hash
stringlengths
64
64
content
stringlengths
0
1.51M
eaeeec226210e8b1f8a0a1ecbf9253b1b05b1701cce94c7015386dbb821ab1ef
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from astropy import __minimum_asdf_version__ asdf = pytest.importorskip('asdf', minversion=__minimum_asdf_version__) from asdf.tests.helpers import assert_roundtrip_tree from astropy import units from astropy.coordinates import ICRS, FK5, Longitude, Latitude, Angle from astropy.io.misc.asdf.extension import AstropyExtension def test_hcrs_basic(tmpdir): ra = Longitude(25, unit=units.deg) dec = Latitude(45, unit=units.deg) tree = {'coord': ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_basic(tmpdir): wrap_angle = Angle(1.5, unit=units.rad) ra = Longitude(25, unit=units.deg, wrap_angle=wrap_angle) dec = Latitude(45, unit=units.deg) tree = {'coord': ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_nodata(tmpdir): tree = {'coord': ICRS()} assert_roundtrip_tree(tree, tmpdir) def test_icrs_compound(tmpdir): icrs = ICRS(ra=[0, 1, 2]*units.deg, dec=[3, 4, 5]*units.deg) tree = {'coord': icrs} assert_roundtrip_tree(tree, tmpdir) def test_fk5_time(tmpdir): tree = {'coord': FK5(equinox="2011-01-01T00:00:00")} assert_roundtrip_tree(tree, tmpdir)
7a3bdf74df05acb0e54be3da94a5b04629f901e4fe317dddd37901814bd54894
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.coordinates.angles import Longitude, Latitude from astropy.coordinates.earth import EarthLocation, ELLIPSOIDS @pytest.fixture def position(): lon = Longitude([0., 45., 90., 135., 180., -180, -90, -45], u.deg, wrap_angle=180*u.deg) lat = Latitude([+0., 30., 60., +90., -90., -60., -30., 0.], u.deg) h = u.Quantity([0.1, 0.5, 1.0, -0.5, -1.0, +4.2, -11., -.1], u.m) return lon, lat, h def test_earthlocation_quantity(tmpdir): location = EarthLocation(lat=34.4900*u.deg, lon=-104.221800*u.deg, height=40*u.km) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) def test_earthlocation(position, tmpdir): x, y, z = EarthLocation.from_geodetic(*position).to_geocentric() geocentric = EarthLocation(x, y, z) tree = dict(location=geocentric) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize('ellipsoid', ELLIPSOIDS) def test_earthlocation_geodetic(position, ellipsoid, tmpdir): location = EarthLocation.from_geodetic(*position, ellipsoid=ellipsoid) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.remote_data def test_earthlocation_site(tmpdir): keck = EarthLocation.of_site('Keck Observatory') tree = dict(location=keck) assert_roundtrip_tree(tree, tmpdir)
367474b6e232c5daa0b12b17022b9af5d9efed9ae2d354bc202ee475829f8345
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np import pytest from astropy import units as u from astropy.coordinates import SkyCoord, ICRS, Galactic, FK4, FK5, Longitude asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree # These tests are cribbed directly from the Examples section of # http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html def test_scalar_skycoord(tmpdir): c = SkyCoord(10, 20, unit="deg") # defaults to ICRS frame tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_vector_skycoord(tmpdir): c = SkyCoord([1, 2, 3], [-30, 45, 8], frame="icrs", unit="deg") # 3 coords tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_fk4(tmpdir): coords = ["1:12:43.2 +1:12:43", "1 12 43.2 +1 12 43"] c = SkyCoord(coords, frame=FK4, unit=(u.deg, u.hourangle), obstime="J1992.21") tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize('coord', [ SkyCoord("1h12m43.2s +1d12m43s", frame=Galactic), # Units from string SkyCoord(frame="galactic", l="1h12m43.2s", b="+1d12m43s") ]) def test_skycoord_galactic(coord, tmpdir): tree = dict(coord=coord) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_ra_dec(tmpdir): ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity c = SkyCoord(ra, dec, frame='icrs') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) c = SkyCoord(frame=ICRS, ra=ra, dec=dec, obstime='2001-01-02T12:34:56') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_override_defaults(tmpdir): c = FK4(1 * u.deg, 2 * u.deg) # Uses defaults for obstime, equinox c = SkyCoord(c, obstime='J2010.11', equinox='B1965') # Override defaults tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_cartesian(tmpdir): c = SkyCoord(w=0, u=1, v=2, unit='kpc', frame='galactic', representation_type='cartesian') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_vector_frames(tmpdir): c = SkyCoord([ICRS(ra=1*u.deg, dec=2*u.deg), ICRS(ra=3*u.deg, dec=4*u.deg)]) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason='Velocities are not properly serialized yet') def test_skycoord_radial_velocity(tmpdir): c = SkyCoord(ra=1*u.deg, dec=2*u.deg, radial_velocity=10*u.km/u.s) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason='Velocities are not properly serialized yet') def test_skycoord_proper_motion(tmpdir): c = SkyCoord(ra=1*u.deg, dec=2*u.deg, pm_ra_cosdec=2*u.mas/u.yr, pm_dec=1*u.mas/u.yr) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.skip(reason='Apparent loss of precision during serialization') def test_skycoord_extra_attribute(tmpdir): sc = SkyCoord(10*u.deg, 20*u.deg, equinox="2011-01-01T00:00", frame="fk4") tree = dict(coord=sc.transform_to("icrs")) def check_asdf(asdffile): assert hasattr(asdffile['coord'], 'equinox') assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check_asdf) def test_skycoord_2d_obstime(tmpdir): sc = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,m', frame='fk4', obstime=['J1990.5', 'J1991.5']), tree = dict(coord=sc) assert_roundtrip_tree(tree, tmpdir)
f15ab23ecdf72f94ca08ce2d7dc48bd536479d1e2f70eb4f3af100c03c3a98fd
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from astropy import __minimum_asdf_version__ asdf = pytest.importorskip('asdf', minversion=__minimum_asdf_version__) import astropy.units as u from asdf.tests.helpers import assert_roundtrip_tree from astropy.coordinates import Longitude, Latitude, Angle from astropy.io.misc.asdf.extension import AstropyExtension def test_angle(tmpdir): tree = {'angle': Angle(100, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_latitude(tmpdir): tree = {'angle': Latitude(10, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_longitude(tmpdir): tree = {'angle': Longitude(-100, u.deg, wrap_angle=180*u.deg)} assert_roundtrip_tree(tree, tmpdir)
dd88b4633012d96651c2f844d03c7ce49dcdf79c1844cdc7aa1f93fe8876cc1f
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from numpy.random import random, randint import astropy.units as u from astropy.coordinates import Angle import astropy.coordinates.representation as r from astropy import __minimum_asdf_version__ asdf = pytest.importorskip('asdf', minversion=__minimum_asdf_version__) from asdf.tests.helpers import assert_roundtrip_tree @pytest.fixture(params=filter(lambda x: "Base" not in x, r.__all__)) def representation(request): rep = getattr(r, request.param) angle_unit = u.deg other_unit = u.km kwargs = {} arr_len = randint(1, 100) for aname, atype in rep.attr_classes.items(): if issubclass(atype, Angle): value = ([random()] * arr_len) * angle_unit else: value = ([random()] * arr_len) * other_unit kwargs[aname] = value return rep(**kwargs) def test_representations(tmpdir, representation): tree = {'representation': representation} assert_roundtrip_tree(tree, tmpdir)
6e2c2e404224d1e43e86d4095f0c66bb81c14758b87306149a32d49da1be5637
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import io import pytest from astropy import units as u from astropy import __minimum_asdf_version__ asdf = pytest.importorskip('asdf', minversion=__minimum_asdf_version__) from asdf.tests import helpers # TODO: Implement defunit def test_unit(): yaml = """ unit: !unit/unit-1.0.0 "2.1798721 10-18kg m2 s-2" """ buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert ff.tree['unit'].is_equivalent(u.Ry) buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert ff.tree['unit'].is_equivalent(u.Ry)
568d1428ee497b99e9007ae3c7cc0cbdf7c48feb9d74fef57ca90e5ab0f6b15f
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import io import pytest from astropy import units from astropy import __minimum_asdf_version__ asdf = pytest.importorskip('asdf', minversion=__minimum_asdf_version__) from asdf.tests import helpers def roundtrip_quantity(yaml, quantity): buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert (ff.tree['quantity'] == quantity).all() buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert (ff.tree['quantity'] == quantity).all() def test_value_scalar(tmpdir): testval = 2.71828 testunit = units.kpc yaml = """ quantity: !unit/quantity-1.1.0 value: {} unit: {} """.format(testval, testunit) quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_array(tmpdir): testval = [3.14159] testunit = units.kg yaml = """ quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {} unit: {} """.format(testval, testunit) quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_multiarray(tmpdir): testval = [x*2.3081 for x in range(10)] testunit = units.ampere yaml = """ quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {} unit: {} """.format(testval, testunit) quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_ndarray(tmpdir): from numpy import array, float64 testval = [[1,2,3],[4,5,6]] testunit = units.km yaml = """ quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 datatype: float64 data: {} unit: {} """.format(testval, testunit) data = array(testval, float64) quantity = units.Quantity(data, unit=testunit) roundtrip_quantity(yaml, quantity)
d751cdce980422500df4f5aedaa4c16eb1fb4aa4ef42325f58e1cc36ebb73327
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from astropy import units as u from astropy.units import equivalencies as eq from astropy.cosmology import Planck15 asdf = pytest.importorskip('asdf', minversion='2.3.0.dev0') from asdf.tests import helpers def get_equivalencies(): """ Return a list of example equivalencies for testing serialization. """ return [eq.plate_scale(.3 * u.deg/u.mm), eq.pixel_scale(.5 * u.deg/u.pix), eq.spectral_density(3500 * u.Angstrom, factor=2), eq.spectral_density(3500 * u.Angstrom), eq.spectral(), eq.brightness_temperature(500 * u.GHz), eq.brightness_temperature(500 * u.GHz, beam_area=23 * u.sr), eq.with_H0(), eq.temperature_energy(), eq.temperature(), eq.thermodynamic_temperature(300 * u.Hz), eq.thermodynamic_temperature(140 * u.GHz, Planck15.Tcmb0), eq.beam_angular_area(3 * u.sr), eq.mass_energy(), eq.molar_mass_amu(), eq.doppler_relativistic(2 * u.m), eq.doppler_optical(2 * u.nm), eq.doppler_radio(2 * u.Hz), eq.parallax(), eq.logarithmic(), eq.dimensionless_angles(), eq.spectral() + eq.temperature(), (eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr)), (eq.spectral() + eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr)) ] @pytest.mark.parametrize('equiv', get_equivalencies()) def test_equivalencies(tmpdir, equiv): tree = {'equiv': equiv} helpers.assert_roundtrip_tree(tree, tmpdir)
527fd8f57d12fb7031069666b030c1a01e8f33d5cdbddb031afc9c01e7f9b100
# Licensed under a 3-clause BSD style license - see LICENSE.rst # LOCAL from astropy.tests.helper import catch_warnings from astropy.io.votable import converters from astropy.io.votable import exceptions from astropy.io.votable import tree def test_reraise(): def fail(): raise RuntimeError("This failed") try: try: fail() except RuntimeError as e: exceptions.vo_reraise(e, additional="From here") except RuntimeError as e: assert "From here" in str(e) else: assert False def test_parse_vowarning(): config = {'pedantic': True, 'filename': 'foo.xml'} pos = (42, 64) with catch_warnings(exceptions.W47) as w: field = tree.Field( None, name='c', datatype='char', config=config, pos=pos) c = converters.get_converter(field, config=config, pos=pos) parts = exceptions.parse_vowarning(str(w[0].message)) match = { 'number': 47, 'is_exception': False, 'nchar': 64, 'warning': 'W47', 'is_something': True, 'message': 'Missing arraysize indicates length 1', 'doc_url': 'io/votable/api_exceptions.html#w47', 'nline': 42, 'is_warning': True } assert parts == match
35d13c41e3d9a40e8d665ffa3644bd6181d24396a0f6e91e41b6a98545286212
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ A set of tests for the util.py module """ # LOCAL from astropy.io.votable import util from astropy.tests.helper import raises def test_range_list(): assert util.coerce_range_list_param((5,)) == ("5.0", 1) def test_range_list2(): assert util.coerce_range_list_param((5e-7, 8e-7)) == ("5e-07,8e-07", 2) def test_range_list3(): assert util.coerce_range_list_param((5e-7, 8e-7, "FOO")) == ( "5e-07,8e-07;FOO", 3) @raises(ValueError) def test_range_list4a(): util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO")) def test_range_list4(): assert (util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO"), numeric=False) == ("5e-07,/8e-07,4/,4/5,J;FOO", 6)) @raises(ValueError) def test_range_list5(): util.coerce_range_list_param(('FOO', )) @raises(ValueError) def test_range_list6(): print(util.coerce_range_list_param((5, 'FOO'), util.stc_reference_frames)) def test_range_list7(): assert util.coerce_range_list_param(("J",), numeric=False) == ("J", 1) def test_range_list8(): for s in ["5.0", "5e-07,8e-07", "5e-07,8e-07;FOO", "5e-07,/8e-07,4.0/,4.0/5.0;FOO", "J"]: assert util.coerce_range_list_param(s, numeric=False)[0] == s @raises(ValueError) def test_range_list9a(): util.coerce_range_list_param("52,-27.8;FOO", util.stc_reference_frames) def test_range_list9(): assert util.coerce_range_list_param( "52,-27.8;GALACTIC", util.stc_reference_frames)
4b9de501488314c791ec32d65ea7523d392ccdea5f261eee505264a9c10e72f3
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is a set of regression tests for vo. """ # STDLIB import difflib import io import pathlib import sys import gzip from unittest import mock # THIRD-PARTY import pytest import numpy as np from numpy.testing import assert_array_equal # LOCAL from astropy.io.votable.table import parse, parse_single_table, validate from astropy.io.votable import tree from astropy.io.votable.exceptions import VOTableSpecError, VOWarning from astropy.io.votable.xmlutil import validate_schema from astropy.utils.data import get_pkg_data_filename, get_pkg_data_filenames from astropy.tests.helper import raises, catch_warnings # Determine the kind of float formatting in this build of Python if hasattr(sys, 'float_repr_style'): legacy_float_repr = (sys.float_repr_style == 'legacy') else: legacy_float_repr = sys.platform.startswith('win') def assert_validate_schema(filename, version): if sys.platform.startswith('win'): return try: rc, stdout, stderr = validate_schema(filename, version) except OSError: # If xmllint is not installed, we want the test to pass anyway return assert rc == 0, 'File did not validate against VOTable schema' def test_parse_single_table(): table = parse_single_table( get_pkg_data_filename('data/regression.xml'), pedantic=False) assert isinstance(table, tree.Table) assert len(table.array) == 5 def test_parse_single_table2(): table2 = parse_single_table( get_pkg_data_filename('data/regression.xml'), table_number=1, pedantic=False) assert isinstance(table2, tree.Table) assert len(table2.array) == 1 assert len(table2.array.dtype.names) == 28 @raises(IndexError) def test_parse_single_table3(): parse_single_table( get_pkg_data_filename('data/regression.xml'), table_number=3, pedantic=False) def _test_regression(tmpdir, _python_based=False, binary_mode=1): # Read the VOTABLE votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False, _debug_python_based_parser=_python_based) table = votable.get_first_table() dtypes = [ ((str('string test'), str('string_test')), str('|O8')), ((str('fixed string test'), str('string_test_2')), str('|S10')), (str('unicode_test'), str('|O8')), ((str('unicode test'), str('fixed_unicode_test')), str('<U10')), ((str('string array test'), str('string_array_test')), str('|S4')), (str('unsignedByte'), str('|u1')), (str('short'), str('<i2')), (str('int'), str('<i4')), (str('long'), str('<i8')), (str('double'), str('<f8')), (str('float'), str('<f4')), (str('array'), str('|O8')), (str('bit'), str('|b1')), (str('bitarray'), str('|b1'), (3, 2)), (str('bitvararray'), str('|O8')), (str('bitvararray2'), str('|O8')), (str('floatComplex'), str('<c8')), (str('doubleComplex'), str('<c16')), (str('doubleComplexArray'), str('|O8')), (str('doubleComplexArrayFixed'), str('<c16'), (2,)), (str('boolean'), str('|b1')), (str('booleanArray'), str('|b1'), (4,)), (str('nulls'), str('<i4')), (str('nulls_array'), str('<i4'), (2, 2)), (str('precision1'), str('<f8')), (str('precision2'), str('<f8')), (str('doublearray'), str('|O8')), (str('bitarray2'), str('|b1'), (16,)) ] if sys.byteorder == 'big': new_dtypes = [] for dtype in dtypes: dtype = list(dtype) dtype[1] = dtype[1].replace(str('<'), str('>')) new_dtypes.append(tuple(dtype)) dtypes = new_dtypes assert table.array.dtype == dtypes votable.to_xml(str(tmpdir.join("regression.tabledata.xml")), _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.tabledata.xml")), votable.version) if binary_mode == 1: votable.get_first_table().format = 'binary' votable.version = '1.1' elif binary_mode == 2: votable.get_first_table()._config['version_1_3_or_later'] = True votable.get_first_table().format = 'binary2' votable.version = '1.3' # Also try passing a file handle with open(str(tmpdir.join("regression.binary.xml")), "wb") as fd: votable.to_xml(fd, _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.binary.xml")), votable.version) # Also try passing a file handle with open(str(tmpdir.join("regression.binary.xml")), "rb") as fd: votable2 = parse(fd, pedantic=False, _debug_python_based_parser=_python_based) votable2.get_first_table().format = 'tabledata' votable2.to_xml(str(tmpdir.join("regression.bin.tabledata.xml")), _astropy_version="testing", _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.bin.tabledata.xml")), votable.version) with open( get_pkg_data_filename( 'data/regression.bin.tabledata.truth.{0}.xml'.format( votable.version)), 'rt', encoding='utf-8') as fd: truth = fd.readlines() with open(str(tmpdir.join("regression.bin.tabledata.xml")), 'rt', encoding='utf-8') as fd: output = fd.readlines() # If the lines happen to be different, print a diff # This is convenient for debugging sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output # Test implicit gzip saving votable2.to_xml( str(tmpdir.join("regression.bin.tabledata.xml.gz")), _astropy_version="testing", _debug_python_based_parser=_python_based) with gzip.GzipFile( str(tmpdir.join("regression.bin.tabledata.xml.gz")), 'rb') as gzfd: output = gzfd.readlines() output = [x.decode('utf-8').rstrip() for x in output] truth = [x.rstrip() for x in truth] assert truth == output @pytest.mark.xfail(str('legacy_float_repr')) def test_regression(tmpdir): _test_regression(tmpdir, False) @pytest.mark.xfail(str('legacy_float_repr')) def test_regression_python_based_parser(tmpdir): _test_regression(tmpdir, True) @pytest.mark.xfail(str('legacy_float_repr')) def test_regression_binary2(tmpdir): _test_regression(tmpdir, False, 2) class TestFixups: def setup_class(self): self.table = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False).get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_implicit_id(self): assert_array_equal(self.array['string_test_2'], self.array['fixed string test']) class TestReferences: def setup_class(self): self.votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_fieldref(self): fieldref = self.table.groups[1].entries[0] assert isinstance(fieldref, tree.FieldRef) assert fieldref.get_ref().name == 'boolean' assert fieldref.get_ref().datatype == 'boolean' def test_paramref(self): paramref = self.table.groups[0].entries[0] assert isinstance(paramref, tree.ParamRef) assert paramref.get_ref().name == 'INPUT' assert paramref.get_ref().datatype == 'float' def test_iter_fields_and_params_on_a_group(self): assert len(list(self.table.groups[1].iter_fields_and_params())) == 2 def test_iter_groups_on_a_group(self): assert len(list(self.table.groups[1].iter_groups())) == 1 def test_iter_groups(self): # Because of the ref'd table, there are more logical groups # than actually exist in the file assert len(list(self.votable.iter_groups())) == 9 def test_ref_table(self): tables = list(self.votable.iter_tables()) for x, y in zip(tables[0].array.data[0], tables[1].array.data[0]): assert_array_equal(x, y) def test_iter_coosys(self): assert len(list(self.votable.iter_coosys())) == 1 def test_select_columns_by_index(): columns = [0, 5, 13] table = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False, columns=columns).get_first_table() array = table.array mask = table.array.mask assert array['string_test'][0] == b"String & test" columns = ['string_test', 'unsignedByte', 'bitarray'] for c in columns: assert not np.all(mask[c]) assert np.all(mask['unicode_test']) def test_select_columns_by_name(): columns = ['string_test', 'unsignedByte', 'bitarray'] table = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False, columns=columns).get_first_table() array = table.array mask = table.array.mask assert array['string_test'][0] == b"String & test" for c in columns: assert not np.all(mask[c]) assert np.all(mask['unicode_test']) class TestParse: def setup_class(self): self.votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_string_test(self): assert issubclass(self.array['string_test'].dtype.type, np.object_) assert_array_equal( self.array['string_test'], [b'String & test', b'String &amp; test', b'XXXX', b'', b'']) def test_fixed_string_test(self): assert issubclass(self.array['string_test_2'].dtype.type, np.string_) assert_array_equal( self.array['string_test_2'], [b'Fixed stri', b'0123456789', b'XXXX', b'', b'']) def test_unicode_test(self): assert issubclass(self.array['unicode_test'].dtype.type, np.object_) assert_array_equal(self.array['unicode_test'], ["Ceçi n'est pas un pipe", 'வணக்கம்', 'XXXX', '', '']) def test_fixed_unicode_test(self): assert issubclass(self.array['fixed_unicode_test'].dtype.type, np.unicode_) assert_array_equal(self.array['fixed_unicode_test'], ["Ceçi n'est", 'வணக்கம்', '0123456789', '', '']) def test_unsignedByte(self): assert issubclass(self.array['unsignedByte'].dtype.type, np.uint8) assert_array_equal(self.array['unsignedByte'], [128, 255, 0, 255, 255]) assert not np.any(self.mask['unsignedByte']) def test_short(self): assert issubclass(self.array['short'].dtype.type, np.int16) assert_array_equal(self.array['short'], [4096, 32767, -4096, 32767, 32767]) assert not np.any(self.mask['short']) def test_int(self): assert issubclass(self.array['int'].dtype.type, np.int32) assert_array_equal( self.array['int'], [268435456, 2147483647, -268435456, 268435455, 123456789]) assert_array_equal(self.mask['int'], [False, False, False, False, True]) def test_long(self): assert issubclass(self.array['long'].dtype.type, np.int64) assert_array_equal( self.array['long'], [922337203685477, 123456789, -1152921504606846976, 1152921504606846975, 123456789]) assert_array_equal(self.mask['long'], [False, True, False, False, True]) def test_double(self): assert issubclass(self.array['double'].dtype.type, np.float64) assert_array_equal(self.array['double'], [8.9990234375, 0.0, np.inf, np.nan, -np.inf]) assert_array_equal(self.mask['double'], [False, False, False, True, False]) def test_float(self): assert issubclass(self.array['float'].dtype.type, np.float32) assert_array_equal(self.array['float'], [1.0, 0.0, np.inf, np.inf, np.nan]) assert_array_equal(self.mask['float'], [False, False, False, False, True]) def test_array(self): assert issubclass(self.array['array'].dtype.type, np.object_) match = [[], [[42, 32], [12, 32]], [[12, 34], [56, 78], [87, 65], [43, 21]], [[-1, 23]], [[31, -1]]] for a, b in zip(self.array['array'], match): # assert issubclass(a.dtype.type, np.int64) # assert a.shape[1] == 2 for a0, b0 in zip(a, b): assert issubclass(a0.dtype.type, np.int64) assert_array_equal(a0, b0) assert self.array.data['array'][3].mask[0][0] assert self.array.data['array'][4].mask[0][1] def test_bit(self): assert issubclass(self.array['bit'].dtype.type, np.bool_) assert_array_equal(self.array['bit'], [True, False, True, False, False]) def test_bit_mask(self): assert_array_equal(self.mask['bit'], [False, False, False, False, True]) def test_bitarray(self): assert issubclass(self.array['bitarray'].dtype.type, np.bool_) assert self.array['bitarray'].shape == (5, 3, 2) assert_array_equal(self.array['bitarray'], [[[True, False], [True, True], [False, True]], [[False, True], [False, False], [True, True]], [[True, True], [True, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]]]) def test_bitarray_mask(self): assert_array_equal(self.mask['bitarray'], [[[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[True, True], [True, True], [True, True]], [[True, True], [True, True], [True, True]]]) def test_bitvararray(self): assert issubclass(self.array['bitvararray'].dtype.type, np.object_) match = [[True, True, True], [False, False, False, False, False], [True, False, True, False, True], [], []] for a, b in zip(self.array['bitvararray'], match): assert_array_equal(a, b) match_mask = [[False, False, False], [False, False, False, False, False], [False, False, False, False, False], False, False] for a, b in zip(self.array['bitvararray'], match_mask): assert_array_equal(a.mask, b) def test_bitvararray2(self): assert issubclass(self.array['bitvararray2'].dtype.type, np.object_) match = [[], [[[False, True], [False, False], [True, False]], [[True, False], [True, False], [True, False]]], [[[True, True], [True, True], [True, True]]], [], []] for a, b in zip(self.array['bitvararray2'], match): for a0, b0 in zip(a, b): assert a0.shape == (3, 2) assert issubclass(a0.dtype.type, np.bool_) assert_array_equal(a0, b0) def test_floatComplex(self): assert issubclass(self.array['floatComplex'].dtype.type, np.complex64) assert_array_equal(self.array['floatComplex'], [np.nan+0j, 0+0j, 0+-1j, np.nan+0j, np.nan+0j]) assert_array_equal(self.mask['floatComplex'], [True, False, False, True, True]) def test_doubleComplex(self): assert issubclass(self.array['doubleComplex'].dtype.type, np.complex128) assert_array_equal( self.array['doubleComplex'], [np.nan+0j, 0+0j, 0+-1j, np.nan+(np.inf*1j), np.nan+0j]) assert_array_equal(self.mask['doubleComplex'], [True, False, False, True, True]) def test_doubleComplexArray(self): assert issubclass(self.array['doubleComplexArray'].dtype.type, np.object_) assert ([len(x) for x in self.array['doubleComplexArray']] == [0, 2, 2, 0, 0]) def test_boolean(self): assert issubclass(self.array['boolean'].dtype.type, np.bool_) assert_array_equal(self.array['boolean'], [True, False, True, False, False]) def test_boolean_mask(self): assert_array_equal(self.mask['boolean'], [False, False, False, False, True]) def test_boolean_array(self): assert issubclass(self.array['booleanArray'].dtype.type, np.bool_) assert_array_equal(self.array['booleanArray'], [[True, True, True, True], [True, True, False, True], [True, True, False, True], [False, False, False, False], [False, False, False, False]]) def test_boolean_array_mask(self): assert_array_equal(self.mask['booleanArray'], [[False, False, False, False], [False, False, False, False], [False, False, True, False], [True, True, True, True], [True, True, True, True]]) def test_nulls(self): assert_array_equal(self.array['nulls'], [0, -9, 2, -9, -9]) assert_array_equal(self.mask['nulls'], [False, True, False, True, True]) def test_nulls_array(self): assert_array_equal(self.array['nulls_array'], [[[-9, -9], [-9, -9]], [[0, 1], [2, 3]], [[-9, 0], [-9, 1]], [[0, -9], [1, -9]], [[-9, -9], [-9, -9]]]) assert_array_equal(self.mask['nulls_array'], [[[True, True], [True, True]], [[False, False], [False, False]], [[True, False], [True, False]], [[False, True], [False, True]], [[True, True], [True, True]]]) def test_double_array(self): assert issubclass(self.array['doublearray'].dtype.type, np.object_) assert len(self.array['doublearray'][0]) == 0 assert_array_equal(self.array['doublearray'][1], [0, 1, np.inf, -np.inf, np.nan, 0, -1]) assert_array_equal(self.array.data['doublearray'][1].mask, [False, False, False, False, False, False, True]) def test_bit_array2(self): assert_array_equal(self.array['bitarray2'][0], [True, True, True, True, False, False, False, False, True, True, True, True, False, False, False, False]) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2'][0]) assert np.all(self.mask['bitarray2'][1:]) def test_get_coosys_by_id(self): coosys = self.votable.get_coosys_by_id('J2000') assert coosys.system == 'eq_FK5' def test_get_field_by_utype(self): fields = list(self.votable.get_fields_by_utype("myint")) assert fields[0].name == "int" assert fields[0].values.min == -1000 def test_get_info_by_id(self): info = self.votable.get_info_by_id('QUERY_STATUS') assert info.value == 'OK' if self.votable.version != '1.1': info = self.votable.get_info_by_id("ErrorInfo") assert info.value == "One might expect to find some INFO here, too..." # noqa def test_repr(self): assert '3 tables' in repr(self.votable) assert repr(list(self.votable.iter_fields_and_params())[0]) == \ '<PARAM ID="awesome" arraysize="*" datatype="float" name="INPUT" unit="deg" value="[0.0 0.0]"/>' # noqa # Smoke test repr(list(self.votable.iter_groups())) # Resource assert repr(self.votable.resources) == '[</>]' class TestThroughTableData(TestParse): def setup_class(self): votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) self.xmlout = bio = io.BytesIO() votable.to_xml(bio) bio.seek(0) self.votable = parse(bio, pedantic=False) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_bit_mask(self): assert_array_equal(self.mask['bit'], [False, False, False, False, False]) def test_bitarray_mask(self): assert not np.any(self.mask['bitarray']) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2']) def test_schema(self, tmpdir): # have to use an actual file because assert_validate_schema only works # on filenames, not file-like objects fn = str(tmpdir.join("test_through_tabledata.xml")) with open(fn, 'wb') as f: f.write(self.xmlout.getvalue()) assert_validate_schema(fn, '1.1') class TestThroughBinary(TestParse): def setup_class(self): votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) votable.get_first_table().format = 'binary' self.xmlout = bio = io.BytesIO() votable.to_xml(bio) bio.seek(0) self.votable = parse(bio, pedantic=False) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask # Masked values in bit fields don't roundtrip through the binary # representation -- that's not a bug, just a limitation, so # override the mask array checks here. def test_bit_mask(self): assert not np.any(self.mask['bit']) def test_bitarray_mask(self): assert not np.any(self.mask['bitarray']) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2']) class TestThroughBinary2(TestParse): def setup_class(self): votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) votable.version = '1.3' votable.get_first_table()._config['version_1_3_or_later'] = True votable.get_first_table().format = 'binary2' self.xmlout = bio = io.BytesIO() votable.to_xml(bio) bio.seek(0) self.votable = parse(bio, pedantic=False) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_get_coosys_by_id(self): # No COOSYS in VOTable 1.2 or later pass def table_from_scratch(): from astropy.io.votable.tree import VOTableFile, Resource, Table, Field # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ Field(votable, ID="filename", datatype="char"), Field(votable, ID="matrix", datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object out = io.StringIO() votable.to_xml(out) def test_open_files(): for filename in get_pkg_data_filenames('data', pattern='*.xml'): if filename.endswith('custom_datatype.xml'): continue parse(filename, pedantic=False) @raises(VOTableSpecError) def test_too_many_columns(): parse( get_pkg_data_filename('data/too_many_columns.xml.gz'), pedantic=False) def test_build_from_scratch(tmpdir): # Create a new VOTable file... votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ tree.Field(votable, ID="filename", datatype="char"), tree.Field(votable, ID="matrix", datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object votable.to_xml(str(tmpdir.join("new_votable.xml"))) votable = parse(str(tmpdir.join("new_votable.xml"))) table = votable.get_first_table() assert_array_equal( table.array.mask, np.array([(False, [[False, False], [False, False]]), (False, [[False, False], [False, False]])], dtype=[(str('filename'), str('?')), (str('matrix'), str('?'), (2, 2))])) def test_validate(test_path_object=False): """ test_path_object is needed for test below ``test_validate_path_object`` so that file could be passed as pathlib.Path object. """ output = io.StringIO() fpath = get_pkg_data_filename('data/regression.xml') if test_path_object: fpath = pathlib.Path(fpath) # We can't test xmllint, because we can't rely on it being on the # user's machine. with catch_warnings(): result = validate(fpath, output, xmllint=False) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('validation.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open( get_pkg_data_filename('data/validation.txt'), 'rt', encoding='utf-8') as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output @mock.patch('subprocess.Popen') def test_validate_xmllint_true(mock_subproc_popen): process_mock = mock.Mock() attrs = {'communicate.return_value': ('ok', 'ko'), 'returncode': 0} process_mock.configure_mock(**attrs) mock_subproc_popen.return_value = process_mock assert validate(get_pkg_data_filename('data/empty_table.xml'), xmllint=True) def test_validate_path_object(): """ Validating when source is passed as path object. (#4412) """ test_validate(test_path_object=True) def test_gzip_filehandles(tmpdir): votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) with open(str(tmpdir.join("regression.compressed.xml")), 'wb') as fd: votable.to_xml( fd, compressed=True, _astropy_version="testing") with open(str(tmpdir.join("regression.compressed.xml")), 'rb') as fd: votable = parse( fd, pedantic=False) def test_from_scratch_example(): with catch_warnings(VOWarning) as warning_lines: try: _run_test_from_scratch_example() except ValueError as e: warning_lines.append(str(e)) assert len(warning_lines) == 0 def _run_test_from_scratch_example(): from astropy.io.votable.tree import VOTableFile, Resource, Table, Field # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ Field(votable, name="filename", datatype="char", arraysize="*"), Field(votable, name="matrix", datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) assert table.array[0][0] == 'test1.xml' def test_fileobj(): # Assert that what we get back is a raw C file pointer # so it will be super fast in the C extension. from astropy.utils.xml import iterparser filename = get_pkg_data_filename('data/regression.xml') with iterparser._convert_to_fd_or_read_function(filename) as fd: if sys.platform == 'win32': fd() else: assert isinstance(fd, io.FileIO) def test_nonstandard_units(): from astropy import units as u votable = parse( get_pkg_data_filename('data/nonstandard_units.xml'), pedantic=False) assert isinstance( votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) votable = parse( get_pkg_data_filename('data/nonstandard_units.xml'), pedantic=False, unit_format='generic') assert not isinstance( votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) def test_resource_structure(): # Based on issue #1223, as reported by @astro-friedel and @RayPlante from astropy.io.votable import tree as vot vtf = vot.VOTableFile() r1 = vot.Resource() vtf.resources.append(r1) t1 = vot.Table(vtf) t1.name = "t1" t2 = vot.Table(vtf) t2.name = 't2' r1.tables.append(t1) r1.tables.append(t2) r2 = vot.Resource() vtf.resources.append(r2) t3 = vot.Table(vtf) t3.name = "t3" t4 = vot.Table(vtf) t4.name = "t4" r2.tables.append(t3) r2.tables.append(t4) r3 = vot.Resource() vtf.resources.append(r3) t5 = vot.Table(vtf) t5.name = "t5" t6 = vot.Table(vtf) t6.name = "t6" r3.tables.append(t5) r3.tables.append(t6) buff = io.BytesIO() vtf.to_xml(buff) buff.seek(0) vtf2 = parse(buff) assert len(vtf2.resources) == 3 for r in range(len(vtf2.resources)): res = vtf2.resources[r] assert len(res.tables) == 2 assert len(res.resources) == 0 def test_no_resource_check(): output = io.StringIO() with catch_warnings(): # We can't test xmllint, because we can't rely on it being on the # user's machine. result = validate(get_pkg_data_filename('data/no_resource.xml'), output, xmllint=False) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('no_resource.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open( get_pkg_data_filename('data/no_resource.txt'), 'rt', encoding='utf-8') as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output def test_instantiate_vowarning(): # This used to raise a deprecation exception. # See https://github.com/astropy/astroquery/pull/276 VOWarning(()) def test_custom_datatype(): votable = parse( get_pkg_data_filename('data/custom_datatype.xml'), pedantic=False, datatype_mapping={'bar': 'int'} ) table = votable.get_first_table() assert table.array.dtype['foo'] == np.int32
54031b87f8fd585ae5dbc71f6f1c474ba0675a862c1741193e41c2a98481262c
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.tests.helper import raises # LOCAL from astropy.io.votable import ucd def test_none(): assert ucd.check_ucd(None) examples = { 'phys.temperature': [('ivoa', 'phys.temperature')], 'pos.eq.ra;meta.main': [('ivoa', 'pos.eq.ra'), ('ivoa', 'meta.main')], 'meta.id;src': [('ivoa', 'meta.id'), ('ivoa', 'src')], 'phot.flux;em.radio;arith.ratio': [('ivoa', 'phot.flux'), ('ivoa', 'em.radio'), ('ivoa', 'arith.ratio')], 'PHot.Flux;EM.Radio;ivoa:arith.Ratio': [('ivoa', 'phot.flux'), ('ivoa', 'em.radio'), ('ivoa', 'arith.ratio')], 'pos.galactic.lat': [('ivoa', 'pos.galactic.lat')], 'meta.code;phot.mag': [('ivoa', 'meta.code'), ('ivoa', 'phot.mag')], 'stat.error;phot.mag': [('ivoa', 'stat.error'), ('ivoa', 'phot.mag')], 'phys.temperature;instr;stat.max': [('ivoa', 'phys.temperature'), ('ivoa', 'instr'), ('ivoa', 'stat.max')], 'stat.error;phot.mag;em.opt.V': [('ivoa', 'stat.error'), ('ivoa', 'phot.mag'), ('ivoa', 'em.opt.V')], } def test_check(): for s, p in examples.items(): assert ucd.parse_ucd(s, True, True) == p assert ucd.check_ucd(s, True, True) @raises(ValueError) def test_too_many_colons(): ucd.parse_ucd("ivoa:stsci:phot", True, True) @raises(ValueError) def test_invalid_namespace(): ucd.parse_ucd("_ivoa:phot.mag", True, True) @raises(ValueError) def test_invalid_word(): ucd.parse_ucd("-pho")
a972f74a09850ae91601ec1db48af94d44a020851114268677a36e73bc509b46
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test the conversion to/from astropy.table """ import io import os import pathlib import numpy as np from astropy.utils.data import get_pkg_data_filename, get_pkg_data_fileobj from astropy.io.votable.table import parse, writeto from astropy.io.votable import tree def test_table(tmpdir): # Read the VOTABLE votable = parse( get_pkg_data_filename('data/regression.xml'), pedantic=False) table = votable.get_first_table() astropy_table = table.to_table() for name in table.array.dtype.names: assert np.all(astropy_table.mask[name] == table.array.mask[name]) votable2 = tree.VOTableFile.from_table(astropy_table) t = votable2.get_first_table() field_types = [ ('string_test', {'datatype': 'char', 'arraysize': '*'}), ('string_test_2', {'datatype': 'char', 'arraysize': '10'}), ('unicode_test', {'datatype': 'unicodeChar', 'arraysize': '*'}), ('fixed_unicode_test', {'datatype': 'unicodeChar', 'arraysize': '10'}), ('string_array_test', {'datatype': 'char', 'arraysize': '4'}), ('unsignedByte', {'datatype': 'unsignedByte'}), ('short', {'datatype': 'short'}), ('int', {'datatype': 'int'}), ('long', {'datatype': 'long'}), ('double', {'datatype': 'double'}), ('float', {'datatype': 'float'}), ('array', {'datatype': 'long', 'arraysize': '2*'}), ('bit', {'datatype': 'bit'}), ('bitarray', {'datatype': 'bit', 'arraysize': '3x2'}), ('bitvararray', {'datatype': 'bit', 'arraysize': '*'}), ('bitvararray2', {'datatype': 'bit', 'arraysize': '3x2*'}), ('floatComplex', {'datatype': 'floatComplex'}), ('doubleComplex', {'datatype': 'doubleComplex'}), ('doubleComplexArray', {'datatype': 'doubleComplex', 'arraysize': '*'}), ('doubleComplexArrayFixed', {'datatype': 'doubleComplex', 'arraysize': '2'}), ('boolean', {'datatype': 'bit'}), ('booleanArray', {'datatype': 'bit', 'arraysize': '4'}), ('nulls', {'datatype': 'int'}), ('nulls_array', {'datatype': 'int', 'arraysize': '2x2'}), ('precision1', {'datatype': 'double'}), ('precision2', {'datatype': 'double'}), ('doublearray', {'datatype': 'double', 'arraysize': '*'}), ('bitarray2', {'datatype': 'bit', 'arraysize': '16'})] for field, type in zip(t.fields, field_types): name, d = type assert field.ID == name assert field.datatype == d['datatype'] if 'arraysize' in d: assert field.arraysize == d['arraysize'] writeto(votable2, os.path.join(str(tmpdir), "through_table.xml")) def test_read_through_table_interface(tmpdir): from astropy.table import Table with get_pkg_data_fileobj('data/regression.xml', encoding='binary') as fd: t = Table.read(fd, format='votable', table_id='main_table') assert len(t) == 5 # Issue 8354 assert t['float'].format is None fn = os.path.join(str(tmpdir), "table_interface.xml") t.write(fn, table_id='FOO', format='votable') with open(fn, 'rb') as fd: t2 = Table.read(fd, format='votable', table_id='FOO') assert len(t2) == 5 def test_read_through_table_interface2(): from astropy.table import Table with get_pkg_data_fileobj('data/regression.xml', encoding='binary') as fd: t = Table.read(fd, format='votable', table_id='last_table') assert len(t) == 0 def test_names_over_ids(): with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=True) assert table.colnames == [ 'Name', 'GLON', 'GLAT', 'RAdeg', 'DEdeg', 'Jmag', 'Hmag', 'Kmag', 'G3.6mag', 'G4.5mag', 'G5.8mag', 'G8.0mag', '4.5mag', '8.0mag', 'Emag', '24mag', 'f_Name'] def test_explicit_ids(): with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=False) assert table.colnames == [ 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col12', 'col13', 'col14', 'col15', 'col16', 'col17'] def test_table_read_with_unnamed_tables(): """ Issue #927 """ from astropy.table import Table with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: t = Table.read(fd, format='votable') assert len(t) == 1 def test_votable_path_object(): """ Testing when votable is passed as pathlib.Path object #4412. """ fpath = pathlib.Path(get_pkg_data_filename('data/names.xml')) table = parse(fpath).get_first_table().to_table() assert len(table) == 1 assert int(table[0][3]) == 266 def test_from_table_without_mask(): from astropy.table import Table, Column t = Table() c = Column(data=[1, 2, 3], name='a') t.add_column(c) output = io.BytesIO() t.write(output, format='votable') def test_write_with_format(): from astropy.table import Table, Column t = Table() c = Column(data=[1, 2, 3], name='a') t.add_column(c) output = io.BytesIO() t.write(output, format='votable', tabledata_format="binary") obuff = output.getvalue() assert b'VOTABLE version="1.3"' in obuff assert b'BINARY' in obuff assert b'TABLEDATA' not in obuff output = io.BytesIO() t.write(output, format='votable', tabledata_format="binary2") obuff = output.getvalue() assert b'VOTABLE version="1.3"' in obuff assert b'BINARY2' in obuff assert b'TABLEDATA' not in obuff def test_empty_table(): votable = parse( get_pkg_data_filename('data/empty_table.xml'), pedantic=False) table = votable.get_first_table() astropy_table = table.to_table() # noqa
34d10e2b6cb552aae2e0afec6c0773c97d4bef2f478d129a6dc7f76a7770240b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # LOCAL from astropy.io.votable import exceptions from astropy.io.votable import tree from astropy.tests.helper import raises @raises(exceptions.W07) def test_check_astroyear_fail(): config = {'pedantic': True} field = tree.Field(None, name='astroyear') tree.check_astroyear('X2100', field, config) @raises(exceptions.W08) def test_string_fail(): config = {'pedantic': True} tree.check_string(42, 'foo', config) def test_make_Fields(): votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) table.fields.extend([tree.Field(votable, name='Test', datatype="float", unit="mag")])
ca98694cfb959cf38edbaccb7da19d66aaccc0bd69765f7a2506db500204e46e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io # THIRD-PARTY import numpy as np from numpy.testing import assert_array_equal # LOCAL from astropy.io.votable import converters from astropy.io.votable import exceptions from astropy.io.votable import tree from astropy.io.votable.table import parse_single_table from astropy.tests.helper import raises, catch_warnings from astropy.utils.data import get_pkg_data_filename @raises(exceptions.E13) def test_invalid_arraysize(): field = tree.Field( None, name='broken', datatype='char', arraysize='foo') converters.get_converter(field) def test_oversize_char(): config = {'pedantic': True} with catch_warnings(exceptions.W47) as w: field = tree.Field( None, name='c', datatype='char', config=config) c = converters.get_converter(field, config=config) assert len(w) == 1 with catch_warnings(exceptions.W46) as w: c.parse("XXX") assert len(w) == 1 def test_char_mask(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='char', config=config) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == '' def test_oversize_unicode(): config = {'pedantic': True} with catch_warnings(exceptions.W46) as w: field = tree.Field( None, name='c2', datatype='unicodeChar', config=config) c = converters.get_converter(field, config=config) c.parse("XXX") assert len(w) == 1 def test_unicode_mask(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='unicodeChar', config=config) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == '' @raises(exceptions.E02) def test_wrong_number_of_elements(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='int', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) c.parse("2 3 4 5 6") @raises(ValueError) def test_float_mask(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='float', config=config) c = converters.get_converter(field, config=config) assert c.parse('') == (c.null, True) c.parse('null') def test_float_mask_permissive(): config = {'pedantic': False} field = tree.Field( None, name='c', datatype='float', config=config) c = converters.get_converter(field, config=config) assert c.parse('null') == (c.null, True) @raises(exceptions.E02) def test_complex_array_vararray(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='floatComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) c.parse("2 3 4 5 6") def test_complex_array_vararray2(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='floatComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) x = c.parse("") assert len(x[0]) == 0 def test_complex_array_vararray3(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='doubleComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4 5 6 7 8 9 10 11 12") assert len(x) == 2 assert np.all(x[0][0][0] == complex(1, 2)) def test_complex_vararray(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='doubleComplex', arraysize='*', config=config) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4") assert len(x) == 2 assert x[0][0] == complex(1, 2) @raises(exceptions.E03) def test_complex(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='doubleComplex', config=config) c = converters.get_converter(field, config=config) x = c.parse("1 2 3") @raises(exceptions.E04) def test_bit(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='bit', config=config) c = converters.get_converter(field, config=config) x = c.parse("T") def test_bit_mask(): config = {'pedantic': True} with catch_warnings(exceptions.W39) as w: field = tree.Field( None, name='c', datatype='bit', config=config) c = converters.get_converter(field, config=config) c.output(True, True) assert len(w) == 1 @raises(exceptions.E05) def test_boolean(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='boolean', config=config) c = converters.get_converter(field, config=config) c.parse('YES') def test_boolean_array(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='boolean', arraysize='*', config=config) c = converters.get_converter(field, config=config) r, mask = c.parse('TRUE FALSE T F 0 1') assert_array_equal(r, [True, False, True, False, False, True]) @raises(exceptions.E06) def test_invalid_type(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='foobar', config=config) c = converters.get_converter(field, config=config) def test_precision(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='float', precision="E4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == '266.2' field = tree.Field( None, name='c', datatype='float', precision="F4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == '266.2480' @raises(exceptions.W51) def test_integer_overflow(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='int', config=config) c = converters.get_converter(field, config=config) c.parse('-2208988800', config=config) def test_float_default_precision(): config = {'pedantic': True} field = tree.Field( None, name='c', datatype='float', arraysize="4", config=config) c = converters.get_converter(field, config=config) assert (c.output([1, 2, 3, 8.9990234375], [False, False, False, False]) == '1 2 3 8.9990234375') def test_vararray(): votable = tree.VOTableFile() resource = tree.Resource() votable.resources.append(resource) table = tree.Table(votable) resource.tables.append(table) tabarr = [] heads = ['headA', 'headB', 'headC'] types = ["char", "double", "int"] vals = [["A", 1.0, 2], ["B", 2.0, 3], ["C", 3.0, 4]] for i in range(len(heads)): tabarr.append(tree.Field( votable, name=heads[i], datatype=types[i], arraysize="*")) table.fields.extend(tabarr) table.create_arrays(len(vals)) for i in range(len(vals)): values = tuple(vals[i]) table.array[i] = values buff = io.BytesIO() votable.to_xml(buff) def test_gemini_v1_2(): ''' see Pull Request 4782 or Issue 4781 for details ''' table = parse_single_table(get_pkg_data_filename('data/gemini.xml')) assert table is not None
40ab3c944a731dd30541aa6e8a9924f7cec0278c60a735773089228629c82ccc
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains a class to handle a validation result for a single VOTable file. """ # STDLIB from xml.parsers.expat import ExpatError import hashlib import os import shutil import socket import subprocess import warnings import pickle import urllib.request import urllib.error import http.client # VO from astropy.io.votable import table from astropy.io.votable import exceptions from astropy.io.votable import xmlutil class Result: def __init__(self, url, root='results', timeout=10): self.url = url m = hashlib.md5() m.update(url) self._hash = m.hexdigest() self._root = root self._path = os.path.join( self._hash[0:2], self._hash[2:4], self._hash[4:]) if not os.path.exists(self.get_dirpath()): os.makedirs(self.get_dirpath()) self.timeout = timeout self.load_attributes() def __enter__(self): return self def __exit__(self, *args): self.save_attributes() def get_dirpath(self): return os.path.join(self._root, self._path) def get_htmlpath(self): return self._path def get_attribute_path(self): return os.path.join(self.get_dirpath(), "values.dat") def get_vo_xml_path(self): return os.path.join(self.get_dirpath(), "vo.xml") # ATTRIBUTES def load_attributes(self): path = self.get_attribute_path() if os.path.exists(path): try: with open(path, 'rb') as fd: self._attributes = pickle.load(fd) except Exception: shutil.rmtree(self.get_dirpath()) os.makedirs(self.get_dirpath()) self._attributes = {} else: self._attributes = {} def save_attributes(self): path = self.get_attribute_path() with open(path, 'wb') as fd: pickle.dump(self._attributes, fd) def __getitem__(self, key): return self._attributes[key] def __setitem__(self, key, val): self._attributes[key] = val def __contains__(self, key): return key in self._attributes # VO XML def download_xml_content(self): path = self.get_vo_xml_path() if 'network_error' not in self._attributes: self['network_error'] = None if os.path.exists(path): return def fail(reason): reason = str(reason) with open(path, 'wb') as fd: fd.write('FAILED: {0}\n'.format(reason).encode('utf-8')) self['network_error'] = reason r = None try: r = urllib.request.urlopen( self.url.decode('ascii'), timeout=self.timeout) except urllib.error.URLError as e: if hasattr(e, 'reason'): reason = e.reason else: reason = e.code fail(reason) return except http.client.HTTPException as e: fail("HTTPException: {}".format(str(e))) return except (socket.timeout, socket.error) as e: fail("Timeout") return if r is None: fail("Invalid URL") return try: content = r.read() except socket.timeout as e: fail("Timeout") return else: r.close() with open(path, 'wb') as fd: fd.write(content) def get_xml_content(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() with open(path, 'rb') as fd: content = fd.read() return content def validate_vo(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() self['version'] = '' if 'network_error' in self and self['network_error'] is not None: self['nwarnings'] = 0 self['nexceptions'] = 0 self['warnings'] = [] self['xmllint'] = None self['warning_types'] = set() return nexceptions = 0 nwarnings = 0 t = None lines = [] with open(path, 'rb') as input: with warnings.catch_warnings(record=True) as warning_lines: try: t = table.parse(input, pedantic=False, filename=path) except (ValueError, TypeError, ExpatError) as e: lines.append(str(e)) nexceptions += 1 lines = [str(x.message) for x in warning_lines] + lines if t is not None: self['version'] = version = t.version else: self['version'] = version = "1.0" if 'xmllint' not in self: # Now check the VO schema based on the version in # the file. try: success, stdout, stderr = xmlutil.validate_schema(path, version) # OSError is raised when XML file eats all memory and # system sends kill signal. except OSError as e: self['xmllint'] = None self['xmllint_content'] = str(e) else: self['xmllint'] = (success == 0) self['xmllint_content'] = stderr warning_types = set() for line in lines: w = exceptions.parse_vowarning(line) if w['is_warning']: nwarnings += 1 if w['is_exception']: nexceptions += 1 warning_types.add(w['warning']) self['nwarnings'] = nwarnings self['nexceptions'] = nexceptions self['warnings'] = lines self['warning_types'] = warning_types def has_warning(self, warning_code): return warning_code in self['warning_types'] def match_expectations(self): if 'network_error' not in self: self['network_error'] = None if self['expected'] == 'good': return (not self['network_error'] and self['nwarnings'] == 0 and self['nexceptions'] == 0) elif self['expected'] == 'incorrect': return (not self['network_error'] and (self['nwarnings'] > 0 or self['nexceptions'] > 0)) elif self['expected'] == 'broken': return self['network_error'] is not None def validate_with_votlint(self, path_to_stilts_jar): filename = self.get_vo_xml_path() p = subprocess.Popen( "java -jar {} votlint validate=false {}".format( path_to_stilts_jar, filename), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if len(stdout) or p.returncode: self['votlint'] = False else: self['votlint'] = True self['votlint_content'] = stdout def get_result_subsets(results, root, s=None): all_results = [] correct = [] not_expected = [] fail_schema = [] schema_mismatch = [] fail_votlint = [] votlint_mismatch = [] network_failures = [] version_10 = [] version_11 = [] version_12 = [] version_unknown = [] has_warnings = [] warning_set = {} has_exceptions = [] exception_set = {} for url in results: if s: next(s) if isinstance(url, Result): x = url else: x = Result(url, root=root) all_results.append(x) if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['xmllint'] is True): correct.append(x) if not x.match_expectations(): not_expected.append(x) if x['xmllint'] is False: fail_schema.append(x) if (x['xmllint'] is False and x['nwarnings'] == 0 and x['nexceptions'] == 0): schema_mismatch.append(x) if 'votlint' in x and x['votlint'] is False: fail_votlint.append(x) if 'network_error' not in x: x['network_error'] = None if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['network_error'] is None): votlint_mismatch.append(x) if 'network_error' in x and x['network_error'] is not None: network_failures.append(x) version = x['version'] if version == '1.0': version_10.append(x) elif version == '1.1': version_11.append(x) elif version == '1.2': version_12.append(x) else: version_unknown.append(x) if x['nwarnings'] > 0: has_warnings.append(x) for warning in x['warning_types']: if (warning is not None and len(warning) == 3 and warning.startswith('W')): warning_set.setdefault(warning, []) warning_set[warning].append(x) if x['nexceptions'] > 0: has_exceptions.append(x) for exc in x['warning_types']: if exc is not None and len(exc) == 3 and exc.startswith('E'): exception_set.setdefault(exc, []) exception_set[exc].append(x) warning_set = list(warning_set.items()) warning_set.sort() exception_set = list(exception_set.items()) exception_set.sort() tables = [ ('all', 'All tests', all_results), ('correct', 'Correct', correct), ('unexpected', 'Unexpected', not_expected), ('schema', 'Invalid against schema', fail_schema), ('schema_mismatch', 'Invalid against schema/Passed vo.table', schema_mismatch, ['ul']), ('fail_votlint', 'Failed votlint', fail_votlint), ('votlint_mismatch', 'Failed votlint/Passed vo.table', votlint_mismatch, ['ul']), ('network_failures', 'Network failures', network_failures), ('version1.0', 'Version 1.0', version_10), ('version1.1', 'Version 1.1', version_11), ('version1.2', 'Version 1.2', version_12), ('version_unknown', 'Version unknown', version_unknown), ('warnings', 'Warnings', has_warnings)] for warning_code, warning in warning_set: if s: next(s) warning_class = getattr(exceptions, warning_code, None) if warning_class: warning_descr = warning_class.get_short_name() tables.append( (warning_code, '{}: {}'.format(warning_code, warning_descr), warning, ['ul', 'li'])) tables.append( ('exceptions', 'Exceptions', has_exceptions)) for exception_code, exc in exception_set: if s: next(s) exception_class = getattr(exceptions, exception_code, None) if exception_class: exception_descr = exception_class.get_short_name() tables.append( (exception_code, '{}: {}'.format(exception_code, exception_descr), exc, ['ul', 'li'])) return tables
ef6d890486e30e714949424b15ea29ac01d85afea82de46fa61a2301d0a9097f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Validates a large collection of web-accessible VOTable files, and generates a report as a directory tree of HTML files. """ # STDLIB import os # LOCAL from astropy.utils.data import get_pkg_data_filename from . import html from . import result __all__ = ['make_validation_report'] def get_srcdir(): return os.path.dirname(__file__) def get_urls(destdir, s): import gzip types = ['good', 'broken', 'incorrect'] seen = set() urls = [] for type in types: filename = get_pkg_data_filename( 'data/urls/cone.{0}.dat.gz'.format(type)) with gzip.open(filename, 'rb') as fd: for url in fd.readlines(): next(s) url = url.strip() if url not in seen: with result.Result(url, root=destdir) as r: r['expected'] = type urls.append(url) seen.add(url) return urls def download(args): url, destdir = args with result.Result(url, root=destdir) as r: r.download_xml_content() def validate_vo(args): url, destdir = args with result.Result(url, root=destdir) as r: r.validate_vo() def votlint_validate(args): path_to_stilts_jar, url, destdir = args with result.Result(url, root=destdir) as r: if r['network_error'] is None: r.validate_with_votlint(path_to_stilts_jar) def write_html_result(args): url, destdir = args with result.Result(url, root=destdir) as r: html.write_result(r) def write_subindex(args): subset, destdir, total = args html.write_index_table(destdir, *subset, total=total) def make_validation_report( urls=None, destdir='astropy.io.votable.validator.results', multiprocess=True, stilts=None): """ Validates a large collection of web-accessible VOTable files. Generates a report as a directory tree of HTML files. Parameters ---------- urls : list of strings, optional If provided, is a list of HTTP urls to download VOTable files from. If not provided, a built-in set of ~22,000 urls compiled by HEASARC will be used. destdir : path, optional The directory to write the report to. By default, this is a directory called ``'results'`` in the current directory. If the directory does not exist, it will be created. multiprocess : bool, optional If `True` (default), perform validations in parallel using all of the cores on this machine. stilts : path, optional To perform validation with ``votlint`` from the the Java-based `STILTS <http://www.star.bris.ac.uk/~mbt/stilts/>`_ VOTable parser, in addition to `astropy.io.votable`, set this to the path of the ``'stilts.jar'`` file. ``java`` on the system shell path will be used to run it. Notes ----- Downloads of each given URL will be performed only once and cached locally in *destdir*. To refresh the cache, remove *destdir* first. """ from astropy.utils.console import (color_print, ProgressBar, Spinner) if stilts is not None: if not os.path.exists(stilts): raise ValueError( '{0} does not exist.'.format(stilts)) destdir = os.path.abspath(destdir) if urls is None: with Spinner('Loading URLs', 'green') as s: urls = get_urls(destdir, s) else: color_print('Marking URLs', 'green') for url in ProgressBar.iterate(urls): with result.Result(url, root=destdir) as r: r['expected'] = type args = [(url, destdir) for url in urls] color_print('Downloading VO files', 'green') ProgressBar.map( download, args, multiprocess=multiprocess) color_print('Validating VO files', 'green') ProgressBar.map( validate_vo, args, multiprocess=multiprocess) if stilts is not None: color_print('Validating with votlint', 'green') votlint_args = [(stilts, x, destdir) for x in urls] ProgressBar.map( votlint_validate, votlint_args, multiprocess=multiprocess) color_print('Generating HTML files', 'green') ProgressBar.map( write_html_result, args, multiprocess=multiprocess) with Spinner('Grouping results', 'green') as s: subsets = result.get_result_subsets(urls, destdir, s) color_print('Generating index', 'green') html.write_index(subsets, urls, destdir) color_print('Generating subindices', 'green') subindex_args = [(subset, destdir, len(urls)) for subset in subsets] ProgressBar.map( write_subindex, subindex_args, multiprocess=multiprocess)
11346ba18113042fb2575bfe950ff980b25b0c27f0352688e4a1f569cff19113
# Licensed under a 3-clause BSD style license - see LICENSE.rst # STDLIB import contextlib from math import ceil import os import re # ASTROPY from astropy.utils.xml.writer import XMLWriter, xml_escape from astropy import online_docs_root # VO from astropy.io.votable import exceptions html_header = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> """ default_style = """ body { font-family: sans-serif } a { text-decoration: none } .highlight { color: red; font-weight: bold; text-decoration: underline; } .green { background-color: #ddffdd } .red { background-color: #ffdddd } .yellow { background-color: #ffffdd } tr:hover { background-color: #dddddd } table { border-width: 1px; border-spacing: 0px; border-style: solid; border-color: gray; border-collapse: collapse; background-color: white; padding: 5px; } table th { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } table td { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } """ @contextlib.contextmanager def make_html_header(w): w.write(html_header) with w.tag('html', xmlns="http://www.w3.org/1999/xhtml", lang="en-US"): with w.tag('head'): w.element('title', 'VO Validation results') w.element('style', default_style) with w.tag('body'): yield def write_source_line(w, line, nchar=0): part1 = xml_escape(line[:nchar].decode('utf-8')) char = xml_escape(line[nchar:nchar+1].decode('utf-8')) part2 = xml_escape(line[nchar+1:].decode('utf-8')) w.write(' ') w.write(part1) w.write('<span class="highlight">{}</span>'.format(char)) w.write(part2) w.write('\n\n') def write_warning(w, line, xml_lines): warning = exceptions.parse_vowarning(line) if not warning['is_something']: w.data(line) else: w.write('Line {:d}: '.format(warning['nline'])) if warning['warning']: w.write('<a href="{}/{}">{}</a>: '.format( online_docs_root, warning['doc_url'], warning['warning'])) msg = warning['message'] if not isinstance(warning['message'], str): msg = msg.decode('utf-8') w.write(xml_escape(msg)) w.write('\n') if 1 <= warning['nline'] < len(xml_lines): write_source_line(w, xml_lines[warning['nline'] - 1], warning['nchar']) def write_votlint_warning(w, line, xml_lines): match = re.search(r"(WARNING|ERROR|INFO) \(l.(?P<line>[0-9]+), c.(?P<column>[0-9]+)\): (?P<rest>.*)", line) if match: w.write('Line {:d}: {}\n'.format( int(match.group('line')), xml_escape(match.group('rest')))) write_source_line( w, xml_lines[int(match.group('line')) - 1], int(match.group('column')) - 1) else: w.data(line) w.data('\n') def write_result(result): if 'network_error' in result and result['network_error'] is not None: return xml = result.get_xml_content() xml_lines = xml.splitlines() path = os.path.join(result.get_dirpath(), 'index.html') with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): with w.tag('p'): with w.tag('a', href='vo.xml'): w.data(result.url.decode('ascii')) w.element('hr') with w.tag('pre'): w._flush() for line in result['warnings']: write_warning(w, line, xml_lines) if result['xmllint'] is False: w.element('hr') w.element('p', 'xmllint results:') content = result['xmllint_content'] if not isinstance(content, str): content = content.decode('ascii') content = content.replace(result.get_dirpath() + '/', '') with w.tag('pre'): w.data(content) if 'votlint' in result: if result['votlint'] is False: w.element('hr') w.element('p', 'votlint results:') content = result['votlint_content'] if not isinstance(content, str): content = content.decode('ascii') with w.tag('pre'): w._flush() for line in content.splitlines(): write_votlint_warning(w, line, xml_lines) def write_result_row(w, result): with w.tag('tr'): with w.tag('td'): if ('network_error' in result and result['network_error'] is not None): w.data(result.url.decode('ascii')) else: w.element('a', result.url.decode('ascii'), href='{}/index.html'.format(result.get_htmlpath())) if 'network_error' in result and result['network_error'] is not None: w.element('td', str(result['network_error']), attrib={'class': 'red'}) w.element('td', '-') w.element('td', '-') w.element('td', '-') w.element('td', '-') else: w.element('td', '-', attrib={'class': 'green'}) if result['nexceptions']: cls = 'red' msg = 'Fatal' elif result['nwarnings']: cls = 'yellow' msg = str(result['nwarnings']) else: cls = 'green' msg = '-' w.element('td', msg, attrib={'class': cls}) msg = result['version'] if result['xmllint'] is None: cls = '' elif result['xmllint'] is False: cls = 'red' else: cls = 'green' w.element('td', msg, attrib={'class': cls}) if result['expected'] == 'good': cls = 'green' msg = '-' elif result['expected'] == 'broken': cls = 'red' msg = 'net' elif result['expected'] == 'incorrect': cls = 'yellow' msg = 'invalid' w.element('td', msg, attrib={'class': cls}) if 'votlint' in result: if result['votlint']: cls = 'green' msg = 'Passed' else: cls = 'red' msg = 'Failed' else: cls = '' msg = '?' w.element('td', msg, attrib={'class': cls}) def write_table(basename, name, results, root="results", chunk_size=500): def write_page_links(j): if npages <= 1: return with w.tag('center'): if j > 0: w.element('a', '<< ', href='{}_{:02d}.html'.format(basename, j-1)) for i in range(npages): if i == j: w.data(str(i+1)) else: w.element( 'a', str(i+1), href='{}_{:02d}.html'.format(basename, i)) w.data(' ') if j < npages - 1: w.element('a', '>>', href='{}_{:02d}.html'.format(basename, j+1)) npages = int(ceil(float(len(results)) / chunk_size)) for i, j in enumerate(range(0, max(len(results), 1), chunk_size)): subresults = results[j:j+chunk_size] path = os.path.join(root, '{}_{:02d}.html'.format(basename, i)) with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): write_page_links(i) w.element('h2', name) with w.tag('table'): with w.tag('tr'): w.element('th', 'URL') w.element('th', 'Network') w.element('th', 'Warnings') w.element('th', 'Schema') w.element('th', 'Expected') w.element('th', 'votlint') for result in subresults: write_result_row(w, result) write_page_links(i) def add_subset(w, basename, name, subresults, inside=['p'], total=None): with w.tag('tr'): subresults = list(subresults) if total is None: total = len(subresults) if total == 0: # pragma: no cover percentage = 0.0 else: percentage = (float(len(subresults)) / total) with w.tag('td'): for element in inside: w.start(element) w.element('a', name, href='{}_00.html'.format(basename)) for element in reversed(inside): w.end(element) numbers = '{:d} ({:.2%})'.format(len(subresults), percentage) with w.tag('td'): w.data(numbers) def write_index(subsets, results, root='results'): path = os.path.join(root, 'index.html') with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): w.element('h1', 'VO Validation results') with w.tag('table'): for subset in subsets: add_subset(w, *subset, total=len(results)) def write_index_table(root, basename, name, subresults, inside=None, total=None, chunk_size=500): if total is None: total = len(subresults) percentage = (float(len(subresults)) / total) numbers = '{:d} ({:.2%})'.format(len(subresults), percentage) write_table(basename, name + ' ' + numbers, subresults, root, chunk_size)
5150a3fd7867f71102e42c00a1077009ebc1fc1db84919ead80094933e0b6a86
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This plugin provides customization of the header displayed by pytest for reporting purposes. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import os import sys import datetime import locale import math from collections import OrderedDict from astropy.tests.helper import ignore_warnings from astropy.utils.introspection import resolve_name PYTEST_HEADER_MODULES = OrderedDict([('Numpy', 'numpy'), ('Scipy', 'scipy'), ('Matplotlib', 'matplotlib'), ('h5py', 'h5py'), ('Pandas', 'pandas')]) # This always returns with Astropy's version from astropy import __version__ TESTED_VERSIONS = OrderedDict([('Astropy', __version__)]) def pytest_report_header(config): try: stdoutencoding = sys.stdout.encoding or 'ascii' except AttributeError: stdoutencoding = 'ascii' args = config.args # TESTED_VERSIONS can contain the affiliated package version, too if len(TESTED_VERSIONS) > 1: for pkg, version in TESTED_VERSIONS.items(): if pkg not in ['Astropy', 'astropy_helpers']: s = "\nRunning tests with {0} version {1}.\n".format( pkg, version) else: s = "\nRunning tests with Astropy version {0}.\n".format( TESTED_VERSIONS['Astropy']) # Per https://github.com/astropy/astropy/pull/4204, strip the rootdir from # each directory argument if hasattr(config, 'rootdir'): rootdir = str(config.rootdir) if not rootdir.endswith(os.sep): rootdir += os.sep dirs = [arg[len(rootdir):] if arg.startswith(rootdir) else arg for arg in args] else: dirs = args s += "Running tests in {0}.\n\n".format(" ".join(dirs)) s += "Date: {0}\n\n".format(datetime.datetime.now().isoformat()[:19]) from platform import platform plat = platform() if isinstance(plat, bytes): plat = plat.decode(stdoutencoding, 'replace') s += "Platform: {0}\n\n".format(plat) s += "Executable: {0}\n\n".format(sys.executable) s += "Full Python Version: \n{0}\n\n".format(sys.version) s += "encodings: sys: {0}, locale: {1}, filesystem: {2}".format( sys.getdefaultencoding(), locale.getpreferredencoding(), sys.getfilesystemencoding()) s += '\n' s += "byteorder: {0}\n".format(sys.byteorder) s += "float info: dig: {0.dig}, mant_dig: {0.dig}\n\n".format( sys.float_info) for module_display, module_name in PYTEST_HEADER_MODULES.items(): try: with ignore_warnings(DeprecationWarning): module = resolve_name(module_name) except ImportError: s += "{0}: not available\n".format(module_display) else: try: version = module.__version__ except AttributeError: version = 'unknown (no __version__ attribute)' s += "{0}: {1}\n".format(module_display, version) # Helpers version if 'astropy_helpers' in TESTED_VERSIONS: astropy_helpers_version = TESTED_VERSIONS['astropy_helpers'] else: try: from astropy.version import astropy_helpers_version except ImportError: astropy_helpers_version = None if astropy_helpers_version: s += "astropy_helpers: {0}\n".format(astropy_helpers_version) special_opts = ["remote_data", "pep8"] opts = [] for op in special_opts: op_value = getattr(config.option, op, None) if op_value: if isinstance(op_value, str): op = ': '.join((op, op_value)) opts.append(op) if opts: s += "Using Astropy options: {0}.\n".format(", ".join(opts)) return s def pytest_terminal_summary(terminalreporter): """Output a warning to IPython users in case any tests failed.""" try: get_ipython() except NameError: return if not terminalreporter.stats.get('failed'): # Only issue the warning when there are actually failures return terminalreporter.ensure_newline() terminalreporter.write_line( 'Some tests are known to fail when run from the IPython prompt; ' 'especially, but not limited to tests involving logging and warning ' 'handling. Unless you are certain as to the cause of the failure, ' 'please check that the failure occurs outside IPython as well. See ' 'http://docs.astropy.org/en/stable/known_issues.html#failing-logging-' 'tests-when-running-the-tests-in-ipython for more information.', yellow=True, bold=True)
0d14ee5753a27bea5348f743de970628b07fff421dd1e048ffceb3e77cf98527
from astropy import units as u from astropy.tests.helper import assert_quantity_allclose, pytest def test_assert_quantity_allclose(): assert_quantity_allclose([1, 2], [1, 2]) assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm) assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=2 * u.cm) with pytest.raises(AssertionError) as exc: assert_quantity_allclose([1, 2] * u.m, [90, 200] * u.cm) assert exc.value.args[0].startswith("\nNot equal to tolerance") with pytest.raises(AssertionError): assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=0.5 * u.cm) with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2] * u.m, [100, 200]) assert exc.value.args[0] == "Units for 'desired' () and 'actual' (m) are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [100, 200] * u.cm) assert exc.value.args[0] == "Units for 'desired' (cm) and 'actual' () are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm, atol=0.3) assert exc.value.args[0] == "Units for 'atol' () and 'actual' (m) are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [1, 2], atol=0.3 * u.m) assert exc.value.args[0] == "Units for 'atol' (m) and 'actual' () are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [1, 2], rtol=0.3 * u.m) assert exc.value.args[0] == "`rtol` should be dimensionless"
87d71269a53a8eb09287b986a512d2691ce354ed4fe7a890e72dfc29ea7f8ec8
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import doctest from textwrap import dedent import pytest # test helper.run_tests function from astropy import test as run_tests from astropy.tests import helper # run_tests should raise ValueError when asked to run on a module it can't find def test_module_not_found(): with helper.pytest.raises(ValueError): run_tests(package='fake.module') # run_tests should raise ValueError when passed an invalid pastebin= option def test_pastebin_keyword(): with helper.pytest.raises(ValueError): run_tests(pastebin='not_an_option') # TODO: Temporarily disabled, as this seems to non-deterministically fail # def test_deprecation_warning(): # with pytest.raises(DeprecationWarning): # warnings.warn('test warning', DeprecationWarning) def test_unicode_literal_conversion(): assert isinstance('ångström', str) def test_doctest_float_replacement(tmpdir): test1 = dedent(""" This will demonstrate a doctest that fails due to a few extra decimal places:: >>> 1.0 / 3.0 0.333333333333333311 """) test2 = dedent(""" This is the same test, but it should pass with use of +FLOAT_CMP:: >>> 1.0 / 3.0 # doctest: +FLOAT_CMP 0.333333333333333311 """) test1_rst = tmpdir.join('test1.rst') test2_rst = tmpdir.join('test2.rst') test1_rst.write(test1) test2_rst.write(test2) with pytest.raises(doctest.DocTestFailure): doctest.testfile(str(test1_rst), module_relative=False, raise_on_error=True, verbose=False, encoding='utf-8') doctest.testfile(str(test2_rst), module_relative=False, raise_on_error=True, verbose=False, encoding='utf-8')
57fe1b39e3e287cc6ca46df10a9a72fe288ef404f8c7564fe36113d19dd4b5e0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pkgutil import os import types def test_imports(): """ This just imports all modules in astropy, making sure they don't have any dependencies that sneak through """ from astropy.utils import find_current_module pkgornm = find_current_module(1).__name__.split('.')[0] if isinstance(pkgornm, str): package = pkgutil.get_loader(pkgornm).load_module(pkgornm) elif (isinstance(pkgornm, types.ModuleType) and '__init__' in pkgornm.__file__): package = pkgornm else: msg = 'test_imports is not determining a valid package/package name' raise TypeError(msg) if hasattr(package, '__path__'): pkgpath = package.__path__ elif hasattr(package, '__file__'): pkgpath = os.path.split(package.__file__)[0] else: raise AttributeError('package to generate config items for does not ' 'have __file__ or __path__') prefix = package.__name__ + '.' def onerror(name): # A legitimate error occurred in a module that wasn't excluded raise for imper, nm, ispkg in pkgutil.walk_packages(pkgpath, prefix, onerror=onerror): imper.find_module(nm) def test_toplevel_namespace(): import astropy d = dir(astropy) assert 'os' not in d assert 'log' in d assert 'test' in d assert 'sys' not in d
85618dc3c4c4f6845db01655d3c9c5098ec850e0971b52dc547c2b3047d9d27e
import abc import numpy as np from astropy.timeseries import TimeSeries, BinnedTimeSeries __all__ = ['BasePeriodogram'] class BasePeriodogram: @abc.abstractmethod def __init__(self, t, y, dy=None): pass @classmethod def from_timeseries(cls, timeseries, signal_column_name=None, uncertainty=None, **kwargs): """ Initialize a periodogram from a time series object. If a binned time series is passed, the time at the center of the bins is used. Also note that this method automatically gets rid of NaN/undefined values when initalizing the periodogram. Parameters ---------- signal_column_name : str The name of the column containing the signal values to use. uncertainty : str or float or `~astropy.units.Quantity`, optional The name of the column containing the errors on the signal, or the value to use for the error, if a scalar. **kwargs Additional keyword arguments are passed to the initializer for this periodogram class. """ if signal_column_name is None: raise ValueError('signal_column_name should be set to a valid column name') y = timeseries[signal_column_name] keep = ~np.isnan(y) if isinstance(uncertainty, str): dy = timeseries[uncertainty] keep &= ~np.isnan(dy) dy = dy[keep] else: dy = uncertainty if isinstance(timeseries, TimeSeries): time = timeseries.time elif isinstance(timeseries, BinnedTimeSeries): time = timeseries.time_bin_center else: raise TypeError('Input time series should be an instance of ' 'TimeSeries or BinnedTimeSeries') return cls(time[keep], y[keep], dy=dy, **kwargs)
673e175d7ed3412879d850631258803a98e02bac38d3a171bd9bf45d77a7789f
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import numpy as np from astropy.io import registry, fits from astropy.table import Table from astropy.time import Time, TimeDelta from astropy.timeseries.sampled import TimeSeries __all__ = ["kepler_fits_reader"] def kepler_fits_reader(filename): """ This serves as the FITS reader for KEPLER or TESS files within astropy-timeseries. This function should generally not be called directly, and instead this time series reader should be accessed with the :meth:`~astropy.timeseries.TimeSeries.read` method:: >>> from astropy.timeseries import TimeSeries >>> ts = TimeSeries.read('kplr33122.fits', format='kepler.fits') # doctest: +SKIP Parameters ---------- filename : `str` or `pathlib.Path` File to load. Returns ------- ts : `~astropy.timeseries.TimeSeries` Data converted into a TimeSeries. """ hdulist = fits.open(filename) # Get the lightcurve HDU telescope = hdulist[0].header['telescop'].lower() if telescope == 'tess': hdu = hdulist['LIGHTCURVE'] elif telescope == 'kepler': hdu = hdulist[1] else: raise NotImplementedError("{} is not implemented, only KEPLER or TESS are " "supported through this reader".format(hdulist[0].header['telescop'])) if hdu.header['EXTVER'] > 1: raise NotImplementedError("Support for {0} v{1} files not yet " "implemented".format(hdu.header['TELESCOP'], hdu.header['EXTVER'])) # Check time scale if hdu.header['TIMESYS'] != 'TDB': raise NotImplementedError("Support for {0} time scale not yet " "implemented in {1} reader".format(hdu.header['TIMESYS'], hdu.header['TELESCOP'])) tab = Table.read(hdu, format='fits') # Some KEPLER files have a T column instead of TIME. if "T" in tab.colnames: tab.rename_column("T", "TIME") for colname in tab.colnames: # Fix units if tab[colname].unit == 'e-/s': tab[colname].unit = 'electron/s' if tab[colname].unit == 'pixels': tab[colname].unit = 'pixel' # Rename columns to lowercase tab.rename_column(colname, colname.lower()) # Filter out NaN rows nans = np.isnan(tab['time'].data) if np.any(nans): warnings.warn('Ignoring {0} rows with NaN times'.format(np.sum(nans))) tab = tab[~nans] # Time column is dependent on source and we correct it here reference_date = Time(hdu.header['BJDREFI'], hdu.header['BJDREFF'], scale=hdu.header['TIMESYS'].lower(), format='jd') time = reference_date + TimeDelta(tab['time'].data) time.format = 'isot' # Remove original time column tab.remove_column('time') return TimeSeries(time=time, data=tab) registry.register_reader('kepler.fits', TimeSeries, kepler_fits_reader) registry.register_reader('tess.fits', TimeSeries, kepler_fits_reader)
63b5bc4314c3d80b12b20b50b69388618f5e562bf58dc1debc4d525edbebd2e7
