {}
for morphism, props in self.premises.items():
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
new_premises[morphism] = props
new_conclusions = {}
for morphism, props in self.conclusions.items():
if ((sympify(objects.contains(morphism.domain)) is S.true) and
(sympify(objects.contains(morphism.codomain)) is S.true)):
new_conclusions[morphism] = props
return Diagram(new_premises, new_conclusions)
|
a62c974e5f76a0f5ed010f2674ffb740b6883955012ea8be6f7d7985292cfce2 | # References :
# http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
# https://en.wikipedia.org/wiki/Quaternion
from __future__ import print_function
from sympy import S, Rational
from sympy import re, im, conjugate, sign
from sympy import sqrt, sin, cos, acos, exp, ln
from sympy import trigsimp
from sympy import integrate
from sympy import Matrix
from sympy import sympify
from sympy.core.expr import Expr
class Quaternion(Expr):
"""Provides basic quaternion operations.
Quaternion objects can be instantiated as Quaternion(a, b, c, d)
as in (a + b*i + c*j + d*k).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
Quaternions over complex fields can be defined as :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
_op_priority = 11.0
is_commutative = False
def __new__(cls, a=0, b=0, c=0, d=0, real_field=True):
a = sympify(a)
b = sympify(b)
c = sympify(c)
d = sympify(d)
if any(i.is_commutative is False for i in [a, b, c, d]):
raise ValueError("arguments have to be commutative")
else:
obj = Expr.__new__(cls, a, b, c, d)
obj._a = a
obj._b = b
obj._c = c
obj._d = d
obj._real_field = real_field
return obj
@property
def a(self):
return self._a
@property
def b(self):
return self._b
@property
def c(self):
return self._c
@property
def d(self):
return self._d
@property
def real_field(self):
return self._real_field
@classmethod
def from_axis_angle(cls, vector, angle):
"""Returns a rotation quaternion given the axis and the angle of rotation.
Parameters
==========
vector : tuple of three numbers
The vector representation of the given axis.
angle : number
The angle by which axis is rotated (in radians).
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
"""
(x, y, z) = vector
norm = sqrt(x**2 + y**2 + z**2)
(x, y, z) = (x / norm, y / norm, z / norm)
s = sin(angle * S.Half)
a = cos(angle * S.Half)
b = x * s
c = y * s
d = z * s
return cls(a, b, c, d).normalize()
@classmethod
def from_rotation_matrix(cls, M):
"""Returns the equivalent quaternion of a matrix. The quaternion will be normalized
only if the matrix is special orthogonal (orthogonal and det(M) = 1).
Parameters
==========
M : Matrix
Input matrix to be converted to equivalent quaternion. M must be special
orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
Returns
=======
Quaternion
The quaternion equivalent to given matrix.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
"""
absQ = M.det()**Rational(1, 3)
a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
b = b * sign(M[2, 1] - M[1, 2])
c = c * sign(M[0, 2] - M[2, 0])
d = d * sign(M[1, 0] - M[0, 1])
return Quaternion(a, b, c, d)
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
return self.add(other)
def __sub__(self, other):
return self.add(other*-1)
def __mul__(self, other):
return self._generic_mul(self, other)
def __rmul__(self, other):
return self._generic_mul(other, self)
def __pow__(self, p):
return self.pow(p)
def __neg__(self):
return Quaternion(-self._a, -self._b, -self._c, -self.d)
def __truediv__(self, other):
return self * sympify(other)**-1
__div__ = __truediv__
def __rtruediv__(self, other):
return sympify(other) * self**-1
__rdiv__ = __rtruediv__
def _eval_Integral(self, *args):
return self.integrate(*args)
def diff(self, *symbols, **kwargs):
kwargs.setdefault('evaluate', True)
return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
def add(self, other):
"""Adds quaternions.
Parameters
==========
other : Quaternion
The quaternion to add to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after adding self to other
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
q1 = self
q2 = sympify(other)
# If q2 is a number or a sympy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
elif q2.is_commutative:
return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
else:
raise ValueError("Only commutative expressions can be added with a Quaternion.")
return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
+ q2.d)
def mul(self, other):
"""Multiplies quaternions.
Parameters
==========
other : Quaternion or symbol
The quaternion to multiply to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after multiplying self with other
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
return self._generic_mul(self, other)
@staticmethod
def _generic_mul(q1, q2):
"""Generic multiplication.
Parameters
==========
q1 : Quaternion or symbol
q2 : Quaternion or symbol
It's important to note that if neither q1 nor q2 is a Quaternion,
this function simply returns q1 * q2.
Returns
=======
Quaternion
The resultant quaternion after multiplying q1 and q2
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import Symbol
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> Quaternion._generic_mul(q1, q2)
(-60) + 12*i + 30*j + 24*k
>>> Quaternion._generic_mul(q1, 2)
2 + 4*i + 6*j + 8*k
>>> x = Symbol('x', real = True)
>>> Quaternion._generic_mul(q1, x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> Quaternion._generic_mul(q3, 2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
q1 = sympify(q1)
q2 = sympify(q2)
# None is a Quaternion:
if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
return q1 * q2
# If q1 is a number or a sympy expression instead of a quaternion
if not isinstance(q1, Quaternion):
if q2.real_field and q1.is_complex:
return Quaternion(re(q1), im(q1), 0, 0) * q2
elif q1.is_commutative:
return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If q2 is a number or a sympy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return q1 * Quaternion(re(q2), im(q2), 0, 0)
elif q2.is_commutative:
return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
-q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d)
def _eval_conjugate(self):
"""Returns the conjugate of the quaternion."""
q = self
return Quaternion(q.a, -q.b, -q.c, -q.d)
def norm(self):
"""Returns the norm of the quaternion."""
q = self
# trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
# arise when from_axis_angle is used).
return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
def normalize(self):
"""Returns the normalized form of the quaternion."""
q = self
return q * (1/q.norm())
def inverse(self):
"""Returns the inverse of the quaternion."""
q = self
if not q.norm():
raise ValueError("Cannot compute inverse for a quaternion with zero norm")
return conjugate(q) * (1/q.norm()**2)
def pow(self, p):
"""Finds the pth power of the quaternion.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
Returns the p-th power of the current quaternion.
Returns the inverse if p = -1.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
"""
p = sympify(p)
q = self
if p == -1:
return q.inverse()
res = 1
if not p.is_Integer:
return NotImplemented
if p < 0:
q, p = q.inverse(), -p
while p > 0:
if p % 2 == 1:
res = q * res
p = p//2
q = q * q
return res
def exp(self):
"""Returns the exponential of q (e^q).
Returns
=======
Quaternion
Exponential of q (e^q).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
"""
# exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
a = exp(q.a) * cos(vector_norm)
b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
return Quaternion(a, b, c, d)
def _ln(self):
"""Returns the natural logarithm of the quaternion (_ln(q)).
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q._ln()
log(sqrt(30))
+ 2*sqrt(29)*acos(sqrt(30)/30)/29*i
+ 3*sqrt(29)*acos(sqrt(30)/30)/29*j
+ 4*sqrt(29)*acos(sqrt(30)/30)/29*k
"""
# _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
q_norm = q.norm()
a = ln(q_norm)
b = q.b * acos(q.a / q_norm) / vector_norm
c = q.c * acos(q.a / q_norm) / vector_norm
d = q.d * acos(q.a / q_norm) / vector_norm
return Quaternion(a, b, c, d)
def pow_cos_sin(self, p):
"""Computes the pth power in the cos-sin form.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
The p-th power in the cos-sin form.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
"""
# q = ||q||*(cos(a) + u*sin(a))
# q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
q = self
(v, angle) = q.to_axis_angle()
q2 = Quaternion.from_axis_angle(v, p * angle)
return q2 * (q.norm()**p)
def integrate(self, *args):
# TODO: is this expression correct?
return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
integrate(self.c, *args), integrate(self.d, *args))
@staticmethod
def rotate_point(pin, r):
"""Returns the coordinates of the point pin(a 3 tuple) after rotation.
Parameters
==========
pin : tuple
A 3-element tuple of coordinates of a point which needs to be
rotated.
r : Quaternion or tuple
Axis and angle of rotation.
It's important to note that when r is a tuple, it must be of the form
(axis, angle)
Returns
=======
tuple
The coordinates of the point after rotation.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
"""
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
def to_axis_angle(self):
"""Returns the axis and angle of rotation of a quaternion
Returns
=======
tuple
Tuple of (axis, angle)
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
"""
q = self
if q.a.is_negative:
q = q * -1
q = q.normalize()
angle = trigsimp(2 * acos(q.a))
# Since quaternion is normalised, q.a is less than 1.
s = sqrt(1 - q.a*q.a)
x = trigsimp(q.b / s)
y = trigsimp(q.c / s)
z = trigsimp(q.d / s)
v = (x, y, z)
t = (v, angle)
return t
def to_rotation_matrix(self, v=None):
"""Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Parameters
==========
v : tuple or None
Default value: None
Returns
=======
tuple
Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([
[cos(x), -sin(x), 0],
[sin(x), cos(x), 0],
[ 0, 0, 1]])
Generates a 4x4 transformation matrix (used for rotation about a point
other than the origin) if the point(v) is passed as an argument.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix((1, 1, 1)))
Matrix([
[cos(x), -sin(x), 0, sin(x) - cos(x) + 1],
[sin(x), cos(x), 0, -sin(x) - cos(x) + 1],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
"""
q = self
s = q.norm()**-2
m00 = 1 - 2*s*(q.c**2 + q.d**2)
m01 = 2*s*(q.b*q.c - q.d*q.a)
m02 = 2*s*(q.b*q.d + q.c*q.a)
m10 = 2*s*(q.b*q.c + q.d*q.a)
m11 = 1 - 2*s*(q.b**2 + q.d**2)
m12 = 2*s*(q.c*q.d - q.b*q.a)
m20 = 2*s*(q.b*q.d - q.c*q.a)
m21 = 2*s*(q.c*q.d + q.b*q.a)
m22 = 1 - 2*s*(q.b**2 + q.c**2)
if not v:
return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
else:
(x, y, z) = v
m03 = x - x*m00 - y*m01 - z*m02
m13 = y - x*m10 - y*m11 - z*m12
m23 = z - x*m20 - y*m21 - z*m22
m30 = m31 = m32 = 0
m33 = 1
return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
[m20, m21, m22, m23], [m30, m31, m32, m33]])
|
351c028646e9c49e4098a504ab85056fcb2e58216ff859335be202867038a52c | """Predefined R^n manifolds together with common coord. systems.
Coordinate systems are predefined as well as the transformation laws between
them.
Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`),
as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by
using the usual `coord_sys.coord_function(index, name)` interface.
"""
from __future__ import print_function, division
from typing import Any
from .diffgeom import Manifold, Patch, CoordSystem
from sympy import sqrt, atan2, acos, sin, cos, Dummy
###############################################################################
# R2
###############################################################################
R2 = Manifold('R^2', 2) # type: Any
# Patch and coordinate systems.
R2_origin = Patch('origin', R2) # type: Any
R2_r = CoordSystem('rectangular', R2_origin, ['x', 'y']) # type: Any
R2_p = CoordSystem('polar', R2_origin, ['r', 'theta']) # type: Any
# Connecting the coordinate charts.
x, y, r, theta = [Dummy(s) for s in ['x', 'y', 'r', 'theta']]
R2_r.connect_to(R2_p, [x, y],
[sqrt(x**2 + y**2), atan2(y, x)],
inverse=False, fill_in_gaps=False)
R2_p.connect_to(R2_r, [r, theta],
[r*cos(theta), r*sin(theta)],
inverse=False, fill_in_gaps=False)
del x, y, r, theta
# Defining the basis coordinate functions and adding shortcuts for them to the
# manifold and the patch.
R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions()
R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions()
# Defining the basis vector fields and adding shortcuts for them to the
# manifold and the patch.
R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors()
R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors()
# Defining the basis oneform fields and adding shortcuts for them to the
# manifold and the patch.
R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms()
R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms()
###############################################################################
# R3
###############################################################################
R3 = Manifold('R^3', 3) # type: Any
# Patch and coordinate systems.
R3_origin = Patch('origin', R3) # type: Any
R3_r = CoordSystem('rectangular', R3_origin, ['x', 'y', 'z']) # type: Any
R3_c = CoordSystem('cylindrical', R3_origin, ['rho', 'psi', 'z']) # type: Any
R3_s = CoordSystem('spherical', R3_origin, ['r', 'theta', 'phi']) # type: Any
# Connecting the coordinate charts.
x, y, z, rho, psi, r, theta, phi = [Dummy(s) for s in ['x', 'y', 'z',
'rho', 'psi', 'r', 'theta', 'phi']]
## rectangular <-> cylindrical
R3_r.connect_to(R3_c, [x, y, z],
[sqrt(x**2 + y**2), atan2(y, x), z],
inverse=False, fill_in_gaps=False)
R3_c.connect_to(R3_r, [rho, psi, z],
[rho*cos(psi), rho*sin(psi), z],
inverse=False, fill_in_gaps=False)
## rectangular <-> spherical
R3_r.connect_to(R3_s, [x, y, z],
[sqrt(x**2 + y**2 + z**2), acos(z/
sqrt(x**2 + y**2 + z**2)), atan2(y, x)],
inverse=False, fill_in_gaps=False)
R3_s.connect_to(R3_r, [r, theta, phi],
[r*sin(theta)*cos(phi), r*sin(
theta)*sin(phi), r*cos(theta)],
inverse=False, fill_in_gaps=False)
## cylindrical <-> spherical
R3_c.connect_to(R3_s, [rho, psi, z],
[sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi],
inverse=False, fill_in_gaps=False)
R3_s.connect_to(R3_c, [r, theta, phi],
[r*sin(theta), phi, r*cos(theta)],
inverse=False, fill_in_gaps=False)
del x, y, z, rho, psi, r, theta, phi
# Defining the basis coordinate functions.
R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions()
R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions()
R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions()
# Defining the basis vector fields.
R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors()
R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors()
R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors()
# Defining the basis oneform fields.
R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms()
R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms()
R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()
|
a8d5b16005712701e04bbff3482a74f7e6a327ed4fce6d7f6353f462ca611b28 | from __future__ import print_function, division
from typing import Any, Set
from itertools import permutations
from sympy.combinatorics import Permutation
from sympy.core import AtomicExpr, Basic, Expr, Dummy, Function, sympify, diff, Pow, Mul, Add, symbols, Tuple
from sympy.core.compatibility import reduce
from sympy.core.numbers import Zero
from sympy.functions import factorial
from sympy.matrices import Matrix
from sympy.simplify import simplify
from sympy.solvers import solve
# TODO you are a bit excessive in the use of Dummies
# TODO dummy point, literal field
# TODO too often one needs to call doit or simplify on the output, check the
# tests and find out why
from sympy.tensor.array import ImmutableDenseNDimArray
class Manifold(Basic):
"""Object representing a mathematical manifold.