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_equal from astropy import units as u from astropy.table import Table, QTable, vstack from astropy.time import Time from astropy.timeseries.sampled import TimeSeries from astropy.timeseries.binned import BinnedTimeSeries INPUT_TIME = Time(['2016-03-22T12:30:31', '2015-01-21T12:30:32', '2016-03-22T12:30:40']) PLAIN_TABLE = Table([[1., 2., 11.], [3, 4, 1], ['x', 'y', 'z']], names=['a', 'b', 'c']) class CommonTimeSeriesTests: def test_stacking(self): ts = vstack([self.series, self.series]) assert isinstance(ts, self.series.__class__) def test_row_slicing(self): ts = self.series[:2] assert isinstance(ts, self.series.__class__) def test_row_indexing(self): self.series[0][self.time_attr] == Time('2015-01-21T12:30:32') self.series[self.time_attr][0] == Time('2015-01-21T12:30:32') def test_column_indexing(self): assert_equal(self.series['a'], [1, 2, 11]) def test_column_slicing_notime(self): tab = self.series['a', 'b'] assert not isinstance(tab, self.series.__class__) assert isinstance(tab, QTable) def test_add_column(self): self.series['d'] = [1, 2, 3] def test_add_row(self): self.series.add_row(self._row) def test_required_after_stacking(self): # When stacking, we have to temporarily relax the checking of the # columns in the time series, but we need to make sure that the # checking works again afterwards ts = vstack([self.series, self.series]) with pytest.raises(ValueError) as exc: ts.remove_columns(ts.colnames) assert 'TimeSeries object is invalid' in exc.value.args[0] class TestTimeSeries(CommonTimeSeriesTests): _row = {'time': '2016-03-22T12:30:40', 'a': 1., 'b': 2, 'c': 'a'} def setup_method(self, method): self.series = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) self.time_attr = 'time' def test_column_slicing(self): ts = self.series['time', 'a'] assert isinstance(ts, TimeSeries) class TestBinnedTimeSeries(CommonTimeSeriesTests): _row = {'time_bin_start': '2016-03-22T12:30:40', 'time_bin_size': 2 * u.s, 'a': 1., 'b': 2, 'c': 'a'} def setup_method(self, method): self.series = BinnedTimeSeries(time_bin_start=INPUT_TIME, time_bin_size=3 * u.s, data=PLAIN_TABLE) self.time_attr = 'time_bin_start' def test_column_slicing(self): ts = self.series['time_bin_start', 'time_bin_size', 'a'] assert isinstance(ts, BinnedTimeSeries)
53a93b9fac4ae88a9ac62a8971b0b94f3093756cdf8a82b824412444bd67d593
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_equal from astropy import units as u from astropy.time import Time from astropy.timeseries.sampled import TimeSeries from astropy.timeseries.downsample import aggregate_downsample, reduceat INPUT_TIME = Time(['2016-03-22T12:30:31', '2016-03-22T12:30:32', '2016-03-22T12:30:33', '2016-03-22T12:30:34']) ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4]], names=['a']) ts_units = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4] * u.count], names=['a']) def test_reduceat(): add_output = np.add.reduceat(np.arange(8),[0, 4, 1, 5, 2, 6, 3, 7]) # Similar to np.add for an array input. sum_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.sum) assert_equal(sum_output, add_output) mean_output = reduceat(np.arange(8), np.arange(8)[::2], np.mean) assert_equal(mean_output, np.array([0.5, 2.5, 4.5, 6.5])) nanmean_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.mean) assert_equal(nanmean_output, np.array([1.5, 4, 2.5, 5, 3.5, 6, 4.5, 7.])) assert_equal(reduceat(np.arange(8), np.arange(8)[::2], np.mean), reduceat(np.arange(8), np.arange(8)[::2], np.nanmean)) def test_timeseries_invalid(): with pytest.raises(TypeError) as exc: aggregate_downsample(None) assert exc.value.args[0] == ("time_series should be a TimeSeries") with pytest.raises(TypeError) as exc: aggregate_downsample(TimeSeries()) assert exc.value.args[0] == ("time_bin_size should be a astropy.unit quantity") def test_downsample(): down_1 = aggregate_downsample(ts, time_bin_size=1*u.second) u.isclose(down_1.time_bin_size, [1, 1, 1, 1]*u.second) assert_equal(down_1.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:32.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:34.000'])) assert_equal(down_1["a"].data, np.array([1, 2, 3, 4])) down_2 = aggregate_downsample(ts, time_bin_size=2*u.second) u.isclose(down_2.time_bin_size, [2, 2]*u.second) assert_equal(down_2.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000'])) assert_equal(down_2["a"].data, np.array([1, 3])) down_3 = aggregate_downsample(ts, time_bin_size=3*u.second) u.isclose(down_3.time_bin_size, [3, 3]*u.second) assert_equal(down_3.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000'])) assert_equal(down_3["a"].data, np.array([2, 4])) down_4 = aggregate_downsample(ts, time_bin_size=4*u.second) u.isclose(down_4.time_bin_size, [4]*u.second) assert_equal(down_4.time_bin_start.isot, Time(['2016-03-22T12:30:31.000'])) assert_equal(down_4["a"].data, np.array([2])) down_units = aggregate_downsample(ts_units, time_bin_size=4*u.second) u.isclose(down_units.time_bin_size, [4]*u.second) assert_equal(down_units.time_bin_start.isot, Time(['2016-03-22T12:30:31.000'])) assert down_units["a"].unit.name == 'ct' assert_equal(down_units["a"].data, np.array([2.5]))
ec1d9ac34ca9a35fd566f5603f9070aa041415e604bf6203427735724d427da8
# Licensed under a 3-clause BSD style license - see LICENSE.rst from datetime import datetime import pytest from numpy.testing import assert_equal, assert_allclose from astropy.table import Table, Column from astropy.time import Time, TimeDelta from astropy import units as u from astropy.utils.data import get_pkg_data_filename from astropy.tests.helper import assert_quantity_allclose from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.timeseries.sampled import TimeSeries INPUT_TIME = Time(['2016-03-22T12:30:31', '2015-01-21T12:30:32', '2016-03-22T12:30:40']) PLAIN_TABLE = Table([[1, 2, 11], [3, 4, 1], [1, 1, 1]], names=['a', 'b', 'c']) CSV_FILE = get_pkg_data_filename('data/sampled.csv') def test_empty_initialization(): ts = TimeSeries() ts['time'] = Time([1, 2, 3], format='mjd') def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = TimeSeries() with pytest.raises(ValueError) as exc: ts['flux'] = [1, 2, 3] assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'flux'") def test_initialize_only_time(): ts = TimeSeries(time=INPUT_TIME) assert ts['time'] is ts.time # NOTE: the object in the table is a copy assert_equal(ts.time.isot, INPUT_TIME.isot) def test_initialization_with_data(): ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert_equal(ts.time.isot, INPUT_TIME.isot) assert_equal(ts['a'], [10, 2, 3]) assert_equal(ts['b'], [4, 5, 6]) def test_initialize_only_data(): with pytest.raises(TypeError) as exc: TimeSeries(data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "Either 'time' or 'time_start' should be specified" def test_initialization_with_table(): ts = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) assert ts.colnames == ['time', 'a', 'b', 'c'] def test_initialization_with_time_delta(): ts = TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=TimeDelta(3, format='sec'), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert_equal(ts.time.isot, ['2018-07-01T10:10:10.000', '2018-07-01T10:10:13.000', '2018-07-01T10:10:16.000']) def test_initialization_missing_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "'time' is scalar, so 'time_delta' is required" def test_initialization_invalid_time_and_time_start(): with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "Cannot specify both 'time' and 'time_start'" def test_initialization_invalid_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=[1, 4, 3], data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "'time_delta' should be a Quantity or a TimeDelta" def test_initialization_with_time_in_data(): data = PLAIN_TABLE.copy() data['time'] = INPUT_TIME ts1 = TimeSeries(data=data) assert set(ts1.colnames) == set(['time', 'a', 'b', 'c']) assert all(ts1.time == INPUT_TIME) ts2 = TimeSeries(data=[[10, 2, 3], INPUT_TIME], names=['a', 'time']) assert set(ts2.colnames) == set(['time', 'a']) assert all(ts2.time == INPUT_TIME) with pytest.raises(TypeError) as exc: # Don't allow ambiguous cases of passing multiple 'time' columns TimeSeries(data=data, time=INPUT_TIME) assert exc.value.args[0] == "'time' has been given both in the table and as a keyword argument" with pytest.raises(TypeError) as exc: # 'time' is a protected name, don't allow ambiguous cases TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], INPUT_TIME], names=['a', 'time']) assert exc.value.args[0] == "'time' has been given both in the table and as a keyword argument" def test_initialization_n_samples(): # Make sure things crash with incorrect n_samples with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE, n_samples=1000) assert exc.value.args[0] == ("'n_samples' has been given both and it is not the " "same length as the input data.") def test_initialization_length_mismatch(): with pytest.raises(ValueError) as exc: TimeSeries(time=INPUT_TIME, data=[[10, 2], [4, 5]], names=['a', 'b']) assert exc.value.args[0] == "Length of 'time' (3) should match data length (2)" def test_initialization_invalid_both_time_and_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, time_delta=TimeDelta(3, format='sec')) assert exc.value.args[0] == ("'time_delta' should not be specified since " "'time' is an array") def test_fold(): times = Time([1, 2, 3, 8, 9, 12], format='unix') ts = TimeSeries(time=times) ts['flux'] = [1, 4, 4, 3, 2, 3] # Try without midpoint epoch, as it should default to the first time tsf = ts.fold(period=3 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0, 1, -1, 1, -1, -1], rtol=1e-6) # Try with midpoint epoch tsf = ts.fold(period=4 * u.s, midpoint_epoch=Time(2.5, format='unix')) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [-1.5, -0.5, 0.5, 1.5, -1.5, 1.5], rtol=1e-6) def test_pandas(): pandas = pytest.importorskip("pandas") df1 = pandas.DataFrame() df1['a'] = [1, 2, 3] df1.set_index(pandas.DatetimeIndex(INPUT_TIME.datetime64), inplace=True) ts = TimeSeries.from_pandas(df1) assert_equal(ts.time.isot, INPUT_TIME.isot) assert ts.colnames == ['time', 'a'] assert len(ts.indices) == 1 assert (ts.indices['time'].columns[0] == INPUT_TIME).all() ts_tcb = TimeSeries.from_pandas(df1, time_scale='tcb') assert ts_tcb.time.scale == 'tcb' df2 = ts.to_pandas() assert (df2.index.values == pandas.Index(INPUT_TIME.datetime64).values).all() assert df2.columns == pandas.Index(['a']) assert (df1['a'] == df2['a']).all() with pytest.raises(TypeError) as exc: TimeSeries.from_pandas(None) assert exc.value.args[0] == 'Input should be a pandas DataFrame' df4 = pandas.DataFrame() df4['a'] = [1, 2, 3] with pytest.raises(TypeError) as exc: TimeSeries.from_pandas(df4) assert exc.value.args[0] == 'DataFrame does not have a DatetimeIndex' def test_read_time_missing(): with pytest.raises(ValueError) as exc: TimeSeries.read(CSV_FILE, format='csv') assert exc.value.args[0] == '``time_column`` should be provided since the default Table readers are being used.' def test_read_time_wrong(): with pytest.raises(ValueError) as exc: TimeSeries.read(CSV_FILE, time_column='abc', format='csv') assert exc.value.args[0] == "Time column 'abc' not found in the input data." def test_read(): timeseries = TimeSeries.read(CSV_FILE, time_column='Date', format='csv') assert timeseries.colnames == ['time', 'A', 'B', 'C', 'D', 'E', 'F', 'G'] assert len(timeseries) == 11 assert timeseries['time'].format == 'iso' assert timeseries['A'].sum() == 266.5 @pytest.mark.remote_data(source='astropy') def test_kepler_astropy(): filename = get_pkg_data_filename('timeseries/kplr010666592-2009131110544_slc.fits') timeseries = TimeSeries.read(filename, format='kepler.fits') assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 14280 assert len(timeseries.columns) == 20 @pytest.mark.remote_data(source='astropy') def test_tess_astropy(): filename = get_pkg_data_filename('timeseries/hlsp_tess-data-alerts_tess_phot_00025155310-s01_tess_v1_lc.fits') timeseries = TimeSeries.read(filename, format='tess.fits') assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 19261 assert len(timeseries.columns) == 20 def test_required_columns(): # Test the machinery that makes sure that the required columns are present ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) # In the examples below, the operation (e.g. remove_column) is actually # carried out before the checks are made, so we need to use copy() so that # we don't change the main version of the time series. # Make sure copy works fine ts.copy() with pytest.raises(ValueError) as exc: ts.copy().add_column(Column([3, 4, 5], name='c'), index=0) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'c'") with pytest.raises(ValueError) as exc: ts.copy().add_columns([Column([3, 4, 5], name='d'), Column([3, 4, 5], name='e')], indexes=[0, 1]) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'd'") with pytest.raises(ValueError) as exc: ts.copy().keep_columns(['a', 'b']) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'a'") with pytest.raises(ValueError) as exc: ts.copy().remove_column('time') assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'a'") with pytest.raises(ValueError) as exc: ts.copy().remove_columns(['time', 'a']) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'b'") with pytest.raises(ValueError) as exc: ts.copy().rename_column('time', 'banana') assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'banana'") @pytest.mark.parametrize('cls', [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) p1 = cls.from_timeseries(ts, 'a') assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time.jd) assert_equal(p1.y, ts['a']) assert p1.dy is None p2 = cls.from_timeseries(ts, 'a', uncertainty='b') assert_quantity_allclose(p2.dy, ts['b']) p3 = cls.from_timeseries(ts, 'a', uncertainty=0.1) assert_allclose(p3.dy, 0.1)
e0a7c57b683ad28f4fc5f0a6a2521a07bf2908efac576fa7c00bd49f767180c0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_equal, assert_allclose from astropy import units as u from astropy.time import Time, TimeDelta from astropy.utils.data import get_pkg_data_filename from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.timeseries.binned import BinnedTimeSeries from astropy.tests.helper import assert_quantity_allclose CSV_FILE = get_pkg_data_filename('data/binned.csv') def test_empty_initialization(): ts = BinnedTimeSeries() ts['time_bin_start'] = Time([1, 2, 3], format='mjd') def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = BinnedTimeSeries() with pytest.raises(ValueError) as exc: ts['flux'] = [1, 2, 3] assert exc.value.args[0] == ("BinnedTimeSeries object is invalid - expected " "'time_bin_start' as the first column but found 'flux'") def test_initialization_time_bin_invalid(): # Make sure things crash when time_bin_* is passed incorrectly. with pytest.raises(TypeError) as exc: BinnedTimeSeries(data=[[1, 4, 3]]) assert exc.value.args[0] == ("'time_bin_start' has not been specified") with pytest.raises(TypeError) as exc: BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', data=[[1, 4, 3]]) assert exc.value.args[0] == ("Either 'time_bin_size' or 'time_bin_end' should be specified") def test_initialization_time_bin_both(): # Make sure things crash when time_bin_* is passed twice. with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time_bin_start": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31") assert exc.value.args[0] == ("'time_bin_start' has been given both in the table " "and as a keyword argument") with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time_bin_size": ["2016-03-22T12:30:31"]}, time_bin_size=[1]*u.s) assert exc.value.args[0] == ("'time_bin_size' has been given both in the table " "and as a keyword argument") def test_initialization_time_bin_size(): # Make sure things crash when time_bin_size has no units with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=1) assert exc.value.args[0] == ("'time_bin_size' should be a Quantity or a TimeDelta") # TimeDelta for time_bin_size ts = BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=TimeDelta(1)) assert isinstance(ts.time_bin_size, u.quantity.Quantity) def test_initialization_time_bin_start_scalar(): # Make sure things crash when time_bin_start is a scalar with no time_bin_size with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format='mjd'), time_bin_end=Time(1, format='mjd')) assert exc.value.args[0] == ("'time_bin_start' is scalar, so 'time_bin_size' is required") def test_initialization_n_bins(): # Make sure things crash with incorrect n_bins with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format='mjd'), time_bin_size=1*u.s, time_bin_end=Time(1, format='mjd'), n_bins=10) assert exc.value.args[0] == ("'n_bins' has been given and it is not the " "same length as the input data.") def test_initialization_non_scalar_time(): # Make sure things crash with incorrect size of time_bin_start with pytest.raises(ValueError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31", "2016-03-22T12:30:32"], time_bin_size=1*u.s, time_bin_end=Time(1, format='mjd')) assert exc.value.args[0] == ("Length of 'time_bin_start' (2) should match table length (1)") with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31"], time_bin_size=None, time_bin_end=None) assert exc.value.args[0] == ("Either 'time_bin_size' or 'time_bin_end' should be specified") def test_even_contiguous(): # Initialize a ``BinnedTimeSeries`` with even contiguous bins by specifying # the bin width: ts = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', time_bin_size=3 * u.s, data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000', '2016-03-22T12:30:37.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:32.500', '2016-03-22T12:30:35.500', '2016-03-22T12:30:38.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:34.000', '2016-03-22T12:30:37.000', '2016-03-22T12:30:40.000']) def test_uneven_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven contiguous bins by giving an # end time: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:32', '2016-03-22T12:30:40'], time_bin_end='2016-03-22T12:30:55', data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:32.000', '2016-03-22T12:30:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:31.500', '2016-03-22T12:30:36.000', '2016-03-22T12:30:47.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:32.000', '2016-03-22T12:30:40.000', '2016-03-22T12:30:55.000']) def test_uneven_non_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins with # lists of start times, bin sizes and data: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:38', '2016-03-22T12:34:40'], time_bin_size=[5, 100, 2]*u.s, data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:38.000', '2016-03-22T12:34:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:33.500', '2016-03-22T12:31:28.000', '2016-03-22T12:34:41.000']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:36.000', '2016-03-22T12:32:18.000', '2016-03-22T12:34:42.000']) def test_uneven_non_contiguous_full(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins by # specifying the start and end times for the bins: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:33', '2016-03-22T12:30:40'], time_bin_end=['2016-03-22T12:30:32', '2016-03-22T12:30:35', '2016-03-22T12:30:41'], data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:31.500', '2016-03-22T12:30:34.000', '2016-03-22T12:30:40.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:32.000', '2016-03-22T12:30:35.000', '2016-03-22T12:30:41.000']) def test_read_empty(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, format='csv') assert exc.value.args[0] == '``time_bin_start_column`` should be provided since the default Table readers are being used.' def test_read_no_size_end(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', format='csv') assert exc.value.args[0] == 'Either `time_bin_end_column` or `time_bin_size_column` should be provided.' def test_read_both_extra_bins(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column='END', time_bin_size_column='bin_size', format='csv') assert exc.value.args[0] == "Cannot specify both `time_bin_end_column` and `time_bin_size_column`." def test_read_size_no_unit(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column='bin_size', format='csv') assert exc.value.args[0] == "The bin size unit should be specified as an astropy Unit using ``time_bin_size_unit``." def test_read_start_time_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='abc', time_bin_size_column='bin_size', time_bin_size_unit=u.second, format='csv') assert exc.value.args[0] == "Bin start time column 'abc' not found in the input data." def test_read_end_time_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column="missing", format='csv') assert exc.value.args[0] == "Bin end time column 'missing' not found in the input data." def test_read_size_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column="missing", time_bin_size_unit=u.second, format='csv') assert exc.value.args[0] == "Bin size column 'missing' not found in the input data." def test_read_time_unit_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column="bin_size", format='csv') assert exc.value.args[0] == "The bin size unit should be specified as an astropy Unit using ``time_bin_size_unit``." def test_read(): timeseries = BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column='time_end', format='csv') assert timeseries.colnames == ['time_bin_start', 'time_bin_size', 'bin_size', 'A', 'B', 'C', 'D', 'E', 'F'] assert len(timeseries) == 10 assert timeseries['B'].sum() == 1151.54 timeseries = BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column='bin_size', time_bin_size_unit=u.second, format='csv') assert timeseries.colnames == ['time_bin_start', 'time_bin_size', 'time_end', 'A', 'B', 'C', 'D', 'E', 'F'] assert len(timeseries) == 10 assert timeseries['B'].sum() == 1151.54 @pytest.mark.parametrize('cls', [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', time_bin_size=3 * u.s, data=[[1, 4, 3], [3, 4, 3]], names=['a', 'b']) p1 = cls.from_timeseries(ts, 'a') assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time_bin_center.jd) assert_equal(p1.y, ts['a']) assert p1.dy is None p2 = cls.from_timeseries(ts, 'a', uncertainty='b') assert_quantity_allclose(p2.dy, ts['b']) p3 = cls.from_timeseries(ts, 'a', uncertainty=0.1) assert_allclose(p3.dy, 0.1)
bd61cf90b214f0ea5e859ba6d54b3b8764e55a0b05ec14eb203baeb22c980b91
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst __all__ = ["BoxLeastSquares", "BoxLeastSquaresResults"] import numpy as np from astropy import units from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.lombscargle.core import has_units, strip_units from astropy import units as u from . import methods from astropy.timeseries.periodograms.base import BasePeriodogram def validate_unit_consistency(reference_object, input_object): if has_units(reference_object): input_object = units.Quantity(input_object, unit=reference_object.unit) else: if has_units(input_object): input_object = units.Quantity(input_object, unit=units.one) input_object = input_object.value return input_object class BoxLeastSquares(BasePeriodogram): """Compute the box least squares periodogram This method is a commonly used tool for discovering transiting exoplanets or eclipsing binaries in photometric time series datasets. This implementation is based on the "box least squares (BLS)" method described in [1]_ and [2]_. Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times ``t``. dy : float, array-like or `~astropy.units.Quantity`, optional Error or sequence of observational errors associated with times ``t``. Examples -------- Generate noisy data with a transit: >>> rand = np.random.RandomState(42) >>> t = rand.uniform(0, 10, 500) >>> y = np.ones_like(t) >>> y[np.abs((t + 1.0)%2.0-1)<0.08] = 1.0 - 0.1 >>> y += 0.01 * rand.randn(len(t)) Compute the transit periodogram on a heuristically determined period grid and find the period with maximum power: >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16) >>> results.period[np.argmax(results.power)] # doctest: +FLOAT_CMP 1.9923406038842544 Compute the periodogram on a user-specified period grid: >>> periods = np.linspace(1.9, 2.1, 5) >>> results = model.power(periods, 0.16) >>> results.power # doctest: +FLOAT_CMP array([0.01421067, 0.02842475, 0.10867671, 0.05117755, 0.01783253]) If the inputs are AstroPy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.day >>> y = y * u.dimensionless_unscaled >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16 * u.day) >>> results.period.unit Unit("d") >>> results.power.unit Unit(dimensionless) References ---------- .. [1] Kovacs, Zucker, & Mazeh (2002), A&A, 391, 369 (arXiv:astro-ph/0206099) .. [2] Hartman & Bakos (2016), Astronomy & Computing, 17, 1 (arXiv:1605.06811) """ def __init__(self, t, y, dy=None): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to('day') # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, Time): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) def autoperiod(self, duration, minimum_period=None, maximum_period=None, minimum_n_transit=3, frequency_factor=1.0): """Determine a suitable grid of periods This method uses a set of heuristics to select a conservative period grid that is uniform in frequency. This grid might be too fine for some user's needs depending on the precision requirements or the sampling of the data. The grid can be made coarser by increasing ``frequency_factor``. Parameters ---------- duration : float, array-like or `~astropy.units.Quantity` The set of durations that will be considered. minimum_period, maximum_period : float or `~astropy.units.Quantity`, optional The minimum/maximum periods to search. If not provided, these will be computed as described in the notes below. minimum_n_transits : int, optional If ``maximum_period`` is not provided, this is used to compute the maximum period to search by asserting that any systems with at least ``minimum_n_transits`` will be within the range of searched periods. Note that this is not the same as requiring that ``minimum_n_transits`` be required for detection. The default value is ``3``. frequency_factor : float, optional A factor to control the frequency spacing as described in the notes below. The default value is ``1.0``. Returns ------- period : array-like or `~astropy.units.Quantity` The set of periods computed using these heuristics with the same units as ``t``. Notes ----- The default minimum period is chosen to be twice the maximum duration because there won't be much sensitivity to periods shorter than that. The default maximum period is computed as .. code-block:: python maximum_period = (max(t) - min(t)) / minimum_n_transits ensuring that any systems with at least ``minimum_n_transits`` are within the range of searched periods. The frequency spacing is given by .. code-block:: python df = frequency_factor * min(duration) / (max(t) - min(t))**2 so the grid can be made finer by decreasing ``frequency_factor`` or coarser by increasing ``frequency_factor``. """ duration = self._validate_duration(duration) baseline = strip_units((self._trel.max() - self._trel.min())) min_duration = strip_units(np.min(duration)) # Estimate the required frequency spacing # Because of the sparsity of a transit, this must be much finer than # the frequency resolution for a sinusoidal fit. For a sinusoidal fit, # df would be 1/baseline (see LombScargle), but here this should be # scaled proportionally to the duration in units of baseline. df = frequency_factor * min_duration / baseline**2 # If a minimum period is not provided, choose one that is twice the # maximum duration because we won't be sensitive to any periods # shorter than that. if minimum_period is None: minimum_period = 2.0 * strip_units(np.max(duration)) else: minimum_period = validate_unit_consistency(self._trel, minimum_period) minimum_period = strip_units(minimum_period) # If no maximum period is provided, choose one by requiring that # all signals with at least minimum_n_transit should be detectable. if maximum_period is None: if minimum_n_transit <= 1: raise ValueError("minimum_n_transit must be greater than 1") maximum_period = baseline / (minimum_n_transit-1) else: maximum_period = validate_unit_consistency(self._trel, maximum_period) maximum_period = strip_units(maximum_period) if maximum_period < minimum_period: minimum_period, maximum_period = maximum_period, minimum_period if minimum_period <= 0.0: raise ValueError("minimum_period must be positive") # Convert bounds to frequency minimum_frequency = 1.0/strip_units(maximum_period) maximum_frequency = 1.0/strip_units(minimum_period) # Compute the number of frequencies and the frequency grid nf = 1 + int(np.round((maximum_frequency - minimum_frequency)/df)) return 1.0/(maximum_frequency-df*np.arange(nf)) * self._t_unit() def autopower(self, duration, objective=None, method=None, oversample=10, minimum_n_transit=3, minimum_period=None, maximum_period=None, frequency_factor=1.0): """Compute the periodogram at set of heuristically determined periods This method calls :func:`BoxLeastSquares.autoperiod` to determine the period grid and then :func:`BoxLeastSquares.power` to compute the periodogram. See those methods for documentation of the arguments. """ period = self.autoperiod(duration, minimum_n_transit=minimum_n_transit, minimum_period=minimum_period, maximum_period=maximum_period, frequency_factor=frequency_factor) return self.power(period, duration, objective=objective, method=method, oversample=oversample) def power(self, period, duration, objective=None, method=None, oversample=10): """Compute the periodogram for a set of periods Parameters ---------- period : array-like or `~astropy.units.Quantity` The periods where the power should be computed duration : float, array-like or `~astropy.units.Quantity` The set of durations to test objective : {'likelihood', 'snr'}, optional The scalar that should be optimized to find the best fit phase, duration, and depth. This can be either ``'likelihood'`` (default) to optimize the log-likelihood of the model, or ``'snr'`` to optimize the signal-to-noise with which the transit depth is measured. method : {'fast', 'slow'}, optional The computational method used to compute the periodogram. This is mainly included for the purposes of testing and most users will want to use the optimized ``'fast'`` method (default) that is implemented in Cython. ``'slow'`` is a brute-force method that is used to test the results of the ``'fast'`` method. oversample : int, optional The number of bins per duration that should be used. This sets the time resolution of the phase fit with larger values of ``oversample`` yielding a finer grid and higher computational cost. Returns ------- results : BoxLeastSquaresResults The periodogram results as a :class:`BoxLeastSquaresResults` object. Raises ------ ValueError If ``oversample`` is not an integer greater than 0 or if ``objective`` or ``method`` are not valid. """ period, duration = self._validate_period_and_duration(period, duration) # Check for absurdities in the ``oversample`` choice try: oversample = int(oversample) except TypeError: raise ValueError("oversample must be an int, got {0}" .format(oversample)) if oversample < 1: raise ValueError("oversample must be greater than or equal to 1") # Select the periodogram objective if objective is None: objective = "likelihood" allowed_objectives = ["snr", "likelihood"] if objective not in allowed_objectives: raise ValueError(("Unrecognized method '{0}'\n" "allowed methods are: {1}") .format(objective, allowed_objectives)) use_likelihood = (objective == "likelihood") # Select the computational method if method is None: method = "fast" allowed_methods = ["fast", "slow"] if method not in allowed_methods: raise ValueError(("Unrecognized method '{0}'\n" "allowed methods are: {1}") .format(method, allowed_methods)) # Format and check the input arrays t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # Make sure that the period and duration arrays are C-order period_fmt = np.ascontiguousarray(strip_units(period), dtype=np.float64) duration = np.ascontiguousarray(strip_units(duration), dtype=np.float64) # Select the correct implementation for the chosen method if method == "fast": bls = methods.bls_fast else: bls = methods.bls_slow # Run the implementation results = bls( t, y - np.median(y), ivar, period_fmt, duration, oversample, use_likelihood) return self._format_results(objective, period, results) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to('day') if self._tstart is None: if isinstance(times, Time): raise TypeError('{0} was provided as an absolute time but ' 'the BoxLeastSquares class was initialized ' 'with relative times.'.format(name)) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError('{0} was provided as a relative time but ' 'the BoxLeastSquares class was initialized ' 'with absolute times.'.format(name)) times = validate_unit_consistency(self._trel, times) return times def _as_absolute_time_if_needed(self, name, times): """ Convert the provided times to absolute times using the current _tstart value, if needed. """ if self._tstart is not None: # Some time formats/scales can't represent dates/times too far # off from the present, so we need to mask values offset by # more than 100,000 yr (the periodogram algorithm can return # transit times of e.g 1e300 for some periods). reset = np.abs(times.to_value(u.year)) > 100000 times[reset] = 0 times = self._tstart + times times[reset] = np.nan return times def model(self, t_model, period, duration, transit_time): """Compute the transit model at the given period, duration, and phase Parameters ---------- t_model : array-like or `~astropy.units.Quantity` or `~astropy.time.Time` Times at which to compute the model. period : float or `~astropy.units.Quantity` The period of the transits. duration : float or `~astropy.units.Quantity` The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- y_model : array-like or `~astropy.units.Quantity` The model evaluated at the times ``t_model`` with units of ``y``. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) t_model = strip_units(self._as_relative_time('t_model', t_model)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # Compute the depth hp = 0.5*period m_in = np.abs((t-transit_time+hp) % period - hp) < 0.5*duration m_out = ~m_in y_in = np.sum(y[m_in] * ivar[m_in]) / np.sum(ivar[m_in]) y_out = np.sum(y[m_out] * ivar[m_out]) / np.sum(ivar[m_out]) # Evaluate the model y_model = y_out + np.zeros_like(t_model) m_model = np.abs((t_model-transit_time+hp) % period-hp) < 0.5*duration y_model[m_model] = y_in return y_model * self._y_unit() def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` The period of the transits. duration : float or `~astropy.units.Quantity` The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # This a helper function that will compute the depth for several # different hypothesized transit models with different parameters def _compute_depth(m, y_out=None, var_out=None): if np.any(m) and (var_out is None or np.isfinite(var_out)): var_m = 1.0 / np.sum(ivar[m]) y_m = np.sum(y[m] * ivar[m]) * var_m if y_out is None: return y_m, var_m return y_out - y_m, np.sqrt(var_m + var_out) return 0.0, np.inf # Compute the depth of the fiducial model and the two models at twice # the period hp = 0.5*period m_in = np.abs((t-transit_time+hp) % period - hp) < 0.5*duration m_out = ~m_in m_odd = np.abs((t-transit_time) % (2*period) - period) \ < 0.5*duration m_even = np.abs((t-transit_time+period) % (2*period) - period) \ < 0.5*duration y_out, var_out = _compute_depth(m_out) depth = _compute_depth(m_in, y_out, var_out) depth_odd = _compute_depth(m_odd, y_out, var_out) depth_even = _compute_depth(m_even, y_out, var_out) y_in = y_out - depth[0] # Compute the depth of the model at a phase of 0.5*period m_phase = np.abs((t-transit_time) % period - hp) < 0.5*duration depth_phase = _compute_depth(m_phase, *_compute_depth((~m_phase) & m_out)) # Compute the depth of a model with a period of 0.5*period m_half = np.abs((t-transit_time+0.25*period) % (0.5*period) - 0.25*period) < 0.5*duration depth_half = _compute_depth(m_half, *_compute_depth(~m_half)) # Compute the number of points in each transit transit_id = np.round((t[m_in]-transit_time) / period).astype(int) transit_times = period * np.arange(transit_id.min(), transit_id.max()+1) + transit_time unique_ids, unique_counts = np.unique(transit_id, return_counts=True) unique_ids -= np.min(transit_id) transit_id -= np.min(transit_id) counts = np.zeros(np.max(transit_id) + 1, dtype=int) counts[unique_ids] = unique_counts # Compute the per-transit log likelihood ll = -0.5 * ivar[m_in] * ((y[m_in] - y_in)**2 - (y[m_in] - y_out)**2) lls = np.zeros(len(counts)) for i in unique_ids: lls[i] = np.sum(ll[transit_id == i]) full_ll = -0.5*np.sum(ivar[m_in] * (y[m_in] - y_in)**2) full_ll -= 0.5*np.sum(ivar[m_out] * (y[m_out] - y_out)**2) # Compute the log likelihood of a sine model A = np.vstack(( np.sin(2*np.pi*t/period), np.cos(2*np.pi*t/period), np.ones_like(t) )).T w = np.linalg.solve(np.dot(A.T, A * ivar[:, None]), np.dot(A.T, y * ivar)) mod = np.dot(A, w) sin_ll = -0.5*np.sum((y-mod)**2*ivar) # Format the results y_unit = self._y_unit() ll_unit = 1 if self.dy is None: ll_unit = y_unit * y_unit return dict( transit_times=self._as_absolute_time_if_needed('transit_times', transit_times * self._t_unit()), per_transit_count=counts, per_transit_log_likelihood=lls * ll_unit, depth=(depth[0] * y_unit, depth[1] * y_unit), depth_phased=(depth_phase[0] * y_unit, depth_phase[1] * y_unit), depth_half=(depth_half[0] * y_unit, depth_half[1] * y_unit), depth_odd=(depth_odd[0] * y_unit, depth_odd[1] * y_unit), depth_even=(depth_even[0] * y_unit, depth_even[1] * y_unit), harmonic_amplitude=np.sqrt(np.sum(w[:2]**2)) * y_unit, harmonic_delta_log_likelihood=(sin_ll - full_ll) * ll_unit, ) def transit_mask(self, t, period, duration, transit_time): """Compute which data points are in transit for a given parameter set Parameters ---------- t_model : array-like or `~astropy.units.Quantity` Times where the mask should be evaluated. period : float or `~astropy.units.Quantity` The period of the transits. duration : float or `~astropy.units.Quantity` The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- transit_mask : array-like A boolean array where ``True`` indicates and in transit point and ``False`` indicates and out-of-transit point. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) t = strip_units(self._as_relative_time('t', t)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) hp = 0.5*period return np.abs((t-transit_time+hp) % period - hp) < 0.5*duration def _validate_inputs(self, t, y, dy): """Private method used to check the consistency of the inputs Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times t. dy : float, array-like or `~astropy.units.Quantity` Error or sequence of observational errors associated with times t. Returns ------- t, y, dy : array-like or `~astropy.units.Quantity` or `~astropy.time.Time` The inputs with consistent shapes and units. Raises ------ ValueError If the dimensions are incompatible or if the units of dy cannot be converted to the units of y. """ # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if dy is not None: dy = validate_unit_consistency(y, dy) return t, y, dy def _validate_duration(self, duration): """Private method used to check a set of test durations Parameters ---------- duration : float, array-like or `~astropy.units.Quantity` The set of durations that will be considered. Returns ------- duration : array-like or `~astropy.units.Quantity` The input reformatted with the correct shape and units. Raises ------ ValueError If the units of duration cannot be converted to the units of t. """ duration = np.atleast_1d(np.abs(duration)) if duration.ndim != 1 or duration.size == 0: raise ValueError("duration must be 1-dimensional") return validate_unit_consistency(self._trel, duration) def _validate_period_and_duration(self, period, duration): """Private method used to check a set of periods and durations Parameters ---------- period : float, array-like or `~astropy.units.Quantity` The set of test periods. duration : float, array-like or `~astropy.units.Quantity` The set of durations that will be considered. Returns ------- period, duration : array-like or `~astropy.units.Quantity` The inputs reformatted with the correct shapes and units. Raises ------ ValueError If the units of period or duration cannot be converted to the units of t. """ duration = self._validate_duration(duration) period = np.atleast_1d(np.abs(period)) if period.ndim != 1 or period.size == 0: raise ValueError("period must be 1-dimensional") period = validate_unit_consistency(self._trel, period) if not np.min(period) > np.max(duration): raise ValueError("The maximum transit duration must be shorter " "than the minimum period") return period, duration def _format_results(self, objective, period, results): """A private method used to wrap and add units to the periodogram Parameters ---------- objective : string The name of the objective used in the optimization. period : array-like or `~astropy.units.Quantity` The set of trial periods. results : tuple The output of one of the periodogram implementations. """ (power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood) = results if has_units(self._trel): transit_time = units.Quantity(transit_time, unit=self._trel.unit) transit_time = self._as_absolute_time_if_needed('transit_time', transit_time) duration = units.Quantity(duration, unit=self._trel.unit) if has_units(self.y): depth = units.Quantity(depth, unit=self.y.unit) depth_err = units.Quantity(depth_err, unit=self.y.unit) depth_snr = units.Quantity(depth_snr, unit=units.one) if self.dy is None: if objective == "likelihood": power = units.Quantity(power, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=units.one) return BoxLeastSquaresResults( objective, period, power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood) def _t_unit(self): if has_units(self._trel): return self._trel.unit else: return 1 def _y_unit(self): if has_units(self.y): return self.y.unit else: return 1 class BoxLeastSquaresResults(dict): """The results of a BoxLeastSquares search Attributes ---------- objective : string The scalar used to optimize to find the best fit phase, duration, and depth. See :func:`BoxLeastSquares.power` for more information. period : array-like or `~astropy.units.Quantity` The set of test periods. power : array-like or `~astropy.units.Quantity` The periodogram evaluated at the periods in ``period``. If ``objective`` is: * ``'likelihood'``: the values of ``power`` are the log likelihood maximized over phase, depth, and duration, or * ``'snr'``: the values of ``power`` are the signal-to-noise with which the depth is measured maximized over phase, depth, and duration. depth : array-like or `~astropy.units.Quantity` The estimated depth of the maximum power model at each period. depth_err : array-like or `~astropy.units.Quantity` The 1-sigma uncertainty on ``depth``. duration : array-like or `~astropy.units.Quantity` The maximum power duration at each period. transit_time : array-like or `~astropy.units.Quantity` or `~astropy.time.Time` The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like or `~astropy.units.Quantity` The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like or `~astropy.units.Quantity` The log likelihood of the maximum power model. """ def __init__(self, *args): super().__init__(zip( ("objective", "period", "power", "depth", "depth_err", "duration", "transit_time", "depth_snr", "log_likelihood"), args )) def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return '\n'.join([k.rjust(m) + ': ' + repr(v) for k, v in sorted(self.items())]) else: return self.__class__.__name__ + "()" def __dir__(self): return list(self.keys())
8da5aea55cbf0b7a14a4d68ef57a3aa17cb363f0ba09e31bca13cef3064ca600
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os from os.path import join from distutils.core import Extension BLS_ROOT = os.path.relpath(os.path.dirname(__file__)) def get_extensions(): ext = Extension( "astropy.timeseries.periodograms.bls._impl", sources=[ join(BLS_ROOT, "bls.c"), join(BLS_ROOT, "_impl.pyx"), ], include_dirs=["numpy"], ) return [ext]
eca2013c8d737860562b7f9c453c9e4c9ef9d7068d3e534df2a7b451414cc63f
""" Utilities for computing periodogram statistics. This is an internal module; users should access this functionality via the ``false_alarm_probability`` and ``false_alarm_level`` methods of the ``astropy.timeseries.LombScargle`` API. """ from functools import wraps import numpy as np def _weighted_sum(val, dy): if dy is not None: return (val / dy ** 2).sum() else: return val.sum() def _weighted_mean(val, dy): if dy is None: return val.mean() else: return _weighted_sum(val, dy) / _weighted_sum(np.ones_like(val), dy) def _weighted_var(val, dy): return _weighted_mean(val ** 2, dy) - _weighted_mean(val, dy) ** 2 def _gamma(N): from scipy.special import gammaln # Note: this is closely approximated by (1 - 0.75 / N) for large N return np.sqrt(2 / N) * np.exp(gammaln(N / 2) - gammaln((N - 1) / 2)) def _log_gamma(N): from scipy.special import gammaln return 0.5 * np.log(2 / N) + gammaln(N / 2) - gammaln((N - 1) / 2) def vectorize_first_argument(func): @wraps(func) def new_func(x, *args, **kwargs): x = np.asarray(x) return np.array([func(xi, *args, **kwargs) for xi in x.flat]).reshape(x.shape) return new_func def pdf_single(z, N, normalization, dH=1, dK=3): """Probability density function for Lomb-Scargle periodogram Compute the expected probability density function of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : integers, optional The number of parameters in the null hypothesis and the model. Returns ------- pdf : np.ndarray The expected probability density function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == 'psd': return np.exp(-z) elif normalization == 'standard': return 0.5 * Nk * (1 - z) ** (0.5 * Nk - 1) elif normalization == 'model': return 0.5 * Nk * (1 + z) ** (-0.5 * Nk - 1) elif normalization == 'log': return 0.5 * Nk * np.exp(-0.5 * Nk * z) else: raise ValueError("normalization='{0}' is not recognized" "".format(normalization)) def fap_single(z, N, normalization, dH=1, dK=3): """Single-frequency false alarm probability for the Lomb-Scargle periodogram This is equal to 1 - cdf, where cdf is the cumulative distribution. The single-frequency false alarm probability should not be confused with the false alarm probability for the largest peak. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : integers, optional The number of parameters in the null hypothesis and the model. Returns ------- false_alarm_probability : np.ndarray The single-frequency false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == 'psd': return np.exp(-z) elif normalization == 'standard': return (1 - z) ** (0.5 * Nk) elif normalization == 'model': return (1 + z) ** (-0.5 * Nk) elif normalization == 'log': return np.exp(-0.5 * Nk * z) else: raise ValueError("normalization='{0}' is not recognized" "".format(normalization)) def inv_fap_single(fap, N, normalization, dH=1, dK=3): """Single-frequency inverse false alarm probability This function computes the periodogram value associated with the specified single-frequency false alarm probability. This should not be confused with the false alarm level of the largest peak. Parameters ---------- fap : array-like The false alarm probability. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : integers, optional The number of parameters in the null hypothesis and the model. Returns ------- z : np.ndarray The periodogram power corresponding to the single-peak false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ fap = np.asarray(fap) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == 'psd': return -np.log(fap) elif normalization == 'standard': return 1 - fap ** (2 / Nk) elif normalization == 'model': return -1 + fap ** (-2 / Nk) elif normalization == 'log': return -2 / Nk * np.log(fap) else: raise ValueError("normalization='{0}' is not recognized" "".format(normalization)) def cdf_single(z, N, normalization, dH=1, dK=3): """Cumulative distribution for the Lomb-Scargle periodogram Compute the expected cumulative distribution of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : integers, optional The number of parameters in the null hypothesis and the model. Returns ------- cdf : np.ndarray The expected cumulative distribution function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ return 1 - fap_single(z, N, normalization=normalization, dH=dH, dK=dK) def tau_davies(Z, fmax, t, y, dy, normalization='standard', dH=1, dK=3): """tau factor for estimating Davies bound (Baluev 2008, Table 1)""" N = len(t) NH = N - dH # DOF for null hypothesis NK = N - dK # DOF for periodic hypothesis Dt = _weighted_var(t, dy) Teff = np.sqrt(4 * np.pi * Dt) # Effective baseline W = fmax * Teff Z = np.asarray(Z) if normalization == 'psd': # 'psd' normalization is same as Baluev's z return W * np.exp(-Z) * np.sqrt(Z) elif normalization == 'standard': # 'standard' normalization is Z = 2/NH * z_1 return (_gamma(NH) * W * (1 - Z) ** (0.5 * (NK - 1)) * np.sqrt(0.5 * NH * Z)) elif normalization == 'model': # 'model' normalization is Z = 2/NK * z_2 return (_gamma(NK) * W * (1 + Z) ** (-0.5 * NK) * np.sqrt(0.5 * NK * Z)) elif normalization == 'log': # 'log' normalization is Z = 2/NK * z_3 return (_gamma(NK) * W * np.exp(-0.5 * Z * (NK - 0.5)) * np.sqrt(NK * np.sinh(0.5 * Z))) else: raise NotImplementedError("normalization={0}".format(normalization)) def fap_naive(Z, fmax, t, y, dy, normalization='standard'): """False Alarm Probability based on estimated number of indep frequencies""" N = len(t) T = max(t) - min(t) N_eff = fmax * T fap_s = fap_single(Z, N, normalization=normalization) # result is 1 - (1 - fap_s) ** N_eff # this is much more precise for small Z / large N return -np.expm1(N_eff * np.log1p(-fap_s)) def inv_fap_naive(fap, fmax, t, y, dy, normalization='standard'): """Inverse FAP based on estimated number of indep frequencies""" fap = np.asarray(fap) N = len(t) T = max(t) - min(t) N_eff = fmax * T #fap_s = 1 - (1 - fap) ** (1 / N_eff) fap_s = -np.expm1(np.log(1 - fap) / N_eff) return inv_fap_single(fap_s, N, normalization) def fap_davies(Z, fmax, t, y, dy, normalization='standard'): """Davies upper-bound to the false alarm probability (Eqn 5 of Baluev 2008) """ N = len(t) fap_s = fap_single(Z, N, normalization=normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) return fap_s + tau @vectorize_first_argument def inv_fap_davies(p, fmax, t, y, dy, normalization='standard'): """Inverse of the davies upper-bound""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_davies(z, *args) - p res = optimize.root(func, z0, args=args, method='lm') if not res.success: raise ValueError('inv_fap_baluev did not converge for p={0}'.format(p)) return res.x def fap_baluev(Z, fmax, t, y, dy, normalization='standard'): """Alias-free approximation to false alarm probability (Eqn 6 of Baluev 2008) """ fap_s = fap_single(Z, len(t), normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) # result is 1 - (1 - fap_s) * np.exp(-tau) # this is much more precise for small numbers return -np.expm1(-tau) + fap_s * np.exp(-tau) @vectorize_first_argument def inv_fap_baluev(p, fmax, t, y, dy, normalization='standard'): """Inverse of the Baluev alias-free approximation""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_baluev(z, *args) - p res = optimize.root(func, z0, args=args, method='lm') if not res.success: raise ValueError('inv_fap_baluev did not converge for p={0}'.format(p)) return res.x def _bootstrap_max(t, y, dy, fmax, normalization, random_seed): """Generate a sequence of bootstrap estimates of the max""" from .core import LombScargle rng = np.random.RandomState(random_seed) while True: s = rng.randint(0, len(y), len(y)) # sample with replacement ls_boot = LombScargle(t, y[s], dy if dy is None else dy[s], normalization=normalization) freq, power = ls_boot.autopower(maximum_frequency=fmax) yield power.max() def fap_bootstrap(Z, fmax, t, y, dy, normalization='standard', n_bootstraps=1000, random_seed=None): """Bootstrap estimate of the false alarm probability""" pmax = np.fromiter(_bootstrap_max(t, y, dy, fmax, normalization, random_seed), float, n_bootstraps) pmax.sort() return 1 - np.searchsorted(pmax, Z) / len(pmax) def inv_fap_bootstrap(fap, fmax, t, y, dy, normalization='standard', n_bootstraps=1000, random_seed=None): """Bootstrap estimate of the inverse false alarm probability""" fap = np.asarray(fap) pmax = np.fromiter(_bootstrap_max(t, y, dy, fmax, normalization, random_seed), float, n_bootstraps) pmax.sort() return pmax[np.clip(np.floor((1 - fap) * len(pmax)).astype(int), 0, len(pmax) - 1)] METHODS = {'single': fap_single, 'naive': fap_naive, 'davies': fap_davies, 'baluev': fap_baluev, 'bootstrap': fap_bootstrap} def false_alarm_probability(Z, fmax, t, y, dy, normalization='standard', method='baluev', method_kwds=None): """Compute the approximate false alarm probability for periodogram peaks Z This gives an estimate of the false alarm probability for the largest value in a periodogram, based on the null hypothesis of non-varying data with Gaussian noise. The true probability cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- Z : array-like The periodogram value. fmax : float The maximum frequency of the periodogram. t, y, dy : array-like The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_level : compute the periodogram level for a particular fap References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == 'single': return fap_single(Z, len(t), normalization) elif method not in METHODS: raise ValueError("Unrecognized method: {0}".format(method)) method = METHODS[method] method_kwds = method_kwds or {} return method(Z, fmax, t, y, dy, normalization, **method_kwds) INV_METHODS = {'single': inv_fap_single, 'naive': inv_fap_naive, 'davies': inv_fap_davies, 'baluev': inv_fap_baluev, 'bootstrap': inv_fap_bootstrap} def false_alarm_level(p, fmax, t, y, dy, normalization, method='baluev', method_kwds=None): """Compute the approximate periodogram level given a false alarm probability This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. The true level cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- p : array-like The false alarm probability (0 < p < 1). fmax : float The maximum frequency of the periodogram. t, y, dy : arrays The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- z : np.ndarray The periodogram level. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_probability : compute the fap for a given periodogram level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == 'single': return inv_fap_single(p, len(t), normalization) elif method not in INV_METHODS: raise ValueError("Unrecognized method: {0}".format(method)) method = INV_METHODS[method] method_kwds = method_kwds or {} return method(p, fmax, t, y, dy, normalization, **method_kwds)
788524a147d7bd1198369ed483cb68bc503c33ad4c122d3e42a3de5a72a4b560
"""Main Lomb-Scargle Implementation""" import numpy as np from .implementations import lombscargle, available_methods from .implementations.mle import periodic_fit, design_matrix from . import _statistics from astropy import units from astropy.time import Time, TimeDelta from astropy import units as u from astropy.timeseries.periodograms.base import BasePeriodogram def has_units(obj): return hasattr(obj, 'unit') def get_unit(obj): return getattr(obj, 'unit', 1) def strip_units(*arrs): strip = lambda a: None if a is None else np.asarray(a) if len(arrs) == 1: return strip(arrs[0]) else: return map(strip, arrs) class LombScargle(BasePeriodogram): """Compute the Lomb-Scargle Periodogram. This implementations here are based on code presented in [1]_ and [2]_; if you use this functionality in an academic application, citation of those works would be appreciated. Parameters ---------- t : array_like or Quantity sequence of observation times y : array_like or Quantity sequence of observations associated with times t dy : float, array_like or Quantity (optional) error or sequence of observational errors associated with times t fit_mean : bool (optional, default=True) if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool (optional, default=True) if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False nterms : int (optional, default=1) number of terms to use in the Fourier fit normalization : {'standard', 'model', 'log', 'psd'}, optional Normalization to use for the periodogram. Examples -------- Generate noisy periodic data: >>> rand = np.random.RandomState(42) >>> t = 100 * rand.rand(100) >>> y = np.sin(2 * np.pi * t) + rand.randn(100) Compute the Lomb-Scargle periodogram on an automatically-determined frequency grid & find the frequency of max power: >>> frequency, power = LombScargle(t, y).autopower() >>> frequency[np.argmax(power)] # doctest: +FLOAT_CMP 1.0016662310392956 Compute the Lomb-Scargle periodogram at a user-specified frequency grid: >>> freq = np.arange(0.8, 1.3, 0.1) >>> LombScargle(t, y).power(freq) # doctest: +FLOAT_CMP array([0.0204304 , 0.01393845, 0.35552682, 0.01358029, 0.03083737]) If the inputs are astropy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.s >>> y = y * u.mag >>> frequency, power = LombScargle(t, y).autopower() >>> frequency.unit Unit("1 / s") >>> power.unit Unit(dimensionless) Note here that the Lomb-Scargle power is always a unitless quantity, because it is related to the :math:`\\chi^2` of the best-fit periodic model at each frequency. References ---------- .. [1] Vanderplas, J., Connolly, A. Ivezic, Z. & Gray, A. *Introduction to astroML: Machine learning for astrophysics*. Proceedings of the Conference on Intelligent Data Understanding (2012) .. [2] VanderPlas, J. & Ivezic, Z. *Periodograms for Multiband Astronomical Time Series*. ApJ 812.1:18 (2015) """ available_methods = available_methods() def __init__(self, t, y, dy=None, fit_mean=True, center_data=True, nterms=1, normalization='standard'): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to('day') # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, Time): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) self.fit_mean = fit_mean self.center_data = center_data self.nterms = nterms self.normalization = normalization def _validate_inputs(self, t, y, dy): # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if any(has_units(arr) for arr in (t, y, dy)): t, y = map(units.Quantity, (t, y)) if dy is not None: dy = units.Quantity(dy) try: dy = units.Quantity(dy, unit=y.unit) except units.UnitConversionError: raise ValueError("Units of dy not equivalent " "to units of y") return t, y, dy def _validate_frequency(self, frequency): frequency = np.asanyarray(frequency) if has_units(self._trel): frequency = units.Quantity(frequency) try: frequency = units.Quantity(frequency, unit=1./self._trel.unit) except units.UnitConversionError: raise ValueError("Units of frequency not equivalent to " "units of 1/t") else: if has_units(frequency): raise ValueError("frequency have units while 1/t doesn't.") return frequency def _validate_t(self, t): t = np.asanyarray(t) if has_units(self._trel): t = units.Quantity(t) try: t = units.Quantity(t, unit=self._trel.unit) except units.UnitConversionError: raise ValueError("Units of t not equivalent to " "units of input self.t") return t def _power_unit(self, norm): if has_units(self.y): if self.dy is None and norm == 'psd': return self.y.unit ** 2 else: return units.dimensionless_unscaled else: return 1 def autofrequency(self, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, return_freq_limits=False): """Determine a suitable frequency grid for data. Note that this assumes the peak width is driven by the observational baseline, which is generally a good assumption when the baseline is much larger than the oscillation period. If you are searching for periods longer than the baseline of your observations, this may not perform well. Even with a large baseline, be aware that the maximum frequency returned is based on the concept of "average Nyquist frequency", which may not be useful for irregularly-sampled data. The maximum frequency can be adjusted via the nyquist_factor argument, or through the maximum_frequency argument. Parameters ---------- samples_per_peak : float (optional, default=5) The approximate number of desired samples across the typical peak nyquist_factor : float (optional, default=5) The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float (optional) If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. maximum_frequency : float (optional) If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. return_freq_limits : bool (optional) if True, return only the frequency limits rather than the full frequency grid. Returns ------- frequency : ndarray or Quantity The heuristically-determined optimal frequency bin """ baseline = self._trel.max() - self._trel.min() n_samples = self._trel.size df = 1.0 / baseline / samples_per_peak if minimum_frequency is None: minimum_frequency = 0.5 * df if maximum_frequency is None: avg_nyquist = 0.5 * n_samples / baseline maximum_frequency = nyquist_factor * avg_nyquist Nf = 1 + int(np.round((maximum_frequency - minimum_frequency) / df)) if return_freq_limits: return minimum_frequency, minimum_frequency + df * (Nf - 1) else: return minimum_frequency + df * np.arange(Nf) def autopower(self, method='auto', method_kwds=None, normalization=None, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None): """Compute Lomb-Scargle power at automatically-determined frequencies. Parameters ---------- method : string (optional) specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. method_kwds : dict (optional) additional keywords to pass to the lomb-scargle method normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. samples_per_peak : float (optional, default=5) The approximate number of desired samples across the typical peak nyquist_factor : float (optional, default=5) The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float (optional) If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. maximum_frequency : float (optional) If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. Returns ------- frequency, power : ndarrays The frequency and Lomb-Scargle power """ frequency = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency) power = self.power(frequency, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=True) return frequency, power def power(self, frequency, normalization=None, method='auto', assume_regular_frequency=False, method_kwds=None): """Compute the Lomb-Scargle power at the given frequencies. Parameters ---------- frequency : array_like or Quantity frequencies (not angular frequencies) at which to evaluate the periodogram. Note that in order to use method='fast', frequencies must be regularly-spaced. method : string (optional) specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool (optional) if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. fit_mean : bool (optional, default=True) If True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool (optional, default=True) If True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False. method_kwds : dict (optional) additional keywords to pass to the lomb-scargle method Returns ------- power : ndarray The Lomb-Scargle power at the specified frequency """ if normalization is None: normalization = self.normalization frequency = self._validate_frequency(frequency) power = lombscargle(*strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=assume_regular_frequency) return power * self._power_unit(normalization) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to('day') if self._tstart is None: if isinstance(times, Time): raise TypeError('{0} was provided as an absolute time but ' 'the LombScargle class was initialized ' 'with relative times.'.format(name)) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError('{0} was provided as a relative time but ' 'the LombScargle class was initialized ' 'with absolute times.'.format(name)) return times def model(self, t, frequency): """Compute the Lomb-Scargle model at the given frequency. The model at a particular frequency is a linear model: model = offset + dot(design_matrix, model_parameters) Parameters ---------- t : array_like or Quantity, length n_samples times at which to compute the model frequency : float the frequency for the model Returns ------- y : np.ndarray, length n_samples The model fit corresponding to the input times See Also -------- design_matrix offset model_parameters """ frequency = self._validate_frequency(frequency) t = self._validate_t(self._as_relative_time('t', t)) y_fit = periodic_fit(*strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), t_fit=strip_units(t), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms) return y_fit * get_unit(self.y) def offset(self): """Return the offset of the model The offset of the model is the (weighted) mean of the y values. Note that if self.center_data is False, the offset is 0 by definition. Returns ------- offset : scalar See Also -------- design_matrix model model_parameters """ y, dy = strip_units(self.y, self.dy) if dy is None: dy = 1 dy = np.broadcast_to(dy, y.shape) if self.center_data: w = dy ** -2.0 y_mean = np.dot(y, w) / w.sum() else: y_mean = 0 return y_mean * get_unit(self.y) def model_parameters(self, frequency, units=True): r"""Compute the best-fit model parameters at the given frequency. The model described by these parameters is: .. math:: y(t; f, \vec{\theta}) = \theta_0 + \sum_{n=1}^{\tt nterms} [\theta_{2n-1}\sin(2\pi n f t) + \theta_{2n}\cos(2\pi n f t)] where :math:`\vec{\theta}` is the array of parameters returned by this function. Parameters ---------- frequency : float the frequency for the model units : bool If True (default), return design matrix with data units. Returns ------- theta : np.ndarray (n_parameters,) The best-fit model parameters at the given frequency. See Also -------- design_matrix model offset """ frequency = self._validate_frequency(frequency) t, y, dy = strip_units(self._trel, self.y, self.dy) if self.center_data: y = y - strip_units(self.offset()) dy = np.ones_like(y) if dy is None else np.asarray(dy) X = self.design_matrix(frequency) parameters = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) if units: parameters = get_unit(self.y) * parameters return parameters def design_matrix(self, frequency, t=None): """Compute the design matrix for a given frequency Parameters ---------- frequency : float the frequency for the model t : array_like or `~astropy.units.Quantity` or `~astropy.time.Time`, length n_samples times at which to compute the model (optional). If not specified, then the times and uncertainties of the input data are used Returns ------- X : np.ndarray (len(t), n_parameters) The design matrix for the model at the given frequency. See Also -------- model model_parameters offset """ if t is None: t, dy = strip_units(self._trel, self.dy) else: t, dy = strip_units(self._validate_t(self._as_relative_time('t', t)), None) return design_matrix(t, frequency, dy, nterms=self.nterms, bias=self.fit_mean) def distribution(self, power, cumulative=False): """Expected periodogram distribution under the null hypothesis. This computes the expected probability distribution or cumulative probability distribution of periodogram power, under the null hypothesis of a non-varying signal with Gaussian noise. Note that this is not the same as the expected distribution of peak values; for that see the ``false_alarm_probability()`` method. Parameters ---------- power : array_like The periodogram power at which to compute the distribution. cumulative : bool (optional) If True, then return the cumulative distribution. See Also -------- false_alarm_probability false_alarm_level Returns ------- dist : np.ndarray The probability density or cumulative probability associated with the provided powers. """ dH = 1 if self.fit_mean or self.center_data else 0 dK = dH + 2 * self.nterms dist = _statistics.cdf_single if cumulative else _statistics.pdf_single return dist(power, len(self._trel), self.normalization, dH=dH, dK=dK) def false_alarm_probability(self, power, method='baluev', samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None): """False alarm probability of periodogram maxima under the null hypothesis. This gives an estimate of the false alarm probability given the height of the largest peak in the periodogram, based on the null hypothesis of non-varying data with Gaussian noise. Parameters ---------- power : array-like The periodogram value. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. maximum_frequency : float The maximum frequency of the periodogram. method_kwds : dict (optional) Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError("false alarm probability is not " "implemented for multiterm periodograms.") if not (self.fit_mean or self.center_data): raise NotImplementedError("false alarm probability is implemented " "only for periodograms of centered data.") fmin, fmax = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True) return _statistics.false_alarm_probability(power, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds) def false_alarm_level(self, false_alarm_probability, method='baluev', samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None): """Level of maximum at a given false alarm probability. This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. Parameters ---------- false_alarm_probability : array-like The false alarm probability (0 < fap < 1). maximum_frequency : float The maximum frequency of the periodogram. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use; default='baluev'. method_kwds : dict, optional Additional method-specific keywords. Returns ------- power : np.ndarray The periodogram peak height corresponding to the specified false alarm probability. Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_probability References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError("false alarm probability is not " "implemented for multiterm periodograms.") if not (self.fit_mean or self.center_data): raise NotImplementedError("false alarm probability is implemented " "only for periodograms of centered data.") fmin, fmax = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True) return _statistics.false_alarm_level(false_alarm_probability, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds)
7cf8f1d6d913e6fdf6b1f902f048ce380e9082fb465acfa9fce518c8cd0ef58e
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.time import Time, TimeDelta from astropy.tests.helper import assert_quantity_allclose from astropy.timeseries.periodograms.bls import BoxLeastSquares from astropy.timeseries.periodograms.lombscargle.core import has_units def assert_allclose_blsresults(blsresult, other, **kwargs): """Assert that another BoxLeastSquaresResults object is consistent This method loops over all attributes and compares the values using :func:`~astropy.tests.helper.assert_quantity_allclose` function. Parameters ---------- other : BoxLeastSquaresResults The other results object to compare. """ for k, v in blsresult.items(): if k not in other: raise AssertionError("missing key '{0}'".format(k)) if k == "objective": assert v == other[k], ( "Mismatched objectives. Expected '{0}', got '{1}'" .format(v, other[k]) ) continue assert_quantity_allclose(v, other[k], **kwargs) @pytest.fixture def data(): rand = np.random.RandomState(123) t = rand.uniform(0, 10, 500) y = np.ones_like(t) dy = rand.uniform(0.005, 0.01, len(t)) period = 2.0 transit_time = 0.5 duration = 0.16 depth = 0.2 m = np.abs((t-transit_time+0.5*period) % period-0.5*period) < 0.5*duration y[m] = 1.0 - depth y += dy * rand.randn(len(t)) return t, y, dy, dict(period=period, transit_time=transit_time, duration=duration, depth=depth) def test_32bit_bug(): rand = np.random.RandomState(42) t = rand.uniform(0, 10, 500) y = np.ones_like(t) y[np.abs((t + 1.0) % 2.0-1) < 0.08] = 1.0 - 0.1 y += 0.01 * rand.randn(len(t)) model = BoxLeastSquares(t, y) results = model.autopower(0.16) assert np.allclose(results.period[np.argmax(results.power)], 1.9923406038842544) periods = np.linspace(1.9, 2.1, 5) results = model.power(periods, 0.16) assert np.allclose( results.power, np.array([0.01421067, 0.02842475, 0.10867671, 0.05117755, 0.01783253]) ) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_correct_model(data, objective): t, y, dy, params = data model = BoxLeastSquares(t, y, dy) periods = np.exp(np.linspace(np.log(params["period"]) - 0.1, np.log(params["period"]) + 0.1, 1000)) results = model.power(periods, params["duration"], objective=objective) ind = np.argmax(results.power) for k, v in params.items(): assert_allclose(results[k][ind], v, atol=0.01) chi = (results.depth[ind]-params["depth"]) / results.depth_err[ind] assert np.abs(chi) < 1 @pytest.mark.parametrize("objective", ["likelihood", "snr"]) @pytest.mark.parametrize("offset", [False, True]) def test_fast_method(data, objective, offset): t, y, dy, params = data if offset: t = t - params["transit_time"] + params["period"] model = BoxLeastSquares(t, y, dy) periods = np.exp(np.linspace(np.log(params["period"]) - 1, np.log(params["period"]) + 1, 10)) durations = params["duration"] results = model.power(periods, durations, objective=objective) assert_allclose_blsresults(results, model.power(periods, durations, method="slow", objective=objective)) def test_input_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * y_unit, dy * u.one) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * u.one, dy * y_unit) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y, dy * y_unit) model = BoxLeastSquares(t*t_unit, y * u.one, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t*t_unit, y * y_unit, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t*t_unit, y*y_unit) assert model.dy is None def test_period_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag model = BoxLeastSquares(t * t_unit, y * y_unit, dy) p = model.autoperiod(params["duration"]) assert p.unit == t_unit p = model.autoperiod(params["duration"] * 24 * u.hour) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): model.autoperiod(params["duration"] * u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], minimum_period=0.5*u.mag) p = model.autoperiod(params["duration"], maximum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], maximum_period=0.5*u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5, maximum_period=1.5) p2 = model.autoperiod(params["duration"], maximum_period=0.5, minimum_period=1.5) assert_quantity_allclose(p, p2) @pytest.mark.parametrize("method", ["fast", "slow"]) @pytest.mark.parametrize("with_err", [True, False]) @pytest.mark.parametrize("t_unit", [None, u.day]) @pytest.mark.parametrize("y_unit", [None, u.mag]) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_results_units(data, method, with_err, t_unit, y_unit, objective): t, y, dy, params = data periods = np.linspace(params["period"]-1.0, params["period"]+1.0, 3) if t_unit is not None: t = t * t_unit if y_unit is not None: y = y * y_unit dy = dy * y_unit if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power(periods, params["duration"], method=method, objective=objective) if t_unit is None: assert not has_units(results.period) assert not has_units(results.duration) assert not has_units(results.transit_time) else: assert results.period.unit == t_unit assert results.duration.unit == t_unit assert results.transit_time.unit == t_unit if y_unit is None: assert not has_units(results.power) assert not has_units(results.depth) assert not has_units(results.depth_err) assert not has_units(results.depth_snr) assert not has_units(results.log_likelihood) else: assert results.depth.unit == y_unit assert results.depth_err.unit == y_unit assert results.depth_snr.unit == u.one if dy is None: assert results.log_likelihood.unit == y_unit * y_unit if objective == "snr": assert results.power.unit == u.one else: assert results.power.unit == y_unit * y_unit else: assert results.log_likelihood.unit == u.one assert results.power.unit == u.one def test_autopower(data): t, y, dy, params = data duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model = BoxLeastSquares(t, y, dy) period = model.autoperiod(duration) results1 = model.power(period, duration) results2 = model.autopower(duration) assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize("with_units", [True, False]) def test_model(data, with_units): t, y, dy, params = data # Compute the model using linear regression A = np.zeros((len(t), 2)) p = params["period"] dt = np.abs((t-params["transit_time"]+0.5*p) % p-0.5*p) m_in = dt < 0.5*params["duration"] A[~m_in, 0] = 1.0 A[m_in, 1] = 1.0 w = np.linalg.solve(np.dot(A.T, A / dy[:, None]**2), np.dot(A.T, y / dy**2)) model_true = np.dot(A, w) if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag model_true = model_true * u.mag # Compute the model using the periodogram pgram = BoxLeastSquares(t, y, dy) model = pgram.model(t, p, params["duration"], params["transit_time"]) # Make sure that the transit mask is consistent with the model transit_mask = pgram.transit_mask(t, p, params["duration"], params["transit_time"]) transit_mask0 = (model - model.max()) < 0.0 assert_allclose(transit_mask, transit_mask0) assert_quantity_allclose(model, model_true) @pytest.mark.parametrize("shape", [(1,), (2,), (3,), (2, 3)]) def test_shapes(data, shape): t, y, dy, params = data duration = params["duration"] model = BoxLeastSquares(t, y, dy) period = np.empty(shape) period.flat = np.linspace(params["period"]-1, params["period"]+1, period.size) if len(period.shape) > 1: with pytest.raises(ValueError): results = model.power(period, duration) else: results = model.power(period, duration) for k, v in results.items(): if k == "objective": continue assert v.shape == shape @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("with_err", [True, False]) def test_compute_stats(data, with_units, with_err): t, y, dy, params = data y_unit = 1 if with_units: y_unit = u.mag t = t * u.day y = y * u.mag dy = dy * u.mag params["period"] = params["period"] * u.day params["duration"] = params["duration"] * u.day params["transit_time"] = params["transit_time"] * u.day params["depth"] = params["depth"] * u.mag if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power(params["period"], params["duration"], oversample=1000) stats = model.compute_stats(params["period"], params["duration"], params["transit_time"]) # Test the calculated transit times tt = params["period"] * np.arange(int(t.max() / params["period"]) + 1) tt += params["transit_time"] assert_quantity_allclose(tt, stats["transit_times"]) # Test that the other parameters are consistent with the periodogram assert_allclose(stats["per_transit_count"], np.array([9, 7, 7, 7, 8])) assert_quantity_allclose(np.sum(stats["per_transit_log_likelihood"]), results["log_likelihood"]) assert_quantity_allclose(stats["depth"][0], results["depth"]) # Check the half period result results_half = model.power(0.5*params["period"], params["duration"], oversample=1000) assert_quantity_allclose(stats["depth_half"][0], results_half["depth"]) # Skip the uncertainty tests when the input errors are None if not with_err: assert_quantity_allclose(stats["harmonic_amplitude"], 0.029945029964964204 * y_unit) assert_quantity_allclose(stats["harmonic_delta_log_likelihood"], -0.5875918155223113 * y_unit * y_unit) return assert_quantity_allclose(stats["harmonic_amplitude"], 0.033027988742275853 * y_unit) assert_quantity_allclose(stats["harmonic_delta_log_likelihood"], -12407.505922833765) assert_quantity_allclose(stats["depth"][1], results["depth_err"]) assert_quantity_allclose(stats["depth_half"][1], results_half["depth_err"]) for f, k in zip((1.0, 1.0, 1.0, 0.0), ("depth", "depth_even", "depth_odd", "depth_phased")): assert np.abs((stats[k][0]-f*params["depth"]) / stats[k][1]) < 1.0 def test_negative_times(data): t, y, dy, params = data mu = np.mean(t) duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model1 = BoxLeastSquares(t, y, dy) results1 = model1.autopower(duration) # Compute the periodogram with offset (negative) times model2 = BoxLeastSquares(t - mu, y, dy) results2 = model2.autopower(duration) # Shift the transit times back into the unshifted coordinates results2.transit_time = (results2.transit_time + mu) % results2.period assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize('timedelta', [False, True]) def test_absolute_times(data, timedelta): # Make sure that we handle absolute times correctly. We also check that # TimeDelta works properly when timedelta is True. # The example data uses relative times t, y, dy, params = data # FIXME: There seems to be a numerical stability issue in that if we run # the algorithm with the same values but offset in time, the transit_time # is not offset by a fixed amount. To avoid this issue in this test, we # make sure the first time is also the smallest so that internally the # values of the relative time should be the same. t[0] = 0. # Add units t = t * u.day y = y * u.mag dy = dy * u.mag # We now construct a set of absolute times but keeping the rest the same. start = Time('2019-05-04T12:34:56') trel = TimeDelta(t) if timedelta else t t = trel + start # and we set up two instances of BoxLeastSquares, one with absolute and one # with relative times. bls1 = BoxLeastSquares(t, y, dy) bls2 = BoxLeastSquares(trel, y, dy) results1 = bls1.autopower(0.16 * u.day) results2 = bls2.autopower(0.16 * u.day) # All the results should match except transit time which should be # absolute instead of relative in the first case. for key in results1: if key == 'transit_time': assert_quantity_allclose((results1[key] - start).to(u.day), results2[key]) elif key == 'objective': assert results1[key] == results2[key] else: assert_allclose(results1[key], results2[key]) # Check that model evaluation works fine model1 = bls1.model(t, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) model2 = bls2.model(trel, 0.2 * u.day, 0.05 * u.day, TimeDelta(1 * u.day)) assert_quantity_allclose(model1, model2) # Check model validation with pytest.raises(TypeError) as exc: bls1.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls1.model(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('t_model was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.model(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') with pytest.raises(TypeError) as exc: bls2.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('t_model was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') # Check compute_stats stats1 = bls1.compute_stats(0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) stats2 = bls2.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) for key in stats1: if key == 'transit_times': assert_quantity_allclose((stats1[key] - start).to(u.day), stats2[key]) elif key.startswith('depth'): for value1, value2 in zip(stats1[key], stats2[key]): assert_quantity_allclose(value1, value2) else: assert_allclose(stats1[key], stats2[key]) # Check compute_stats validation with pytest.raises(TypeError) as exc: bls1.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.compute_stats(0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') # Check transit_mask mask1 = bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) mask2 = bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert_equal(mask1, mask2) # Check transit_mask validation with pytest.raises(TypeError) as exc: bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls1.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('t was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') with pytest.raises(TypeError) as exc: bls2.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('t was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.')
6fdf11329b5acc2c7c3273525c74951159b722c32b614117add44717d2025e70
""" Main Lomb-Scargle Implementation The ``lombscargle`` function here is essentially a sophisticated switch statement for the various implementations available in this submodule """ __all__ = ['lombscargle', 'available_methods'] import numpy as np from .slow_impl import lombscargle_slow from .fast_impl import lombscargle_fast from .scipy_impl import lombscargle_scipy from .chi2_impl import lombscargle_chi2 from .fastchi2_impl import lombscargle_fastchi2 from .cython_impl import lombscargle_cython METHODS = {'slow': lombscargle_slow, 'fast': lombscargle_fast, 'chi2': lombscargle_chi2, 'scipy': lombscargle_scipy, 'fastchi2': lombscargle_fastchi2, 'cython': lombscargle_cython} def available_methods(): methods = ['auto', 'slow', 'chi2', 'cython', 'fast', 'fastchi2'] # Scipy required for scipy algorithm (obviously) try: import scipy except ImportError: pass else: methods.append('scipy') return methods def _is_regular(frequency): frequency = np.asarray(frequency) if frequency.ndim != 1: return False elif len(frequency) == 1: return True else: diff = np.diff(frequency) return np.allclose(diff[0], diff) def _get_frequency_grid(frequency, assume_regular_frequency=False): """Utility to get grid parameters from a frequency array Parameters ---------- frequency : array_like or Quantity input frequency grid assume_regular_frequency : bool (default = False) if True, then do not check whether frequency is a regular grid Returns ------- f0, df, N : scalars Parameters such that all(frequency == f0 + df * np.arange(N)) """ frequency = np.asarray(frequency) if frequency.ndim != 1: raise ValueError("frequency grid must be 1 dimensional") elif len(frequency) == 1: return frequency[0], frequency[0], 1 elif not (assume_regular_frequency or _is_regular(frequency)): raise ValueError("frequency must be a regular grid") return frequency[0], frequency[1] - frequency[0], len(frequency) def validate_method(method, dy, fit_mean, nterms, frequency, assume_regular_frequency): """ Validate the method argument, and if method='auto' choose the appropriate method """ methods = available_methods() prefer_fast = (len(frequency) > 200 and (assume_regular_frequency or _is_regular(frequency))) prefer_scipy = 'scipy' in methods and dy is None and not fit_mean # automatically choose the appropriate method if method == 'auto': if nterms != 1: if prefer_fast: method = 'fastchi2' else: method = 'chi2' elif prefer_fast: method = 'fast' elif prefer_scipy: method = 'scipy' else: method = 'cython' if method not in METHODS: raise ValueError("invalid method: {0}".format(method)) return method def lombscargle(t, y, dy=None, frequency=None, method='auto', assume_regular_frequency=False, normalization='standard', fit_mean=True, center_data=True, method_kwds=None, nterms=1): """ Compute the Lomb-scargle Periodogram with a given method. Parameters ---------- t : array_like sequence of observation times y : array_like sequence of observations associated with times t dy : float or array_like (optional) error or sequence of observational errors associated with times t frequency : array_like frequencies (not angular frequencies) at which to evaluate the periodogram. If not specified, optimal frequencies will be chosen using a heuristic which will attempt to provide sufficient frequency range and sampling so that peaks will not be missed. Note that in order to use method='fast', frequencies must be regularly spaced. method : string (optional) specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - `slow`: use the O[N^2] pure-python implementation - `chi2`: use the O[N^2] chi2/linear-fitting implementation - `fastchi2`: use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless `assume_regular_frequency` is set to True. - `scipy`: use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool (optional) if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : string (optional, default='standard') Normalization to use for the periodogram. Options are 'standard' or 'psd'. fit_mean : bool (optional, default=True) if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool (optional, default=True) if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if `fit_mean = False` method_kwds : dict (optional) additional keywords to pass to the lomb-scargle method nterms : int (default=1) number of Fourier terms to use in the periodogram. Not supported with every method. Returns ------- PLS : array_like Lomb-Scargle power associated with each frequency omega """ # frequencies should be one-dimensional arrays output_shape = frequency.shape frequency = frequency.ravel() # we'll need to adjust args and kwds for each method args = (t, y, dy) kwds = dict(frequency=frequency, center_data=center_data, fit_mean=fit_mean, normalization=normalization, nterms=nterms, **(method_kwds or {})) method = validate_method(method, dy=dy, fit_mean=fit_mean, nterms=nterms, frequency=frequency, assume_regular_frequency=assume_regular_frequency) # scipy doesn't support dy or fit_mean=True if method == 'scipy': if kwds.pop('fit_mean'): raise ValueError("scipy method does not support fit_mean=True") if dy is not None: dy = np.ravel(np.asarray(dy)) if not np.allclose(dy[0], dy): raise ValueError("scipy method only supports " "uniform uncertainties dy") args = (t, y) # fast methods require frequency expressed as a grid if method.startswith('fast'): f0, df, Nf = _get_frequency_grid(kwds.pop('frequency'), assume_regular_frequency) kwds.update(f0=f0, df=df, Nf=Nf) # only chi2 methods support nterms if not method.endswith('chi2'): if kwds.pop('nterms') != 1: raise ValueError("nterms != 1 only supported with 'chi2' " "or 'fastchi2' methods") PLS = METHODS[method](*args, **kwds) return PLS.reshape(output_shape)
9db667ea5f97df6f07c951c7b45d0042d21944bf09d5216d0b91ac3bb0fcddf9
from math import factorial import numpy as np def bitceil(N): """ Find the bit (i.e. power of 2) immediately greater than or equal to N Note: this works for numbers up to 2 ** 64. Roughly equivalent to int(2 ** np.ceil(np.log2(N))) """ return 1 << int(N - 1).bit_length() def extirpolate(x, y, N=None, M=4): """ Extirpolate the values (x, y) onto an integer grid range(N), using lagrange polynomial weights on the M nearest points. Parameters ---------- x : array_like array of abscissas y : array_like array of ordinates N : int number of integer bins to use. For best performance, N should be larger than the maximum of x M : int number of adjoining points on which to extirpolate. Returns ------- yN : ndarray N extirpolated values associated with range(N) Example ------- >>> rng = np.random.RandomState(0) >>> x = 100 * rng.rand(20) >>> y = np.sin(x) >>> y_hat = extirpolate(x, y) >>> x_hat = np.arange(len(y_hat)) >>> f = lambda x: np.sin(x / 10) >>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat))) True Notes ----- This code is based on the C implementation of spread() presented in Numerical Recipes in C, Second Edition (Press et al. 1989; p.583). """ x, y = map(np.ravel, np.broadcast_arrays(x, y)) if N is None: N = int(np.max(x) + 0.5 * M + 1) # Now use legendre polynomial weights to populate the results array; # This is an efficient recursive implementation (See Press et al. 1989) result = np.zeros(N, dtype=y.dtype) # first take care of the easy cases where x is an integer integers = (x % 1 == 0) np.add.at(result, x[integers].astype(int), y[integers]) x, y = x[~integers], y[~integers] # For each remaining x, find the index describing the extirpolation range. # i.e. ilo[i] < x[i] < ilo[i] + M with x[i] in the center, # adjusted so that the limits are within the range 0...N ilo = np.clip((x - M // 2).astype(int), 0, N - M) numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0) denominator = factorial(M - 1) for j in range(M): if j > 0: denominator *= j / (j - M) ind = ilo + (M - 1 - j) np.add.at(result, ind, numerator / (denominator * (x - ind))) return result def trig_sum(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4): """Compute (approximate) trigonometric sums for a number of frequencies This routine computes weighted sine and cosine sums: S_j = sum_i { h_i * sin(2 pi * f_j * t_i) } C_j = sum_i { h_i * cos(2 pi * f_j * t_i) } Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N. The sums can be computed either by a brute force O[N^2] method, or by an FFT-based O[Nlog(N)] method. Parameters ---------- t : array_like array of input times h : array_like array weights for the sum df : float frequency spacing N : int number of frequency bins to return f0 : float (optional, default=0) The low frequency to use freq_factor : float (optional, default=1) Factor which multiplies the frequency use_fft : bool if True, use the approximate FFT algorithm to compute the result. This uses the FFT with Press & Rybicki's Lagrangian extirpolation. oversampling : int (default = 5) oversampling freq_factor for the approximation; roughly the number of time samples across the highest-frequency sinusoid. This parameter contains the trade-off between accuracy and speed. Not referenced if use_fft is False. Mfft : int The number of adjacent points to use in the FFT approximation. Not referenced if use_fft is False. Returns ------- S, C : ndarrays summation arrays for frequencies f = df * np.arange(1, N + 1) """ df *= freq_factor f0 *= freq_factor if df <= 0: raise ValueError("df must be positive") t, h = map(np.ravel, np.broadcast_arrays(t, h)) if use_fft: Mfft = int(Mfft) if Mfft <= 0: raise ValueError("Mfft must be positive") # required size of fft is the power of 2 above the oversampling rate Nfft = bitceil(N * oversampling) t0 = t.min() if f0 > 0: h = h * np.exp(2j * np.pi * f0 * (t - t0)) tnorm = ((t - t0) * Nfft * df) % Nfft grid = extirpolate(tnorm, h, Nfft, Mfft) fftgrid = np.fft.ifft(grid)[:N] if t0 != 0: f = f0 + df * np.arange(N) fftgrid *= np.exp(2j * np.pi * t0 * f) C = Nfft * fftgrid.real S = Nfft * fftgrid.imag else: f = f0 + df * np.arange(N) C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis])) S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis])) return S, C
30cdf5aa45c71c3335002144b1cc9a36f0e6fd4f39988b9ada7e3c33c38ad0ea
import numpy as np import pytest from numpy.testing import assert_allclose try: import scipy except ImportError: HAS_SCIPY = False else: HAS_SCIPY = True from astropy.timeseries.periodograms.lombscargle import LombScargle from astropy.timeseries.periodograms.lombscargle._statistics import (cdf_single, pdf_single, fap_single, inv_fap_single, METHODS) from astropy.timeseries.periodograms.lombscargle.utils import convert_normalization, compute_chi2_ref METHOD_KWDS = dict(bootstrap={'n_bootstraps': 20, 'random_seed': 42}) NORMALIZATIONS = ['standard', 'psd', 'log', 'model'] def make_data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.RandomState(rseed) t = 5 * period * rng.rand(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.rand(N)) y += dy * rng.randn(N) return t, y, dy @pytest.fixture def null_data(N=1000, dy=1, rseed=0): """Generate null hypothesis data""" rng = np.random.RandomState(rseed) t = 100 * rng.rand(N) dy = 0.5 * dy * (1 + rng.rand(N)) y = dy * rng.randn(N) return t, y, dy @pytest.mark.parametrize('normalization', NORMALIZATIONS) @pytest.mark.parametrize('with_errors', [True, False]) def test_distribution(null_data, normalization, with_errors, fmax=40): t, y, dy = null_data if not with_errors: dy = None N = len(t) ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) z = np.linspace(0, power.max(), 1000) # Test that pdf and cdf are consistent dz = z[1] - z[0] z_mid = z[:-1] + 0.5 * dz pdf = ls.distribution(z_mid) cdf = ls.distribution(z, cumulative=True) assert_allclose(pdf, np.diff(cdf) / dz, rtol=1E-5, atol=1E-8) # psd normalization without specified errors produces bad results if not (normalization == 'psd' and not with_errors): # Test that observed power is distributed according to the theoretical pdf hist, bins = np.histogram(power, 30, normed=True) midpoints = 0.5 * (bins[1:] + bins[:-1]) pdf = ls.distribution(midpoints) assert_allclose(hist, pdf, rtol=0.05, atol=0.05 * pdf[0]) @pytest.mark.parametrize('N', [10, 100, 1000]) @pytest.mark.parametrize('normalization', NORMALIZATIONS) def test_inverse_single(N, normalization): fap = np.linspace(0, 1, 100) z = inv_fap_single(fap, N, normalization) fap_out = fap_single(z, N, normalization) assert_allclose(fap, fap_out) @pytest.mark.parametrize('normalization', NORMALIZATIONS) @pytest.mark.parametrize('use_errs', [True, False]) def test_inverse_bootstrap(null_data, normalization, use_errs, fmax=5): t, y, dy = null_data if not use_errs: dy = None fap = np.linspace(0, 1, 10) method = 'bootstrap' method_kwds = METHOD_KWDS['bootstrap'] ls = LombScargle(t, y, dy, normalization=normalization) z = ls.false_alarm_level(fap, maximum_frequency=fmax, method=method, method_kwds=method_kwds) fap_out = ls.false_alarm_probability(z, maximum_frequency=fmax, method=method, method_kwds=method_kwds) # atol = 1 / n_bootstraps assert_allclose(fap, fap_out, atol=0.05) @pytest.mark.parametrize('method', sorted(set(METHODS) - {'bootstrap'})) @pytest.mark.parametrize('normalization', NORMALIZATIONS) @pytest.mark.parametrize('use_errs', [True, False]) @pytest.mark.parametrize('N', [10, 100, 1000]) def test_inverses(method, normalization, use_errs, N, T=5, fmax=5): if not HAS_SCIPY and method in ['baluev', 'davies']: pytest.skip("SciPy required") t, y, dy = make_data(N, rseed=543) if not use_errs: dy = None method_kwds = METHOD_KWDS.get(method, None) fap = np.logspace(-10, 0, 10) ls = LombScargle(t, y, dy, normalization=normalization) z = ls.false_alarm_level(fap, maximum_frequency=fmax, method=method, method_kwds=method_kwds) fap_out = ls.false_alarm_probability(z, maximum_frequency=fmax, method=method, method_kwds=method_kwds) assert_allclose(fap, fap_out) @pytest.mark.parametrize('method', sorted(METHODS)) @pytest.mark.parametrize('normalization', NORMALIZATIONS) def test_false_alarm_smoketest(method, normalization): if not HAS_SCIPY and method in ['baluev', 'davies']: pytest.skip("SciPy required") kwds = METHOD_KWDS.get(method, None) t, y, dy = make_data() fmax = 5 ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) Z = np.linspace(power.min(), power.max(), 30) fap = ls.false_alarm_probability(Z, maximum_frequency=fmax, method=method, method_kwds=kwds) assert len(fap) == len(Z) if method != 'davies': assert np.all(fap <= 1) assert np.all(fap[:-1] >= fap[1:]) # monotonically decreasing @pytest.mark.parametrize('method', sorted(METHODS)) @pytest.mark.parametrize('use_errs', [True, False]) @pytest.mark.parametrize('normalization', sorted(set(NORMALIZATIONS) - {'psd'})) def test_false_alarm_equivalence(method, normalization, use_errs): # Note: the PSD normalization is not equivalent to the others, in that it # depends on the absolute errors rather than relative errors. Because the # scaling contributes to the distribution, it cannot be converted directly # from any of the three normalized versions. if not HAS_SCIPY and method in ['baluev', 'davies']: pytest.skip("SciPy required") kwds = METHOD_KWDS.get(method, None) t, y, dy = make_data() if not use_errs: dy = None fmax = 5 ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) Z = np.linspace(power.min(), power.max(), 30) fap = ls.false_alarm_probability(Z, maximum_frequency=fmax, method=method, method_kwds=kwds) # Compute the equivalent Z values in the standard normalization # and check that the FAP is consistent Z_std = convert_normalization(Z, len(t), from_normalization=normalization, to_normalization='standard', chi2_ref=compute_chi2_ref(y, dy)) ls = LombScargle(t, y, dy, normalization='standard') fap_std = ls.false_alarm_probability(Z_std, maximum_frequency=fmax, method=method, method_kwds=kwds) assert_allclose(fap, fap_std, rtol=0.1)
2141300a45c64efa6dc4ac897fde4f555fd69f99caf75c36c4d2956839e152af
import numpy as np import pytest from numpy.testing import assert_allclose from astropy.timeseries.periodograms.lombscargle.utils import convert_normalization, compute_chi2_ref from astropy.timeseries.periodograms.lombscargle.core import LombScargle NORMALIZATIONS = ['standard', 'model', 'log', 'psd'] @pytest.fixture def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.RandomState(rseed) t = 5 * period * rng.rand(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.rand(N)) y += dy * rng.randn(N) return t, y, dy @pytest.mark.parametrize('norm_in', NORMALIZATIONS) @pytest.mark.parametrize('norm_out', NORMALIZATIONS) def test_convert_normalization(norm_in, norm_out, data): t, y, dy = data _, power_in = LombScargle(t, y, dy).autopower(maximum_frequency=5, normalization=norm_in) _, power_out = LombScargle(t, y, dy).autopower(maximum_frequency=5, normalization=norm_out) power_in_converted = convert_normalization(power_in, N=len(t), from_normalization=norm_in, to_normalization=norm_out, chi2_ref = compute_chi2_ref(y, dy)) assert_allclose(power_in_converted, power_out)
16bc38e642ad5f6931417b6149be161ecf12d85d7bd7bf57d4c88e351429441b
import pytest import numpy as np from numpy.testing import assert_allclose from astropy.time import Time, TimeDelta from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.timeseries.periodograms.lombscargle import LombScargle ALL_METHODS = LombScargle.available_methods ALL_METHODS_NO_AUTO = [method for method in ALL_METHODS if method != 'auto'] FAST_METHODS = [method for method in ALL_METHODS if 'fast' in method] NTERMS_METHODS = [method for method in ALL_METHODS if 'chi2' in method] NORMALIZATIONS = ['standard', 'psd', 'log', 'model'] @pytest.fixture def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.RandomState(rseed) t = 20 * period * rng.rand(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.rand(N)) y += dy * rng.randn(N) return t, y, dy @pytest.mark.parametrize('minimum_frequency', [None, 1.0]) @pytest.mark.parametrize('maximum_frequency', [None, 5.0]) @pytest.mark.parametrize('nyquist_factor', [1, 10]) @pytest.mark.parametrize('samples_per_peak', [1, 5]) def test_autofrequency(data, minimum_frequency, maximum_frequency, nyquist_factor, samples_per_peak): t, y, dy = data baseline = t.max() - t.min() freq = LombScargle(t, y, dy).autofrequency(samples_per_peak, nyquist_factor, minimum_frequency, maximum_frequency) df = freq[1] - freq[0] # Check sample spacing assert_allclose(df, 1. / baseline / samples_per_peak) # Check minimum frequency if minimum_frequency is None: assert_allclose(freq[0], 0.5 * df) else: assert_allclose(freq[0], minimum_frequency) if maximum_frequency is None: avg_nyquist = 0.5 * len(t) / baseline assert_allclose(freq[-1], avg_nyquist * nyquist_factor, atol=0.5*df) else: assert_allclose(freq[-1], maximum_frequency, atol=0.5*df) @pytest.mark.parametrize('method', ALL_METHODS_NO_AUTO) @pytest.mark.parametrize('center_data', [True, False]) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('errors', ['none', 'partial', 'full']) @pytest.mark.parametrize('with_units', [True, False]) @pytest.mark.parametrize('normalization', NORMALIZATIONS) def test_all_methods(data, method, center_data, fit_mean, errors, with_units, normalization): if method == 'scipy' and (fit_mean or errors != 'none'): return t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag frequency = frequency / t.unit if errors == 'none': dy = None elif errors == 'partial': dy = dy[0] elif errors == 'full': pass else: raise ValueError("Unrecognized error type: '{0}'".format(errors)) kwds = {} ls = LombScargle(t, y, dy, center_data=center_data, fit_mean=fit_mean, normalization=normalization) P_expected = ls.power(frequency) # don't use the fft approximation here; we'll test this elsewhere if method in FAST_METHODS: kwds['method_kwds'] = dict(use_fft=False) P_method = ls.power(frequency, method=method, **kwds) if with_units: if normalization == 'psd' and errors == 'none': assert P_method.unit == y.unit ** 2 else: assert P_method.unit == u.dimensionless_unscaled else: assert not hasattr(P_method, 'unit') assert_quantity_allclose(P_expected, P_method) @pytest.mark.parametrize('method', ALL_METHODS_NO_AUTO) @pytest.mark.parametrize('center_data', [True, False]) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('with_errors', [True, False]) @pytest.mark.parametrize('normalization', NORMALIZATIONS) def test_integer_inputs(data, method, center_data, fit_mean, with_errors, normalization): if method == 'scipy' and (fit_mean or with_errors): return t, y, dy = data t = np.floor(100 * t) t_int = t.astype(int) y = np.floor(100 * y) y_int = y.astype(int) dy = np.floor(100 * dy) dy_int = dy.astype('int32') frequency = 1E-2 * (0.8 + 0.01 * np.arange(40)) if not with_errors: dy = None dy_int = None kwds = dict(center_data=center_data, fit_mean=fit_mean, normalization=normalization) P_float = LombScargle(t, y, dy, **kwds).power(frequency,method=method) P_int = LombScargle(t_int, y_int, dy_int, **kwds).power(frequency, method=method) assert_allclose(P_float, P_int) @pytest.mark.parametrize('method', NTERMS_METHODS) @pytest.mark.parametrize('center_data', [True, False]) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('errors', ['none', 'partial', 'full']) @pytest.mark.parametrize('nterms', [0, 2, 4]) @pytest.mark.parametrize('normalization', NORMALIZATIONS) def test_nterms_methods(method, center_data, fit_mean, errors, nterms, normalization, data): t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if errors == 'none': dy = None elif errors == 'partial': dy = dy[0] elif errors == 'full': pass else: raise ValueError("Unrecognized error type: '{0}'".format(errors)) ls = LombScargle(t, y, dy, center_data=center_data, fit_mean=fit_mean, nterms=nterms, normalization=normalization) if nterms == 0 and not fit_mean: with pytest.raises(ValueError) as err: ls.power(frequency, method=method) assert 'nterms' in str(err.value) and 'bias' in str(err.value) else: P_expected = ls.power(frequency) # don't use fast fft approximations here kwds = {} if 'fast' in method: kwds['method_kwds'] = dict(use_fft=False) P_method = ls.power(frequency, method=method, **kwds) assert_allclose(P_expected, P_method, rtol=1E-7, atol=1E-25) @pytest.mark.parametrize('method', FAST_METHODS) @pytest.mark.parametrize('center_data', [True, False]) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('errors', ['none', 'partial', 'full']) @pytest.mark.parametrize('nterms', [0, 1, 2]) def test_fast_approximations(method, center_data, fit_mean, errors, nterms, data): t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if errors == 'none': dy = None elif errors == 'partial': dy = dy[0] elif errors == 'full': pass else: raise ValueError("Unrecognized error type: '{0}'".format(errors)) ls = LombScargle(t, y, dy, center_data=center_data, fit_mean=fit_mean, nterms=nterms, normalization='standard') # use only standard normalization because we compare via absolute tolerance kwds = dict(method=method) if method == 'fast' and nterms != 1: with pytest.raises(ValueError) as err: ls.power(frequency, **kwds) assert 'nterms' in str(err.value) elif nterms == 0 and not fit_mean: with pytest.raises(ValueError) as err: ls.power(frequency, **kwds) assert 'nterms' in str(err.value) and 'bias' in str(err.value) else: P_fast = ls.power(frequency, **kwds) kwds['method_kwds'] = dict(use_fft=False) P_slow = ls.power(frequency, **kwds) assert_allclose(P_fast, P_slow, atol=0.008) @pytest.mark.parametrize('method', LombScargle.available_methods) @pytest.mark.parametrize('shape', [(), (1,), (2,), (3,), (2, 3)]) def test_output_shapes(method, shape, data): t, y, dy = data freq = np.asarray(np.zeros(shape)) freq.flat = np.arange(1, freq.size + 1) PLS = LombScargle(t, y, fit_mean=False).power(freq, method=method) assert PLS.shape == shape @pytest.mark.parametrize('method', LombScargle.available_methods) def test_errors_on_unit_mismatch(method, data): t, y, dy = data t = t * u.second y = y * u.mag frequency = np.linspace(0.5, 1.5, 10) # this should fail because frequency and 1/t units do not match with pytest.raises(ValueError) as err: LombScargle(t, y, fit_mean=False).power(frequency, method=method) assert str(err.value).startswith('Units of frequency not equivalent') # this should fail because dy and y units do not match with pytest.raises(ValueError) as err: LombScargle(t, y, dy, fit_mean=False).power(frequency / t.unit) assert str(err.value).startswith('Units of dy not equivalent') # we don't test all normalizations here because they are tested above # only test method='auto' because unit handling does not depend on method @pytest.mark.parametrize('with_error', [True, False]) def test_unit_conversions(data, with_error): t, y, dy = data t_day = t * u.day t_hour = u.Quantity(t_day, 'hour') y_meter = y * u.meter y_millimeter = u.Quantity(y_meter, 'millimeter') # sanity check on inputs assert_quantity_allclose(t_day, t_hour) assert_quantity_allclose(y_meter, y_millimeter) if with_error: dy = dy * u.meter else: dy = None freq_day, P1 = LombScargle(t_day, y_meter, dy).autopower() freq_hour, P2 = LombScargle(t_hour, y_millimeter, dy).autopower() # Check units of frequency assert freq_day.unit == 1. / u.day assert freq_hour.unit == 1. / u.hour # Check that results match assert_quantity_allclose(freq_day, freq_hour) assert_quantity_allclose(P1, P2) # Check that switching frequency units doesn't change things P3 = LombScargle(t_day, y_meter, dy).power(freq_hour) P4 = LombScargle(t_hour, y_meter, dy).power(freq_day) assert_quantity_allclose(P3, P4) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('with_units', [True, False]) @pytest.mark.parametrize('freq', [1.0, 2.0]) def test_model(fit_mean, with_units, freq): rand = np.random.RandomState(0) t = 10 * rand.rand(40) params = 10 * rand.rand(3) y = np.zeros_like(t) if fit_mean: y += params[0] y += params[1] * np.sin(2 * np.pi * freq * (t - params[2])) if with_units: t = t * u.day y = y * u.mag freq = freq / u.day ls = LombScargle(t, y, center_data=False, fit_mean=fit_mean) y_fit = ls.model(t, freq) assert_quantity_allclose(y_fit, y) @pytest.mark.parametrize('t_unit', [u.second, u.day]) @pytest.mark.parametrize('frequency_unit', [u.Hz, 1. / u.second]) @pytest.mark.parametrize('y_unit', [u.mag, u.jansky]) def test_model_units_match(data, t_unit, frequency_unit, y_unit): t, y, dy = data t_fit = t[:5] frequency = 1.0 t = t * t_unit t_fit = t_fit * t_unit y = y * y_unit dy = dy * y_unit frequency = frequency * frequency_unit ls = LombScargle(t, y, dy) y_fit = ls.model(t_fit, frequency) assert y_fit.unit == y_unit def test_model_units_mismatch(data): t, y, dy = data frequency = 1.0 t_fit = t[:5] t = t * u.second t_fit = t_fit * u.second y = y * u.mag frequency = 1.0 / t.unit # this should fail because frequency and 1/t units do not match with pytest.raises(ValueError) as err: LombScargle(t, y).model(t_fit, frequency=1.0) assert str(err.value).startswith('Units of frequency not equivalent') # this should fail because t and t_fit units do not match with pytest.raises(ValueError) as err: LombScargle(t, y).model([1, 2], frequency) assert str(err.value).startswith('Units of t not equivalent') # this should fail because dy and y units do not match with pytest.raises(ValueError) as err: LombScargle(t, y, dy).model(t_fit, frequency) assert str(err.value).startswith('Units of dy not equivalent') def test_autopower(data): t, y, dy = data ls = LombScargle(t, y, dy) kwargs = dict(samples_per_peak=6, nyquist_factor=2, minimum_frequency=2, maximum_frequency=None) freq1 = ls.autofrequency(**kwargs) power1 = ls.power(freq1) freq2, power2 = ls.autopower(**kwargs) assert_allclose(freq1, freq2) assert_allclose(power1, power2) @pytest.mark.parametrize('with_units', [True, False]) @pytest.mark.parametrize('errors', ['none', 'partial', 'full']) @pytest.mark.parametrize('center_data', [True, False]) @pytest.mark.parametrize('fit_mean', [True, False]) @pytest.mark.parametrize('nterms', [0, 1, 2]) def test_model_parameters(data, nterms, fit_mean, center_data, errors, with_units): if nterms == 0 and not fit_mean: return t, y, dy = data frequency = 1.5 if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag frequency = frequency / t.unit if errors == 'none': dy = None elif errors == 'partial': dy = dy[0] elif errors == 'full': pass else: raise ValueError("Unrecognized error type: '{0}'".format(errors)) ls = LombScargle(t, y, dy, nterms=nterms, fit_mean=fit_mean, center_data=center_data) tfit = np.linspace(0, 20, 10) if with_units: tfit = tfit * u.day model = ls.model(tfit, frequency) params = ls.model_parameters(frequency) design = ls.design_matrix(frequency, t=tfit) offset = ls.offset() assert len(params) == int(fit_mean) + 2 * nterms assert_quantity_allclose(offset + design.dot(params), model) @pytest.mark.parametrize('timedelta', [False, True]) def test_absolute_times(data, timedelta): # Make sure that we handle absolute times correctly. We also check that # TimeDelta works properly when timedelta is True. # The example data uses relative times t, y, dy = data # FIXME: There seems to be a numerical stability issue in that if we run # the algorithm with the same values but offset in time, the transit_time # is not offset by a fixed amount. To avoid this issue in this test, we # make sure the first time is also the smallest so that internally the # values of the relative time should be the same. t[0] = 0. # Add units t = t * u.day y = y * u.mag dy = dy * u.mag # We now construct a set of absolute times but keeping the rest the same start = Time('2019-05-04T12:34:56') trel = TimeDelta(t) if timedelta else t t = trel + start # and we set up two instances of LombScargle, one with absolute and one # with relative times. ls1 = LombScargle(t, y, dy) ls2 = LombScargle(trel, y, dy) kwargs = dict(samples_per_peak=6, nyquist_factor=2, minimum_frequency=2 / u.day, maximum_frequency=None) freq1 = ls1.autofrequency(**kwargs) freq2 = ls2.autofrequency(**kwargs) assert_quantity_allclose(freq1, freq2) power1 = ls1.power(freq1) power2 = ls2.power(freq2) assert_quantity_allclose(power1, power2) freq1, power1 = ls1.autopower(**kwargs) freq2, power2 = ls2.autopower(**kwargs) assert_quantity_allclose(freq1, freq2) assert_quantity_allclose(power1, power2) model1 = ls1.model(t, 2 / u.day) model2 = ls2.model(trel, 2 / u.day) assert_quantity_allclose(model1, model2) # Check model validation with pytest.raises(TypeError) as exc: ls1.model(trel, 2 / u.day) assert exc.value.args[0] == ('t was provided as a relative time but the ' 'LombScargle class was initialized with ' 'absolute times.') with pytest.raises(TypeError) as exc: ls2.model(t, 2 / u.day) assert exc.value.args[0] == ('t was provided as an absolute time but the ' 'LombScargle class was initialized with ' 'relative times.') # Check design matrix design1 = ls1.design_matrix(2 / u.day, t=t) design2 = ls2.design_matrix(2 / u.day, t=trel) assert_quantity_allclose(design1, design2) # Check design matrix validation with pytest.raises(TypeError) as exc: ls1.design_matrix(2 / u.day, t=trel) assert exc.value.args[0] == ('t was provided as a relative time but the ' 'LombScargle class was initialized with ' 'absolute times.') with pytest.raises(TypeError) as exc: ls2.design_matrix(2 / u.day, t=t) assert exc.value.args[0] == ('t was provided as an absolute time but the ' 'LombScargle class was initialized with ' 'relative times.')
01c400ef7794bd955bbdef345bddb6eef6146eac18a865bd76d44aada8a98e29
import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy.timeseries.periodograms.lombscargle.implementations.utils import extirpolate, bitceil, trig_sum @pytest.mark.parametrize('N', 2 ** np.arange(1, 12)) @pytest.mark.parametrize('offset', [-1, 0, 1]) def test_bitceil(N, offset): assert_equal(bitceil(N + offset), int(2 ** np.ceil(np.log2(N + offset)))) @pytest.fixture def extirpolate_data(): rng = np.random.RandomState(0) x = 100 * rng.rand(50) y = np.sin(x) f = lambda x: np.sin(x / 10) return x, y, f @pytest.mark.parametrize('N', [100, None]) @pytest.mark.parametrize('M', [5]) def test_extirpolate(N, M, extirpolate_data): x, y, f = extirpolate_data y_hat = extirpolate(x, y, N, M) x_hat = np.arange(len(y_hat)) assert_allclose(np.dot(f(x), y), np.dot(f(x_hat), y_hat)) @pytest.fixture def extirpolate_int_data(): rng = np.random.RandomState(0) x = 100 * rng.rand(50) x[:25] = x[:25].astype(int) y = np.sin(x) f = lambda x: np.sin(x / 10) return x, y, f @pytest.mark.parametrize('N', [100, None]) @pytest.mark.parametrize('M', [5]) def test_extirpolate_with_integers(N, M, extirpolate_int_data): x, y, f = extirpolate_int_data y_hat = extirpolate(x, y, N, M) x_hat = np.arange(len(y_hat)) assert_allclose(np.dot(f(x), y), np.dot(f(x_hat), y_hat)) @pytest.fixture def trig_sum_data(): rng = np.random.RandomState(0) t = 10 * rng.rand(50) h = np.sin(t) return t, h @pytest.mark.parametrize('f0', [0, 1]) @pytest.mark.parametrize('adjust_t', [True, False]) @pytest.mark.parametrize('freq_factor', [1, 2]) @pytest.mark.parametrize('df', [0.1]) def test_trig_sum(f0, adjust_t, freq_factor, df, trig_sum_data): t, h = trig_sum_data tfit = t - t.min() if adjust_t else t S1, C1 = trig_sum(tfit, h, df, N=1000, use_fft=True, f0=f0, freq_factor=freq_factor, oversampling=10) S2, C2 = trig_sum(tfit, h, df, N=1000, use_fft=False, f0=f0, freq_factor=freq_factor, oversampling=10) assert_allclose(S1, S2, atol=1E-2) assert_allclose(C1, C2, atol=1E-2)
5579bdfaaf74a563845eae93eb4568ae107ec579f0779a1b227ebfbe2fc99395
import pytest import numpy as np from numpy.testing import assert_allclose from astropy.timeseries.periodograms.lombscargle.implementations.mle import design_matrix, periodic_fit @pytest.fixture def t(): rand = np.random.RandomState(42) return 10 * rand.rand(10) @pytest.mark.parametrize('freq', [1.0, 2]) @pytest.mark.parametrize('dy', [None, 2.0]) @pytest.mark.parametrize('bias', [True, False]) def test_design_matrix(t, freq, dy, bias): X = design_matrix(t, freq, dy, bias=bias) assert X.shape == (t.shape[0], 2 + bool(bias)) if bias: assert_allclose(X[:, 0], 1. / (dy or 1.0)) assert_allclose(X[:, -2], np.sin(2 * np.pi * freq * t) / (dy or 1.0)) assert_allclose(X[:, -1], np.cos(2 * np.pi * freq * t) / (dy or 1.0)) @pytest.mark.parametrize('nterms', range(4)) def test_multiterm_design_matrix(t, nterms): dy = 2.0 freq = 1.5 X = design_matrix(t, freq, dy=dy, bias=True, nterms=nterms) assert X.shape == (t.shape[0], 1 + 2 * nterms) assert_allclose(X[:, 0], 1. / dy) for i in range(1, nterms + 1): assert_allclose(X[:, 2 * i - 1], np.sin(2 * np.pi * i * freq * t) / dy) assert_allclose(X[:, 2 * i], np.cos(2 * np.pi * i * freq * t) / dy) @pytest.mark.parametrize('nterms', range(1, 4)) @pytest.mark.parametrize('freq', [1, 2]) @pytest.mark.parametrize('fit_mean', [True, False]) def test_exact_mle_fit(nterms, freq, fit_mean): rand = np.random.RandomState(42) t = 10 * rand.rand(30) theta = -1 + rand.rand(2 * nterms + 1) y = np.zeros(t.shape) if fit_mean: y = theta[0] * np.ones(t.shape) for i in range(1, nterms + 1): y += theta[2 * i - 1] * np.sin(2 * np.pi * i * freq * t) y += theta[2 * i] * np.cos(2 * np.pi * i * freq * t) y_fit = periodic_fit(t, y, dy=1, frequency=freq, t_fit=t, nterms=nterms, center_data=False, fit_mean=fit_mean) assert_allclose(y, y_fit)
22281b8b65eb4017ea26e2f385ba2601aeda5953cefa1c95b5795168bf030ecc
# Licensed under a 3-clause BSD style license - see LICENSE.rst from unittest import mock import pytest from astropy.io.fits import HDUList, Header, PrimaryHDU, BinTableHDU from astropy.utils.data import get_pkg_data_filename from astropy.timeseries.io.kepler import kepler_fits_reader def fake_header(extver, version, timesys, telescop): return Header({"SIMPLE": "T", "BITPIX": 8, "NAXIS": 0, "EXTVER": extver, "VERSION": version, 'TIMESYS': "{}".format(timesys), "TELESCOP": "{}".format(telescop)}) def fake_hdulist(extver=1, version=2, timesys="TDB", telescop="KEPLER"): new_header = fake_header(extver, version, timesys, telescop) return [HDUList(hdus=[PrimaryHDU(header=new_header), BinTableHDU(header=new_header, name="LIGHTCURVE")])] @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(telescop="MadeUp")) def test_raise_telescop_wrong(mock_file): with pytest.raises(NotImplementedError) as exc: kepler_fits_reader(None) assert exc.value.args[0] == ("MadeUp is not implemented, only KEPLER or TESS are " "supported through this reader") @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(extver=2)) def test_raise_extversion_kepler(mock_file): with pytest.raises(NotImplementedError) as exc: kepler_fits_reader(None) assert exc.value.args[0] == ("Support for KEPLER v2 files not yet " "implemented") @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(extver=2, telescop="TESS")) def test_raise_extversion_tess(mock_file): with pytest.raises(NotImplementedError) as exc: kepler_fits_reader(None) assert exc.value.args[0] == ("Support for TESS v2 files not yet " "implemented") @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(timesys="TCB")) def test_raise_timesys_kepler(mock_file): with pytest.raises(NotImplementedError) as exc: kepler_fits_reader(None) assert exc.value.args[0] == ("Support for TCB time scale not yet " "implemented in KEPLER reader") @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(timesys="TCB", telescop="TESS")) def test_raise_timesys_tess(mock_file): with pytest.raises(NotImplementedError) as exc: kepler_fits_reader(None) assert exc.value.args[0] == ("Support for TCB time scale not yet " "implemented in TESS reader") @pytest.mark.remote_data(source='astropy') def test_kepler_astropy(): filename = get_pkg_data_filename('timeseries/kplr010666592-2009131110544_slc.fits') timeseries = kepler_fits_reader(filename) assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 14280 assert len(timeseries.columns) == 20 @pytest.mark.remote_data(source='astropy') def test_tess_astropy(): filename = get_pkg_data_filename('timeseries/hlsp_tess-data-alerts_tess_phot_00025155310-s01_tess_v1_lc.fits') timeseries = kepler_fits_reader(filename) assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 19261 assert len(timeseries.columns) == 20
fff9d0d34ebc260c70f2fcc77b0d7e6e1aa2ba2b6a18ff7394a8f585b8c31318
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy import constants as const from astropy.tests.helper import pickle_protocol, check_pickling_recovery # noqa originals = [const.Constant('h_fake', 'Not Planck', 0.0, 'J s', 0.0, 'fakeref', system='si'), const.h, const.e] xfails = [True, True, True] @pytest.mark.parametrize(("original", "xfail"), zip(originals, xfails)) def test_new_constant(pickle_protocol, original, xfail): if xfail: pytest.xfail() check_pickling_recovery(original, pickle_protocol)
64dfc453b5a5b8b1484657b885467671e5cc601a8525805ada9c05c60fd219eb
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy import pytest from astropy.constants import Constant from astropy.units import Quantity as Q def test_c(): from astropy.constants.codata2010 import c # c is an exactly defined constant, so it shouldn't be changing assert c.value == 2.99792458e8 # default is S.I. assert c.si.value == 2.99792458e8 assert c.cgs.value == 2.99792458e10 # make sure it has the necessary attributes and they're not blank assert c.uncertainty == 0 # c is a *defined* quantity assert c.name assert c.reference assert c.unit def test_h(): from astropy.constants.codata2010 import h from astropy.constants import h as h_current # check that the value is the CODATA2010 value assert abs(h.value - 6.62606957e-34) < 1e-43 assert abs(h.si.value - 6.62606957e-34) < 1e-43 assert abs(h.cgs.value - 6.62606957e-27) < 1e-36 # Check it is different than the current value assert abs(h.value - h_current.value) > 4e-42 # make sure it has the necessary attributes and they're not blank assert h.uncertainty assert h.name assert h.reference assert h.unit def test_e(): from astropy.constants.astropyconst13 import e # A test quantity E = Q(100.00000348276221, 'V/m') # e.cgs is too ambiguous and should not work at all with pytest.raises(TypeError): e.cgs * E assert isinstance(e.si, Q) assert isinstance(e.gauss, Q) assert isinstance(e.esu, Q) assert e.si * E == Q(100, 'eV/m') assert e.gauss * E == Q(e.gauss.value * E.value, 'Fr V/m') assert e.esu * E == Q(e.esu.value * E.value, 'Fr V/m') def test_g0(): """Tests for #1263 demonstrating how g0 constant should behave.""" from astropy.constants.astropyconst13 import g0 # g0 is an exactly defined constant, so it shouldn't be changing assert g0.value == 9.80665 # default is S.I. assert g0.si.value == 9.80665 assert g0.cgs.value == 9.80665e2 # make sure it has the necessary attributes and they're not blank assert g0.uncertainty == 0 # g0 is a *defined* quantity assert g0.name assert g0.reference assert g0.unit # Check that its unit have the correct physical type assert g0.unit.physical_type == 'acceleration' def test_b_wien(): """b_wien should give the correct peak wavelength for given blackbody temperature. The Sun is used in this test. """ from astropy.constants.astropyconst13 import b_wien from astropy import units as u t = 5778 * u.K w = (b_wien / t).to(u.nm) assert round(w.value) == 502 def test_unit(): from astropy import units as u from astropy.constants import astropyconst13 as const for key, val in vars(const).items(): if isinstance(val, Constant): # Getting the unit forces the unit parser to run. Confirm # that none of the constants defined in astropy have # invalid unit. assert not isinstance(val.unit, u.UnrecognizedUnit) def test_copy(): from astropy import constants as const cc = copy.deepcopy(const.c) assert cc == const.c cc = copy.copy(const.c) assert cc == const.c def test_view(): """Check that Constant and Quantity views can be taken (#3537, #3538).""" from astropy.constants import c c2 = c.view(Constant) assert c2 == c assert c2.value == c.value # make sure it has the necessary attributes and they're not blank assert c2.uncertainty == 0 # c is a *defined* quantity assert c2.name == c.name assert c2.reference == c.reference assert c2.unit == c.unit q1 = c.view(Q) assert q1 == c assert q1.value == c.value assert type(q1) is Q assert not hasattr(q1, 'reference') q2 = Q(c) assert q2 == c assert q2.value == c.value assert type(q2) is Q assert not hasattr(q2, 'reference') c3 = Q(c, subok=True) assert c3 == c assert c3.value == c.value # make sure it has the necessary attributes and they're not blank assert c3.uncertainty == 0 # c is a *defined* quantity assert c3.name == c.name assert c3.reference == c.reference assert c3.unit == c.unit c4 = Q(c, subok=True, copy=False) assert c4 is c def test_context_manager(): from astropy import constants as const with const.set_enabled_constants('astropyconst13'): assert const.h.value == 6.62606957e-34 # CODATA2010 assert const.h.value == 6.626070040e-34 # CODATA2014 with pytest.raises(ValueError): with const.set_enabled_constants('notreal'): const.h
e89de87af302f85a84f5bffaa686630339caeb13317c31bd0b09873ddb6f63a3
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy import pytest from astropy.constants import Constant from astropy.units import Quantity as Q def test_c(): from astropy.constants import c # c is an exactly defined constant, so it shouldn't be changing assert c.value == 2.99792458e8 # default is S.I. assert c.si.value == 2.99792458e8 assert c.cgs.value == 2.99792458e10 # make sure it has the necessary attributes and they're not blank assert c.uncertainty == 0 # c is a *defined* quantity assert c.name assert c.reference assert c.unit def test_h(): from astropy.constants import h # check that the value is fairly close to what it should be (not exactly # checking because this might get updated in the future) assert abs(h.value - 6.626e-34) < 1e-38 assert abs(h.si.value - 6.626e-34) < 1e-38 assert abs(h.cgs.value - 6.626e-27) < 1e-31 # make sure it has the necessary attributes and they're not blank assert h.uncertainty assert h.name assert h.reference assert h.unit def test_e(): """Tests for #572 demonstrating how EM constants should behave.""" from astropy.constants import e # A test quantity E = Q(100, 'V/m') # Without specifying a system e should not combine with other quantities pytest.raises(TypeError, lambda: e * E) # Try it again (as regression test on a minor issue mentioned in #745 where # repeated attempts to use e in an expression resulted in UnboundLocalError # instead of TypeError) pytest.raises(TypeError, lambda: e * E) # e.cgs is too ambiguous and should not work at all pytest.raises(TypeError, lambda: e.cgs * E) assert isinstance(e.si, Q) assert isinstance(e.gauss, Q) assert isinstance(e.esu, Q) assert e.si * E == Q(100, 'eV/m') assert e.gauss * E == Q(e.gauss.value * E.value, 'Fr V/m') assert e.esu * E == Q(e.esu.value * E.value, 'Fr V/m') def test_g0(): """Tests for #1263 demonstrating how g0 constant should behave.""" from astropy.constants import g0 # g0 is an exactly defined constant, so it shouldn't be changing assert g0.value == 9.80665 # default is S.I. assert g0.si.value == 9.80665 assert g0.cgs.value == 9.80665e2 # make sure it has the necessary attributes and they're not blank assert g0.uncertainty == 0 # g0 is a *defined* quantity assert g0.name assert g0.reference assert g0.unit # Check that its unit have the correct physical type assert g0.unit.physical_type == 'acceleration' def test_b_wien(): """b_wien should give the correct peak wavelength for given blackbody temperature. The Sun is used in this test. """ from astropy.constants import b_wien from astropy import units as u t = 5778 * u.K w = (b_wien / t).to(u.nm) assert round(w.value) == 502 def test_unit(): from astropy import units as u from astropy import constants as const for key, val in vars(const).items(): if isinstance(val, Constant): # Getting the unit forces the unit parser to run. Confirm # that none of the constants defined in astropy have # invalid unit. assert not isinstance(val.unit, u.UnrecognizedUnit) def test_copy(): from astropy import constants as const cc = copy.deepcopy(const.c) assert cc == const.c cc = copy.copy(const.c) assert cc == const.c def test_view(): """Check that Constant and Quantity views can be taken (#3537, #3538).""" from astropy.constants import c c2 = c.view(Constant) assert c2 == c assert c2.value == c.value # make sure it has the necessary attributes and they're not blank assert c2.uncertainty == 0 # c is a *defined* quantity assert c2.name == c.name assert c2.reference == c.reference assert c2.unit == c.unit q1 = c.view(Q) assert q1 == c assert q1.value == c.value assert type(q1) is Q assert not hasattr(q1, 'reference') q2 = Q(c) assert q2 == c assert q2.value == c.value assert type(q2) is Q assert not hasattr(q2, 'reference') c3 = Q(c, subok=True) assert c3 == c assert c3.value == c.value # make sure it has the necessary attributes and they're not blank assert c3.uncertainty == 0 # c is a *defined* quantity assert c3.name == c.name assert c3.reference == c.reference assert c3.unit == c.unit c4 = Q(c, subok=True, copy=False) assert c4 is c
071ec161b6ec6c38abcedc9566569e7725f414a6593c46342bf55ad0fe03ede5
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy.tests.helper import pickle_protocol, check_pickling_recovery from astropy import cosmology as cosm originals = [cosm.FLRW] xfails = [False] @pytest.mark.parametrize(("original", "xfail"), zip(originals, xfails)) def test_flrw(pickle_protocol, original, xfail): if xfail: pytest.xfail() check_pickling_recovery(original, pickle_protocol)
f06ba7e6c7372c7137ef5b3efd055a24719a480cce751e6be532974c3e4c7d04
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO import pytest import numpy as np from astropy.cosmology import core, funcs from astropy.units import allclose from astropy.utils.compat import NUMPY_LT_1_14 from astropy import units as u try: import scipy # pylint: disable=W0611 except ImportError: HAS_SCIPY = False else: HAS_SCIPY = True def test_init(): """ Tests to make sure the code refuses inputs it is supposed to""" with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=-0.27) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Neff=-1) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Tcmb0=u.Quantity([0.0, 2], u.K)) with pytest.raises(ValueError): h0bad = u.Quantity([70, 100], u.km / u.s / u.Mpc) cosmo = core.FlatLambdaCDM(H0=h0bad, Om0=0.27) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.2, Tcmb0=3, m_nu=0.5) with pytest.raises(ValueError): bad_mnu = u.Quantity([-0.3, 0.2, 0.1], u.eV) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.2, Tcmb0=3, m_nu=bad_mnu) with pytest.raises(ValueError): bad_mnu = u.Quantity([0.15, 0.2, 0.1], u.eV) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.2, Tcmb0=3, Neff=2, m_nu=bad_mnu) with pytest.raises(ValueError): bad_mnu = u.Quantity([-0.3, 0.2], u.eV) # 2, expecting 3 cosmo = core.FlatLambdaCDM(H0=70, Om0=0.2, Tcmb0=3, m_nu=bad_mnu) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Ob0=-0.04) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Ob0=0.4) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27) cosmo.Ob(1) with pytest.raises(ValueError): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27) cosmo.Odm(1) with pytest.raises(TypeError): core.default_cosmology.validate(4) def test_basic(): cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Tcmb0=2.0, Neff=3.04, Ob0=0.05) assert allclose(cosmo.Om0, 0.27) assert allclose(cosmo.Ode0, 0.729975, rtol=1e-4) assert allclose(cosmo.Ob0, 0.05) assert allclose(cosmo.Odm0, 0.27 - 0.05) # This next test will fail if astropy.const starts returning non-mks # units by default; see the comment at the top of core.py assert allclose(cosmo.Ogamma0, 1.463285e-5, rtol=1e-4) assert allclose(cosmo.Onu0, 1.01026e-5, rtol=1e-4) assert allclose(cosmo.Ok0, 0.0) assert allclose(cosmo.Om0 + cosmo.Ode0 + cosmo.Ogamma0 + cosmo.Onu0, 1.0, rtol=1e-6) assert allclose(cosmo.Om(1) + cosmo.Ode(1) + cosmo.Ogamma(1) + cosmo.Onu(1), 1.0, rtol=1e-6) assert allclose(cosmo.Tcmb0, 2.0 * u.K) assert allclose(cosmo.Tnu0, 1.4275317 * u.K, rtol=1e-5) assert allclose(cosmo.Neff, 3.04) assert allclose(cosmo.h, 0.7) assert allclose(cosmo.H0, 70.0 * u.km / u.s / u.Mpc) # Make sure setting them as quantities gives the same results H0 = u.Quantity(70, u.km / (u.s * u.Mpc)) T = u.Quantity(2.0, u.K) cosmo = core.FlatLambdaCDM(H0=H0, Om0=0.27, Tcmb0=T, Neff=3.04, Ob0=0.05) assert allclose(cosmo.Om0, 0.27) assert allclose(cosmo.Ode0, 0.729975, rtol=1e-4) assert allclose(cosmo.Ob0, 0.05) assert allclose(cosmo.Odm0, 0.27 - 0.05) assert allclose(cosmo.Ogamma0, 1.463285e-5, rtol=1e-4) assert allclose(cosmo.Onu0, 1.01026e-5, rtol=1e-4) assert allclose(cosmo.Ok0, 0.0) assert allclose(cosmo.Om0 + cosmo.Ode0 + cosmo.Ogamma0 + cosmo.Onu0, 1.0, rtol=1e-6) assert allclose(cosmo.Om(1) + cosmo.Ode(1) + cosmo.Ogamma(1) + cosmo.Onu(1), 1.0, rtol=1e-6) assert allclose(cosmo.Tcmb0, 2.0 * u.K) assert allclose(cosmo.Tnu0, 1.4275317 * u.K, rtol=1e-5) assert allclose(cosmo.Neff, 3.04) assert allclose(cosmo.h, 0.7) assert allclose(cosmo.H0, 70.0 * u.km / u.s / u.Mpc) @pytest.mark.skipif('not HAS_SCIPY') def test_units(): """ Test if the right units are being returned""" cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Tcmb0=2.0) assert cosmo.comoving_distance(1.0).unit == u.Mpc assert cosmo._comoving_distance_z1z2(1.0, 2.0).unit == u.Mpc assert cosmo.comoving_transverse_distance(1.0).unit == u.Mpc assert cosmo._comoving_transverse_distance_z1z2(1.0, 2.0).unit == u.Mpc assert cosmo.angular_diameter_distance(1.0).unit == u.Mpc assert cosmo.angular_diameter_distance_z1z2(1.0, 2.0).unit == u.Mpc assert cosmo.luminosity_distance(1.0).unit == u.Mpc assert cosmo.lookback_time(1.0).unit == u.Gyr assert cosmo.lookback_distance(1.0).unit == u.Mpc assert cosmo.H0.unit == u.km / u.Mpc / u.s assert cosmo.H(1.0).unit == u.km / u.Mpc / u.s assert cosmo.Tcmb0.unit == u.K assert cosmo.Tcmb(1.0).unit == u.K assert cosmo.Tcmb([0.0, 1.0]).unit == u.K assert cosmo.Tnu0.unit == u.K assert cosmo.Tnu(1.0).unit == u.K assert cosmo.Tnu([0.0, 1.0]).unit == u.K assert cosmo.arcsec_per_kpc_comoving(1.0).unit == u.arcsec / u.kpc assert cosmo.arcsec_per_kpc_proper(1.0).unit == u.arcsec / u.kpc assert cosmo.kpc_comoving_per_arcmin(1.0).unit == u.kpc / u.arcmin assert cosmo.kpc_proper_per_arcmin(1.0).unit == u.kpc / u.arcmin assert cosmo.critical_density(1.0).unit == u.g / u.cm ** 3 assert cosmo.comoving_volume(1.0).unit == u.Mpc ** 3 assert cosmo.age(1.0).unit == u.Gyr assert cosmo.distmod(1.0).unit == u.mag @pytest.mark.skipif('not HAS_SCIPY') def test_distance_broadcast(): """ Test array shape broadcasting for functions with single redshift inputs""" cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, m_nu=u.Quantity([0.0, 0.1, 0.011], u.eV)) z = np.linspace(0.1, 1, 6) z_reshape2d = z.reshape(2, 3) z_reshape3d = z.reshape(3, 2, 1) # Things with units methods = ['comoving_distance', 'luminosity_distance', 'comoving_transverse_distance', 'angular_diameter_distance', 'distmod', 'lookback_time', 'age', 'comoving_volume', 'differential_comoving_volume', 'kpc_comoving_per_arcmin'] for method in methods: g = getattr(cosmo, method) value_flat = g(z) assert value_flat.shape == z.shape value_2d = g(z_reshape2d) assert value_2d.shape == z_reshape2d.shape value_3d = g(z_reshape3d) assert value_3d.shape == z_reshape3d.shape assert value_flat.unit == value_2d.unit assert value_flat.unit == value_3d.unit assert allclose(value_flat, value_2d.flatten()) assert allclose(value_flat, value_3d.flatten()) # Also test unitless ones methods = ['absorption_distance', 'Om', 'Ode', 'Ok', 'H', 'w', 'de_density_scale', 'Onu', 'Ogamma', 'nu_relative_density'] for method in methods: g = getattr(cosmo, method) value_flat = g(z) assert value_flat.shape == z.shape value_2d = g(z_reshape2d) assert value_2d.shape == z_reshape2d.shape value_3d = g(z_reshape3d) assert value_3d.shape == z_reshape3d.shape assert allclose(value_flat, value_2d.flatten()) assert allclose(value_flat, value_3d.flatten()) # Test some dark energy models methods = ['Om', 'Ode', 'w', 'de_density_scale'] for tcosmo in [core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.5), core.wCDM(H0=70, Om0=0.27, Ode0=0.5, w0=-1.2), core.w0waCDM(H0=70, Om0=0.27, Ode0=0.5, w0=-1.2, wa=-0.2), core.wpwaCDM(H0=70, Om0=0.27, Ode0=0.5, wp=-1.2, wa=-0.2, zp=0.9), core.w0wzCDM(H0=70, Om0=0.27, Ode0=0.5, w0=-1.2, wz=0.1)]: for method in methods: g = getattr(cosmo, method) value_flat = g(z) assert value_flat.shape == z.shape value_2d = g(z_reshape2d) assert value_2d.shape == z_reshape2d.shape value_3d = g(z_reshape3d) assert value_3d.shape == z_reshape3d.shape assert allclose(value_flat, value_2d.flatten()) assert allclose(value_flat, value_3d.flatten()) @pytest.mark.skipif('not HAS_SCIPY') def test_clone(): """ Test clone operation""" cosmo = core.FlatLambdaCDM(H0=70 * u.km / u.s / u.Mpc, Om0=0.27, Tcmb0=3.0 * u.K) z = np.linspace(0.1, 3, 15) # First, test with no changes, which should return same object newclone = cosmo.clone() assert newclone is cosmo # Now change H0 # Note that H0 affects Ode0 because it changes Ogamma0 newclone = cosmo.clone(H0=60 * u.km / u.s / u.Mpc) assert newclone is not cosmo assert newclone.__class__ == cosmo.__class__ assert newclone.name == cosmo.name assert not allclose(newclone.H0.value, cosmo.H0.value) assert allclose(newclone.H0, 60.0 * u.km / u.s / u.Mpc) assert allclose(newclone.Om0, cosmo.Om0) assert allclose(newclone.Ok0, cosmo.Ok0) assert not allclose(newclone.Ogamma0, cosmo.Ogamma0) assert not allclose(newclone.Onu0, cosmo.Onu0) assert allclose(newclone.Tcmb0, cosmo.Tcmb0) assert allclose(newclone.m_nu, cosmo.m_nu) assert allclose(newclone.Neff, cosmo.Neff) # Compare modified version with directly instantiated one cmp = core.FlatLambdaCDM(H0=60 * u.km / u.s / u.Mpc, Om0=0.27, Tcmb0=3.0 * u.K) assert newclone.__class__ == cmp.__class__ assert newclone.name == cmp.name assert allclose(newclone.H0, cmp.H0) assert allclose(newclone.Om0, cmp.Om0) assert allclose(newclone.Ode0, cmp.Ode0) assert allclose(newclone.Ok0, cmp.Ok0) assert allclose(newclone.Ogamma0, cmp.Ogamma0) assert allclose(newclone.Onu0, cmp.Onu0) assert allclose(newclone.Tcmb0, cmp.Tcmb0) assert allclose(newclone.m_nu, cmp.m_nu) assert allclose(newclone.Neff, cmp.Neff) assert allclose(newclone.Om(z), cmp.Om(z)) assert allclose(newclone.H(z), cmp.H(z)) assert allclose(newclone.luminosity_distance(z), cmp.luminosity_distance(z)) # Now try changing multiple things newclone = cosmo.clone(name="New name", H0=65 * u.km / u.s / u.Mpc, Tcmb0=2.8 * u.K) assert newclone.__class__ == cosmo.__class__ assert not newclone.name == cosmo.name assert not allclose(newclone.H0.value, cosmo.H0.value) assert allclose(newclone.H0, 65.0 * u.km / u.s / u.Mpc) assert allclose(newclone.Om0, cosmo.Om0) assert allclose(newclone.Ok0, cosmo.Ok0) assert not allclose(newclone.Ogamma0, cosmo.Ogamma0) assert not allclose(newclone.Onu0, cosmo.Onu0) assert not allclose(newclone.Tcmb0.value, cosmo.Tcmb0.value) assert allclose(newclone.Tcmb0, 2.8 * u.K) assert allclose(newclone.m_nu, cosmo.m_nu) assert allclose(newclone.Neff, cosmo.Neff) # And direct comparison cmp = core.FlatLambdaCDM(name="New name", H0=65 * u.km / u.s / u.Mpc, Om0=0.27, Tcmb0=2.8 * u.K) assert newclone.__class__ == cmp.__class__ assert newclone.name == cmp.name assert allclose(newclone.H0, cmp.H0) assert allclose(newclone.Om0, cmp.Om0) assert allclose(newclone.Ode0, cmp.Ode0) assert allclose(newclone.Ok0, cmp.Ok0) assert allclose(newclone.Ogamma0, cmp.Ogamma0) assert allclose(newclone.Onu0, cmp.Onu0) assert allclose(newclone.Tcmb0, cmp.Tcmb0) assert allclose(newclone.m_nu, cmp.m_nu) assert allclose(newclone.Neff, cmp.Neff) assert allclose(newclone.Om(z), cmp.Om(z)) assert allclose(newclone.H(z), cmp.H(z)) assert allclose(newclone.luminosity_distance(z), cmp.luminosity_distance(z)) # Try a dark energy class, make sure it can handle w params cosmo = core.w0waCDM(name="test w0wa", H0=70 * u.km / u.s / u.Mpc, Om0=0.27, Ode0=0.5, wa=0.1, Tcmb0=4.0 * u.K) newclone = cosmo.clone(w0=-1.1, wa=0.2) assert newclone.__class__ == cosmo.__class__ assert newclone.name == cosmo.name assert allclose(newclone.H0, cosmo.H0) assert allclose(newclone.Om0, cosmo.Om0) assert allclose(newclone.Ode0, cosmo.Ode0) assert allclose(newclone.Ok0, cosmo.Ok0) assert not allclose(newclone.w0, cosmo.w0) assert allclose(newclone.w0, -1.1) assert not allclose(newclone.wa, cosmo.wa) assert allclose(newclone.wa, 0.2) # Now test exception if user passes non-parameter with pytest.raises(AttributeError): newclone = cosmo.clone(not_an_arg=4) def test_xtfuncs(): """ Test of absorption and lookback integrand""" cosmo = core.LambdaCDM(70, 0.3, 0.5, Tcmb0=2.725) z = np.array([2.0, 3.2]) assert allclose(cosmo.lookback_time_integrand(3), 0.052218976654969378, rtol=1e-4) assert allclose(cosmo.lookback_time_integrand(z), [0.10333179, 0.04644541], rtol=1e-4) assert allclose(cosmo.abs_distance_integrand(3), 3.3420145059180402, rtol=1e-4) assert allclose(cosmo.abs_distance_integrand(z), [2.7899584, 3.44104758], rtol=1e-4) def test_repr(): """ Test string representation of built in classes""" cosmo = core.LambdaCDM(70, 0.3, 0.5, Tcmb0=2.725) expected = ('LambdaCDM(H0=70 km / (Mpc s), Om0=0.3, ' 'Ode0=0.5, Tcmb0=2.725 K, Neff=3.04, m_nu=[{}] eV, ' 'Ob0=None)').format(' 0. 0. 0.' if NUMPY_LT_1_14 else '0. 0. 0.') assert str(cosmo) == expected cosmo = core.LambdaCDM(70, 0.3, 0.5, Tcmb0=2.725, m_nu=u.Quantity(0.01, u.eV)) expected = ('LambdaCDM(H0=70 km / (Mpc s), Om0=0.3, Ode0=0.5, ' 'Tcmb0=2.725 K, Neff=3.04, m_nu=[{}] eV, ' 'Ob0=None)').format(' 0.01 0.01 0.01' if NUMPY_LT_1_14 else '0.01 0.01 0.01') assert str(cosmo) == expected cosmo = core.FlatLambdaCDM(50.0, 0.27, Tcmb0=3, Ob0=0.05) expected = ('FlatLambdaCDM(H0=50 km / (Mpc s), Om0=0.27, ' 'Tcmb0=3 K, Neff=3.04, m_nu=[{}] eV, Ob0=0.05)').format( ' 0. 0. 0.' if NUMPY_LT_1_14 else '0. 0. 0.') assert str(cosmo) == expected cosmo = core.wCDM(60.0, 0.27, 0.6, Tcmb0=2.725, w0=-0.8, name='test1') expected = ('wCDM(name="test1", H0=60 km / (Mpc s), Om0=0.27, ' 'Ode0=0.6, w0=-0.8, Tcmb0=2.725 K, Neff=3.04, ' 'm_nu=[{}] eV, Ob0=None)').format( ' 0. 0. 0.' if NUMPY_LT_1_14 else '0. 0. 0.') assert str(cosmo) == expected cosmo = core.FlatwCDM(65.0, 0.27, w0=-0.6, name='test2') expected = ('FlatwCDM(name="test2", H0=65 km / (Mpc s), Om0=0.27, ' 'w0=-0.6, Tcmb0=0 K, Neff=3.04, m_nu=None, Ob0=None)') assert str(cosmo) == expected cosmo = core.w0waCDM(60.0, 0.25, 0.4, w0=-0.6, Tcmb0=2.725, wa=0.1, name='test3') expected = ('w0waCDM(name="test3", H0=60 km / (Mpc s), Om0=0.25, ' 'Ode0=0.4, w0=-0.6, wa=0.1, Tcmb0=2.725 K, Neff=3.04, ' 'm_nu=[{}] eV, Ob0=None)').format( ' 0. 0. 0.' if NUMPY_LT_1_14 else '0. 0. 