The only role that this object plays is to keep a list of all patches
defined on the manifold. It does not provide any means to study the
topological characteristics of the manifold that it represents.
"""
def __new__(cls, name, dim):
name = sympify(name)
dim = sympify(dim)
obj = Basic.__new__(cls, name, dim)
obj.name = name
obj.dim = dim
obj.patches = []
# The patches list is necessary if a Patch instance needs to enumerate
# other Patch instance on the same manifold.
return obj
def _latex(self, printer, *args):
return r'\text{%s}' % self.name
class Patch(Basic):
"""Object representing a patch on a manifold.
On a manifold one can have many patches that do not always include the
whole manifold. On these patches coordinate charts can be defined that
permit the parameterization of any point on the patch in terms of a tuple
of real numbers (the coordinates).
This object serves as a container/parent for all coordinate system charts
that can be defined on the patch it represents.
Examples
========
Define a Manifold and a Patch on that Manifold:
>>> from sympy.diffgeom import Manifold, Patch
>>> m = Manifold('M', 3)
>>> p = Patch('P', m)
>>> p in m.patches
True
"""
# Contains a reference to the parent manifold in order to be able to access
# other patches.
def __new__(cls, name, manifold):
name = sympify(name)
obj = Basic.__new__(cls, name, manifold)
obj.name = name
obj.manifold = manifold
obj.manifold.patches.append(obj)
obj.coord_systems = []
# The list of coordinate systems is necessary for an instance of
# CoordSystem to enumerate other coord systems on the patch.
return obj
@property
def dim(self):
return self.manifold.dim
def _latex(self, printer, *args):
return r'\text{%s}_{%s}' % (self.name, self.manifold._latex(printer, *args))
class CoordSystem(Basic):
"""Contains all coordinate transformation logic.
Examples
========
Define a Manifold and a Patch, and then define two coord systems on that
patch:
>>> from sympy import symbols, sin, cos, pi
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> from sympy.simplify import simplify
>>> r, theta = symbols('r, theta')
>>> m = Manifold('M', 2)
>>> patch = Patch('P', m)
>>> rect = CoordSystem('rect', patch)
>>> polar = CoordSystem('polar', patch)
>>> rect in patch.coord_systems
True
Connect the coordinate systems. An inverse transformation is automatically
found by ``solve`` when possible:
>>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)])
>>> polar.coord_tuple_transform_to(rect, [0, 2])
Matrix([
[0],
[0]])
>>> polar.coord_tuple_transform_to(rect, [2, pi/2])
Matrix([
[0],
[2]])
>>> rect.coord_tuple_transform_to(polar, [1, 1]).applyfunc(simplify)
Matrix([
[sqrt(2)],
[ pi/4]])
Calculate the jacobian of the polar to cartesian transformation:
>>> polar.jacobian(rect, [r, theta])
Matrix([
[cos(theta), -r*sin(theta)],
[sin(theta), r*cos(theta)]])
Define a point using coordinates in one of the coordinate systems:
>>> p = polar.point([1, 3*pi/4])
>>> rect.point_to_coords(p)
Matrix([
[-sqrt(2)/2],
[ sqrt(2)/2]])
Define a basis scalar field (i.e. a coordinate function), that takes a
point and returns its coordinates. It is an instance of ``BaseScalarField``.
>>> rect.coord_function(0)(p)
-sqrt(2)/2
>>> rect.coord_function(1)(p)
sqrt(2)/2
Define a basis vector field (i.e. a unit vector field along the coordinate
line). Vectors are also differential operators on scalar fields. It is an
instance of ``BaseVectorField``.
>>> v_x = rect.base_vector(0)
>>> x = rect.coord_function(0)
>>> v_x(x)
1
>>> v_x(v_x(x))
0
Define a basis oneform field:
>>> dx = rect.base_oneform(0)
>>> dx(v_x)
1
If you provide a list of names the fields will print nicely:
- without provided names:
>>> x, v_x, dx
(rect_0, e_rect_0, drect_0)
- with provided names
>>> rect = CoordSystem('rect', patch, ['x', 'y'])
>>> rect.coord_function(0), rect.base_vector(0), rect.base_oneform(0)
(x, e_x, dx)
"""
# Contains a reference to the parent patch in order to be able to access
# other coordinate system charts.
def __new__(cls, name, patch, names=None):
name = sympify(name)
# names is not in args because it is related only to printing, not to
# identifying the CoordSystem instance.
if not names:
names = ['%s_%d' % (name, i) for i in range(patch.dim)]
if isinstance(names, Tuple):
obj = Basic.__new__(cls, name, patch, names)
else:
names = Tuple(*symbols(names))
obj = Basic.__new__(cls, name, patch, names)
obj.name = name
obj._names = [str(i) for i in names.args]
obj.patch = patch
obj.patch.coord_systems.append(obj)
obj.transforms = {}
# All the coordinate transformation logic is in this dictionary in the
# form of:
# key = other coordinate system
# value = tuple of # TODO make these Lambda instances
# - list of `Dummy` coordinates in this coordinate system
# - list of expressions as a function of the Dummies giving
# the coordinates in another coordinate system
obj._dummies = [Dummy(str(n)) for n in names]
obj._dummy = Dummy()
return obj
@property
def dim(self):
return self.patch.dim
##########################################################################
# Coordinate transformations.
##########################################################################
def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
"""Register the transformation used to switch to another coordinate system.
Parameters
==========
to_sys
another instance of ``CoordSystem``
from_coords
list of symbols in terms of which ``to_exprs`` is given
to_exprs
list of the expressions of the new coordinate tuple
inverse
try to deduce and register the inverse transformation
fill_in_gaps
try to deduce other transformation that are made
possible by composing the present transformation with other already
registered transformation
"""
from_coords, to_exprs = dummyfy(from_coords, to_exprs)
self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)
if inverse:
to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)
if fill_in_gaps:
self._fill_gaps_in_transformations()
@staticmethod
def _inv_transf(from_coords, to_exprs):
inv_from = [i.as_dummy() for i in from_coords]
inv_to = solve(
[t[0] - t[1] for t in zip(inv_from, to_exprs)],
list(from_coords), dict=True)[0]
inv_to = [inv_to[fc] for fc in from_coords]
return Matrix(inv_from), Matrix(inv_to)
@staticmethod
def _fill_gaps_in_transformations():
raise NotImplementedError
# TODO
def coord_tuple_transform_to(self, to_sys, coords):
"""Transform ``coords`` to coord system ``to_sys``.
See the docstring of ``CoordSystem`` for examples."""
coords = Matrix(coords)
if self != to_sys:
transf = self.transforms[to_sys]
coords = transf[1].subs(list(zip(transf[0], coords)))
return coords
def jacobian(self, to_sys, coords):
"""Return the jacobian matrix of a transformation."""
with_dummies = self.coord_tuple_transform_to(
to_sys, self._dummies).jacobian(self._dummies)
return with_dummies.subs(list(zip(self._dummies, coords)))
##########################################################################
# Base fields.
##########################################################################
def coord_function(self, coord_index):
"""Return a ``BaseScalarField`` that takes a point and returns one of the coords.
Takes a point and returns its coordinate in this coordinate system.
See the docstring of ``CoordSystem`` for examples."""
return BaseScalarField(self, coord_index)
def coord_functions(self):
"""Returns a list of all coordinate functions.
For more details see the ``coord_function`` method of this class."""
return [self.coord_function(i) for i in range(self.dim)]
def base_vector(self, coord_index):
"""Return a basis vector field.
The basis vector field for this coordinate system. It is also an
operator on scalar fields.
See the docstring of ``CoordSystem`` for examples."""
return BaseVectorField(self, coord_index)
def base_vectors(self):
"""Returns a list of all base vectors.
For more details see the ``base_vector`` method of this class."""
return [self.base_vector(i) for i in range(self.dim)]
def base_oneform(self, coord_index):
"""Return a basis 1-form field.
The basis one-form field for this coordinate system. It is also an
operator on vector fields.
See the docstring of ``CoordSystem`` for examples."""
return Differential(self.coord_function(coord_index))
def base_oneforms(self):
"""Returns a list of all base oneforms.
For more details see the ``base_oneform`` method of this class."""
return [self.base_oneform(i) for i in range(self.dim)]
##########################################################################
# Points.
##########################################################################
def point(self, coords):
"""Create a ``Point`` with coordinates given in this coord system.
See the docstring of ``CoordSystem`` for examples."""
return Point(self, coords)
def point_to_coords(self, point):
"""Calculate the coordinates of a point in this coord system.
See the docstring of ``CoordSystem`` for examples."""
return point.coords(self)
##########################################################################
# Printing.
##########################################################################
def _latex(self, printer, *args):
return r'\text{%s}^{\text{%s}}_{%s}' % (
self.name, self.patch.name, self.patch.manifold._latex(printer, *args))
class Point(Basic):
"""Point in a Manifold object.
To define a point you must supply coordinates and a coordinate system.
The usage of this object after its definition is independent of the
coordinate system that was used in order to define it, however due to
limitations in the simplification routines you can arrive at complicated
expressions if you use inappropriate coordinate systems.
Examples
========
Define the boilerplate Manifold, Patch and coordinate systems:
>>> from sympy import symbols, sin, cos, pi
>>> from sympy.diffgeom import (
... Manifold, Patch, CoordSystem, Point)
>>> r, theta = symbols('r, theta')
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> rect = CoordSystem('rect', p)
>>> polar = CoordSystem('polar', p)
>>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)])
Define a point using coordinates from one of the coordinate systems:
>>> p = Point(polar, [r, 3*pi/4])
>>> p.coords()
Matrix([
[ r],
[3*pi/4]])
>>> p.coords(rect)
Matrix([
[-sqrt(2)*r/2],
[ sqrt(2)*r/2]])
"""
def __init__(self, coord_sys, coords):
super(Point, self).__init__()
self._coord_sys = coord_sys
self._coords = Matrix(coords)
self._args = self._coord_sys, self._coords
def coords(self, to_sys=None):
"""Coordinates of the point in a given coordinate system.
If ``to_sys`` is ``None`` it returns the coordinates in the system in
which the point was defined."""
if to_sys:
return self._coord_sys.coord_tuple_transform_to(to_sys, self._coords)
else:
return self._coords
@property
def free_symbols(self):
raise NotImplementedError
return self._coords.free_symbols
class BaseScalarField(AtomicExpr):
"""Base Scalar Field over a Manifold for a given Coordinate System.
A scalar field takes a point as an argument and returns a scalar.
A base scalar field of a coordinate system takes a point and returns one of
the coordinates of that point in the coordinate system in question.
To define a scalar field you need to choose the coordinate system and the
index of the coordinate.
The use of the scalar field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in
the simplification routines you may arrive at more complicated
expression if you use unappropriate coordinate systems.
You can build complicated scalar fields by just building up SymPy
expressions containing ``BaseScalarField`` instances.
Examples
========
Define boilerplate Manifold, Patch and coordinate systems:
>>> from sympy import symbols, sin, cos, pi, Function
>>> from sympy.diffgeom import (
... Manifold, Patch, CoordSystem, Point, BaseScalarField)
>>> r0, theta0 = symbols('r0, theta0')
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> rect = CoordSystem('rect', p)
>>> polar = CoordSystem('polar', p)
>>> polar.connect_to(rect, [r0, theta0], [r0*cos(theta0), r0*sin(theta0)])
Point to be used as an argument for the filed:
>>> point = polar.point([r0, 0])
Examples of fields:
>>> fx = BaseScalarField(rect, 0)
>>> fy = BaseScalarField(rect, 1)
>>> (fx**2+fy**2).rcall(point)
r0**2
>>> g = Function('g')
>>> ftheta = BaseScalarField(polar, 1)
>>> fg = g(ftheta-pi)
>>> fg.rcall(point)
g(-pi)
"""
is_commutative = True
def __new__(cls, coord_sys, index):
obj = AtomicExpr.__new__(cls, coord_sys, sympify(index))
obj._coord_sys = coord_sys
obj._index = index
return obj
def __call__(self, *args):
"""Evaluating the field at a point or doing nothing.
If the argument is a ``Point`` instance, the field is evaluated at that
point. The field is returned itself if the argument is any other
object. It is so in order to have working recursive calling mechanics
for all fields (check the ``__call__`` method of ``Expr``).
"""
point = args[0]
if len(args) != 1 or not isinstance(point, Point):
return self
coords = point.coords(self._coord_sys)
# XXX Calling doit is necessary with all the Subs expressions
# XXX Calling simplify is necessary with all the trig expressions
return simplify(coords[self._index]).doit()
# XXX Workaround for limitations on the content of args
free_symbols = set() # type: Set[Any]
def doit(self):
return self
class BaseVectorField(AtomicExpr):
r"""Vector Field over a Manifold.
A vector field is an operator taking a scalar field and returning a
directional derivative (which is also a scalar field).
A base vector field is the same type of operator, however the derivation is
specifically done with respect to a chosen coordinate.
To define a base vector field you need to choose the coordinate system and
the index of the coordinate.
The use of the vector field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in the
simplification routines you may arrive at more complicated expression if you
use unappropriate coordinate systems.
Examples
========
Use the predefined R2 manifold, setup some boilerplate.