0.') assert str(cosmo) == expected cosmo = core.Flatw0waCDM(55.0, 0.35, w0=-0.9, wa=-0.2, name='test4', Ob0=0.0456789) expected = ('Flatw0waCDM(name="test4", H0=55 km / (Mpc s), Om0=0.35, ' 'w0=-0.9, Tcmb0=0 K, Neff=3.04, m_nu=None, ' 'Ob0=0.0457)') assert str(cosmo) == expected cosmo = core.wpwaCDM(50.0, 0.3, 0.3, wp=-0.9, wa=-0.2, zp=0.3, name='test5') expected = ('wpwaCDM(name="test5", H0=50 km / (Mpc s), Om0=0.3, ' 'Ode0=0.3, wp=-0.9, wa=-0.2, zp=0.3, Tcmb0=0 K, ' 'Neff=3.04, m_nu=None, Ob0=None)') assert str(cosmo) == expected cosmo = core.w0wzCDM(55.0, 0.4, 0.8, w0=-1.05, wz=-0.2, Tcmb0=2.725, m_nu=u.Quantity([0.001, 0.01, 0.015], u.eV)) expected = ('w0wzCDM(H0=55 km / (Mpc s), Om0=0.4, Ode0=0.8, w0=-1.05, ' 'wz=-0.2 Tcmb0=2.725 K, Neff=3.04, ' 'm_nu=[{}] eV, Ob0=None)').format( ' 0.001 0.01 0.015' if NUMPY_LT_1_14 else '0.001 0.01 0.015') assert str(cosmo) == expected @pytest.mark.skipif('not HAS_SCIPY') def test_flat_z1(): """ Test a flat cosmology at z=1 against several other on-line calculators. """ cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Tcmb0=0.0) z = 1 # Test values were taken from the following web cosmology # calculators on 27th Feb 2012: # Wright: http://www.astro.ucla.edu/~wright/CosmoCalc.html # (http://adsabs.harvard.edu/abs/2006PASP..118.1711W) # Kempner: http://www.kempner.net/cosmic.php # iCosmos: http://www.icosmos.co.uk/index.html # The order of values below is Wright, Kempner, iCosmos' assert allclose(cosmo.comoving_distance(z), [3364.5, 3364.8, 3364.7988] * u.Mpc, rtol=1e-4) assert allclose(cosmo.angular_diameter_distance(z), [1682.3, 1682.4, 1682.3994] * u.Mpc, rtol=1e-4) assert allclose(cosmo.luminosity_distance(z), [6729.2, 6729.6, 6729.5976] * u.Mpc, rtol=1e-4) assert allclose(cosmo.lookback_time(z), [7.841, 7.84178, 7.843] * u.Gyr, rtol=1e-3) assert allclose(cosmo.lookback_distance(z), [2404.0, 2404.24, 2404.4] * u.Mpc, rtol=1e-3) def test_zeroing(): """ Tests if setting params to 0s always respects that""" # Make sure Ode = 0 behaves that way cosmo = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.0) assert allclose(cosmo.Ode([0, 1, 2, 3]), [0, 0, 0, 0]) assert allclose(cosmo.Ode(1), 0) # Ogamma0 and Onu cosmo = core.FlatLambdaCDM(H0=70, Om0=0.27, Tcmb0=0.0) assert allclose(cosmo.Ogamma(1.5), [0, 0, 0, 0]) assert allclose(cosmo.Ogamma([0, 1, 2, 3]), [0, 0, 0, 0]) assert allclose(cosmo.Onu(1.5), [0, 0, 0, 0]) assert allclose(cosmo.Onu([0, 1, 2, 3]), [0, 0, 0, 0]) # Obaryon cosmo = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.73, Ob0=0.0) assert allclose(cosmo.Ob([0, 1, 2, 3]), [0, 0, 0, 0]) # This class is to test whether the routines work correctly # if one only overloads w(z) class test_cos_sub(core.FLRW): def __init__(self): core.FLRW.__init__(self, 70.0, 0.27, 0.73, Tcmb0=0.0, name="test_cos") self._w0 = -0.9 def w(self, z): return self._w0 * np.ones_like(z) # Similar, but with neutrinos class test_cos_subnu(core.FLRW): def __init__(self): core.FLRW.__init__(self, 70.0, 0.27, 0.73, Tcmb0=3.0, m_nu=0.1 * u.eV, name="test_cos_nu") self._w0 = -0.8 def w(self, z): return self._w0 * np.ones_like(z) @pytest.mark.skipif('not HAS_SCIPY') def test_de_subclass(): # This is the comparison object z = [0.2, 0.4, 0.6, 0.9] cosmo = core.wCDM(H0=70, Om0=0.27, Ode0=0.73, w0=-0.9, Tcmb0=0.0) # Values taken from Ned Wrights advanced cosmo calculator, Aug 17 2012 assert allclose(cosmo.luminosity_distance(z), [975.5, 2158.2, 3507.3, 5773.1] * u.Mpc, rtol=1e-3) # Now try the subclass that only gives w(z) cosmo = test_cos_sub() assert allclose(cosmo.luminosity_distance(z), [975.5, 2158.2, 3507.3, 5773.1] * u.Mpc, rtol=1e-3) # Test efunc assert allclose(cosmo.efunc(1.0), 1.7489240754, rtol=1e-5) assert allclose(cosmo.efunc([0.5, 1.0]), [1.31744953, 1.7489240754], rtol=1e-5) assert allclose(cosmo.inv_efunc([0.5, 1.0]), [0.75904236, 0.57178011], rtol=1e-5) # Test de_density_scale assert allclose(cosmo.de_density_scale(1.0), 1.23114444, rtol=1e-4) assert allclose(cosmo.de_density_scale([0.5, 1.0]), [1.12934694, 1.23114444], rtol=1e-4) # Add neutrinos for efunc, inv_efunc @pytest.mark.skipif('not HAS_SCIPY') def test_varyde_lumdist_mathematica(): """Tests a few varying dark energy EOS models against a mathematica computation""" # w0wa models z = np.array([0.2, 0.4, 0.9, 1.2]) cosmo = core.w0waCDM(H0=70, Om0=0.2, Ode0=0.8, w0=-1.1, wa=0.2, Tcmb0=0.0) assert allclose(cosmo.w0, -1.1) assert allclose(cosmo.wa, 0.2) assert allclose(cosmo.luminosity_distance(z), [1004.0, 2268.62, 6265.76, 9061.84] * u.Mpc, rtol=1e-4) assert allclose(cosmo.de_density_scale(0.0), 1.0, rtol=1e-5) assert allclose(cosmo.de_density_scale([0.0, 0.5, 1.5]), [1.0, 0.9246310669529021, 0.9184087000251957]) cosmo = core.w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=0.0, Tcmb0=0.0) assert allclose(cosmo.luminosity_distance(z), [971.667, 2141.67, 5685.96, 8107.41] * u.Mpc, rtol=1e-4) cosmo = core.w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=-0.5, Tcmb0=0.0) assert allclose(cosmo.luminosity_distance(z), [974.087, 2157.08, 5783.92, 8274.08] * u.Mpc, rtol=1e-4) # wpwa models cosmo = core.wpwaCDM(H0=70, Om0=0.2, Ode0=0.8, wp=-1.1, wa=0.2, zp=0.5, Tcmb0=0.0) assert allclose(cosmo.wp, -1.1) assert allclose(cosmo.wa, 0.2) assert allclose(cosmo.zp, 0.5) assert allclose(cosmo.luminosity_distance(z), [1010.81, 2294.45, 6369.45, 9218.95] * u.Mpc, rtol=1e-4) cosmo = core.wpwaCDM(H0=70, Om0=0.2, Ode0=0.8, wp=-1.1, wa=0.2, zp=0.9, Tcmb0=0.0) assert allclose(cosmo.wp, -1.1) assert allclose(cosmo.wa, 0.2) assert allclose(cosmo.zp, 0.9) assert allclose(cosmo.luminosity_distance(z), [1013.68, 2305.3, 6412.37, 9283.33] * u.Mpc, rtol=1e-4) @pytest.mark.skipif('not HAS_SCIPY') def test_matter(): # Test non-relativistic matter evolution tcos = core.FlatLambdaCDM(70.0, 0.3, Ob0=0.045) assert allclose(tcos.Om0, 0.3) assert allclose(tcos.H0, 70.0 * u.km / u.s / u.Mpc) assert allclose(tcos.Om(0), 0.3) assert allclose(tcos.Ob(0), 0.045) z = np.array([0.0, 0.5, 1.0, 2.0]) assert allclose(tcos.Om(z), [0.3, 0.59124088, 0.77419355, 0.92045455], rtol=1e-4) assert allclose(tcos.Ob(z), [0.045, 0.08868613, 0.11612903, 0.13806818], rtol=1e-4) assert allclose(tcos.Odm(z), [0.255, 0.50255474, 0.65806452, 0.78238636], rtol=1e-4) # Consistency of dark and baryonic matter evolution with all # non-relativistic matter assert allclose(tcos.Ob(z) + tcos.Odm(z), tcos.Om(z)) @pytest.mark.skipif('not HAS_SCIPY') def test_ocurv(): # Test Ok evolution # Flat, boring case tcos = core.FlatLambdaCDM(70.0, 0.3) assert allclose(tcos.Ok0, 0.0) assert allclose(tcos.Ok(0), 0.0) z = np.array([0.0, 0.5, 1.0, 2.0]) assert allclose(tcos.Ok(z), [0.0, 0.0, 0.0, 0.0], rtol=1e-6) # Not flat tcos = core.LambdaCDM(70.0, 0.3, 0.5, Tcmb0=u.Quantity(0.0, u.K)) assert allclose(tcos.Ok0, 0.2) assert allclose(tcos.Ok(0), 0.2) assert allclose(tcos.Ok(z), [0.2, 0.22929936, 0.21621622, 0.17307692], rtol=1e-4) # Test the sum; note that Ogamma/Onu are 0 assert allclose(tcos.Ok(z) + tcos.Om(z) + tcos.Ode(z), [1.0, 1.0, 1.0, 1.0], rtol=1e-5) @pytest.mark.skipif('not HAS_SCIPY') def test_ode(): # Test Ode evolution, turn off neutrinos, cmb tcos = core.FlatLambdaCDM(70.0, 0.3, Tcmb0=0) assert allclose(tcos.Ode0, 0.7) assert allclose(tcos.Ode(0), 0.7) z = np.array([0.0, 0.5, 1.0, 2.0]) assert allclose(tcos.Ode(z), [0.7, 0.408759, 0.2258065, 0.07954545], rtol=1e-5) @pytest.mark.skipif('not HAS_SCIPY') def test_ogamma(): """Tests the effects of changing the temperature of the CMB""" # Tested against Ned Wright's advanced cosmology calculator, # Sep 7 2012. The accuracy of our comparision is limited by # how many digits it outputs, which limits our test to about # 0.2% accuracy. The NWACC does not allow one # to change the number of nuetrino species, fixing that at 3. # Also, inspection of the NWACC code shows it uses inaccurate # constants at the 0.2% level (specifically, a_B), # so we shouldn't expect to match it that well. The integral is # also done rather crudely. Therefore, we should not expect # the NWACC to be accurate to better than about 0.5%, which is # unfortunate, but reflects a problem with it rather than this code. # More accurate tests below using Mathematica z = np.array([1.0, 10.0, 500.0, 1000.0]) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=0, Neff=3) assert allclose(cosmo.angular_diameter_distance(z), [1651.9, 858.2, 26.855, 13.642] * u.Mpc, rtol=5e-4) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=2.725, Neff=3) assert allclose(cosmo.angular_diameter_distance(z), [1651.8, 857.9, 26.767, 13.582] * u.Mpc, rtol=5e-4) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=4.0, Neff=3) assert allclose(cosmo.angular_diameter_distance(z), [1651.4, 856.6, 26.489, 13.405] * u.Mpc, rtol=5e-4) # Next compare with doing the integral numerically in Mathematica, # which allows more precision in the test. It is at least as # good as 0.01%, possibly better cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=0, Neff=3.04) assert allclose(cosmo.angular_diameter_distance(z), [1651.91, 858.205, 26.8586, 13.6469] * u.Mpc, rtol=1e-5) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=2.725, Neff=3.04) assert allclose(cosmo.angular_diameter_distance(z), [1651.76, 857.817, 26.7688, 13.5841] * u.Mpc, rtol=1e-5) cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=4.0, Neff=3.04) assert allclose(cosmo.angular_diameter_distance(z), [1651.21, 856.411, 26.4845, 13.4028] * u.Mpc, rtol=1e-5) # Just to be really sure, we also do a version where the integral # is analytic, which is a Ode = 0 flat universe. In this case # Integrate(1/E(x),{x,0,z}) = 2 ( sqrt((1+Or z)/(1+z)) - 1 )/(Or - 1) # Recall that c/H0 * Integrate(1/E) is FLRW.comoving_distance. Ogamma0h2 = 4 * 5.670373e-8 / 299792458.0 ** 3 * 2.725 ** 4 / 1.87837e-26 Onu0h2 = Ogamma0h2 * 7.0 / 8.0 * (4.0 / 11.0) ** (4.0 / 3.0) * 3.04 Or0 = (Ogamma0h2 + Onu0h2) / 0.7 ** 2 Om0 = 1.0 - Or0 hubdis = (299792.458 / 70.0) * u.Mpc cosmo = core.FlatLambdaCDM(H0=70, Om0=Om0, Tcmb0=2.725, Neff=3.04) targvals = 2.0 * hubdis * \ (np.sqrt((1.0 + Or0 * z) / (1.0 + z)) - 1.0) / (Or0 - 1.0) assert allclose(cosmo.comoving_distance(z), targvals, rtol=1e-5) # And integers for z assert allclose(cosmo.comoving_distance(z.astype(int)), targvals, rtol=1e-5) # Try Tcmb0 = 4 Or0 *= (4.0 / 2.725) ** 4 Om0 = 1.0 - Or0 cosmo = core.FlatLambdaCDM(H0=70, Om0=Om0, Tcmb0=4.0, Neff=3.04) targvals = 2.0 * hubdis * \ (np.sqrt((1.0 + Or0 * z) / (1.0 + z)) - 1.0) / (Or0 - 1.0) assert allclose(cosmo.comoving_distance(z), targvals, rtol=1e-5) @pytest.mark.skipif('not HAS_SCIPY') def test_tcmb(): cosmo = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=2.5) assert allclose(cosmo.Tcmb0, 2.5 * u.K) assert allclose(cosmo.Tcmb(2), 7.5 * u.K) z = [0.0, 1.0, 2.0, 3.0, 9.0] assert allclose(cosmo.Tcmb(z), [2.5, 5.0, 7.5, 10.0, 25.0] * u.K, rtol=1e-6) # Make sure it's the same for integers z = [0, 1, 2, 3, 9] assert allclose(cosmo.Tcmb(z), [2.5, 5.0, 7.5, 10.0, 25.0] * u.K, rtol=1e-6) @pytest.mark.skipif('not HAS_SCIPY') def test_tnu(): cosmo = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=3.0) assert allclose(cosmo.Tnu0, 2.1412975665108247 * u.K, rtol=1e-6) assert allclose(cosmo.Tnu(2), 6.423892699532474 * u.K, rtol=1e-6) z = [0.0, 1.0, 2.0, 3.0] expected = [2.14129757, 4.28259513, 6.4238927, 8.56519027] * u.K assert allclose(cosmo.Tnu(z), expected, rtol=1e-6) # Test for integers z = [0, 1, 2, 3] assert allclose(cosmo.Tnu(z), expected, rtol=1e-6) def test_efunc_vs_invefunc(): """ Test that efunc and inv_efunc give inverse values""" # Note that all of the subclasses here don't need # scipy because they don't need to call de_density_scale # The test following this tests the case where that is needed. z0 = 0.5 z = np.array([0.5, 1.0, 2.0, 5.0]) # Below are the 'standard' included cosmologies # We do the non-standard case in test_efunc_vs_invefunc_flrw, # since it requires scipy cosmo = core.LambdaCDM(70, 0.3, 0.5) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.LambdaCDM(70, 0.3, 0.5, m_nu=u.Quantity(0.01, u.eV)) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.FlatLambdaCDM(50.0, 0.27) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.wCDM(60.0, 0.27, 0.6, w0=-0.8) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.FlatwCDM(65.0, 0.27, w0=-0.6) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.w0waCDM(60.0, 0.25, 0.4, w0=-0.6, wa=0.1) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.Flatw0waCDM(55.0, 0.35, w0=-0.9, wa=-0.2) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.wpwaCDM(50.0, 0.3, 0.3, wp=-0.9, wa=-0.2, zp=0.3) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) cosmo = core.w0wzCDM(55.0, 0.4, 0.8, w0=-1.05, wz=-0.2) assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) @pytest.mark.skipif('not HAS_SCIPY') def test_efunc_vs_invefunc_flrw(): """ Test that efunc and inv_efunc give inverse values""" z0 = 0.5 z = np.array([0.5, 1.0, 2.0, 5.0]) # FLRW is abstract, so requires test_cos_sub defined earlier # This requires scipy, unlike the built-ins, because it # calls de_density_scale, which has an integral in it cosmo = test_cos_sub() assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) # Add neutrinos cosmo = test_cos_subnu() assert allclose(cosmo.efunc(z0), 1.0 / cosmo.inv_efunc(z0)) assert allclose(cosmo.efunc(z), 1.0 / cosmo.inv_efunc(z)) @pytest.mark.skipif('not HAS_SCIPY') def test_kpc_methods(): cosmo = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) assert allclose(cosmo.arcsec_per_kpc_comoving(3), 0.0317179167 * u.arcsec / u.kpc) assert allclose(cosmo.arcsec_per_kpc_proper(3), 0.1268716668 * u.arcsec / u.kpc) assert allclose(cosmo.kpc_comoving_per_arcmin(3), 1891.6753126 * u.kpc / u.arcmin) assert allclose(cosmo.kpc_proper_per_arcmin(3), 472.918828 * u.kpc / u.arcmin) @pytest.mark.skipif('not HAS_SCIPY') def test_comoving_volume(): c_flat = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.73, Tcmb0=0.0) c_open = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.0, Tcmb0=0.0) c_closed = core.LambdaCDM(H0=70, Om0=2, Ode0=0.0, Tcmb0=0.0) # test against ned wright's calculator (cubic Gpc) redshifts = np.array([0.5, 1, 2, 3, 5, 9]) wright_flat = np.array([29.123, 159.529, 630.427, 1178.531, 2181.485, 3654.802]) * u.Gpc**3 wright_open = np.array([20.501, 99.019, 380.278, 747.049, 1558.363, 3123.814]) * u.Gpc**3 wright_closed = np.array([12.619, 44.708, 114.904, 173.709, 258.82, 358.992]) * u.Gpc**3 # The wright calculator isn't very accurate, so we use a rather # modest precision assert allclose(c_flat.comoving_volume(redshifts), wright_flat, rtol=1e-2) assert allclose(c_open.comoving_volume(redshifts), wright_open, rtol=1e-2) assert allclose(c_closed.comoving_volume(redshifts), wright_closed, rtol=1e-2) @pytest.mark.skipif('not HAS_SCIPY') def test_differential_comoving_volume(): from scipy.integrate import quad c_flat = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.73, Tcmb0=0.0) c_open = core.LambdaCDM(H0=70, Om0=0.27, Ode0=0.0, Tcmb0=0.0) c_closed = core.LambdaCDM(H0=70, Om0=2, Ode0=0.0, Tcmb0=0.0) # test that integration of differential_comoving_volume() # yields same as comoving_volume() redshifts = np.array([0.5, 1, 2, 3, 5, 9]) wright_flat = np.array([29.123, 159.529, 630.427, 1178.531, 2181.485, 3654.802]) * u.Gpc**3 wright_open = np.array([20.501, 99.019, 380.278, 747.049, 1558.363, 3123.814]) * u.Gpc**3 wright_closed = np.array([12.619, 44.708, 114.904, 173.709, 258.82, 358.992]) * u.Gpc**3 # The wright calculator isn't very accurate, so we use a rather # modest precision. ftemp = lambda x: c_flat.differential_comoving_volume(x).value otemp = lambda x: c_open.differential_comoving_volume(x).value ctemp = lambda x: c_closed.differential_comoving_volume(x).value # Multiply by solid_angle (4 * pi) assert allclose(np.array([4.0 * np.pi * quad(ftemp, 0, redshift)[0] for redshift in redshifts]) * u.Mpc**3, wright_flat, rtol=1e-2) assert allclose(np.array([4.0 * np.pi * quad(otemp, 0, redshift)[0] for redshift in redshifts]) * u.Mpc**3, wright_open, rtol=1e-2) assert allclose(np.array([4.0 * np.pi * quad(ctemp, 0, redshift)[0] for redshift in redshifts]) * u.Mpc**3, wright_closed, rtol=1e-2) @pytest.mark.skipif('not HAS_SCIPY') def test_flat_open_closed_icosmo(): """ Test against the tabulated values generated from icosmo.org with three example cosmologies (flat, open and closed). """ cosmo_flat = """\ # from icosmo (icosmo.org) # Om 0.3 w -1 h 0.7 Ol 0.7 # z comoving_transvers_dist angular_diameter_dist luminosity_dist 0.0000000 0.0000000 0.0000000 0.0000000 0.16250000 669.77536 576.15085 778.61386 0.32500000 1285.5964 970.26143 1703.4152 0.50000000 1888.6254 1259.0836 2832.9381 0.66250000 2395.5489 1440.9317 3982.6000 0.82500000 2855.5732 1564.6976 5211.4210 1.0000000 3303.8288 1651.9144 6607.6577 1.1625000 3681.1867 1702.2829 7960.5663 1.3250000 4025.5229 1731.4077 9359.3408 1.5000000 4363.8558 1745.5423 10909.640 1.6625000 4651.4830 1747.0359 12384.573 1.8250000 4916.5970 1740.3883 13889.387 2.0000000 5179.8621 1726.6207 15539.586 2.1625000 5406.0204 1709.4136 17096.540 2.3250000 5616.5075 1689.1752 18674.888 2.5000000 5827.5418 1665.0120 20396.396 2.6625000 6010.4886 1641.0890 22013.414 2.8250000 6182.1688 1616.2533 23646.796 3.0000000 6355.6855 1588.9214 25422.742 3.1625000 6507.2491 1563.3031 27086.425 3.3250000 6650.4520 1537.6768 28763.205 3.5000000 6796.1499 1510.2555 30582.674 3.6625000 6924.2096 1485.0852 32284.127 3.8250000 7045.8876 1460.2876 33996.408 4.0000000 7170.3664 1434.0733 35851.832 4.1625000 7280.3423 1410.2358 37584.767 4.3250000 7385.3277 1386.9160 39326.870 4.5000000 7493.2222 1362.4040 41212.722 4.6625000 7588.9589 1340.2135 42972.480 """ cosmo_open = """\ # from icosmo (icosmo.org) # Om 0.3 w -1 h 0.7 Ol 0.1 # z comoving_transvers_dist angular_diameter_dist luminosity_dist 0.0000000 0.0000000 0.0000000 0.0000000 0.16250000 643.08185 553.18868 747.58265 0.32500000 1200.9858 906.40441 1591.3062 0.50000000 1731.6262 1154.4175 2597.4393 0.66250000 2174.3252 1307.8648 3614.8157 0.82500000 2578.7616 1413.0201 4706.2399 1.0000000 2979.3460 1489.6730 5958.6920 1.1625000 3324.2002 1537.2024 7188.5829 1.3250000 3646.8432 1568.5347 8478.9104 1.5000000 3972.8407 1589.1363 9932.1017 1.6625000 4258.1131 1599.2913 11337.226 1.8250000 4528.5346 1603.0211 12793.110 2.0000000 4804.9314 1601.6438 14414.794 2.1625000 5049.2007 1596.5852 15968.097 2.3250000 5282.6693 1588.7727 17564.875 2.5000000 5523.0914 1578.0261 19330.820 2.6625000 5736.9813 1566.4113 21011.694 2.8250000 5942.5803 1553.6158 22730.370 3.0000000 6155.4289 1538.8572 24621.716 3.1625000 6345.6997 1524.4924 26413.975 3.3250000 6529.3655 1509.6799 28239.506 3.5000000 6720.2676 1493.3928 30241.204 3.6625000 6891.5474 1478.0799 32131.840 3.8250000 7057.4213 1462.6780 34052.058 4.0000000 7230.3723 1446.0745 36151.862 4.1625000 7385.9998 1430.7021 38130.224 4.3250000 7537.1112 1415.4199 40135.117 4.5000000 7695.0718 1399.1040 42322.895 4.6625000 7837.5510 1384.1150 44380.133 """ cosmo_closed = """\ # from icosmo (icosmo.org) # Om 2 w -1 h 0.7 Ol 0.1 # z comoving_transvers_dist angular_diameter_dist luminosity_dist 0.0000000 0.0000000 0.0000000 0.0000000 0.16250000 601.80160 517.67879 699.59436 0.32500000 1057.9502 798.45297 1401.7840 0.50000000 1438.2161 958.81076 2157.3242 0.66250000 1718.6778 1033.7912 2857.3019 0.82500000 1948.2400 1067.5288 3555.5381 1.0000000 2152.7954 1076.3977 4305.5908 1.1625000 2312.3427 1069.2914 5000.4410 1.3250000 2448.9755 1053.3228 5693.8681 1.5000000 2575.6795 1030.2718 6439.1988 1.6625000 2677.9671 1005.8092 7130.0873 1.8250000 2768.1157 979.86398 7819.9270 2.0000000 2853.9222 951.30739 8561.7665 2.1625000 2924.8116 924.84161 9249.7167 2.3250000 2988.5333 898.80701 9936.8732 2.5000000 3050.3065 871.51614 10676.073 2.6625000 3102.1909 847.01459 11361.774 2.8250000 3149.5043 823.39982 12046.854 3.0000000 3195.9966 798.99915 12783.986 3.1625000 3235.5334 777.30533 13467.908 3.3250000 3271.9832 756.52790 14151.327 3.5000000 3308.1758 735.15017 14886.791 3.6625000 3339.2521 716.19347 15569.263 3.8250000 3368.1489 698.06195 16251.319 4.0000000 3397.0803 679.41605 16985.401 4.1625000 3422.1142 662.87926 17666.664 4.3250000 3445.5542 647.05243 18347.576 4.5000000 3469.1805 630.76008 19080.493 4.6625000 3489.7534 616.29199 19760.729 """ redshifts, dm, da, dl = np.loadtxt(StringIO(cosmo_flat), unpack=1) dm = dm * u.Mpc da = da * u.Mpc dl = dl * u.Mpc cosmo = core.LambdaCDM(H0=70, Om0=0.3, Ode0=0.70, Tcmb0=0.0) assert allclose(cosmo.comoving_transverse_distance(redshifts), dm) assert allclose(cosmo.angular_diameter_distance(redshifts), da) assert allclose(cosmo.luminosity_distance(redshifts), dl) redshifts, dm, da, dl = np.loadtxt(StringIO(cosmo_open), unpack=1) dm = dm * u.Mpc da = da * u.Mpc dl = dl * u.Mpc cosmo = core.LambdaCDM(H0=70, Om0=0.3, Ode0=0.1, Tcmb0=0.0) assert allclose(cosmo.comoving_transverse_distance(redshifts), dm) assert allclose(cosmo.angular_diameter_distance(redshifts), da) assert allclose(cosmo.luminosity_distance(redshifts), dl) redshifts, dm, da, dl = np.loadtxt(StringIO(cosmo_closed), unpack=1) dm = dm * u.Mpc da = da * u.Mpc dl = dl * u.Mpc cosmo = core.LambdaCDM(H0=70, Om0=2, Ode0=0.1, Tcmb0=0.0) assert allclose(cosmo.comoving_transverse_distance(redshifts), dm) assert allclose(cosmo.angular_diameter_distance(redshifts), da) assert allclose(cosmo.luminosity_distance(redshifts), dl) @pytest.mark.skipif('not HAS_SCIPY') def test_integral(): # Test integer vs. floating point inputs cosmo = core.LambdaCDM(H0=73.2, Om0=0.3, Ode0=0.50) assert allclose(cosmo.comoving_distance(3), cosmo.comoving_distance(3.0), rtol=1e-7) assert allclose(cosmo.comoving_distance([1, 2, 3, 5]), cosmo.comoving_distance([1.0, 2.0, 3.0, 5.0]), rtol=1e-7) assert allclose(cosmo.efunc(6), cosmo.efunc(6.0), rtol=1e-7) assert allclose(cosmo.efunc([1, 2, 6]), cosmo.efunc([1.0, 2.0, 6.0]), rtol=1e-7) assert allclose(cosmo.inv_efunc([1, 2, 6]), cosmo.inv_efunc([1.0, 2.0, 6.0]), rtol=1e-7) def test_wz(): cosmo = core.LambdaCDM(H0=70, Om0=0.3, Ode0=0.70) assert allclose(cosmo.w(1.0), -1.) assert allclose(cosmo.w([0.1, 0.2, 0.5, 1.5, 2.5, 11.5]), [-1., -1, -1, -1, -1, -1]) cosmo = core.wCDM(H0=70, Om0=0.3, Ode0=0.70, w0=-0.5) assert allclose(cosmo.w(1.0), -0.5) assert allclose(cosmo.w([0.1, 0.2, 0.5, 1.5, 2.5, 11.5]), [-0.5, -0.5, -0.5, -0.5, -0.5, -0.5]) assert allclose(cosmo.w0, -0.5) cosmo = core.w0wzCDM(H0=70, Om0=0.3, Ode0=0.70, w0=-1, wz=0.5) assert allclose(cosmo.w(1.0), -0.5) assert allclose(cosmo.w([0.0, 0.5, 1.0, 1.5, 2.3]), [-1.0, -0.75, -0.5, -0.25, 0.15]) assert allclose(cosmo.w0, -1.0) assert allclose(cosmo.wz, 0.5) cosmo = core.w0waCDM(H0=70, Om0=0.3, Ode0=0.70, w0=-1, wa=-0.5) assert allclose(cosmo.w0, -1.0) assert allclose(cosmo.wa, -0.5) assert allclose(cosmo.w(1.0), -1.25) assert allclose(cosmo.w([0.0, 0.5, 1.0, 1.5, 2.3]), [-1, -1.16666667, -1.25, -1.3, -1.34848485]) cosmo = core.wpwaCDM(H0=70, Om0=0.3, Ode0=0.70, wp=-0.9, wa=0.2, zp=0.5) assert allclose(cosmo.wp, -0.9) assert allclose(cosmo.wa, 0.2) assert allclose(cosmo.zp, 0.5) assert allclose(cosmo.w(0.5), -0.9) assert allclose(cosmo.w([0.1, 0.2, 0.5, 1.5, 2.5, 11.5]), [-0.94848485, -0.93333333, -0.9, -0.84666667, -0.82380952, -0.78266667]) @pytest.mark.skipif('not HAS_SCIPY') def test_de_densityscale(): cosmo = core.LambdaCDM(H0=70, Om0=0.3, Ode0=0.70) z = np.array([0.1, 0.2, 0.5, 1.5, 2.5]) assert allclose(cosmo.de_density_scale(z), [1.0, 1.0, 1.0, 1.0, 1.0]) # Integer check assert allclose(cosmo.de_density_scale(3), cosmo.de_density_scale(3.0), rtol=1e-7) assert allclose(cosmo.de_density_scale([1, 2, 3]), cosmo.de_density_scale([1., 2., 3.]), rtol=1e-7) cosmo = core.wCDM(H0=70, Om0=0.3, Ode0=0.60, w0=-0.5) assert allclose(cosmo.de_density_scale(z), [1.15369, 1.31453, 1.83712, 3.95285, 6.5479], rtol=1e-4) assert allclose(cosmo.de_density_scale(3), cosmo.de_density_scale(3.0), rtol=1e-7) assert allclose(cosmo.de_density_scale([1, 2, 3]), cosmo.de_density_scale([1., 2., 3.]), rtol=1e-7) cosmo = core.w0wzCDM(H0=70, Om0=0.3, Ode0=0.50, w0=-1, wz=0.5) assert allclose(cosmo.de_density_scale(z), [0.746048, 0.5635595, 0.25712378, 0.026664129, 0.0035916468], rtol=1e-4) assert allclose(cosmo.de_density_scale(3), cosmo.de_density_scale(3.0), rtol=1e-7) assert allclose(cosmo.de_density_scale([1, 2, 3]), cosmo.de_density_scale([1., 2., 3.]), rtol=1e-7) cosmo = core.w0waCDM(H0=70, Om0=0.3, Ode0=0.70, w0=-1, wa=-0.5) assert allclose(cosmo.de_density_scale(z), [0.9934201, 0.9767912, 0.897450, 0.622236, 0.4458753], rtol=1e-4) assert allclose(cosmo.de_density_scale(3), cosmo.de_density_scale(3.0), rtol=1e-7) assert allclose(cosmo.de_density_scale([1, 2, 3]), cosmo.de_density_scale([1., 2., 3.]), rtol=1e-7) cosmo = core.wpwaCDM(H0=70, Om0=0.3, Ode0=0.70, wp=-0.9, wa=0.2, zp=0.5) assert allclose(cosmo.de_density_scale(z), [1.012246048, 1.0280102, 1.087439, 1.324988, 1.565746], rtol=1e-4) assert allclose(cosmo.de_density_scale(3), cosmo.de_density_scale(3.0), rtol=1e-7) assert allclose(cosmo.de_density_scale([1, 2, 3]), cosmo.de_density_scale([1., 2., 3.]), rtol=1e-7) @pytest.mark.skipif('not HAS_SCIPY') def test_age(): # WMAP7 but with Omega_relativisitic = 0 tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) assert allclose(tcos.hubble_time, 13.889094057856937 * u.Gyr) assert allclose(tcos.age(4), 1.5823603508870991 * u.Gyr) assert allclose(tcos.age([1., 5.]), [5.97113193, 1.20553129] * u.Gyr) assert allclose(tcos.age([1, 5]), [5.97113193, 1.20553129] * u.Gyr) # Add relativistic species tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=3.0) assert allclose(tcos.age(4), 1.5773003779230699 * u.Gyr) assert allclose(tcos.age([1, 5]), [5.96344942, 1.20093077] * u.Gyr) # And massive neutrinos tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=3.0, m_nu=0.1 * u.eV) assert allclose(tcos.age(4), 1.5546485439853412 * u.Gyr) assert allclose(tcos.age([1, 5]), [5.88448152, 1.18383759] * u.Gyr) @pytest.mark.skipif('not HAS_SCIPY') def test_distmod(): # WMAP7 but with Omega_relativisitic = 0 tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) assert allclose(tcos.hubble_distance, 4258.415596590909 * u.Mpc) assert allclose(tcos.distmod([1, 5]), [44.124857, 48.40167258] * u.mag) assert allclose(tcos.distmod([1., 5.]), [44.124857, 48.40167258] * u.mag) @pytest.mark.skipif('not HAS_SCIPY') def test_neg_distmod(): # Cosmology with negative luminosity distances (perfectly okay, # if obscure) tcos = core.LambdaCDM(70, 0.2, 1.3, Tcmb0=0) assert allclose(tcos.luminosity_distance([50, 100]), [16612.44047622, -46890.79092244] * u.Mpc) assert allclose(tcos.distmod([50, 100]), [46.102167189, 48.355437790944] * u.mag) @pytest.mark.skipif('not HAS_SCIPY') def test_critical_density(): # WMAP7 but with Omega_relativistic = 0 # These tests will fail if astropy.const starts returning non-mks # units by default; see the comment at the top of core.py tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) assert allclose(tcos.critical_density0, 9.309668456020899e-30 * u.g / u.cm**3) assert allclose(tcos.critical_density0, tcos.critical_density(0)) assert allclose(tcos.critical_density([1, 5]), [2.70352772e-29, 5.53739080e-28] * u.g / u.cm**3) assert allclose(tcos.critical_density([1., 5.]), [2.70352772e-29, 5.53739080e-28] * u.g / u.cm**3) @pytest.mark.skipif('not HAS_SCIPY') def test_comoving_distance_z1z2(): tcos = core.LambdaCDM(100, 0.3, 0.8, Tcmb0=0.0) with pytest.raises(ValueError): # test diff size z1, z2 fail tcos._comoving_distance_z1z2((1, 2), (3, 4, 5)) # Comoving distances are invertible assert allclose(tcos._comoving_distance_z1z2(1, 2), -tcos._comoving_distance_z1z2(2, 1)) z1 = 0, 0, 2, 0.5, 1 z2 = 2, 1, 1, 2.5, 1.1 results = (3767.90579253, 2386.25591391, -1381.64987862, 2893.11776663, 174.1524683) * u.Mpc assert allclose(tcos._comoving_distance_z1z2(z1, z2), results) @pytest.mark.skipif('not HAS_SCIPY') def test_age_in_special_cosmologies(): """Check that age in de Sitter and Einstein-de Sitter Universes work. Some analytic solutions fail at these critical points. """ c_dS = core.FlatLambdaCDM(100, 0, Tcmb0=0) assert allclose(c_dS.age(z=0), np.inf * u.Gyr) assert allclose(c_dS.age(z=1), np.inf * u.Gyr) assert allclose(c_dS.lookback_time(z=0), 0 * u.Gyr) assert allclose(c_dS.lookback_time(z=1), 6.777539216261741 * u.Gyr) c_EdS = core.FlatLambdaCDM(100, 1, Tcmb0=0) assert allclose(c_EdS.age(z=0), 6.518614811154189 * u.Gyr) assert allclose(c_EdS.age(z=1), 2.3046783684542738 * u.Gyr) assert allclose(c_EdS.lookback_time(z=0), 0 * u.Gyr) assert allclose(c_EdS.lookback_time(z=1), 4.213936442699092 * u.Gyr) @pytest.mark.skipif('not HAS_SCIPY') def test_distance_in_special_cosmologies(): """Check that de Sitter and Einstein-de Sitter Universes both work. Some analytic solutions fail at these critical points. """ c_dS = core.FlatLambdaCDM(100, 0, Tcmb0=0) assert allclose(c_dS.comoving_distance(z=0), 0 * u.Mpc) assert allclose(c_dS.comoving_distance(z=1), 2997.92458 * u.Mpc) c_EdS = core.FlatLambdaCDM(100, 1, Tcmb0=0) assert allclose(c_EdS.comoving_distance(z=0), 0 * u.Mpc) assert allclose(c_EdS.comoving_distance(z=1), 1756.1435599923348 * u.Mpc) c_dS = core.LambdaCDM(100, 0, 1, Tcmb0=0) assert allclose(c_dS.comoving_distance(z=0), 0 * u.Mpc) assert allclose(c_dS.comoving_distance(z=1), 2997.92458 * u.Mpc) c_EdS = core.LambdaCDM(100, 1, 0, Tcmb0=0) assert allclose(c_EdS.comoving_distance(z=0), 0 * u.Mpc) assert allclose(c_EdS.comoving_distance(z=1), 1756.1435599923348 * u.Mpc) @pytest.mark.skipif('not HAS_SCIPY') def test_comoving_transverse_distance_z1z2(): tcos = core.FlatLambdaCDM(100, 0.3, Tcmb0=0.0) with pytest.raises(ValueError): # test diff size z1, z2 fail tcos._comoving_transverse_distance_z1z2((1, 2), (3, 4, 5)) # Tests that should actually work, target values computed with # http://www.astro.multivax.de:8000/phillip/angsiz_prog/README.HTML # Kayser, Helbig, and Schramm (Astron.Astrophys. 318 (1997) 680-686) assert allclose(tcos._comoving_transverse_distance_z1z2(1, 2), 1313.2232194828466 * u.Mpc) # In a flat universe comoving distance and comoving transverse # distance are identical z1 = 0, 0, 2, 0.5, 1 z2 = 2, 1, 1, 2.5, 1.1 assert allclose(tcos._comoving_distance_z1z2(z1, z2), tcos._comoving_transverse_distance_z1z2(z1, z2)) # Test Flat Universe with Omega_M > 1. Rarely used, but perfectly valid. tcos = core.FlatLambdaCDM(100, 1.5, Tcmb0=0.0) results = (2202.72682564, 1559.51679971, -643.21002593, 1408.36365679, 85.09286258) * u.Mpc assert allclose(tcos._comoving_transverse_distance_z1z2(z1, z2), results) # In a flat universe comoving distance and comoving transverse # distance are identical z1 = 0, 0, 2, 0.5, 1 z2 = 2, 1, 1, 2.5, 1.1 assert allclose(tcos._comoving_distance_z1z2(z1, z2), tcos._comoving_transverse_distance_z1z2(z1, z2)) # Test non-flat cases to avoid simply testing # comoving_distance_z1z2. Test array, array case. tcos = core.LambdaCDM(100, 0.3, 0.5, Tcmb0=0.0) results = (3535.931375645655, 2226.430046551708, -1208.6817970036532, 2595.567367601969, 151.36592003406884) * u.Mpc assert allclose(tcos._comoving_transverse_distance_z1z2(z1, z2), results) # Test positive curvature with scalar, array combination. tcos = core.LambdaCDM(100, 1.0, 0.2, Tcmb0=0.0) z1 = 0.1 z2 = 0, 0.1, 0.2, 0.5, 1.1, 2 results = (-281.31602666724865, 0., 248.58093707820436, 843.9331377460543, 1618.6104987686672, 2287.5626543279927) * u.Mpc assert allclose(tcos._comoving_transverse_distance_z1z2(z1, z2), results) @pytest.mark.skipif('not HAS_SCIPY') def test_angular_diameter_distance_z1z2(): tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) with pytest.raises(ValueError): # test diff size z1, z2 fail tcos.angular_diameter_distance_z1z2([1, 2], [3, 4, 5]) # Tests that should actually work assert allclose(tcos.angular_diameter_distance_z1z2(1, 2), 646.22968662822018 * u.Mpc) z1 = 0, 0, 2, 0.5, 1 z2 = 2, 1, 1, 2.5, 1.1 results = (1760.0628637762106, 1670.7497657219858, -969.34452994, 1159.0970895962193, 115.72768186186921) * u.Mpc assert allclose(tcos.angular_diameter_distance_z1z2(z1, z2), results) z1 = 0.1 z2 = 0.1, 0.2, 0.5, 1.1, 2 results = (0., 332.09893173, 986.35635069, 1508.37010062, 1621.07937976) * u.Mpc assert allclose(tcos.angular_diameter_distance_z1z2(0.1, z2), results) # Non-flat (positive Ok0) test tcos = core.LambdaCDM(H0=70.4, Om0=0.2, Ode0=0.5, Tcmb0=0.0) assert allclose(tcos.angular_diameter_distance_z1z2(1, 2), 620.1175337852428 * u.Mpc) # Non-flat (negative Ok0) test tcos = core.LambdaCDM(H0=100, Om0=2, Ode0=1, Tcmb0=0.0) assert allclose(tcos.angular_diameter_distance_z1z2(1, 2), 228.42914659246014 * u.Mpc) @pytest.mark.skipif('not HAS_SCIPY') def test_absorption_distance(): tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0.0) assert allclose(tcos.absorption_distance([1, 3]), [1.72576635, 7.98685853]) assert allclose(tcos.absorption_distance([1., 3.]), [1.72576635, 7.98685853]) assert allclose(tcos.absorption_distance(3), 7.98685853) assert allclose(tcos.absorption_distance(3.), 7.98685853) @pytest.mark.skipif('not HAS_SCIPY') def test_massivenu_basic(): # Test no neutrinos case tcos = core.FlatLambdaCDM(70.4, 0.272, Neff=4.05, Tcmb0=2.725 * u.K, m_nu=u.Quantity(0, u.eV)) assert allclose(tcos.Neff, 4.05) assert not tcos.has_massive_nu mnu = tcos.m_nu assert len(mnu) == 4 assert mnu.unit == u.eV assert allclose(mnu, [0.0, 0.0, 0.0, 0.0] * u.eV) assert allclose(tcos.nu_relative_density(1.), 0.22710731766 * 4.05, rtol=1e-6) assert allclose(tcos.nu_relative_density(1), 0.22710731766 * 4.05, rtol=1e-6) # Alternative no neutrinos case tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=0 * u.K, m_nu=u.Quantity(0.4, u.eV)) assert not tcos.has_massive_nu assert tcos.m_nu is None # Test basic setting, retrieval of values tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=2.725 * u.K, m_nu=u.Quantity([0.0, 0.01, 0.02], u.eV)) assert tcos.has_massive_nu mnu = tcos.m_nu assert len(mnu) == 3 assert mnu.unit == u.eV assert allclose(mnu, [0.0, 0.01, 0.02] * u.eV) # All massive neutrinos case tcos = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=2.725, m_nu=u.Quantity(0.1, u.eV), Neff=3.1) assert allclose(tcos.Neff, 3.1) assert tcos.has_massive_nu mnu = tcos.m_nu assert len(mnu) == 3 assert mnu.unit == u.eV assert allclose(mnu, [0.1, 0.1, 0.1] * u.eV) @pytest.mark.skipif('not HAS_SCIPY') def test_distances(): # Test distance calculations for various special case # scenarios (no relativistic species, normal, massive neutrinos) # These do not come from external codes -- they are just internal # checks to make sure nothing changes if we muck with the distance # calculators z = np.array([1.0, 2.0, 3.0, 4.0]) # The pattern here is: no relativistic species, the relativistic # species with massless neutrinos, then massive neutrinos cos = core.LambdaCDM(75.0, 0.25, 0.5, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [2953.93001902, 4616.7134253, 5685.07765971, 6440.80611897] * u.Mpc, rtol=1e-4) cos = core.LambdaCDM(75.0, 0.25, 0.6, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [3037.12620424, 4776.86236327, 5889.55164479, 6671.85418235] * u.Mpc, rtol=1e-4) cos = core.LambdaCDM(75.0, 0.3, 0.4, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2471.80626824, 3567.1902565, 4207.15995626, 4638.20476018] * u.Mpc, rtol=1e-4) # Flat cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [3180.83488552, 5060.82054204, 6253.6721173, 7083.5374303] * u.Mpc, rtol=1e-4) cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [3180.42662867, 5059.60529655, 6251.62766102, 7080.71698117] * u.Mpc, rtol=1e-4) cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2337.54183142, 3371.91131264, 3988.40711188, 4409.09346922] * u.Mpc, rtol=1e-4) # Add w cos = core.FlatwCDM(75.0, 0.25, w0=-1.05, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [3216.8296894, 5117.2097601, 6317.05995437, 7149.68648536] * u.Mpc, rtol=1e-4) cos = core.FlatwCDM(75.0, 0.25, w0=-0.95, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [3143.56537758, 5000.32196494, 6184.11444601, 7009.80166062] * u.Mpc, rtol=1e-4) cos = core.FlatwCDM(75.0, 0.25, w0=-0.9, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2337.76035371, 3372.1971387, 3988.71362289, 4409.40817174] * u.Mpc, rtol=1e-4) # Non-flat w cos = core.wCDM(75.0, 0.25, 0.4, w0=-0.9, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [2849.6163356, 4428.71661565, 5450.97862778, 6179.37072324] * u.Mpc, rtol=1e-4) cos = core.wCDM(75.0, 0.25, 0.4, w0=-1.1, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [2904.35580229, 4511.11471267, 5543.43643353, 6275.9206788] * u.Mpc, rtol=1e-4) cos = core.wCDM(75.0, 0.25, 0.4, w0=-0.9, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2473.32522734, 3581.54519631, 4232.41674426, 4671.83818117] * u.Mpc, rtol=1e-4) # w0wa cos = core.w0waCDM(75.0, 0.3, 0.6, w0=-0.9, wa=0.1, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [2937.7807638, 4572.59950903, 5611.52821924, 6339.8549956] * u.Mpc, rtol=1e-4) cos = core.w0waCDM(75.0, 0.25, 0.5, w0=-0.9, wa=0.1, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [2907.34722624, 4539.01723198, 5593.51611281, 6342.3228444] * u.Mpc, rtol=1e-4) cos = core.w0waCDM(75.0, 0.25, 0.5, w0=-0.9, wa=0.1, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2507.18336722, 3633.33231695, 4292.44746919, 4736.35404638] * u.Mpc, rtol=1e-4) # Flatw0wa cos = core.Flatw0waCDM(75.0, 0.25, w0=-0.95, wa=0.15, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [3123.29892781, 4956.15204302, 6128.15563818, 6948.26480378] * u.Mpc, rtol=1e-4) cos = core.Flatw0waCDM(75.0, 0.25, w0=-0.95, wa=0.15, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [3122.92671907, 4955.03768936, 6126.25719576, 6945.61856513] * u.Mpc, rtol=1e-4) cos = core.Flatw0waCDM(75.0, 0.25, w0=-0.95, wa=0.15, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(10.0, u.eV)) assert allclose(cos.comoving_distance(z), [2337.70072701, 3372.13719963, 3988.6571093, 4409.35399673] * u.Mpc, rtol=1e-4) # wpwa cos = core.wpwaCDM(75.0, 0.3, 0.6, wp=-0.9, zp=0.5, wa=0.1, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [2954.68975298, 4599.83254834, 5643.04013201, 6373.36147627] * u.Mpc, rtol=1e-4) cos = core.wpwaCDM(75.0, 0.25, 0.5, wp=-0.9, zp=0.4, wa=0.1, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [2919.00656215, 4558.0218123, 5615.73412391, 6366.10224229] * u.Mpc, rtol=1e-4) cos = core.wpwaCDM(75.0, 0.25, 0.5, wp=-0.9, zp=1.0, wa=0.1, Tcmb0=3.0, Neff=4, m_nu=u.Quantity(5.0, u.eV)) assert allclose(cos.comoving_distance(z), [2629.48489827, 3874.13392319, 4614.31562397, 5116.51184842] * u.Mpc, rtol=1e-4) # w0wz cos = core.w0wzCDM(75.0, 0.3, 0.6, w0=-0.9, wz=0.1, Tcmb0=0.0) assert allclose(cos.comoving_distance(z), [3051.68786716, 4756.17714818, 5822.38084257, 6562.70873734] * u.Mpc, rtol=1e-4) cos = core.w0wzCDM(75.0, 0.25, 0.5, w0=-0.9, wz=0.1, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.0, u.eV)) assert allclose(cos.comoving_distance(z), [2997.8115653, 4686.45599916, 5764.54388557, 6524.17408738] * u.Mpc, rtol=1e-4) cos = core.w0wzCDM(75.0, 0.25, 0.5, w0=-0.9, wz=0.1, Tcmb0=3.0, Neff=4, m_nu=u.Quantity(5.0, u.eV)) assert allclose(cos.comoving_distance(z), [2676.73467639, 3940.57967585, 4686.90810278, 5191.54178243] * u.Mpc, rtol=1e-4) # Also test different numbers of massive neutrinos # for FlatLambdaCDM to give the scalar nu density functions a # work out cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, m_nu=u.Quantity([10.0, 0, 0], u.eV)) assert allclose(cos.comoving_distance(z), [2777.71589173, 4186.91111666, 5046.0300719, 5636.10397302] * u.Mpc, rtol=1e-4) cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, m_nu=u.Quantity([10.0, 5, 0], u.eV)) assert allclose(cos.comoving_distance(z), [2636.48149391, 3913.14102091, 4684.59108974, 5213.07557084] * u.Mpc, rtol=1e-4) cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, m_nu=u.Quantity([4.0, 5, 9], u.eV)) assert allclose(cos.comoving_distance(z), [2563.5093049, 3776.63362071, 4506.83448243, 5006.50158829] * u.Mpc, rtol=1e-4) cos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=4.2, m_nu=u.Quantity([1.0, 4.0, 5, 9], u.eV)) assert allclose(cos.comoving_distance(z), [2525.58017482, 3706.87633298, 4416.58398847, 4901.96669755] * u.Mpc, rtol=1e-4) @pytest.mark.skipif('not HAS_SCIPY') def test_massivenu_density(): # Testing neutrino density calculation # Simple test cosmology, where we compare rho_nu and rho_gamma # against the exact formula (eq 24/25 of Komatsu et al. 2011) # computed using Mathematica. The approximation we use for f(y) # is only good to ~ 0.5% (with some redshift dependence), so that's # what we test to. ztest = np.array([0.0, 1.0, 2.0, 10.0, 1000.0]) nuprefac = 7.0 / 8.0 * (4.0 / 11.0) ** (4.0 / 3.0) # First try 3 massive neutrinos, all 100 eV -- note this is a universe # seriously dominated by neutrinos! tcos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(100.0, u.eV)) assert tcos.has_massive_nu assert tcos.Neff == 3 nurel_exp = nuprefac * tcos.Neff * np.array([171969, 85984.5, 57323, 15633.5, 171.801]) assert allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3) assert allclose(tcos.efunc([0.0, 1.0]), [1.0, 7.46144727668], rtol=5e-3) # Next, slightly less massive tcos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.25, u.eV)) nurel_exp = nuprefac * tcos.Neff * np.array([429.924, 214.964, 143.312, 39.1005, 1.11086]) assert allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3) # For this one also test Onu directly onu_exp = np.array([0.01890217, 0.05244681, 0.0638236, 0.06999286, 0.1344951]) assert allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3) # And fairly light tcos = core.FlatLambdaCDM(80.0, 0.30, Tcmb0=3.0, Neff=3, m_nu=u.Quantity(0.01, u.eV)) nurel_exp = nuprefac * tcos.Neff * np.array([17.2347, 8.67345, 5.84348, 1.90671, 1.00021]) assert allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3) onu_exp = np.array([0.00066599, 0.00172677, 0.0020732, 0.00268404, 0.0978313]) assert allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3) assert allclose(tcos.efunc([1.0, 2.0]), [1.76225893, 2.97022048], rtol=1e-4) assert allclose(tcos.inv_efunc([1.0, 2.0]), [0.5674535, 0.33667534], rtol=1e-4) # Now a mixture of neutrino masses, with non-integer Neff tcos = core.FlatLambdaCDM(80.0, 0.30, Tcmb0=3.0, Neff=3.04, m_nu=u.Quantity([0.0, 0.01, 0.25], u.eV)) nurel_exp = nuprefac * tcos.Neff * \ np.array([149.386233, 74.87915, 50.0518, 14.002403, 1.03702333]) assert allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3) onu_exp = np.array([0.00584959, 0.01493142, 0.01772291, 0.01963451, 0.10227728]) assert allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3) # Integer redshifts ztest = ztest.astype(int) assert allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3) assert allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3) @pytest.mark.skipif('not HAS_SCIPY') def test_z_at_value(): # These are tests of expected values, and hence have less precision # than the roundtrip tests below (test_z_at_value_roundtrip); # here we have to worry about the cosmological calculations # giving slightly different values on different architectures, # there we are checking internal consistency on the same architecture # and so can be more demanding z_at_value = funcs.z_at_value cosmo = core.Planck13 d = cosmo.luminosity_distance(3) assert allclose(z_at_value(cosmo.luminosity_distance, d), 3, rtol=1e-8) assert allclose(z_at_value(cosmo.age, 2 * u.Gyr), 3.198122684356, rtol=1e-6) assert allclose(z_at_value(cosmo.luminosity_distance, 1e4 * u.Mpc), 1.3685790653802761, rtol=1e-6) assert allclose(z_at_value(cosmo.lookback_time, 7 * u.Gyr), 0.7951983674601507, rtol=1e-6) assert allclose(z_at_value(cosmo.angular_diameter_distance, 1500*u.Mpc, zmax=2), 0.68127769625288614, rtol=1e-6) assert allclose(z_at_value(cosmo.angular_diameter_distance, 1500*u.Mpc, zmin=2.5), 3.7914908028272083, rtol=1e-6) assert allclose(z_at_value(cosmo.distmod, 46 * u.mag), 1.9913891680278133, rtol=1e-6) # test behavior when the solution is outside z limits (should # raise a CosmologyError) with pytest.raises(core.CosmologyError): with pytest.warns(UserWarning, match='fval is not bracketed'): z_at_value(cosmo.angular_diameter_distance, 1500*u.Mpc, zmax=0.5) with pytest.raises(core.CosmologyError): with pytest.warns(UserWarning, match='fval is not bracketed'): z_at_value(cosmo.angular_diameter_distance, 1500*u.Mpc, zmin=4.) @pytest.mark.skipif('not HAS_SCIPY') def test_z_at_value_roundtrip(): """ Calculate values from a known redshift, and then check that z_at_value returns the right answer. """ z = 0.5 # Skip Ok, w, de_density_scale because in the Planck13 cosmology # they are redshift independent and hence uninvertable, # *_distance_z1z2 methods take multiple arguments, so require # special handling # clone isn't a redshift-dependent method skip = ('Ok', 'angular_diameter_distance_z1z2', 'clone', 'de_density_scale', 'w') import inspect methods = inspect.getmembers(core.Planck13, predicate=inspect.ismethod) for name, func in methods: if name.startswith('_') or name in skip: continue print('Round-trip testing {0}'.format(name)) fval = func(z) # we need zmax here to pick the right solution for # angular_diameter_distance and related methods. # Be slightly more generous with rtol than the default 1e-8 # used in z_at_value assert allclose(z, funcs.z_at_value(func, fval, zmax=1.5), rtol=2e-8) # Test distance functions between two redshifts z2 = 2.0 func_z1z2 = [lambda z1: core.Planck13._comoving_distance_z1z2(z1, z2), lambda z1: core.Planck13._comoving_transverse_distance_z1z2(z1, z2), lambda z1: core.Planck13.angular_diameter_distance_z1z2(z1, z2)] for func in func_z1z2: fval = func(z) assert allclose(z, funcs.z_at_value(func, fval, zmax=1.5), rtol=2e-8) @pytest.mark.skipif('not HAS_SCIPY') def test_elliptic_comoving_distance_z1z2(): """Regression test for #8388.""" cosmo = core.LambdaCDM(70., 2.3, 0.05, Tcmb0=0) z = 0.2 assert allclose(cosmo.comoving_distance(z), cosmo._integral_comoving_distance_z1z2(0., z)) assert allclose(cosmo._elliptic_comoving_distance_z1z2(0., z), cosmo._integral_comoving_distance_z1z2(0., z))
4ba76341ddabbb736b9551c0ebe9b2d1642984a7cbfa2046922a3067d289822e
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This file is the main file used when running tests with pytest directly, # in particular if running e.g. ``pytest docs/``. from importlib.util import find_spec import os import pkg_resources import tempfile from astropy.tests.plugins.display import PYTEST_HEADER_MODULES import astropy pytest_plugins = [ 'astropy.tests.plugins.display', ] if find_spec('asdf') is not None: from asdf import __version__ as asdf_version if asdf_version >= astropy.__minimum_asdf_version__: entry_points = [] for entry_point in pkg_resources.iter_entry_points('pytest11'): entry_points.append(entry_point.name) if "asdf_schema_tester" not in entry_points: pytest_plugins += ['asdf.tests.schema_tester'] PYTEST_HEADER_MODULES['Asdf'] = 'asdf' # Make sure we use temporary directories for the config and cache # so that the tests are insensitive to local configuration. os.environ['XDG_CONFIG_HOME'] = tempfile.mkdtemp('astropy_config') os.environ['XDG_CACHE_HOME'] = tempfile.mkdtemp('astropy_cache') os.mkdir(os.path.join(os.environ['XDG_CONFIG_HOME'], 'astropy')) os.mkdir(os.path.join(os.environ['XDG_CACHE_HOME'], 'astropy')) # Note that we don't need to change the environment variables back or remove # them after testing, because they are only changed for the duration of the # Python process, and this configuration only matters if running pytest # directly, not from e.g. an IPython session.
ecc9c6b1fa6e53f91ffe90be4c11681bc39d32483486c306549e67c1810e03c2
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astropy is a package intended to contain core functionality and some common tools needed for performing astronomy and astrophysics research with Python. It also provides an index for other astronomy packages and tools for managing them. """ # Prior to Astropy 3.2, astropy was imported during setup.py commands. If we are # in setup mode, then astropy-helpers defines an _ASTROPY_SETUP_ variable, which # we used to use to conditionally import C extensions for example. However, the # behavior of importing the package during the setup process is not good # practice and we therefore now explicitly prevent the package from being # imported in that case to prevent any regressions. We use _ASTROPY_CORE_SETUP_ # (defined in setup.py) rather than _ASTROPY_SETUP_ since the latter is also # set up for affiliated packages, and those need to be able to import the # (installed) core package during e.g. python setup.py test. try: _ASTROPY_CORE_SETUP_ except NameError: pass else: raise RuntimeError("The astropy package cannot be imported during setup") import sys import os from warnings import warn __minimum_python_version__ = '3.5' __minimum_numpy_version__ = '1.13.0' # ASDF is an optional dependency, but this is the minimum version that is # compatible with Astropy when it is installed. __minimum_asdf_version__ = '2.3.0' class UnsupportedPythonError(Exception): pass # This is the same check as the one at the top of setup.py if sys.version_info < tuple((int(val) for val in __minimum_python_version__.split('.'))): raise UnsupportedPythonError("Astropy does not support Python < {}".format(__minimum_python_version__)) def _is_astropy_source(path=None): """ Returns whether the source for this module is directly in an astropy source distribution or checkout. """ # If this __init__.py file is in ./astropy/ then import is within a source # dir .astropy-root is a file distributed with the source, but that should # not installed if path is None: path = os.path.join(os.path.dirname(__file__), os.pardir) elif os.path.isfile(path): path = os.path.dirname(path) source_dir = os.path.abspath(path) return os.path.exists(os.path.join(source_dir, '.astropy-root')) def _is_astropy_setup(): """ Returns whether we are currently being imported in the context of running Astropy's setup.py. """ main_mod = sys.modules.get('__main__') if not main_mod: return False return (getattr(main_mod, '__file__', False) and os.path.basename(main_mod.__file__).rstrip('co') == 'setup.py' and _is_astropy_source(main_mod.__file__)) try: from .version import version as __version__ except ImportError: # TODO: Issue a warning using the logging framework __version__ = '' try: from .version import githash as __githash__ except ImportError: # TODO: Issue a warning using the logging framework __githash__ = '' # The location of the online documentation for astropy # This location will normally point to the current released version of astropy if 'dev' in __version__: online_docs_root = 'http://docs.astropy.org/en/latest/' else: online_docs_root = 'http://docs.astropy.org/en/{0}/'.format(__version__) def _check_numpy(): """ Check that Numpy is installed and it is of the minimum version we require. """ # Note: We could have used distutils.version for this comparison, # but it seems like overkill to import distutils at runtime. requirement_met = False try: import numpy except ImportError: pass else: from .utils import minversion requirement_met = minversion(numpy, __minimum_numpy_version__) if not requirement_met: msg = ("Numpy version {0} or later must be installed to use " "Astropy".format(__minimum_numpy_version__)) raise ImportError(msg) return numpy _check_numpy() from . import config as _config class Conf(_config.ConfigNamespace): """ Configuration parameters for `astropy`. """ unicode_output = _config.ConfigItem( False, 'When True, use Unicode characters when outputting values, and ' 'displaying widgets at the console.') use_color = _config.ConfigItem( sys.platform != 'win32', 'When True, use ANSI color escape sequences when writing to the console.', aliases=['astropy.utils.console.USE_COLOR', 'astropy.logger.USE_COLOR']) max_lines = _config.ConfigItem( None, description='Maximum number of lines in the display of pretty-printed ' 'objects. If not provided, try to determine automatically from the ' 'terminal size. Negative numbers mean no limit.', cfgtype='integer(default=None)', aliases=['astropy.table.pprint.max_lines']) max_width = _config.ConfigItem( None, description='Maximum number of characters per line in the display of ' 'pretty-printed objects. If not provided, try to determine ' 'automatically from the terminal size. Negative numbers mean no ' 'limit.', cfgtype='integer(default=None)', aliases=['astropy.table.pprint.max_width']) conf = Conf() # Define a base ScienceState for configuring constants and units from .utils.state import ScienceState class base_constants_version(ScienceState): """ Base class for the real version-setters below """ _value = 'test' _versions = dict(test='test') @classmethod def validate(cls, value): if value not in cls._versions: raise ValueError('Must be one of {}' .format(list(cls._versions.keys()))) return cls._versions[value] @classmethod def set(cls, value): """ Set the current constants value. """ import sys if 'astropy.units' in sys.modules: raise RuntimeError('astropy.units is already imported') if 'astropy.constants' in sys.modules: raise RuntimeError('astropy.constants is already imported') class _Context: def __init__(self, parent, value): self._value = value self._parent = parent def __enter__(self): pass def __exit__(self, type, value, tb): self._parent._value = self._value def __repr__(self): return ('<ScienceState {0}: {1!r}>' .format(self._parent.__name__, self._parent._value)) ctx = _Context(cls, cls._value) value = cls.validate(value) cls._value = value return ctx class physical_constants(base_constants_version): """ The version of physical constants to use """ # Maintainers: update when new constants are added _value = 'codata2014' _versions = dict(codata2018='codata2018', codata2014='codata2014', codata2010='codata2010', astropyconst40='codata2018', astropyconst20='codata2014', astropyconst13='codata2010') class astronomical_constants(base_constants_version): """ The version of astronomical constants to use """ # Maintainers: update when new constants are added _value = 'iau2015' _versions = dict(iau2015='iau2015', iau2012='iau2012', astropyconst40='iau2015', astropyconst20='iau2015', astropyconst13='iau2012') # Create the test() function from .tests.runner import TestRunner test = TestRunner.make_test_runner_in(__path__[0]) # if we are *not* in setup mode, import the logger and possibly populate the # configuration file with the defaults def _initialize_astropy(): from . import config def _rollback_import(message): log.error(message) # Now disable exception logging to avoid an annoying error in the # exception logger before we raise the import error: _teardown_log() # Roll back any astropy sub-modules that have been imported thus # far for key in list(sys.modules): if key.startswith('astropy.'): del sys.modules[key] raise ImportError('astropy') try: from .utils import _compiler except ImportError: if _is_astropy_source(): log.warning('You appear to be trying to import astropy from ' 'within a source checkout without building the ' 'extension modules first. Attempting to (re)build ' 'extension modules:') try: _rebuild_extensions() except BaseException as exc: _rollback_import( 'An error occurred while attempting to rebuild the ' 'extension modules. Please try manually running ' '`./setup.py develop` or `./setup.py build_ext ' '--inplace` to see what the issue was. Extension ' 'modules must be successfully compiled and importable ' 'in order to import astropy.') # Reraise the Exception only in case it wasn't an Exception, # for example if a "SystemExit" or "KeyboardInterrupt" was # invoked. if not isinstance(exc, Exception): raise else: # Outright broken installation; don't be nice. raise # add these here so we only need to cleanup the namespace at the end config_dir = os.path.dirname(__file__) try: config.configuration.update_default_config(__package__, config_dir) except config.configuration.ConfigurationDefaultMissingError as e: wmsg = (e.args[0] + " Cannot install default profile. If you are " "importing from source, this is expected.") warn(config.configuration.ConfigurationDefaultMissingWarning(wmsg)) def _rebuild_extensions(): global __version__ global __githash__ import subprocess import time from .utils.console import Spinner devnull = open(os.devnull, 'w') old_cwd = os.getcwd() os.chdir(os.path.join(os.path.dirname(__file__), os.pardir)) try: sp = subprocess.Popen([sys.executable, 'setup.py', 'build_ext', '--inplace'], stdout=devnull, stderr=devnull) with Spinner('Rebuilding extension modules') as spinner: while sp.poll() is None: next(spinner) time.sleep(0.05) finally: os.chdir(old_cwd) devnull.close() if sp.returncode != 0: raise OSError('Running setup.py build_ext --inplace failed ' 'with error code {0}: try rerunning this command ' 'manually to check what the error was.'.format( sp.returncode)) # Try re-loading module-level globals from the astropy.version module, # which may not have existed before this function ran try: from .version import version as __version__ except ImportError: pass try: from .version import githash as __githash__ except ImportError: pass # Set the bibtex entry to the article referenced in CITATION. def _get_bibtex(): citation_file = os.path.join(os.path.dirname(__file__), 'CITATION') with open(citation_file, 'r') as citation: refs = citation.read().split('@ARTICLE')[1:] if len(refs) == 0: return '' bibtexreference = "@ARTICLE{0}".format(refs[0]) return bibtexreference __citation__ = __bibtex__ = _get_bibtex() import logging # Use the root logger as a dummy log before initilizing Astropy's logger log = logging.getLogger() from .logger import _init_log, _teardown_log log = _init_log() _initialize_astropy() from .utils.misc import find_api_page def online_help(query): """ Search the online Astropy documentation for the given query. Opens the results in the default web browser. Requires an active Internet connection. Parameters ---------- query : str The search query. """ from urllib.parse import urlencode import webbrowser version = __version__ if 'dev' in version: version = 'latest' else: version = 'v' + version url = 'http://docs.astropy.org/en/{0}/search.html?{1}'.format( version, urlencode({'q': query})) webbrowser.open(url) __dir_inc__ = ['__version__', '__githash__', '__minimum_numpy_version__', '__bibtex__', 'test', 'log', 'find_api_page', 'online_help', 'online_docs_root', 'conf', 'physical_constants', 'astronomical_constants'] from types import ModuleType as __module_type__ # Clean up top-level namespace--delete everything that isn't in __dir_inc__ # or is a magic attribute, and that isn't a submodule of this package for varname in dir(): if not ((varname.startswith('__') and varname.endswith('__')) or varname in __dir_inc__ or (varname[0] != '_' and isinstance(locals()[varname], __module_type__) and locals()[varname].__name__.startswith(__name__ + '.'))): # The last clause in the the above disjunction deserves explanation: # When using relative imports like ``from .. import config``, the # ``config`` variable is automatically created in the namespace of # whatever module ``..`` resolves to (in this case astropy). This # happens a few times just in the module setup above. This allows # the cleanup to keep any public submodules of the astropy package del locals()[varname] del varname, __module_type__
4b5245728dbee3f61ffb82c3f96a059d0eba7a820f778380a60768f8bb31c9ea
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This file contains pytest configuration settings that are astropy-specific (i.e. those that would not necessarily be shared by affiliated packages making use of astropy's test runner). """ import os import builtins import tempfile from astropy.tests.plugins.display import PYTEST_HEADER_MODULES from astropy.tests.helper import enable_deprecations_as_exceptions try: import matplotlib except ImportError: HAS_MATPLOTLIB = False else: HAS_MATPLOTLIB = True enable_deprecations_as_exceptions( include_astropy_deprecations=False, # This is a workaround for the OpenSSL deprecation warning that comes from # the `requests` module. It only appears when both asdf and sphinx are # installed. This can be removed once pyopenssl 1.7.20+ is released. modules_to_ignore_on_import=['requests']) if HAS_MATPLOTLIB: matplotlib.use('Agg') matplotlibrc_cache = {} def pytest_configure(config): builtins._pytest_running = True # do not assign to matplotlibrc_cache in function scope if HAS_MATPLOTLIB: matplotlibrc_cache.update(matplotlib.rcParams) matplotlib.rcdefaults() # Make sure we use temporary directories for the config and cache # so that the tests are insensitive to local configuration. Note that this # is also set in the test runner, but we need to also set it here for # things to work properly in parallel mode builtins._xdg_config_home_orig = os.environ.get('XDG_CONFIG_HOME') builtins._xdg_cache_home_orig = os.environ.get('XDG_CACHE_HOME') os.environ['XDG_CONFIG_HOME'] = tempfile.mkdtemp('astropy_config') os.environ['XDG_CACHE_HOME'] = tempfile.mkdtemp('astropy_cache') os.mkdir(os.path.join(os.environ['XDG_CONFIG_HOME'], 'astropy')) os.mkdir(os.path.join(os.environ['XDG_CACHE_HOME'], 'astropy')) def pytest_unconfigure(config): builtins._pytest_running = False # do not assign to matplotlibrc_cache in function scope if HAS_MATPLOTLIB: matplotlib.rcParams.update(matplotlibrc_cache) matplotlibrc_cache.clear() if builtins._xdg_config_home_orig is None: os.environ.pop('XDG_CONFIG_HOME') else: os.environ['XDG_CONFIG_HOME'] = builtins._xdg_config_home_orig if builtins._xdg_cache_home_orig is None: os.environ.pop('XDG_CACHE_HOME') else: os.environ['XDG_CACHE_HOME'] = builtins._xdg_cache_home_orig PYTEST_HEADER_MODULES['Cython'] = 'cython' PYTEST_HEADER_MODULES['Scikit-image'] = 'skimage'
03805ed64da383f132c8645eebd6b5abe892d3dd48427c8a286a145a9e9f8e4a
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This file needs to be included here to make sure commands such # as ``python setup.py test ... -t docs/...`` works, since this # will ignore the conftest.py file at the root of the repository # and the one in astropy/conftest.py import os import tempfile # Make sure we use temporary directories for the config and cache # so that the tests are insensitive to local configuration. os.environ['XDG_CONFIG_HOME'] = tempfile.mkdtemp('astropy_config') os.environ['XDG_CACHE_HOME'] = tempfile.mkdtemp('astropy_cache') os.mkdir(os.path.join(os.environ['XDG_CONFIG_HOME'], 'astropy')) os.mkdir(os.path.join(os.environ['XDG_CACHE_HOME'], 'astropy')) # Note that we don't need to change the environment variables back or remove # them after testing, because they are only changed for the duration of the # Python process, and this configuration only matters if running pytest # directly, not from e.g. an IPython session.
2dbd41a8166b3ca4f8163a1f7b8ed4f3ac8198c7fa4b1b5fedcecb1f39aacbd1
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import weakref import re from copy import deepcopy import numpy as np from numpy import ma # Remove this when Numpy no longer emits this warning and that Numpy version # becomes the minimum required version for Astropy. # https://github.com/astropy/astropy/issues/6285 try: from numpy.ma.core import MaskedArrayFutureWarning except ImportError: # For Numpy versions that do not raise this warning. MaskedArrayFutureWarning = None from astropy.units import Unit, Quantity from astropy.utils.console import color_print from astropy.utils.metadata import MetaData from astropy.utils.data_info import BaseColumnInfo, dtype_info_name from astropy.utils.misc import dtype_bytes_or_chars from . import groups from . import pprint from .np_utils import fix_column_name # These "shims" provide __getitem__ implementations for Column and MaskedColumn from ._column_mixins import _ColumnGetitemShim, _MaskedColumnGetitemShim # Create a generic TableFormatter object for use by bare columns with no # parent table. FORMATTER = pprint.TableFormatter() class StringTruncateWarning(UserWarning): """ Warning class for when a string column is assigned a value that gets truncated because the base (numpy) string length is too short. This does not inherit from AstropyWarning because we want to use stacklevel=2 to show the user where the issue occurred in their code. """ pass # Always emit this warning, not just the first instance warnings.simplefilter('always', StringTruncateWarning) def _auto_names(n_cols): from . import conf return [str(conf.auto_colname).format(i) for i in range(n_cols)] # list of one and two-dimensional comparison functions, which sometimes return # a Column class and sometimes a plain array. Used in __array_wrap__ to ensure # they only return plain (masked) arrays (see #1446 and #1685) _comparison_functions = set( [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal, np.isfinite, np.isinf, np.isnan, np.sign, np.signbit]) def col_copy(col, copy_indices=True): """ Mixin-safe version of Column.copy() (with copy_data=True). Parameters ---------- col : Column or mixin column Input column copy_indices : bool Copy the column ``indices`` attribute Returns ------- col : Copy of input column """ if isinstance(col, BaseColumn): return col.copy() # The new column should have None for the parent_table ref. If the # original parent_table weakref there at the point of copying then it # generates an infinite recursion. Instead temporarily remove the weakref # on the original column and restore after the copy in an exception-safe # manner. parent_table = col.info.parent_table indices = col.info.indices col.info.parent_table = None col.info.indices = [] try: newcol = col.copy() if hasattr(col, 'copy') else deepcopy(col) newcol.info = col.info newcol.info.indices = deepcopy(indices or []) if copy_indices else [] for index in newcol.info.indices: index.replace_col(col, newcol) finally: col.info.parent_table = parent_table col.info.indices = indices return newcol class FalseArray(np.ndarray): """ Boolean mask array that is always False. This is used to create a stub ``mask`` property which is a boolean array of ``False`` used by default for mixin columns and corresponding to the mixin column data shape. The ``mask`` looks like a normal numpy array but an exception will be raised if ``True`` is assigned to any element. The consequences of the limitation are most obvious in the high-level table operations. Parameters ---------- shape : tuple Data shape """ def __new__(cls, shape): obj = np.zeros(shape, dtype=bool).view(cls) return obj def __setitem__(self, item, val): val = np.asarray(val) if np.any(val): raise ValueError('Cannot set any element of {0} class to True' .format(self.__class__.__name__)) class ColumnInfo(BaseColumnInfo): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. """ attrs_from_parent = BaseColumnInfo.attr_names _supports_indexing = True def new_like(self, cols, length, metadata_conflicts='warn', name=None): """ Return a new Column instance which is consistent with the input ``cols`` and has ``length`` rows. This is intended for creating an empty column object whose elements can be set in-place for table operations like join or vstack. Parameters ---------- cols : list List of input columns length : int Length of the output column object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output column name Returns ------- col : Column (or subclass) New instance of this class consistent with ``cols`` """ attrs = self.merge_cols_attributes(cols, metadata_conflicts, name, ('meta', 'unit', 'format', 'description')) return self._parent_cls(length=length, **attrs) class BaseColumn(_ColumnGetitemShim, np.ndarray): meta = MetaData() def __new__(cls, data=None, name=None, dtype=None, shape=(), length=0, description=None, unit=None, format=None, meta=None, copy=False, copy_indices=True): if data is None: dtype = (np.dtype(dtype).str, shape) self_data = np.zeros(length, dtype=dtype) elif isinstance(data, BaseColumn) and hasattr(data, '_name'): # When unpickling a MaskedColumn, ``data`` will be a bare # BaseColumn with none of the expected attributes. In this case # do NOT execute this block which initializes from ``data`` # attributes. self_data = np.array(data.data, dtype=dtype, copy=copy) if description is None: description = data.description if unit is None: unit = unit or data.unit if format is None: format = data.format if meta is None: meta = data.meta if name is None: name = data.name elif isinstance(data, Quantity): if unit is None: self_data = np.array(data, dtype=dtype, copy=copy) unit = data.unit else: self_data = np.array(data.to(unit), dtype=dtype, copy=copy) if description is None: description = data.info.description if format is None: format = data.info.format if meta is None: meta = data.info.meta else: if np.dtype(dtype).char == 'S': data = cls._encode_str(data) self_data = np.array(data, dtype=dtype, copy=copy) self = self_data.view(cls) self._name = fix_column_name(name) self._parent_table = None self.unit = unit self._format = format self.description = description self.meta = meta self.indices = deepcopy(getattr(data, 'indices', [])) if copy_indices else [] for index in self.indices: index.replace_col(data, self) return self @property def data(self): return self.view(np.ndarray) @property def parent_table(self): # Note: It seems there are some cases where _parent_table is not set, # such after restoring from a pickled Column. Perhaps that should be # fixed, but this is also okay for now. if getattr(self, '_parent_table', None) is None: return None else: return self._parent_table() @parent_table.setter def parent_table(self, table): if table is None: self._parent_table = None else: self._parent_table = weakref.ref(table) info = ColumnInfo() def copy(self, order='C', data=None, copy_data=True): """ Return a copy of the current instance. If ``data`` is supplied then a view (reference) of ``data`` is used, and ``copy_data`` is ignored. Parameters ---------- order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of ``a`` as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have different default values for their order= arguments.) Default is 'C'. data : array, optional If supplied then use a view of ``data`` instead of the instance data. This allows copying the instance attributes and meta. copy_data : bool, optional Make a copy of the internal numpy array instead of using a reference. Default is True. Returns ------- col : Column or MaskedColumn Copy of the current column (same type as original) """ if data is None: data = self.data if copy_data: data = data.copy(order) out = data.view(self.__class__) out.__array_finalize__(self) # If there is meta on the original column then deepcopy (since "copy" of column # implies complete independence from original). __array_finalize__ will have already # made a light copy. I'm not sure how to avoid that initial light copy. if self.meta is not None: out.meta = self.meta # MetaData descriptor does a deepcopy here # for MaskedColumn, MaskedArray.__array_finalize__ also copies mask # from self, which is not the idea here, so undo if isinstance(self, MaskedColumn): out._mask = data._mask self._copy_groups(out) return out def __setstate__(self, state): """ Restore the internal state of the Column/MaskedColumn for pickling purposes. This requires that the last element of ``state`` is a 5-tuple that has Column-specific state values. """ # Get the Column attributes names = ('_name', '_unit', '_format', 'description', 'meta', 'indices') attrs = {name: val for name, val in zip(names, state[-1])} state = state[:-1] # Using super().__setstate__(state) gives # "TypeError 'int' object is not iterable", raised in # astropy.table._column_mixins._ColumnGetitemShim.__setstate_cython__() # Previously, it seems to have given an infinite recursion. # Hence, manually call the right super class to actually set up # the array object. super_class = ma.MaskedArray if isinstance(self, ma.MaskedArray) else np.ndarray super_class.__setstate__(self, state) # Set the Column attributes for name, val in attrs.items(): setattr(self, name, val) self._parent_table = None def __reduce__(self): """ Return a 3-tuple for pickling a Column. Use the super-class functionality but then add in a 5-tuple of Column-specific values that get used in __setstate__. """ super_class = ma.MaskedArray if isinstance(self, ma.MaskedArray) else np.ndarray reconstruct_func, reconstruct_func_args, state = super_class.__reduce__(self) # Define Column-specific attrs and meta that gets added to state. column_state = (self.name, self.unit, self.format, self.description, self.meta, self.indices) state = state + (column_state,) return reconstruct_func, reconstruct_func_args, state def __array_finalize__(self, obj): # Obj will be none for direct call to Column() creator if obj is None: return if callable(super().__array_finalize__): super().__array_finalize__(obj) # Self was created from template (e.g. obj[slice] or (obj * 2)) # or viewcast e.g. obj.view(Column). In either case we want to # init Column attributes for self from obj if possible. self.parent_table = None if not hasattr(self, 'indices'): # may have been copied in __new__ self.indices = [] self._copy_attrs(obj) def __array_wrap__(self, out_arr, context=None): """ __array_wrap__ is called at the end of every ufunc. Normally, we want a Column object back and do not have to do anything special. But there are two exceptions: 1) If the output shape is different (e.g. for reduction ufuncs like sum() or mean()), a Column still linking to a parent_table makes little sense, so we return the output viewed as the column content (ndarray or MaskedArray). For this case, we use "[()]" to select everything, and to ensure we convert a zero rank array to a scalar. (For some reason np.sum() returns a zero rank scalar array while np.mean() returns a scalar; So the [()] is needed for this case. 2) When the output is created by any function that returns a boolean we also want to consistently return an array rather than a column (see #1446 and #1685) """ out_arr = super().__array_wrap__(out_arr, context) if (self.shape != out_arr.shape or (isinstance(out_arr, BaseColumn) and (context is not None and context[0] in _comparison_functions))): return out_arr.data[()] else: return out_arr @property def name(self): """ The name of this column. """ return self._name @name.setter def name(self, val): val = fix_column_name(val) if self.parent_table is not None: table = self.parent_table table.columns._rename_column(self.name, val) self._name = val @property def format(self): """ Format string for displaying values in this column. """ return self._format @format.setter def format(self, format_string): prev_format = getattr(self, '_format', None) self._format = format_string # set new format string try: # test whether it formats without error exemplarily self.pformat(max_lines=1) except Exception as err: # revert to restore previous format if there was one self._format = prev_format raise ValueError( "Invalid format for column '{0}': could not display " "values in this column using this format ({1})".format( self.name, err.args[0])) @property def descr(self): """Array-interface compliant full description of the column. This returns a 3-tuple (name, type, shape) that can always be used in a structured array dtype definition. """ return (self.name, self.dtype.str, self.shape[1:]) def iter_str_vals(self): """ Return an iterator that yields the string-formatted values of this column. Returns ------- str_vals : iterator Column values formatted as strings """ # Iterate over formatted values with no max number of lines, no column # name, no unit, and ignoring the returned header info in outs. _pformat_col_iter = self._formatter._pformat_col_iter for str_val in _pformat_col_iter(self, -1, show_name=False, show_unit=False, show_dtype=False, outs={}): yield str_val def attrs_equal(self, col): """Compare the column attributes of ``col`` to this object. The comparison attributes are: ``name``, ``unit``, ``dtype``, ``format``, ``description``, and ``meta``. Parameters ---------- col : Column Comparison column Returns ------- equal : boolean True if all attributes are equal """ if not isinstance(col, BaseColumn): raise ValueError('Comparison `col` must be a Column or ' 'MaskedColumn object') attrs = ('name', 'unit', 'dtype', 'format', 'description', 'meta') equal = all(getattr(self, x) == getattr(col, x) for x in attrs) return equal @property def _formatter(self): return FORMATTER if (self.parent_table is None) else self.parent_table.formatter def pformat(self, max_lines=None, show_name=True, show_unit=False, show_dtype=False, html=False): """Return a list of formatted string representation of column values. If no value of ``max_lines`` is supplied then the height of the screen terminal is used to set ``max_lines``. If the terminal height cannot be determined then the default will be determined using the ``astropy.conf.max_lines`` configuration item. If a negative value of ``max_lines`` is supplied then there is no line limit applied. Parameters ---------- max_lines : int Maximum lines of output (header + data rows) show_name : bool Include column name. Default is True. show_unit : bool Include a header row for unit. Default is False. show_dtype : bool Include column dtype. Default is False. html : bool Format the output as an HTML table. Default is False. Returns ------- lines : list List of lines with header and formatted column values """ _pformat_col = self._formatter._pformat_col lines, outs = _pformat_col(self, max_lines, show_name=show_name, show_unit=show_unit, show_dtype=show_dtype, html=html) return lines def pprint(self, max_lines=None, show_name=True, show_unit=False, show_dtype=False): """Print a formatted string representation of column values. If no value of ``max_lines`` is supplied then the height of the screen terminal is used to set ``max_lines``. If the terminal height cannot be determined then the default will be determined using the ``astropy.conf.max_lines`` configuration item. If a negative value of ``max_lines`` is supplied then there is no line limit applied. Parameters ---------- max_lines : int Maximum number of values in output show_name : bool Include column name. Default is True. show_unit : bool Include a header row for unit. Default is False. show_dtype : bool Include column dtype. Default is True. """ _pformat_col = self._formatter._pformat_col lines, outs = _pformat_col(self, max_lines, show_name=show_name, show_unit=show_unit, show_dtype=show_dtype) n_header = outs['n_header'] for i, line in enumerate(lines): if i < n_header: color_print(line, 'red') else: print(line) def more(self, max_lines=None, show_name=True, show_unit=False): """Interactively browse column with a paging interface. Supported keys:: f, <space> : forward one page b : back one page r : refresh same page n : next row p : previous row < : go to beginning > : go to end q : quit browsing h : print this help Parameters ---------- max_lines : int Maximum number of lines in table output. show_name : bool Include a header row for column names. Default is True. show_unit : bool Include a header row for unit. Default is False. """ _more_tabcol = self._formatter._more_tabcol _more_tabcol(self, max_lines=max_lines, show_name=show_name, show_unit=show_unit) @property def unit(self): """ The unit associated with this column. May be a string or a `astropy.units.UnitBase` instance. Setting the ``unit`` property does not change the values of the data. To perform a unit conversion, use ``convert_unit_to``. """ return self._unit @unit.setter def unit(self, unit): if unit is None: self._unit = None else: self._unit = Unit(unit, parse_strict='silent') @unit.deleter def unit(self): self._unit = None def convert_unit_to(self, new_unit, equivalencies=[]): """ Converts the values of the column in-place from the current unit to the given unit. To change the unit associated with this column without actually changing the data values, simply set the ``unit`` property. Parameters ---------- new_unit : str or `astropy.units.UnitBase` instance The unit to convert to. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the unit are not directly convertible. See :ref:`unit_equivalencies`. Raises ------ astropy.units.UnitsError If units are inconsistent """ if self.unit is None: raise ValueError("No unit set on column") self.data[:] = self.unit.to( new_unit, self.data, equivalencies=equivalencies) self.unit = new_unit @property def groups(self): if not hasattr(self, '_groups'): self._groups = groups.ColumnGroups(self) return self._groups def group_by(self, keys): """ Group this column by the specified ``keys`` This effectively splits the column into groups which correspond to unique values of the ``keys`` grouping object. The output is a new `Column` or `MaskedColumn` which contains a copy of this column but sorted by row according to ``keys``. The ``keys`` input to ``group_by`` must be a numpy array with the same length as this column. Parameters ---------- keys : numpy array Key grouping object Returns ------- out : Column New column with groups attribute set accordingly """ return groups.column_group_by(self, keys) def _copy_groups(self, out): """ Copy current groups into a copy of self ``out`` """ if self.parent_table: if hasattr(self.parent_table, '_groups'): out._groups = groups.ColumnGroups(out, indices=self.parent_table._groups._indices) elif hasattr(self, '_groups'): out._groups = groups.ColumnGroups(out, indices=self._groups._indices) # Strip off the BaseColumn-ness for repr and str so that # MaskedColumn.data __repr__ does not include masked_BaseColumn(data = # [1 2], ...). def __repr__(self): return np.asarray(self).__repr__() @property def quantity(self): """ A view of this table column as a `~astropy.units.Quantity` object with units given by the Column's `unit` parameter. """ # the Quantity initializer is used here because it correctly fails # if the column's values are non-numeric (like strings), while .view # will happily return a quantity with gibberish for numerical values return Quantity(self, self.unit, copy=False, dtype=self.dtype, order='A', subok=True) def to(self, unit, equivalencies=[], **kwargs): """ Converts this table column to a `~astropy.units.Quantity` object with the requested units. Parameters ---------- unit : `~astropy.units.Unit` or str The unit to convert to (i.e., a valid argument to the :meth:`astropy.units.Quantity.to` method). equivalencies : list of equivalence pairs, optional Equivalencies to use for this conversion. See :meth:`astropy.units.Quantity.to` for more details. Returns ------- quantity : `~astropy.units.Quantity` A quantity object with the contents of this column in the units ``unit``. """ return self.quantity.to(unit, equivalencies) def _copy_attrs(self, obj): """ Copy key column attributes from ``obj`` to self """ for attr in ('name', 'unit', '_format', 'description'): val = getattr(obj, attr, None) setattr(self, attr, val) # Light copy of meta if it is not empty obj_meta = getattr(obj, 'meta', None) if obj_meta: self.meta = obj_meta.copy() @staticmethod def _encode_str(value): """ Encode anything that is unicode-ish as utf-8. This method is only called for Py3+. """ if isinstance(value, str): value = value.encode('utf-8') elif isinstance(value, bytes) or value is np.ma.masked: pass else: arr = np.asarray(value) if arr.dtype.char == 'U': arr = np.char.encode(arr, encoding='utf-8') if isinstance(value, np.ma.MaskedArray): arr = np.ma.array(arr, mask=value.mask, copy=False) value = arr return value def tolist(self): if self.dtype.kind == 'S': return np.chararray.decode(self, encoding='utf-8').tolist() else: return super().tolist() class Column(BaseColumn): """Define a data column for use in a Table object. Parameters ---------- data : list, ndarray or None Column data values name : str Column name and key for reference within Table dtype : numpy.dtype compatible value Data type for column shape : tuple or () Dimensions of a single row element in the column data length : int or 0 Number of row elements in column data description : str or None Full description of column unit : str or None Physical unit format : str or None or function or callable Format string for outputting column values. This can be an "old-style" (``format % value``) or "new-style" (`str.format`) format specification string or a function or any callable object that accepts a single value and returns a string. meta : dict-like or None Meta-data associated with the column Examples -------- A Column can be created in two different ways: - Provide a ``data`` value but not ``shape`` or ``length`` (which are inferred from the data). Examples:: col = Column(data=[1, 2], name='name') # shape=(2,) col = Column(data=[[1, 2], [3, 4]], name='name') # shape=(2, 2) col = Column(data=[1, 2], name='name', dtype=float) col = Column(data=np.array([1, 2]), name='name') col = Column(data=['hello', 'world'], name='name') The ``dtype`` argument can be any value which is an acceptable fixed-size data-type initializer for the numpy.dtype() method. See `<https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html>`_. Examples include: - Python non-string type (float, int, bool) - Numpy non-string type (e.g. np.float32, np.int64, np.bool\\_) - Numpy.dtype array-protocol type strings (e.g. 'i4', 'f8', 'S15') If no ``dtype`` value is provide then the type is inferred using ``np.array(data)``. - Provide ``length`` and optionally ``shape``, but not ``data`` Examples:: col = Column(name='name', length=5) col = Column(name='name', dtype=int, length=10, shape=(3,4)) The default ``dtype`` is ``np.float64``. The ``shape`` argument is the array shape of a single cell in the column. """ def __new__(cls, data=None, name=None, dtype=None, shape=(), length=0, description=None, unit=None, format=None, meta=None, copy=False, copy_indices=True): if isinstance(data, MaskedColumn) and np.any(data.mask): raise TypeError("Cannot convert a MaskedColumn with masked value to a Column") self = super().__new__( cls, data=data, name=name, dtype=dtype, shape=shape, length=length, description=description, unit=unit, format=format, meta=meta, copy=copy, copy_indices=copy_indices) return self def __setattr__(self, item, value): if not isinstance(self, MaskedColumn) and item == "mask": raise AttributeError("cannot set mask value to a column in non-masked Table") super().__setattr__(item, value) if item == 'unit' and issubclass(self.dtype.type, np.number): try: converted = self.parent_table._convert_col_for_table(self) except AttributeError: # Either no parent table or parent table is None pass else: if converted is not self: self.parent_table.replace_column(self.name, converted) def _base_repr_(self, html=False): # If scalar then just convert to correct numpy type and use numpy repr if self.ndim == 0: return repr(self.item()) descr_vals = [self.__class__.__name__] unit = None if self.unit is None else str(self.unit) shape = None if self.ndim <= 1 else self.shape[1:] for attr, val in (('name', self.name), ('dtype', dtype_info_name(self.dtype)), ('shape', shape), ('unit', unit), ('format', self.format), ('description', self.description), ('length', len(self))): if val is not None: descr_vals.append('{0}={1!r}'.format(attr, val)) descr = '<' + ' '.join(descr_vals) + '>\n' if html: from astropy.utils.xml.writer import xml_escape descr = xml_escape(descr) data_lines, outs = self._formatter._pformat_col( self, show_name=False, show_unit=False, show_length=False, html=html) out = descr + '\n'.join(data_lines) return out def _repr_html_(self): return self._base_repr_(html=True) def __repr__(self): return self._base_repr_(html=False) def __str__(self): # If scalar then just convert to correct numpy type and use numpy repr if self.ndim == 0: return str(self.item()) lines, outs = self._formatter._pformat_col(self) return '\n'.join(lines) def __bytes__(self): return str(self).encode('utf-8') def _check_string_truncate(self, value): """ Emit a warning if any elements of ``value`` will be truncated when ``value`` is assigned to self. """ # Convert input ``value`` to the string dtype of this column and # find the length of the longest string in the array. value = np.asanyarray(value, dtype=self.dtype.type) if value.size == 0: return value_str_len = np.char.str_len(value).max() # Parse the array-protocol typestring (e.g. '|U15') of self.dtype which # has the character repeat count on the right side. self_str_len = dtype_bytes_or_chars(self.dtype) if value_str_len > self_str_len: warnings.warn('truncated right side string(s) longer than {} ' 'character(s) during assignment' .format(self_str_len), StringTruncateWarning, stacklevel=3) def __setitem__(self, index, value): if self.dtype.char == 'S': value = self._encode_str(value) # Issue warning for string assignment that truncates ``value`` if issubclass(self.dtype.type, np.character): self._check_string_truncate(value) # update indices self.info.adjust_indices(index, value, len(self)) # Set items using a view of the underlying data, as it gives an # order-of-magnitude speed-up. [#2994] self.data[index] = value def _make_compare(oper): """ Make comparison methods which encode the ``other`` object to utf-8 in the case of a bytestring dtype for Py3+. """ swapped_oper = {'__eq__': '__eq__', '__ne__': '__ne__', '__gt__': '__lt__', '__lt__': '__gt__', '__ge__': '__le__', '__le__': '__ge__'}[oper] def _compare(self, other): op = oper # copy enclosed ref to allow swap below # Special case to work around #6838. Other combinations work OK, # see tests.test_column.test_unicode_sandwich_compare(). In this # case just swap self and other. # # This is related to an issue in numpy that was addressed in np 1.13. # However that fix does not make this problem go away, but maybe # future numpy versions will do so. NUMPY_LT_1_13 to get the # attention of future maintainers to check (by deleting or versioning # the if block below). See #6899 discussion. if (isinstance(self, MaskedColumn) and self.dtype.kind == 'U' and isinstance(other, MaskedColumn) and other.dtype.kind == 'S'): self, other = other, self op = swapped_oper if self.dtype.char == 'S': other = self._encode_str(other) return getattr(self.data, op)(other) return _compare __eq__ = _make_compare('__eq__') __ne__ = _make_compare('__ne__') __gt__ = _make_compare('__gt__') __lt__ = _make_compare('__lt__') __ge__ = _make_compare('__ge__') __le__ = _make_compare('__le__') def insert(self, obj, values, axis=0): """ Insert values before the given indices in the column and return a new `~astropy.table.Column` object. Parameters ---------- obj : int, slice or sequence of ints Object that defines the index or indices before which ``values`` is inserted. values : array_like Value(s) to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. ``values`` should be shaped so that it can be broadcast appropriately axis : int, optional Axis along which to insert ``values``. If ``axis`` is None then the column array is flattened before insertion. Default is 0, which will insert a row. Returns ------- out : `~astropy.table.Column` A copy of column with ``values`` and ``mask`` inserted. Note that the insertion does not occur in-place: a new column is returned. """ if self.dtype.kind == 'O': # Even if values is array-like (e.g. [1,2,3]), insert as a single # object. Numpy.insert instead inserts each element in an array-like # input individually. data = np.insert(self, obj, None, axis=axis) data[obj] = values else: # Explicitly convert to dtype of this column. Needed because numpy 1.7 # enforces safe casting by default, so . This isn't the case for 1.6 or 1.8+. values = np.asarray(values, dtype=self.dtype) data = np.insert(self, obj, values, axis=axis) out = data.view(self.__class__) out.__array_finalize__(self) return out # We do this to make the methods show up in the API docs name = BaseColumn.name unit = BaseColumn.unit copy = BaseColumn.copy more = BaseColumn.more pprint = BaseColumn.pprint pformat = BaseColumn.pformat convert_unit_to = BaseColumn.convert_unit_to quantity = BaseColumn.quantity to = BaseColumn.to class MaskedColumnInfo(ColumnInfo): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. In this case it just adds the ``mask_val`` attribute. """ # Add `serialize_method` attribute to the attrs that MaskedColumnInfo knows # about. This allows customization of the way that MaskedColumn objects # get written to file depending on format. The default is to use whatever # the writer would normally do, which in the case of FITS or ECSV is to use # a NULL value within the data itself. If serialize_method is 'data_mask' # then the mask is explicitly written out as a separate column if there # are any masked values. See also code below. attr_names = ColumnInfo.attr_names | {'serialize_method'} # When `serialize_method` is 'data_mask', and data and mask are being written # as separate columns, use column names <name> and <name>.mask (instead # of default encoding as <name>.data and <name>.mask). _represent_as_dict_primary_data = 'data' mask_val = np.ma.masked def __init__(self, bound=False): super().__init__(bound) # If bound to a data object instance then create the dict of attributes # which stores the info attribute values. if bound: # Specify how to serialize this object depending on context. self.serialize_method = {'fits': 'null_value', 'ecsv': 'null_value', 'hdf5': 'data_mask', None: 'null_value'} def _represent_as_dict(self): out = super()._represent_as_dict() col = self._parent # If the serialize method for this context (e.g. 'fits' or 'ecsv') is # 'data_mask', that means to serialize using an explicit mask column. method = self.serialize_method[self._serialize_context] if method == 'data_mask': # Note that adding to _represent_as_dict_attrs triggers later code which # will add this to the '__serialized_columns__' meta YAML dict. # Note also one driver here is a performance issue in #8443 where repr() of a # np.ma.MaskedArray value is up to 10 times slower than repr of a normal array # value. So regardless of whether there are masked elements it is useful to # explicitly define this as a serialized column and use col.data.data (ndarray) # instead of letting it fall through to the "standard" serialization machinery. out['data'] = col.data.data self._represent_as_dict_attrs += ('data',) if np.any(col.mask): # Only if there are actually masked elements do we add the ``mask`` column out['mask'] = col.mask self._represent_as_dict_attrs += ('mask',) elif method is 'null_value': pass else: raise ValueError('serialize method must be either "data_mask" or "null_value"') return out class MaskedColumn(Column, _MaskedColumnGetitemShim, ma.MaskedArray): """Define a masked data column for use in a Table object. Parameters ---------- data : list, ndarray or None Column data values name : str Column name and key for reference within Table mask : list, ndarray or None Boolean mask for which True indicates missing or invalid data fill_value : float, int, str or None Value used when filling masked column elements dtype : numpy.dtype compatible value Data type for column shape : tuple or () Dimensions of a single row element in the column data length : int or 0 Number of row elements in column data description : str or None Full description of column unit : str or None Physical unit format : str or None or function or callable Format string for outputting column values. This can be an "old-style" (``format % value``) or "new-style" (`str.format`) format specification string or a function or any callable object that accepts a single value and returns a string. meta : dict-like or None Meta-data associated with the column Examples -------- A MaskedColumn is similar to a Column except that it includes ``mask`` and ``fill_value`` attributes. It can be created in two different ways: - Provide a ``data`` value but not ``shape`` or ``length`` (which are inferred from the data). Examples:: col = MaskedColumn(data=[1, 2], name='name') col = MaskedColumn(data=[1, 2], name='name', mask=[True, False]) col = MaskedColumn(data=[1, 2], name='name', dtype=float, fill_value=99) The ``mask`` argument will be cast as a boolean array and specifies which elements are considered to be missing or invalid. The ``dtype`` argument can be any value which is an acceptable fixed-size data-type initializer for the numpy.dtype() method. See `<https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html>`_. Examples include: - Python non-string type (float, int, bool) - Numpy non-string type (e.g. np.float32, np.int64, np.bool\\_) - Numpy.dtype array-protocol type strings (e.g. 'i4', 'f8', 'S15') If no ``dtype`` value is provide then the type is inferred using ``np.array(data)``. When ``data`` is provided then the ``shape`` and ``length`` arguments are ignored. - Provide ``length`` and optionally ``shape``, but not ``data`` Examples:: col = MaskedColumn(name='name', length=5) col = MaskedColumn(name='name', dtype=int, length=10, shape=(3,4)) The default ``dtype`` is ``np.float64``. The ``shape`` argument is the array shape of a single cell in the column. """ info = MaskedColumnInfo() def __new__(cls, data=None, name=None, mask=None, fill_value=None, dtype=None, shape=(), length=0, description=None, unit=None, format=None, meta=None, copy=False, copy_indices=True): if mask is None: # If mask is None then we need to determine the mask (if any) from the data. # The naive method is looking for a mask attribute on data, but this can fail, # see #8816. Instead use ``MaskedArray`` to do the work. mask = ma.MaskedArray(data).mask if mask is np.ma.nomask: # Handle odd-ball issue with np.ma.nomask (numpy #13758), and see below. mask = False elif copy: mask = mask.copy() elif mask is np.ma.nomask: # Force the creation of a full mask array as nomask is tricky to # use and will fail in an unexpected manner when setting a value # to the mask. mask = False else: mask = deepcopy(mask) # Create self using MaskedArray as a wrapper class, following the example of # class MSubArray in # https://github.com/numpy/numpy/blob/maintenance/1.8.x/numpy/ma/tests/test_subclassing.py # This pattern makes it so that __array_finalize__ is called as expected (e.g. #1471 and # https://github.com/astropy/astropy/commit/ff6039e8) # First just pass through all args and kwargs to BaseColumn, then wrap that object # with MaskedArray. self_data = BaseColumn(data, dtype=dtype, shape=shape, length=length, name=name, unit=unit, format=format, description=description, meta=meta, copy=copy, copy_indices=copy_indices) self = ma.MaskedArray.__new__(cls, data=self_data, mask=mask) # Note: do not set fill_value in the MaskedArray constructor because this does not # go through the fill_value workarounds. if fill_value is None and getattr(data, 'fill_value', None) is not None: # Coerce the fill_value to the correct type since `data` may be a # different dtype than self. fill_value = self.dtype.type(data.fill_value) self.fill_value = fill_value self.parent_table = None # needs to be done here since self doesn't come from BaseColumn.__new__ for index in self.indices: index.replace_col(self_data, self) return self @property def fill_value(self): return self.get_fill_value() # defer to native ma.MaskedArray method @fill_value.setter def fill_value(self, val): """Set fill value both in the masked column view and in the parent table if it exists. Setting one or the other alone doesn't work.""" # another ma bug workaround: If the value of fill_value for a string array is # requested but not yet set then it gets created as 'N/A'. From this point onward # any new fill_values are truncated to 3 characters. Note that this does not # occur if the masked array is a structured array (as in the previous block that # deals with the parent table). # # >>> x = ma.array(['xxxx']) # >>> x.fill_value # fill_value now gets represented as an 'S3' array # 'N/A' # >>> x.fill_value='yyyy' # >>> x.fill_value # 'yyy' # # To handle this we are forced to reset a private variable first: self._fill_value = None self.set_fill_value(val) # defer to native ma.MaskedArray method @property def data(self): out = self.view(ma.MaskedArray) # The following is necessary because of a bug in Numpy, which was # fixed in numpy/numpy#2703. The fix should be included in Numpy 1.8.0. out.fill_value = self.fill_value return out def filled(self, fill_value=None): """Return a copy of self, with masked values filled with a given value. Parameters ---------- fill_value : scalar; optional The value to use for invalid entries (`None` by default). If `None`, the ``fill_value`` attribute of the array is used instead. Returns ------- filled_column : Column A copy of ``self`` with masked entries replaced by `fill_value` (be it the function argument or the attribute of ``self``). """ if fill_value is None: fill_value = self.fill_value data = super().filled(fill_value) # Use parent table definition of Column if available column_cls = self.parent_table.Column if (self.parent_table is not None) else Column out = column_cls(name=self.name, data=data, unit=self.unit, format=self.format, description=self.description, meta=deepcopy(self.meta)) return out def insert(self, obj, values, mask=None, axis=0): """ Insert values along the given axis before the given indices and return a new `~astropy.table.MaskedColumn` object. Parameters ---------- obj : int, slice or sequence of ints Object that defines the index or indices before which ``values`` is inserted. values : array_like Value(s) to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. ``values`` should be shaped so that it can be broadcast appropriately mask : boolean array_like Mask value(s) to insert. If not supplied then False is used. axis : int, optional Axis along which to insert ``values``. If ``axis`` is None then the column array is flattened before insertion. Default is 0, which will insert a row. Returns ------- out : `~astropy.table.MaskedColumn` A copy of column with ``values`` and ``mask`` inserted. Note that the insertion does not occur in-place: a new masked column is returned. """ self_ma = self.data # self viewed as MaskedArray if self.dtype.kind == 'O': # Even if values is array-like (e.g. [1,2,3]), insert as a single # object. Numpy.insert instead inserts each element in an array-like # input individually. new_data = np.insert(self_ma.data, obj, None, axis=axis) new_data[obj] = values else: # Explicitly convert to dtype of this column. Needed because numpy 1.7 # enforces safe casting by default, so . This isn't the case for 1.6 or 1.8+. values = np.asarray(values, dtype=self.dtype) new_data = np.insert(self_ma.data, obj, values, axis=axis) if mask is None: if self.dtype.kind == 'O': mask = False else: mask = np.zeros(values.shape, dtype=bool) new_mask = np.insert(self_ma.mask, obj, mask, axis=axis) new_ma = np.ma.array(new_data, mask=new_mask, copy=False) out = new_ma.view(self.__class__) out.parent_table = None out.indices = [] out._copy_attrs(self) out.fill_value = self.fill_value return out def _copy_attrs_slice(self, out): # Fixes issue #3023: when calling getitem with a MaskedArray subclass # the original object attributes are not copied. if out.__class__ is self.__class__: out.parent_table = None # we need this because __getitem__ does a shallow copy of indices if out.indices is self.indices: out.indices = [] out._copy_attrs(self) return out def __setitem__(self, index, value): # Issue warning for string assignment that truncates ``value`` if self.dtype.char == 'S': value = self._encode_str(value) if issubclass(self.dtype.type, np.character): # Account for a bug in np.ma.MaskedArray setitem. # https://github.com/numpy/numpy/issues/8624 value = np.ma.asanyarray(value, dtype=self.dtype.type) # Check for string truncation after filling masked items with # empty (zero-length) string. Note that filled() does not make # a copy if there are no masked items. self._check_string_truncate(value.filled('')) # update indices self.info.adjust_indices(index, value, len(self)) # Remove this when Numpy no longer emits this warning and that # Numpy version becomes the minimum required version for Astropy. # https://github.com/astropy/astropy/issues/6285 if MaskedArrayFutureWarning is None: ma.MaskedArray.__setitem__(self, index, value) else: with warnings.catch_warnings(): warnings.simplefilter('ignore', MaskedArrayFutureWarning) ma.MaskedArray.__setitem__(self, index, value) # We do this to make the methods show up in the API docs name = BaseColumn.name copy = BaseColumn.copy more = BaseColumn.more pprint = BaseColumn.pprint pformat = BaseColumn.pformat convert_unit_to = BaseColumn.convert_unit_to
f04bd37a1aa767986ee1267951a693822967b245a4c81a2835237378a114667e
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module defines base classes for all models. The base class of all models is `~astropy.modeling.Model`. `~astropy.modeling.FittableModel` is the base class for all fittable models. Fittable models can be linear or nonlinear in a regression analysis sense. All models provide a `__call__` method which performs the transformation in a purely mathematical way, i.e. the models are unitless. Model instances can represent either a single model, or a "model set" representing multiple copies of the same type of model, but with potentially different values of the parameters in each model making up the set. """ import abc import copy import copyreg import inspect import functools import operator import types import warnings from collections import defaultdict, OrderedDict from contextlib import suppress from inspect import signature from itertools import chain, islice import numpy as np from astropy.utils import indent, metadata from astropy.table import Table from astropy.units import Quantity, UnitsError, dimensionless_unscaled from astropy.units.utils import quantity_asanyarray from astropy.utils import (sharedmethod, find_current_module, InheritDocstrings, OrderedDescriptorContainer, check_broadcast, IncompatibleShapeError, isiterable) from astropy.utils.codegen import make_function_with_signature from astropy.utils.exceptions import AstropyDeprecationWarning from .utils import (combine_labels, make_binary_operator_eval, ExpressionTree, AliasDict, get_inputs_and_params, _BoundingBox, _combine_equivalency_dict) from astropy.nddata.utils import add_array, extract_array from .parameters import Parameter, InputParameterError, param_repr_oneline __all__ = ['Model', 'FittableModel', 'Fittable1DModel', 'Fittable2DModel', 'custom_model', 'ModelDefinitionError'] class ModelDefinitionError(TypeError): """Used for incorrect models definitions""" def _model_oper(oper, **kwargs): """ Returns a function that evaluates a given Python arithmetic operator between two models. The operator should be given as a string, like ``'+'`` or ``'**'``. Any additional keyword arguments passed in are passed to `_CompoundModelMeta._from_operator`. """ # Note: Originally this used functools.partial, but that won't work when # used in the class definition of _CompoundModelMeta since # _CompoundModelMeta has not been defined yet. def _opfunc(left, right): # Deprecation is for https://github.com/astropy/astropy/issues/8234 if not (isinstance(left, Model) and isinstance(right, Model)): warnings.warn( 'Composition of model classes will be removed in 4.0 ' '(but composition of model instances is not affected)', AstropyDeprecationWarning) # Perform an arithmetic operation on two models. return _CompoundModelMeta._from_operator(oper, left, right, **kwargs) return _opfunc class _ModelMeta(OrderedDescriptorContainer, InheritDocstrings, abc.ABCMeta): """ Metaclass for Model. Currently just handles auto-generating the param_names list based on Parameter descriptors declared at the class-level of Model subclasses. """ _is_dynamic = False """ This flag signifies whether this class was created in the "normal" way, with a class statement in the body of a module, as opposed to a call to `type` or some other metaclass constructor, such that the resulting class does not belong to a specific module. This is important for pickling of dynamic classes. This flag is always forced to False for new classes, so code that creates dynamic classes should manually set it to True on those classes when creating them. """ # Default empty dict for _parameters_, which will be empty on model # classes that don't have any Parameters _parameters_ = OrderedDict() def __new__(mcls, name, bases, members): # See the docstring for _is_dynamic above if '_is_dynamic' not in members: members['_is_dynamic'] = mcls._is_dynamic return super().__new__(mcls, name, bases, members) def __init__(cls, name, bases, members): # Make sure OrderedDescriptorContainer gets to run before doing # anything else super().__init__(name, bases, members) if cls._parameters_: if hasattr(cls, '_param_names'): # Slight kludge to support compound models, where # cls.param_names is a property; could be improved with a # little refactoring but fine for now cls._param_names = tuple(cls._parameters_) else: cls.param_names = tuple(cls._parameters_) cls._create_inverse_property(members) cls._create_bounding_box_property(members) cls._handle_special_methods(members) def __repr__(cls): """ Custom repr for Model subclasses. """ return cls._format_cls_repr() def _repr_pretty_(cls, p, cycle): """ Repr for IPython's pretty printer. By default IPython "pretty prints" classes, so we need to implement this so that IPython displays the custom repr for Models. """ p.text(repr(cls)) def __reduce__(cls): if not cls._is_dynamic: # Just return a string specifying where the class can be imported # from return cls.__name__ else: members = dict(cls.__dict__) # Delete any ABC-related attributes--these will be restored when # the class is reconstructed: for key in list(members): if key.startswith('_abc_'): del members[key] # Delete custom __init__ and __call__ if they exist: for key in ('__init__', '__call__'): if key in members: del members[key] return (type(cls), (cls.__name__, cls.__bases__, members)) @property def name(cls): """ The name of this model class--equivalent to ``cls.__name__``. This attribute is provided for symmetry with the `Model.name` attribute of model instances. """ return cls.__name__ @property def n_inputs(cls): return len(cls.inputs) @property def n_outputs(cls): return len(cls.outputs) @property def _is_concrete(cls): """ A class-level property that determines whether the class is a concrete implementation of a Model--i.e. it is not some abstract base class or internal implementation detail (i.e. begins with '_'). """ return not (cls.__name__.startswith('_') or inspect.isabstract(cls)) def rename(cls, name): """ Creates a copy of this model class with a new name. The new class is technically a subclass of the original class, so that instance and type checks will still work. For example:: >>> from astropy.modeling.models import Rotation2D >>> SkyRotation = Rotation2D.rename('SkyRotation') >>> SkyRotation <class '__main__.SkyRotation'> Name: SkyRotation (Rotation2D) Inputs: ('x', 'y') Outputs: ('x', 'y') Fittable parameters: ('angle',) >>> issubclass(SkyRotation, Rotation2D) True >>> r = SkyRotation(90) >>> isinstance(r, Rotation2D) True """ mod = find_current_module(2) if mod: modname = mod.__name__ else: modname = '__main__' new_cls = type(name, (cls,), {}) new_cls.__module__ = modname if hasattr(cls, '__qualname__'): if new_cls.__module__ == '__main__': # __main__ is not added to a class's qualified name new_cls.__qualname__ = name else: new_cls.__qualname__ = '{0}.{1}'.format(modname, name) return new_cls def _create_inverse_property(cls, members): inverse = members.get('inverse') if inverse is None or cls.__bases__[0] is object: # The latter clause is the prevent the below code from running on # the Model base class, which implements the default getter and # setter for .inverse return if isinstance(inverse, property): # We allow the @property decorator to be omitted entirely from # the class definition, though its use should be encouraged for # clarity inverse = inverse.fget # Store the inverse getter internally, then delete the given .inverse # attribute so that cls.inverse resolves to Model.inverse instead cls._inverse = inverse del cls.inverse def _create_bounding_box_property(cls, members): """ Takes any bounding_box defined on a concrete Model subclass (either as a fixed tuple or a property or method) and wraps it in the generic getter/setter interface for the bounding_box attribute. """ # TODO: Much of this is verbatim from _create_inverse_property--I feel # like there could be a way to generify properties that work this way, # but for the time being that would probably only confuse things more. bounding_box = members.get('bounding_box') if bounding_box is None or cls.__bases__[0] is object: return if isinstance(bounding_box, property): bounding_box = bounding_box.fget if not callable(bounding_box): # See if it's a hard-coded bounding_box (as a sequence) and # normalize it try: bounding_box = _BoundingBox.validate(cls, bounding_box) except ValueError as exc: raise ModelDefinitionError(exc.args[0]) else: sig = signature(bounding_box) # May be a method that only takes 'self' as an argument (like a # property, but the @property decorator was forgotten) # TODO: Maybe warn in the above case? # # However, if the method takes additional arguments then this is a # parameterized bounding box and should be callable if len(sig.parameters) > 1: bounding_box = \ cls._create_bounding_box_subclass(bounding_box, sig) # See the Model.bounding_box getter definition for how this attribute # is used cls._bounding_box = bounding_box del cls.bounding_box def _create_bounding_box_subclass(cls, func, sig): """ For Models that take optional arguments for defining their bounding box, we create a subclass of _BoundingBox with a ``__call__`` method that supports those additional arguments. Takes the function's Signature as an argument since that is already computed in _create_bounding_box_property, so no need to duplicate that effort. """ # TODO: Might be convenient if calling the bounding box also # automatically sets the _user_bounding_box. So that # # >>> model.bounding_box(arg=1) # # in addition to returning the computed bbox, also sets it, so that # it's a shortcut for # # >>> model.bounding_box = model.bounding_box(arg=1) # # Not sure if that would be non-obvious / confusing though... def __call__(self, **kwargs): return func(self._model, **kwargs) kwargs = [] for idx, param in enumerate(sig.parameters.values()): if idx == 0: # Presumed to be a 'self' argument continue if param.default is param.empty: raise ModelDefinitionError( 'The bounding_box method for {0} is not correctly ' 'defined: If defined as a method all arguments to that ' 'method (besides self) must be keyword arguments with ' 'default values that can be used to compute a default ' 'bounding box.'.format(cls.name)) kwargs.append((param.name, param.default)) __call__.__signature__ = sig return type(str('_{0}BoundingBox'.format(cls.name)), (_BoundingBox,), {'__call__': __call__}) def _handle_special_methods(cls, members): # Handle init creation from inputs def update_wrapper(wrapper, cls): # Set up the new __call__'s metadata attributes as though it were # manually defined in the class definition # A bit like functools.update_wrapper but uses the class instead of # the wrapped function wrapper.__module__ = cls.__module__ wrapper.__doc__ = getattr(cls, wrapper.__name__).__doc__ if hasattr(cls, '__qualname__'): wrapper.__qualname__ = '{0}.{1}'.format( cls.__qualname__, wrapper.__name__) if ('__call__' not in members and 'inputs' in members and isinstance(members['inputs'], tuple)): # Don't create a custom __call__ for classes that already have one # explicitly defined (this includes the Model base class, and any # other classes that manually override __call__ def __call__(self, *inputs, **kwargs): """Evaluate this model on the supplied inputs.""" return super(cls, self).__call__(*inputs, **kwargs) # When called, models can take two optional keyword arguments: # # * model_set_axis, which indicates (for multi-dimensional input) # which axis is used to indicate different models # # * equivalencies, a dictionary of equivalencies to be applied to # the input values, where each key should correspond to one of # the inputs. # # The following code creates the __call__ function with these # two keyword arguments. inputs = members['inputs'] args = ('self',) + inputs new_call = make_function_with_signature( __call__, args, [('model_set_axis', None), ('with_bounding_box', False), ('fill_value', np.nan), ('equivalencies', None)]) # The following makes it look like __call__ was defined in the class update_wrapper(new_call, cls) cls.__call__ = new_call if ('__init__' not in members and not inspect.isabstract(cls) and cls._parameters_): # If *all* the parameters have default values we can make them # keyword arguments; otherwise they must all be positional arguments if all(p.default is not None for p in cls._parameters_.values()): args = ('self',) kwargs = [] for param_name in cls.param_names: default = cls._parameters_[param_name].default unit = cls._parameters_[param_name].unit # If the unit was specified in the parameter but the default # is not a Quantity, attach the unit to the default. if unit is not None: default = Quantity(default, unit, copy=False) kwargs.append((param_name, default)) else: args = ('self',) + cls.param_names kwargs = {} def __init__(self, *params, **kwargs): return super(cls, self).__init__(*params, **kwargs) new_init = make_function_with_signature( __init__, args, kwargs, varkwargs='kwargs') update_wrapper(new_init, cls) cls.__init__ = new_init # *** Arithmetic operators for creating compound models *** __add__ = _model_oper('+') __sub__ = _model_oper('-') __mul__ = _model_oper('*') __truediv__ = _model_oper('/') __pow__ = _model_oper('**') __or__ = _model_oper('|') __and__ = _model_oper('&') # *** Other utilities *** def _format_cls_repr(cls, keywords=[]): """ Internal implementation of ``__repr__``. This is separated out for ease of use by subclasses that wish to override the default ``__repr__`` while keeping the same basic formatting. """ # For the sake of familiarity start the output with the standard class # __repr__ parts = [super().__repr__()] if not cls._is_concrete: return parts[0] def format_inheritance(cls): bases = [] for base in cls.mro()[1:]: if not issubclass(base, Model): continue elif (inspect.isabstract(base) or base.__name__.startswith('_')): break bases.append(base.name) if bases: return '{0} ({1})'.format(cls.name, ' -> '.join(bases)) else: return cls.name try: default_keywords = [ ('Name', format_inheritance(cls)), ('Inputs', cls.inputs), ('Outputs', cls.outputs), ] if cls.param_names: default_keywords.append(('Fittable parameters', cls.param_names)) for keyword, value in default_keywords + keywords: if value is not None: parts.append('{0}: {1}'.format(keyword, value)) return '\n'.join(parts) except Exception: # If any of the above formatting fails fall back on the basic repr # (this is particularly useful in debugging) return parts[0] class Model(metaclass=_ModelMeta): """ Base class for all models. This is an abstract class and should not be instantiated directly. This class sets the constraints and other properties for all individual parameters and performs parameter validation. The following initialization arguments apply to the majority of Model subclasses by default (exceptions include specialized utility models like `~astropy.modeling.mappings.Mapping`). Parametric models take all their parameters as arguments, followed by any of the following optional keyword arguments: Parameters ---------- name : str, optional A human-friendly name associated with this model instance (particularly useful for identifying the individual components of a compound model). meta : dict, optional An optional dict of user-defined metadata to attach to this model. How this is used and interpreted is up to the user or individual use case. n_models : int, optional If given an integer greater than 1, a *model set* is instantiated instead of a single model. This affects how the parameter arguments are interpreted. In this case each parameter must be given as a list or array--elements of this array are taken along the first axis (or ``model_set_axis`` if specified), such that the Nth element is the value of that parameter for the Nth model in the set. See the section on model sets in the documentation for more details. model_set_axis : int, optional This argument only applies when creating a model set (i.e. ``n_models > 1``). It changes how parameter values are interpreted. Normally the first axis of each input parameter array (properly the 0th axis) is taken as the axis corresponding to the model sets. However, any axis of an input array may be taken as this "model set axis". This accepts negative integers as well--for example use ``model_set_axis=-1`` if the last (most rapidly changing) axis should be associated with the model sets. Also, ``model_set_axis=False`` can be used to tell that a given input should be used to evaluate all the models in the model set. fixed : dict, optional Dictionary ``{parameter_name: bool}`` setting the fixed constraint for one or more parameters. `True` means the parameter is held fixed during fitting and is prevented from updates once an instance of the model has been created. Alternatively the `~astropy.modeling.Parameter.fixed` property of a parameter may be used to lock or unlock individual parameters. tied : dict, optional Dictionary ``{parameter_name: callable}`` of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively the `~astropy.modeling.Parameter.tied` property of a parameter may be used to set the ``tied`` constraint on individual parameters. bounds : dict, optional A dictionary ``{parameter_name: value}`` of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively the `~astropy.modeling.Parameter.min` and `~astropy.modeling.Parameter.max` or ~astropy.modeling.Parameter.bounds` properties of a parameter may be used to set bounds on individual parameters. eqcons : list, optional List of functions of length n such that ``eqcons[j](x0, *args) == 0.0`` in a successfully optimized problem. ineqcons : list, optional List of functions of length n such that ``ieqcons[j](x0, *args) >= 0.0`` is a successfully optimized problem. Examples -------- >>> from astropy.modeling import models >>> def tie_center(model): ... mean = 50 * model.stddev ... return mean >>> tied_parameters = {'mean': tie_center} Specify that ``'mean'`` is a tied parameter in one of two ways: >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3, ... tied=tied_parameters) or >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3) >>> g1.mean.tied False >>> g1.mean.tied = tie_center >>> g1.mean.tied <function tie_center at 0x...> Fixed parameters: >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3, ... fixed={'stddev': True}) >>> g1.stddev.fixed True or >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3) >>> g1.stddev.fixed False >>> g1.stddev.fixed = True >>> g1.stddev.fixed True """ parameter_constraints = Parameter.constraints """ Primarily for informational purposes, these are the types of constraints that can be set on a model's parameters. """ model_constraints = ('eqcons', 'ineqcons') """ Primarily for informational purposes, these are the types of constraints that constrain model evaluation. """ param_names = () """ Names of the parameters that describe models of this type. The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree. When defining a custom model class the value of this attribute is automatically set by the `~astropy.modeling.Parameter` attributes defined in the class body. """ inputs = () """The name(s) of the input variable(s) on which a model is evaluated.""" outputs = () """The name(s) of the output(s) of the model.""" standard_broadcasting = True fittable = False linear = True _separable = None """ A boolean flag to indicate whether a model is separable.""" meta = metadata.MetaData() """A dict-like object to store optional information.""" # By default models either use their own inverse property or have no # inverse at all, but users may also assign a custom inverse to a model, # optionally; in that case it is of course up to the user to determine # whether their inverse is *actually* an inverse to the model they assign # it to. _inverse = None _user_inverse = None _bounding_box = None _user_bounding_box = None # Default n_models attribute, so that __len__ is still defined even when a # model hasn't completed initialization yet _n_models = 1 # New classes can set this as a boolean value. # It is converted to a dictionary mapping input name to a boolean value. _input_units_strict = False # Allow dimensionless input (and corresponding output). If this is True, # input values to evaluate will gain the units specified in input_units. If # this is a dictionary then it should map input name to a bool to allow # dimensionless numbers for that input. # Only has an effect if input_units is defined. _input_units_allow_dimensionless = False # Default equivalencies to apply to input values. If set, this should be a # dictionary where each key is a string that corresponds to one of the # model inputs. Only has an effect if input_units is defined. input_units_equivalencies = None def __init__(self, *args, meta=None, name=None, **kwargs): super().__init__() if meta is not None: self.meta = meta self._name = name self._initialize_constraints(kwargs) # Remaining keyword args are either parameter values or invalid # Parameter values must be passed in as keyword arguments in order to # distinguish them self._initialize_parameters(args, kwargs) self._initialize_unit_support() def _initialize_unit_support(self): """ Convert self._input_units_strict and self.input_units_allow_dimensionless to dictionaries mapping input name to a boolena value. """ if isinstance(self._input_units_strict, bool): self._input_units_strict = {key: self._input_units_strict for key in self.__class__.inputs} if isinstance(self._input_units_allow_dimensionless, bool): self._input_units_allow_dimensionless = {key: self._input_units_allow_dimensionless for key in self.__class__.inputs} @property def input_units_strict(self): """ Enforce strict units on inputs to evaluate. If this is set to True, input values to evaluate will be in the exact units specified by input_units. If the input quantities are convertible to input_units, they are converted. If this is a dictionary then it should map input name to a bool to set strict input units for that parameter. """ val = self._input_units_strict if isinstance(val, bool): return {key: val for key in self.__class__.inputs} else: return val @property def input_units_allow_dimensionless(self): """ Allow dimensionless input (and corresponding output). If this is True, input values to evaluate will gain the units specified in input_units. If this is a dictionary then it should map input name to a bool to allow dimensionless numbers for that input. Only has an effect if input_units is defined. """ val = self._input_units_allow_dimensionless if isinstance(val, bool): return {key: val for key in self.__class__.inputs} else: return val @property def uses_quantity(self): """ True if this model has been created with `~astropy.units.Quantity` objects or if there are no parameters. This can be used to determine if this model should be evaluated with `~astropy.units.Quantity` or regular floats. """ pisq = [isinstance(p, Quantity) for p in self._param_sets(units=True)] return (len(pisq) == 0) or any(pisq) def __repr__(self): return self._format_repr() def __str__(self): return self._format_str() def __len__(self): return self._n_models def __call__(self, *inputs, **kwargs): """ Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated. """ inputs, format_info = self.prepare_inputs(*inputs, **kwargs) parameters = self._param_sets(raw=True, units=True) with_bbox = kwargs.pop('with_bounding_box', False) fill_value = kwargs.pop('fill_value', np.nan) bbox = None if with_bbox: try: bbox = self.bounding_box except NotImplementedError: bbox = None if self.n_inputs > 1 and bbox is not None: # bounding_box is in python order - convert it to the order of the inputs bbox = bbox[::-1] if bbox is None: outputs = self.evaluate(*chain(inputs, parameters)) else: if self.n_inputs == 1: bbox = [bbox] # indices where input is outside the bbox # have a value of 1 in ``nan_ind`` nan_ind = np.zeros(inputs[0].shape, dtype=bool) for ind, inp in enumerate(inputs): # Pass an ``out`` array so that ``axis_ind`` is array for scalars as well. axis_ind = np.zeros(inp.shape, dtype=bool) axis_ind = np.logical_or(inp < bbox[ind][0], inp > bbox[ind][1], out=axis_ind) nan_ind[axis_ind] = 1 # get an array with indices of valid inputs valid_ind = np.logical_not(nan_ind).nonzero() # inputs holds only inputs within the bbox args = [] for input in inputs: if not input.shape: # shape is () if nan_ind: outputs = [fill_value for a in args] else: args.append(input) else: args.append(input[valid_ind]) valid_result = self.evaluate(*chain(args, parameters)) if self.n_outputs == 1: valid_result = [valid_result] # combine the valid results with the ``fill_value`` values # outside the bbox result = [np.zeros(inputs[0].shape) + fill_value for i in range(len(valid_result))] for ind, r in enumerate(valid_result): if not result[ind].shape: # shape is () result[ind] = r else: result[ind][valid_ind] = r # format output if self.n_outputs == 1: outputs = np.asarray(result[0]) else: outputs = [np.asarray(r) for r in result] else: outputs = self.evaluate(*chain(inputs, parameters)) if self.n_outputs == 1: outputs = (outputs,) outputs = self.prepare_outputs(format_info, *outputs, **kwargs) outputs = self._process_output_units(inputs, outputs) if self.n_outputs == 1: return outputs[0] else: return outputs # *** Arithmetic operators for creating compound models *** __add__ = _model_oper('+') __sub__ = _model_oper('-') __mul__ = _model_oper('*') __truediv__ = _model_oper('/') __pow__ = _model_oper('**') __or__ = _model_oper('|') __and__ = _model_oper('&') # *** Properties *** @property def name(self): """User-provided name for this model instance.""" return self._name @name.setter def name(self, val): """Assign a (new) name to this model.""" self._name = val @property def n_inputs(self): """ The number of inputs to this model. Equivalent to ``len(model.inputs)``. """ return len(self.inputs) @property def n_outputs(self): """ The number of outputs from this model. Equivalent to ``len(model.outputs)``. """ return len(self.outputs) @property def model_set_axis(self): """ The index of the model set axis--that is the axis of a parameter array that pertains to which model a parameter value pertains to--as specified when the model was initialized. See the documentation on `Model Sets <http://docs.astropy.org/en/stable/modeling/models.html#model-sets>`_ for more details. """ return self._model_set_axis @property def param_sets(self): """ Return parameters as a pset. This is a list with one item per parameter set, which is an array of that parameter's values across all parameter sets, with the last axis associated with the parameter set. """ return self._param_sets() @property def parameters(self): """ A flattened array of all parameter values in all parameter sets. Fittable parameters maintain this list and fitters modify it. """ # Currently the sequence of a model's parameters must be contiguous # within the _parameters array (which may be a view of a larger array, # for example when taking a sub-expression of a compound model), so # the assumption here is reliable: if not self.param_names: # Trivial, but not unheard of return self._parameters start = self._param_metrics[self.param_names[0]]['slice'].start stop = self._param_metrics[self.param_names[-1]]['slice'].stop return self._parameters[start:stop] @parameters.setter def parameters(self, value): """ Assigning to this attribute updates the parameters array rather than replacing it. """ if not self.param_names: return start = self._param_metrics[self.param_names[0]]['slice'].start stop = self._param_metrics[self.param_names[-1]]['slice'].stop try: value = np.array(value).flatten() self._parameters[start:stop] = value except ValueError as e: raise InputParameterError( "Input parameter values not compatible with the model " "parameters array: {0}".format(e)) @property def fixed(self): """ A `dict` mapping parameter names to their fixed constraint. """ return self._constraints['fixed'] @property def tied(self): """ A `dict` mapping parameter names to their tied constraint. """ return self._constraints['tied'] @property def bounds(self): """ A `dict` mapping parameter names to their upper and lower bounds as ``(min, max)`` tuples or ``[min, max]`` lists. """ return self._constraints['bounds'] @property def eqcons(self): """List of parameter equality constraints.""" return self._constraints['eqcons'] @property def ineqcons(self): """List of parameter inequality constraints.""" return self._constraints['ineqcons'] @property def inverse(self): """ Returns a new `~astropy.modeling.Model` instance which performs the inverse transform, if an analytic inverse is defined for this model. Even on models that don't have an inverse defined, this property can be set with a manually-defined inverse, such a pre-computed or experimentally determined inverse (often given as a `~astropy.modeling.polynomial.PolynomialModel`, but not by requirement). A custom inverse can be deleted with ``del model.inverse``. In this case the model's inverse is reset to its default, if a default exists (otherwise the default is to raise `NotImplementedError`). Note to authors of `~astropy.modeling.Model` subclasses: To define an inverse for a model simply override this property to return the appropriate model representing the inverse. The machinery that will make the inverse manually-overridable is added automatically by the base class. """ if self._user_inverse is not None: return self._user_inverse elif self._inverse is not None: return self._inverse() raise NotImplementedError("An analytical inverse transform has not " "been implemented for this model.") @inverse.setter def inverse(self, value): if not isinstance(value, (Model, type(None))): raise ValueError( "The ``inverse`` attribute may be assigned a `Model` " "instance or `None` (where `None` explicitly forces the " "model to have no inverse.") self._user_inverse = value @inverse.deleter def inverse(self): """ Resets the model's inverse to its default (if one exists, otherwise the model will have no inverse). """ del self._user_inverse @property def has_user_inverse(self): """ A flag indicating whether or not a custom inverse model has been assigned to this model by a user, via assignment to ``model.inverse``. """ return self._user_inverse is not None @property def bounding_box(self): r""" A `tuple` of length `n_inputs` defining the bounding box limits, or `None` for no bounding box. The default limits are given by a ``bounding_box`` property or method defined in the class body of a specific model. If not defined then this property just raises `NotImplementedError` by default (but may be assigned a custom value by a user). ``bounding_box`` can be set manually to an array-like object of shape ``(model.n_inputs, 2)``. For further usage, see :ref:`bounding-boxes` The limits are ordered according to the `numpy` indexing convention, and are the reverse of the model input order, e.g. for inputs ``('x', 'y', 'z')``, ``bounding_box`` is defined: * for 1D: ``(x_low, x_high)`` * for 2D: ``((y_low, y_high), (x_low, x_high))`` * for 3D: ``((z_low, z_high), (y_low, y_high), (x_low, x_high))`` Examples -------- Setting the ``bounding_box`` limits for a 1D and 2D model: >>> from astropy.modeling.models import Gaussian1D, Gaussian2D >>> model_1d = Gaussian1D() >>> model_2d = Gaussian2D(x_stddev=1, y_stddev=1) >>> model_1d.bounding_box = (-5, 5) >>> model_2d.bounding_box = ((-6, 6), (-5, 5)) Setting the bounding_box limits for a user-defined 3D `custom_model`: >>> from astropy.modeling.models import custom_model >>> def const3d(x, y, z, amp=1): ... return amp ... >>> Const3D = custom_model(const3d) >>> model_3d = Const3D() >>> model_3d.bounding_box = ((-6, 6), (-5, 5), (-4, 4)) To reset ``bounding_box`` to its default limits just delete the user-defined value--this will reset it back to the default defined on the class: >>> del model_1d.bounding_box To disable the bounding box entirely (including the default), set ``bounding_box`` to `None`: >>> model_1d.bounding_box = None >>> model_1d.bounding_box # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): File "<stdin>", line 1, in <module> File "astropy\modeling\core.py", line 980, in bounding_box "No bounding box is defined for this model (note: the " NotImplementedError: No bounding box is defined for this model (note: the bounding box was explicitly disabled for this model; use `del model.bounding_box` to restore the default bounding box, if one is defined for this model). """ if self._user_bounding_box is not None: if self._user_bounding_box is NotImplemented: raise NotImplementedError( "No bounding box is defined for this model (note: the " "bounding box was explicitly disabled for this model; " "use `del model.bounding_box` to restore the default " "bounding box, if one is defined for this model).") return self._user_bounding_box elif self._bounding_box is None: raise NotImplementedError( "No bounding box is defined for this model.") elif isinstance(self._bounding_box, _BoundingBox): # This typically implies a hard-coded bounding box. This will # probably be rare, but it is an option return self._bounding_box elif isinstance(self._bounding_box, types.MethodType): return self._bounding_box() else: # The only other allowed possibility is that it's a _BoundingBox # subclass, so we call it with its default arguments and return an # instance of it (that can be called to recompute the bounding box # with any optional parameters) # (In other words, in this case self._bounding_box is a *class*) bounding_box = self._bounding_box((), _model=self)() return self._bounding_box(bounding_box, _model=self) @bounding_box.setter def bounding_box(self, bounding_box): """ Assigns the bounding box limits. """ if bounding_box is None: cls = None # We use this to explicitly set an unimplemented bounding box (as # opposed to no user bounding box defined) bounding_box = NotImplemented elif (isinstance(self._bounding_box, type) and issubclass(self._bounding_box, _BoundingBox)): cls = self._bounding_box else: cls = _BoundingBox if cls is not None: try: bounding_box = cls.validate(self, bounding_box) except ValueError as exc: raise ValueError(exc.args[0]) self._user_bounding_box = bounding_box @bounding_box.deleter def bounding_box(self): self._user_bounding_box = None @property def has_user_bounding_box(self): """ A flag indicating whether or not a custom bounding_box has been assigned to this model by a user, via assignment to ``model.bounding_box``. """ return self._user_bounding_box is not None @property def separable(self): """ A flag indicating whether a model is separable.""" if self._separable is not None: return self._separable else: raise NotImplementedError( 'The "separable" property is not defined for ' 'model {}'.format(self.__class__.__name__)) # *** Public methods *** def without_units_for_data(self, **kwargs): """ Return an instance of the model for which the parameter values have been converted to the right units for the data, then the units have been stripped away. The input and output Quantity objects should be given as keyword arguments. Notes ----- This method is needed in order to be able to fit models with units in the parameters, since we need to temporarily strip away the units from the model during the fitting (which might be done by e.g. scipy functions). The units that the parameters should be converted to are not necessarily the units of the input data, but are derived from them. Model subclasses that want fitting to work in the presence of quantities need to define a _parameter_units_for_data_units method that takes the input and output units (as two dictionaries) and returns a dictionary giving the target units for each parameter. """ model = self.copy() inputs_unit = {inp: getattr(kwargs[inp], 'unit', dimensionless_unscaled) for inp in self.inputs if kwargs[inp] is not None} outputs_unit = {out: getattr(kwargs[out], 'unit', dimensionless_unscaled) for out in self.outputs if kwargs[out] is not None} parameter_units = self._parameter_units_for_data_units(inputs_unit, outputs_unit) for name, unit in parameter_units.items(): parameter = getattr(model, name) if parameter.unit is not None: parameter.value = parameter.quantity.to(unit).value parameter._set_unit(None, force=True) if isinstance(model, _CompoundModel): model.strip_units_from_tree() return model def strip_units_from_tree(self): for item in self._tree.traverse_inorder(): if isinstance(item.value, Model): for parname in item.value.param_names: par = getattr(item.value, parname) par._set_unit(None, force=True) setattr(item.value, parname, par) def with_units_from_data(self, **kwargs): """ Return an instance of the model which has units for which the parameter values are compatible with the data units specified. The input and output Quantity objects should be given as keyword arguments. Notes ----- This method is needed in order to be able to fit models with units in the parameters, since we need to temporarily strip away the units from the model during the fitting (which might be done by e.g. scipy functions). The units that the parameters will gain are not necessarily the units of the input data, but are derived from them. Model subclasses that want fitting to work in the presence of quantities need to define a _parameter_units_for_data_units method that takes the input and output units (as two dictionaries) and returns a dictionary giving the target units for each parameter. """ model = self.copy() inputs_unit = {inp: getattr(kwargs[inp], 'unit', dimensionless_unscaled) for inp in self.inputs if kwargs[inp] is not None} outputs_unit = {out: getattr(kwargs[out], 'unit', dimensionless_unscaled) for out in self.outputs if kwargs[out] is not None} parameter_units = self._parameter_units_for_data_units(inputs_unit, outputs_unit) # We are adding units to parameters that already have a value, but we # don't want to convert the parameter, just add the unit directly, hence # the call to _set_unit. for name, unit in parameter_units.items(): parameter = getattr(model, name) parameter._set_unit(unit, force=True) return model @property def _has_units(self): # Returns True if any of the parameters have units for param in self.param_names: if getattr(self, param).unit is not None: return True else: return False @property def _supports_unit_fitting(self): # If the model has a '_parameter_units_for_data_units' method, this # indicates that we have enough information to strip the units away # and add them back after fitting, when fitting quantities return hasattr(self, '_parameter_units_for_data_units') @abc.abstractmethod def evaluate(self, *args, **kwargs): """Evaluate the model on some input variables.""" def sum_of_implicit_terms(self, *args, **kwargs): """ Evaluate the sum of any implicit model terms on some input variables. This includes any fixed terms used in evaluating a linear model that do not have corresponding parameters exposed to the user. The prototypical case is `astropy.modeling.functional_models.Shift`, which corresponds to a function y = a + bx, where b=1 is intrinsically fixed by the type of model, such that sum_of_implicit_terms(x) == x. This method is needed by linear fitters to correct the dependent variable for the implicit term(s) when solving for the remaining terms (ie. a = y - bx). """ def render(self, out=None, coords=None): """ Evaluate a model at fixed positions, respecting the ``bounding_box``. The key difference relative to evaluating the model directly is that this method is limited to a bounding box if the `Model.bounding_box` attribute is set. Parameters ---------- out : `numpy.ndarray`, optional An array that the evaluated model will be added to. If this is not given (or given as ``None``), a new array will be created. coords : array-like, optional An array to be used to translate from the model's input coordinates to the ``out`` array. It should have the property that ``self(coords)`` yields the same shape as ``out``. If ``out`` is not specified, ``coords`` will be used to determine the shape of the returned array. If this is not provided (or None), the model will be evaluated on a grid determined by `Model.bounding_box`. Returns ------- out : `numpy.ndarray` The model added to ``out`` if ``out`` is not ``None``, or else a new array from evaluating the model over ``coords``. If ``out`` and ``coords`` are both `None`, the returned array is limited to the `Model.bounding_box` limits. If `Model.bounding_box` is `None`, ``arr`` or ``coords`` must be passed. Raises ------ ValueError If ``coords`` are not given and the the `Model.bounding_box` of this model is not set. Examples -------- :ref:`bounding-boxes` """ try: bbox = self.bounding_box except NotImplementedError: bbox = None ndim = self.n_inputs if (coords is None) and (out is None) and (bbox is None): raise ValueError('If no bounding_box is set, ' 'coords or out must be input.') # for consistent indexing if ndim == 1: if coords is not None: coords = [coords] if bbox is not None: bbox = [bbox] if coords is not None: coords = np.asanyarray(coords, dtype=float) # Check dimensions match out and model assert len(coords) == ndim if out is not None: if coords[0].shape != out.shape: raise ValueError('inconsistent shape of the output.') else: out = np.zeros(coords[0].shape) if out is not None: out = np.asanyarray(out, dtype=float) if out.ndim != ndim: raise ValueError('the array and model must have the same ' 'number of dimensions.') if bbox is not None: # assures position is at center pixel, important when using add_array pd = np.array([(np.mean(bb), np.ceil((bb[1] - bb[0]) / 2)) for bb in bbox]).astype(int).T pos, delta = pd if coords is not None: sub_shape = tuple(delta * 2 + 1) sub_coords = np.array([extract_array(c, sub_shape, pos) for c in coords]) else: limits = [slice(p - d, p + d + 1, 1) for p, d in pd.T] sub_coords = np.mgrid[limits] sub_coords = sub_coords[::-1] if out is None: out = self(*sub_coords) else: try: out = add_array(out, self(*sub_coords), pos) except ValueError: raise ValueError( 'The `bounding_box` is larger than the input out in ' 'one or more dimensions. Set ' '`model.bounding_box = None`.') else: if coords is None: im_shape = out.shape limits = [slice(i) for i in im_shape] coords = np.mgrid[limits] coords = coords[::-1] out += self(*coords) return out @property def input_units(self): """ This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or `None` if any units are accepted). Model sub-classes can also use function annotations in evaluate to indicate valid input units, in which case this property should not be overridden since it will return the input units based on the annotations. """ if hasattr(self, '_input_units'): return self._input_units elif hasattr(self.evaluate, '__annotations__'): annotations = self.evaluate.__annotations__.copy() annotations.pop('return', None) if annotations: # If there are not annotations for all inputs this will error. return dict((name, annotations[name]) for name in self.inputs) else: # None means any unit is accepted return None @property def return_units(self): """ This property is used to indicate what units or sets of units the output of evaluate should be in, and returns a dictionary mapping outputs to units (or `None` if any units are accepted). Model sub-classes can also use function annotations in evaluate to indicate valid output units, in which case this property should not be overridden since it will return the return units based on the annotations. """ if hasattr(self, '_return_units'): return self._return_units elif hasattr(self.evaluate, '__annotations__'): return self.evaluate.__annotations__.get('return', None) else: # None means any unit is accepted return None def prepare_inputs(self, *inputs, model_set_axis=None, equivalencies=None, **kwargs): """ This method is used in `~astropy.modeling.Model.__call__` to ensure that all the inputs to the model can be broadcast into compatible shapes (if one or both of them are input as arrays), particularly if there are more than one parameter sets. This also makes sure that (if applicable) the units of the input will be compatible with the evaluate method. """ # When we instantiate the model class, we make sure that __call__ can # take the following two keyword arguments: model_set_axis and # equivalencies. if model_set_axis is None: # By default the model_set_axis for the input is assumed to be the # same as that for the parameters the model was defined with # TODO: Ensure that negative model_set_axis arguments are respected model_set_axis = self.model_set_axis n_models = len(self) params = [getattr(self, name) for name in self.param_names] inputs = [np.asanyarray(_input, dtype=float) for _input in inputs] _validate_input_shapes(inputs, self.inputs, n_models, model_set_axis, self.standard_broadcasting) inputs = self._validate_input_units(inputs, equivalencies) # The input formatting required for single models versus a multiple # model set are different enough that they've been split into separate # subroutines if n_models == 1: return _prepare_inputs_single_model(self, params, inputs, **kwargs) else: return _prepare_inputs_model_set(self, params, inputs, n_models, model_set_axis, **kwargs) def _validate_input_units(self, inputs, equivalencies=None): inputs = list(inputs) name = self.name or self.__class__.__name__ # Check that the units are correct, if applicable if self.input_units is not None: # We combine any instance-level input equivalencies with user # specified ones at call-time. input_units_equivalencies = _combine_equivalency_dict(self.inputs, equivalencies, self.input_units_equivalencies) # We now iterate over the different inputs and make sure that their # units are consistent with those specified in input_units. for i in range(len(inputs)): input_name = self.inputs[i] input_unit = self.input_units.get(input_name, None) if input_unit is None: continue if isinstance(inputs[i], Quantity): # We check for consistency of the units with input_units, # taking into account any equivalencies if inputs[i].unit.is_equivalent(input_unit, equivalencies=input_units_equivalencies[input_name]): # If equivalencies have been specified, we need to # convert the input to the input units - this is because # some equivalencies are non-linear, and we need to be # sure that we evaluate the model in its own frame # of reference. If input_units_strict is set, we also # need to convert to the input units. if len(input_units_equivalencies) > 0 or self.input_units_strict[input_name]: inputs[i] = inputs[i].to(input_unit, equivalencies=input_units_equivalencies[input_name]) else: # We consider the following two cases separately so as # to be able to raise more appropriate/nicer exceptions if input_unit is dimensionless_unscaled: raise UnitsError("{0}: Units of input '{1}', {2} ({3}), could not be " "converted to required dimensionless " "input".format(name, self.inputs[i], inputs[i].unit, inputs[i].unit.physical_type)) else: raise UnitsError("{0}: Units of input '{1}', {2} ({3}), could not be " "converted to required input units of " "{4} ({5})".format(name, self.inputs[i], inputs[i].unit, inputs[i].unit.physical_type, input_unit, input_unit.physical_type)) else: # If we allow dimensionless input, we add the units to the # input values without conversion, otherwise we raise an # exception. if (not self.input_units_allow_dimensionless[input_name] and input_unit is not dimensionless_unscaled and input_unit is not None): if np.any(inputs[i] != 0): raise UnitsError("{0}: Units of input '{1}', (dimensionless), could not be " "converted to required input units of " "{2} ({3})".format(name, self.inputs[i], input_unit, input_unit.physical_type)) return inputs def _process_output_units(self, inputs, outputs): inputs_are_quantity = any([isinstance(i, Quantity) for i in inputs]) if self.return_units and inputs_are_quantity: # We allow a non-iterable unit only if there is one output if self.n_outputs == 1 and not isiterable(self.return_units): return_units = {self.outputs[0]: self.return_units} else: return_units = self.return_units outputs = tuple([Quantity(out, return_units.get(out_name, None), subok=True) for out, out_name in zip(outputs, self.outputs)]) return outputs def prepare_outputs(self, format_info, *outputs, **kwargs): model_set_axis = kwargs.get('model_set_axis', None) if len(self) == 1: return _prepare_outputs_single_model(self, outputs, format_info) else: return _prepare_outputs_model_set(self, outputs, format_info, model_set_axis) def copy(self): """ Return a copy of this model. Uses a deep copy so that all model attributes, including parameter values, are copied as well. """ return copy.deepcopy(self) def deepcopy(self): """ Return a deep copy of this model. """ return copy.deepcopy(self) @sharedmethod def rename(self, name): """ Return a copy of this model with a new name. """ new_model = self.copy() new_model._name = name return new_model @sharedmethod def n_submodels(self): """ Return the number of components in a single model, which is obviously 1. """ return 1 # *** Internal methods *** @sharedmethod def _from_existing(self, existing, param_names): """ Creates a new instance of ``cls`` that shares its underlying parameter values with an existing model instance given by ``existing``. This is used primarily by compound models to return a view of an individual component of a compound model. ``param_names`` should be the names of the parameters in the *existing* model to use as the parameters in this new model. Its length should equal the number of parameters this model takes, so that it can map parameters on the existing model to parameters on this model one-to-one. """ # Basically this is an alternative __init__ if isinstance(self, type): # self is a class, not an instance needs_initialization = True dummy_args = (0,) * len(param_names) self = self.