>>> from sympy import symbols, pi, Function
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
>>> from sympy.diffgeom import BaseVectorField
>>> from sympy import pprint
>>> x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0')
Points to be used as arguments for the field:
>>> point_p = R2_p.point([r0, theta0])
>>> point_r = R2_r.point([x0, y0])
Scalar field to operate on:
>>> g = Function('g')
>>> s_field = g(R2.x, R2.y)
>>> s_field.rcall(point_r)
g(x0, y0)
>>> s_field.rcall(point_p)
g(r0*cos(theta0), r0*sin(theta0))
Vector field:
>>> v = BaseVectorField(R2_r, 1)
>>> pprint(v(s_field))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
>>> pprint(v(s_field).rcall(point_r).doit())
d
---(g(x0, y0))
dy0
>>> pprint(v(s_field).rcall(point_p))
/ d \|
|---(g(r0*cos(theta0), xi))||
\dxi /|xi=r0*sin(theta0)
"""
is_commutative = False
def __new__(cls, coord_sys, index):
index = sympify(index)
obj = AtomicExpr.__new__(cls, coord_sys, index)
obj._coord_sys = coord_sys
obj._index = index
return obj
def __call__(self, scalar_field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field an error is raised.
"""
if covariant_order(scalar_field) or contravariant_order(scalar_field):
raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')
if scalar_field is None:
return self
base_scalars = list(scalar_field.atoms(BaseScalarField))
# First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
d_var = self._coord_sys._dummy
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(d_var) for i,
b in enumerate(base_scalars)]
d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
d_result = d_result.diff(d_var)
# Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
coords = self._coord_sys._dummies
d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
d_funcs_deriv_sub = []
for b in base_scalars:
jac = self._coord_sys.jacobian(b._coord_sys, coords)
d_funcs_deriv_sub.append(jac[b._index, self._index])
d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))
# Remove the dummies
result = d_result.subs(list(zip(d_funcs, base_scalars)))
result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
return result.doit()
class Commutator(Expr):
r"""Commutator of two vector fields.
The commutator of two vector fields `v_1` and `v_2` is defined as the
vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
to `v_1(v_2(f)) - v_2(v_1(f))`.
Examples
========
Use the predefined R2 manifold, setup some boilerplate.
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import Commutator
>>> from sympy import pprint
>>> from sympy.simplify import simplify
Vector fields:
>>> e_x, e_y, e_r = R2.e_x, R2.e_y, R2.e_r
>>> c_xy = Commutator(e_x, e_y)
>>> c_xr = Commutator(e_x, e_r)
>>> c_xy
0
Unfortunately, the current code is not able to compute everything:
>>> c_xr
Commutator(e_x, e_r)
>>> simplify(c_xr(R2.y**2))
-2*y**2*cos(theta)/(x**2 + y**2)
"""
def __new__(cls, v1, v2):
if (covariant_order(v1) or contravariant_order(v1) != 1
or covariant_order(v2) or contravariant_order(v2) != 1):
raise ValueError(
'Only commutators of vector fields are supported.')
if v1 == v2:
return Zero()
coord_sys = set().union(*[v.atoms(CoordSystem) for v in (v1, v2)])
if len(coord_sys) == 1:
# Only one coordinate systems is used, hence it is easy enough to
# actually evaluate the commutator.
if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
return Zero()
bases_1, bases_2 = [list(v.atoms(BaseVectorField))
for v in (v1, v2)]
coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
res = 0
for c1, b1 in zip(coeffs_1, bases_1):
for c2, b2 in zip(coeffs_2, bases_2):
res += c1*b1(c2)*b2 - c2*b2(c1)*b1
return res
else:
return super(Commutator, cls).__new__(cls, v1, v2)
def __init__(self, v1, v2):
super(Commutator, self).__init__()
self._args = (v1, v2)
self._v1 = v1
self._v2 = v2
def __call__(self, scalar_field):
"""Apply on a scalar field.
If the argument is not a scalar field an error is raised.
"""
return self._v1(self._v2(scalar_field)) - self._v2(self._v1(scalar_field))
class Differential(Expr):
r"""Return the differential (exterior derivative) of a form field.
The differential of a form (i.e. the exterior derivative) has a complicated
definition in the general case.
The differential `df` of the 0-form `f` is defined for any vector field `v`
as `df(v) = v(f)`.
Examples
========
Use the predefined R2 manifold, setup some boilerplate.
>>> from sympy import Function
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import Differential
>>> from sympy import pprint
Scalar field (0-forms):
>>> g = Function('g')
>>> s_field = g(R2.x, R2.y)
Vector fields:
>>> e_x, e_y, = R2.e_x, R2.e_y
Differentials:
>>> dg = Differential(s_field)
>>> dg
d(g(x, y))
>>> pprint(dg(e_x))
/ d \|
|---(g(xi, y))||
\dxi /|xi=x
>>> pprint(dg(e_y))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
Applying the exterior derivative operator twice always results in:
>>> Differential(dg)
0
"""
is_commutative = False
def __new__(cls, form_field):
if contravariant_order(form_field):
raise ValueError(
'A vector field was supplied as an argument to Differential.')
if isinstance(form_field, Differential):
return Zero()
else:
return super(Differential, cls).__new__(cls, form_field)
def __init__(self, form_field):
super(Differential, self).__init__()
self._form_field = form_field
self._args = (self._form_field, )
def __call__(self, *vector_fields):
"""Apply on a list of vector_fields.
If the number of vector fields supplied is not equal to 1 + the order of
the form field inside the differential the result is undefined.
For 1-forms (i.e. differentials of scalar fields) the evaluation is
done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
field, the differential is returned unchanged. This is done in order to
permit partial contractions for higher forms.
In the general case the evaluation is done by applying the form field
inside the differential on a list with one less elements than the number
of elements in the original list. Lowering the number of vector fields
is achieved through replacing each pair of fields by their
commutator.
If the arguments are not vectors or ``None``s an error is raised.
"""
if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
for a in vector_fields):
raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
k = len(vector_fields)
if k == 1:
if vector_fields[0]:
return vector_fields[0].rcall(self._form_field)
return self
else:
# For higher form it is more complicated:
# Invariant formula:
# https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
# df(v1, ... vn) = +/- vi(f(v1..no i..vn))
# +/- f([vi,vj],v1..no i, no j..vn)
f = self._form_field
v = vector_fields
ret = 0
for i in range(k):
t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
ret += (-1)**i*t
for j in range(i + 1, k):
c = Commutator(v[i], v[j])
if c: # TODO this is ugly - the Commutator can be Zero and
# this causes the next line to fail
t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
ret += (-1)**(i + j)*t
return ret
class TensorProduct(Expr):
"""Tensor product of forms.
The tensor product permits the creation of multilinear functionals (i.e.
higher order tensors) out of lower order fields (e.g. 1-forms and vector
fields). However, the higher tensors thus created lack the interesting
features provided by the other type of product, the wedge product, namely
they are not antisymmetric and hence are not form fields.
Examples
========
Use the predefined R2 manifold, setup some boilerplate.
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import TensorProduct
>>> TensorProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y)
1
>>> TensorProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x)
0
>>> TensorProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y)
x**2
>>> TensorProduct(R2.e_x, R2.e_y)(R2.x**2, R2.y**2)
4*x*y
>>> TensorProduct(R2.e_y, R2.dx)(R2.y)
dx
You can nest tensor products.
>>> tp1 = TensorProduct(R2.dx, R2.dy)
>>> TensorProduct(tp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x)
1
You can make partial contraction for instance when 'raising an index'.
Putting ``None`` in the second argument of ``rcall`` means that the
respective position in the tensor product is left as it is.
>>> TP = TensorProduct
>>> metric = TP(R2.dx, R2.dx) + 3*TP(R2.dy, R2.dy)
>>> metric.rcall(R2.e_y, None)
3*dy
Or automatically pad the args with ``None`` without specifying them.
>>> metric.rcall(R2.e_y)
3*dy
"""
def __new__(cls, *args):
scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
if multifields:
if len(multifields) == 1:
return scalar*multifields[0]
return scalar*super(TensorProduct, cls).__new__(cls, *multifields)
else:
return scalar
def __init__(self, *args):
super(TensorProduct, self).__init__()
self._args = args
def __call__(self, *fields):
"""Apply on a list of fields.
If the number of input fields supplied is not equal to the order of
the tensor product field, the list of arguments is padded with ``None``'s.
The list of arguments is divided in sublists depending on the order of
the forms inside the tensor product. The sublists are provided as
arguments to these forms and the resulting expressions are given to the
constructor of ``TensorProduct``.
"""
tot_order = covariant_order(self) + contravariant_order(self)
tot_args = len(fields)
if tot_args != tot_order:
fields = list(fields) + [None]*(tot_order - tot_args)
orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
return TensorProduct(*multipliers)
class WedgeProduct(TensorProduct):
"""Wedge product of forms.
In the context of integration only completely antisymmetric forms make
sense. The wedge product permits the creation of such forms.
Examples
========
Use the predefined R2 manifold, setup some boilerplate.
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import WedgeProduct
>>> WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y)
1
>>> WedgeProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x)
-1
>>> WedgeProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y)
x**2
>>> WedgeProduct(R2.e_x,R2.e_y)(R2.y,None)
-e_x
You can nest wedge products.
>>> wp1 = WedgeProduct(R2.dx, R2.dy)
>>> WedgeProduct(wp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x)
0
"""
# TODO the calculation of signatures is slow
# TODO you do not need all these permutations (neither the prefactor)
def __call__(self, *fields):
"""Apply on a list of vector_fields.
The expression is rewritten internally in terms of tensor products and evaluated."""
orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
mul = 1/Mul(*(factorial(o) for o in orders))
perms = permutations(fields)
perms_par = (Permutation(
p).signature() for p in permutations(list(range(len(fields)))))
tensor_prod = TensorProduct(*self.args)
return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])
class LieDerivative(Expr):
"""Lie derivative with respect to a vector field.
The transport operator that defines the Lie derivative is the pushforward of
the field to be derived along the integral curve of the field with respect
to which one derives.
Examples
========
>>> from sympy.diffgeom import (LieDerivative, TensorProduct)
>>> from sympy.diffgeom.rn import R2
>>> LieDerivative(R2.e_x, R2.y)
0
>>> LieDerivative(R2.e_x, R2.x)
1
>>> LieDerivative(R2.e_x, R2.e_x)
0
The Lie derivative of a tensor field by another tensor field is equal to
their commutator:
>>> LieDerivative(R2.e_x, R2.e_r)
Commutator(e_x, e_r)
>>> LieDerivative(R2.e_x + R2.e_y, R2.x)
1
>>> tp = TensorProduct(R2.dx, R2.dy)
>>> LieDerivative(R2.e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
>>> LieDerivative(R2.e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
"""
def __new__(cls, v_field, expr):
expr_form_ord = covariant_order(expr)
if contravariant_order(v_field) != 1 or covariant_order(v_field):
raise ValueError('Lie derivatives are defined only with respect to'
' vector fields. The supplied argument was not a '
'vector field.')
if expr_form_ord > 0:
return super(LieDerivative, cls).__new__(cls, v_field, expr)
if expr.atoms(BaseVectorField):
return Commutator(v_field, expr)
else:
return v_field.rcall(expr)
def __init__(self, v_field, expr):
super(LieDerivative, self).__init__()
self._v_field = v_field
self._expr = expr
self._args = (self._v_field, self._expr)
def __call__(self, *args):
v = self._v_field
expr = self._expr
lead_term = v(expr(*args))
rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
for i in range(len(args))])
return lead_term - rest
class BaseCovarDerivativeOp(Expr):
"""Covariant derivative operator with respect to a base vector.
Examples
========
>>> from sympy.diffgeom.rn import R2, R2_r
>>> from sympy.diffgeom import BaseCovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
>>> cvd(R2.x)
1
>>> cvd(R2.x*R2.e_x)
e_x
"""
def __init__(self, coord_sys, index, christoffel):
super(BaseCovarDerivativeOp, self).__init__()
self._coord_sys = coord_sys
self._index = index
self._christoffel = christoffel
self._args = self._coord_sys, self._index, self._christoffel
def __call__(self, field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field the behaviour is undefined.
"""
if covariant_order(field) != 0:
raise NotImplementedError()
field = vectors_in_basis(field, self._coord_sys)
wrt_vector = self._coord_sys.base_vector(self._index)
wrt_scalar = self._coord_sys.coord_function(self._index)
vectors = list(field.atoms(BaseVectorField))
# First step: replace all vectors with something susceptible to
# derivation and do the derivation
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
b in enumerate(vectors)]
d_result = field.subs(list(zip(vectors, d_funcs)))
d_result = wrt_vector(d_result)
# Second step: backsubstitute the vectors in
d_result = d_result.subs(list(zip(d_funcs, vectors)))
# Third step: evaluate the derivatives of the vectors
derivs = []
for v in vectors:
d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
*v._coord_sys.base_vector(k))
for k in range(v._coord_sys.dim)])
derivs.append(d)
to_subs = [wrt_vector(d) for d in d_funcs]
# XXX: This substitution can fail when there are Dummy symbols and the
# cache is disabled: https://github.com/sympy/sympy/issues/17794
result = d_result.subs(list(zip(to_subs, derivs)))
# Remove the dummies
result = result.subs(list(zip(d_funcs, vectors)))
return result.doit()
class CovarDerivativeOp(Expr):
"""Covariant derivative operator.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import CovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
>>> cvd(R2.x)
x
>>> cvd(R2.x*R2.e_x)
x*e_x
"""
def __init__(self, wrt, christoffel):
super(CovarDerivativeOp, self).__init__()
if len(set(v._coord_sys for v in wrt.atoms(BaseVectorField))) > 1:
raise NotImplementedError()
if contravariant_order(wrt) != 1 or covariant_order(wrt):
raise ValueError('Covariant derivatives are defined only with '
'respect to vector fields. The supplied argument '
'was not a vector field.')
self._wrt = wrt
self._christoffel = christoffel
self._args = self._wrt, self._christoffel
def __call__(self, field):
vectors = list(self._wrt.atoms(BaseVectorField))
base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
for v in vectors]
return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)
def _latex(self, printer, *args):
return r'\mathbb{\nabla}_{%s}' % printer._print(self._wrt)
###############################################################################
# Integral curves on vector fields
###############################################################################
def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
r"""Return the series expansion for an integral curve of the field.