__new__(self, *dummy_args) else: needs_initialization = False self = self.copy() aliases = dict(zip(self.param_names, param_names)) # This is basically an alternative _initialize_constraints constraints = {} for cons_type in self.parameter_constraints: orig = existing._constraints[cons_type] constraints[cons_type] = AliasDict(orig, aliases) self._constraints = constraints self._n_models = existing._n_models self._model_set_axis = existing._model_set_axis self._parameters = existing._parameters self._param_metrics = defaultdict(dict) for param_a, param_b in aliases.items(): # Take the param metrics info for the giving parameters in the # existing model, and hand them to the appropriate parameters in # the new model self._param_metrics[param_a] = existing._param_metrics[param_b] if needs_initialization: self.__init__(*dummy_args) return self def _initialize_constraints(self, kwargs): """ Pop parameter constraint values off the keyword arguments passed to `Model.__init__` and store them in private instance attributes. """ if hasattr(self, '_constraints'): # Skip constraint initialization if it has already been handled via # an alternate initialization return self._constraints = {} # Pop any constraints off the keyword arguments for constraint in self.parameter_constraints: values = kwargs.pop(constraint, {}) self._constraints[constraint] = values.copy() # Update with default parameter constraints for param_name in self.param_names: param = getattr(self, param_name) # Parameters don't have all constraint types value = getattr(param, constraint) if value is not None: self._constraints[constraint][param_name] = value for constraint in self.model_constraints: values = kwargs.pop(constraint, []) self._constraints[constraint] = values def _initialize_parameters(self, args, kwargs): """ Initialize the _parameters array that stores raw parameter values for all parameter sets for use with vectorized fitting algorithms; on FittableModels the _param_name attributes actually just reference slices of this array. """ if hasattr(self, '_parameters'): # Skip parameter initialization if it has already been handled via # an alternate initialization return n_models = kwargs.pop('n_models', None) if not (n_models is None or (isinstance(n_models, (int, np.integer)) and n_models >= 1)): raise ValueError( "n_models must be either None (in which case it is " "determined from the model_set_axis of the parameter initial " "values) or it must be a positive integer " "(got {0!r})".format(n_models)) model_set_axis = kwargs.pop('model_set_axis', None) if model_set_axis is None: if n_models is not None and n_models > 1: # Default to zero model_set_axis = 0 else: # Otherwise disable model_set_axis = False else: if not (model_set_axis is False or (isinstance(model_set_axis, int) and not isinstance(model_set_axis, bool))): raise ValueError( "model_set_axis must be either False or an integer " "specifying the parameter array axis to map to each " "model in a set of models (got {0!r}).".format( model_set_axis)) # Process positional arguments by matching them up with the # corresponding parameters in self.param_names--if any also appear as # keyword arguments this presents a conflict params = {} if len(args) > len(self.param_names): raise TypeError( "{0}.__init__() takes at most {1} positional arguments ({2} " "given)".format(self.__class__.__name__, len(self.param_names), len(args))) self._model_set_axis = model_set_axis self._param_metrics = defaultdict(dict) for idx, arg in enumerate(args): if arg is None: # A value of None implies using the default value, if exists continue # We use quantity_asanyarray here instead of np.asanyarray because # if any of the arguments are quantities, we need to return a # Quantity object not a plain Numpy array. params[self.param_names[idx]] = quantity_asanyarray(arg, dtype=float) # At this point the only remaining keyword arguments should be # parameter names; any others are in error. for param_name in self.param_names: if param_name in kwargs: if param_name in params: raise TypeError( "{0}.__init__() got multiple values for parameter " "{1!r}".format(self.__class__.__name__, param_name)) value = kwargs.pop(param_name) if value is None: continue # We use quantity_asanyarray here instead of np.asanyarray because # if any of the arguments are quantities, we need to return a # Quantity object not a plain Numpy array. params[param_name] = quantity_asanyarray(value, dtype=float) if kwargs: # If any keyword arguments were left over at this point they are # invalid--the base class should only be passed the parameter # values, constraints, and param_dim for kwarg in kwargs: # Just raise an error on the first unrecognized argument raise TypeError( '{0}.__init__() got an unrecognized parameter ' '{1!r}'.format(self.__class__.__name__, kwarg)) # Determine the number of model sets: If the model_set_axis is # None then there is just one parameter set; otherwise it is determined # by the size of that axis on the first parameter--if the other # parameters don't have the right number of axes or the sizes of their # model_set_axis don't match an error is raised if model_set_axis is not False and n_models != 1 and params: max_ndim = 0 if model_set_axis < 0: min_ndim = abs(model_set_axis) else: min_ndim = model_set_axis + 1 for name, value in params.items(): param_ndim = np.ndim(value) if param_ndim < min_ndim: raise InputParameterError( "All parameter values must be arrays of dimension " "at least {0} for model_set_axis={1} (the value " "given for {2!r} is only {3}-dimensional)".format( min_ndim, model_set_axis, name, param_ndim)) max_ndim = max(max_ndim, param_ndim) if n_models is None: # Use the dimensions of the first parameter to determine # the number of model sets n_models = value.shape[model_set_axis] elif value.shape[model_set_axis] != n_models: raise InputParameterError( "Inconsistent dimensions for parameter {0!r} for " "{1} model sets. The length of axis {2} must be the " "same for all input parameter values".format( name, n_models, model_set_axis)) self._check_param_broadcast(params, max_ndim) else: if n_models is None: n_models = 1 self._check_param_broadcast(params, None) self._n_models = n_models self._initialize_parameter_values(params) def _initialize_parameter_values(self, params): # self._param_metrics should have been initialized in # self._initialize_parameters param_metrics = self._param_metrics total_size = 0 for name in self.param_names: unit = None param_descr = getattr(self, name) if params.get(name) is None: default = param_descr.default if default is None: # No value was supplied for the parameter and the # parameter does not have a default, therefore the model # is underspecified raise TypeError( "{0}.__init__() requires a value for parameter " "{1!r}".format(self.__class__.__name__, name)) value = params[name] = default unit = param_descr.unit else: value = params[name] if isinstance(value, Quantity): unit = value.unit else: unit = None param_size = np.size(value) param_shape = np.shape(value) param_slice = slice(total_size, total_size + param_size) param_metrics[name]['slice'] = param_slice param_metrics[name]['shape'] = param_shape if unit is None and param_descr.unit is not None: raise InputParameterError( "{0}.__init__() requires a Quantity for parameter " "{1!r}".format(self.__class__.__name__, name)) param_metrics[name]['orig_unit'] = unit param_metrics[name]['raw_unit'] = None if param_descr._setter is not None: _val = param_descr._setter(value) if isinstance(_val, Quantity): param_metrics[name]['raw_unit'] = _val.unit else: param_metrics[name]['raw_unit'] = None total_size += param_size self._param_metrics = param_metrics self._parameters = np.empty(total_size, dtype=np.float64) # Now set the parameter values (this will also fill # self._parameters) # TODO: This is a bit ugly, but easier to deal with than how this was # done previously. There's still lots of opportunity for refactoring # though, in particular once we move the _get/set_model_value methods # out of Parameter and into Model (renaming them # _get/set_parameter_value) for name, value in params.items(): # value here may be a Quantity object. param_descr = getattr(self, name) unit = param_descr.unit value = np.array(value) orig_unit = param_metrics[name]['orig_unit'] if param_descr._setter is not None: if unit is not None: value = np.asarray(param_descr._setter(value * orig_unit).value) else: value = param_descr._setter(value) self._parameters[param_metrics[name]['slice']] = value.ravel() # Finally validate all the parameters; we do this last so that # validators that depend on one of the other parameters' values will # work for name in params: param_descr = getattr(self, name) param_descr.validator(param_descr.value) def _check_param_broadcast(self, params, max_ndim): """ This subroutine checks that all parameter arrays can be broadcast against each other, and determines the shapes parameters must have in order to broadcast correctly. If model_set_axis is None this merely checks that the parameters broadcast and returns an empty dict if so. This mode is only used for single model sets. """ all_shapes = [] param_names = [] model_set_axis = self._model_set_axis for name in self.param_names: # Previously this just used iteritems(params), but we loop over all # param_names instead just to ensure some determinism in the # ordering behavior if name not in params: continue value = params[name] param_names.append(name) # We've already checked that each parameter array is compatible in # the model_set_axis dimension, but now we need to check the # dimensions excluding that axis # Split the array dimensions into the axes before model_set_axis # and after model_set_axis param_shape = np.shape(value) param_ndim = len(param_shape) if max_ndim is not None and param_ndim < max_ndim: # All arrays have the same number of dimensions up to the # model_set_axis dimension, but after that they may have a # different number of trailing axes. The number of trailing # axes must be extended for mutual compatibility. For example # if max_ndim = 3 and model_set_axis = 0, an array with the # shape (2, 2) must be extended to (2, 1, 2). However, an # array with shape (2,) is extended to (2, 1). new_axes = (1,) * (max_ndim - param_ndim) if model_set_axis < 0: # Just need to prepend axes to make up the difference broadcast_shape = new_axes + param_shape else: broadcast_shape = (param_shape[:model_set_axis + 1] + new_axes + param_shape[model_set_axis + 1:]) self._param_metrics[name]['broadcast_shape'] = broadcast_shape all_shapes.append(broadcast_shape) else: all_shapes.append(param_shape) # Now check mutual broadcastability of all shapes try: check_broadcast(*all_shapes) except IncompatibleShapeError as exc: shape_a, shape_a_idx, shape_b, shape_b_idx = exc.args param_a = param_names[shape_a_idx] param_b = param_names[shape_b_idx] raise InputParameterError( "Parameter {0!r} of shape {1!r} cannot be broadcast with " "parameter {2!r} of shape {3!r}. All parameter arrays " "must have shapes that are mutually compatible according " "to the broadcasting rules.".format(param_a, shape_a, param_b, shape_b)) def _param_sets(self, raw=False, units=False): """ Implementation of the Model.param_sets property. This internal implementation has a ``raw`` argument which controls whether or not to return the raw parameter values (i.e. the values that are actually stored in the ._parameters array, as opposed to the values displayed to users. In most cases these are one in the same but there are currently a few exceptions. Note: This is notably an overcomplicated device and may be removed entirely in the near future. """ param_metrics = self._param_metrics values = [] shapes = [] for name in self.param_names: param = getattr(self, name) if raw: value = param._raw_value else: value = param.value broadcast_shape = param_metrics[name].get('broadcast_shape') if broadcast_shape is not None: value = value.reshape(broadcast_shape) shapes.append(np.shape(value)) if len(self) == 1: # Add a single param set axis to the parameter's value (thus # converting scalars to shape (1,) array values) for # consistency value = np.array([value]) if units: if raw and self._param_metrics[name]['raw_unit'] is not None: unit = self._param_metrics[name]['raw_unit'] else: unit = param.unit if unit is not None: value = Quantity(value, unit) values.append(value) if len(set(shapes)) != 1 or units: # If the parameters are not all the same shape, converting to an # array is going to produce an object array # However the way Numpy creates object arrays is tricky in that it # will recurse into array objects in the list and break them up # into separate objects. Doing things this way ensures a 1-D # object array the elements of which are the individual parameter # arrays. There's not much reason to do this over returning a list # except for consistency psets = np.empty(len(values), dtype=object) psets[:] = values return psets # TODO: Returning an array from this method may be entirely pointless # for internal use--perhaps only the external param_sets method should # return an array (and just for backwards compat--I would prefer to # maybe deprecate that method) return np.array(values) def _format_repr(self, args=[], kwargs={}, defaults={}): """ Internal implementation of ``__repr__``. This is separated out for ease of use by subclasses that wish to override the default ``__repr__`` while keeping the same basic formatting. """ # TODO: I think this could be reworked to preset model sets better parts = [repr(a) for a in args] parts.extend( "{0}={1}".format(name, param_repr_oneline(getattr(self, name))) for name in self.param_names) if self.name is not None: parts.append('name={0!r}'.format(self.name)) for kwarg, value in kwargs.items(): if kwarg in defaults and defaults[kwarg] != value: continue parts.append('{0}={1!r}'.format(kwarg, value)) if len(self) > 1: parts.append("n_models={0}".format(len(self))) return '<{0}({1})>'.format(self.__class__.__name__, ', '.join(parts)) def _format_str(self, keywords=[]): """ Internal implementation of ``__str__``. This is separated out for ease of use by subclasses that wish to override the default ``__str__`` while keeping the same basic formatting. """ default_keywords = [ ('Model', self.__class__.__name__), ('Name', self.name), ('Inputs', self.inputs), ('Outputs', self.outputs), ('Model set size', len(self)) ] parts = ['{0}: {1}'.format(keyword, value) for keyword, value in default_keywords + keywords if value is not None] parts.append('Parameters:') if len(self) == 1: columns = [[getattr(self, name).value] for name in self.param_names] else: columns = [getattr(self, name).value for name in self.param_names] if columns: param_table = Table(columns, names=self.param_names) # Set units on the columns for name in self.param_names: param_table[name].unit = getattr(self, name).unit parts.append(indent(str(param_table), width=4)) return '\n'.join(parts) class FittableModel(Model): """ Base class for models that can be fitted using the built-in fitting algorithms. """ linear = False # derivative with respect to parameters fit_deriv = None """ Function (similar to the model's `~Model.evaluate`) to compute the derivatives of the model with respect to its parameters, for use by fitting algorithms. In other words, this computes the Jacobian matrix with respect to the model's parameters. """ # Flag that indicates if the model derivatives with respect to parameters # are given in columns or rows col_fit_deriv = True fittable = True class Fittable1DModel(FittableModel): """ Base class for one-dimensional fittable models. This class provides an easier interface to defining new models. Examples can be found in `astropy.modeling.functional_models`. """ inputs = ('x',) outputs = ('y',) _separable = True class Fittable2DModel(FittableModel): """ Base class for two-dimensional fittable models. This class provides an easier interface to defining new models. Examples can be found in `astropy.modeling.functional_models`. """ inputs = ('x', 'y') outputs = ('z',) def _make_arithmetic_operator(oper): # We don't bother with tuple unpacking here for efficiency's sake, but for # documentation purposes: # # f_eval, f_n_inputs, f_n_outputs = f # # and similarly for g def op(f, g): return (make_binary_operator_eval(oper, f[0], g[0]), f[1], f[2]) return op def _composition_operator(f, g): # We don't bother with tuple unpacking here for efficiency's sake, but for # documentation purposes: # # f_eval, f_n_inputs, f_n_outputs = f # # and similarly for g return (lambda inputs, params: g[0](f[0](inputs, params), params), f[1], g[2]) def _join_operator(f, g): # We don't bother with tuple unpacking here for efficiency's sake, but for # documentation purposes: # # f_eval, f_n_inputs, f_n_outputs = f # # and similarly for g return (lambda inputs, params: (f[0](inputs[:f[1]], params) + g[0](inputs[f[1]:], params)), f[1] + g[1], f[2] + g[2]) # TODO: Support a couple unary operators--at least negation? BINARY_OPERATORS = { '+': _make_arithmetic_operator(operator.add), '-': _make_arithmetic_operator(operator.sub), '*': _make_arithmetic_operator(operator.mul), '/': _make_arithmetic_operator(operator.truediv), '**': _make_arithmetic_operator(operator.pow), '|': _composition_operator, '&': _join_operator } _ORDER_OF_OPERATORS = [('|',), ('&',), ('+', '-'), ('*', '/'), ('**',)] OPERATOR_PRECEDENCE = {} for idx, ops in enumerate(_ORDER_OF_OPERATORS): for op in ops: OPERATOR_PRECEDENCE[op] = idx del idx, op, ops class _CompoundModelMeta(_ModelMeta): _tree = None _submodels = None _submodel_names = None _nextid = 0 _param_names = None # _param_map is a mapping of the compound model's generated param names to # the parameters of submodels they are associated with. The values in this # mapping are (idx, name) tuples were idx is the index of the submodel this # parameter is associated with, and name is the same parameter's name on # the submodel # In principle this will allow compound models to give entirely new names # to parameters that don't have to be the same as their original names on # the submodels, but right now that isn't taken advantage of _param_map = None _slice_offset = 0 # When taking slices of a compound model, this keeps track of how offset # the first model in the slice is from the first model in the original # compound model it was taken from # This just inverts _param_map, swapping keys with values. This is also # useful to have. _param_map_inverse = None _fittable = None _evaluate = None def __getitem__(cls, index): index = cls._normalize_index(index) if isinstance(index, (int, np.integer)): return cls._get_submodels()[index] else: return cls._get_slice(index.start, index.stop) def __getattr__(cls, attr): # Make sure the _tree attribute is set; otherwise we are not looking up # an attribute on a concrete compound model class and should just raise # the AttributeError if cls._tree is not None and attr in cls.param_names: cls._init_param_descriptors() return getattr(cls, attr) raise AttributeError(attr) def __repr__(cls): if cls._tree is None: # This case is mostly for debugging purposes return cls._format_cls_repr() expression = cls._format_expression() components = cls._format_components() keywords = [ ('Expression', expression), ('Components', '\n' + indent(components)) ] return cls._format_cls_repr(keywords=keywords) def __dir__(cls): """ Returns a list of attributes defined on a compound model, including all of its parameters. """ basedir = super().__dir__() if cls._tree is not None: for name in cls.param_names: basedir.append(name) basedir.sort() return basedir def __reduce__(cls): rv = super().__reduce__() if isinstance(rv, tuple): # Delete _evaluate from the members dict with suppress(KeyError): del rv[1][2]['_evaluate'] return rv @property def submodel_names(cls): if cls._submodel_names is None: seen = {} names = [] for idx, submodel in enumerate(cls._get_submodels()): name = str(submodel.name) if name in seen: names.append('{0}_{1}'.format(name, idx)) if seen[name] >= 0: jdx = seen[name] names[jdx] = '{0}_{1}'.format(names[jdx], jdx) seen[name] = -1 else: names.append(name) seen[name] = idx cls._submodel_names = tuple(names) return cls._submodel_names @property def param_names(cls): if cls._param_names is None: cls._init_param_names() return cls._param_names @property def fittable(cls): if cls._fittable is None: cls._fittable = all(m.fittable for m in cls._get_submodels()) return cls._fittable # TODO: Maybe we could use make_function_with_signature for evaluate, but # it's probably not worth it (and I'm not sure what the limit is on number # of function arguments/local variables but we could break that limit for # complicated compound models... def evaluate(cls, *args): if cls._evaluate is None: func = cls._tree.evaluate(BINARY_OPERATORS, getter=cls._model_evaluate_getter)[0] cls._evaluate = func inputs = args[:cls.n_inputs] params = iter(args[cls.n_inputs:]) result = cls._evaluate(inputs, params) if cls.n_outputs == 1: return result[0] else: return result # TODO: This supports creating a new compound model from two existing # compound models (or normal models) and a single operator. However, it # ought also to be possible to create a new model from an *entire* # expression, represented as a sequence of operators and their operands (or # an exiting ExpressionTree) and build that into a compound model without # creating an intermediate _CompoundModel class for every single operator # in the expression. This will prove to be a useful optimization in many # cases @classmethod def _from_operator(mcls, operator, left, right, additional_members={}): """ Given a Python operator (represented by a string, such as ``'+'`` or ``'*'``, and two model classes or instances, return a new compound model that evaluates the given operator on the outputs of the left and right input models. If either of the input models are a model *class* (i.e. a subclass of `~astropy.modeling.Model`) then the returned model is a new subclass of `~astropy.modeling.Model` that may be instantiated with any parameter values. If both input models are *instances* of a model, a new class is still created, but this method returns an *instance* of that class, taking the parameter values from the parameters of the input model instances. If given, the ``additional_members`` `dict` may provide additional class members that should be added to the generated `~astropy.modeling.Model` subclass. Some members that are generated by this method should not be provided by ``additional_members``. These include ``_tree``, ``inputs``, ``outputs``, ``linear``, ``standard_broadcasting``, and ``__module__`. This is currently for internal use only. """ # Note, currently this only supports binary operators, but could be # easily extended to support unary operators (namely '-') if/when # needed children = [] for child in (left, right): if isinstance(child, (_CompoundModelMeta, _CompoundModel)): """ Although the original child models were copied we make another copy here to ensure that changes in this child compound model parameters will not propagate to the reuslt, that is cm1 = Gaussian1D(1, 5, .1) + Gaussian1D() cm2 = cm1 | Scale() cm1.amplitude_0 = 100 assert(cm2.amplitude_0 == 1) """ children.append(copy.deepcopy(child._tree)) elif isinstance(child, Model): children.append(ExpressionTree(child.copy(), inputs=child.inputs, outputs=child.outputs)) else: children.append(ExpressionTree(child, inputs=child.inputs, outputs=child.outputs)) inputs, outputs = mcls._check_inputs_and_outputs(operator, left, right) tree = ExpressionTree(operator, left=children[0], right=children[1], inputs=inputs, outputs=outputs) name = str('CompoundModel{0}'.format(_CompoundModelMeta._nextid)) _CompoundModelMeta._nextid += 1 mod = find_current_module(3) if mod: modname = mod.__name__ else: modname = '__main__' if operator in ('|', '+', '-'): linear = left.linear and right.linear else: # Which is not to say it is *definitely* not linear but it would be # trickier to determine linear = False standard_broadcasting = left.standard_broadcasting and right.standard_broadcasting # Note: If any other members are added here, make sure to mention them # in the docstring of this method. members = additional_members members.update({ '_tree': tree, '_is_dynamic': True, # See docs for _ModelMeta._is_dynamic 'inputs': inputs, 'outputs': outputs, 'linear': linear, 'standard_broadcasting': standard_broadcasting, '__module__': str(modname)}) new_cls = mcls(name, (_CompoundModel,), members) if isinstance(left, Model) and isinstance(right, Model): # Both models used in the operator were already instantiated models, # not model *classes*. As such it's not particularly useful to return # the class itself, but to instead produce a new instance: instance = new_cls() # Workaround for https://github.com/astropy/astropy/issues/3542 # TODO: Any effort to restructure the tree-like data structure for # compound models should try to obviate this workaround--if # intermediate compound models are stored in the tree as well then # we can immediately check for custom inverses on sub-models when # computing the inverse instance._user_inverse = mcls._make_user_inverse( operator, left, right) if left._n_models == right._n_models: instance._n_models = left._n_models else: raise ValueError('Model sets must have the same number of ' 'components.') return instance # Otherwise return the new uninstantiated class itself return new_cls @classmethod def _check_inputs_and_outputs(mcls, operator, left, right): # TODO: These aren't the full rules for handling inputs and outputs, but # this will handle most basic cases correctly if operator == '|': inputs = left.inputs outputs = right.outputs if left.n_outputs != right.n_inputs: raise ModelDefinitionError( "Unsupported operands for |: {0} (n_inputs={1}, " "n_outputs={2}) and {3} (n_inputs={4}, n_outputs={5}); " "n_outputs for the left-hand model must match n_inputs " "for the right-hand model.".format( left.name, left.n_inputs, left.n_outputs, right.name, right.n_inputs, right.n_outputs)) elif operator == '&': inputs = combine_labels(left.inputs, right.inputs) outputs = combine_labels(left.outputs, right.outputs) else: # Without loss of generality inputs = left.inputs outputs = left.outputs if (left.n_inputs != right.n_inputs or left.n_outputs != right.n_outputs): raise ModelDefinitionError( "Unsupported operands for {0}: {1} (n_inputs={2}, " "n_outputs={3}) and {4} (n_inputs={5}, n_outputs={6}); " "models must have the same n_inputs and the same " "n_outputs for this operator".format( operator, left.name, left.n_inputs, left.n_outputs, right.name, right.n_inputs, right.n_outputs)) return inputs, outputs @classmethod def _make_user_inverse(mcls, operator, left, right): """ Generates an inverse `Model` for this `_CompoundModel` when either model in the operation has a *custom inverse* that was manually assigned by the user. If either model has a custom inverse, and in particular if another `_CompoundModel` has a custom inverse, then none of that model's sub-models should be considered at all when computing the inverse. So in that case we just compute the inverse ahead of time and set it as the new compound model's custom inverse. Note, this use case only applies when combining model instances, since model classes don't currently have a notion of a "custom inverse" (though it could probably be supported by overriding the class's inverse property). TODO: Consider fixing things so the aforementioned class-based case works as well. However, for the present purposes this is good enough. """ if not (operator in ('&', '|') and (left._user_inverse or right._user_inverse)): # These are the only operators that support an inverse right now return None try: left_inv = left.inverse right_inv = right.inverse except NotImplementedError: # If either inverse is undefined then just return False; this # means the normal _CompoundModel.inverse routine will fail # naturally anyways, since it requires all sub-models to have # an inverse defined return None if operator == '&': return left_inv & right_inv else: return right_inv | left_inv # TODO: Perhaps, just perhaps, the post-order (or ???-order) ordering of # leaf nodes is something the ExpressionTree class itself could just know def _get_submodels(cls): # Would make this a lazyproperty but those don't currently work with # type objects if cls._submodels is not None: return cls._submodels submodels = [c.value for c in cls._tree.traverse_postorder() if c.isleaf] cls._submodels = submodels return submodels def _init_param_descriptors(cls): """ This routine sets up the names for all the parameters on a compound model, including figuring out unique names for those parameters and also mapping them back to their associated parameters of the underlying submodels. Setting this all up is costly, and only necessary for compound models that a user will directly interact with. For example when building an expression like:: >>> M = (Model1 + Model2) * Model3 # doctest: +SKIP the user will generally never interact directly with the temporary result of the subexpression ``(Model1 + Model2)``. So there's no need to setup all the parameters for that temporary throwaway. Only once the full expression is built and the user initializes or introspects ``M`` is it necessary to determine its full parameterization. """ # Accessing cls.param_names will implicitly call _init_param_names if # needed and thus also set up the _param_map; I'm not crazy about that # design but it stands for now for param_name in cls.param_names: submodel_idx, submodel_param = cls._param_map[param_name] submodel = cls[submodel_idx] orig_param = getattr(submodel, submodel_param, None) if isinstance(submodel, Model): # Take the parameter's default from the model's value for that # parameter default = orig_param.value else: default = orig_param.default # Copy constraints constraints = dict((key, getattr(orig_param, key)) for key in Model.parameter_constraints) # Note: Parameter.copy() returns a new unbound Parameter, never # a bound Parameter even if submodel is a Model instance (as # opposed to a Model subclass) new_param = orig_param.copy(name=param_name, default=default, unit=orig_param.unit, **constraints) setattr(cls, param_name, new_param) def _init_param_names(cls): """ This subroutine is solely for setting up the ``param_names`` attribute itself. See ``_init_param_descriptors`` for the full parameter setup. """ # Currently this skips over Model *instances* in the expression tree; # basically these are treated as constants and do not add # fittable/tunable parameters to the compound model. # TODO: I'm not 100% happy with this design, and maybe we need some # interface for distinguishing fittable/settable parameters with # *constant* parameters (which would be distinct from parameters with # fixed constraints since they're permanently locked in place). But I'm # not sure if this is really the best way to treat the issue. names = [] param_map = {} # Start counting the suffix indices to put on parameter names from the # slice_offset. Usually this will just be zero, but for compound # models that were sliced from another compound model this may be > 0 param_suffix = cls._slice_offset for idx, model in enumerate(cls._get_submodels()): if not model.param_names: # Skip models that don't have parameters in the numbering # TODO: Reevaluate this if it turns out to be confusing, though # parameter-less models are not very common in practice (there # are a few projections that don't take parameters) continue for param_name in model.param_names: # This is sort of heuristic, but we want to check that # model.param_name *actually* returns a Parameter descriptor, # and that the model isn't some inconsistent type that happens # to have a param_names attribute but does not actually # implement settable parameters. # In the future we can probably remove this check, but this is # here specifically to support the legacy compat # _CompositeModel which can be considered a pathological case # in the context of the new framework # if not isinstance(getattr(model, param_name, None), # Parameter): # break name = '{0}_{1}'.format(param_name, param_suffix + idx) names.append(name) param_map[name] = (idx, param_name) cls._param_names = tuple(names) cls._param_map = param_map cls._param_map_inverse = dict((v, k) for k, v in param_map.items()) def _format_expression(cls): # TODO: At some point might be useful to make a public version of this, # albeit with more formatting options return cls._tree.format_expression(OPERATOR_PRECEDENCE) def _format_components(cls): return '\n\n'.join('[{0}]: {1!r}'.format(idx, m) for idx, m in enumerate(cls._get_submodels())) def _normalize_index(cls, index): """ Converts an index given to __getitem__ to either an integer, or a slice with integer start and stop values. If the length of the slice is exactly 1 this converts the index to a simple integer lookup. Negative integers are converted to positive integers. """ def get_index_from_name(name): try: return cls.submodel_names.index(name) except ValueError: raise IndexError( 'Compound model {0} does not have a component named ' '{1}'.format(cls.name, name)) def check_for_negative_index(index): if index < 0: new_index = len(cls.submodel_names) + index if new_index < 0: # If still < 0 then this is an invalid index raise IndexError( "Model index {0} out of range.".format(index)) else: index = new_index return index if isinstance(index, str): return get_index_from_name(index) elif isinstance(index, slice): if index.step not in (1, None): # In principle it could be but I can scarcely imagine a case # where it would be useful. If someone can think of one then # we can enable it. raise ValueError( "Step not supported for compound model slicing.") start = index.start if index.start is not None else 0 stop = (index.stop if index.stop is not None else len(cls.submodel_names)) if isinstance(start, (int, np.integer)): start = check_for_negative_index(start) if isinstance(stop, (int, np.integer)): stop = check_for_negative_index(stop) if isinstance(start, str): start = get_index_from_name(start) if isinstance(stop, str): stop = get_index_from_name(stop) + 1 length = stop - start if length == 1: return start elif length <= 0: raise ValueError("Empty slice of a compound model.") return slice(start, stop) elif isinstance(index, (int, np.integer)): if index >= len(cls.submodel_names): raise IndexError( "Model index {0} out of range.".format(index)) return check_for_negative_index(index) raise TypeError( 'Submodels can be indexed either by their integer order or ' 'their name (got {0!r}).'.format(index)) def _get_slice(cls, start, stop): """ Return a new model build from a sub-expression of the expression represented by this model. Right now this is highly inefficient, as it creates a new temporary model for each operator that appears in the sub-expression. It would be better if this just built a new expression tree, and the new model instantiated directly from that tree. Once tree -> model instantiation is possible this should be fixed to use that instead. """ members = {'_slice_offset': cls._slice_offset + start} operators = dict((oper, _model_oper(oper, additional_members=members)) for oper in BINARY_OPERATORS) return cls._tree.evaluate(operators, start=start, stop=stop) @staticmethod def _model_evaluate_getter(idx, model): n_params = len(model.param_names) n_inputs = model.n_inputs n_outputs = model.n_outputs # If model is not an instance, we need to instantiate it to make sure # that we can call _validate_input_units (since e.g. input_units can # be an instance property). def evaluate_wrapper(model, inputs, param_values): inputs = model._validate_input_units(inputs) outputs = model.evaluate(*inputs, *param_values) if n_outputs == 1: outputs = (outputs,) return model._process_output_units(inputs, outputs) if isinstance(model, Model): def f(inputs, params): param_values = tuple(islice(params, n_params)) return evaluate_wrapper(model, inputs, param_values) else: # Where previously model was a class, now make an instance def f(inputs, params): param_values = tuple(islice(params, n_params)) m = model(*param_values) return evaluate_wrapper(m, inputs, param_values) return (f, n_inputs, n_outputs) class _CompoundModel(Model, metaclass=_CompoundModelMeta): fit_deriv = None col_fit_deriv = False _submodels = None def __str__(self): expression = self._format_expression() components = self._format_components() keywords = [ ('Expression', expression), ('Components', '\n' + indent(components)) ] return super()._format_str(keywords=keywords) def _generate_input_output_units_dict(self, mapping, attr): """ This method is used to transform dict or bool settings from submodels into a single dictionary for the composite model, taking into account renaming of input parameters. """ d = {} for inp, (model, orig_inp) in mapping.items(): mattr = getattr(model, attr) if isinstance(mattr, dict): if orig_inp in mattr: d[inp] = mattr[orig_inp] elif isinstance(mattr, bool): d[inp] = mattr if d: # Note that if d is empty, we just return None return d @property def input_units_allow_dimensionless(self): return self._generate_input_output_units_dict(self._tree.inputs_map, 'input_units_allow_dimensionless') @property def input_units_strict(self): return self._generate_input_output_units_dict(self._tree.inputs_map, 'input_units_strict') @property def input_units(self): return self._generate_input_output_units_dict(self._tree.inputs_map, 'input_units') @property def input_units_equivalencies(self): return self._generate_input_output_units_dict(self._tree.inputs_map, 'input_units_equivalencies') @property def return_units(self): return self._generate_input_output_units_dict(self._tree.outputs_map, 'return_units') def __getattr__(self, attr): # This __getattr__ is necessary, because _CompoundModelMeta creates # Parameter descriptors *lazily*--they do not exist in the class # __dict__ until one of them has been accessed. # However, this is at odds with how Python looks up descriptors (see # (https://docs.python.org/3/reference/datamodel.html#invoking-descriptors) # which is to look directly in the class __dict__ # This workaround allows descriptors to work correctly when they are # not initially found in the class __dict__ value = getattr(self.__class__, attr) if hasattr(value, '__get__'): # Object is a descriptor, so we should really return the result of # its __get__ value = value.__get__(self, self.__class__) return value def __getitem__(self, index): index = self.__class__._normalize_index(index) model = self.__class__[index] if isinstance(index, slice): param_names = model.param_names else: param_map = self.__class__._param_map_inverse param_names = tuple(param_map[index, name] for name in model.param_names) return model._from_existing(self, param_names) @property def submodel_names(self): return self.__class__.submodel_names @sharedmethod def n_submodels(self): return len(self.submodel_names) @property def param_names(self): return self.__class__.param_names @property def fittable(self): return self.__class__.fittable @sharedmethod def evaluate(self, *args): return self.__class__.evaluate(*args) # TODO: The way this works is highly inefficient--the inverse is created by # making a new model for each operator in the compound model, which could # potentially mean creating a large number of temporary throwaway model # classes. This can definitely be optimized in the future by implementing # a way to construct a single model class from an existing tree @property def inverse(self): def _not_implemented(oper): def _raise(x, y): raise NotImplementedError( "The inverse is not currently defined for compound " "models created using the {0} operator.".format(oper)) return _raise operators = dict((oper, _not_implemented(oper)) for oper in ('+', '-', '*', '/', '**')) operators['&'] = operator.and_ # Reverse the order of compositions operators['|'] = lambda x, y: operator.or_(y, x) def getter(idx, model): try: # By indexing on self[] this will return an instance of the # model, with all the appropriate parameters set, which is # currently required to return an inverse return self[idx].inverse except NotImplementedError: raise NotImplementedError( "All models in a composite model must have an inverse " "defined in order for the composite model to have an " "inverse. {0!r} does not have an inverse.".format(model)) return self._tree.evaluate(operators, getter=getter) @sharedmethod def _get_submodels(self): return self.__class__._get_submodels() def _parameter_units_for_data_units(self, input_units, output_units): units_for_data = {} for imodel, model in enumerate(self._submodels): units_for_data_sub = model._parameter_units_for_data_units(input_units, output_units) for param_sub in units_for_data_sub: param = self._param_map_inverse[(imodel, param_sub)] units_for_data[param] = units_for_data_sub[param_sub] return units_for_data def deepcopy(self): """ Return a deep copy of a compound model. """ new_model = self.copy() new_model._submodels = [model.deepcopy() for model in self._submodels] return new_model def custom_model(*args, fit_deriv=None, **kwargs): """ Create a model from a user defined function. The inputs and parameters of the model will be inferred from the arguments of the function. This can be used either as a function or as a decorator. See below for examples of both usages. .. note:: All model parameters have to be defined as keyword arguments with default values in the model function. Use `None` as a default argument value if you do not want to have a default value for that parameter. Parameters ---------- func : function Function which defines the model. It should take N positional arguments where ``N`` is dimensions of the model (the number of independent variable in the model), and any number of keyword arguments (the parameters). It must return the value of the model (typically as an array, but can also be a scalar for scalar inputs). This corresponds to the `~astropy.modeling.Model.evaluate` method. fit_deriv : function, optional Function which defines the Jacobian derivative of the model. I.e., the derivative with respect to the *parameters* of the model. It should have the same argument signature as ``func``, but should return a sequence where each element of the sequence is the derivative with respect to the corresponding argument. This corresponds to the :meth:`~astropy.modeling.FittableModel.fit_deriv` method. Examples -------- Define a sinusoidal model function as a custom 1D model:: >>> from astropy.modeling.models import custom_model >>> import numpy as np >>> def sine_model(x, amplitude=1., frequency=1.): ... return amplitude * np.sin(2 * np.pi * frequency * x) >>> def sine_deriv(x, amplitude=1., frequency=1.): ... return 2 * np.pi * amplitude * np.cos(2 * np.pi * frequency * x) >>> SineModel = custom_model(sine_model, fit_deriv=sine_deriv) Create an instance of the custom model and evaluate it:: >>> model = SineModel() >>> model(0.25) 1.0 This model instance can now be used like a usual astropy model. The next example demonstrates a 2D Moffat function model, and also demonstrates the support for docstrings (this example could also include a derivative, but it has been omitted for simplicity):: >>> @custom_model ... def Moffat2D(x, y, amplitude=1.0, x_0=0.0, y_0=0.0, gamma=1.0, ... alpha=1.0): ... \"\"\"Two dimensional Moffat function.\"\"\" ... rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2 ... return amplitude * (1 + rr_gg) ** (-alpha) ... >>> print(Moffat2D.__doc__) Two dimensional Moffat function. >>> model = Moffat2D() >>> model(1, 1) # doctest: +FLOAT_CMP 0.3333333333333333 """ if kwargs: warnings.warn( "Function received unexpected arguments ({}) these " "are ignored but will raise an Exception in the " "future.".format(list(kwargs)), AstropyDeprecationWarning) if len(args) == 1 and callable(args[0]): return _custom_model_wrapper(args[0], fit_deriv=fit_deriv) elif not args: return functools.partial(_custom_model_wrapper, fit_deriv=fit_deriv) else: raise TypeError( "{0} takes at most one positional argument (the callable/" "function to be turned into a model. When used as a decorator " "it should be passed keyword arguments only (if " "any).".format(__name__)) def _custom_model_wrapper(func, fit_deriv=None): """ Internal implementation `custom_model`. When `custom_model` is called as a function its arguments are passed to this function, and the result of this function is returned. When `custom_model` is used as a decorator a partial evaluation of this function is returned by `custom_model`. """ if not callable(func): raise ModelDefinitionError( "func is not callable; it must be a function or other callable " "object") if fit_deriv is not None and not callable(fit_deriv): raise ModelDefinitionError( "fit_deriv not callable; it must be a function or other " "callable object") model_name = func.__name__ inputs, params = get_inputs_and_params(func) if (fit_deriv is not None and len(fit_deriv.__defaults__) != len(params)): raise ModelDefinitionError("derivative function should accept " "same number of parameters as func.") # TODO: Maybe have a clever scheme for default output name? if inputs: output_names = (inputs[0].name,) else: output_names = ('x',) params = dict((param.name, Parameter(param.name, default=param.default)) for param in params) mod = find_current_module(2) if mod: modname = mod.__name__ else: modname = '__main__' members = { '__module__': str(modname), '__doc__': func.__doc__, 'inputs': tuple(x.name for x in inputs), 'outputs': output_names, 'evaluate': staticmethod(func), } if fit_deriv is not None: members['fit_deriv'] = staticmethod(fit_deriv) members.update(params) return type(model_name, (FittableModel,), members) def render_model(model, arr=None, coords=None): """ Evaluates a model on an input array. Evaluation is limited to a bounding box if the `Model.bounding_box` attribute is set. Parameters ---------- model : `Model` Model to be evaluated. arr : `numpy.ndarray`, optional Array on which the model is evaluated. coords : array-like, optional Coordinate arrays mapping to ``arr``, such that ``arr[coords] == arr``. Returns ------- array : `numpy.ndarray` The model evaluated on the input ``arr`` or a new array from ``coords``. If ``arr`` and ``coords`` are both `None`, the returned array is limited to the `Model.bounding_box` limits. If `Model.bounding_box` is `None`, ``arr`` or ``coords`` must be passed. Examples -------- :ref:`bounding-boxes` """ bbox = model.bounding_box if (coords is None) & (arr is None) & (bbox is None): raise ValueError('If no bounding_box is set, coords or arr must be input.') # for consistent indexing if model.n_inputs == 1: if coords is not None: coords = [coords] if bbox is not None: bbox = [bbox] if arr is not None: arr = arr.copy() # Check dimensions match model if arr.ndim != model.n_inputs: raise ValueError('number of array dimensions inconsistent with ' 'number of model inputs.') if coords is not None: # Check dimensions match arr and model coords = np.array(coords) if len(coords) != model.n_inputs: raise ValueError('coordinate length inconsistent with the number ' 'of model inputs.') if arr is not None: if coords[0].shape != arr.shape: raise ValueError('coordinate shape inconsistent with the ' 'array shape.') else: arr = np.zeros(coords[0].shape) if bbox is not None: # assures position is at center pixel, important when using add_array pd = pos, delta = np.array([(np.mean(bb), np.ceil((bb[1] - bb[0]) / 2)) for bb in bbox]).astype(int).T if coords is not None: sub_shape = tuple(delta * 2 + 1) sub_coords = np.array([extract_array(c, sub_shape, pos) for c in coords]) else: limits = [slice(p - d, p + d + 1, 1) for p, d in pd.T] sub_coords = np.mgrid[limits] sub_coords = sub_coords[::-1] if arr is None: arr = model(*sub_coords) else: try: arr = add_array(arr, model(*sub_coords), pos) except ValueError: raise ValueError('The `bounding_box` is larger than the input' ' arr in one or more dimensions. Set ' '`model.bounding_box = None`.') else: if coords is None: im_shape = arr.shape limits = [slice(i) for i in im_shape] coords = np.mgrid[limits] arr += model(*coords[::-1]) return arr def _prepare_inputs_single_model(model, params, inputs, **kwargs): broadcasts = [] for idx, _input in enumerate(inputs): input_shape = _input.shape # Ensure that array scalars are always upgrade to 1-D arrays for the # sake of consistency with how parameters work. They will be cast back # to scalars at the end if not input_shape: inputs[idx] = _input.reshape((1,)) if not params: max_broadcast = input_shape else: max_broadcast = () for param in params: try: if model.standard_broadcasting: broadcast = check_broadcast(input_shape, param.shape) else: broadcast = input_shape except IncompatibleShapeError: raise ValueError( "Model input argument {0!r} of shape {1!r} cannot be " "broadcast with parameter {2!r} of shape " "{3!r}.".format(model.inputs[idx], input_shape, param.name, param.shape)) if len(broadcast) > len(max_broadcast): max_broadcast = broadcast elif len(broadcast) == len(max_broadcast): max_broadcast = max(max_broadcast, broadcast) broadcasts.append(max_broadcast) if model.n_outputs > model.n_inputs: if len(set(broadcasts)) > 1: raise ValueError( "For models with n_outputs > n_inputs, the combination of " "all inputs and parameters must broadcast to the same shape, " "which will be used as the shape of all outputs. In this " "case some of the inputs had different shapes, so it is " "ambiguous how to format outputs for this model. Try using " "inputs that are all the same size and shape.") else: # Extend the broadcasts list to include shapes for all outputs extra_outputs = model.n_outputs - model.n_inputs if not broadcasts: # If there were no inputs then the broadcasts list is empty # just add a None since there is no broadcasting of outputs and # inputs necessary (see _prepare_outputs_single_model) broadcasts.append(None) broadcasts.extend([broadcasts[0]] * extra_outputs) return inputs, (broadcasts,) def _prepare_outputs_single_model(model, outputs, format_info): broadcasts = format_info[0] outputs = list(outputs) for idx, output in enumerate(outputs): broadcast_shape = broadcasts[idx] if broadcast_shape is not None: if not broadcast_shape: # Shape is (), i.e. a scalar should be returned outputs[idx] = output.item() else: outputs[idx] = output.reshape(broadcast_shape) return tuple(outputs) def _prepare_inputs_model_set(model, params, inputs, n_models, model_set_axis, **kwargs): reshaped = [] pivots = [] for idx, _input in enumerate(inputs): max_param_shape = () if n_models > 1 and model_set_axis is not False: # Use the shape of the input *excluding* the model axis input_shape = (_input.shape[:model_set_axis] + _input.shape[model_set_axis + 1:]) else: input_shape = _input.shape for param in params: try: check_broadcast(input_shape, param.shape) except IncompatibleShapeError: raise ValueError( "Model input argument {0!r} of shape {1!r} cannot be " "broadcast with parameter {2!r} of shape " "{3!r}.".format(model.inputs[idx], input_shape, param.name, param.shape)) if len(param.shape) > len(max_param_shape): max_param_shape = param.shape # We've now determined that, excluding the model_set_axis, the # input can broadcast with all the parameters input_ndim = len(input_shape) if model_set_axis is False: if len(max_param_shape) > input_ndim: # Just needs to prepend new axes to the input n_new_axes = 1 + len(max_param_shape) - input_ndim new_axes = (1,) * n_new_axes new_shape = new_axes + _input.shape pivot = model.model_set_axis else: pivot = input_ndim - len(max_param_shape) new_shape = (_input.shape[:pivot] + (1,) + _input.shape[pivot:]) new_input = _input.reshape(new_shape) else: if len(max_param_shape) >= input_ndim: n_new_axes = len(max_param_shape) - input_ndim pivot = model.model_set_axis new_axes = (1,) * n_new_axes new_shape = (_input.shape[:pivot + 1] + new_axes + _input.shape[pivot + 1:]) new_input = _input.reshape(new_shape) else: pivot = _input.ndim - len(max_param_shape) - 1 new_input = np.rollaxis(_input, model_set_axis, pivot + 1) pivots.append(pivot) reshaped.append(new_input) if model.n_inputs < model.n_outputs: pivots.extend([model_set_axis] * (model.n_outputs - model.n_inputs)) return reshaped, (pivots,) def _prepare_outputs_model_set(model, outputs, format_info, model_set_axis): pivots = format_info[0] # If model_set_axis = False was passed then use # model._model_set_axis to format the output. if model_set_axis is None or model_set_axis is False: model_set_axis = model.model_set_axis outputs = list(outputs) for idx, output in enumerate(outputs): pivot = pivots[idx] if pivot < output.ndim and pivot != model_set_axis: outputs[idx] = np.rollaxis(output, pivot, model_set_axis) return tuple(outputs) def _validate_input_shapes(inputs, argnames, n_models, model_set_axis, validate_broadcasting): """ Perform basic validation of model inputs--that they are mutually broadcastable and that they have the minimum dimensions for the given model_set_axis. If validation succeeds, returns the total shape that will result from broadcasting the input arrays with each other. """ check_model_set_axis = n_models > 1 and model_set_axis is not False if not (validate_broadcasting or check_model_set_axis): # Nothing else needed here return all_shapes = [] for idx, _input in enumerate(inputs): input_shape = np.shape(_input) # Ensure that the input's model_set_axis matches the model's # n_models if input_shape and check_model_set_axis: # Note: Scalar inputs *only* get a pass on this if len(input_shape) < model_set_axis + 1: raise ValueError( "For model_set_axis={0}, all inputs must be at " "least {1}-dimensional.".format( model_set_axis, model_set_axis + 1)) elif input_shape[model_set_axis] != n_models: try: argname = argnames[idx] except IndexError: # the case of model.inputs = () argname = str(idx) raise ValueError( "Input argument {0!r} does not have the correct " "dimensions in model_set_axis={1} for a model set with " "n_models={2}.".format(argname, model_set_axis, n_models)) all_shapes.append(input_shape) if not validate_broadcasting: return try: input_broadcast = check_broadcast(*all_shapes) except IncompatibleShapeError as exc: shape_a, shape_a_idx, shape_b, shape_b_idx = exc.args arg_a = argnames[shape_a_idx] arg_b = argnames[shape_b_idx] raise ValueError( "Model input argument {0!r} of shape {1!r} cannot " "be broadcast with input {2!r} of shape {3!r}".format( arg_a, shape_a, arg_b, shape_b)) return input_broadcast copyreg.pickle(_ModelMeta, _ModelMeta.__reduce__) copyreg.pickle(_CompoundModelMeta, _CompoundModelMeta.__reduce__)
ec98bfd1a995cdc05a7f516fd8b1a68fe2fd4565660caf1f8aa47d5c0d2ebb55
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Mathematical models.""" from collections import OrderedDict import numpy as np from astropy import units as u from astropy.units import Quantity, UnitsError from .core import (Fittable1DModel, Fittable2DModel, ModelDefinitionError) from .parameters import Parameter, InputParameterError from .utils import ellipse_extent __all__ = ['AiryDisk2D', 'Moffat1D', 'Moffat2D', 'Box1D', 'Box2D', 'Const1D', 'Const2D', 'Ellipse2D', 'Disk2D', 'Gaussian1D', 'Gaussian2D', 'Linear1D', 'Lorentz1D', 'MexicanHat1D', 'MexicanHat2D', 'RedshiftScaleFactor', 'Multiply', 'Planar2D', 'Scale', 'Sersic1D', 'Sersic2D', 'Shift', 'Sine1D', 'Trapezoid1D', 'TrapezoidDisk2D', 'Ring2D', 'Voigt1D'] TWOPI = 2 * np.pi FLOAT_EPSILON = float(np.finfo(np.float32).tiny) # Note that we define this here rather than using the value defined in # astropy.stats to avoid importing astropy.stats every time astropy.modeling # is loaded. GAUSSIAN_SIGMA_TO_FWHM = 2.0 * np.sqrt(2.0 * np.log(2.0)) class Gaussian1D(Fittable1DModel): """ One dimensional Gaussian model. Parameters ---------- amplitude : float Amplitude of the Gaussian. mean : float Mean of the Gaussian. stddev : float Standard deviation of the Gaussian. Notes ----- Model formula: .. math:: f(x) = A e^{- \\frac{\\left(x - x_{0}\\right)^{2}}{2 \\sigma^{2}}} Examples -------- >>> from astropy.modeling import models >>> def tie_center(model): ... mean = 50 * model.stddev ... return mean >>> tied_parameters = {'mean': tie_center} Specify that 'mean' is a tied parameter in one of two ways: >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3, ... tied=tied_parameters) or >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3) >>> g1.mean.tied False >>> g1.mean.tied = tie_center >>> g1.mean.tied <function tie_center at 0x...> Fixed parameters: >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3, ... fixed={'stddev': True}) >>> g1.stddev.fixed True or >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3) >>> g1.stddev.fixed False >>> g1.stddev.fixed = True >>> g1.stddev.fixed True .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Gaussian1D plt.figure() s1 = Gaussian1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() See Also -------- Gaussian2D, Box1D, Moffat1D, Lorentz1D """ amplitude = Parameter(default=1) mean = Parameter(default=0) # Ensure stddev makes sense if its bounds are not explicitly set. # stddev must be non-zero and positive. stddev = Parameter(default=1, bounds=(FLOAT_EPSILON, None)) def bounding_box(self, factor=5.5): """ Tuple defining the default ``bounding_box`` limits, ``(x_low, x_high)`` Parameters ---------- factor : float The multiple of `stddev` used to define the limits. The default is 5.5, corresponding to a relative error < 1e-7. Examples -------- >>> from astropy.modeling.models import Gaussian1D >>> model = Gaussian1D(mean=0, stddev=2) >>> model.bounding_box (-11.0, 11.0) This range can be set directly (see: `Model.bounding_box <astropy.modeling.Model.bounding_box>`) or by using a different factor, like: >>> model.bounding_box = model.bounding_box(factor=2) >>> model.bounding_box (-4.0, 4.0) """ x0 = self.mean dx = factor * self.stddev return (x0 - dx, x0 + dx) @property def fwhm(self): """Gaussian full width at half maximum.""" return self.stddev * GAUSSIAN_SIGMA_TO_FWHM @staticmethod def evaluate(x, amplitude, mean, stddev): """ Gaussian1D model function. """ return amplitude * np.exp(- 0.5 * (x - mean) ** 2 / stddev ** 2) @staticmethod def fit_deriv(x, amplitude, mean, stddev): """ Gaussian1D model function derivatives. """ d_amplitude = np.exp(-0.5 / stddev ** 2 * (x - mean) ** 2) d_mean = amplitude * d_amplitude * (x - mean) / stddev ** 2 d_stddev = amplitude * d_amplitude * (x - mean) ** 2 / stddev ** 3 return [d_amplitude, d_mean, d_stddev] @property def input_units(self): if self.mean.unit is None: return None else: return {'x': self.mean.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('mean', inputs_unit['x']), ('stddev', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class Gaussian2D(Fittable2DModel): r""" Two dimensional Gaussian model. Parameters ---------- amplitude : float Amplitude of the Gaussian. x_mean : float Mean of the Gaussian in x. y_mean : float Mean of the Gaussian in y. x_stddev : float or None Standard deviation of the Gaussian in x before rotating by theta. Must be None if a covariance matrix (``cov_matrix``) is provided. If no ``cov_matrix`` is given, ``None`` means the default value (1). y_stddev : float or None Standard deviation of the Gaussian in y before rotating by theta. Must be None if a covariance matrix (``cov_matrix``) is provided. If no ``cov_matrix`` is given, ``None`` means the default value (1). theta : float, optional Rotation angle in radians. The rotation angle increases counterclockwise. Must be None if a covariance matrix (``cov_matrix``) is provided. If no ``cov_matrix`` is given, ``None`` means the default value (0). cov_matrix : ndarray, optional A 2x2 covariance matrix. If specified, overrides the ``x_stddev``, ``y_stddev``, and ``theta`` defaults. Notes ----- Model formula: .. math:: f(x, y) = A e^{-a\left(x - x_{0}\right)^{2} -b\left(x - x_{0}\right) \left(y - y_{0}\right) -c\left(y - y_{0}\right)^{2}} Using the following definitions: .. math:: a = \left(\frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right) b = \left(\frac{\sin{\left (2 \theta \right )}}{2 \sigma_{x}^{2}} - \frac{\sin{\left (2 \theta \right )}}{2 \sigma_{y}^{2}}\right) c = \left(\frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right) If using a ``cov_matrix``, the model is of the form: .. math:: f(x, y) = A e^{-0.5 \left(\vec{x} - \vec{x}_{0}\right)^{T} \Sigma^{-1} \left(\vec{x} - \vec{x}_{0}\right)} where :math:`\vec{x} = [x, y]`, :math:`\vec{x}_{0} = [x_{0}, y_{0}]`, and :math:`\Sigma` is the covariance matrix: .. math:: \Sigma = \left(\begin{array}{ccc} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{array}\right) :math:`\rho` is the correlation between ``x`` and ``y``, which should be between -1 and +1. Positive correlation corresponds to a ``theta`` in the range 0 to 90 degrees. Negative correlation corresponds to a ``theta`` in the range of 0 to -90 degrees. See [1]_ for more details about the 2D Gaussian function. See Also -------- Gaussian1D, Box2D, Moffat2D References ---------- .. [1] https://en.wikipedia.org/wiki/Gaussian_function """ amplitude = Parameter(default=1) x_mean = Parameter(default=0) y_mean = Parameter(default=0) x_stddev = Parameter(default=1) y_stddev = Parameter(default=1) theta = Parameter(default=0.0) def __init__(self, amplitude=amplitude.default, x_mean=x_mean.default, y_mean=y_mean.default, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, **kwargs): if cov_matrix is None: if x_stddev is None: x_stddev = self.__class__.x_stddev.default if y_stddev is None: y_stddev = self.__class__.y_stddev.default if theta is None: theta = self.__class__.theta.default else: if x_stddev is not None or y_stddev is not None or theta is not None: raise InputParameterError("Cannot specify both cov_matrix and " "x/y_stddev/theta") else: # Compute principle coordinate system transformation cov_matrix = np.array(cov_matrix) if cov_matrix.shape != (2, 2): # TODO: Maybe it should be possible for the covariance matrix # to be some (x, y, ..., z, 2, 2) array to be broadcast with # other parameters of shape (x, y, ..., z) # But that's maybe a special case to work out if/when needed raise ValueError("Covariance matrix must be 2x2") eig_vals, eig_vecs = np.linalg.eig(cov_matrix) x_stddev, y_stddev = np.sqrt(eig_vals) y_vec = eig_vecs[:, 0] theta = np.arctan2(y_vec[1], y_vec[0]) # Ensure stddev makes sense if its bounds are not explicitly set. # stddev must be non-zero and positive. # TODO: Investigate why setting this in Parameter above causes # convolution tests to hang. kwargs.setdefault('bounds', {}) kwargs['bounds'].setdefault('x_stddev', (FLOAT_EPSILON, None)) kwargs['bounds'].setdefault('y_stddev', (FLOAT_EPSILON, None)) super().__init__( amplitude=amplitude, x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, **kwargs) @property def x_fwhm(self): """Gaussian full width at half maximum in X.""" return self.x_stddev * GAUSSIAN_SIGMA_TO_FWHM @property def y_fwhm(self): """Gaussian full width at half maximum in Y.""" return self.y_stddev * GAUSSIAN_SIGMA_TO_FWHM def bounding_box(self, factor=5.5): """ Tuple defining the default ``bounding_box`` limits in each dimension, ``((y_low, y_high), (x_low, x_high))`` The default offset from the mean is 5.5-sigma, corresponding to a relative error < 1e-7. The limits are adjusted for rotation. Parameters ---------- factor : float, optional The multiple of `x_stddev` and `y_stddev` used to define the limits. The default is 5.5. Examples -------- >>> from astropy.modeling.models import Gaussian2D >>> model = Gaussian2D(x_mean=0, y_mean=0, x_stddev=1, y_stddev=2) >>> model.bounding_box ((-11.0, 11.0), (-5.5, 5.5)) This range can be set directly (see: `Model.bounding_box <astropy.modeling.Model.bounding_box>`) or by using a different factor like: >>> model.bounding_box = model.bounding_box(factor=2) >>> model.bounding_box ((-4.0, 4.0), (-2.0, 2.0)) """ a = factor * self.x_stddev b = factor * self.y_stddev theta = self.theta.value dx, dy = ellipse_extent(a, b, theta) return ((self.y_mean - dy, self.y_mean + dy), (self.x_mean - dx, self.x_mean + dx)) @staticmethod def evaluate(x, y, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta): """Two dimensional Gaussian function""" cost2 = np.cos(theta) ** 2 sint2 = np.sin(theta) ** 2 sin2t = np.sin(2. * theta) xstd2 = x_stddev ** 2 ystd2 = y_stddev ** 2 xdiff = x - x_mean ydiff = y - y_mean a = 0.5 * ((cost2 / xstd2) + (sint2 / ystd2)) b = 0.5 * ((sin2t / xstd2) - (sin2t / ystd2)) c = 0.5 * ((sint2 / xstd2) + (cost2 / ystd2)) return amplitude * np.exp(-((a * xdiff ** 2) + (b * xdiff * ydiff) + (c * ydiff ** 2))) @staticmethod def fit_deriv(x, y, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta): """Two dimensional Gaussian function derivative with respect to parameters""" cost = np.cos(theta) sint = np.sin(theta) cost2 = np.cos(theta) ** 2 sint2 = np.sin(theta) ** 2 cos2t = np.cos(2. * theta) sin2t = np.sin(2. * theta) xstd2 = x_stddev ** 2 ystd2 = y_stddev ** 2 xstd3 = x_stddev ** 3 ystd3 = y_stddev ** 3 xdiff = x - x_mean ydiff = y - y_mean xdiff2 = xdiff ** 2 ydiff2 = ydiff ** 2 a = 0.5 * ((cost2 / xstd2) + (sint2 / ystd2)) b = 0.5 * ((sin2t / xstd2) - (sin2t / ystd2)) c = 0.5 * ((sint2 / xstd2) + (cost2 / ystd2)) g = amplitude * np.exp(-((a * xdiff2) + (b * xdiff * ydiff) + (c * ydiff2))) da_dtheta = (sint * cost * ((1. / ystd2) - (1. / xstd2))) da_dx_stddev = -cost2 / xstd3 da_dy_stddev = -sint2 / ystd3 db_dtheta = (cos2t / xstd2) - (cos2t / ystd2) db_dx_stddev = -sin2t / xstd3 db_dy_stddev = sin2t / ystd3 dc_dtheta = -da_dtheta dc_dx_stddev = -sint2 / xstd3 dc_dy_stddev = -cost2 / ystd3 dg_dA = g / amplitude dg_dx_mean = g * ((2. * a * xdiff) + (b * ydiff)) dg_dy_mean = g * ((b * xdiff) + (2. * c * ydiff)) dg_dx_stddev = g * (-(da_dx_stddev * xdiff2 + db_dx_stddev * xdiff * ydiff + dc_dx_stddev * ydiff2)) dg_dy_stddev = g * (-(da_dy_stddev * xdiff2 + db_dy_stddev * xdiff * ydiff + dc_dy_stddev * ydiff2)) dg_dtheta = g * (-(da_dtheta * xdiff2 + db_dtheta * xdiff * ydiff + dc_dtheta * ydiff2)) return [dg_dA, dg_dx_mean, dg_dy_mean, dg_dx_stddev, dg_dy_stddev, dg_dtheta] @property def input_units(self): if self.x_mean.unit is None and self.y_mean.unit is None: return None else: return {'x': self.x_mean.unit, 'y': self.y_mean.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_mean', inputs_unit['x']), ('y_mean', inputs_unit['x']), ('x_stddev', inputs_unit['x']), ('y_stddev', inputs_unit['x']), ('theta', u.rad), ('amplitude', outputs_unit['z'])]) class Shift(Fittable1DModel): """ Shift a coordinate. Parameters ---------- offset : float Offset to add to a coordinate. """ offset = Parameter(default=0) linear = True @property def input_units(self): if self.offset.unit is None: return None else: return {'x': self.offset.unit} @property def inverse(self): """One dimensional inverse Shift model function""" inv = self.copy() inv.offset *= -1 return inv @staticmethod def evaluate(x, offset): """One dimensional Shift model function""" return x + offset @staticmethod def sum_of_implicit_terms(x): """Evaluate the implicit term (x) of one dimensional Shift model""" return x @staticmethod def fit_deriv(x, *params): """One dimensional Shift model derivative with respect to parameter""" d_offset = np.ones_like(x) return [d_offset] def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('offset', outputs_unit['y'])]) class Scale(Fittable1DModel): """ Multiply a model by a dimensionless factor. Parameters ---------- factor : float Factor by which to scale a coordinate. Notes ----- If ``factor`` is a `~astropy.units.Quantity` then the units will be stripped before the scaling operation. """ factor = Parameter(default=1) linear = True fittable = True _input_units_strict = True _input_units_allow_dimensionless = True @property def input_units(self): if self.factor.unit is None: return None else: return {'x': self.factor.unit} @property def inverse(self): """One dimensional inverse Scale model function""" inv = self.copy() inv.factor = 1 / self.factor return inv @staticmethod def evaluate(x, factor): """One dimensional Scale model function""" if isinstance(factor, u.Quantity): factor = factor.value return factor * x @staticmethod def fit_deriv(x, *params): """One dimensional Scale model derivative with respect to parameter""" d_factor = x return [d_factor] def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): unit = outputs_unit['y'] / inputs_unit['x'] if unit == u.one: unit = None return OrderedDict([('factor', unit)]) class Multiply(Fittable1DModel): """ Multiply a model by a quantity or number. Parameters ---------- factor : float Factor by which to multiply a coordinate. """ inputs = ('x',) outputs = ('y',) factor = Parameter(default=1) linear = True fittable = True @property def inverse(self): """One dimensional inverse multiply model function""" inv = self.copy() inv.factor = 1 / self.factor return inv @staticmethod def evaluate(x, factor): """One dimensional multiply model function""" return factor * x @staticmethod def fit_deriv(x, *params): """One dimensional multiply model derivative with respect to parameter""" d_factor = x return [d_factor] def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('factor', outputs_unit['y'])]) class RedshiftScaleFactor(Fittable1DModel): """ One dimensional redshift scale factor model. Parameters ---------- z : float Redshift value. Notes ----- Model formula: .. math:: f(x) = x (1 + z) """ z = Parameter(description='redshift', default=0) @staticmethod def evaluate(x, z): """One dimensional RedshiftScaleFactor model function""" return (1 + z) * x @staticmethod def fit_deriv(x, z): """One dimensional RedshiftScaleFactor model derivative""" d_z = x return [d_z] @property def inverse(self): """Inverse RedshiftScaleFactor model""" inv = self.copy() inv.z = 1.0 / (1.0 + self.z) - 1.0 return inv class Sersic1D(Fittable1DModel): r""" One dimensional Sersic surface brightness profile. Parameters ---------- amplitude : float Surface brightness at r_eff. r_eff : float Effective (half-light) radius n : float Sersic Index. See Also -------- Gaussian1D, Moffat1D, Lorentz1D Notes ----- Model formula: .. math:: I(r)=I_e\exp\left\{-b_n\left[\left(\frac{r}{r_{e}}\right)^{(1/n)}-1\right]\right\} The constant :math:`b_n` is defined such that :math:`r_e` contains half the total luminosity, and can be solved for numerically. .. math:: \Gamma(2n) = 2\gamma (b_n,2n) Examples -------- .. plot:: :include-source: import numpy as np from astropy.modeling.models import Sersic1D import matplotlib.pyplot as plt plt.figure() plt.subplot(111, xscale='log', yscale='log') s1 = Sersic1D(amplitude=1, r_eff=5) r=np.arange(0, 100, .01) for n in range(1, 10): s1.n = n plt.plot(r, s1(r), color=str(float(n) / 15)) plt.axis([1e-1, 30, 1e-2, 1e3]) plt.xlabel('log Radius') plt.ylabel('log Surface Brightness') plt.text(.25, 1.5, 'n=1') plt.text(.25, 300, 'n=10') plt.xticks([]) plt.yticks([]) plt.show() References ---------- .. [1] http://ned.ipac.caltech.edu/level5/March05/Graham/Graham2.html """ amplitude = Parameter(default=1) r_eff = Parameter(default=1) n = Parameter(default=4) _gammaincinv = None @classmethod def evaluate(cls, r, amplitude, r_eff, n): """One dimensional Sersic profile function.""" if cls._gammaincinv is None: try: from scipy.special import gammaincinv cls._gammaincinv = gammaincinv except ValueError: raise ImportError('Sersic1D model requires scipy > 0.11.') return (amplitude * np.exp( -cls._gammaincinv(2 * n, 0.5) * ((r / r_eff) ** (1 / n) - 1))) @property def input_units(self): if self.r_eff.unit is None: return None else: return {'x': self.r_eff.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('r_eff', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class Sine1D(Fittable1DModel): """ One dimensional Sine model. Parameters ---------- amplitude : float Oscillation amplitude frequency : float Oscillation frequency phase : float Oscillation phase See Also -------- Const1D, Linear1D Notes ----- Model formula: .. math:: f(x) = A \\sin(2 \\pi f x + 2 \\pi p) Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Sine1D plt.figure() s1 = Sine1D(amplitude=1, frequency=.25) r=np.arange(0, 10, .01) for amplitude in range(1,4): s1.amplitude = amplitude plt.plot(r, s1(r), color=str(0.25 * amplitude), lw=2) plt.axis([0, 10, -5, 5]) plt.show() """ amplitude = Parameter(default=1) frequency = Parameter(default=1) phase = Parameter(default=0) @staticmethod def evaluate(x, amplitude, frequency, phase): """One dimensional Sine model function""" # Note: If frequency and x are quantities, they should normally have # inverse units, so that argument ends up being dimensionless. However, # np.sin of a dimensionless quantity will crash, so we remove the # quantity-ness from argument in this case (another option would be to # multiply by * u.rad but this would be slower overall). argument = TWOPI * (frequency * x + phase) if isinstance(argument, Quantity): argument = argument.value return amplitude * np.sin(argument) @staticmethod def fit_deriv(x, amplitude, frequency, phase): """One dimensional Sine model derivative""" d_amplitude = np.sin(TWOPI * frequency * x + TWOPI * phase) d_frequency = (TWOPI * x * amplitude * np.cos(TWOPI * frequency * x + TWOPI * phase)) d_phase = (TWOPI * amplitude * np.cos(TWOPI * frequency * x + TWOPI * phase)) return [d_amplitude, d_frequency, d_phase] @property def input_units(self): if self.frequency.unit is None: return None else: return {'x': 1. / self.frequency.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('frequency', inputs_unit['x'] ** -1), ('amplitude', outputs_unit['y'])]) class Linear1D(Fittable1DModel): """ One dimensional Line model. Parameters ---------- slope : float Slope of the straight line intercept : float Intercept of the straight line See Also -------- Const1D Notes ----- Model formula: .. math:: f(x) = a x + b """ slope = Parameter(default=1) intercept = Parameter(default=0) linear = True @staticmethod def evaluate(x, slope, intercept): """One dimensional Line model function""" return slope * x + intercept @staticmethod def fit_deriv(x, slope, intercept): """One dimensional Line model derivative with respect to parameters""" d_slope = x d_intercept = np.ones_like(x) return [d_slope, d_intercept] @property def inverse(self): new_slope = self.slope ** -1 new_intercept = -self.intercept / self.slope return self.__class__(slope=new_slope, intercept=new_intercept) @property def input_units(self): if self.intercept.unit is None and self.slope.unit is None: return None else: return {'x': self.intercept.unit / self.slope.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('intercept', outputs_unit['y']), ('slope', outputs_unit['y'] / inputs_unit['x'])]) class Planar2D(Fittable2DModel): """ Two dimensional Plane model. Parameters ---------- slope_x : float Slope of the straight line in X slope_y : float Slope of the straight line in Y intercept : float Z-intercept of the straight line Notes ----- Model formula: .. math:: f(x, y) = a x + b y + c """ slope_x = Parameter(default=1) slope_y = Parameter(default=1) intercept = Parameter(default=0) linear = True @staticmethod def evaluate(x, y, slope_x, slope_y, intercept): """Two dimensional Plane model function""" return slope_x * x + slope_y * y + intercept @staticmethod def fit_deriv(x, y, slope_x, slope_y, intercept): """Two dimensional Plane model derivative with respect to parameters""" d_slope_x = x d_slope_y = y d_intercept = np.ones_like(x) return [d_slope_x, d_slope_y, d_intercept] def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('intercept', outputs_unit['z']), ('slope_x', outputs_unit['z'] / inputs_unit['x']), ('slope_y', outputs_unit['z'] / inputs_unit['y'])]) class Lorentz1D(Fittable1DModel): """ One dimensional Lorentzian model. Parameters ---------- amplitude : float Peak value x_0 : float Position of the peak fwhm : float Full width at half maximum See Also -------- Gaussian1D, Box1D, MexicanHat1D Notes ----- Model formula: .. math:: f(x) = \\frac{A \\gamma^{2}}{\\gamma^{2} + \\left(x - x_{0}\\right)^{2}} Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Lorentz1D plt.figure() s1 = Lorentz1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) fwhm = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, fwhm): """One dimensional Lorentzian model function""" return (amplitude * ((fwhm / 2.) ** 2) / ((x - x_0) ** 2 + (fwhm / 2.) ** 2)) @staticmethod def fit_deriv(x, amplitude, x_0, fwhm): """One dimensional Lorentzian model derivative with respect to parameters""" d_amplitude = fwhm ** 2 / (fwhm ** 2 + (x - x_0) ** 2) d_x_0 = (amplitude * d_amplitude * (2 * x - 2 * x_0) / (fwhm ** 2 + (x - x_0) ** 2)) d_fwhm = 2 * amplitude * d_amplitude / fwhm * (1 - d_amplitude) return [d_amplitude, d_x_0, d_fwhm] def bounding_box(self, factor=25): """Tuple defining the default ``bounding_box`` limits, ``(x_low, x_high)``. Parameters ---------- factor : float The multiple of FWHM used to define the limits. Default is chosen to include most (99%) of the area under the curve, while still showing the central feature of interest. """ x0 = self.x_0 dx = factor * self.fwhm return (x0 - dx, x0 + dx) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('fwhm', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class Voigt1D(Fittable1DModel): """ One dimensional model for the Voigt profile. Parameters ---------- x_0 : float Position of the peak amplitude_L : float The Lorentzian amplitude fwhm_L : float The Lorentzian full width at half maximum fwhm_G : float The Gaussian full width at half maximum See Also -------- Gaussian1D, Lorentz1D Notes ----- Algorithm for the computation taken from McLean, A. B., Mitchell, C. E. J. & Swanston, D. M. Implementation of an efficient analytical approximation to the Voigt function for photoemission lineshape analysis. Journal of Electron Spectroscopy and Related Phenomena 69, 125-132 (1994) Examples -------- .. plot:: :include-source: import numpy as np from astropy.modeling.models import Voigt1D import matplotlib.pyplot as plt plt.figure() x = np.arange(0, 10, 0.01) v1 = Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9) plt.plot(x, v1(x)) plt.show() """ x_0 = Parameter(default=0) amplitude_L = Parameter(default=1) fwhm_L = Parameter(default=2/np.pi) fwhm_G = Parameter(default=np.log(2)) _abcd = np.array([ [-1.2150, -1.3509, -1.2150, -1.3509], # A [1.2359, 0.3786, -1.2359, -0.3786], # B [-0.3085, 0.5906, -0.3085, 0.5906], # C [0.0210, -1.1858, -0.0210, 1.1858]]) # D @classmethod def evaluate(cls, x, x_0, amplitude_L, fwhm_L, fwhm_G): A, B, C, D = cls._abcd sqrt_ln2 = np.sqrt(np.log(2)) X = (x - x_0) * 2 * sqrt_ln2 / fwhm_G X = np.atleast_1d(X)[..., np.newaxis] Y = fwhm_L * sqrt_ln2 / fwhm_G Y = np.atleast_1d(Y)[..., np.newaxis] V = np.sum((C * (Y - A) + D * (X - B))/(((Y - A) ** 2 + (X - B) ** 2)), axis=-1) return (fwhm_L * amplitude_L * np.sqrt(np.pi) * sqrt_ln2 / fwhm_G) * V @classmethod def fit_deriv(cls, x, x_0, amplitude_L, fwhm_L, fwhm_G): A, B, C, D = cls._abcd sqrt_ln2 = np.sqrt(np.log(2)) X = (x - x_0) * 2 * sqrt_ln2 / fwhm_G X = np.atleast_1d(X)[:, np.newaxis] Y = fwhm_L * sqrt_ln2 / fwhm_G Y = np.atleast_1d(Y)[:, np.newaxis] constant = fwhm_L * amplitude_L * np.sqrt(np.pi) * sqrt_ln2 / fwhm_G alpha = C * (Y - A) + D * (X - B) beta = (Y - A) ** 2 + (X - B) ** 2 V = np.sum((alpha / beta), axis=-1) dVdx = np.sum((D/beta - 2 * (X - B) * alpha / np.square(beta)), axis=-1) dVdy = np.sum((C/beta - 2 * (Y - A) * alpha / np.square(beta)), axis=-1) dyda = [-constant * dVdx * 2 * sqrt_ln2 / fwhm_G, constant * V / amplitude_L, constant * (V / fwhm_L + dVdy * sqrt_ln2 / fwhm_G), -constant * (V + (sqrt_ln2 / fwhm_G) * (2 * (x - x_0) * dVdx + fwhm_L * dVdy)) / fwhm_G] return dyda @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('fwhm_L', inputs_unit['x']), ('fwhm_G', inputs_unit['x']), ('amplitude_L', outputs_unit['y'])]) class Const1D(Fittable1DModel): """ One dimensional Constant model. Parameters ---------- amplitude : float Value of the constant function See Also -------- Const2D Notes ----- Model formula: .. math:: f(x) = A Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Const1D plt.figure() s1 = Const1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() """ amplitude = Parameter(default=1) linear = True @staticmethod def evaluate(x, amplitude): """One dimensional Constant model function""" if amplitude.size == 1: # This is slightly faster than using ones_like and multiplying x = np.empty_like(x, subok=False) x.fill(amplitude.item()) else: # This case is less likely but could occur if the amplitude # parameter is given an array-like value x = amplitude * np.ones_like(x, subok=False) if isinstance(amplitude, Quantity): return Quantity(x, unit=amplitude.unit, copy=False) else: return x @staticmethod def fit_deriv(x, amplitude): """One dimensional Constant model derivative with respect to parameters""" d_amplitude = np.ones_like(x) return [d_amplitude] @property def input_units(self): return None def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('amplitude', outputs_unit['y'])]) class Const2D(Fittable2DModel): """ Two dimensional Constant model. Parameters ---------- amplitude : float Value of the constant function See Also -------- Const1D Notes ----- Model formula: .. math:: f(x, y) = A """ amplitude = Parameter(default=1) linear = True @staticmethod def evaluate(x, y, amplitude): """Two dimensional Constant model function""" if amplitude.size == 1: # This is slightly faster than using ones_like and multiplying x = np.empty_like(x, subok=False) x.fill(amplitude.item()) else: # This case is less likely but could occur if the amplitude # parameter is given an array-like value x = amplitude * np.ones_like(x, subok=False) if isinstance(amplitude, Quantity): return Quantity(x, unit=amplitude.unit, copy=False) else: return x @property def input_units(self): return None def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('amplitude', outputs_unit['z'])]) class Ellipse2D(Fittable2DModel): """ A 2D Ellipse model. Parameters ---------- amplitude : float Value of the ellipse. x_0 : float x position of the center of the disk. y_0 : float y position of the center of the disk. a : float The length of the semimajor axis. b : float The length of the semiminor axis. theta : float The rotation angle in radians of the semimajor axis. The rotation angle increases counterclockwise from the positive x axis. See Also -------- Disk2D, Box2D Notes ----- Model formula: .. math:: f(x, y) = \\left \\{ \\begin{array}{ll} \\mathrm{amplitude} & : \\left[\\frac{(x - x_0) \\cos \\theta + (y - y_0) \\sin \\theta}{a}\\right]^2 + \\left[\\frac{-(x - x_0) \\sin \\theta + (y - y_0) \\cos \\theta}{b}\\right]^2 \\leq 1 \\\\ 0 & : \\mathrm{otherwise} \\end{array} \\right. Examples -------- .. plot:: :include-source: import numpy as np from astropy.modeling.models import Ellipse2D from astropy.coordinates import Angle import matplotlib.pyplot as plt import matplotlib.patches as mpatches x0, y0 = 25, 25 a, b = 20, 10 theta = Angle(30, 'deg') e = Ellipse2D(amplitude=100., x_0=x0, y_0=y0, a=a, b=b, theta=theta.radian) y, x = np.mgrid[0:50, 0:50] fig, ax = plt.subplots(1, 1) ax.imshow(e(x, y), origin='lower', interpolation='none', cmap='Greys_r') e2 = mpatches.Ellipse((x0, y0), 2*a, 2*b, theta.degree, edgecolor='red', facecolor='none') ax.add_patch(e2) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) a = Parameter(default=1) b = Parameter(default=1) theta = Parameter(default=0) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, a, b, theta): """Two dimensional Ellipse model function.""" xx = x - x_0 yy = y - y_0 cost = np.cos(theta) sint = np.sin(theta) numerator1 = (xx * cost) + (yy * sint) numerator2 = -(xx * sint) + (yy * cost) in_ellipse = (((numerator1 / a) ** 2 + (numerator2 / b) ** 2) <= 1.) result = np.select([in_ellipse], [amplitude]) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box`` limits. ``((y_low, y_high), (x_low, x_high))`` """ a = self.a b = self.b theta = self.theta.value dx, dy = ellipse_extent(a, b, theta) return ((self.y_0 - dy, self.y_0 + dy), (self.x_0 - dx, self.x_0 + dx)) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('a', inputs_unit['x']), ('b', inputs_unit['x']), ('theta', u.rad), ('amplitude', outputs_unit['z'])]) class Disk2D(Fittable2DModel): """ Two dimensional radial symmetric Disk model. Parameters ---------- amplitude : float Value of the disk function x_0 : float x position center of the disk y_0 : float y position center of the disk R_0 : float Radius of the disk See Also -------- Box2D, TrapezoidDisk2D Notes ----- Model formula: .. math:: f(r) = \\left \\{ \\begin{array}{ll} A & : r \\leq R_0 \\\\ 0 & : r > R_0 \\end{array} \\right. """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) R_0 = Parameter(default=1) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, R_0): """Two dimensional Disk model function""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 result = np.select([rr <= R_0 ** 2], [amplitude]) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box`` limits. ``((y_low, y_high), (x_low, x_high))`` """ return ((self.y_0 - self.R_0, self.y_0 + self.R_0), (self.x_0 - self.R_0, self.x_0 + self.R_0)) @property def input_units(self): if self.x_0.unit is None and self.y_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('R_0', inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class Ring2D(Fittable2DModel): """ Two dimensional radial symmetric Ring model. Parameters ---------- amplitude : float Value of the disk function x_0 : float x position center of the disk y_0 : float y position center of the disk r_in : float Inner radius of the ring width : float Width of the ring. r_out : float Outer Radius of the ring. Can be specified instead of width. See Also -------- Disk2D, TrapezoidDisk2D Notes ----- Model formula: .. math:: f(r) = \\left \\{ \\begin{array}{ll} A & : r_{in} \\leq r \\leq r_{out} \\\\ 0 & : \\text{else} \\end{array} \\right. Where :math:`r_{out} = r_{in} + r_{width}`. """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) r_in = Parameter(default=1) width = Parameter(default=1) def __init__(self, amplitude=amplitude.default, x_0=x_0.default, y_0=y_0.default, r_in=r_in.default, width=width.default, r_out=None, **kwargs): # If outer radius explicitly given, it overrides default width. if r_out is not None: if width != self.width.default: raise InputParameterError( "Cannot specify both width and outer radius separately.") width = r_out - r_in elif width is None: width = self.width.default super().__init__( amplitude=amplitude, x_0=x_0, y_0=y_0, r_in=r_in, width=width, **kwargs) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, r_in, width): """Two dimensional Ring model function.""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 r_range = np.logical_and(rr >= r_in ** 2, rr <= (r_in + width) ** 2) result = np.select([r_range], [amplitude]) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box``. ``((y_low, y_high), (x_low, x_high))`` """ dr = self.r_in + self.width return ((self.y_0 - dr, self.y_0 + dr), (self.x_0 - dr, self.x_0 + dr)) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('r_in', inputs_unit['x']), ('width', inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class Delta1D(Fittable1DModel): """One dimensional Dirac delta function.""" def __init__(self): raise ModelDefinitionError("Not implemented") class Delta2D(Fittable2DModel): """Two dimensional Dirac delta function.""" def __init__(self): raise ModelDefinitionError("Not implemented") class Box1D(Fittable1DModel): """ One dimensional Box model. Parameters ---------- amplitude : float Amplitude A x_0 : float Position of the center of the box function width : float Width of the box See Also -------- Box2D, TrapezoidDisk2D Notes ----- Model formula: .. math:: f(x) = \\left \\{ \\begin{array}{ll} A & : x_0 - w/2 \\leq x \\leq x_0 + w/2 \\\\ 0 & : \\text{else} \\end{array} \\right. Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Box1D plt.figure() s1 = Box1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor s1.width = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) width = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, width): """One dimensional Box model function""" inside = np.logical_and(x >= x_0 - width / 2., x <= x_0 + width / 2.) result = np.select([inside], [amplitude], 0) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box`` limits. ``(x_low, x_high))`` """ dx = self.width / 2 return (self.x_0 - dx, self.x_0 + dx) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('width', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class Box2D(Fittable2DModel): """ Two dimensional Box model. Parameters ---------- amplitude : float Amplitude A x_0 : float x position of the center of the box function x_width : float Width in x direction of the box y_0 : float y position of the center of the box function y_width : float Width in y direction of the box See Also -------- Box1D, Gaussian2D, Moffat2D Notes ----- Model formula: .. math:: f(x, y) = \\left \\{ \\begin{array}{ll} A : & x_0 - w_x/2 \\leq x \\leq x_0 + w_x/2 \\text{ and} \\\\ & y_0 - w_y/2 \\leq y \\leq y_0 + w_y/2 \\\\ 0 : & \\text{else} \\end{array} \\right. """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) x_width = Parameter(default=1) y_width = Parameter(default=1) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, x_width, y_width): """Two dimensional Box model function""" x_range = np.logical_and(x >= x_0 - x_width / 2., x <= x_0 + x_width / 2.) y_range = np.logical_and(y >= y_0 - y_width / 2., y <= y_0 + y_width / 2.) result = np.select([np.logical_and(x_range, y_range)], [amplitude], 0) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box``. ``((y_low, y_high), (x_low, x_high))`` """ dx = self.x_width / 2 dy = self.y_width / 2 return ((self.y_0 - dy, self.y_0 + dy), (self.x_0 - dx, self.x_0 + dx)) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['y']), ('x_width', inputs_unit['x']), ('y_width', inputs_unit['y']), ('amplitude', outputs_unit['z'])]) class Trapezoid1D(Fittable1DModel): """ One dimensional Trapezoid model. Parameters ---------- amplitude : float Amplitude of the trapezoid x_0 : float Center position of the trapezoid width : float Width of the constant part of the trapezoid. slope : float Slope of the tails of the trapezoid See Also -------- Box1D, Gaussian1D, Moffat1D Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Trapezoid1D plt.figure() s1 = Trapezoid1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor s1.width = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) width = Parameter(default=1) slope = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, width, slope): """One dimensional Trapezoid model function""" # Compute the four points where the trapezoid changes slope # x1 <= x2 <= x3 <= x4 x2 = x_0 - width / 2. x3 = x_0 + width / 2. x1 = x2 - amplitude / slope x4 = x3 + amplitude / slope # Compute model values in pieces between the change points range_a = np.logical_and(x >= x1, x < x2) range_b = np.logical_and(x >= x2, x < x3) range_c = np.logical_and(x >= x3, x < x4) val_a = slope * (x - x1) val_b = amplitude val_c = slope * (x4 - x) result = np.select([range_a, range_b, range_c], [val_a, val_b, val_c]) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box`` limits. ``(x_low, x_high))`` """ dx = self.width / 2 + self.amplitude / self.slope return (self.x_0 - dx, self.x_0 + dx) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('width', inputs_unit['x']), ('slope', outputs_unit['y'] / inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class TrapezoidDisk2D(Fittable2DModel): """ Two dimensional circular Trapezoid model. Parameters ---------- amplitude : float Amplitude of the trapezoid x_0 : float x position of the center of the trapezoid y_0 : float y position of the center of the trapezoid R_0 : float Radius of the constant part of the trapezoid. slope : float Slope of the tails of the trapezoid in x direction. See Also -------- Disk2D, Box2D """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) R_0 = Parameter(default=1) slope = Parameter(default=1) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, R_0, slope): """Two dimensional Trapezoid Disk model function""" r = np.sqrt((x - x_0) ** 2 + (y - y_0) ** 2) range_1 = r <= R_0 range_2 = np.logical_and(r > R_0, r <= R_0 + amplitude / slope) val_1 = amplitude val_2 = amplitude + slope * (R_0 - r) result = np.select([range_1, range_2], [val_1, val_2]) if isinstance(amplitude, Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def bounding_box(self): """ Tuple defining the default ``bounding_box``. ``((y_low, y_high), (x_low, x_high))`` """ dr = self.R_0 + self.amplitude / self.slope return ((self.y_0 - dr, self.y_0 + dr), (self.x_0 - dr, self.x_0 + dr)) @property def input_units(self): if self.x_0.unit is None and self.y_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('R_0', inputs_unit['x']), ('slope', outputs_unit['z'] / inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class MexicanHat1D(Fittable1DModel): """ One dimensional Mexican Hat model. Parameters ---------- amplitude : float Amplitude x_0 : float Position of the peak sigma : float Width of the Mexican hat See Also -------- MexicanHat2D, Box1D, Gaussian1D, Trapezoid1D Notes ----- Model formula: .. math:: f(x) = {A \\left(1 - \\frac{\\left(x - x_{0}\\right)^{2}}{\\sigma^{2}}\\right) e^{- \\frac{\\left(x - x_{0}\\right)^{2}}{2 \\sigma^{2}}}} Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import MexicanHat1D plt.figure() s1 = MexicanHat1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor s1.width = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -2, 4]) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) sigma = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, sigma): """One dimensional Mexican Hat model function""" xx_ww = (x - x_0) ** 2 / (2 * sigma ** 2) return amplitude * (1 - 2 * xx_ww) * np.exp(-xx_ww) def bounding_box(self, factor=10.0): """Tuple defining the default ``bounding_box`` limits, ``(x_low, x_high)``. Parameters ---------- factor : float The multiple of sigma used to define the limits. """ x0 = self.x_0 dx = factor * self.sigma return (x0 - dx, x0 + dx) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('sigma', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class MexicanHat2D(Fittable2DModel): """ Two dimensional symmetric Mexican Hat model. Parameters ---------- amplitude : float Amplitude x_0 : float x position of the peak y_0 : float y position of the peak sigma : float Width of the Mexican hat See Also -------- MexicanHat1D, Gaussian2D Notes ----- Model formula: .. math:: f(x, y) = A \\left(1 - \\frac{\\left(x - x_{0}\\right)^{2} + \\left(y - y_{0}\\right)^{2}}{\\sigma^{2}}\\right) e^{\\frac{- \\left(x - x_{0}\\right)^{2} - \\left(y - y_{0}\\right)^{2}}{2 \\sigma^{2}}} """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) sigma = Parameter(default=1) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, sigma): """Two dimensional Mexican Hat model function""" rr_ww = ((x - x_0) ** 2 + (y - y_0) ** 2) / (2 * sigma ** 2) return amplitude * (1 - rr_ww) * np.exp(- rr_ww) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('sigma', inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class AiryDisk2D(Fittable2DModel): """ Two dimensional Airy disk model. Parameters ---------- amplitude : float Amplitude of the Airy function. x_0 : float x position of the maximum of the Airy function. y_0 : float y position of the maximum of the Airy function. radius : float The radius of the Airy disk (radius of the first zero). See Also -------- Box2D, TrapezoidDisk2D, Gaussian2D Notes ----- Model formula: .. math:: f(r) = A \\left[\\frac{2 J_1(\\frac{\\pi r}{R/R_z})}{\\frac{\\pi r}{R/R_z}}\\right]^2 Where :math:`J_1` is the first order Bessel function of the first kind, :math:`r` is radial distance from the maximum of the Airy function (:math:`r = \\sqrt{(x - x_0)^2 + (y - y_0)^2}`), :math:`R` is the input ``radius`` parameter, and :math:`R_z = 1.2196698912665045`). For an optical system, the radius of the first zero represents the limiting angular resolution and is approximately 1.22 * lambda / D, where lambda is the wavelength of the light and D is the diameter of the aperture. See [1]_ for more details about the Airy disk. References ---------- .. [1] https://en.wikipedia.org/wiki/Airy_disk """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) radius = Parameter(default=1) _rz = None _j1 = None @classmethod def evaluate(cls, x, y, amplitude, x_0, y_0, radius): """Two dimensional Airy model function""" if cls._rz is None: try: from scipy.special import j1, jn_zeros cls._rz = jn_zeros(1, 1)[0] / np.pi cls._j1 = j1 except ValueError: raise ImportError('AiryDisk2D model requires scipy > 0.11.') r = np.sqrt((x - x_0) ** 2 + (y - y_0) ** 2) / (radius / cls._rz) if isinstance(r, Quantity): # scipy function cannot handle Quantity, so turn into array. r = r.to_value(u.dimensionless_unscaled) # Since r can be zero, we have to take care to treat that case # separately so as not to raise a numpy warning z = np.ones(r.shape) rt = np.pi * r[r > 0] z[r > 0] = (2.0 * cls._j1(rt) / rt) ** 2 if isinstance(amplitude, Quantity): # make z quantity too, otherwise in-place multiplication fails. z = Quantity(z, u.dimensionless_unscaled, copy=False) z *= amplitude return z @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('radius', inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class Moffat1D(Fittable1DModel): """ One dimensional Moffat model. Parameters ---------- amplitude : float Amplitude of the model. x_0 : float x position of the maximum of the Moffat model. gamma : float Core width of the Moffat model. alpha : float Power index of the Moffat model. See Also -------- Gaussian1D, Box1D Notes ----- Model formula: .. math:: f(x) = A \\left(1 + \\frac{\\left(x - x_{0}\\right)^{2}}{\\gamma^{2}}\\right)^{- \\alpha} Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling.models import Moffat1D plt.figure() s1 = Moffat1D() r = np.arange(-5, 5, .01) for factor in range(1, 4): s1.amplitude = factor s1.width = factor plt.plot(r, s1(r), color=str(0.25 * factor), lw=2) plt.axis([-5, 5, -1, 4]) plt.show() """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) gamma = Parameter(default=1) alpha = Parameter(default=1) @property def fwhm(self): """ Moffat full width at half maximum. Derivation of the formula is available in `this notebook by Yoonsoo Bach <http://nbviewer.jupyter.org/github/ysbach/AO_2017/blob/master/04_Ground_Based_Concept.ipynb#1.2.-Moffat>`_. """ return 2.0 * np.abs(self.gamma) * np.sqrt(2.0 ** (1.0 / self.alpha) - 1.0) @staticmethod def evaluate(x, amplitude, x_0, gamma, alpha): """One dimensional Moffat model function""" return amplitude * (1 + ((x - x_0) / gamma) ** 2) ** (-alpha) @staticmethod def fit_deriv(x, amplitude, x_0, gamma, alpha): """One dimensional Moffat model derivative with respect to parameters""" fac = (1 + (x - x_0) ** 2 / gamma ** 2) d_A = fac ** (-alpha) d_x_0 = (2 * amplitude * alpha * (x - x_0) * d_A / (fac * gamma ** 2)) d_gamma = (2 * amplitude * alpha * (x - x_0) ** 2 * d_A / (fac * gamma ** 3)) d_alpha = -amplitude * d_A * np.log(fac) return [d_A, d_x_0, d_gamma, d_alpha] @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('gamma', inputs_unit['x']), ('amplitude', outputs_unit['y'])]) class Moffat2D(Fittable2DModel): """ Two dimensional Moffat model. Parameters ---------- amplitude : float Amplitude of the model. x_0 : float x position of the maximum of the Moffat model. y_0 : float y position of the maximum of the Moffat model. gamma : float Core width of the Moffat model. alpha : float Power index of the Moffat model. See Also -------- Gaussian2D, Box2D Notes ----- Model formula: .. math:: f(x, y) = A \\left(1 + \\frac{\\left(x - x_{0}\\right)^{2} + \\left(y - y_{0}\\right)^{2}}{\\gamma^{2}}\\right)^{- \\alpha} """ amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) gamma = Parameter(default=1) alpha = Parameter(default=1) @property def fwhm(self): """ Moffat full width at half maximum. Derivation of the formula is available in `this notebook by Yoonsoo Bach <http://nbviewer.jupyter.org/github/ysbach/AO_2017/blob/master/04_Ground_Based_Concept.ipynb#1.2.-Moffat>`_. """ return 2.0 * np.abs(self.gamma) * np.sqrt(2.0 ** (1.0 / self.alpha) - 1.0) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, gamma, alpha): """Two dimensional Moffat model function""" rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2 return amplitude * (1 + rr_gg) ** (-alpha) @staticmethod def fit_deriv(x, y, amplitude, x_0, y_0, gamma, alpha): """Two dimensional Moffat model derivative with respect to parameters""" rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2 d_A = (1 + rr_gg) ** (-alpha) d_x_0 = (2 * amplitude * alpha * d_A * (x - x_0) / (gamma ** 2 * (1 + rr_gg))) d_y_0 = (2 * amplitude * alpha * d_A * (y - y_0) / (gamma ** 2 * (1 + rr_gg))) d_alpha = -amplitude * d_A * np.log(1 + rr_gg) d_gamma = (2 * amplitude * alpha * d_A * rr_gg / (gamma ** 3 * (1 + rr_gg))) return [d_A, d_x_0, d_y_0, d_gamma, d_alpha] @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('gamma', inputs_unit['x']), ('amplitude', outputs_unit['z'])]) class Sersic2D(Fittable2DModel): r""" Two dimensional Sersic surface brightness profile. Parameters ---------- amplitude : float Surface brightness at r_eff. r_eff : float Effective (half-light) radius n : float Sersic Index. x_0 : float, optional x position of the center. y_0 : float, optional y position of the center. ellip : float, optional Ellipticity. theta : float, optional Rotation angle in radians, counterclockwise from the positive x-axis. See Also -------- Gaussian2D, Moffat2D Notes ----- Model formula: .. math:: I(x,y) = I(r) = I_e\exp\left\{-b_n\left[\left(\frac{r}{r_{e}}\right)^{(1/n)}-1\right]\right\} The constant :math:`b_n` is defined such that :math:`r_e` contains half the total luminosity, and can be solved for numerically. .. math:: \Gamma(2n) = 2\gamma (b_n,2n) Examples -------- .. plot:: :include-source: import numpy as np from astropy.modeling.models import Sersic2D import matplotlib.pyplot as plt x,y = np.meshgrid(np.arange(100), np.arange(100)) mod = Sersic2D(amplitude = 1, r_eff = 25, n=4, x_0=50, y_0=50, ellip=.5, theta=-1) img = mod(x, y) log_img = np.log10(img) plt.figure() plt.imshow(log_img, origin='lower', interpolation='nearest', vmin=-1, vmax=2) plt.xlabel('x') plt.ylabel('y') cbar = plt.colorbar() cbar.set_label('Log Brightness', rotation=270, labelpad=25) cbar.set_ticks([-1, 0, 1, 2], update_ticks=True) plt.show() References ---------- .. [1] http://ned.ipac.caltech.edu/level5/March05/Graham/Graham2.html """ amplitude = Parameter(default=1) r_eff = Parameter(default=1) n = Parameter(default=4) x_0 = Parameter(default=0) y_0 = Parameter(default=0) ellip = Parameter(default=0) theta = Parameter(default=0) _gammaincinv = None @classmethod def evaluate(cls, x, y, amplitude, r_eff, n, x_0, y_0, ellip, theta): """Two dimensional Sersic profile function.""" if cls._gammaincinv is None: try: from scipy.special import gammaincinv cls._gammaincinv = gammaincinv except ValueError: raise ImportError('Sersic2D model requires scipy > 0.11.') bn = cls._gammaincinv(2. * n, 0.5) a, b = r_eff, (1 - ellip) * r_eff cos_theta, sin_theta = np.cos(theta), np.sin(theta) x_maj = (x - x_0) * cos_theta + (y - y_0) * sin_theta x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta z = np.sqrt((x_maj / a) ** 2 + (x_min / b) ** 2) return amplitude * np.exp(-bn * (z ** (1 / n) - 1)) @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): # Note that here we need to make sure that x and y are in the same # units otherwise this can lead to issues since rotation is not well # defined. if inputs_unit['x'] != inputs_unit['y']: raise UnitsError("Units of 'x' and 'y' inputs should match") return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['x']), ('r_eff', inputs_unit['x']), ('theta', u.rad), ('amplitude', outputs_unit['z'])])
599a6692e65a1b1e9f3498725f03be219cec2b2dbf53972d2be2f0950e8a5dde
# Licensed under a 3-clause BSD style license - see LICENSE.rst """General purpose timer related functions.""" # STDLIB import time import warnings from collections import OrderedDict from collections.abc import Iterable from functools import partial, wraps # THIRD-PARTY import numpy as np # LOCAL from astropy import units as u from astropy import log from astropy import modeling from .exceptions import AstropyUserWarning __all__ = ['timefunc', 'RunTimePredictor'] __doctest_skip__ = ['timefunc'] def timefunc(num_tries=1, verbose=True): """Decorator to time a function or method. Parameters ---------- num_tries : int, optional Number of calls to make. Timer will take the average run time. verbose : bool, optional Extra log information. Returns ------- tt : float Average run time in seconds. result Output(s) from the function. Examples -------- To add timer to time `numpy.log` for 100 times with verbose output:: import numpy as np from astropy.utils.timer import timefunc @timefunc(100) def timed_log(x): return np.log(x) To run the decorated function above: >>> t, y = timed_log(100) INFO: timed_log took 9.29832458496e-06 s on AVERAGE for 100 call(s). [...] >>> t 9.298324584960938e-06 >>> y 4.6051701859880918 """ def real_decorator(function): @wraps(function) def wrapper(*args, **kwargs): ts = time.time() for i in range(num_tries): result = function(*args, **kwargs) te = time.time() tt = (te - ts) / num_tries if verbose: # pragma: no cover log.info('{0} took {1} s on AVERAGE for {2} call(s).'.format( function.__name__, tt, num_tries)) return tt, result return wrapper return real_decorator class RunTimePredictor: """Class to predict run time. .. note:: Only predict for single varying numeric input parameter. Parameters ---------- func : function Function to time. args : tuple Fixed positional argument(s) for the function. kwargs : dict Fixed keyword argument(s) for the function. Examples -------- >>> from astropy.utils.timer import RunTimePredictor Set up a predictor for :math:`10^{x}`: >>> p = RunTimePredictor(pow, 10) Give it baseline data to use for prediction and get the function output values: >>> p.time_func(range(10, 1000, 200)) >>> for input, result in sorted(p.results.items()): ... print("pow(10, {0})\\n{1}".format(input, result)) pow(10, 10) 10000000000 pow(10, 210) 10000000000... pow(10, 410) 10000000000... pow(10, 610) 10000000000... pow(10, 810) 10000000000... Fit a straight line assuming :math:`\\text{arg}^{1}` relationship (coefficients are returned): >>> p.do_fit() # doctest: +SKIP array([1.16777420e-05, 1.00135803e-08]) Predict run time for :math:`10^{5000}`: >>> p.predict_time(5000) # doctest: +SKIP 6.174564361572262e-05 Plot the prediction: >>> p.plot(xlabeltext='Power of 10') # doctest: +SKIP .. image:: /_static/timer_prediction_pow10.png :width: 450px :alt: Example plot from `astropy.utils.timer.RunTimePredictor` When the changing argument is not the last, e.g., :math:`x^{2}`, something like this might work: >>> p = RunTimePredictor(lambda x: pow(x, 2)) >>> p.time_func([2, 3, 5]) >>> sorted(p.results.items()) [(2, 4), (3, 9), (5, 25)] """ def __init__(self, func, *args, **kwargs): self._funcname = func.__name__ self._pfunc = partial(func, *args, **kwargs) self._cache_good = OrderedDict() self._cache_bad = [] self._cache_est = OrderedDict() self._cache_out = OrderedDict() self._fit_func = None self._power = None @property def results(self): """Function outputs from `time_func`. A dictionary mapping input arguments (fixed arguments are not included) to their respective output values. """ return self._cache_out @timefunc(num_tries=1, verbose=False) def _timed_pfunc(self, arg): """Run partial func once for single arg and time it.""" return self._pfunc(arg) def _cache_time(self, arg): """Cache timing results without repetition.""" if arg not in self._cache_good and arg not in self._cache_bad: try: result = self._timed_pfunc(arg) except Exception as e: warnings.warn(str(e), AstropyUserWarning) self._cache_bad.append(arg) else: self._cache_good[arg] = result[0] # Run time self._cache_out[arg] = result[1] # Function output def time_func(self, arglist): """Time the partial function for a list of single args and store run time in a cache. This forms a baseline for the prediction. This also stores function outputs in `results`. Parameters ---------- arglist : list of numbers List of input arguments to time. """ if not isinstance(arglist, Iterable): arglist = [arglist] # Preserve arglist order for arg in arglist: self._cache_time(arg) # FUTURE: Implement N^x * O(log(N)) fancy fitting. def do_fit(self, model=None, fitter=None, power=1, min_datapoints=3): """Fit a function to the lists of arguments and their respective run time in the cache. By default, this does a linear least-square fitting to a straight line on run time w.r.t. argument values raised to the given power, and returns the optimal intercept and slope. Parameters ---------- model : `astropy.modeling.Model` Model for the expected trend of run time (Y-axis) w.r.t. :math:`\\text{arg}^{\\text{power}}` (X-axis). If `None`, will use `~astropy.modeling.polynomial.Polynomial1D` with ``degree=1``. fitter : `astropy.modeling.fitting.Fitter` Fitter for the given model to extract optimal coefficient values. If `None`, will use `~astropy.modeling.fitting.LinearLSQFitter`. power : int, optional Power of values to fit. min_datapoints : int, optional Minimum number of data points required for fitting. They can be built up with `time_func`. Returns ------- a : array-like Fitted `~astropy.modeling.FittableModel` parameters. Raises ------ ValueError Insufficient data points for fitting. ModelsError Invalid model or fitter. """ # Reset related attributes self._power = power self._cache_est = OrderedDict() x_arr = np.array(list(self._cache_good.keys())) if x_arr.size < min_datapoints: raise ValueError('requires {0} points but has {1}'.format( min_datapoints, x_arr.size)) if model is None: model = modeling.models.Polynomial1D(1) elif not isinstance(model, modeling.core.Model): raise modeling.fitting.ModelsError( '{0} is not a model.'.format(model)) if fitter is None: fitter = modeling.fitting.LinearLSQFitter() elif not isinstance(fitter, modeling.fitting.Fitter): raise modeling.fitting.ModelsError( '{0} is not a fitter.'.format(fitter)) self._fit_func = fitter( model, x_arr**power, list(self._cache_good.values())) return self._fit_func.parameters def predict_time(self, arg): """Predict run time for given argument. If prediction is already cached, cached value is returned. Parameters ---------- arg : number Input argument to predict run time for. Returns ------- t_est : float Estimated run time for given argument. Raises ------ RuntimeError No fitted data for prediction. """ if arg in self._cache_est: t_est = self._cache_est[arg] else: if self._fit_func is None: raise RuntimeError('no fitted data for prediction') t_est = self._fit_func(arg**self._power) self._cache_est[arg] = t_est return t_est def plot(self, xscale='linear', yscale='linear', xlabeltext='args', save_as=''): # pragma: no cover """Plot prediction. .. note:: Uses `matplotlib <http://matplotlib.org/>`_. Parameters ---------- xscale, yscale : {'linear', 'log', 'symlog'} Scaling for `matplotlib.axes.Axes`. xlabeltext : str, optional Text for X-label. save_as : str, optional Save plot as given filename. Raises ------ RuntimeError Insufficient data for plotting. """ import matplotlib.pyplot as plt # Actual data x_arr = sorted(self._cache_good) y_arr = np.array([self._cache_good[x] for x in x_arr]) if len(x_arr) <= 1: raise RuntimeError('insufficient data for plotting') # Auto-ranging qmean = y_arr.mean() * u.second for cur_u in (u.minute, u.second, u.millisecond, u.microsecond, u.nanosecond): val = qmean.to_value(cur_u) if 1000 > val >= 1: break y_arr = (y_arr * u.second).to_value(cur_u) fig, ax = plt.subplots() ax.plot(x_arr, y_arr, 'kx-', label='Actual') # Fitted data if self._fit_func is not None: x_est = list(self._cache_est.keys()) y_est = (np.array(list(self._cache_est.values())) * u.second).to_value(cur_u) ax.scatter(x_est, y_est, marker='o', c='r', label='Predicted') x_fit = np.array(sorted(x_arr + x_est)) y_fit = (self._fit_func(x_fit**self._power) * u.second).to_value(cur_u) ax.plot(x_fit, y_fit, 'b--', label='Fit') ax.set_xscale(xscale) ax.set_yscale(yscale) ax.set_xlabel(xlabeltext) ax.set_ylabel('Run time ({})'.format(cur_u.to_string())) ax.set_title(self._funcname) ax.legend(loc='best', numpoints=1) plt.draw() if save_as: plt.savefig(save_as)
e156ade79f5375020c6e0caac93b968b8f167f9ea4c9bec7b19aa390e727579d
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np __doctest_skip__ = ['quantity_support'] def quantity_support(format='latex_inline'): """ Enable support for plotting `astropy.units.Quantity` instances in matplotlib. May be (optionally) used with a ``with`` statement. >>> import matplotlib.pyplot as plt >>> from astropy import units as u >>> from astropy import visualization >>> with visualization.quantity_support(): ... plt.figure() ... plt.plot([1, 2, 3] * u.m) [...] ... plt.plot([101, 125, 150] * u.cm) [...] ... plt.draw() Parameters ---------- format : `astropy.units.format.Base` instance or str The name of a format or a formatter object. If not provided, defaults to ``latex_inline``. """ from astropy import units as u # import Angle just so we have a more or less complete list of Quantity # subclasses loaded - matplotlib needs them all separately! # NOTE: in matplotlib >=3.2, subclasses will be recognized automatically, # and once that becomes our minimum version, we can remove this, # adding just u.Quantity itself to the registry. from astropy.coordinates import Angle # noqa from matplotlib import units from matplotlib import ticker # Get all subclass for Quantity, since matplotlib checks on class, # not subclass. def all_issubclass(cls): return {cls}.union( [s for c in cls.__subclasses__() for s in all_issubclass(c)]) def rad_fn(x, pos=None): n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return '0' elif n == 1: return 'π/2' elif n == 2: return 'π' elif n % 2 == 0: return '{0}π'.format(n / 2) else: return '{0}π/2'.format(n) class MplQuantityConverter(units.ConversionInterface): _all_issubclass_quantity = all_issubclass(u.Quantity) def __init__(self): # Keep track of original converter in case the context manager is # used in a nested way. self._original_converter = {} for cls in self._all_issubclass_quantity: self._original_converter[cls] = units.registry.get(cls) units.registry[cls] = self @staticmethod def axisinfo(unit, axis): if unit == u.radian: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.to_string(), ) elif unit == u.degree: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter('%i°'), label=unit.to_string(), ) elif unit is not None: return units.AxisInfo(label=unit.to_string(format)) return None @staticmethod def convert(val, unit, axis): if isinstance(val, u.Quantity): return val.to_value(unit) elif isinstance(val, list) and isinstance(val[0], u.Quantity): return [v.to_value(unit) for v in val] else: return val @staticmethod def default_units(x, axis): if hasattr(x, 'unit'): return x.unit return None def __enter__(self): return self def __exit__(self, type, value, tb): for cls in self._all_issubclass_quantity: if self._original_converter[cls] is None: del units.registry[cls] else: units.registry[cls] = self._original_converter[cls] return MplQuantityConverter()
83bf66bfd0b512c6f4189c0d872f66483f14db2a029b91a515d9e0c646a11489
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from datetime import datetime from astropy.time import Time from astropy import units as u __all__ = ['time_support'] __doctest_requires__ = {'time_support': ['matplotlib']} UNSUPPORTED_FORMATS = ('datetime', 'datetime64') YMDHMS_FORMATS = ('fits', 'iso', 'isot', 'yday') STR_FORMATS = YMDHMS_FORMATS + ('byear_str', 'jyear_str') def time_support(*, scale=None, format=None, simplify=True): """ Enable support for plotting `astropy.time.Time` instances in matplotlib. May be (optionally) used with a ``with`` statement. >>> import matplotlib.pyplot as plt >>> from astropy import units as u >>> from astropy import visualization >>> with visualization.time_support(): # doctest: +IGNORE_OUTPUT ... plt.figure() ... plt.plot(Time(['2016-03-22T12:30:31', '2016-03-22T12:30:38', '2016-03-22T12:34:40'])) ... plt.draw() Parameters ---------- scale : str, optional The time scale to use for the times on the axis. If not specified, the scale of the first Time object passed to Matplotlib is used. format : str, optional The time format to use for the times on the axis. If not specified, the format of the first Time object passed to Matplotlib is used. simplify : bool, optional If possible, simplify labels, e.g. by removing 00:00:00.000 times from ISO strings if all labels fall on that time. """ import matplotlib.units as units from matplotlib.ticker import MaxNLocator, ScalarFormatter from astropy.visualization.wcsaxes.utils import select_step_hour, select_step_scalar class AstropyTimeLocator(MaxNLocator): # Note: we default to AutoLocator since many time formats # can just use this. def __init__(self, converter, *args, **kwargs): kwargs['nbins'] = 4 super().__init__(*args, **kwargs) self._converter = converter def tick_values(self, vmin, vmax): # Where we put the ticks depends on the format we are using if self._converter.format in YMDHMS_FORMATS: # If we are here, we need to check what the range of values # is and decide how to find tick locations accordingly vrange = vmax - vmin if (self._converter.format != 'yday' and vrange > 31) or vrange > 366: # greater than a month # We need to be careful here since not all years and months have # the same length # Start off by converting the values from the range to # datetime objects, so that we can easily extract the year and # month. tmin = Time(vmin, scale=self._converter.scale, format='mjd').datetime tmax = Time(vmax, scale=self._converter.scale, format='mjd').datetime # Find the range of years ymin = tmin.year ymax = tmax.year if ymax > ymin + 1: # greater than a year # Find the step we want to use ystep = int(select_step_scalar(max(1, (ymax - ymin) / 3))) ymin = ystep * (ymin // ystep) # Generate the years for these steps times = [] for year in range(ymin, ymax + 1, ystep): times.append(datetime(year=year, month=1, day=1)) else: # greater than a month but less than a year mmin = tmin.month mmax = tmax.month + 12 * (ymax - ymin) mstep = int(select_step_scalar(max(1, (mmax - mmin) / 3))) mmin = mstep * max(1, mmin // mstep) # Generate the months for these steps times = [] for month in range(mmin, mmax + 1, mstep): times.append(datetime(year=ymin + month // 12, month=month % 12, day=1)) # Convert back to MJD values = Time(times, scale=self._converter.scale).mjd elif vrange > 1: # greater than a day self.set_params(steps=[1, 2, 5, 10]) values = super().tick_values(vmin, vmax) else: # Determine ideal step dv = (vmax - vmin) / 3 * 24 << u.hourangle # And round to nearest sensible value dv = select_step_hour(dv).to_value(u.hourangle) / 24 # Determine tick locations imin = np.ceil(vmin / dv) imax = np.floor(vmax / dv) values = np.arange(imin, imax + 1, dtype=np.int64) * dv else: values = super().tick_values(vmin, vmax) # Get rid of values outside of the input interval values = values[(values >= vmin) & (values <= vmax)] return values def __call__(self): vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) class AstropyTimeFormatter(ScalarFormatter): def __init__(self, converter, *args, **kwargs): super().__init__(*args, **kwargs) self._converter = converter self.set_useOffset(False) self.set_scientific(False) def __call__(self, value, pos=None): # Needed for Matplotlib <3.1 if self._converter.format in STR_FORMATS: return self.format_ticks([value])[0] else: return super().__call__(value, pos=pos) def format_ticks(self, values): if len(values) == 0: return [] if self._converter.format in YMDHMS_FORMATS: times = Time(values, format='mjd', scale=self._converter.scale) formatted = getattr(times, self._converter.format) if self._converter.simplify: if self._converter.format in ('fits', 'iso', 'isot'): if all([x.endswith('00:00:00.000') for x in formatted]): split = ' ' if self._converter.format == 'iso' else 'T' formatted = [x.split(split)[0] for x in formatted] elif self._converter.format == 'yday': if all([x.endswith(':001:00:00:00.000') for x in formatted]): formatted = [x.split(':', 1)[0] for x in formatted] return formatted elif self._converter.format == 'byear_str': return Time(values, format='byear', scale=self._converter.scale).byear_str elif self._converter.format == 'jyear_str': return Time(values, format='jyear', scale=self._converter.scale).jyear_str else: return super().format_ticks(values) class MplTimeConverter(units.ConversionInterface): def __init__(self, scale=None, format=None, simplify=None): super().__init__() self.format = format self.scale = scale self.simplify = simplify # Keep track of original converter in case the context manager is # used in a nested way. self._original_converter = units.registry.get(Time) units.registry[Time] = self @property def format(self): return self._format @format.setter def format(self, value): if value in UNSUPPORTED_FORMATS: raise ValueError('time_support does not support format={0}'.format(value)) self._format = value def __enter__(self): return self def __exit__(self, type, value, tb): if self._original_converter is None: del units.registry[Time] else: units.registry[Time] = self._original_converter def default_units(self, x, axis): if isinstance(x, tuple): x = x[0] if self.format is None: self.format = x.format if self.scale is None: self.scale = x.scale return 'astropy_time' def convert(self, value, unit, axis): """ Convert a Time value to a scalar or array. """ # For Matplotlib < 2.2 if not isinstance(value, Time): return value scaled = getattr(value, self.scale) if self.format in YMDHMS_FORMATS: return scaled.mjd elif self.format == 'byear_str': return scaled.byear elif self.format == 'jyear_str': return scaled.jyear else: return getattr(scaled, self.format) def axisinfo(self, unit, axis): """ Return major and minor tick locators and formatters. """ majloc = AstropyTimeLocator(self) majfmt = AstropyTimeFormatter(self) return units.AxisInfo(majfmt=majfmt, majloc=majloc, label='Time ({0})'.format(self.scale)) return MplTimeConverter(scale=scale, format=format, simplify=simplify)
342a79400cbce337515bd2f96e8eed484d519b9995be99b4d0e32c012b2b0937
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Under the hood, there are 3 separate classes that perform different parts of the transformation: - `~astropy.wcs.Wcsprm`: Is a direct wrapper of the core WCS functionality in `wcslib`_. (This includes TPV and TPD polynomial distortion, but not SIP distortion). - `~astropy.wcs.Sip`: Handles polynomial distortion as defined in the `SIP`_ convention. - `~astropy.wcs.DistortionLookupTable`: Handles `distortion paper`_ lookup tables. Additionally, the class `WCS` aggregates all of these transformations together in a pipeline: - Detector to image plane correction (by a pair of `~astropy.wcs.DistortionLookupTable` objects). - `SIP`_ distortion correction (by an underlying `~astropy.wcs.Sip` object) - `distortion paper`_ table-lookup correction (by a pair of `~astropy.wcs.DistortionLookupTable` objects). - `wcslib`_ WCS transformation (by a `~astropy.wcs.Wcsprm` object) """ # STDLIB import copy import io import itertools import os import re import textwrap import warnings import builtins # THIRD-PARTY import numpy as np # LOCAL from astropy import log from astropy.io import fits from . import docstrings from . import _wcs from astropy.utils.compat import possible_filename from astropy.utils.exceptions import AstropyWarning, AstropyUserWarning, AstropyDeprecationWarning # Mix-in class that provides the APE 14 API from .wcsapi.fitswcs import FITSWCSAPIMixin, SlicedFITSWCS __all__ = ['FITSFixedWarning', 'WCS', 'find_all_wcs', 'DistortionLookupTable', 'Sip', 'Tabprm', 'Wcsprm', 'WCSBase', 'validate', 'WcsError', 'SingularMatrixError', 'InconsistentAxisTypesError', 'InvalidTransformError', 'InvalidCoordinateError', 'NoSolutionError', 'InvalidSubimageSpecificationError', 'NoConvergence', 'NonseparableSubimageCoordinateSystemError', 'NoWcsKeywordsFoundError', 'InvalidTabularParametersError'] __doctest_skip__ = ['WCS.all_world2pix'] NAXIS_DEPRECATE_MESSAGE = """ Private attributes "_naxis1" and "_naxis2" have been deprecated since v3.1. Instead use the "pixel_shape" property which returns a list of NAXISj keyword values. """ if _wcs is not None: _parsed_version = _wcs.__version__.split('.') if int(_parsed_version[0]) == 5 and int(_parsed_version[1]) < 8: raise ImportError( "astropy.wcs is built with wcslib {0}, but only versions 5.8 and " "later on the 5.x series are known to work. The version of wcslib " "that ships with astropy may be used.") if not _wcs._sanity_check(): raise RuntimeError( "astropy.wcs did not pass its sanity check for your build " "on your platform.") WCSBase = _wcs._Wcs DistortionLookupTable = _wcs.DistortionLookupTable Sip = _wcs.Sip Wcsprm = _wcs.Wcsprm Tabprm = _wcs.Tabprm WcsError = _wcs.WcsError SingularMatrixError = _wcs.SingularMatrixError InconsistentAxisTypesError = _wcs.InconsistentAxisTypesError InvalidTransformError = _wcs.InvalidTransformError InvalidCoordinateError = _wcs.InvalidCoordinateError NoSolutionError = _wcs.NoSolutionError InvalidSubimageSpecificationError = _wcs.InvalidSubimageSpecificationError NonseparableSubimageCoordinateSystemError = _wcs.NonseparableSubimageCoordinateSystemError NoWcsKeywordsFoundError = _wcs.NoWcsKeywordsFoundError InvalidTabularParametersError = _wcs.InvalidTabularParametersError # Copy all the constants from the C extension into this module's namespace for key, val in _wcs.__dict__.items(): if key.startswith(('WCSSUB', 'WCSHDR', 'WCSHDO')): locals()[key] = val __all__.append(key) else: WCSBase = object Wcsprm = object DistortionLookupTable = object Sip = object Tabprm = object WcsError = None SingularMatrixError = None InconsistentAxisTypesError = None InvalidTransformError = None InvalidCoordinateError = None NoSolutionError = None InvalidSubimageSpecificationError = None NonseparableSubimageCoordinateSystemError = None NoWcsKeywordsFoundError = None InvalidTabularParametersError = None # Additional relax bit flags WCSHDO_SIP = 0x80000 # Regular expression defining SIP keyword It matches keyword that starts with A # or B, optionally followed by P, followed by an underscore then a number in # range of 0-19, followed by an underscore and another number in range of 0-19. # Keyword optionally ends with a capital letter. SIP_KW = re.compile('''^[AB]P?_1?[0-9]_1?[0-9][A-Z]?$''') def _parse_keysel(keysel): keysel_flags = 0 if keysel is not None: for element in keysel: if element.lower() == 'image': keysel_flags |= _wcs.WCSHDR_IMGHEAD elif element.lower() == 'binary': keysel_flags |= _wcs.WCSHDR_BIMGARR elif element.lower() == 'pixel': keysel_flags |= _wcs.WCSHDR_PIXLIST else: raise ValueError( "keysel must be a list of 'image', 'binary' " + "and/or 'pixel'") else: keysel_flags = -1 return keysel_flags class NoConvergence(Exception): """ An error class used to report non-convergence and/or divergence of numerical methods. It is used to report errors in the iterative solution used by the :py:meth:`~astropy.wcs.WCS.all_world2pix`. Attributes ---------- best_solution : `numpy.ndarray` Best solution achieved by the numerical method. accuracy : `numpy.ndarray` Accuracy of the ``best_solution``. niter : `int` Number of iterations performed by the numerical method to compute ``best_solution``. divergent : None, `numpy.ndarray` Indices of the points in ``best_solution`` array for which the solution appears to be divergent. If the solution does not diverge, ``divergent`` will be set to `None`. slow_conv : None, `numpy.ndarray` Indices of the solutions in ``best_solution`` array for which the solution failed to converge within the specified maximum number of iterations. If there are no non-converging solutions (i.e., if the required accuracy has been achieved for all input data points) then ``slow_conv`` will be set to `None`. """ def __init__(self, *args, best_solution=None, accuracy=None, niter=None, divergent=None, slow_conv=None, **kwargs): super().__init__(*args) self.best_solution = best_solution self.accuracy = accuracy self.niter = niter self.divergent = divergent self.slow_conv = slow_conv if kwargs: warnings.warn("Function received unexpected arguments ({}) these " "are ignored but will raise an Exception in the " "future.".format(list(kwargs)), AstropyDeprecationWarning) class FITSFixedWarning(AstropyWarning): """ The warning raised when the contents of the FITS header have been modified to be standards compliant. """ pass class WCS(FITSWCSAPIMixin, WCSBase): """WCS objects perform standard WCS transformations, and correct for `SIP`_ and `distortion paper`_ table-lookup transformations, based on the WCS keywords and supplementary data read from a FITS file. See also: http://docs.astropy.org/en/stable/wcs/ Parameters ---------- header : astropy.io.fits header object, Primary HDU, Image HDU, string, dict-like, or None, optional If *header* is not provided or None, the object will be initialized to default values. fobj : An astropy.io.fits file (hdulist) object, optional It is needed when header keywords point to a `distortion paper`_ lookup table stored in a different extension. key : str, optional The name of a particular WCS transform to use. This may be either ``' '`` or ``'A'``-``'Z'`` and corresponds to the ``\"a\"`` part of the ``CTYPEia`` cards. *key* may only be provided if *header* is also provided. minerr : float, optional The minimum value a distortion correction must have in order to be applied. If the value of ``CQERRja`` is smaller than *minerr*, the corresponding distortion is not applied. relax : bool or int, optional Degree of permissiveness: - `True` (default): Admit all recognized informal extensions of the WCS standard. - `False`: Recognize only FITS keywords defined by the published WCS standard. - `int`: a bit field selecting specific extensions to accept. See :ref:`relaxread` for details. naxis : int or sequence, optional Extracts specific coordinate axes using :meth:`~astropy.wcs.Wcsprm.sub`. If a header is provided, and *naxis* is not ``None``, *naxis* will be passed to :meth:`~astropy.wcs.Wcsprm.sub` in order to select specific axes from the header. See :meth:`~astropy.wcs.Wcsprm.sub` for more details about this parameter. keysel : sequence of flags, optional A sequence of flags used to select the keyword types considered by wcslib. When ``None``, only the standard image header keywords are considered (and the underlying wcspih() C function is called). To use binary table image array or pixel list keywords, *keysel* must be set. Each element in the list should be one of the following strings: - 'image': Image header keywords - 'binary': Binary table image array keywords - 'pixel': Pixel list keywords Keywords such as ``EQUIna`` or ``RFRQna`` that are common to binary table image arrays and pixel lists (including ``WCSNna`` and ``TWCSna``) are selected by both 'binary' and 'pixel'. colsel : sequence of int, optional A sequence of table column numbers used to restrict the WCS transformations considered to only those pertaining to the specified columns. If `None`, there is no restriction. fix : bool, optional When `True` (default), call `~astropy.wcs.Wcsprm.fix` on the resulting object to fix any non-standard uses in the header. `FITSFixedWarning` Warnings will be emitted if any changes were made. translate_units : str, optional Specify which potentially unsafe translations of non-standard unit strings to perform. By default, performs none. See `WCS.fix` for more information about this parameter. Only effective when ``fix`` is `True`. Raises ------ MemoryError Memory allocation failed. ValueError Invalid key. KeyError Key not found in FITS header. ValueError Lookup table distortion present in the header but *fobj* was not provided. Notes ----- 1. astropy.wcs supports arbitrary *n* dimensions for the core WCS (the transformations handled by WCSLIB). However, the `distortion paper`_ lookup table and `SIP`_ distortions must be two dimensional. Therefore, if you try to create a WCS object where the core WCS has a different number of dimensions than 2 and that object also contains a `distortion paper`_ lookup table or `SIP`_ distortion, a `ValueError` exception will be raised. To avoid this, consider using the *naxis* kwarg to select two dimensions from the core WCS. 2. The number of coordinate axes in the transformation is not determined directly from the ``NAXIS`` keyword but instead from the highest of: - ``NAXIS`` keyword - ``WCSAXESa`` keyword - The highest axis number in any parameterized WCS keyword. The keyvalue, as well as the keyword, must be syntactically valid otherwise it will not be considered. If none of these keyword types is present, i.e. if the header only contains auxiliary WCS keywords for a particular coordinate representation, then no coordinate description is constructed for it. The number of axes, which is set as the ``naxis`` member, may differ for different coordinate representations of the same image. 3. When the header includes duplicate keywords, in most cases the last encountered is used. 4. `~astropy.wcs.Wcsprm.set` is called immediately after construction, so any invalid keywords or transformations will be raised by the constructor, not when subsequently calling a transformation method. """ def __init__(self, header=None, fobj=None, key=' ', minerr=0.0, relax=True, naxis=None, keysel=None, colsel=None, fix=True, translate_units='', _do_set=True): close_fds = [] if header is None: if naxis is None: naxis = 2 wcsprm = _wcs.Wcsprm(header=None, key=key, relax=relax, naxis=naxis) self.naxis = wcsprm.naxis # Set some reasonable defaults. det2im = (None, None) cpdis = (None, None) sip = None else: keysel_flags = _parse_keysel(keysel) if isinstance(header, (str, bytes)): try: is_path = (possible_filename(header) and os.path.exists(header)) except (OSError, ValueError): is_path = False if is_path: if fobj is not None: raise ValueError( "Can not provide both a FITS filename to " "argument 1 and a FITS file object to argument 2") fobj = fits.open(header) close_fds.append(fobj) header = fobj[0].header elif isinstance(header, fits.hdu.image._ImageBaseHDU): header = header.header elif not isinstance(header, fits.Header): try: # Accept any dict-like object orig_header = header header = fits.Header() for dict_key in orig_header.keys(): header[dict_key] = orig_header[dict_key] except TypeError: raise TypeError( "header must be a string, an astropy.io.fits.Header " "object, or a dict-like object") if isinstance(header, fits.Header): header_string = header.tostring().rstrip() else: header_string = header # Importantly, header is a *copy* of the passed-in header # because we will be modifying it if isinstance(header_string, str): header_bytes = header_string.encode('ascii') header_string = header_string else: header_bytes = header_string header_string = header_string.decode('ascii') try: tmp_header = fits.Header.fromstring(header_string) self._remove_sip_kw(tmp_header) tmp_header_bytes = tmp_header.tostring().rstrip() if isinstance(tmp_header_bytes, str): tmp_header_bytes = tmp_header_bytes.encode('ascii') tmp_wcsprm = _wcs.Wcsprm(header=tmp_header_bytes, key=key, relax=relax, keysel=keysel_flags, colsel=colsel, warnings=False) except _wcs.NoWcsKeywordsFoundError: est_naxis = 0 else: if naxis is not None: try: tmp_wcsprm.sub(naxis) except ValueError: pass est_naxis = tmp_wcsprm.naxis else: est_naxis = 2 header = fits.Header.fromstring(header_string) if est_naxis == 0: est_naxis = 2 self.naxis = est_naxis det2im = self._read_det2im_kw(header, fobj, err=minerr) cpdis = self._read_distortion_kw( header, fobj, dist='CPDIS', err=minerr) sip = self._read_sip_kw(header, wcskey=key) self._remove_sip_kw(header) header_string = header.tostring() header_string = header_string.replace('END' + ' ' * 77, '') if isinstance(header_string, str): header_bytes = header_string.encode('ascii') header_string = header_string else: header_bytes = header_string header_string = header_string.decode('ascii') try: wcsprm = _wcs.Wcsprm(header=header_bytes, key=key, relax=relax, keysel=keysel_flags, colsel=colsel) except _wcs.NoWcsKeywordsFoundError: # The header may have SIP or distortions, but no core # WCS. That isn't an error -- we want a "default" # (identity) core Wcs transformation in that case. if colsel is None: wcsprm = _wcs.Wcsprm(header=None, key=key, relax=relax, keysel=keysel_flags, colsel=colsel) else: raise if naxis is not None: wcsprm = wcsprm.sub(naxis) self.naxis = wcsprm.naxis if (wcsprm.naxis != 2 and (det2im[0] or det2im[1] or cpdis[0] or cpdis[1] or sip)): raise ValueError( """ FITS WCS distortion paper lookup tables and SIP distortions only work in 2 dimensions. However, WCSLIB has detected {0} dimensions in the core WCS keywords. To use core WCS in conjunction with FITS WCS distortion paper lookup tables or SIP distortion, you must select or reduce these to 2 dimensions using the naxis kwarg. """.format(wcsprm.naxis)) header_naxis = header.get('NAXIS', None) if header_naxis is not None and header_naxis < wcsprm.naxis: warnings.warn( "The WCS transformation has more axes ({0:d}) than the " "image it is associated with ({1:d})".format( wcsprm.naxis, header_naxis), FITSFixedWarning) self._get_naxis(header) WCSBase.__init__(self, sip, cpdis, wcsprm, det2im) if fix: self.fix(translate_units=translate_units) if _do_set: self.wcs.set() for fd in close_fds: fd.close() self._pixel_bounds = None def __copy__(self): new_copy = self.__class__() WCSBase.__init__(new_copy, self.sip, (self.cpdis1, self.cpdis2), self.wcs, (self.det2im1, self.det2im2)) new_copy.__dict__.update(self.__dict__) return new_copy def __deepcopy__(self, memo): from copy import deepcopy new_copy = self.__class__() new_copy.naxis = deepcopy(self.naxis, memo) WCSBase.__init__(new_copy, deepcopy(self.sip, memo), (deepcopy(self.cpdis1, memo), deepcopy(self.cpdis2, memo)), deepcopy(self.wcs, memo), (deepcopy(self.det2im1, memo), deepcopy(self.det2im2, memo))) for key, val in self.__dict__.items(): new_copy.__dict__[key] = deepcopy(val, memo) return new_copy def copy(self): """ Return a shallow copy of the object. Convenience method so user doesn't have to import the :mod:`copy` stdlib module. .. warning:: Use `deepcopy` instead of `copy` unless you know why you need a shallow copy. """ return copy.copy(self) def deepcopy(self): """ Return a deep copy of the object. Convenience method so user doesn't have to import the :mod:`copy` stdlib module. """ return copy.deepcopy(self) def sub(self, axes=None): copy = self.deepcopy() copy.wcs = self.wcs.sub(axes) copy.naxis = copy.wcs.naxis return copy if _wcs is not None: sub.__doc__ = _wcs.Wcsprm.sub.__doc__ def _fix_scamp(self): """ Remove SCAMP's PVi_m distortion parameters if SIP distortion parameters are also present. Some projects (e.g., Palomar Transient Factory) convert SCAMP's distortion parameters (which abuse the PVi_m cards) to SIP. However, wcslib gets confused by the presence of both SCAMP and SIP distortion parameters. See https://github.com/astropy/astropy/issues/299. """ # Nothing to be done if no WCS attached if self.wcs is None: return # Nothing to be done if no PV parameters attached pv = self.wcs.get_pv() if not pv: return # Nothing to be done if axes don't use SIP distortion parameters if self.sip is None: return # Nothing to be done if any radial terms are present... # Loop over list to find any radial terms. # Certain values of the `j' index are used for storing # radial terms; refer to Equation (1) in # <http://web.ipac.caltech.edu/staff/shupe/reprints/SIP_to_PV_SPIE2012.pdf>. pv = np.asarray(pv) # Loop over distinct values of `i' index for i in set(pv[:, 0]): # Get all values of `j' index for this value of `i' index js = set(pv[:, 1][pv[:, 0] == i]) # Find max value of `j' index max_j = max(js) for j in (3, 11, 23, 39): if j < max_j and j in js: return self.wcs.set_pv([]) warnings.warn("Removed redundant SCAMP distortion parameters " + "because SIP parameters are also present", FITSFixedWarning) def fix(self, translate_units='', naxis=None): """ Perform the fix operations from wcslib, and warn about any changes it has made. Parameters ---------- translate_units : str, optional Specify which potentially unsafe translations of non-standard unit strings to perform. By default, performs none. Although ``"S"`` is commonly used to represent seconds, its translation to ``"s"`` is potentially unsafe since the standard recognizes ``"S"`` formally as Siemens, however rarely that may be used. The same applies to ``"H"`` for hours (Henry), and ``"D"`` for days (Debye). This string controls what to do in such cases, and is case-insensitive. - If the string contains ``"s"``, translate ``"S"`` to ``"s"``. - If the string contains ``"h"``, translate ``"H"`` to ``"h"``. - If the string contains ``"d"``, translate ``"D"`` to ``"d"``. Thus ``''`` doesn't do any unsafe translations, whereas ``'shd'`` does all of them. naxis : int array[naxis], optional Image axis lengths. If this array is set to zero or ``None``, then `~astropy.wcs.Wcsprm.cylfix` will not be invoked. """ if self.wcs is not None: self._fix_scamp() fixes = self.wcs.fix(translate_units, naxis) for key, val in fixes.items(): if val != "No change": warnings.warn( ("'{0}' made the change '{1}'."). format(key, val), FITSFixedWarning) def calc_footprint(self, header=None, undistort=True, axes=None, center=True): """ Calculates the footprint of the image on the sky. A footprint is defined as the positions of the corners of the image on the sky after all available distortions have been applied. Parameters ---------- header : `~astropy.io.fits.Header` object, optional Used to get ``NAXIS1`` and ``NAXIS2`` header and axes are mutually exclusive, alternative ways to provide the same information. undistort : bool, optional If `True`, take SIP and distortion lookup table into account axes : length 2 sequence ints, optional If provided, use the given sequence as the shape of the image. Otherwise, use the ``NAXIS1`` and ``NAXIS2`` keywords from the header that was used to create this `WCS` object. center : bool, optional If `True` use the center of the pixel, otherwise use the corner. Returns ------- coord : (4, 2) array of (*x*, *y*) coordinates. The order is clockwise starting with the bottom left corner. """ if axes is not None: naxis1, naxis2 = axes else: if header is None: try: # classes that inherit from WCS and define naxis1/2 # do not require a header parameter naxis1, naxis2 = self.pixel_shape except (AttributeError, TypeError): warnings.warn("Need a valid header in order to calculate footprint\n", AstropyUserWarning) return None else: naxis1 = header.get('NAXIS1', None) naxis2 = header.get('NAXIS2', None) if naxis1 is None or naxis2 is None: raise ValueError( "Image size could not be determined.") if center: corners = np.array([[1, 1], [1, naxis2], [naxis1, naxis2], [naxis1, 1]], dtype=np.float64) else: corners = np.array([[0.5, 0.5], [0.5, naxis2 + 0.5], [naxis1 + 0.5, naxis2 + 0.5], [naxis1 + 0.5, 0.5]], dtype=np.float64) if undistort: return self.all_pix2world(corners, 1) else: return self.wcs_pix2world(corners, 1) def _read_det2im_kw(self, header, fobj, err=0.0): """ Create a `distortion paper`_ type lookup table for detector to image plane correction. """ if fobj is None: return (None, None) if not isinstance(fobj, fits.HDUList): return (None, None) try: axiscorr = header[str('AXISCORR')] d2imdis = self._read_d2im_old_format(header, fobj, axiscorr) return d2imdis except KeyError: pass dist = 'D2IMDIS' d_kw = 'D2IM' err_kw = 'D2IMERR' tables = {} for i in range(1, self.naxis + 1): d_error = header.get(err_kw + str(i), 0.0) if d_error < err: tables[i] = None continue distortion = dist + str(i) if distortion in header: dis = header[distortion].lower() if dis == 'lookup': del header[distortion] assert isinstance(fobj, fits.HDUList), ('An astropy.io.fits.HDUList' 'is required for Lookup table distortion.') dp = (d_kw + str(i)).strip() dp_extver_key = dp + str('.EXTVER') if dp_extver_key in header: d_extver = header[dp_extver_key] del header[dp_extver_key] else: d_extver = 1 dp_axis_key = dp + str('.AXIS.{0:d}').format(i) if i == header[dp_axis_key]: d_data = fobj[str('D2IMARR'), d_extver].data else: d_data = (fobj[str('D2IMARR'), d_extver].data).transpose() del header[dp_axis_key] d_header = fobj[str('D2IMARR'), d_extver].header d_crpix = (d_header.get(str('CRPIX1'), 0.0), d_header.get(str('CRPIX2'), 0.0)) d_crval = (d_header.get(str('CRVAL1'), 0.0), d_header.get(str('CRVAL2'), 0.0)) d_cdelt = (d_header.get(str('CDELT1'), 1.0), d_header.get(str('CDELT2'), 1.0)) d_lookup = DistortionLookupTable(d_data, d_crpix, d_crval, d_cdelt) tables[i] = d_lookup else: warnings.warn('Polynomial distortion is not implemented.\n', AstropyUserWarning) for key in set(header): if key.startswith(dp + str('.')): del header[key] else: tables[i] = None if not tables: return (None, None) else: return (tables.get(1), tables.get(2)) def _read_d2im_old_format(self, header, fobj, axiscorr): warnings.warn("The use of ``AXISCORR`` for D2IM correction has been deprecated." "`~astropy.wcs` will read in files with ``AXISCORR`` but ``to_fits()`` will write " "out files without it.", AstropyDeprecationWarning) cpdis = [None, None] crpix = [0., 0.] crval = [0., 0.] cdelt = [1., 1.] try: d2im_data = fobj[(str('D2IMARR'), 1)].data except KeyError: return (None, None) except AttributeError: return (None, None) d2im_data = np.array([d2im_data]) d2im_hdr = fobj[(str('D2IMARR'), 1)].header naxis = d2im_hdr[str('NAXIS')] for i in range(1, naxis + 1): crpix[i - 1] = d2im_hdr.get(str('CRPIX') + str(i), 0.0) crval[i - 1] = d2im_hdr.get(str('CRVAL') + str(i), 0.0) cdelt[i - 1] = d2im_hdr.get(str('CDELT') + str(i), 1.0) cpdis = DistortionLookupTable(d2im_data, crpix, crval, cdelt) if axiscorr == 1: return (cpdis, None) elif axiscorr == 2: return (None, cpdis) else: warnings.warn("Expected AXISCORR to be 1 or 2", AstropyUserWarning) return (None, None) def _write_det2im(self, hdulist): """ Writes a `distortion paper`_ type lookup table to the given `astropy.io.fits.HDUList`. """ if self.det2im1 is None and self.det2im2 is None: return dist = 'D2IMDIS' d_kw = 'D2IM' err_kw = 'D2IMERR' def write_d2i(num, det2im): if det2im is None: return str('{0}{1:d}').format(dist, num), hdulist[0].header[str('{0}{1:d}').format(dist, num)] = ( 'LOOKUP', 'Detector to image correction type') hdulist[0].header[str('{0}{1:d}.EXTVER').format(d_kw, num)] = ( num, 'Version number of WCSDVARR extension') hdulist[0].header[str('{0}{1:d}.NAXES').format(d_kw, num)] = ( len(det2im.data.shape), 'Number of independent variables in d2im function') for i in range(det2im.data.ndim): hdulist[0].header[str('{0}{1:d}.AXIS.{2:d}').format(d_kw, num, i + 1)] = ( i + 1, 'Axis number of the jth independent variable in a d2im function') image = fits.ImageHDU(det2im.data, name=str('D2IMARR')) header = image.header header[str('CRPIX1')] = (det2im.crpix[0], 'Coordinate system reference pixel') header[str('CRPIX2')] = (det2im.crpix[1], 'Coordinate system reference pixel') header[str('CRVAL1')] = (det2im.crval[0], 'Coordinate system value at reference pixel') header[str('CRVAL2')] = (det2im.crval[1], 'Coordinate system value at reference pixel') header[str('CDELT1')] = (det2im.cdelt[0], 'Coordinate increment along axis') header[str('CDELT2')] = (det2im.cdelt[1], 'Coordinate increment along axis') image.ver = int(hdulist[0].header[str('{0}{1:d}.EXTVER').format(d_kw, num)]) hdulist.append(image) write_d2i(1, self.det2im1) write_d2i(2, self.det2im2) def _read_distortion_kw(self, header, fobj, dist='CPDIS', err=0.0): """ Reads `distortion paper`_ table-lookup keywords and data, and returns a 2-tuple of `~astropy.wcs.DistortionLookupTable` objects. If no `distortion paper`_ keywords are found, ``(None, None)`` is returned. """ if isinstance(header, (str, bytes)): return (None, None) if dist == 'CPDIS': d_kw = str('DP') err_kw = str('CPERR') else: d_kw = str('DQ') err_kw = str('CQERR') tables = {} for i in range(1, self.naxis + 1): d_error_key = err_kw + str(i) if d_error_key in header: d_error = header[d_error_key] del header[d_error_key] else: d_error = 0.0 if d_error < err: tables[i] = None continue distortion = dist + str(i) if distortion in header: dis = header[distortion].lower() del header[distortion] if dis == 'lookup': if not isinstance(fobj, fits.HDUList): raise ValueError('an astropy.io.fits.HDUList is ' 'required for Lookup table distortion.') dp = (d_kw + str(i)).strip() dp_extver_key = dp + str('.EXTVER') if dp_extver_key in header: d_extver = header[dp_extver_key] del header[dp_extver_key] else: d_extver = 1 dp_axis_key = dp + str('.AXIS.{0:d}'.format(i)) if i == header[dp_axis_key]: d_data = fobj[str('WCSDVARR'), d_extver].data else: d_data = (fobj[str('WCSDVARR'), d_extver].data).transpose() del header[dp_axis_key] d_header = fobj[str('WCSDVARR'), d_extver].header d_crpix = (d_header.get(str('CRPIX1'), 0.0), d_header.get(str('CRPIX2'), 0.0)) d_crval = (d_header.get(str('CRVAL1'), 0.0), d_header.get(str('CRVAL2'), 0.0)) d_cdelt = (d_header.get(str('CDELT1'), 1.0), d_header.get(str('CDELT2'), 1.0)) d_lookup = DistortionLookupTable(d_data, d_crpix, d_crval, d_cdelt) tables[i] = d_lookup for key in set(header): if key.startswith(dp + str('.')): del header[key] else: warnings.warn('Polynomial distortion is not implemented.\n', AstropyUserWarning) else: tables[i] = None if not tables: return (None, None) else: return (tables.get(1), tables.get(2)) def _write_distortion_kw(self, hdulist, dist='CPDIS'): """ Write out `distortion paper`_ keywords to the given `fits.HDUList`. """ if self.cpdis1 is None and self.cpdis2 is None: return if dist == 'CPDIS': d_kw = str('DP') err_kw = str('CPERR') else: d_kw = str('DQ') err_kw = str('CQERR') def write_dist(num, cpdis): if cpdis is None: return hdulist[0].header[str('{0}{1:d}').format(dist, num)] = ( 'LOOKUP', 'Prior distortion function type') hdulist[0].header[str('{0}{1:d}.EXTVER').format(d_kw, num)] = ( num, 'Version number of WCSDVARR extension') hdulist[0].header[str('{0}{1:d}.NAXES').format(d_kw, num)] = ( len(cpdis.data.shape), 'Number of independent variables in distortion function') for i in range(cpdis.data.ndim): hdulist[0].header[str('{0}{1:d}.AXIS.{2:d}').format(d_kw, num, i + 1)] = ( i + 1, 'Axis number of the jth independent variable in a distortion function') image = fits.ImageHDU(cpdis.data, name=str('WCSDVARR')) header = image.header header[str('CRPIX1')] = (cpdis.crpix[0], 'Coordinate system reference pixel') header[str('CRPIX2')] = (cpdis.crpix[1], 'Coordinate system reference pixel') header[str('CRVAL1')] = (cpdis.crval[0], 'Coordinate system value at reference pixel') header[str('CRVAL2')] = (cpdis.crval[1], 'Coordinate system value at reference pixel') header[str('CDELT1')] = (cpdis.cdelt[0], 'Coordinate increment along axis') header[str('CDELT2')] = (cpdis.cdelt[1], 'Coordinate increment along axis') image.ver = int(hdulist[0].header[str('{0}{1:d}.EXTVER').format(d_kw, num)]) hdulist.append(image) write_dist(1, self.cpdis1) write_dist(2, self.cpdis2) def _remove_sip_kw(self, header): """ Remove SIP information from a header. """ # Never pass SIP coefficients to wcslib # CTYPE must be passed with -SIP to wcslib for key in (m.group() for m in map(SIP_KW.match, list(header)) if m is not None): del header[key] def _read_sip_kw(self, header, wcskey=""): """ Reads `SIP`_ header keywords and returns a `~astropy.wcs.Sip` object. If no `SIP`_ header keywords are found, ``None`` is returned. """ if isinstance(header, (str, bytes)): # TODO: Parse SIP from a string without pyfits around return None if str("A_ORDER") in header and header[str('A_ORDER')] > 1: if str("B_ORDER") not in header: raise ValueError( "A_ORDER provided without corresponding B_ORDER " "keyword for SIP distortion") m = int(header[str("A_ORDER")]) a = np.zeros((m + 1, m + 1), np.double) for i in range(m + 1): for j in range(m - i + 1): key = str("A_{0}_{1}").format(i, j) if key in header: a[i, j] = header[key] del header[key] m = int(header[str("B_ORDER")]) if m > 1: b = np.zeros((m + 1, m + 1), np.double) for i in range(m + 1): for j in range(m - i + 1): key = str("B_{0}_{1}").format(i, j) if key in header: b[i, j] = header[key] del header[key] else: a = None b = None del header[str('A_ORDER')] del header[str('B_ORDER')] ctype = [header['CTYPE{0}{1}'.format(nax, wcskey)] for nax in range(1, self.naxis + 1)] if any(not ctyp.endswith('-SIP') for ctyp in ctype): message = """ Inconsistent SIP distortion information is present in the FITS header and the WCS object: SIP coefficients were detected, but CTYPE is missing a "-SIP" suffix. astropy.wcs is using the SIP distortion coefficients, therefore the coordinates calculated here might be incorrect. If you do not want to apply the SIP distortion coefficients, please remove the SIP coefficients from the FITS header or the WCS object. As an example, if the image is already distortion-corrected (e.g., drizzled) then distortion components should not apply and the SIP coefficients should be removed. While the SIP distortion coefficients are being applied here, if that was indeed the intent, for consistency please append "-SIP" to the CTYPE in the FITS header or the WCS object. """ log.info(message) elif str("B_ORDER") in header and header[str('B_ORDER')] > 1: raise ValueError( "B_ORDER provided without corresponding A_ORDER " + "keyword for SIP distortion") else: a = None b = None if str("AP_ORDER") in header and header[str('AP_ORDER')] > 1: if str("BP_ORDER") not in header: raise ValueError( "AP_ORDER provided without corresponding BP_ORDER " "keyword for SIP distortion") m = int(header[str("AP_ORDER")]) ap = np.zeros((m + 1, m + 1), np.double) for i in range(m + 1): for j in range(m - i + 1): key = str("AP_{0}_{1}").format(i, j) if key in header: ap[i, j] = header[key] del header[key] m = int(header[str("BP_ORDER")]) if m > 1: bp = np.zeros((m + 1, m + 1), np.double) for i in range(m + 1): for j in range(m - i + 1): key = str("BP_{0}_{1}").format(i, j) if key in header: bp[i, j] = header[key] del header[key] else: ap = None bp = None del header[str('AP_ORDER')] del header[str('BP_ORDER')] elif str("BP_ORDER") in header and header[str('BP_ORDER')] > 1: raise ValueError( "BP_ORDER provided without corresponding AP_ORDER " "keyword for SIP distortion") else: ap = None bp = None if a is None and b is None and ap is None and bp is None: return None if str("CRPIX1{0}".format(wcskey)) not in header or str("CRPIX2{0}".format(wcskey)) not in header: raise ValueError( "Header has SIP keywords without CRPIX keywords") crpix1 = header.get("CRPIX1{0}".format(wcskey)) crpix2 = header.get("CRPIX2{0}".format(wcskey)) return Sip(a, b, ap, bp, (crpix1, crpix2)) def _write_sip_kw(self): """ Write out SIP keywords. Returns a dictionary of key-value pairs. """ if self.sip is None: return {} keywords = {} def write_array(name, a): if a is None: return size = a.shape[0] keywords[str('{0}_ORDER').format(name)] = size - 1 for i in range(size): for j in range(size - i): if a[i, j] != 0.0: keywords[ str('{0}_{1:d}_{2:d}').format(name, i, j)] = a[i, j] write_array(str('A'), self.sip.a) write_array(str('B'), self.sip.b) write_array(str('AP'), self.sip.ap) write_array(str('BP'), self.sip.bp) return keywords def _denormalize_sky(self, sky): if self.wcs.lngtyp != 'RA': raise ValueError( "WCS does not have longitude type of 'RA', therefore " + "(ra, dec) data can not be used as input") if self.wcs.lattyp != 'DEC': raise ValueError( "WCS does not have longitude type of 'DEC', therefore " + "(ra, dec) data can not be used as input") if self.wcs.naxis == 2: if self.wcs.lng == 0 and self.wcs.lat == 1: return sky elif self.wcs.lng == 1 and self.wcs.lat == 0: # Reverse the order of the columns return sky[:, ::-1] else: raise ValueError( "WCS does not have longitude and latitude celestial " + "axes, therefore (ra, dec) data can not be used as input") else: if self.wcs.lng < 0 or self.wcs.lat < 0: raise ValueError( "WCS does not have both longitude and latitude " "celestial axes, therefore (ra, dec) data can not be " + "used as input") out = np.zeros((sky.shape[0], self.wcs.naxis)) out[:, self.wcs.lng] = sky[:, 0] out[:, self.wcs.lat] = sky[:, 1] return out def _normalize_sky(self, sky): if self.wcs.lngtyp != 'RA': raise ValueError( "WCS does not have longitude type of 'RA', therefore " + "(ra, dec) data can not be returned") if self.wcs.lattyp != 'DEC': raise ValueError( "WCS does not have longitude type of 'DEC', therefore " + "(ra, dec) data can not be returned") if self.wcs.naxis == 2: if self.wcs.lng == 0 and self.wcs.lat == 1: return sky elif self.wcs.lng == 1 and self.wcs.lat == 0: # Reverse the order of the columns return sky[:, ::-1] else: raise ValueError( "WCS does not have longitude and latitude celestial " "axes, therefore (ra, dec) data can not be returned") else: if self.wcs.lng < 0 or self.wcs.lat < 0: raise ValueError( "WCS does not have both longitude and latitude celestial " "axes, therefore (ra, dec) data can not be returned") out = np.empty((sky.shape[0], 2)) out[:, 0] = sky[:, self.wcs.lng] out[:, 1] = sky[:, self.wcs.lat] return out def _array_converter(self, func, sky, *args, ra_dec_order=False): """ A helper function to support reading either a pair of arrays or a single Nx2 array. """ def _return_list_of_arrays(axes, origin): if any([x.size == 0 for x in axes]): return axes try: axes = np.broadcast_arrays(*axes) except ValueError: raise ValueError( "Coordinate arrays are not broadcastable to each other") xy = np.hstack([x.reshape((x.size, 1)) for x in axes]) if ra_dec_order and sky == 'input': xy = self._denormalize_sky(xy) output = func(xy, origin) if ra_dec_order and sky == 'output': output = self._normalize_sky(output) return (output[:, 0].reshape(axes[0].shape), output[:, 1].reshape(axes[0].shape)) return [output[:, i].reshape(axes[0].shape) for i in range(output.shape[1])] def _return_single_array(xy, origin): if xy.shape[-1] != self.naxis: raise ValueError( "When providing two arguments, the array must be " "of shape (N, {0})".format(self.naxis)) if 0 in xy.shape: return xy if ra_dec_order and sky == 'input': xy = self._denormalize_sky(xy) result = func(xy, origin) if ra_dec_order and sky == 'output': result = self._normalize_sky(result) return result if len(args) == 2: try: xy, origin = args xy = np.asarray(xy) origin = int(origin) except Exception: raise TypeError( "When providing two arguments, they must be " "(coords[N][{0}], origin)".format(self.naxis)) if xy.shape == () or len(xy.shape) == 1: return _return_list_of_arrays([xy], origin) return _return_single_array(xy, origin) elif len(args) == self.naxis + 1: axes = args[:-1] origin = args[-1] try: axes = [np.asarray(x) for x in axes] origin = int(origin) except Exception: raise TypeError( "When providing more than two arguments, they must be " + "a 1-D array for each axis, followed by an origin.") return _return_list_of_arrays(axes, origin) raise TypeError( "WCS projection has {0} dimensions, so expected 2 (an Nx{0} array " "and the origin argument) or {1} arguments (the position in each " "dimension, and the origin argument). Instead, {2} arguments were " "given.".format( self.naxis, self.naxis + 1, len(args))) def all_pix2world(self, *args, **kwargs): return self._array_converter( self._all_pix2world, 'output', *args, **kwargs) all_pix2world.__doc__ = """ Transforms pixel coordinates to world coordinates. Performs all of the following in series: - Detector to image plane correction (if present in the FITS file) - `SIP`_ distortion correction (if present in the FITS file) - `distortion paper`_ table-lookup correction (if present in the FITS file) - `wcslib`_ "core" WCS transformation Parameters ---------- {0} For a transformation that is not two-dimensional, the two-argument form must be used. {1} Returns ------- {2} Notes ----- The order of the axes for the result is determined by the ``CTYPEia`` keywords in the FITS header, therefore it may not always be of the form (*ra*, *dec*). The `~astropy.wcs.Wcsprm.lat`, `~astropy.wcs.Wcsprm.lng`, `~astropy.wcs.Wcsprm.lattyp` and `~astropy.wcs.Wcsprm.lngtyp` members can be used to determine the order of the axes. Raises ------ MemoryError Memory allocation failed. SingularMatrixError Linear transformation matrix is singular. InconsistentAxisTypesError Inconsistent or unrecognized coordinate axis types. ValueError Invalid parameter value. ValueError Invalid coordinate transformation parameters. ValueError x- and y-coordinate arrays are not the same size. InvalidTransformError Invalid coordinate transformation parameters. InvalidTransformError Ill-conditioned coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('naxis', 8), docstrings.RA_DEC_ORDER(8), docstrings.RETURNS('sky coordinates, in degrees', 8)) def wcs_pix2world(self, *args, **kwargs): if self.wcs is None: raise ValueError("No basic WCS settings were created.") return self._array_converter( lambda xy, o: self.wcs.p2s(xy, o)['world'], 'output', *args, **kwargs) wcs_pix2world.__doc__ = """ Transforms pixel coordinates to world coordinates by doing only the basic `wcslib`_ transformation. No `SIP`_ or `distortion paper`_ table lookup correction is applied. To perform distortion correction, see `~astropy.wcs.WCS.all_pix2world`, `~astropy.wcs.WCS.sip_pix2foc`, `~astropy.wcs.WCS.p4_pix2foc`, or `~astropy.wcs.WCS.pix2foc`. Parameters ---------- {0} For a transformation that is not two-dimensional, the two-argument form must be used. {1} Returns ------- {2} Raises ------ MemoryError Memory allocation failed. SingularMatrixError Linear transformation matrix is singular. InconsistentAxisTypesError Inconsistent or unrecognized coordinate axis types. ValueError Invalid parameter value. ValueError Invalid coordinate transformation parameters. ValueError x- and y-coordinate arrays are not the same size. InvalidTransformError Invalid coordinate transformation parameters. InvalidTransformError Ill-conditioned coordinate transformation parameters. Notes ----- The order of the axes for the result is determined by the ``CTYPEia`` keywords in the FITS header, therefore it may not always be of the form (*ra*, *dec*). The `~astropy.wcs.Wcsprm.lat`, `~astropy.wcs.Wcsprm.lng`, `~astropy.wcs.Wcsprm.lattyp` and `~astropy.wcs.Wcsprm.lngtyp` members can be used to determine the order of the axes. """.format(docstrings.TWO_OR_MORE_ARGS('naxis', 8), docstrings.RA_DEC_ORDER(8), docstrings.RETURNS('world coordinates, in degrees', 8)) def _all_world2pix(self, world, origin, tolerance, maxiter, adaptive, detect_divergence, quiet): # ############################################################ # # DESCRIPTION OF THE NUMERICAL METHOD ## # ############################################################ # In this section I will outline the method of solving # the inverse problem of converting world coordinates to # pixel coordinates (*inverse* of the direct transformation # `all_pix2world`) and I will summarize some of the aspects # of the method proposed here and some of the issues of the # original `all_world2pix` (in relation to this method) # discussed in https://github.com/astropy/astropy/issues/1977 # A more detailed discussion can be found here: # https://github.com/astropy/astropy/pull/2373 # # # ### Background ### # # # I will refer here to the [SIP Paper] # (http://fits.gsfc.nasa.gov/registry/sip/SIP_distortion_v1_0.pdf). # According to this paper, the effect of distortions as # described in *their* equation (1) is: # # (1) x = CD*(u+f(u)), # # where `x` is a *vector* of "intermediate spherical # coordinates" (equivalent to (x,y) in the paper) and `u` # is a *vector* of "pixel coordinates", and `f` is a vector # function describing geometrical distortions # (see equations 2 and 3 in SIP Paper. # However, I prefer to use `w` for "intermediate world # coordinates", `x` for pixel coordinates, and assume that # transformation `W` performs the **linear** # (CD matrix + projection onto celestial sphere) part of the # conversion from pixel coordinates to world coordinates. # Then we can re-write (1) as: # # (2) w = W*(x+f(x)) = T(x) # # In `astropy.wcs.WCS` transformation `W` is represented by # the `wcs_pix2world` member, while the combined ("total") # transformation (linear part + distortions) is performed by # `all_pix2world`. Below I summarize the notations and their # equivalents in `astropy.wcs.WCS`: # # | Equation term | astropy.WCS/meaning | # | ------------- | ---------------------------- | # | `x` | pixel coordinates | # | `w` | world coordinates | # | `W` | `wcs_pix2world()` | # | `W^{-1}` | `wcs_world2pix()` | # | `T` | `all_pix2world()` | # | `x+f(x)` | `pix2foc()` | # # # ### Direct Solving of Equation (2) ### # # # In order to find the pixel coordinates that correspond to # given world coordinates `w`, it is necessary to invert # equation (2): `x=T^{-1}(w)`, or solve equation `w==T(x)` # for `x`. However, this approach has the following # disadvantages: # 1. It requires unnecessary transformations (see next # section). # 2. It is prone to "RA wrapping" issues as described in # https://github.com/astropy/astropy/issues/1977 # (essentially because `all_pix2world` may return points with # a different phase than user's input `w`). # # # ### Description of the Method Used here ### # # # By applying inverse linear WCS transformation (`W^{-1}`) # to both sides of equation (2) and introducing notation `x'` # (prime) for the pixels coordinates obtained from the world # coordinates by applying inverse *linear* WCS transformation # ("focal plane coordinates"): # # (3) x' = W^{-1}(w) # # we obtain the following equation: # # (4) x' = x+f(x), # # or, # # (5) x = x'-f(x) # # This equation is well suited for solving using the method # of fixed-point iterations # (http://en.wikipedia.org/wiki/Fixed-point_iteration): # # (6) x_{i+1} = x'-f(x_i) # # As an initial value of the pixel coordinate `x_0` we take # "focal plane coordinate" `x'=W^{-1}(w)=wcs_world2pix(w)`. # We stop iterations when `|x_{i+1}-x_i|<tolerance`. We also # consider the process to be diverging if # `|x_{i+1}-x_i|>|x_i-x_{i-1}|` # **when** `|x_{i+1}-x_i|>=tolerance` (when current # approximation is close to the true solution, # `|x_{i+1}-x_i|>|x_i-x_{i-1}|` may be due to rounding errors # and we ignore such "divergences" when # `|x_{i+1}-x_i|<tolerance`). It may appear that checking for # `|x_{i+1}-x_i|<tolerance` in order to ignore divergence is # unnecessary since the iterative process should stop anyway, # however, the proposed implementation of this iterative # process is completely vectorized and, therefore, we may # continue iterating over *some* points even though they have # converged to within a specified tolerance (while iterating # over other points that have not yet converged to # a solution). # # In order to efficiently implement iterative process (6) # using available methods in `astropy.wcs.WCS`, we add and # subtract `x_i` from the right side of equation (6): # # (7) x_{i+1} = x'-(x_i+f(x_i))+x_i = x'-pix2foc(x_i)+x_i, # # where `x'=wcs_world2pix(w)` and it is computed only *once* # before the beginning of the iterative process (and we also # set `x_0=x'`). By using `pix2foc` at each iteration instead # of `all_pix2world` we get about 25% increase in performance # (by not performing the linear `W` transformation at each # step) and we also avoid the "RA wrapping" issue described # above (by working in focal plane coordinates and avoiding # pix->world transformations). # # As an added benefit, the process converges to the correct # solution in just one iteration when distortions are not # present (compare to # https://github.com/astropy/astropy/issues/1977 and # https://github.com/astropy/astropy/pull/2294): in this case # `pix2foc` is the identical transformation # `x_i=pix2foc(x_i)` and from equation (7) we get: # # x' = x_0 = wcs_world2pix(w) # x_1 = x' - pix2foc(x_0) + x_0 = x' - pix2foc(x') + x' = x' # = wcs_world2pix(w) = x_0 # => # |x_1-x_0| = 0 < tolerance (with tolerance > 0) # # However, for performance reasons, it is still better to # avoid iterations altogether and return the exact linear # solution (`wcs_world2pix`) right-away when non-linear # distortions are not present by checking that attributes # `sip`, `cpdis1`, `cpdis2`, `det2im1`, and `det2im2` are # *all* `None`. # # # ### Outline of the Algorithm ### # # # While the proposed code is relatively long (considering # the simplicity of the algorithm), this is due to: 1) # checking if iterative solution is necessary at all; 2) # checking for divergence; 3) re-implementation of the # completely vectorized algorithm as an "adaptive" vectorized # algorithm (for cases when some points diverge for which we # want to stop iterations). In my tests, the adaptive version # of the algorithm is about 50% slower than non-adaptive # version for all HST images. # # The essential part of the vectorized non-adaptive algorithm # (without divergence and other checks) can be described # as follows: # # pix0 = self.wcs_world2pix(world, origin) # pix = pix0.copy() # 0-order solution # # for k in range(maxiter): # # find correction to the previous solution: # dpix = self.pix2foc(pix, origin) - pix0 # # # compute norm (L2) of the correction: # dn = np.linalg.norm(dpix, axis=1) # # # apply correction: # pix -= dpix # # # check convergence: # if np.max(dn) < tolerance: # break # # return pix # # Here, the input parameter `world` can be a `MxN` array # where `M` is the number of coordinate axes in WCS and `N` # is the number of points to be converted simultaneously to # image coordinates. # # # ### IMPORTANT NOTE: ### # # If, in the future releases of the `~astropy.wcs`, # `pix2foc` will not apply all the required distortion # corrections then in the code below, calls to `pix2foc` will # have to be replaced with # wcs_world2pix(all_pix2world(pix_list, origin), origin) # # ############################################################ # # INITIALIZE ITERATIVE PROCESS: ## # ############################################################ # initial approximation (linear WCS based only) pix0 = self.wcs_world2pix(world, origin) # Check that an iterative solution is required at all # (when any of the non-CD-matrix-based corrections are # present). If not required return the initial # approximation (pix0). if not self.has_distortion: # No non-WCS corrections detected so # simply return initial approximation: return pix0 pix = pix0.copy() # 0-order solution # initial correction: dpix = self.pix2foc(pix, origin) - pix0 # Update initial solution: pix -= dpix # Norm (L2) squared of the correction: dn = np.sum(dpix*dpix, axis=1) dnprev = dn.copy() # if adaptive else dn tol2 = tolerance**2 # Prepare for iterative process k = 1 ind = None inddiv = None # Turn off numpy runtime warnings for 'invalid' and 'over': old_invalid = np.geterr()['invalid'] old_over = np.geterr()['over'] np.seterr(invalid='ignore', over='ignore') # ############################################################ # # NON-ADAPTIVE ITERATIONS: ## # ############################################################ if not adaptive: # Fixed-point iterations: while (np.nanmax(dn) >= tol2 and k < maxiter): # Find correction to the previous solution: dpix = self.pix2foc(pix, origin) - pix0 # Compute norm (L2) squared of the correction: dn = np.sum(dpix*dpix, axis=1) # Check for divergence (we do this in two stages # to optimize performance for the most common # scenario when successive approximations converge): if detect_divergence: divergent = (dn >= dnprev) if np.any(divergent): # Find solutions that have not yet converged: slowconv = (dn >= tol2) inddiv, = np.where(divergent & slowconv) if inddiv.shape[0] > 0: # Update indices of elements that # still need correction: conv = (dn < dnprev) iconv = np.where(conv) # Apply correction: dpixgood = dpix[iconv] pix[iconv] -= dpixgood dpix[iconv] = dpixgood # For the next iteration choose # non-divergent points that have not yet # converged to the requested accuracy: ind, = np.where(slowconv & conv) pix0 = pix0[ind] dnprev[ind] = dn[ind] k += 1 # Switch to adaptive iterations: adaptive = True break # Save current correction magnitudes for later: dnprev = dn # Apply correction: pix -= dpix k += 1 # ############################################################ # # ADAPTIVE ITERATIONS: ## # ############################################################ if adaptive: if ind is None: ind, = np.where(np.isfinite(pix).all(axis=1)) pix0 = pix0[ind] # "Adaptive" fixed-point iterations: while (ind.shape[0] > 0 and k < maxiter): # Find correction to the previous solution: dpixnew = self.pix2foc(pix[ind], origin) - pix0 # Compute norm (L2) of the correction: dnnew = np.sum(np.square(dpixnew), axis=1) # Bookeeping of corrections: dnprev[ind] = dn[ind].copy() dn[ind] = dnnew if detect_divergence: # Find indices of pixels that are converging: conv = (dnnew < dnprev[ind]) iconv = np.where(conv) iiconv = ind[iconv] # Apply correction: dpixgood = dpixnew[iconv] pix[iiconv] -= dpixgood dpix[iiconv] = dpixgood # Find indices of solutions that have not yet # converged to the requested accuracy # AND that do not diverge: subind, = np.where((dnnew >= tol2) & conv) else: # Apply correction: pix[ind] -= dpixnew dpix[ind] = dpixnew # Find indices of solutions that have not yet # converged to the requested accuracy: subind, = np.where(dnnew >= tol2) # Choose solutions that need more iterations: ind = ind[subind] pix0 = pix0[subind] k += 1 # ############################################################ # # FINAL DETECTION OF INVALID, DIVERGING, ## # # AND FAILED-TO-CONVERGE POINTS ## # ############################################################ # Identify diverging and/or invalid points: invalid = ((~np.all(np.isfinite(pix), axis=1)) & (np.all(np.isfinite(world), axis=1))) # When detect_divergence==False, dnprev is outdated # (it is the norm of the very first correction). # Still better than nothing... inddiv, = np.where(((dn >= tol2) & (dn >= dnprev)) | invalid) if inddiv.shape[0] == 0: inddiv = None # Identify points that did not converge within 'maxiter' # iterations: if k >= maxiter: ind, = np.where((dn >= tol2) & (dn < dnprev) & (~invalid)) if ind.shape[0] == 0: ind = None else: ind = None # Restore previous numpy error settings: np.seterr(invalid=old_invalid, over=old_over) # ############################################################ # # RAISE EXCEPTION IF DIVERGING OR TOO SLOWLY CONVERGING ## # # DATA POINTS HAVE BEEN DETECTED: ## # ############################################################ if (ind is not None or inddiv is not None) and not quiet: if inddiv is None: raise NoConvergence( "'WCS.all_world2pix' failed to " "converge to the requested accuracy after {:d} " "iterations.".format(k), best_solution=pix, accuracy=np.abs(dpix), niter=k, slow_conv=ind, divergent=None) else: raise NoConvergence( "'WCS.all_world2pix' failed to " "converge to the requested accuracy.\n" "After {0:d} iterations, the solution is diverging " "at least for one input point." .format(k), best_solution=pix, accuracy=np.abs(dpix), niter=k, slow_conv=ind, divergent=inddiv) return pix def all_world2pix(self, *args, tolerance=1e-4, maxiter=20, adaptive=False, detect_divergence=True, quiet=False, **kwargs): if self.wcs is None: raise ValueError("No basic WCS settings were created.") return self._array_converter( lambda *args, **kwargs: self._all_world2pix( *args, tolerance=tolerance, maxiter=maxiter, adaptive=adaptive, detect_divergence=detect_divergence, quiet=quiet), 'input', *args, **kwargs ) all_world2pix.