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This equation can also be decomposed of a basis of coordinate functions
`V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`
This function returns a series expansion of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
See Also
========
intcurve_diffequ
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
n
the order to which to expand
coord_sys
the coordinate system in which to expand
coeffs (default False) - if True return a list of elements of the expansion
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t, x, y
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
>>> from sympy.diffgeom import intcurve_series
Specify a starting point and a vector field:
>>> start_point = R2_r.point([x, y])
>>> vector_field = R2_r.e_x
Calculate the series:
>>> intcurve_series(vector_field, t, start_point, n=3)
Matrix([
[t + x],
[ y]])
Or get the elements of the expansion in a list:
>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
>>> series[0]
Matrix([
[x],
[y]])
>>> series[1]
Matrix([
[t],
[0]])
>>> series[2]
Matrix([
[0],
[0]])
The series in the polar coordinate system:
>>> series = intcurve_series(vector_field, t, start_point,
... n=3, coord_sys=R2_p, coeffs=True)
>>> series[0]
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> series[1]
Matrix([
[t*x/sqrt(x**2 + y**2)],
[ -t*y/(x**2 + y**2)]])
>>> series[2]
Matrix([
[t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
[ t**2*x*y/(x**2 + y**2)**2]])
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
def iter_vfield(scalar_field, i):
"""Return ``vector_field`` called `i` times on ``scalar_field``."""
return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)
def taylor_terms_per_coord(coord_function):
"""Return the series for one of the coordinates."""
return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
for i in range(n)]
coord_sys = coord_sys if coord_sys else start_point._coord_sys
coord_functions = coord_sys.coord_functions()
taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
if coeffs:
return [Matrix(t) for t in zip(*taylor_terms)]
else:
return Matrix([sum(c) for c in taylor_terms])
def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
r"""Return the differential equation for an integral curve of the field.
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This function returns the differential equation of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
See Also
========
intcurve_series
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
coord_sys
the coordinate system in which to give the equations
Returns
=======
a tuple of (equations, initial conditions)
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
>>> from sympy.diffgeom import intcurve_diffequ
Specify a starting point and a vector field:
>>> start_point = R2_r.point([0, 1])
>>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
Get the equation:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
>>> equations
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
>>> init_cond
[f_0(0), f_1(0) - 1]
The series in the polar coordinate system:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
>>> equations
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
>>> init_cond
[f_0(0) - 1, f_1(0) - pi/2]
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
coord_sys = coord_sys if coord_sys else start_point._coord_sys
gammas = [Function('f_%d' % i)(param) for i in range(
start_point._coord_sys.dim)]
arbitrary_p = Point(coord_sys, gammas)
coord_functions = coord_sys.coord_functions()
equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
for cf in coord_functions]
init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
for cf in coord_functions]
return equations, init_cond
###############################################################################
# Helpers
###############################################################################
def dummyfy(args, exprs):
# TODO Is this a good idea?
d_args = Matrix([s.as_dummy() for s in args])
reps = dict(zip(args, d_args))
d_exprs = Matrix([sympify(expr).subs(reps) for expr in exprs])
return d_args, d_exprs
###############################################################################
# Helpers
###############################################################################
def contravariant_order(expr, _strict=False):
"""Return the contravariant order of an expression.
Examples
========
>>> from sympy.diffgeom import contravariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> contravariant_order(a)
0
>>> contravariant_order(a*R2.x + 2)
0
>>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [contravariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing contravariant fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [contravariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between vectors.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a vector.')
return 0
elif isinstance(expr, BaseVectorField):
return 1
elif isinstance(expr, TensorProduct):
return sum(contravariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
def covariant_order(expr, _strict=False):
"""Return the covariant order of an expression.
Examples
========
>>> from sympy.diffgeom import covariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> covariant_order(a)
0
>>> covariant_order(a*R2.x + 2)
0
>>> covariant_order(a*R2.x*R2.dy + R2.dx)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [covariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing form fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [covariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between forms.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a form.')
return 0
elif isinstance(expr, Differential):
return covariant_order(*expr.args) + 1
elif isinstance(expr, TensorProduct):
return sum(covariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
###############################################################################
# Coordinate transformation functions
###############################################################################
def vectors_in_basis(expr, to_sys):
"""Transform all base vectors in base vectors of a specified coord basis.
While the new base vectors are in the new coordinate system basis, any
coefficients are kept in the old system.
Examples
========
>>> from sympy.diffgeom import vectors_in_basis
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> vectors_in_basis(R2_r.e_x, R2_p)
x*e_r/sqrt(x**2 + y**2) - y*e_theta/(x**2 + y**2)
>>> vectors_in_basis(R2_p.e_r, R2_r)
sin(theta)*e_y + cos(theta)*e_x
"""
vectors = list(expr.atoms(BaseVectorField))
new_vectors = []
for v in vectors:
cs = v._coord_sys
jac = cs.jacobian(to_sys, cs.coord_functions())
new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
new_vectors.append(new)
return expr.subs(list(zip(vectors, new_vectors)))
###############################################################################
# Coordinate-dependent functions
###############################################################################
def twoform_to_matrix(expr):
"""Return the matrix representing the twoform.
For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
where `e_i` is the i-th base vector field for the coordinate system in
which the expression of `w` is given.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
>>> TP = TensorProduct
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[1, 0],
[0, 1]])
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[x, 0],
[0, 1]])
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
Matrix([
[ 1, 0],
[-1/2, 1]])
"""
if covariant_order(expr) != 2 or contravariant_order(expr):
raise ValueError('The input expression is not a two-form.')
coord_sys = expr.atoms(CoordSystem)
if len(coord_sys) != 1:
raise ValueError('The input expression concerns more than one '
'coordinate systems, hence there is no unambiguous '
'way to choose a coordinate system for the matrix.')
coord_sys = coord_sys.pop()
vectors = coord_sys.base_vectors()
expr = expr.expand()
matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
for v2 in vectors]
return Matrix(matrix_content)
def metric_to_Christoffel_1st(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of first kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
"""
matrix = twoform_to_matrix(expr)
if not matrix.is_symmetric():
raise ValueError(
'The two-form representing the metric is not symmetric.')
coord_sys = expr.atoms(CoordSystem).pop()
deriv_matrices = [matrix.applyfunc(lambda a: d(a))
for d in coord_sys.base_vectors()]
indices = list(range(coord_sys.dim))
christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Christoffel_2nd(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of second kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
"""
ch_1st = metric_to_Christoffel_1st(expr)
coord_sys = expr.atoms(CoordSystem).pop()
indices = list(range(coord_sys.dim))
# XXX workaround, inverting a matrix does not work if it contains non
# symbols
#matrix = twoform_to_matrix(expr).inv()
matrix = twoform_to_matrix(expr)
s_fields = set()
for e in matrix:
s_fields.update(e.atoms(BaseScalarField))
s_fields = list(s_fields)
dums = coord_sys._dummies
matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
# XXX end of workaround
christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Riemann_components(expr):
"""Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
r**2*TensorProduct(dtheta, dtheta) + exp(2*r)*TensorProduct(dr, dr)
>>> riemann = metric_to_Riemann_components(non_trivial_metric)
>>> riemann[0, :, :, :]
[[[0, 0], [0, 0]], [[0, r*exp(-2*r)], [-r*exp(-2*r), 0]]]
>>> riemann[1, :, :, :]
[[[0, -1/r], [1/r, 0]], [[0, 0], [0, 0]]]
"""
ch_2nd = metric_to_Christoffel_2nd(expr)
coord_sys = expr.atoms(CoordSystem).pop()
indices = list(range(coord_sys.dim))
deriv_ch = [[[[d(ch_2nd[i, j, k])
for d in coord_sys.base_vectors()]
for k in indices]
for j in indices]
for i in indices]
riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
return ImmutableDenseNDimArray(riemann)
def metric_to_Ricci_components(expr):
"""Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[0, 0], [0, 0]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
r**2*TensorProduct(dtheta, dtheta) + exp(2*r)*TensorProduct(dr, dr)
>>> metric_to_Ricci_components(non_trivial_metric)
[[1/r, 0], [0, r*exp(-2*r)]]
"""
riemann = metric_to_Riemann_components(expr)
coord_sys = expr.atoms(CoordSystem).pop()
indices = list(range(coord_sys.dim))
ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(ricci)
|
590bec00e4b08fff1e97e759ba4ffcbf5710b11de89a2fd7f4907f48de5fb9b5 | """
AST nodes specific to C++.
"""
from sympy.codegen.ast import Attribute, String, Token, Type, none
class using(Token):
""" Represents a 'using' statement in C++ """
__slots__ = ('type', 'alias')
defaults = {'alias': none}
_construct_type = Type
_construct_alias = String
constexpr = Attribute('constexpr')
|
fd42865731cf146684e52c3615b1b3c124ec7145445a1d96cb4300acdf38a210 | """
AST nodes specific to the C family of languages
"""
from sympy.codegen.ast import Attribute, Declaration, Node, String, Token, Type, none, FunctionCall
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.sympify import sympify
void = Type('void')
restrict = Attribute('restrict') # guarantees no pointer aliasing
volatile = Attribute('volatile')
static = Attribute('static')
def alignof(arg):
""" Generate of FunctionCall instance for calling 'alignof' """
return FunctionCall('alignof', [String(arg) if isinstance(arg, str) else arg])
def sizeof(arg):
""" Generate of FunctionCall instance for calling 'sizeof'
Examples
========
>>> from sympy.codegen.ast import real
>>> from sympy.codegen.cnodes import sizeof
>>> from sympy.printing.ccode import ccode
>>> ccode(sizeof(real))
'sizeof(double)'
"""
return FunctionCall('sizeof', [String(arg) if isinstance(arg, str) else arg])
class CommaOperator(Basic):
""" Represents the comma operator in C """
def __new__(cls, *args):
return Basic.__new__(cls, *[sympify(arg) for arg in args])
class Label(String):
""" Label for use with e.g. goto statement.
Examples
========
>>> from sympy.codegen.cnodes import Label
>>> from sympy.printing.ccode import ccode
>>> print(ccode(Label('foo')))
foo:
"""
class goto(Token):
""" Represents goto in C """
__slots__ = ('label',)
_construct_label = Label
class PreDecrement(Basic):
""" Represents the pre-decrement operator
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cnodes import PreDecrement
>>> from sympy.printing.ccode import ccode
>>> ccode(PreDecrement(x))
'--(x)'
"""
nargs = 1
class PostDecrement(Basic):
""" Represents the post-decrement operator """
nargs = 1
class PreIncrement(Basic):
""" Represents the pre-increment operator """
nargs = 1
class PostIncrement(Basic):
""" Represents the post-increment operator """
nargs = 1
class struct(Node):
""" Represents a struct in C """
__slots__ = ('name', 'declarations')
defaults = {'name': none}
_construct_name = String
@classmethod
def _construct_declarations(cls, args):
return Tuple(*[Declaration(arg) for arg in args])
class union(struct):
""" Represents a union in C """
|
ec14dfa0e58d891286f736a91f47ce85761ba7cef280aa1705fd2a2ef2d8073d | """
AST nodes specific to Fortran.
The functions defined in this module allows the user to express functions such as ``dsign``
as a SymPy function for symbolic manipulation.
"""
from sympy.codegen.ast import (
Attribute, CodeBlock, FunctionCall, Node, none, String,
Token, _mk_Tuple, Variable
)
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.numbers import Float, Integer
from sympy.core.sympify import sympify
from sympy.logic import true, false
from sympy.utilities.iterables import iterable
pure = Attribute('pure')
elemental = Attribute('elemental') # (all elemental procedures are also pure)
intent_in = Attribute('intent_in')
intent_out = Attribute('intent_out')
intent_inout = Attribute('intent_inout')
allocatable = Attribute('allocatable')
class Program(Token):
""" Represents a 'program' block in Fortran
Examples
========
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Program
>>> prog = Program('myprogram', [Print([42])])
>>> from sympy.printing import fcode
>>> print(fcode(prog, source_format='free'))
program myprogram
print *, 42
end program
"""
__slots__ = ('name', 'body')
_construct_name = String
_construct_body = staticmethod(lambda body: CodeBlock(*body))
class use_rename(Token):
""" Represents a renaming in a use statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import use_rename, use
>>> from sympy.printing import fcode
>>> ren = use_rename("thingy", "convolution2d")
>>> print(fcode(ren, source_format='free'))
thingy => convolution2d
>>> full = use('signallib', only=['snr', ren])
>>> print(fcode(full, source_format='free'))
use signallib, only: snr, thingy => convolution2d
"""
__slots__ = ('local', 'original')
_construct_local = String
_construct_original = String
def _name(arg):
if hasattr(arg, 'name'):
return arg.name
else:
return String(arg)
class use(Token):
""" Represents a use statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import use
>>> from sympy.printing import fcode
>>> fcode(use('signallib'), source_format='free')
'use signallib'
>>> fcode(use('signallib', [('metric', 'snr')]), source_format='free')
'use signallib, metric => snr'
>>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free')
'use signallib, only: snr, convolution2d'
"""
__slots__ = ('namespace', 'rename', 'only')
defaults = {'rename': none, 'only': none}
_construct_namespace = staticmethod(_name)
_construct_rename = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else use_rename(*arg) for arg in args]))
_construct_only = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else _name(arg) for arg in args]))
class Module(Token):
""" Represents a module in Fortran
Examples
========
>>> from sympy.codegen.fnodes import Module
>>> from sympy.printing import fcode
>>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free'))
module signallib
implicit none
<BLANKLINE>
contains
<BLANKLINE>
<BLANKLINE>
end module
"""
__slots__ = ('name', 'declarations', 'definitions')
defaults = {'declarations': Tuple()}
_construct_name = String
_construct_declarations = staticmethod(lambda arg: CodeBlock(*arg))
_construct_definitions = staticmethod(lambda arg: CodeBlock(*arg))
class Subroutine(Node):
""" Represents a subroutine in Fortran
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Subroutine
>>> from sympy.printing import fcode
>>> x, y = symbols('x y', real=True)
>>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])])
>>> print(fcode(sub, source_format='free', standard=2003))
subroutine mysub(x, y)
real*8 :: x
real*8 :: y
print *, x**2 + y**2, x*y
end subroutine
"""
__slots__ = ('name', 'parameters', 'body', 'attrs')
_construct_name = String
_construct_parameters = staticmethod(lambda params: Tuple(*map(Variable.deduced, params)))
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
class SubroutineCall(Token):
""" Represents a call to a subroutine in Fortran
Examples
========
>>> from sympy.codegen.fnodes import SubroutineCall
>>> from sympy.printing import fcode
>>> fcode(SubroutineCall('mysub', 'x y'.split()))
' call mysub(x, y)'
"""
__slots__ = ('name', 'subroutine_args')
_construct_name = staticmethod(_name)
_construct_subroutine_args = staticmethod(_mk_Tuple)
class Do(Token):
""" Represents a Do loop in in Fortran
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import aug_assign, Print
>>> from sympy.codegen.fnodes import Do
>>> from sympy.printing import fcode
>>> i, n = symbols('i n', integer=True)
>>> r = symbols('r', real=True)
>>> body = [aug_assign(r, '+', 1/i), Print([i, r])]
>>> do1 = Do(body, i, 1, n)
>>> print(fcode(do1, source_format='free'))
do i = 1, n
r = r + 1d0/i
print *, i, r
end do
>>> do2 = Do(body, i, 1, n, 2)
>>> print(fcode(do2, source_format='free'))
do i = 1, n, 2
r = r + 1d0/i
print *, i, r
end do
"""
__slots__ = ('body', 'counter', 'first', 'last', 'step', 'concurrent')
defaults = {'step': Integer(1), 'concurrent': false}
_construct_body = staticmethod(lambda body: CodeBlock(*body))
_construct_counter = staticmethod(sympify)
_construct_first = staticmethod(sympify)
_construct_last = staticmethod(sympify)
_construct_step = staticmethod(sympify)
_construct_concurrent = staticmethod(lambda arg: true if arg else false)
class ArrayConstructor(Token):
""" Represents an array constructor
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import ArrayConstructor
>>> ac = ArrayConstructor([1, 2, 3])
>>> fcode(ac, standard=95, source_format='free')
'(/1, 2, 3/)'
>>> fcode(ac, standard=2003, source_format='free')
'[1, 2, 3]'
"""
__slots__ = ('elements',)
_construct_elements = staticmethod(_mk_Tuple)
class ImpliedDoLoop(Token):
""" Represents an implied do loop in Fortran
Examples
========
>>> from sympy import Symbol, fcode
>>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor
>>> i = Symbol('i', integer=True)
>>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2) # -27, -1, 1, 27
>>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28
>>> fcode(ac, standard=2003, source_format='free')
'[-28, (i**3, i = -3, 3, 2), 28]'
"""
__slots__ = ('expr', 'counter', 'first', 'last', 'step')
defaults = {'step': Integer(1)}
_construct_expr = staticmethod(sympify)
_construct_counter = staticmethod(sympify)
_construct_first = staticmethod(sympify)
_construct_last = staticmethod(sympify)
_construct_step = staticmethod(sympify)
class Extent(Basic):
""" Represents a dimension extent.
Examples
========
>>> from sympy.codegen.fnodes import Extent
>>> e = Extent(-3, 3) # -3, -2, -1, 0, 1, 2, 3
>>> from sympy.printing import fcode
>>> fcode(e, source_format='free')
'-3:3'
>>> from sympy.codegen.ast import Variable, real
>>> from sympy.codegen.fnodes import dimension, intent_out
>>> dim = dimension(e, e)
>>> arr = Variable('x', real, attrs=[dim, intent_out])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'real*8, dimension(-3:3, -3:3), intent(out) :: x'
"""
def __new__(cls, *args):
if len(args) == 2:
low, high = args
return Basic.__new__(cls, sympify(low), sympify(high))
elif len(args) == 0 or (len(args) == 1 and args[0] in (':', None)):
return Basic.__new__(cls) # assumed shape
else:
raise ValueError("Expected 0 or 2 args (or one argument == None or ':')")
def _sympystr(self, printer):
if len(self.args) == 0:
return ':'
return '%d:%d' % self.args
assumed_extent = Extent() # or Extent(':'), Extent(None)
def dimension(*args):
""" Creates a 'dimension' Attribute with (up to 7) extents.
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import dimension, intent_in
>>> dim = dimension('2', ':') # 2 rows, runtime determined number of columns
>>> from sympy.codegen.ast import Variable, integer
>>> arr = Variable('a', integer, attrs=[dim, intent_in])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'integer*4, dimension(2, :), intent(in) :: a'
"""
if len(args) > 7:
raise ValueError("Fortran only supports up to 7 dimensional arrays")
parameters = []
for arg in args:
if isinstance(arg, Extent):
parameters.append(arg)
elif isinstance(arg, str):
if arg == ':':
parameters.append(Extent())
else:
parameters.append(String(arg))
elif iterable(arg):
parameters.append(Extent(*arg))
else:
parameters.append(sympify(arg))
if len(args) == 0:
raise ValueError("Need at least one dimension")
return Attribute('dimension', parameters)
assumed_size = dimension('*')
def array(symbol, dim, intent=None, **kwargs):
""" Convenience function for creating a Variable instance for a Fortran array
Parameters
==========
symbol : symbol
dim : Attribute or iterable
If dim is an ``Attribute`` it need to have the name 'dimension'. If it is
not an ``Attribute``, then it is passsed to :func:`dimension` as ``*dim``
intent : str
One of: 'in', 'out', 'inout' or None
\\*\\*kwargs:
Keyword arguments for ``Variable`` ('type' & 'value')
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import integer, real
>>> from sympy.codegen.fnodes import array
>>> arr = array('a', '*', 'in', type=integer)
>>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003))
integer*4, dimension(*), intent(in) :: a
>>> x = array('x', [3, ':', ':'], intent='out', type=real)
>>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003))
real*8, dimension(3, :, :), intent(out) :: x = 1
"""
if isinstance(dim, Attribute):
if str(dim.name) != 'dimension':
raise ValueError("Got an unexpected Attribute argument as dim: %s" % str(dim))
else:
dim = dimension(*dim)
attrs = list(kwargs.pop('attrs', [])) + [dim]
if intent is not None:
if intent not in (intent_in, intent_out, intent_inout):
intent = {'in': intent_in, 'out': intent_out, 'inout': intent_inout}[intent]
attrs.append(intent)
value = kwargs.pop('value', None)
type_ = kwargs.pop('type', None)
if type_ is None:
return Variable.deduced(symbol, value=value, attrs=attrs)
else:
return Variable(symbol, type_, value=value, attrs=attrs)
def _printable(arg):
return String(arg) if isinstance(arg, str) else sympify(arg)
def allocated(array):
""" Creates an AST node for a function call to Fortran's "allocated(...)"
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import allocated
>>> alloc = allocated('x')
>>> fcode(alloc, source_format='free')
'allocated(x)'
"""
return FunctionCall('allocated', [_printable(array)])
def lbound(array, dim=None, kind=None):
""" Creates an AST node for a function call to Fortran's "lbound(...)"
Parameters
==========
array : Symbol or String
dim : expr
kind : expr
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import lbound
>>> lb = lbound('arr', dim=2)
>>> fcode(lb, source_format='free')
'lbound(arr, 2)'
"""
return FunctionCall(
'lbound',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
def ubound(array, dim=None, kind=None):
return FunctionCall(
'ubound',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
def shape(source, kind=None):
""" Creates an AST node for a function call to Fortran's "shape(...)"
Parameters
==========
source : Symbol or String
kind : expr
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import shape
>>> shp = shape('x')
>>> fcode(shp, source_format='free')
'shape(x)'
"""
return FunctionCall(
'shape',
[_printable(source)] +
([_printable(kind)] if kind else [])
)
def size(array, dim=None, kind=None):
""" Creates an AST node for a function call to Fortran's "size(...)"
Examples
========
>>> from sympy import Symbol
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable
>>> from sympy.codegen.fnodes import array, sum_, size
>>> a = Symbol('a', real=True)
>>> body = [Return((sum_(a**2)/size(a))**.5)]
>>> arr = array(a, dim=[':'], intent='in')
>>> fd = FunctionDefinition(real, 'rms', [arr], body)
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a)
real*8, dimension(:), intent(in) :: a
rms = sqrt(sum(a**2)*1d0/size(a))
end function
"""
return FunctionCall(
'size',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
def reshape(source, shape, pad=None, order=None):
""" Creates an AST node for a function call to Fortran's "reshape(...)"
Parameters
==========
source : Symbol or String
shape : ArrayExpr
"""
return FunctionCall(
'reshape',
[_printable(source), _printable(shape)] +
([_printable(pad)] if pad else []) +
([_printable(order)] if pad else [])
)
def bind_C(name=None):
""" Creates an Attribute ``bind_C`` with a name
Parameters
==========
name : str
Examples
========
>>> from sympy import Symbol
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable
>>> from sympy.codegen.fnodes import array, sum_, size, bind_C
>>> a = Symbol('a', real=True)
>>> s = Symbol('s', integer=True)
>>> arr = array(a, dim=[s], intent='in')
>>> body = [Return((sum_(a**2)/s)**.5)]
>>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')])
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a, s) bind(C, name="rms")
real*8, dimension(s), intent(in) :: a
integer*4 :: s
rms = sqrt(sum(a**2)/s)
end function
"""
return Attribute('bind_C', [String(name)] if name else [])
class GoTo(Token):
""" Represents a goto statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import GoTo
>>> go = GoTo([10, 20, 30], 'i')
>>> from sympy.printing import fcode
>>> fcode(go, source_format='free')
'go to (10, 20, 30), i'
"""
__slots__ = ('labels', 'expr')
defaults = {'expr': none}
_construct_labels = staticmethod(_mk_Tuple)
_construct_expr = staticmethod(sympify)
class FortranReturn(Token):
""" AST node explicitly mapped to a fortran "return".
Because a return statement in fortran is different from C, and
in order to aid reuse of our codegen ASTs the ordinary
``.codegen.ast.Return`` is interpreted as assignment to
the result variable of the function. If one for some reason needs
to generate a fortran RETURN statement, this node should be used.
Examples
========
>>> from sympy.codegen.fnodes import FortranReturn
>>> from sympy.printing import fcode
>>> fcode(FortranReturn('x'))
' return x'
"""
__slots__ = ('return_value',)
defaults = {'return_value': none}
_construct_return_value = staticmethod(sympify)
class FFunction(Function):
_required_standard = 77
def _fcode(self, printer):
name = self.__class__.__name__
if printer._settings['standard'] < self._required_standard:
raise NotImplementedError("%s requires Fortran %d or newer" %
(name, self._required_standard))
return '{0}({1})'.format(name, ', '.join(map(printer._print, self.args)))
class F95Function(FFunction):
_required_standard = 95
class isign(FFunction):
""" Fortran sign intrinsic for integer arguments. """
nargs = 2
class dsign(FFunction):
""" Fortran sign intrinsic for double precision arguments. """
nargs = 2
class cmplx(FFunction):
""" Fortran complex conversion function. """
nargs = 2 # may be extended to (2, 3) at a later point
class kind(FFunction):
""" Fortran kind function. """
nargs = 1
class merge(F95Function):
""" Fortran merge function """
nargs = 3
class _literal(Float):
_token = None # type: str
_decimals = None # type: int
def _fcode(self, printer, *args, **kwargs):
mantissa, sgnd_ex = ('%.{0}e'.format(self._decimals) % self).split('e')
mantissa = mantissa.strip('0').rstrip('.')
ex_sgn, ex_num = sgnd_ex[0], sgnd_ex[1:].lstrip('0')
ex_sgn = '' if ex_sgn == '+' else ex_sgn
return (mantissa or '0') + self._token + ex_sgn + (ex_num or '0')
class literal_sp(_literal):
""" Fortran single precision real literal """
_token = 'e'
_decimals = 9
class literal_dp(_literal):
""" Fortran double precision real literal """
_token = 'd'
_decimals = 17
class sum_(Token, Expr):
__slots__ = ('array', 'dim', 'mask')
defaults = {'dim': none, 'mask': none}
_construct_array = staticmethod(sympify)
_construct_dim = staticmethod(sympify)
class product_(Token, Expr):
__slots__ = ('array', 'dim', 'mask')
defaults = {'dim': none, 'mask': none}
_construct_array = staticmethod(sympify)
_construct_dim = staticmethod(sympify)
|
6feb4036b61a3bb042e77f08949b8a46f785ebfd98397d8beee3d0254e0447f7 | """
Types used to represent a full function/module as an Abstract Syntax Tree.
Most types are small, and are merely used as tokens in the AST. A tree diagram
has been included below to illustrate the relationships between the AST types.
AST Type Tree
-------------
::
*Basic*
|--->AssignmentBase
| |--->Assignment
| |--->AugmentedAssignment
| |--->AddAugmentedAssignment
| |--->SubAugmentedAssignment
| |--->MulAugmentedAssignment
| |--->DivAugmentedAssignment
| |--->ModAugmentedAssignment
|
|--->CodeBlock
|
|
|--->Token
| |--->Attribute
| |--->For
| |--->String
| | |--->QuotedString
| | |--->Comment
| |--->Type
| | |--->IntBaseType
| | | |--->_SizedIntType
| | | |--->SignedIntType
| | | |--->UnsignedIntType
| | |--->FloatBaseType
| | |--->FloatType
| | |--->ComplexBaseType
| | |--->ComplexType
| |--->Node
| | |--->Variable
| | | |---> Pointer
| | |--->FunctionPrototype
| | |--->FunctionDefinition
| |--->Element
| |--->Declaration
| |--->While
| |--->Scope
| |--->Stream
| |--->Print
| |--->FunctionCall
| |--->BreakToken
| |--->ContinueToken
| |--->NoneToken
|
|--->Statement
|--->Return
Predefined types
----------------
A number of ``Type`` instances are provided in the ``sympy.codegen.ast`` module
for convenience. Perhaps the two most common ones for code-generation (of numeric
codes) are ``float32`` and ``float64`` (known as single and double precision respectively).
There are also precision generic versions of Types (for which the codeprinters selects the
underlying data type at time of printing): ``real``, ``integer``, ``complex_``, ``bool_``.
The other ``Type`` instances defined are:
- ``intc``: Integer type used by C's "int".
- ``intp``: Integer type used by C's "unsigned".
- ``int8``, ``int16``, ``int32``, ``int64``: n-bit integers.
- ``uint8``, ``uint16``, ``uint32``, ``uint64``: n-bit unsigned integers.
- ``float80``: known as "extended precision" on modern x86/amd64 hardware.
- ``complex64``: Complex number represented by two ``float32`` numbers
- ``complex128``: Complex number represented by two ``float64`` numbers
Using the nodes
---------------
It is possible to construct simple algorithms using the AST nodes. Let's construct a loop applying
Newton's method::
>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import While, Assignment, aug_assign, Print
>>> t, dx, x = symbols('tol delta val')
>>> expr = cos(x) - x**3
>>> whl = While(abs(dx) > t, [
... Assignment(dx, -expr/expr.diff(x)),
... aug_assign(x, '+', dx),
... Print([x])
... ])
>>> from sympy.printing import pycode
>>> py_str = pycode(whl)
>>> print(py_str)
while (abs(delta) > tol):
delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val))
val += delta
print(val)
>>> import math
>>> tol, val, delta = 1e-5, 0.5, float('inf')
>>> exec(py_str)
1.1121416371
0.909672693737
0.867263818209
0.865477135298
0.865474033111
>>> print('%3.1g' % (math.cos(val) - val**3))
-3e-11
If we want to generate Fortran code for the same while loop we simple call ``fcode``::
>>> from sympy.printing.fcode import fcode
>>> print(fcode(whl, standard=2003, source_format='free'))
do while (abs(delta) > tol)
delta = (val**3 - cos(val))/(-3*val**2 - sin(val))
val = val + delta
print *, val
end do
There is a function constructing a loop (or a complete function) like this in
:mod:`sympy.codegen.algorithms`.
"""
from __future__ import print_function, division
from typing import Any, Dict, List
from collections import defaultdict
from sympy.core import Symbol, Tuple, Dummy
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.numbers import Float, Integer, oo
from sympy.core.relational import Lt, Le, Ge, Gt
from sympy.core.sympify import _sympify, sympify, SympifyError
from sympy.utilities.iterables import iterable
def _mk_Tuple(args):
"""
Create a Sympy Tuple object from an iterable, converting Python strings to
AST strings.
Parameters
==========
args: iterable
Arguments to :class:`sympy.Tuple`.
Returns
=======
sympy.Tuple
"""
args = [String(arg) if isinstance(arg, str) else arg for arg in args]
return Tuple(*args)
class Token(Basic):
""" Base class for the AST types.
Defining fields are set in ``__slots__``. Attributes (defined in __slots__)
are only allowed to contain instances of Basic (unless atomic, see
``String``). The arguments to ``__new__()`` correspond to the attributes in
the order defined in ``__slots__`. The ``defaults`` class attribute is a
dictionary mapping attribute names to their default values.
Subclasses should not need to override the ``__new__()`` method. They may
define a class or static method named ``_construct_<attr>`` for each
attribute to process the value passed to ``__new__()``. Attributes listed
in the class attribute ``not_in_args`` are not passed to :class:`~.Basic`.
"""
__slots__ = ()
defaults = {} # type: Dict[str, Any]
not_in_args = [] # type: List[str]
indented_args = ['body']
@property
def is_Atom(self):
return len(self.__slots__) == 0
@classmethod
def _get_constructor(cls, attr):
""" Get the constructor function for an attribute by name. """
return getattr(cls, '_construct_%s' % attr, lambda x: x)
@classmethod
def _construct(cls, attr, arg):
""" Construct an attribute value from argument passed to ``__new__()``. """
# arg may be ``NoneToken()``, so comparation is done using == instead of ``is`` operator
if arg == None:
return cls.defaults.get(attr, none)
else:
if isinstance(arg, Dummy): # sympy's replace uses Dummy instances
return arg
else:
return cls._get_constructor(attr)(arg)
def __new__(cls, *args, **kwargs):
# Pass through existing instances when given as sole argument
if len(args) == 1 and not kwargs and isinstance(args[0], cls):
return args[0]
if len(args) > len(cls.__slots__):
raise ValueError("Too many arguments (%d), expected at most %d" % (len(args), len(cls.__slots__)))
attrvals = []
# Process positional arguments
for attrname, argval in zip(cls.__slots__, args):
if attrname in kwargs:
raise TypeError('Got multiple values for attribute %r' % attrname)
attrvals.append(cls._construct(attrname, argval))
# Process keyword arguments
for attrname in cls.__slots__[len(args):]:
if attrname in kwargs:
argval = kwargs.pop(attrname)
elif attrname in cls.defaults:
argval = cls.defaults[attrname]
else:
raise TypeError('No value for %r given and attribute has no default' % attrname)
attrvals.append(cls._construct(attrname, argval))
if kwargs:
raise ValueError("Unknown keyword arguments: %s" % ' '.join(kwargs))
# Parent constructor
basic_args = [
val for attr, val in zip(cls.__slots__, attrvals)
if attr not in cls.not_in_args
]
obj = Basic.__new__(cls, *basic_args)
# Set attributes
for attr, arg in zip(cls.__slots__, attrvals):
setattr(obj, attr, arg)
return obj
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
for attr in self.__slots__:
if getattr(self, attr) != getattr(other, attr):
return False
return True
def _hashable_content(self):
return tuple([getattr(self, attr) for attr in self.__slots__])
def __hash__(self):
return super(Token, self).__hash__()
def _joiner(self, k, indent_level):
return (',\n' + ' '*indent_level) if k in self.indented_args else ', '
def _indented(self, printer, k, v, *args, **kwargs):
il = printer._context['indent_level']
def _print(arg):
if isinstance(arg, Token):
return printer._print(arg, *args, joiner=self._joiner(k, il), **kwargs)
else:
return printer._print(arg, *args, **kwargs)
if isinstance(v, Tuple):
joined = self._joiner(k, il).join([_print(arg) for arg in v.args])
if k in self.indented_args:
return '(\n' + ' '*il + joined + ',\n' + ' '*(il - 4) + ')'
else:
return ('({0},)' if len(v.args) == 1 else '({0})').format(joined)
else:
return _print(v)
def _sympyrepr(self, printer, *args, **kwargs):
from sympy.printing.printer import printer_context
exclude = kwargs.get('exclude', ())
values = [getattr(self, k) for k in self.__slots__]
indent_level = printer._context.get('indent_level', 0)
joiner = kwargs.pop('joiner', ', ')
arg_reprs = []
for i, (attr, value) in enumerate(zip(self.__slots__, values)):
if attr in exclude:
continue
# Skip attributes which have the default value
if attr in self.defaults and value == self.defaults[attr]:
continue
ilvl = indent_level + 4 if attr in self.indented_args else 0
with printer_context(printer, indent_level=ilvl):
indented = self._indented(printer, attr, value, *args, **kwargs)
arg_reprs.append(('{1}' if i == 0 else '{0}={1}').format(attr, indented.lstrip()))
return "{0}({1})".format(self.__class__.__name__, joiner.join(arg_reprs))
_sympystr = _sympyrepr
def __repr__(self): # sympy.core.Basic.__repr__ uses sstr
from sympy.printing import srepr
return srepr(self)
def kwargs(self, exclude=(), apply=None):
""" Get instance's attributes as dict of keyword arguments.
Parameters
==========
exclude : collection of str
Collection of keywords to exclude.
apply : callable, optional
Function to apply to all values.
"""
kwargs = {k: getattr(self, k) for k in self.__slots__ if k not in exclude}
if apply is not None:
return {k: apply(v) for k, v in kwargs.items()}
else:
return kwargs
class BreakToken(Token):
""" Represents 'break' in C/Python ('exit' in Fortran).
Use the premade instance ``break_`` or instantiate manually.
Examples
========
>>> from sympy.printing import ccode, fcode
>>> from sympy.codegen.ast import break_
>>> ccode(break_)
'break'
>>> fcode(break_, source_format='free')
'exit'
"""
break_ = BreakToken()
class ContinueToken(Token):
""" Represents 'continue' in C/Python ('cycle' in Fortran)
Use the premade instance ``continue_`` or instantiate manually.
Examples
========
>>> from sympy.printing import ccode, fcode
>>> from sympy.codegen.ast import continue_
>>> ccode(continue_)
'continue'
>>> fcode(continue_, source_format='free')
'cycle'
"""
continue_ = ContinueToken()
class NoneToken(Token):
""" The AST equivalence of Python's NoneType
The corresponding instance of Python's ``None`` is ``none``.
Examples
========
>>> from sympy.codegen.ast import none, Variable
>>> from sympy.printing.pycode import pycode
>>> print(pycode(Variable('x').as_Declaration(value=none)))
x = None
"""
def __eq__(self, other):
return other is None or isinstance(other, NoneToken)
def _hashable_content(self):
return ()
def __hash__(self):
return super(NoneToken, self).__hash__()
none = NoneToken()
class AssignmentBase(Basic):
""" Abstract base class for Assignment and AugmentedAssignment.
Attributes:
===========
op : str
Symbol for assignment operator, e.g. "=", "+=", etc.
"""
def __new__(cls, lhs, rhs):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
cls._check_args(lhs, rhs)
return super(AssignmentBase, cls).__new__(cls, lhs, rhs)
@property
def lhs(self):
return self.args[0]
@property
def rhs(self):
return self.args[1]
@classmethod
def _check_args(cls, lhs, rhs):
""" Check arguments to __new__ and raise exception if any problems found.
Derived classes may wish to override this.
"""
from sympy.matrices.expressions.matexpr import (
MatrixElement, MatrixSymbol)
from sympy.tensor.indexed import Indexed
# Tuple of things that can be on the lhs of an assignment
assignable = (Symbol, MatrixSymbol, MatrixElement, Indexed, Element, Variable)
if not isinstance(lhs, assignable):
raise TypeError("Cannot assign to lhs of type %s." % type(lhs))
# Indexed types implement shape, but don't define it until later. This
# causes issues in assignment validation. For now, matrices are defined
# as anything with a shape that is not an Indexed
lhs_is_mat = hasattr(lhs, 'shape') and not isinstance(lhs, Indexed)
rhs_is_mat = hasattr(rhs, 'shape') and not isinstance(rhs, Indexed)
# If lhs and rhs have same structure, then this assignment is ok
if lhs_is_mat:
if not rhs_is_mat:
raise ValueError("Cannot assign a scalar to a matrix.")
elif lhs.shape != rhs.shape:
raise ValueError("Dimensions of lhs and rhs don't align.")
elif rhs_is_mat and not lhs_is_mat:
raise ValueError("Cannot assign a matrix to a scalar.")
class Assignment(AssignmentBase):
"""
Represents variable assignment for code generation.
Parameters
==========
lhs : Expr
Sympy object representing the lhs of the expression. These should be
singular objects, such as one would use in writing code. Notable types
include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that
subclass these types are also supported.
rhs : Expr
Sympy object representing the rhs of the expression. This can be any
type, provided its shape corresponds to that of the lhs. For example,
a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as
the dimensions will not align.
Examples
========
>>> from sympy import symbols, MatrixSymbol, Matrix
>>> from sympy.codegen.ast import Assignment
>>> x, y, z = symbols('x, y, z')
>>> Assignment(x, y)
Assignment(x, y)
>>> Assignment(x, 0)
Assignment(x, 0)
>>> A = MatrixSymbol('A', 1, 3)
>>> mat = Matrix([x, y, z]).T
>>> Assignment(A, mat)
Assignment(A, Matrix([[x, y, z]]))
>>> Assignment(A[0, 1], x)
Assignment(A[0, 1], x)
"""
op = ':='
class AugmentedAssignment(AssignmentBase):
"""
Base class for augmented assignments.
Attributes:
===========
binop : str
Symbol for binary operation being applied in the assignment, such as "+",
"*", etc.
"""
binop = None # type: str
@property
def op(self):
return self.binop + '='
class AddAugmentedAssignment(AugmentedAssignment):
binop = '+'
class SubAugmentedAssignment(AugmentedAssignment):
binop = '-'
class MulAugmentedAssignment(AugmentedAssignment):
binop = '*'
class DivAugmentedAssignment(AugmentedAssignment):
binop = '/'
class ModAugmentedAssignment(AugmentedAssignment):
binop = '%'
# Mapping from binary op strings to AugmentedAssignment subclasses
augassign_classes = {
cls.binop: cls for cls in [
AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment,
DivAugmentedAssignment, ModAugmentedAssignment
]
}
def aug_assign(lhs, op, rhs):
"""
Create 'lhs op= rhs'.
Represents augmented variable assignment for code generation. This is a
convenience function. You can also use the AugmentedAssignment classes
directly, like AddAugmentedAssignment(x, y).
Parameters
==========
lhs : Expr
Sympy object representing the lhs of the expression. These should be
singular objects, such as one would use in writing code. Notable types
include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that
subclass these types are also supported.
op : str
Operator (+, -, /, \\*, %).
rhs : Expr
Sympy object representing the rhs of the expression. This can be any
type, provided its shape corresponds to that of the lhs. For example,
a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as
the dimensions will not align.
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import aug_assign
>>> x, y = symbols('x, y')
>>> aug_assign(x, '+', y)
AddAugmentedAssignment(x, y)
"""
if op not in augassign_classes:
raise ValueError("Unrecognized operator %s" % op)
return augassign_classes[op](lhs, rhs)
class CodeBlock(Basic):
"""
Represents a block of code
For now only assignments are supported. This restriction will be lifted in
the future.
Useful attributes on this object are:
``left_hand_sides``:
Tuple of left-hand sides of assignments, in order.
``left_hand_sides``:
Tuple of right-hand sides of assignments, in order.
``free_symbols``: Free symbols of the expressions in the right-hand sides
which do not appear in the left-hand side of an assignment.
Useful methods on this object are:
``topological_sort``:
Class method. Return a CodeBlock with assignments
sorted so that variables are assigned before they
are used.
``cse``:
Return a new CodeBlock with common subexpressions eliminated and
pulled out as assignments.
Examples
========
>>> from sympy import symbols, ccode
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y = symbols('x y')
>>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1))
>>> print(ccode(c))
x = 1;
y = x + 1;
"""
def __new__(cls, *args):
left_hand_sides = []
right_hand_sides = []
for i in args:
if isinstance(i, Assignment):
lhs, rhs = i.args
left_hand_sides.append(lhs)
right_hand_sides.append(rhs)
obj = Basic.__new__(cls, *args)
obj.left_hand_sides = Tuple(*left_hand_sides)
obj.right_hand_sides = Tuple(*right_hand_sides)
return obj
def __iter__(self):
return iter(self.args)
def _sympyrepr(self, printer, *args, **kwargs):
il = printer._context.get('indent_level', 0)
joiner = ',\n' + ' '*il
joined = joiner.join(map(printer._print, self.args))
return ('{0}(\n'.format(' '*(il-4) + self.__class__.__name__,) +
' '*il + joined + '\n' + ' '*(il - 4) + ')')
_sympystr = _sympyrepr
@property
def free_symbols(self):
return super(CodeBlock, self).free_symbols - set(self.left_hand_sides)
@classmethod
def topological_sort(cls, assignments):
"""
Return a CodeBlock with topologically sorted assignments so that
variables are assigned before they are used.
The existing order of assignments is preserved as much as possible.
This function assumes that variables are assigned to only once.
This is a class constructor so that the default constructor for
CodeBlock can error when variables are used before they are assigned.
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> assignments = [
... Assignment(x, y + z),
... Assignment(y, z + 1),
... Assignment(z, 2),
... ]
>>> CodeBlock.topological_sort(assignments)
CodeBlock(
Assignment(z, 2),
Assignment(y, z + 1),
Assignment(x, y + z)
)
"""
from sympy.utilities.iterables import topological_sort
if not all(isinstance(i, Assignment) for i in assignments):
# Will support more things later
raise NotImplementedError("CodeBlock.topological_sort only supports Assignments")
if any(isinstance(i, AugmentedAssignment) for i in assignments):
raise NotImplementedError("CodeBlock.topological_sort doesn't yet work with AugmentedAssignments")
# Create a graph where the nodes are assignments and there is a directed edge
# between nodes that use a variable and nodes that assign that
# variable, like
# [(x := 1, y := x + 1), (x := 1, z := y + z), (y := x + 1, z := y + z)]
# If we then topologically sort these nodes, they will be in
# assignment order, like
# x := 1
# y := x + 1
# z := y + z
# A = The nodes
#
# enumerate keeps nodes in the same order they are already in if
# possible. It will also allow us to handle duplicate assignments to
# the same variable when those are implemented.
A = list(enumerate(assignments))
# var_map = {variable: [nodes for which this variable is assigned to]}
# like {x: [(1, x := y + z), (4, x := 2 * w)], ...}
var_map = defaultdict(list)
for node in A:
i, a = node
var_map[a.lhs].append(node)
# E = Edges in the graph
E = []
for dst_node in A:
i, a = dst_node
for s in a.rhs.free_symbols:
for src_node in var_map[s]:
E.append((src_node, dst_node))
ordered_assignments = topological_sort([A, E])
# De-enumerate the result
return cls(*[a for i, a in ordered_assignments])
def cse(self, symbols=None, optimizations=None, postprocess=None,
order='canonical'):
"""
Return a new code block with common subexpressions eliminated
See the docstring of :func:`sympy.simplify.cse_main.cse` for more
information.
Examples
========
>>> from sympy import symbols, sin
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> c = CodeBlock(
... Assignment(x, 1),
... Assignment(y, sin(x) + 1),
... Assignment(z, sin(x) - 1),
... )
...
>>> c.cse()
CodeBlock(
Assignment(x, 1),
Assignment(x0, sin(x)),
Assignment(y, x0 + 1),
Assignment(z, x0 - 1)
)
"""
from sympy.simplify.cse_main import cse
from sympy.utilities.iterables import numbered_symbols, filter_symbols
# Check that the CodeBlock only contains assignments to unique variables
if not all(isinstance(i, Assignment) for i in self.args):
# Will support more things later
raise NotImplementedError("CodeBlock.cse only supports Assignments")
if any(isinstance(i, AugmentedAssignment) for i in self.args):
raise NotImplementedError("CodeBlock.cse doesn't yet work with AugmentedAssignments")
for i, lhs in enumerate(self.left_hand_sides):
if lhs in self.left_hand_sides[:i]:
raise NotImplementedError("Duplicate assignments to the same "
"variable are not yet supported (%s)" % lhs)
# Ensure new symbols for subexpressions do not conflict with existing
existing_symbols = self.atoms(Symbol)
if symbols is None:
symbols = numbered_symbols()
symbols = filter_symbols(symbols, existing_symbols)
replacements, reduced_exprs = cse(list(self.right_hand_sides),
symbols=symbols, optimizations=optimizations, postprocess=postprocess,
order=order)
new_block = [Assignment(var, expr) for var, expr in
zip(self.left_hand_sides, reduced_exprs)]
new_assignments = [Assignment(var, expr) for var, expr in replacements]
return self.topological_sort(new_assignments + new_block)
class For(Token):
"""Represents a 'for-loop' in the code.
Expressions are of the form:
"for target in iter:
body..."
Parameters
==========
target : symbol
iter : iterable
body : CodeBlock or iterable
! When passed an iterable it is used to instantiate a CodeBlock.
Examples
========
>>> from sympy import symbols, Range
>>> from sympy.codegen.ast import aug_assign, For
>>> x, i, j, k = symbols('x i j k')
>>> for_i = For(i, Range(10), [aug_assign(x, '+', i*j*k)])
>>> for_i # doctest: -NORMALIZE_WHITESPACE
For(i, iterable=Range(0, 10, 1), body=CodeBlock(
AddAugmentedAssignment(x, i*j*k)
))
>>> for_ji = For(j, Range(7), [for_i])
>>> for_ji # doctest: -NORMALIZE_WHITESPACE
For(j, iterable=Range(0, 7, 1), body=CodeBlock(
For(i, iterable=Range(0, 10, 1), body=CodeBlock(
AddAugmentedAssignment(x, i*j*k)
))
))
>>> for_kji =For(k, Range(5), [for_ji])
>>> for_kji # doctest: -NORMALIZE_WHITESPACE
For(k, iterable=Range(0, 5, 1), body=CodeBlock(
For(j, iterable=Range(0, 7, 1), body=CodeBlock(
For(i, iterable=Range(0, 10, 1), body=CodeBlock(
AddAugmentedAssignment(x, i*j*k)
))
))
))
"""
__slots__ = ('target', 'iterable', 'body')
_construct_target = staticmethod(_sympify)
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
@classmethod
def _construct_iterable(cls, itr):
if not iterable(itr):
raise TypeError("iterable must be an iterable")
if isinstance(itr, list): # _sympify errors on lists because they are mutable
itr = tuple(itr)
return _sympify(itr)
class String(Token):
""" SymPy object representing a string.
Atomic object which is not an expression (as opposed to Symbol).
Parameters
==========
text : str
Examples
========
>>> from sympy.codegen.ast import String
>>> f = String('foo')
>>> f
foo
>>> str(f)
'foo'
>>> f.text
'foo'
>>> print(repr(f))
String('foo')
"""
__slots__ = ('text',)
not_in_args = ['text']
is_Atom = True
@classmethod
def _construct_text(cls, text):
if not isinstance(text, str):
raise TypeError("Argument text is not a string type.")
return text
def _sympystr(self, printer, *args, **kwargs):
return self.text
class QuotedString(String):
""" Represents a string which should be printed with quotes. """
class Comment(String):
""" Represents a comment. """
class Node(Token):
""" Subclass of Token, carrying the attribute 'attrs' (Tuple)
Examples
========
>>> from sympy.codegen.ast import Node, value_const, pointer_const
>>> n1 = Node([value_const])
>>> n1.attr_params('value_const') # get the parameters of attribute (by name)
()
>>> from sympy.codegen.fnodes import dimension
>>> n2 = Node([value_const, dimension(5, 3)])
>>> n2.attr_params(value_const) # get the parameters of attribute (by Attribute instance)
()
>>> n2.attr_params('dimension') # get the parameters of attribute (by name)
(5, 3)
>>> n2.attr_params(pointer_const) is None
True
"""
__slots__ = ('attrs',)
defaults = {'attrs': Tuple()} # type: Dict[str, Any]
_construct_attrs = staticmethod(_mk_Tuple)
def attr_params(self, looking_for):
""" Returns the parameters of the Attribute with name ``looking_for`` in self.attrs """
for attr in self.attrs:
if str(attr.name) == str(looking_for):
return attr.parameters
class Type(Token):
""" Represents a type.
The naming is a super-set of NumPy naming. Type has a classmethod
``from_expr`` which offer type deduction. It also has a method
``cast_check`` which casts the argument to its type, possibly raising an
exception if rounding error is not within tolerances, or if the value is not
representable by the underlying data type (e.g. unsigned integers).
Parameters
==========
name : str
Name of the type, e.g. ``object``, ``int16``, ``float16`` (where the latter two
would use the ``Type`` sub-classes ``IntType`` and ``FloatType`` respectively).
If a ``Type`` instance is given, the said instance is returned.
Examples
========
>>> from sympy.codegen.ast import Type
>>> t = Type.from_expr(42)
>>> t
integer
>>> print(repr(t))
IntBaseType(String('integer'))
>>> from sympy.codegen.ast import uint8
>>> uint8.cast_check(-1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Minimum value for data type bigger than new value.
>>> from sympy.codegen.ast import float32
>>> v6 = 0.123456
>>> float32.cast_check(v6)
0.123456
>>> v10 = 12345.67894
>>> float32.cast_check(v10) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Casting gives a significantly different value.
>>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50')
>>> from sympy import Symbol
>>> from sympy.printing.cxxcode import cxxcode
>>> from sympy.codegen.ast import Declaration, Variable
>>> cxxcode(Declaration(Variable('x', type=boost_mp50)))
'boost::multiprecision::cpp_dec_float_50 x'
References
==========
.. [1] https://docs.scipy.org/doc/numpy/user/basics.types.html
"""
__slots__ = ('name',)
_construct_name = String
def _sympystr(self, printer, *args, **kwargs):
return str(self.name)
@classmethod
def from_expr(cls, expr):
""" Deduces type from an expression or a ``Symbol``.
Parameters
==========
expr : number or SymPy object
The type will be deduced from type or properties.
Examples
========
>>> from sympy.codegen.ast import Type, integer, complex_
>>> Type.from_expr(2) == integer
True
>>> from sympy import Symbol
>>> Type.from_expr(Symbol('z', complex=True)) == complex_
True
>>> Type.from_expr(sum) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Could not deduce type from expr.
Raises
======
ValueError when type deduction fails.
"""
if isinstance(expr, (float, Float)):
return real
if isinstance(expr, (int, Integer)) or getattr(expr, 'is_integer', False):
return integer
if getattr(expr, 'is_real', False):
return real
if isinstance(expr, complex) or getattr(expr, 'is_complex', False):
return complex_
if isinstance(expr, bool) or getattr(expr, 'is_Relational', False):
return bool_
else:
raise ValueError("Could not deduce type from expr.")
def _check(self, value):
pass
def cast_check(self, value, rtol=None, atol=0, limits=None, precision_targets=None):
""" Casts a value to the data type of the instance.
Parameters
==========
value : number
rtol : floating point number
Relative tolerance. (will be deduced if not given).
atol : floating point number
Absolute tolerance (in addition to ``rtol``).
limits : dict
Values given by ``limits.h``, x86/IEEE754 defaults if not given.
type_aliases : dict
Maps substitutions for Type, e.g. {integer: int64, real: float32}
Examples
========
>>> from sympy.codegen.ast import Type, integer, float32, int8
>>> integer.cast_check(3.0) == 3
True
>>> float32.cast_check(1e-40) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Minimum value for data type bigger than new value.
>>> int8.cast_check(256) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Maximum value for data type smaller than new value.
>>> v10 = 12345.67894
>>> float32.cast_check(v10) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float64
>>> float64.cast_check(v10)
12345.67894
>>> from sympy import Float
>>> v18 = Float('0.123456789012345646')
>>> float64.cast_check(v18)
Traceback (most recent call last):
...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float80
>>> float80.cast_check(v18)
0.123456789012345649
"""
val = sympify(value)
ten = Integer(10)
exp10 = getattr(self, 'decimal_dig', None)
if rtol is None:
rtol = 1e-15 if exp10 is None else 2.0*ten**(-exp10)
def tol(num):
return atol + rtol*abs(num)
new_val = self.cast_nocheck(value)
self._check(new_val)
delta = new_val - val
if abs(delta) > tol(val): # rounding, e.g. int(3.5) != 3.5
raise ValueError("Casting gives a significantly different value.")
return new_val
class IntBaseType(Type):
""" Integer base type, contains no size information. """
__slots__ = ('name',)
cast_nocheck = lambda self, i: Integer(int(i))
class _SizedIntType(IntBaseType):
__slots__ = ('name', 'nbits',)
_construct_nbits = Integer
def _check(self, value):
if value < self.min:
raise ValueError("Value is too small: %d < %d" % (value, self.min))
if value > self.max:
raise ValueError("Value is too big: %d > %d" % (value, self.max))
class SignedIntType(_SizedIntType):
""" Represents a signed integer type. """
@property
def min(self):
return -2**(self.nbits-1)
@property
def max(self):
return 2**(self.nbits-1) - 1
class UnsignedIntType(_SizedIntType):
""" Represents an unsigned integer type. """
@property
def min(self):
return 0
@property
def max(self):
return 2**self.nbits - 1
two = Integer(2)
class FloatBaseType(Type):
""" Represents a floating point number type. """
cast_nocheck = Float
class FloatType(FloatBaseType):
""" Represents a floating point type with fixed bit width.
Base 2 & one sign bit is assumed.
Parameters
==========
name : str
Name of the type.
nbits : integer
Number of bits used (storage).
nmant : integer
Number of bits used to represent the mantissa.
nexp : integer
Number of bits used to represent the mantissa.
Examples
========
>>> from sympy import S, Float
>>> from sympy.codegen.ast import FloatType
>>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5)
>>> half_precision.max
65504
>>> half_precision.tiny == S(2)**-14
True
>>> half_precision.eps == S(2)**-10
True
>>> half_precision.dig == 3
True
>>> half_precision.decimal_dig == 5
True
>>> half_precision.cast_check(1.0)
1.0
>>> half_precision.cast_check(1e5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Maximum value for data type smaller than new value.
"""
__slots__ = ('name', 'nbits', 'nmant', 'nexp',)
_construct_nbits = _construct_nmant = _construct_nexp = Integer
@property
def max_exponent(self):
""" The largest positive number n, such that 2**(n - 1) is a representable finite value. """
# cf. C++'s ``std::numeric_limits::max_exponent``
return two**(self.nexp - 1)
@property
def min_exponent(self):
""" The lowest negative number n, such that 2**(n - 1) is a valid normalized number. """
# cf. C++'s ``std::numeric_limits::min_exponent``
return 3 - self.max_exponent
@property
def max(self):
""" Maximum value representable. """
return (1 - two**-(self.nmant+1))*two**self.max_exponent
@property
def tiny(self):
""" The minimum positive normalized value. """
# See C macros: FLT_MIN, DBL_MIN, LDBL_MIN
# or C++'s ``std::numeric_limits::min``
# or numpy.finfo(dtype).tiny
return two**(self.min_exponent - 1)
@property
def eps(self):
""" Difference between 1.0 and the next representable value. """
return two**(-self.nmant)
@property
def dig(self):
""" Number of decimal digits that are guaranteed to be preserved in text.
When converting text -> float -> text, you are guaranteed that at least ``dig``
number of digits are preserved with respect to rounding or overflow.
"""
from sympy.functions import floor, log
return floor(self.nmant * log(2)/log(10))
@property
def decimal_dig(self):
""" Number of digits needed to store & load without loss.
Number of decimal digits needed to guarantee that two consecutive conversions
(float -> text -> float) to be idempotent. This is useful when one do not want
to loose precision due to rounding errors when storing a floating point value
as text.
"""
from sympy.functions import ceiling, log
return ceiling((self.nmant + 1) * log(2)/log(10) + 1)
def cast_nocheck(self, value):
""" Casts without checking if out of bounds or subnormal. """
if value == oo: # float(oo) or oo
return float(oo)
elif value == -oo: # float(-oo) or -oo
return float(-oo)
return Float(str(sympify(value).evalf(self.decimal_dig)), self.decimal_dig)
def _check(self, value):
if value < -self.max:
raise ValueError("Value is too small: %d < %d" % (value, -self.max))
if value > self.max:
raise ValueError("Value is too big: %d > %d" % (value, self.max))
if abs(value) < self.tiny:
raise ValueError("Smallest (absolute) value for data type bigger than new value.")
class ComplexBaseType(FloatBaseType):
def cast_nocheck(self, value):
""" Casts without checking if out of bounds or subnormal. """
from sympy.functions import re, im
return (
super(ComplexBaseType, self).cast_nocheck(re(value)) +
super(ComplexBaseType, self).cast_nocheck(im(value))*1j
)
def _check(self, value):
from sympy.functions import re, im
super(ComplexBaseType, self)._check(re(value))
super(ComplexBaseType, self)._check(im(value))
class ComplexType(ComplexBaseType, FloatType):
""" Represents a complex floating point number. """
# NumPy types:
intc = IntBaseType('intc')
intp = IntBaseType('intp')
int8 = SignedIntType('int8', 8)
int16 = SignedIntType('int16', 16)
int32 = SignedIntType('int32', 32)
int64 = SignedIntType('int64', 64)
uint8 = UnsignedIntType('uint8', 8)
uint16 = UnsignedIntType('uint16', 16)
uint32 = UnsignedIntType('uint32', 32)
uint64 = UnsignedIntType('uint64', 64)
float16 = FloatType('float16', 16, nexp=5, nmant=10) # IEEE 754 binary16, Half precision
float32 = FloatType('float32', 32, nexp=8, nmant=23) # IEEE 754 binary32, Single precision
float64 = FloatType('float64', 64, nexp=11, nmant=52) # IEEE 754 binary64, Double precision
float80 = FloatType('float80', 80, nexp=15, nmant=63) # x86 extended precision (1 integer part bit), "long double"
float128 = FloatType('float128', 128, nexp=15, nmant=112) # IEEE 754 binary128, Quadruple precision
float256 = FloatType('float256', 256, nexp=19, nmant=236) # IEEE 754 binary256, Octuple precision
complex64 = ComplexType('complex64', nbits=64, **float32.kwargs(exclude=('name', 'nbits')))
complex128 = ComplexType('complex128', nbits=128, **float64.kwargs(exclude=('name', 'nbits')))
# Generic types (precision may be chosen by code printers):
untyped = Type('untyped')
real = FloatBaseType('real')
integer = IntBaseType('integer')
complex_ = ComplexBaseType('complex')
bool_ = Type('bool')
class Attribute(Token):
""" Attribute (possibly parametrized)
For use with :class:`sympy.codegen.ast.Node` (which takes instances of
``Attribute`` as ``attrs``).
Parameters
==========
name : str
parameters : Tuple
Examples
========
>>> from sympy.codegen.ast import Attribute
>>> volatile = Attribute('volatile')
>>> volatile
volatile
>>> print(repr(volatile))
Attribute(String('volatile'))
>>> a = Attribute('foo', [1, 2, 3])
>>> a
foo(1, 2, 3)
>>> a.parameters == (1, 2, 3)
True
"""
__slots__ = ('name', 'parameters')
defaults = {'parameters': Tuple()}
_construct_name = String
_construct_parameters = staticmethod(_mk_Tuple)
def _sympystr(self, printer, *args, **kwargs):
result = str(self.name)
if self.parameters:
result += '(%s)' % ', '.join(map(lambda arg: printer._print(
arg, *args, **kwargs), self.parameters))
return result
value_const = Attribute('value_const')
pointer_const = Attribute('pointer_const')
class Variable(Node):
""" Represents a variable
Parameters
==========
symbol : Symbol
type : Type (optional)
Type of the variable.
attrs : iterable of Attribute instances
Will be stored as a Tuple.
Examples
========
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, float32, integer
>>> x = Symbol('x')
>>> v = Variable(x, type=float32)
>>> v.attrs
()
>>> v == Variable('x')
False
>>> v == Variable('x', type=float32)
True
>>> v
Variable(x, type=float32)
One may also construct a ``Variable`` instance with the type deduced from
assumptions about the symbol using the ``deduced`` classmethod:
>>> i = Symbol('i', integer=True)
>>> v = Variable.deduced(i)
>>> v.type == integer
True
>>> v == Variable('i')
False
>>> from sympy.codegen.ast import value_const
>>> value_const in v.attrs
False
>>> w = Variable('w', attrs=[value_const])
>>> w
Variable(w, attrs=(value_const,))
>>> value_const in w.attrs
True
>>> w.as_Declaration(value=42)
Declaration(Variable(w, value=42, attrs=(value_const,)))
"""
__slots__ = ('symbol', 'type', 'value') + Node.__slots__
defaults = Node.defaults.copy()
defaults.update({'type': untyped, 'value': none})
_construct_symbol = staticmethod(sympify)
_construct_value = staticmethod(sympify)
@classmethod
def deduced(cls, symbol, value=None, attrs=Tuple(), cast_check=True):
""" Alt. constructor with type deduction from ``Type.from_expr``.
Deduces type primarily from ``symbol``, secondarily from ``value``.
Parameters
==========
symbol : Symbol
value : expr
(optional) value of the variable.
attrs : iterable of Attribute instances
cast_check : bool
Whether to apply ``Type.cast_check`` on ``value``.
Examples
========
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, complex_
>>> n = Symbol('n', integer=True)
>>> str(Variable.deduced(n).type)
'integer'
>>> x = Symbol('x', real=True)
>>> v = Variable.deduced(x)
>>> v.type
real
>>> z = Symbol('z', complex=True)
>>> Variable.deduced(z).type == complex_
True
"""
if isinstance(symbol, Variable):
return symbol
try:
type_ = Type.from_expr(symbol)
except ValueError:
type_ = Type.from_expr(value)
if value is not None and cast_check:
value = type_.cast_check(value)
return cls(symbol, type=type_, value=value, attrs=attrs)
def as_Declaration(self, **kwargs):
""" Convenience method for creating a Declaration instance.
If the variable of the Declaration need to wrap a modified
variable keyword arguments may be passed (overriding e.g.
the ``value`` of the Variable instance).
Examples
========
>>> from sympy.codegen.ast import Variable, NoneToken
>>> x = Variable('x')
>>> decl1 = x.as_Declaration()
>>> # value is special NoneToken() which must be tested with == operator
>>> decl1.variable.value is None # won't work
False
>>> decl1.variable.value == None # not PEP-8 compliant
True
>>> decl1.variable.value == NoneToken() # OK
True
>>> decl2 = x.as_Declaration(value=42.0)
>>> decl2.variable.value == 42
True
"""
kw = self.kwargs()
kw.update(kwargs)
return Declaration(self.func(**kw))
def _relation(self, rhs, op):
try:
rhs = _sympify(rhs)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, rhs))
return op(self, rhs, evaluate=False)
__lt__ = lambda self, other: self._relation(other, Lt)
__le__ = lambda self, other: self._relation(other, Le)
__ge__ = lambda self, other: self._relation(other, Ge)
__gt__ = lambda self, other: self._relation(other, Gt)
class Pointer(Variable):
""" Represents a pointer. See ``Variable``.
Examples
========
Can create instances of ``Element``:
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Pointer
>>> i = Symbol('i', integer=True)
>>> p = Pointer('x')
>>> p[i+1]
Element(x, indices=(i + 1,))
"""
def __getitem__(self, key):
try:
return Element(self.symbol, key)
except TypeError:
return Element(self.symbol, (key,))
class Element(Token):
""" Element in (a possibly N-dimensional) array.
Examples
========
>>> from sympy.codegen.ast import Element
>>> elem = Element('x', 'ijk')
>>> elem.symbol.name == 'x'
True
>>> elem.indices
(i, j, k)
>>> from sympy import ccode
>>> ccode(elem)
'x[i][j][k]'
>>> ccode(Element('x', 'ijk', strides='lmn', offset='o'))
'x[i*l + j*m + k*n + o]'
"""
__slots__ = ('symbol', 'indices', 'strides', 'offset')
defaults = {'strides': none, 'offset': none}
_construct_symbol = staticmethod(sympify)
_construct_indices = staticmethod(lambda arg: Tuple(*arg))
_construct_strides = staticmethod(lambda arg: Tuple(*arg))
_construct_offset = staticmethod(sympify)
class Declaration(Token):
""" Represents a variable declaration
Parameters
==========
variable : Variable
Examples
========
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Declaration, Type, Variable, NoneToken, integer, untyped
>>> z = Declaration('z')
>>> z.variable.type == untyped
True
>>> # value is special NoneToken() which must be tested with == operator
>>> z.variable.value is None # won't work
False
>>> z.variable.value == None # not PEP-8 compliant
True
>>> z.variable.value == NoneToken() # OK
True
"""
__slots__ = ('variable',)
_construct_variable = Variable
class While(Token):
""" Represents a 'for-loop' in the code.
Expressions are of the form:
"while condition:
body..."
Parameters
==========
condition : expression convertible to Boolean
body : CodeBlock or iterable
When passed an iterable it is used to instantiate a CodeBlock.
Examples
========
>>> from sympy import symbols, Gt, Abs
>>> from sympy.codegen import aug_assign, Assignment, While
>>> x, dx = symbols('x dx')
>>> expr = 1 - x**2
>>> whl = While(Gt(Abs(dx), 1e-9), [
... Assignment(dx, -expr/expr.diff(x)),
... aug_assign(x, '+', dx)
... ])
"""
__slots__ = ('condition', 'body')
_construct_condition = staticmethod(lambda cond: _sympify(cond))
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
class Scope(Token):
""" Represents a scope in the code.
Parameters
==========
body : CodeBlock or iterable
When passed an iterable it is used to instantiate a CodeBlock.
"""
__slots__ = ('body',)
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
class Stream(Token):
""" Represents a stream.
There are two predefined Stream instances ``stdout`` & ``stderr``.
Parameters
==========
name : str
Examples
========
>>> from sympy import Symbol
>>> from sympy.printing.pycode import pycode
>>> from sympy.codegen.ast import Print, stderr, QuotedString
>>> print(pycode(Print(['x'], file=stderr)))
print(x, file=sys.stderr)
>>> x = Symbol('x')
>>> print(pycode(Print([QuotedString('x')], file=stderr))) # print literally "x"
print("x", file=sys.stderr)
"""
__slots__ = ('name',)
_construct_name = String
stdout = Stream('stdout')
stderr = Stream('stderr')
class Print(Token):
""" Represents print command in the code.
Parameters
==========
formatstring : str
*args : Basic instances (or convertible to such through sympify)
Examples
========
>>> from sympy.codegen.ast import Print
>>> from sympy.printing.pycode import pycode
>>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g")))
print("coordinate: %12.5g %12.5g" % (x, y))
"""
__slots__ = ('print_args', 'format_string', 'file')
defaults = {'format_string': none, 'file': none}
_construct_print_args = staticmethod(_mk_Tuple)
_construct_format_string = QuotedString
_construct_file = Stream
class FunctionPrototype(Node):
""" Represents a function prototype
Allows the user to generate forward declaration in e.g. C/C++.
Parameters
==========
return_type : Type
name : str
parameters: iterable of Variable instances
attrs : iterable of Attribute instances
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> from sympy.printing.ccode import ccode
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
"""
__slots__ = ('return_type', 'name', 'parameters', 'attrs')
_construct_return_type = Type
_construct_name = String
@staticmethod
def _construct_parameters(args):
def _var(arg):
if isinstance(arg, Declaration):
return arg.variable
elif isinstance(arg, Variable):
return arg
else:
return Variable.deduced(arg)
return Tuple(*map(_var, args))
@classmethod
def from_FunctionDefinition(cls, func_def):
if not isinstance(func_def, FunctionDefinition):
raise TypeError("func_def is not an instance of FunctionDefiniton")
return cls(**func_def.kwargs(exclude=('body',)))
class FunctionDefinition(FunctionPrototype):
""" Represents a function definition in the code.
Parameters
==========
return_type : Type
name : str
parameters: iterable of Variable instances
body : CodeBlock or iterable
attrs : iterable of Attribute instances
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> from sympy.printing.ccode import ccode
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
>>> from sympy.codegen.ast import FunctionDefinition, Return
>>> body = [Return(x*y)]
>>> fd = FunctionDefinition.from_FunctionPrototype(fp, body)
>>> print(ccode(fd))
double foo(double x, double y){
return x*y;
}
"""
__slots__ = FunctionPrototype.__slots__[:-1] + ('body', 'attrs')
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
@classmethod
def from_FunctionPrototype(cls, func_proto, body):
if not isinstance(func_proto, FunctionPrototype):
raise TypeError("func_proto is not an instance of FunctionPrototype")
return cls(body=body, **func_proto.kwargs())
class Return(Basic):
""" Represents a return command in the code. """
class FunctionCall(Token, Expr):
""" Represents a call to a function in the code.
Parameters
==========
name : str
function_args : Tuple
Examples
========
>>> from sympy.codegen.ast import FunctionCall
>>> from sympy.printing.pycode import pycode
>>> fcall = FunctionCall('foo', 'bar baz'.split())
>>> print(pycode(fcall))
foo(bar, baz)
"""
__slots__ = ('name', 'function_args')
_construct_name = String
_construct_function_args = staticmethod(lambda args: Tuple(*args))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.