__doc__ = """ all_world2pix(*arg, accuracy=1.0e-4, maxiter=20, adaptive=False, detect_divergence=True, quiet=False) Transforms world coordinates to pixel coordinates, using numerical iteration to invert the full forward transformation `~astropy.wcs.WCS.all_pix2world` with complete distortion model. Parameters ---------- {0} For a transformation that is not two-dimensional, the two-argument form must be used. {1} tolerance : float, optional (Default = 1.0e-4) Tolerance of solution. Iteration terminates when the iterative solver estimates that the "true solution" is within this many pixels current estimate, more specifically, when the correction to the solution found during the previous iteration is smaller (in the sense of the L2 norm) than ``tolerance``. maxiter : int, optional (Default = 20) Maximum number of iterations allowed to reach a solution. quiet : bool, optional (Default = False) Do not throw :py:class:`NoConvergence` exceptions when the method does not converge to a solution with the required accuracy within a specified number of maximum iterations set by ``maxiter`` parameter. Instead, simply return the found solution. Other Parameters ---------------- adaptive : bool, optional (Default = False) Specifies whether to adaptively select only points that did not converge to a solution within the required accuracy for the next iteration. Default is recommended for HST as well as most other instruments. .. note:: The :py:meth:`all_world2pix` uses a vectorized implementation of the method of consecutive approximations (see ``Notes`` section below) in which it iterates over *all* input points *regardless* until the required accuracy has been reached for *all* input points. In some cases it may be possible that *almost all* points have reached the required accuracy but there are only a few of input data points for which additional iterations may be needed (this depends mostly on the characteristics of the geometric distortions for a given instrument). In this situation it may be advantageous to set ``adaptive`` = `True` in which case :py:meth:`all_world2pix` will continue iterating *only* over the points that have not yet converged to the required accuracy. However, for the HST's ACS/WFC detector, which has the strongest distortions of all HST instruments, testing has shown that enabling this option would lead to a about 50-100% penalty in computational time (depending on specifics of the image, geometric distortions, and number of input points to be converted). Therefore, for HST and possibly instruments, it is recommended to set ``adaptive`` = `False`. The only danger in getting this setting wrong will be a performance penalty. .. note:: When ``detect_divergence`` is `True`, :py:meth:`all_world2pix` will automatically switch to the adaptive algorithm once divergence has been detected. detect_divergence : bool, optional (Default = True) Specifies whether to perform a more detailed analysis of the convergence to a solution. Normally :py:meth:`all_world2pix` may not achieve the required accuracy if either the ``tolerance`` or ``maxiter`` arguments are too low. However, it may happen that for some geometric distortions the conditions of convergence for the the method of consecutive approximations used by :py:meth:`all_world2pix` may not be satisfied, in which case consecutive approximations to the solution will diverge regardless of the ``tolerance`` or ``maxiter`` settings. When ``detect_divergence`` is `False`, these divergent points will be detected as not having achieved the required accuracy (without further details). In addition, if ``adaptive`` is `False` then the algorithm will not know that the solution (for specific points) is diverging and will continue iterating and trying to "improve" diverging solutions. This may result in ``NaN`` or ``Inf`` values in the return results (in addition to a performance penalties). Even when ``detect_divergence`` is `False`, :py:meth:`all_world2pix`, at the end of the iterative process, will identify invalid results (``NaN`` or ``Inf``) as "diverging" solutions and will raise :py:class:`NoConvergence` unless the ``quiet`` parameter is set to `True`. When ``detect_divergence`` is `True`, :py:meth:`all_world2pix` will detect points for which current correction to the coordinates is larger than the correction applied during the previous iteration **if** the requested accuracy **has not yet been achieved**. In this case, if ``adaptive`` is `True`, these points will be excluded from further iterations and if ``adaptive`` is `False`, :py:meth:`all_world2pix` will automatically switch to the adaptive algorithm. Thus, the reported divergent solution will be the latest converging solution computed immediately *before* divergence has been detected. .. note:: When accuracy has been achieved, small increases in current corrections may be possible due to rounding errors (when ``adaptive`` is `False`) and such increases will be ignored. .. note:: Based on our testing using HST ACS/WFC images, setting ``detect_divergence`` to `True` will incur about 5-20% performance penalty with the larger penalty corresponding to ``adaptive`` set to `True`. Because the benefits of enabling this feature outweigh the small performance penalty, especially when ``adaptive`` = `False`, it is recommended to set ``detect_divergence`` to `True`, unless extensive testing of the distortion models for images from specific instruments show a good stability of the numerical method for a wide range of coordinates (even outside the image itself). .. note:: Indices of the diverging inverse solutions will be reported in the ``divergent`` attribute of the raised :py:class:`NoConvergence` exception object. Returns ------- {2} Notes ----- The order of the axes for the input world array is determined by the ``CTYPEia`` keywords in the FITS header, therefore it may not always be of the form (*ra*, *dec*). The `~astropy.wcs.Wcsprm.lat`, `~astropy.wcs.Wcsprm.lng`, `~astropy.wcs.Wcsprm.lattyp`, and `~astropy.wcs.Wcsprm.lngtyp` members can be used to determine the order of the axes. Using the method of fixed-point iterations approximations we iterate starting with the initial approximation, which is computed using the non-distortion-aware :py:meth:`wcs_world2pix` (or equivalent). The :py:meth:`all_world2pix` function uses a vectorized implementation of the method of consecutive approximations and therefore it is highly efficient (>30x) when *all* data points that need to be converted from sky coordinates to image coordinates are passed at *once*. Therefore, it is advisable, whenever possible, to pass as input a long array of all points that need to be converted to :py:meth:`all_world2pix` instead of calling :py:meth:`all_world2pix` for each data point. Also see the note to the ``adaptive`` parameter. Raises ------ NoConvergence The method did not converge to a solution to the required accuracy within a specified number of maximum iterations set by the ``maxiter`` parameter. To turn off this exception, set ``quiet`` to `True`. Indices of the points for which the requested accuracy was not achieved (if any) will be listed in the ``slow_conv`` attribute of the raised :py:class:`NoConvergence` exception object. See :py:class:`NoConvergence` documentation for more details. MemoryError Memory allocation failed. SingularMatrixError Linear transformation matrix is singular. InconsistentAxisTypesError Inconsistent or unrecognized coordinate axis types. ValueError Invalid parameter value. ValueError Invalid coordinate transformation parameters. ValueError x- and y-coordinate arrays are not the same size. InvalidTransformError Invalid coordinate transformation parameters. InvalidTransformError Ill-conditioned coordinate transformation parameters. Examples -------- >>> import astropy.io.fits as fits >>> import astropy.wcs as wcs >>> import numpy as np >>> import os >>> filename = os.path.join(wcs.__path__[0], 'tests/data/j94f05bgq_flt.fits') >>> hdulist = fits.open(filename) >>> w = wcs.WCS(hdulist[('sci',1)].header, hdulist) >>> hdulist.close() >>> ra, dec = w.all_pix2world([1,2,3], [1,1,1], 1) >>> print(ra) # doctest: +FLOAT_CMP [ 5.52645627 5.52649663 5.52653698] >>> print(dec) # doctest: +FLOAT_CMP [-72.05171757 -72.05171276 -72.05170795] >>> radec = w.all_pix2world([[1,1], [2,1], [3,1]], 1) >>> print(radec) # doctest: +FLOAT_CMP [[ 5.52645627 -72.05171757] [ 5.52649663 -72.05171276] [ 5.52653698 -72.05170795]] >>> x, y = w.all_world2pix(ra, dec, 1) >>> print(x) # doctest: +FLOAT_CMP [ 1.00000238 2.00000237 3.00000236] >>> print(y) # doctest: +FLOAT_CMP [ 0.99999996 0.99999997 0.99999997] >>> xy = w.all_world2pix(radec, 1) >>> print(xy) # doctest: +FLOAT_CMP [[ 1.00000238 0.99999996] [ 2.00000237 0.99999997] [ 3.00000236 0.99999997]] >>> xy = w.all_world2pix(radec, 1, maxiter=3, ... tolerance=1.0e-10, quiet=False) Traceback (most recent call last): ... NoConvergence: 'WCS.all_world2pix' failed to converge to the requested accuracy. After 3 iterations, the solution is diverging at least for one input point. >>> # Now try to use some diverging data: >>> divradec = w.all_pix2world([[1.0, 1.0], ... [10000.0, 50000.0], ... [3.0, 1.0]], 1) >>> print(divradec) # doctest: +FLOAT_CMP [[ 5.52645627 -72.05171757] [ 7.15976932 -70.8140779 ] [ 5.52653698 -72.05170795]] >>> # First, turn detect_divergence on: >>> try: # doctest: +FLOAT_CMP ... xy = w.all_world2pix(divradec, 1, maxiter=20, ... tolerance=1.0e-4, adaptive=False, ... detect_divergence=True, ... quiet=False) ... except wcs.wcs.NoConvergence as e: ... print("Indices of diverging points: {{0}}" ... .format(e.divergent)) ... print("Indices of poorly converging points: {{0}}" ... .format(e.slow_conv)) ... print("Best solution:\\n{{0}}".format(e.best_solution)) ... print("Achieved accuracy:\\n{{0}}".format(e.accuracy)) Indices of diverging points: [1] Indices of poorly converging points: None Best solution: [[ 1.00000238e+00 9.99999965e-01] [ -1.99441636e+06 1.44309097e+06] [ 3.00000236e+00 9.99999966e-01]] Achieved accuracy: [[ 6.13968380e-05 8.59638593e-07] [ 8.59526812e+11 6.61713548e+11] [ 6.09398446e-05 8.38759724e-07]] >>> raise e Traceback (most recent call last): ... NoConvergence: 'WCS.all_world2pix' failed to converge to the requested accuracy. After 5 iterations, the solution is diverging at least for one input point. >>> # This time turn detect_divergence off: >>> try: # doctest: +FLOAT_CMP ... xy = w.all_world2pix(divradec, 1, maxiter=20, ... tolerance=1.0e-4, adaptive=False, ... detect_divergence=False, ... quiet=False) ... except wcs.wcs.NoConvergence as e: ... print("Indices of diverging points: {{0}}" ... .format(e.divergent)) ... print("Indices of poorly converging points: {{0}}" ... .format(e.slow_conv)) ... print("Best solution:\\n{{0}}".format(e.best_solution)) ... print("Achieved accuracy:\\n{{0}}".format(e.accuracy)) Indices of diverging points: [1] Indices of poorly converging points: None Best solution: [[ 1.00000009 1. ] [ nan nan] [ 3.00000009 1. ]] Achieved accuracy: [[ 2.29417358e-06 3.21222995e-08] [ nan nan] [ 2.27407877e-06 3.13005639e-08]] >>> raise e Traceback (most recent call last): ... NoConvergence: 'WCS.all_world2pix' failed to converge to the requested accuracy. After 6 iterations, the solution is diverging at least for one input point. """.format(docstrings.TWO_OR_MORE_ARGS('naxis', 8), docstrings.RA_DEC_ORDER(8), docstrings.RETURNS('pixel coordinates', 8)) def wcs_world2pix(self, *args, **kwargs): if self.wcs is None: raise ValueError("No basic WCS settings were created.") return self._array_converter( lambda xy, o: self.wcs.s2p(xy, o)['pixcrd'], 'input', *args, **kwargs) wcs_world2pix.__doc__ = """ Transforms world coordinates to pixel coordinates, using only the basic `wcslib`_ WCS transformation. No `SIP`_ or `distortion paper`_ table lookup transformation is applied. Parameters ---------- {0} For a transformation that is not two-dimensional, the two-argument form must be used. {1} Returns ------- {2} Notes ----- The order of the axes for the input world array is determined by the ``CTYPEia`` keywords in the FITS header, therefore it may not always be of the form (*ra*, *dec*). The `~astropy.wcs.Wcsprm.lat`, `~astropy.wcs.Wcsprm.lng`, `~astropy.wcs.Wcsprm.lattyp` and `~astropy.wcs.Wcsprm.lngtyp` members can be used to determine the order of the axes. Raises ------ MemoryError Memory allocation failed. SingularMatrixError Linear transformation matrix is singular. InconsistentAxisTypesError Inconsistent or unrecognized coordinate axis types. ValueError Invalid parameter value. ValueError Invalid coordinate transformation parameters. ValueError x- and y-coordinate arrays are not the same size. InvalidTransformError Invalid coordinate transformation parameters. InvalidTransformError Ill-conditioned coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('naxis', 8), docstrings.RA_DEC_ORDER(8), docstrings.RETURNS('pixel coordinates', 8)) def pix2foc(self, *args): return self._array_converter(self._pix2foc, None, *args) pix2foc.__doc__ = """ Convert pixel coordinates to focal plane coordinates using the `SIP`_ polynomial distortion convention and `distortion paper`_ table-lookup correction. The output is in absolute pixel coordinates, not relative to ``CRPIX``. Parameters ---------- {0} Returns ------- {1} Raises ------ MemoryError Memory allocation failed. ValueError Invalid coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('2', 8), docstrings.RETURNS('focal coordinates', 8)) def p4_pix2foc(self, *args): return self._array_converter(self._p4_pix2foc, None, *args) p4_pix2foc.__doc__ = """ Convert pixel coordinates to focal plane coordinates using `distortion paper`_ table-lookup correction. The output is in absolute pixel coordinates, not relative to ``CRPIX``. Parameters ---------- {0} Returns ------- {1} Raises ------ MemoryError Memory allocation failed. ValueError Invalid coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('2', 8), docstrings.RETURNS('focal coordinates', 8)) def det2im(self, *args): return self._array_converter(self._det2im, None, *args) det2im.__doc__ = """ Convert detector coordinates to image plane coordinates using `distortion paper`_ table-lookup correction. The output is in absolute pixel coordinates, not relative to ``CRPIX``. Parameters ---------- {0} Returns ------- {1} Raises ------ MemoryError Memory allocation failed. ValueError Invalid coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('2', 8), docstrings.RETURNS('pixel coordinates', 8)) def sip_pix2foc(self, *args): if self.sip is None: if len(args) == 2: return args[0] elif len(args) == 3: return args[:2] else: raise TypeError("Wrong number of arguments") return self._array_converter(self.sip.pix2foc, None, *args) sip_pix2foc.__doc__ = """ Convert pixel coordinates to focal plane coordinates using the `SIP`_ polynomial distortion convention. The output is in pixel coordinates, relative to ``CRPIX``. FITS WCS `distortion paper`_ table lookup correction is not applied, even if that information existed in the FITS file that initialized this :class:`~astropy.wcs.WCS` object. To correct for that, use `~astropy.wcs.WCS.pix2foc` or `~astropy.wcs.WCS.p4_pix2foc`. Parameters ---------- {0} Returns ------- {1} Raises ------ MemoryError Memory allocation failed. ValueError Invalid coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('2', 8), docstrings.RETURNS('focal coordinates', 8)) def sip_foc2pix(self, *args): if self.sip is None: if len(args) == 2: return args[0] elif len(args) == 3: return args[:2] else: raise TypeError("Wrong number of arguments") return self._array_converter(self.sip.foc2pix, None, *args) sip_foc2pix.__doc__ = """ Convert focal plane coordinates to pixel coordinates using the `SIP`_ polynomial distortion convention. FITS WCS `distortion paper`_ table lookup distortion correction is not applied, even if that information existed in the FITS file that initialized this `~astropy.wcs.WCS` object. Parameters ---------- {0} Returns ------- {1} Raises ------ MemoryError Memory allocation failed. ValueError Invalid coordinate transformation parameters. """.format(docstrings.TWO_OR_MORE_ARGS('2', 8), docstrings.RETURNS('pixel coordinates', 8)) def to_fits(self, relax=False, key=None): """ Generate an `astropy.io.fits.HDUList` object with all of the information stored in this object. This should be logically identical to the input FITS file, but it will be normalized in a number of ways. See `to_header` for some warnings about the output produced. Parameters ---------- relax : bool or int, optional Degree of permissiveness: - `False` (default): Write all extensions that are considered to be safe and recommended. - `True`: Write all recognized informal extensions of the WCS standard. - `int`: a bit field selecting specific extensions to write. See :ref:`relaxwrite` for details. key : str The name of a particular WCS transform to use. This may be either ``' '`` or ``'A'``-``'Z'`` and corresponds to the ``"a"`` part of the ``CTYPEia`` cards. Returns ------- hdulist : `astropy.io.fits.HDUList` """ header = self.to_header(relax=relax, key=key) hdu = fits.PrimaryHDU(header=header) hdulist = fits.HDUList(hdu) self._write_det2im(hdulist) self._write_distortion_kw(hdulist) return hdulist def to_header(self, relax=None, key=None): """Generate an `astropy.io.fits.Header` object with the basic WCS and SIP information stored in this object. This should be logically identical to the input FITS file, but it will be normalized in a number of ways. .. warning:: This function does not write out FITS WCS `distortion paper`_ information, since that requires multiple FITS header data units. To get a full representation of everything in this object, use `to_fits`. Parameters ---------- relax : bool or int, optional Degree of permissiveness: - `False` (default): Write all extensions that are considered to be safe and recommended. - `True`: Write all recognized informal extensions of the WCS standard. - `int`: a bit field selecting specific extensions to write. See :ref:`relaxwrite` for details. If the ``relax`` keyword argument is not given and any keywords were omitted from the output, an `~astropy.utils.exceptions.AstropyWarning` is displayed. To override this, explicitly pass a value to ``relax``. key : str The name of a particular WCS transform to use. This may be either ``' '`` or ``'A'``-``'Z'`` and corresponds to the ``"a"`` part of the ``CTYPEia`` cards. Returns ------- header : `astropy.io.fits.Header` Notes ----- The output header will almost certainly differ from the input in a number of respects: 1. The output header only contains WCS-related keywords. In particular, it does not contain syntactically-required keywords such as ``SIMPLE``, ``NAXIS``, ``BITPIX``, or ``END``. 2. Deprecated (e.g. ``CROTAn``) or non-standard usage will be translated to standard (this is partially dependent on whether ``fix`` was applied). 3. Quantities will be converted to the units used internally, basically SI with the addition of degrees. 4. Floating-point quantities may be given to a different decimal precision. 5. Elements of the ``PCi_j`` matrix will be written if and only if they differ from the unit matrix. Thus, if the matrix is unity then no elements will be written. 6. Additional keywords such as ``WCSAXES``, ``CUNITia``, ``LONPOLEa`` and ``LATPOLEa`` may appear. 7. The original keycomments will be lost, although `to_header` tries hard to write meaningful comments. 8. Keyword order may be changed. """ # default precision for numerical WCS keywords precision = WCSHDO_P14 display_warning = False if relax is None: display_warning = True relax = False if relax not in (True, False): do_sip = relax & WCSHDO_SIP relax &= ~WCSHDO_SIP else: do_sip = relax relax = WCSHDO_all if relax is True else WCSHDO_safe relax = precision | relax if self.wcs is not None: if key is not None: orig_key = self.wcs.alt self.wcs.alt = key header_string = self.wcs.to_header(relax) header = fits.Header.fromstring(header_string) keys_to_remove = ["", " ", "COMMENT"] for kw in keys_to_remove: if kw in header: del header[kw] else: header = fits.Header() if do_sip and self.sip is not None: if self.wcs is not None and any(not ctyp.endswith('-SIP') for ctyp in self.wcs.ctype): self._fix_ctype(header, add_sip=True) for kw, val in self._write_sip_kw().items(): header[kw] = val if not do_sip and self.wcs is not None and any(self.wcs.ctype) and self.sip is not None: # This is called when relax is not False or WCSHDO_SIP # The default case of ``relax=None`` is handled further in the code. header = self._fix_ctype(header, add_sip=False) if display_warning: full_header = self.to_header(relax=True, key=key) missing_keys = [] for kw, val in full_header.items(): if kw not in header: missing_keys.append(kw) if len(missing_keys): warnings.warn( "Some non-standard WCS keywords were excluded: {0} " "Use the ``relax`` kwarg to control this.".format( ', '.join(missing_keys)), AstropyWarning) # called when ``relax=None`` # This is different from the case of ``relax=False``. if any(self.wcs.ctype) and self.sip is not None: header = self._fix_ctype(header, add_sip=False, log_message=False) # Finally reset the key. This must be called after ``_fix_ctype``. if key is not None: self.wcs.alt = orig_key return header def _fix_ctype(self, header, add_sip=True, log_message=True): """ Parameters ---------- header : `~astropy.io.fits.Header` FITS header. add_sip : bool Flag indicating whether "-SIP" should be added or removed from CTYPE keywords. Remove "-SIP" from CTYPE when writing out a header with relax=False. This needs to be done outside ``to_header`` because ``to_header`` runs twice when ``relax=False`` and the second time ``relax`` is set to ``True`` to display the missing keywords. If the user requested SIP distortion to be written out add "-SIP" to CTYPE if it is missing. """ _add_sip_to_ctype = """ Inconsistent SIP distortion information is present in the current WCS: SIP coefficients were detected, but CTYPE is missing "-SIP" suffix, therefore the current WCS is internally inconsistent. Because relax has been set to True, the resulting output WCS will have "-SIP" appended to CTYPE in order to make the header internally consistent. However, this may produce incorrect astrometry in the output WCS, if in fact the current WCS is already distortion-corrected. Therefore, if current WCS is already distortion-corrected (eg, drizzled) then SIP distortion components should not apply. In that case, for a WCS that is already distortion-corrected, please remove the SIP coefficients from the header. """ if log_message: if add_sip: log.info(_add_sip_to_ctype) for i in range(1, self.naxis+1): # strip() must be called here to cover the case of alt key= " " kw = 'CTYPE{0}{1}'.format(i, self.wcs.alt).strip() if kw in header: if add_sip: val = header[kw].strip("-SIP") + "-SIP" else: val = header[kw].strip("-SIP") header[kw] = val else: continue return header def to_header_string(self, relax=None): """ Identical to `to_header`, but returns a string containing the header cards. """ return str(self.to_header(relax)) def footprint_to_file(self, filename='footprint.reg', color='green', width=2, coordsys=None): """ Writes out a `ds9`_ style regions file. It can be loaded directly by `ds9`_. Parameters ---------- filename : str, optional Output file name - default is ``'footprint.reg'`` color : str, optional Color to use when plotting the line. width : int, optional Width of the region line. coordsys : str, optional Coordinate system. If not specified (default), the ``radesys`` value is used. For all possible values, see http://ds9.si.edu/doc/ref/region.html#RegionFileFormat """ comments = ('# Region file format: DS9 version 4.0 \n' '# global color=green font="helvetica 12 bold ' 'select=1 highlite=1 edit=1 move=1 delete=1 ' 'include=1 fixed=0 source\n') coordsys = coordsys or self.wcs.radesys if coordsys not in ('PHYSICAL', 'IMAGE', 'FK4', 'B1950', 'FK5', 'J2000', 'GALACTIC', 'ECLIPTIC', 'ICRS', 'LINEAR', 'AMPLIFIER', 'DETECTOR'): raise ValueError("Coordinate system '{}' is not supported. A valid" " one can be given with the 'coordsys' argument." .format(coordsys)) with open(filename, mode='w') as f: f.write(comments) f.write('{}\n'.format(coordsys)) f.write('polygon(') ftpr = self.calc_footprint() if ftpr is not None: ftpr.tofile(f, sep=',') f.write(') # color={0}, width={1:d} \n'.format(color, width)) @property def _naxis1(self): warnings.warn(NAXIS_DEPRECATE_MESSAGE, AstropyDeprecationWarning) return self._naxis[0] @_naxis1.setter def _naxis1(self, value): warnings.warn(NAXIS_DEPRECATE_MESSAGE, AstropyDeprecationWarning) self._naxis[0] = value @property def _naxis2(self): warnings.warn(NAXIS_DEPRECATE_MESSAGE, AstropyDeprecationWarning) return self._naxis[1] @_naxis2.setter def _naxis2(self, value): warnings.warn(NAXIS_DEPRECATE_MESSAGE, AstropyDeprecationWarning) self._naxis[1] = value def _get_naxis(self, header=None): _naxis = [] if (header is not None and not isinstance(header, (str, bytes))): for naxis in itertools.count(1): try: _naxis.append(header['NAXIS{}'.format(naxis)]) except KeyError: break if len(_naxis) == 0: _naxis = [0, 0] elif len(_naxis) == 1: _naxis.append(0) self._naxis = _naxis def printwcs(self): print(repr(self)) def __repr__(self): ''' Return a short description. Simply porting the behavior from the `printwcs()` method. ''' description = ["WCS Keywords\n", "Number of WCS axes: {0!r}".format(self.naxis)] sfmt = ' : ' + "".join(["{"+"{0}".format(i)+"!r} " for i in range(self.naxis)]) keywords = ['CTYPE', 'CRVAL', 'CRPIX'] values = [self.wcs.ctype, self.wcs.crval, self.wcs.crpix] for keyword, value in zip(keywords, values): description.append(keyword+sfmt.format(*value)) if hasattr(self.wcs, 'pc'): for i in range(self.naxis): s = '' for j in range(self.naxis): s += ''.join(['PC', str(i+1), '_', str(j+1), ' ']) s += sfmt description.append(s.format(*self.wcs.pc[i])) s = 'CDELT' + sfmt description.append(s.format(*self.wcs.cdelt)) elif hasattr(self.wcs, 'cd'): for i in range(self.naxis): s = '' for j in range(self.naxis): s += "".join(['CD', str(i+1), '_', str(j+1), ' ']) s += sfmt description.append(s.format(*self.wcs.cd[i])) description.append('NAXIS : {}'.format(' '.join(map(str, self._naxis)))) return '\n'.join(description) def get_axis_types(self): """ Similar to `self.wcsprm.axis_types <astropy.wcs.Wcsprm.axis_types>` but provides the information in a more Python-friendly format. Returns ------- result : list of dicts Returns a list of dictionaries, one for each axis, each containing attributes about the type of that axis. Each dictionary has the following keys: - 'coordinate_type': - None: Non-specific coordinate type. - 'stokes': Stokes coordinate. - 'celestial': Celestial coordinate (including ``CUBEFACE``). - 'spectral': Spectral coordinate. - 'scale': - 'linear': Linear axis. - 'quantized': Quantized axis (``STOKES``, ``CUBEFACE``). - 'non-linear celestial': Non-linear celestial axis. - 'non-linear spectral': Non-linear spectral axis. - 'logarithmic': Logarithmic axis. - 'tabular': Tabular axis. - 'group' - Group number, e.g. lookup table number - 'number' - For celestial axes: - 0: Longitude coordinate. - 1: Latitude coordinate. - 2: ``CUBEFACE`` number. - For lookup tables: - the axis number in a multidimensional table. ``CTYPEia`` in ``"4-3"`` form with unrecognized algorithm code will generate an error. """ if self.wcs is None: raise AttributeError( "This WCS object does not have a wcsprm object.") coordinate_type_map = { 0: None, 1: 'stokes', 2: 'celestial', 3: 'spectral'} scale_map = { 0: 'linear', 1: 'quantized', 2: 'non-linear celestial', 3: 'non-linear spectral', 4: 'logarithmic', 5: 'tabular'} result = [] for axis_type in self.wcs.axis_types: subresult = {} coordinate_type = (axis_type // 1000) % 10 subresult['coordinate_type'] = coordinate_type_map[coordinate_type] scale = (axis_type // 100) % 10 subresult['scale'] = scale_map[scale] group = (axis_type // 10) % 10 subresult['group'] = group number = axis_type % 10 subresult['number'] = number result.append(subresult) return result def __reduce__(self): """ Support pickling of WCS objects. This is done by serializing to an in-memory FITS file and dumping that as a string. """ hdulist = self.to_fits(relax=True) buffer = io.BytesIO() hdulist.writeto(buffer) return (__WCS_unpickle__, (self.__class__, self.__dict__, buffer.getvalue(),)) def dropaxis(self, dropax): """ Remove an axis from the WCS. Parameters ---------- wcs : `~astropy.wcs.WCS` The WCS with naxis to be chopped to naxis-1 dropax : int The index of the WCS to drop, counting from 0 (i.e., python convention, not FITS convention) Returns ------- A new `~astropy.wcs.WCS` instance with one axis fewer """ inds = list(range(self.wcs.naxis)) inds.pop(dropax) # axis 0 has special meaning to sub # if wcs.wcs.ctype == ['RA','DEC','VLSR'], you want # wcs.sub([1,2]) to get 'RA','DEC' back return self.sub([i+1 for i in inds]) def swapaxes(self, ax0, ax1): """ Swap axes in a WCS. Parameters ---------- wcs : `~astropy.wcs.WCS` The WCS to have its axes swapped ax0 : int ax1 : int The indices of the WCS to be swapped, counting from 0 (i.e., python convention, not FITS convention) Returns ------- A new `~astropy.wcs.WCS` instance with the same number of axes, but two swapped """ inds = list(range(self.wcs.naxis)) inds[ax0], inds[ax1] = inds[ax1], inds[ax0] return self.sub([i+1 for i in inds]) def reorient_celestial_first(self): """ Reorient the WCS such that the celestial axes are first, followed by the spectral axis, followed by any others. Assumes at least celestial axes are present. """ return self.sub([WCSSUB_CELESTIAL, WCSSUB_SPECTRAL, WCSSUB_STOKES]) def slice(self, view, numpy_order=True): """ Slice a WCS instance using a Numpy slice. The order of the slice should be reversed (as for the data) compared to the natural WCS order. Parameters ---------- view : tuple A tuple containing the same number of slices as the WCS system. The ``step`` method, the third argument to a slice, is not presently supported. numpy_order : bool Use numpy order, i.e. slice the WCS so that an identical slice applied to a numpy array will slice the array and WCS in the same way. If set to `False`, the WCS will be sliced in FITS order, meaning the first slice will be applied to the *last* numpy index but the *first* WCS axis. Returns ------- wcs_new : `~astropy.wcs.WCS` A new resampled WCS axis """ if hasattr(view, '__len__') and len(view) > self.wcs.naxis: raise ValueError("Must have # of slices <= # of WCS axes") elif not hasattr(view, '__len__'): # view MUST be an iterable view = [view] if not all(isinstance(x, slice) for x in view): # We need to drop some dimensions, but this may not always be # possible with .sub due to correlated axes, so instead we use the # generalized slicing infrastructure from astropy.wcs.wcsapi. return SlicedFITSWCS(self, view) # NOTE: we could in principle use SlicedFITSWCS as above for all slicing, # but in the simple case where there are no axes dropped, we can just # create a full WCS object with updated WCS parameters which is faster # for this specific case and also backward-compatible. wcs_new = self.deepcopy() if wcs_new.sip is not None: sip_crpix = wcs_new.sip.crpix.tolist() for i, iview in enumerate(view): if iview.step is not None and iview.step < 0: raise NotImplementedError("Reversing an axis is not " "implemented.") if numpy_order: wcs_index = self.wcs.naxis - 1 - i else: wcs_index = i if iview.step is not None and iview.start is None: # Slice from "None" is equivalent to slice from 0 (but one # might want to downsample, so allow slices with # None,None,step or None,stop,step) iview = slice(0, iview.stop, iview.step) if iview.start is not None: if iview.step not in (None, 1): crpix = self.wcs.crpix[wcs_index] cdelt = self.wcs.cdelt[wcs_index] # equivalently (keep this comment so you can compare eqns): # wcs_new.wcs.crpix[wcs_index] = # (crpix - iview.start)*iview.step + 0.5 - iview.step/2. crp = ((crpix - iview.start - 1.)/iview.step + 0.5 + 1./iview.step/2.) wcs_new.wcs.crpix[wcs_index] = crp if wcs_new.sip is not None: sip_crpix[wcs_index] = crp wcs_new.wcs.cdelt[wcs_index] = cdelt * iview.step else: wcs_new.wcs.crpix[wcs_index] -= iview.start if wcs_new.sip is not None: sip_crpix[wcs_index] -= iview.start try: # range requires integers but the other attributes can also # handle arbitrary values, so this needs to be in a try/except. nitems = len(builtins.range(self._naxis[wcs_index])[iview]) except TypeError as exc: if 'indices must be integers' not in str(exc): raise warnings.warn("NAXIS{0} attribute is not updated because at " "least one index ('{1}') is no integer." "".format(wcs_index, iview), AstropyUserWarning) else: wcs_new._naxis[wcs_index] = nitems if wcs_new.sip is not None: wcs_new.sip = Sip(self.sip.a, self.sip.b, self.sip.ap, self.sip.bp, sip_crpix) return wcs_new def __getitem__(self, item): # "getitem" is a shortcut for self.slice; it is very limited # there is no obvious and unambiguous interpretation of wcs[1,2,3] # We COULD allow wcs[1] to link to wcs.sub([2]) # (wcs[i] -> wcs.sub([i+1]) return self.slice(item) def __iter__(self): # Having __getitem__ makes Python think WCS is iterable. However, # Python first checks whether __iter__ is present, so we can raise an # exception here. raise TypeError("'{0}' object is not iterable".format(self.__class__.__name__)) @property def axis_type_names(self): """ World names for each coordinate axis Returns ------- A list of names along each axis """ names = list(self.wcs.cname) types = self.wcs.ctype for i in range(len(names)): if len(names[i]) > 0: continue names[i] = types[i].split('-')[0] return names @property def celestial(self): """ A copy of the current WCS with only the celestial axes included """ return self.sub([WCSSUB_CELESTIAL]) @property def is_celestial(self): return self.has_celestial and self.naxis == 2 @property def has_celestial(self): try: return self.wcs.lng >= 0 and self.wcs.lat >= 0 except InconsistentAxisTypesError: return False @property def has_distortion(self): """ Returns `True` if any distortion terms are present. """ return (self.sip is not None or self.cpdis1 is not None or self.cpdis2 is not None or self.det2im1 is not None and self.det2im2 is not None) @property def pixel_scale_matrix(self): try: cdelt = np.diag(self.wcs.get_cdelt()) pc = self.wcs.get_pc() except InconsistentAxisTypesError: try: # for non-celestial axes, get_cdelt doesn't work cdelt = np.dot(self.wcs.cd, np.diag(self.wcs.cdelt)) except AttributeError: cdelt = np.diag(self.wcs.cdelt) try: pc = self.wcs.pc except AttributeError: pc = 1 pccd = np.array(np.dot(cdelt, pc)) return pccd def _as_mpl_axes(self): """ Compatibility hook for Matplotlib and WCSAxes. With this method, one can do: from astropy.wcs import WCS import matplotlib.pyplot as plt wcs = WCS('filename.fits') fig = plt.figure() ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=wcs) ... and this will generate a plot with the correct WCS coordinates on the axes. """ from astropy.visualization.wcsaxes import WCSAxes return WCSAxes, {'wcs': self} def footprint_contains(self, coord, **kwargs): """ Determines if a given SkyCoord is contained in the wcs footprint. Parameters ---------- coord : `~astropy.coordinates.SkyCoord` The coordinate to check if it is within the wcs coordinate. **kwargs : Additional arguments to pass to `~astropy.coordinates.SkyCoord.to_pixel` Returns ------- response : bool True means the WCS footprint contains the coordinate, False means it does not. """ return coord.contained_by(self, **kwargs) def __WCS_unpickle__(cls, dct, fits_data): """ Unpickles a WCS object from a serialized FITS string. """ self = cls.__new__(cls) self.__dict__.update(dct) buffer = io.BytesIO(fits_data) hdulist = fits.open(buffer) WCS.__init__(self, hdulist[0].header, hdulist) return self def find_all_wcs(header, relax=True, keysel=None, fix=True, translate_units='', _do_set=True): """ Find all the WCS transformations in the given header. Parameters ---------- header : str or astropy.io.fits header object. relax : bool or int, optional Degree of permissiveness: - `True` (default): Admit all recognized informal extensions of the WCS standard. - `False`: Recognize only FITS keywords defined by the published WCS standard. - `int`: a bit field selecting specific extensions to accept. See :ref:`relaxread` for details. keysel : sequence of flags, optional A list of flags used to select the keyword types considered by wcslib. When ``None``, only the standard image header keywords are considered (and the underlying wcspih() C function is called). To use binary table image array or pixel list keywords, *keysel* must be set. Each element in the list should be one of the following strings: - 'image': Image header keywords - 'binary': Binary table image array keywords - 'pixel': Pixel list keywords Keywords such as ``EQUIna`` or ``RFRQna`` that are common to binary table image arrays and pixel lists (including ``WCSNna`` and ``TWCSna``) are selected by both 'binary' and 'pixel'. fix : bool, optional When `True` (default), call `~astropy.wcs.Wcsprm.fix` on the resulting objects to fix any non-standard uses in the header. `FITSFixedWarning` warnings will be emitted if any changes were made. translate_units : str, optional Specify which potentially unsafe translations of non-standard unit strings to perform. By default, performs none. See `WCS.fix` for more information about this parameter. Only effective when ``fix`` is `True`. Returns ------- wcses : list of `WCS` objects """ if isinstance(header, (str, bytes)): header_string = header elif isinstance(header, fits.Header): header_string = header.tostring() else: raise TypeError( "header must be a string or astropy.io.fits.Header object") keysel_flags = _parse_keysel(keysel) if isinstance(header_string, str): header_bytes = header_string.encode('ascii') else: header_bytes = header_string wcsprms = _wcs.find_all_wcs(header_bytes, relax, keysel_flags) result = [] for wcsprm in wcsprms: subresult = WCS(fix=False, _do_set=False) subresult.wcs = wcsprm result.append(subresult) if fix: subresult.fix(translate_units) if _do_set: subresult.wcs.set() return result def validate(source): """ Prints a WCS validation report for the given FITS file. Parameters ---------- source : str path, readable file-like object or `astropy.io.fits.HDUList` object The FITS file to validate. Returns ------- results : WcsValidateResults instance The result is returned as nested lists. The first level corresponds to the HDUs in the given file. The next level has an entry for each WCS found in that header. The special subclass of list will pretty-print the results as a table when printed. """ class _WcsValidateWcsResult(list): def __init__(self, key): self._key = key def __repr__(self): result = [" WCS key '{0}':".format(self._key or ' ')] if len(self): for entry in self: for i, line in enumerate(entry.splitlines()): if i == 0: initial_indent = ' - ' else: initial_indent = ' ' result.extend( textwrap.wrap( line, initial_indent=initial_indent, subsequent_indent=' ')) else: result.append(" No issues.") return '\n'.join(result) class _WcsValidateHduResult(list): def __init__(self, hdu_index, hdu_name): self._hdu_index = hdu_index self._hdu_name = hdu_name list.__init__(self) def __repr__(self): if len(self): if self._hdu_name: hdu_name = ' ({0})'.format(self._hdu_name) else: hdu_name = '' result = ['HDU {0}{1}:'.format(self._hdu_index, hdu_name)] for wcs in self: result.append(repr(wcs)) return '\n'.join(result) return '' class _WcsValidateResults(list): def __repr__(self): result = [] for hdu in self: content = repr(hdu) if len(content): result.append(content) return '\n\n'.join(result) global __warningregistry__ if isinstance(source, fits.HDUList): hdulist = source else: hdulist = fits.open(source) results = _WcsValidateResults() for i, hdu in enumerate(hdulist): hdu_results = _WcsValidateHduResult(i, hdu.name) results.append(hdu_results) with warnings.catch_warnings(record=True) as warning_lines: wcses = find_all_wcs( hdu.header, relax=_wcs.WCSHDR_reject, fix=False, _do_set=False) for wcs in wcses: wcs_results = _WcsValidateWcsResult(wcs.wcs.alt) hdu_results.append(wcs_results) try: del __warningregistry__ except NameError: pass with warnings.catch_warnings(record=True) as warning_lines: warnings.resetwarnings() warnings.simplefilter( "always", FITSFixedWarning, append=True) try: WCS(hdu.header, key=wcs.wcs.alt or ' ', relax=_wcs.WCSHDR_reject, fix=True, _do_set=False) except WcsError as e: wcs_results.append(str(e)) wcs_results.extend([str(x.message) for x in warning_lines]) return results
cc65ce455a56a669623c806e2759a2be07e26934d73728f3fbcf60652ce05d34
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ The astropy.time package provides functionality for manipulating times and dates. Specific emphasis is placed on supporting time scales (e.g. UTC, TAI, UT1) and time representations (e.g. JD, MJD, ISO 8601) that are used in astronomy. """ import copy import operator from datetime import datetime, date, timedelta from time import strftime, strptime import numpy as np from astropy import units as u, constants as const from astropy import _erfa as erfa from astropy.units import UnitConversionError from astropy.utils import ShapedLikeNDArray from astropy.utils.compat.misc import override__dir__ from astropy.utils.data_info import MixinInfo, data_info_factory from .utils import day_frac from .formats import (TIME_FORMATS, TIME_DELTA_FORMATS, TimeJD, TimeUnique, TimeAstropyTime, TimeDatetime) # Import TimeFromEpoch to avoid breaking code that followed the old example of # making a custom timescale in the documentation. from .formats import TimeFromEpoch # pylint: disable=W0611 from astropy.extern import _strptime __all__ = ['Time', 'TimeDelta', 'TIME_SCALES', 'STANDARD_TIME_SCALES', 'TIME_DELTA_SCALES', 'ScaleValueError', 'OperandTypeError', 'TimeInfo'] STANDARD_TIME_SCALES = ('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc') LOCAL_SCALES = ('local',) TIME_TYPES = dict((scale, scales) for scales in (STANDARD_TIME_SCALES, LOCAL_SCALES) for scale in scales) TIME_SCALES = STANDARD_TIME_SCALES + LOCAL_SCALES MULTI_HOPS = {('tai', 'tcb'): ('tt', 'tdb'), ('tai', 'tcg'): ('tt',), ('tai', 'ut1'): ('utc',), ('tai', 'tdb'): ('tt',), ('tcb', 'tcg'): ('tdb', 'tt'), ('tcb', 'tt'): ('tdb',), ('tcb', 'ut1'): ('tdb', 'tt', 'tai', 'utc'), ('tcb', 'utc'): ('tdb', 'tt', 'tai'), ('tcg', 'tdb'): ('tt',), ('tcg', 'ut1'): ('tt', 'tai', 'utc'), ('tcg', 'utc'): ('tt', 'tai'), ('tdb', 'ut1'): ('tt', 'tai', 'utc'), ('tdb', 'utc'): ('tt', 'tai'), ('tt', 'ut1'): ('tai', 'utc'), ('tt', 'utc'): ('tai',), } GEOCENTRIC_SCALES = ('tai', 'tt', 'tcg') BARYCENTRIC_SCALES = ('tcb', 'tdb') ROTATIONAL_SCALES = ('ut1',) TIME_DELTA_TYPES = dict((scale, scales) for scales in (GEOCENTRIC_SCALES, BARYCENTRIC_SCALES, ROTATIONAL_SCALES, LOCAL_SCALES) for scale in scales) TIME_DELTA_SCALES = GEOCENTRIC_SCALES + BARYCENTRIC_SCALES + ROTATIONAL_SCALES + LOCAL_SCALES # For time scale changes, we need L_G and L_B, which are stored in erfam.h as # /* L_G = 1 - d(TT)/d(TCG) */ # define ERFA_ELG (6.969290134e-10) # /* L_B = 1 - d(TDB)/d(TCB), and TDB (s) at TAI 1977/1/1.0 */ # define ERFA_ELB (1.550519768e-8) # These are exposed in erfa as erfa.ELG and erfa.ELB. # Implied: d(TT)/d(TCG) = 1-L_G # and d(TCG)/d(TT) = 1/(1-L_G) = 1 + (1-(1-L_G))/(1-L_G) = 1 + L_G/(1-L_G) # scale offsets as second = first + first * scale_offset[(first,second)] SCALE_OFFSETS = {('tt', 'tai'): None, ('tai', 'tt'): None, ('tcg', 'tt'): -erfa.ELG, ('tt', 'tcg'): erfa.ELG / (1. - erfa.ELG), ('tcg', 'tai'): -erfa.ELG, ('tai', 'tcg'): erfa.ELG / (1. - erfa.ELG), ('tcb', 'tdb'): -erfa.ELB, ('tdb', 'tcb'): erfa.ELB / (1. - erfa.ELB)} # triple-level dictionary, yay! SIDEREAL_TIME_MODELS = { 'mean': { 'IAU2006': {'function': erfa.gmst06, 'scales': ('ut1', 'tt')}, 'IAU2000': {'function': erfa.gmst00, 'scales': ('ut1', 'tt')}, 'IAU1982': {'function': erfa.gmst82, 'scales': ('ut1',)}}, 'apparent': { 'IAU2006A': {'function': erfa.gst06a, 'scales': ('ut1', 'tt')}, 'IAU2000A': {'function': erfa.gst00a, 'scales': ('ut1', 'tt')}, 'IAU2000B': {'function': erfa.gst00b, 'scales': ('ut1',)}, 'IAU1994': {'function': erfa.gst94, 'scales': ('ut1',)}}} class TimeInfo(MixinInfo): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. """ attrs_from_parent = set(['unit']) # unit is read-only and None attr_names = MixinInfo.attr_names | {'serialize_method'} _supports_indexing = True # The usual tuple of attributes needed for serialization is replaced # by a property, since Time can be serialized different ways. _represent_as_dict_extra_attrs = ('format', 'scale', 'precision', 'in_subfmt', 'out_subfmt', 'location', '_delta_ut1_utc', '_delta_tdb_tt') # When serializing, write out the `value` attribute using the column name. _represent_as_dict_primary_data = 'value' mask_val = np.ma.masked @property def _represent_as_dict_attrs(self): method = self.serialize_method[self._serialize_context] if method == 'formatted_value': out = ('value',) elif method == 'jd1_jd2': out = ('jd1', 'jd2') else: raise ValueError("serialize method must be 'formatted_value' or 'jd1_jd2'") return out + self._represent_as_dict_extra_attrs def __init__(self, bound=False): super().__init__(bound) # If bound to a data object instance then create the dict of attributes # which stores the info attribute values. if bound: # Specify how to serialize this object depending on context. # If ``True`` for a context, then use formatted ``value`` attribute # (e.g. the ISO time string). If ``False`` then use float jd1 and jd2. self.serialize_method = {'fits': 'jd1_jd2', 'ecsv': 'formatted_value', 'hdf5': 'jd1_jd2', 'yaml': 'jd1_jd2', None: 'jd1_jd2'} @property def unit(self): return None info_summary_stats = staticmethod( data_info_factory(names=MixinInfo._stats, funcs=[getattr(np, stat) for stat in MixinInfo._stats])) # When Time has mean, std, min, max methods: # funcs = [lambda x: getattr(x, stat)() for stat_name in MixinInfo._stats]) def _construct_from_dict_base(self, map): if 'jd1' in map and 'jd2' in map: format = map.pop('format') map['format'] = 'jd' map['val'] = map.pop('jd1') map['val2'] = map.pop('jd2') else: format = map['format'] map['val'] = map.pop('value') out = self._parent_cls(**map) out.format = format return out def _construct_from_dict(self, map): delta_ut1_utc = map.pop('_delta_ut1_utc', None) delta_tdb_tt = map.pop('_delta_tdb_tt', None) out = self._construct_from_dict_base(map) if delta_ut1_utc is not None: out._delta_ut1_utc = delta_ut1_utc if delta_tdb_tt is not None: out._delta_tdb_tt = delta_tdb_tt return out def new_like(self, cols, length, metadata_conflicts='warn', name=None): """ Return a new Time instance which is consistent with the input Time objects ``cols`` and has ``length`` rows. This is intended for creating an empty Time instance whose elements can be set in-place for table operations like join or vstack. It checks that the input locations and attributes are consistent. This is used when a Time object is used as a mixin column in an astropy Table. Parameters ---------- cols : list List of input columns (Time objects) length : int Length of the output column object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output column name Returns ------- col : Time (or subclass) Empty instance of this class consistent with ``cols`` """ # Get merged info attributes like shape, dtype, format, description, etc. attrs = self.merge_cols_attributes(cols, metadata_conflicts, name, ('meta', 'description')) attrs.pop('dtype') # Not relevant for Time col0 = cols[0] # Check that location is consistent for all Time objects for col in cols[1:]: # This is the method used by __setitem__ to ensure that the right side # has a consistent location (and coerce data if necessary, but that does # not happen in this case since `col` is already a Time object). If this # passes then any subsequent table operations via setitem will work. try: col0._make_value_equivalent(slice(None), col) except ValueError: raise ValueError('input columns have inconsistent locations') # Make a new Time object with the desired shape and attributes shape = (length,) + attrs.pop('shape') jd2000 = 2451544.5 # Arbitrary JD value J2000.0 that will work with ERFA jd1 = np.full(shape, jd2000, dtype='f8') jd2 = np.zeros(shape, dtype='f8') tm_attrs = {attr: getattr(col0, attr) for attr in ('scale', 'location', 'precision', 'in_subfmt', 'out_subfmt')} out = self._parent_cls(jd1, jd2, format='jd', **tm_attrs) out.format = col0.format # Set remaining info attributes for attr, value in attrs.items(): setattr(out.info, attr, value) return out class TimeDeltaInfo(TimeInfo): _represent_as_dict_extra_attrs = ('format', 'scale') def _construct_from_dict(self, map): return self._construct_from_dict_base(map) def new_like(self, cols, length, metadata_conflicts='warn', name=None): """ Return a new TimeDelta instance which is consistent with the input Time objects ``cols`` and has ``length`` rows. This is intended for creating an empty Time instance whose elements can be set in-place for table operations like join or vstack. It checks that the input locations and attributes are consistent. This is used when a Time object is used as a mixin column in an astropy Table. Parameters ---------- cols : list List of input columns (Time objects) length : int Length of the output column object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output column name Returns ------- col : Time (or subclass) Empty instance of this class consistent with ``cols`` """ # Get merged info attributes like shape, dtype, format, description, etc. attrs = self.merge_cols_attributes(cols, metadata_conflicts, name, ('meta', 'description')) attrs.pop('dtype') # Not relevant for Time col0 = cols[0] # Make a new Time object with the desired shape and attributes shape = (length,) + attrs.pop('shape') jd1 = np.zeros(shape, dtype='f8') jd2 = np.zeros(shape, dtype='f8') out = self._parent_cls(jd1, jd2, format='jd', scale=col0.scale) out.format = col0.format # Set remaining info attributes for attr, value in attrs.items(): setattr(out.info, attr, value) return out class Time(ShapedLikeNDArray): """ Represent and manipulate times and dates for astronomy. A `Time` object is initialized with one or more times in the ``val`` argument. The input times in ``val`` must conform to the specified ``format`` and must correspond to the specified time ``scale``. The optional ``val2`` time input should be supplied only for numeric input formats (e.g. JD) where very high precision (better than 64-bit precision) is required. The allowed values for ``format`` can be listed with:: >>> list(Time.FORMATS) ['jd', 'mjd', 'decimalyear', 'unix', 'cxcsec', 'gps', 'plot_date', 'datetime', 'iso', 'isot', 'yday', 'datetime64', 'fits', 'byear', 'jyear', 'byear_str', 'jyear_str'] See also: http://docs.astropy.org/en/stable/time/ Parameters ---------- val : sequence, ndarray, number, str, bytes, or `~astropy.time.Time` object Value(s) to initialize the time or times. Bytes are decoded as ascii. val2 : sequence, ndarray, or number; optional Value(s) to initialize the time or times. Only used for numerical input, to help preserve precision. format : str, optional Format of input value(s) scale : str, optional Time scale of input value(s), must be one of the following: ('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc') precision : int, optional Digits of precision in string representation of time in_subfmt : str, optional Subformat for inputting string times out_subfmt : str, optional Subformat for outputting string times location : `~astropy.coordinates.EarthLocation` or tuple, optional If given as an tuple, it should be able to initialize an an EarthLocation instance, i.e., either contain 3 items with units of length for geocentric coordinates, or contain a longitude, latitude, and an optional height for geodetic coordinates. Can be a single location, or one for each input time. copy : bool, optional Make a copy of the input values """ SCALES = TIME_SCALES """List of time scales""" FORMATS = TIME_FORMATS """Dict of time formats""" # Make sure that reverse arithmetic (e.g., TimeDelta.__rmul__) # gets called over the __mul__ of Numpy arrays. __array_priority__ = 20000 # Declare that Time can be used as a Table column by defining the # attribute where column attributes will be stored. _astropy_column_attrs = None def __new__(cls, val, val2=None, format=None, scale=None, precision=None, in_subfmt=None, out_subfmt=None, location=None, copy=False): if isinstance(val, cls): self = val.replicate(format=format, copy=copy) else: self = super().__new__(cls) return self def __getnewargs__(self): return (self._time,) def __init__(self, val, val2=None, format=None, scale=None, precision=None, in_subfmt=None, out_subfmt=None, location=None, copy=False): if location is not None: from astropy.coordinates import EarthLocation if isinstance(location, EarthLocation): self.location = location else: self.location = EarthLocation(*location) if self.location.size == 1: self.location = self.location.squeeze() else: self.location = None if isinstance(val, self.__class__): # Update _time formatting parameters if explicitly specified if precision is not None: self._time.precision = precision if in_subfmt is not None: self._time.in_subfmt = in_subfmt if out_subfmt is not None: self._time.out_subfmt = out_subfmt self.SCALES = TIME_TYPES[self.scale] if scale is not None: self._set_scale(scale) else: self._init_from_vals(val, val2, format, scale, copy, precision, in_subfmt, out_subfmt) self.SCALES = TIME_TYPES[self.scale] if self.location is not None and (self.location.size > 1 and self.location.shape != self.shape): try: # check the location can be broadcast to self's shape. self.location = np.broadcast_to(self.location, self.shape, subok=True) except Exception: raise ValueError('The location with shape {0} cannot be ' 'broadcast against time with shape {1}. ' 'Typically, either give a single location or ' 'one for each time.' .format(self.location.shape, self.shape)) def _init_from_vals(self, val, val2, format, scale, copy, precision=None, in_subfmt=None, out_subfmt=None): """ Set the internal _format, scale, and _time attrs from user inputs. This handles coercion into the correct shapes and some basic input validation. """ if precision is None: precision = 3 if in_subfmt is None: in_subfmt = '*' if out_subfmt is None: out_subfmt = '*' # Coerce val into an array val = _make_array(val, copy) # If val2 is not None, ensure consistency if val2 is not None: val2 = _make_array(val2, copy) try: np.broadcast(val, val2) except ValueError: raise ValueError('Input val and val2 have inconsistent shape; ' 'they cannot be broadcast together.') if scale is not None: if not (isinstance(scale, str) and scale.lower() in self.SCALES): raise ScaleValueError("Scale {0!r} is not in the allowed scales " "{1}".format(scale, sorted(self.SCALES))) # If either of the input val, val2 are masked arrays then # find the masked elements and fill them. mask, val, val2 = _check_for_masked_and_fill(val, val2) # Parse / convert input values into internal jd1, jd2 based on format self._time = self._get_time_fmt(val, val2, format, scale, precision, in_subfmt, out_subfmt) self._format = self._time.name # If any inputs were masked then masked jd2 accordingly. From above # routine ``mask`` must be either Python bool False or an bool ndarray # with shape broadcastable to jd2. if mask is not False: mask = np.broadcast_to(mask, self._time.jd2.shape) self._time.jd2[mask] = np.nan def _get_time_fmt(self, val, val2, format, scale, precision, in_subfmt, out_subfmt): """ Given the supplied val, val2, format and scale try to instantiate the corresponding TimeFormat class to convert the input values into the internal jd1 and jd2. If format is `None` and the input is a string-type or object array then guess available formats and stop when one matches. """ if format is None and val.dtype.kind in ('S', 'U', 'O', 'M'): formats = [(name, cls) for name, cls in self.FORMATS.items() if issubclass(cls, TimeUnique)] err_msg = ('any of the formats where the format keyword is ' 'optional {0}'.format([name for name, cls in formats])) # AstropyTime is a pseudo-format that isn't in the TIME_FORMATS registry, # but try to guess it at the end. formats.append(('astropy_time', TimeAstropyTime)) elif not (isinstance(format, str) and format.lower() in self.FORMATS): if format is None: raise ValueError("No time format was given, and the input is " "not unique") else: raise ValueError("Format {0!r} is not one of the allowed " "formats {1}".format(format, sorted(self.FORMATS))) else: formats = [(format, self.FORMATS[format])] err_msg = 'the format class {0}'.format(format) for format, FormatClass in formats: try: return FormatClass(val, val2, scale, precision, in_subfmt, out_subfmt) except UnitConversionError: raise except (ValueError, TypeError): pass else: raise ValueError('Input values did not match {0}'.format(err_msg)) @classmethod def now(cls): """ Creates a new object corresponding to the instant in time this method is called. .. note:: "Now" is determined using the `~datetime.datetime.utcnow` function, so its accuracy and precision is determined by that function. Generally that means it is set by the accuracy of your system clock. Returns ------- nowtime A new `Time` object (or a subclass of `Time` if this is called from such a subclass) at the current time. """ # call `utcnow` immediately to be sure it's ASAP dtnow = datetime.utcnow() return cls(val=dtnow, format='datetime', scale='utc') info = TimeInfo() @classmethod def strptime(cls, time_string, format_string, **kwargs): """ Parse a string to a Time according to a format specification. See `time.strptime` documentation for format specification. >>> Time.strptime('2012-Jun-30 23:59:60', '%Y-%b-%d %H:%M:%S') <Time object: scale='utc' format='isot' value=2012-06-30T23:59:60.000> Parameters ---------- time_string : string, sequence, ndarray Objects containing time data of type string format_string : string String specifying format of time_string. kwargs : dict Any keyword arguments for ``Time``. If the ``format`` keyword argument is present, this will be used as the Time format. Returns ------- time_obj : `~astropy.time.Time` A new `~astropy.time.Time` object corresponding to the input ``time_string``. """ time_array = np.asarray(time_string) if time_array.dtype.kind not in ('U', 'S'): err = "Expected type is string, a bytes-like object or a sequence"\ " of these. Got dtype '{}'".format(time_array.dtype.kind) raise TypeError(err) to_string = (str if time_array.dtype.kind == 'U' else lambda x: str(x.item(), encoding='ascii')) iterator = np.nditer([time_array, None], op_dtypes=[time_array.dtype, 'U30']) for time, formatted in iterator: tt, fraction = _strptime._strptime(to_string(time), format_string) time_tuple = tt[:6] + (fraction,) formatted[...] = '{:04}-{:02}-{:02}T{:02}:{:02}:{:02}.{:06}'\ .format(*time_tuple) format = kwargs.pop('format', None) out = cls(*iterator.operands[1:], format='isot', **kwargs) if format is not None: out.format = format return out @property def writeable(self): return self._time.jd1.flags.writeable & self._time.jd2.flags.writeable @writeable.setter def writeable(self, value): self._time.jd1.flags.writeable = value self._time.jd2.flags.writeable = value @property def format(self): """ Get or set time format. The format defines the way times are represented when accessed via the ``.value`` attribute. By default it is the same as the format used for initializing the `Time` instance, but it can be set to any other value that could be used for initialization. These can be listed with:: >>> list(Time.FORMATS) ['jd', 'mjd', 'decimalyear', 'unix', 'cxcsec', 'gps', 'plot_date', 'datetime', 'iso', 'isot', 'yday', 'datetime64', 'fits', 'byear', 'jyear', 'byear_str', 'jyear_str'] """ return self._format @format.setter def format(self, format): """Set time format""" if format not in self.FORMATS: raise ValueError('format must be one of {0}' .format(list(self.FORMATS))) format_cls = self.FORMATS[format] # If current output subformat is not in the new format then replace # with default '*' if hasattr(format_cls, 'subfmts'): subfmt_names = [subfmt[0] for subfmt in format_cls.subfmts] if self.out_subfmt not in subfmt_names: self.out_subfmt = '*' self._time = format_cls(self._time.jd1, self._time.jd2, self._time._scale, self.precision, in_subfmt=self.in_subfmt, out_subfmt=self.out_subfmt, from_jd=True) self._format = format def __repr__(self): return ("<{0} object: scale='{1}' format='{2}' value={3}>" .format(self.__class__.__name__, self.scale, self.format, getattr(self, self.format))) def __str__(self): return str(getattr(self, self.format)) def strftime(self, format_spec): """ Convert Time to a string or a numpy.array of strings according to a format specification. See `time.strftime` documentation for format specification. Parameters ---------- format_spec : string Format definition of return string. Returns ------- formatted : string, numpy.array String or numpy.array of strings formatted according to the given format string. """ formatted_strings = [] for sk in self.replicate('iso')._time.str_kwargs(): date_tuple = date(sk['year'], sk['mon'], sk['day']).timetuple() datetime_tuple = (sk['year'], sk['mon'], sk['day'], sk['hour'], sk['min'], sk['sec'], date_tuple[6], date_tuple[7], -1) fmtd_str = format_spec if '%f' in fmtd_str: fmtd_str = fmtd_str.replace('%f', '{frac:0{precision}}'.format(frac=sk['fracsec'], precision=self.precision)) fmtd_str = strftime(fmtd_str, datetime_tuple) formatted_strings.append(fmtd_str) if self.isscalar: return formatted_strings[0] else: return np.array(formatted_strings).reshape(self.shape) @property def scale(self): """Time scale""" return self._time.scale def _set_scale(self, scale): """ This is the key routine that actually does time scale conversions. This is not public and not connected to the read-only scale property. """ if scale == self.scale: return if scale not in self.SCALES: raise ValueError("Scale {0!r} is not in the allowed scales {1}" .format(scale, sorted(self.SCALES))) # Determine the chain of scale transformations to get from the current # scale to the new scale. MULTI_HOPS contains a dict of all # transformations (xforms) that require intermediate xforms. # The MULTI_HOPS dict is keyed by (sys1, sys2) in alphabetical order. xform = (self.scale, scale) xform_sort = tuple(sorted(xform)) multi = MULTI_HOPS.get(xform_sort, ()) xforms = xform_sort[:1] + multi + xform_sort[-1:] # If we made the reverse xform then reverse it now. if xform_sort != xform: xforms = tuple(reversed(xforms)) # Transform the jd1,2 pairs through the chain of scale xforms. jd1, jd2 = self._time.jd1, self._time.jd2_filled for sys1, sys2 in zip(xforms[:-1], xforms[1:]): # Some xforms require an additional delta_ argument that is # provided through Time methods. These values may be supplied by # the user or computed based on available approximations. The # get_delta_ methods are available for only one combination of # sys1, sys2 though the property applies for both xform directions. args = [jd1, jd2] for sys12 in ((sys1, sys2), (sys2, sys1)): dt_method = '_get_delta_{0}_{1}'.format(*sys12) try: get_dt = getattr(self, dt_method) except AttributeError: pass else: args.append(get_dt(jd1, jd2)) break conv_func = getattr(erfa, sys1 + sys2) jd1, jd2 = conv_func(*args) if self.masked: jd2[self.mask] = np.nan self._time = self.FORMATS[self.format](jd1, jd2, scale, self.precision, self.in_subfmt, self.out_subfmt, from_jd=True) @property def precision(self): """ Decimal precision when outputting seconds as floating point (int value between 0 and 9 inclusive). """ return self._time.precision @precision.setter def precision(self, val): del self.cache if not isinstance(val, int) or val < 0 or val > 9: raise ValueError('precision attribute must be an int between ' '0 and 9') self._time.precision = val @property def in_subfmt(self): """ Unix wildcard pattern to select subformats for parsing string input times. """ return self._time.in_subfmt @in_subfmt.setter def in_subfmt(self, val): del self.cache if not isinstance(val, str): raise ValueError('in_subfmt attribute must be a string') self._time.in_subfmt = val @property def out_subfmt(self): """ Unix wildcard pattern to select subformats for outputting times. """ return self._time.out_subfmt @out_subfmt.setter def out_subfmt(self, val): del self.cache if not isinstance(val, str): raise ValueError('out_subfmt attribute must be a string') self._time.out_subfmt = val @property def shape(self): """The shape of the time instances. Like `~numpy.ndarray.shape`, can be set to a new shape by assigning a tuple. Note that if different instances share some but not all underlying data, setting the shape of one instance can make the other instance unusable. Hence, it is strongly recommended to get new, reshaped instances with the ``reshape`` method. Raises ------ AttributeError If the shape of the ``jd1``, ``jd2``, ``location``, ``delta_ut1_utc``, or ``delta_tdb_tt`` attributes cannot be changed without the arrays being copied. For these cases, use the `Time.reshape` method (which copies any arrays that cannot be reshaped in-place). """ return self._time.jd1.shape @shape.setter def shape(self, shape): del self.cache # We have to keep track of arrays that were already reshaped, # since we may have to return those to their original shape if a later # shape-setting fails. reshaped = [] oldshape = self.shape # In-place reshape of data/attributes. Need to access _time.jd1/2 not # self.jd1/2 because the latter are not guaranteed to be the actual # data, and in fact should not be directly changeable from the public # API. for obj, attr in ((self._time, 'jd1'), (self._time, 'jd2'), (self, '_delta_ut1_utc'), (self, '_delta_tdb_tt'), (self, 'location')): val = getattr(obj, attr, None) if val is not None and val.size > 1: try: val.shape = shape except AttributeError: for val2 in reshaped: val2.shape = oldshape raise else: reshaped.append(val) def _shaped_like_input(self, value): out = value if value.dtype.kind == 'M': return value[()] if not self._time.jd1.shape and not np.ma.is_masked(value): out = value.item() return out @property def jd1(self): """ First of the two doubles that internally store time value(s) in JD. """ jd1 = self._time.mask_if_needed(self._time.jd1) return self._shaped_like_input(jd1) @property def jd2(self): """ Second of the two doubles that internally store time value(s) in JD. """ jd2 = self._time.mask_if_needed(self._time.jd2) return self._shaped_like_input(jd2) @property def value(self): """Time value(s) in current format""" # The underlying way to get the time values for the current format is: # self._shaped_like_input(self._time.to_value(parent=self)) # This is done in __getattr__. By calling getattr(self, self.format) # the ``value`` attribute is cached. return getattr(self, self.format) @property def masked(self): return self._time.masked @property def mask(self): return self._time.mask def insert(self, obj, values, axis=0): """ Insert values before the given indices in the column and return a new `~astropy.time.Time` or `~astropy.time.TimeDelta` object. The values to be inserted must conform to the rules for in-place setting of ``Time`` objects (see ``Get and set values`` in the ``Time`` documentation). The API signature matches the ``np.insert`` API, but is more limited. The specification of insert index ``obj`` must be a single integer, and the ``axis`` must be ``0`` for simple row insertion before the index. Parameters ---------- obj : int Integer index before which ``values`` is inserted. values : array_like Value(s) to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. axis : int, optional Axis along which to insert ``values``. Default is 0, which is the only allowed value and will insert a row. Returns ------- out : `~astropy.time.Time` subclass New time object with inserted value(s) """ # Validate inputs: obj arg is integer, axis=0, self is not a scalar, and # input index is in bounds. try: idx0 = operator.index(obj) except TypeError: raise TypeError('obj arg must be an integer') if axis != 0: raise ValueError('axis must be 0') if not self.shape: raise TypeError('cannot insert into scalar {} object' .format(self.__class__.__name__)) if abs(idx0) > len(self): raise IndexError('index {} is out of bounds for axis 0 with size {}' .format(idx0, len(self))) # Turn negative index into positive if idx0 < 0: idx0 = len(self) + idx0 # For non-Time object, use numpy to help figure out the length. (Note annoying # case of a string input that has a length which is not the length we want). if not isinstance(values, Time): values = np.asarray(values) n_values = len(values) if values.shape else 1 # Finally make the new object with the correct length and set values for the # three sections, before insert, the insert, and after the insert. out = self.__class__.info.new_like([self], len(self) + n_values, name=self.info.name) out._time.jd1[:idx0] = self._time.jd1[:idx0] out._time.jd2[:idx0] = self._time.jd2[:idx0] # This uses the Time setting machinery to coerce and validate as necessary. out[idx0:idx0 + n_values] = values out._time.jd1[idx0 + n_values:] = self._time.jd1[idx0:] out._time.jd2[idx0 + n_values:] = self._time.jd2[idx0:] return out def _make_value_equivalent(self, item, value): """Coerce setitem value into an equivalent Time object""" # If there is a vector location then broadcast to the Time shape # and then select with ``item`` if self.location is not None and self.location.shape: self_location = np.broadcast_to(self.location, self.shape, subok=True)[item] else: self_location = self.location if isinstance(value, Time): # Make sure locations are compatible. Location can be either None or # a Location object. if self_location is None and value.location is None: match = True elif ((self_location is None and value.location is not None) or (self_location is not None and value.location is None)): match = False else: match = np.all(self_location == value.location) if not match: raise ValueError('cannot set to Time with different location: ' 'expected location={} and ' 'got location={}' .format(self_location, value.location)) else: try: value = self.__class__(value, scale=self.scale, location=self_location) except Exception: try: value = self.__class__(value, scale=self.scale, format=self.format, location=self_location) except Exception as err: raise ValueError('cannot convert value to a compatible Time object: {}' .format(err)) return value def __setitem__(self, item, value): if not self.writeable: if self.shape: raise ValueError('{} object is read-only. Make a ' 'copy() or set "writeable" attribute to True.' .format(self.__class__.__name__)) else: raise ValueError('scalar {} object is read-only.' .format(self.__class__.__name__)) # Any use of setitem results in immediate cache invalidation del self.cache # Setting invalidates transform deltas for attr in ('_delta_tdb_tt', '_delta_ut1_utc'): if hasattr(self, attr): delattr(self, attr) if value is np.ma.masked or value is np.nan: self._time.jd2[item] = np.nan return value = self._make_value_equivalent(item, value) # Finally directly set the jd1/2 values. Locations are known to match. if self.scale is not None: value = getattr(value, self.scale) self._time.jd1[item] = value._time.jd1 self._time.jd2[item] = value._time.jd2 def light_travel_time(self, skycoord, kind='barycentric', location=None, ephemeris=None): """Light travel time correction to the barycentre or heliocentre. The frame transformations used to calculate the location of the solar system barycentre and the heliocentre rely on the erfa routine epv00, which is consistent with the JPL DE405 ephemeris to an accuracy of 11.2 km, corresponding to a light travel time of 4 microseconds. The routine assumes the source(s) are at large distance, i.e., neglects finite-distance effects. Parameters ---------- skycoord : `~astropy.coordinates.SkyCoord` The sky location to calculate the correction for. kind : str, optional ``'barycentric'`` (default) or ``'heliocentric'`` location : `~astropy.coordinates.EarthLocation`, optional The location of the observatory to calculate the correction for. If no location is given, the ``location`` attribute of the Time object is used ephemeris : str, optional Solar system ephemeris to use (e.g., 'builtin', 'jpl'). By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set``. For more information, see `~astropy.coordinates.solar_system_ephemeris`. Returns ------- time_offset : `~astropy.time.TimeDelta` The time offset between the barycentre or Heliocentre and Earth, in TDB seconds. Should be added to the original time to get the time in the Solar system barycentre or the Heliocentre. Also, the time conversion to BJD will then include the relativistic correction as well. """ if kind.lower() not in ('barycentric', 'heliocentric'): raise ValueError("'kind' parameter must be one of 'heliocentric' " "or 'barycentric'") if location is None: if self.location is None: raise ValueError('An EarthLocation needs to be set or passed ' 'in to calculate bary- or heliocentric ' 'corrections') location = self.location from astropy.coordinates import (UnitSphericalRepresentation, CartesianRepresentation, HCRS, ICRS, GCRS, solar_system_ephemeris) # ensure sky location is ICRS compatible if not skycoord.is_transformable_to(ICRS()): raise ValueError("Given skycoord is not transformable to the ICRS") # get location of observatory in ITRS coordinates at this Time try: itrs = location.get_itrs(obstime=self) except Exception: raise ValueError("Supplied location does not have a valid `get_itrs` method") with solar_system_ephemeris.set(ephemeris): if kind.lower() == 'heliocentric': # convert to heliocentric coordinates, aligned with ICRS cpos = itrs.transform_to(HCRS(obstime=self)).cartesian.xyz else: # first we need to convert to GCRS coordinates with the correct # obstime, since ICRS coordinates have no frame time gcrs_coo = itrs.transform_to(GCRS(obstime=self)) # convert to barycentric (BCRS) coordinates, aligned with ICRS cpos = gcrs_coo.transform_to(ICRS()).cartesian.xyz # get unit ICRS vector to star spos = (skycoord.icrs.represent_as(UnitSphericalRepresentation). represent_as(CartesianRepresentation).xyz) # Move X,Y,Z to last dimension, to enable possible broadcasting below. cpos = np.rollaxis(cpos, 0, cpos.ndim) spos = np.rollaxis(spos, 0, spos.ndim) # calculate light travel time correction tcor_val = (spos * cpos).sum(axis=-1) / const.c return TimeDelta(tcor_val, scale='tdb') def sidereal_time(self, kind, longitude=None, model=None): """Calculate sidereal time. Parameters --------------- kind : str ``'mean'`` or ``'apparent'``, i.e., accounting for precession only, or also for nutation. longitude : `~astropy.units.Quantity`, `str`, or `None`; optional The longitude on the Earth at which to compute the sidereal time. Can be given as a `~astropy.units.Quantity` with angular units (or an `~astropy.coordinates.Angle` or `~astropy.coordinates.Longitude`), or as a name of an observatory (currently, only ``'greenwich'`` is supported, equivalent to 0 deg). If `None` (default), the ``lon`` attribute of the Time object is used. model : str or `None`; optional Precession (and nutation) model to use. The available ones are: - {0}: {1} - {2}: {3} If `None` (default), the last (most recent) one from the appropriate list above is used. Returns ------- sidereal time : `~astropy.coordinates.Longitude` Sidereal time as a quantity with units of hourangle """ # docstring is formatted below from astropy.coordinates import Longitude if kind.lower() not in SIDEREAL_TIME_MODELS.keys(): raise ValueError('The kind of sidereal time has to be {0}'.format( ' or '.join(sorted(SIDEREAL_TIME_MODELS.keys())))) available_models = SIDEREAL_TIME_MODELS[kind.lower()] if model is None: model = sorted(available_models.keys())[-1] else: if model.upper() not in available_models: raise ValueError( 'Model {0} not implemented for {1} sidereal time; ' 'available models are {2}' .format(model, kind, sorted(available_models.keys()))) if longitude is None: if self.location is None: raise ValueError('No longitude is given but the location for ' 'the Time object is not set.') longitude = self.location.lon elif longitude == 'greenwich': longitude = Longitude(0., u.degree, wrap_angle=180.*u.degree) else: # sanity check on input longitude = Longitude(longitude, u.degree, wrap_angle=180.*u.degree) gst = self._erfa_sidereal_time(available_models[model.upper()]) return Longitude(gst + longitude, u.hourangle) if isinstance(sidereal_time.__doc__, str): sidereal_time.__doc__ = sidereal_time.__doc__.format( 'apparent', sorted(SIDEREAL_TIME_MODELS['apparent'].keys()), 'mean', sorted(SIDEREAL_TIME_MODELS['mean'].keys())) def _erfa_sidereal_time(self, model): """Calculate a sidereal time using a IAU precession/nutation model.""" from astropy.coordinates import Longitude erfa_function = model['function'] erfa_parameters = [getattr(getattr(self, scale)._time, jd_part) for scale in model['scales'] for jd_part in ('jd1', 'jd2_filled')] sidereal_time = erfa_function(*erfa_parameters) if self.masked: sidereal_time[self.mask] = np.nan return Longitude(sidereal_time, u.radian).to(u.hourangle) def copy(self, format=None): """ Return a fully independent copy the Time object, optionally changing the format. If ``format`` is supplied then the time format of the returned Time object will be set accordingly, otherwise it will be unchanged from the original. In this method a full copy of the internal time arrays will be made. The internal time arrays are normally not changeable by the user so in most cases the ``replicate()`` method should be used. Parameters ---------- format : str, optional Time format of the copy. Returns ------- tm : Time object Copy of this object """ return self._apply('copy', format=format) def replicate(self, format=None, copy=False): """ Return a replica of the Time object, optionally changing the format. If ``format`` is supplied then the time format of the returned Time object will be set accordingly, otherwise it will be unchanged from the original. If ``copy`` is set to `True` then a full copy of the internal time arrays will be made. By default the replica will use a reference to the original arrays when possible to save memory. The internal time arrays are normally not changeable by the user so in most cases it should not be necessary to set ``copy`` to `True`. The convenience method copy() is available in which ``copy`` is `True` by default. Parameters ---------- format : str, optional Time format of the replica. copy : bool, optional Return a true copy instead of using references where possible. Returns ------- tm : Time object Replica of this object """ return self._apply('copy' if copy else 'replicate', format=format) def _apply(self, method, *args, format=None, **kwargs): """Create a new time object, possibly applying a method to the arrays. Parameters ---------- method : str or callable If string, can be 'replicate' or the name of a relevant `~numpy.ndarray` method. In the former case, a new time instance with unchanged internal data is created, while in the latter the method is applied to the internal ``jd1`` and ``jd2`` arrays, as well as to possible ``location``, ``_delta_ut1_utc``, and ``_delta_tdb_tt`` arrays. If a callable, it is directly applied to the above arrays. Examples: 'copy', '__getitem__', 'reshape', `~numpy.broadcast_to`. args : tuple Any positional arguments for ``method``. kwargs : dict Any keyword arguments for ``method``. If the ``format`` keyword argument is present, this will be used as the Time format of the replica. Examples -------- Some ways this is used internally:: copy : ``_apply('copy')`` replicate : ``_apply('replicate')`` reshape : ``_apply('reshape', new_shape)`` index or slice : ``_apply('__getitem__', item)`` broadcast : ``_apply(np.broadcast, shape=new_shape)`` """ new_format = self.format if format is None else format if callable(method): apply_method = lambda array: method(array, *args, **kwargs) else: if method == 'replicate': apply_method = None else: apply_method = operator.methodcaller(method, *args, **kwargs) jd1, jd2 = self._time.jd1, self._time.jd2 if apply_method: jd1 = apply_method(jd1) jd2 = apply_method(jd2) # Get a new instance of our class and set its attributes directly. tm = super().__new__(self.__class__) tm._time = TimeJD(jd1, jd2, self.scale, self.precision, self.in_subfmt, self.out_subfmt, from_jd=True) # Optional ndarray attributes. for attr in ('_delta_ut1_utc', '_delta_tdb_tt', 'location', 'precision', 'in_subfmt', 'out_subfmt'): try: val = getattr(self, attr) except AttributeError: continue if apply_method: # Apply the method to any value arrays (though skip if there is # only a single element and the method would return a view, # since in that case nothing would change). if getattr(val, 'size', 1) > 1: val = apply_method(val) elif method == 'copy' or method == 'flatten': # flatten should copy also for a single element array, but # we cannot use it directly for array scalars, since it # always returns a one-dimensional array. So, just copy. val = copy.copy(val) setattr(tm, attr, val) # Copy other 'info' attr only if it has actually been defined. # See PR #3898 for further explanation and justification, along # with Quantity.__array_finalize__ if 'info' in self.__dict__: tm.info = self.info # Make the new internal _time object corresponding to the format # in the copy. If the format is unchanged this process is lightweight # and does not create any new arrays. if new_format not in tm.FORMATS: raise ValueError('format must be one of {0}' .format(list(tm.FORMATS))) NewFormat = tm.FORMATS[new_format] tm._time = NewFormat(tm._time.jd1, tm._time.jd2, tm._time._scale, tm.precision, tm.in_subfmt, tm.out_subfmt, from_jd=True) tm._format = new_format tm.SCALES = self.SCALES return tm def __copy__(self): """ Overrides the default behavior of the `copy.copy` function in the python stdlib to behave like `Time.copy`. Does *not* make a copy of the JD arrays - only copies by reference. """ return self.replicate() def __deepcopy__(self, memo): """ Overrides the default behavior of the `copy.deepcopy` function in the python stdlib to behave like `Time.copy`. Does make a copy of the JD arrays. """ return self.copy() def _advanced_index(self, indices, axis=None, keepdims=False): """Turn argmin, argmax output into an advanced index. Argmin, argmax output contains indices along a given axis in an array shaped like the other dimensions. To use this to get values at the correct location, a list is constructed in which the other axes are indexed sequentially. For ``keepdims`` is ``True``, the net result is the same as constructing an index grid with ``np.ogrid`` and then replacing the ``axis`` item with ``indices`` with its shaped expanded at ``axis``. For ``keepdims`` is ``False``, the result is the same but with the ``axis`` dimension removed from all list entries. For ``axis`` is ``None``, this calls :func:`~numpy.unravel_index`. Parameters ---------- indices : array Output of argmin or argmax. axis : int or None axis along which argmin or argmax was used. keepdims : bool Whether to construct indices that keep or remove the axis along which argmin or argmax was used. Default: ``False``. Returns ------- advanced_index : list of arrays Suitable for use as an advanced index. """ if axis is None: return np.unravel_index(indices, self.shape) ndim = self.ndim if axis < 0: axis = axis + ndim if keepdims and indices.ndim < self.ndim: indices = np.expand_dims(indices, axis) return tuple([(indices if i == axis else np.arange(s).reshape( (1,)*(i if keepdims or i < axis else i-1) + (s,) + (1,)*(ndim-i-(1 if keepdims or i > axis else 2)))) for i, s in enumerate(self.shape)]) def argmin(self, axis=None, out=None): """Return indices of the minimum values along the given axis. This is similar to :meth:`~numpy.ndarray.argmin`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used. See :func:`~numpy.argmin` for detailed documentation. """ # first get the minimum at normal precision. jd = self.jd1 + self.jd2 approx = np.min(jd, axis, keepdims=True) # Approx is very close to the true minimum, and by subtracting it at # full precision, all numbers near 0 can be represented correctly, # so we can be sure we get the true minimum. # The below is effectively what would be done for # dt = (self - self.__class__(approx, format='jd')).jd # which translates to: # approx_jd1, approx_jd2 = day_frac(approx, 0.) # dt = (self.jd1 - approx_jd1) + (self.jd2 - approx_jd2) dt = (self.jd1 - approx) + self.jd2 return dt.argmin(axis, out) def argmax(self, axis=None, out=None): """Return indices of the maximum values along the given axis. This is similar to :meth:`~numpy.ndarray.argmax`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used. See :func:`~numpy.argmax` for detailed documentation. """ # For procedure, see comment on argmin. jd = self.jd1 + self.jd2 approx = np.max(jd, axis, keepdims=True) dt = (self.jd1 - approx) + self.jd2 return dt.argmax(axis, out) def argsort(self, axis=-1): """Returns the indices that would sort the time array. This is similar to :meth:`~numpy.ndarray.argsort`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used, and that corresponding attributes are copied. Internally, it uses :func:`~numpy.lexsort`, and hence no sort method can be chosen. """ jd_approx = self.jd jd_remainder = (self - self.__class__(jd_approx, format='jd')).jd if axis is None: return np.lexsort((jd_remainder.ravel(), jd_approx.ravel())) else: return np.lexsort(keys=(jd_remainder, jd_approx), axis=axis) def min(self, axis=None, out=None, keepdims=False): """Minimum along a given axis. This is similar to :meth:`~numpy.ndarray.min`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used, and that corresponding attributes are copied. Note that the ``out`` argument is present only for compatibility with ``np.min``; since `Time` instances are immutable, it is not possible to have an actual ``out`` to store the result in. """ if out is not None: raise ValueError("Since `Time` instances are immutable, ``out`` " "cannot be set to anything but ``None``.") return self[self._advanced_index(self.argmin(axis), axis, keepdims)] def max(self, axis=None, out=None, keepdims=False): """Maximum along a given axis. This is similar to :meth:`~numpy.ndarray.max`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used, and that corresponding attributes are copied. Note that the ``out`` argument is present only for compatibility with ``np.max``; since `Time` instances are immutable, it is not possible to have an actual ``out`` to store the result in. """ if out is not None: raise ValueError("Since `Time` instances are immutable, ``out`` " "cannot be set to anything but ``None``.") return self[self._advanced_index(self.argmax(axis), axis, keepdims)] def ptp(self, axis=None, out=None, keepdims=False): """Peak to peak (maximum - minimum) along a given axis. This is similar to :meth:`~numpy.ndarray.ptp`, but adapted to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is used. Note that the ``out`` argument is present only for compatibility with `~numpy.ptp`; since `Time` instances are immutable, it is not possible to have an actual ``out`` to store the result in. """ if out is not None: raise ValueError("Since `Time` instances are immutable, ``out`` " "cannot be set to anything but ``None``.") return (self.max(axis, keepdims=keepdims) - self.min(axis, keepdims=keepdims)) def sort(self, axis=-1): """Return a copy sorted along the specified axis. This is similar to :meth:`~numpy.ndarray.sort`, but internally uses indexing with :func:`~numpy.lexsort` to ensure that the full precision given by the two doubles ``jd1`` and ``jd2`` is kept, and that corresponding attributes are properly sorted and copied as well. Parameters ---------- axis : int or None Axis to be sorted. If ``None``, the flattened array is sorted. By default, sort over the last axis. """ return self[self._advanced_index(self.argsort(axis), axis, keepdims=True)] @property def cache(self): """ Return the cache associated with this instance. """ return self._time.cache @cache.deleter def cache(self): del self._time.cache def __getattr__(self, attr): """ Get dynamic attributes to output format or do timescale conversion. """ if attr in self.SCALES and self.scale is not None: cache = self.cache['scale'] if attr not in cache: if attr == self.scale: tm = self else: tm = self.replicate() tm._set_scale(attr) if tm.shape: # Prevent future modification of cached array-like object tm.writeable = False cache[attr] = tm return cache[attr] elif attr in self.FORMATS: cache = self.cache['format'] if attr not in cache: if attr == self.format: tm = self else: tm = self.replicate(format=attr) value = tm._shaped_like_input(tm._time.to_value(parent=tm)) cache[attr] = value return cache[attr] elif attr in TIME_SCALES: # allowed ones done above (self.SCALES) if self.scale is None: raise ScaleValueError("Cannot convert TimeDelta with " "undefined scale to any defined scale.") else: raise ScaleValueError("Cannot convert {0} with scale " "'{1}' to scale '{2}'" .format(self.__class__.__name__, self.scale, attr)) else: # Should raise AttributeError return self.__getattribute__(attr) @override__dir__ def __dir__(self): result = set(self.SCALES) result.update(self.FORMATS) return result def _match_shape(self, val): """ Ensure that `val` is matched to length of self. If val has length 1 then broadcast, otherwise cast to double and make sure shape matches. """ val = _make_array(val, copy=True) # be conservative and copy if val.size > 1 and val.shape != self.shape: try: # check the value can be broadcast to the shape of self. val = np.broadcast_to(val, self.shape, subok=True) except Exception: raise ValueError('Attribute shape must match or be ' 'broadcastable to that of Time object. ' 'Typically, give either a single value or ' 'one for each time.') return val def get_delta_ut1_utc(self, iers_table=None, return_status=False): """Find UT1 - UTC differences by interpolating in IERS Table. Parameters ---------- iers_table : ``astropy.utils.iers.IERS`` table, optional Table containing UT1-UTC differences from IERS Bulletins A and/or B. If `None`, use default version (see ``astropy.utils.iers``) return_status : bool Whether to return status values. If `False` (default), iers raises `IndexError` if any time is out of the range covered by the IERS table. Returns ------- ut1_utc : float or float array UT1-UTC, interpolated in IERS Table status : int or int array Status values (if ``return_status=`True```):: ``astropy.utils.iers.FROM_IERS_B`` ``astropy.utils.iers.FROM_IERS_A`` ``astropy.utils.iers.FROM_IERS_A_PREDICTION`` ``astropy.utils.iers.TIME_BEFORE_IERS_RANGE`` ``astropy.utils.iers.TIME_BEYOND_IERS_RANGE`` Notes ----- In normal usage, UT1-UTC differences are calculated automatically on the first instance ut1 is needed. Examples -------- To check in code whether any times are before the IERS table range:: >>> from astropy.utils.iers import TIME_BEFORE_IERS_RANGE >>> t = Time(['1961-01-01', '2000-01-01'], scale='utc') >>> delta, status = t.get_delta_ut1_utc(return_status=True) >>> status == TIME_BEFORE_IERS_RANGE array([ True, False]...) """ if iers_table is None: from astropy.utils.iers import IERS iers_table = IERS.open() return iers_table.ut1_utc(self.utc, return_status=return_status) # Property for ERFA DUT arg = UT1 - UTC def _get_delta_ut1_utc(self, jd1=None, jd2=None): """ Get ERFA DUT arg = UT1 - UTC. This getter takes optional jd1 and jd2 args because it gets called that way when converting time scales. If delta_ut1_utc is not yet set, this will interpolate them from the the IERS table. """ # Sec. 4.3.1: the arg DUT is the quantity delta_UT1 = UT1 - UTC in # seconds. It is obtained from tables published by the IERS. if not hasattr(self, '_delta_ut1_utc'): from astropy.utils.iers import IERS_Auto iers_table = IERS_Auto.open() # jd1, jd2 are normally set (see above), except if delta_ut1_utc # is access directly; ensure we behave as expected for that case if jd1 is None: self_utc = self.utc jd1, jd2 = self_utc._time.jd1, self_utc._time.jd2_filled scale = 'utc' else: scale = self.scale # interpolate UT1-UTC in IERS table delta = iers_table.ut1_utc(jd1, jd2) # if we interpolated using UT1 jds, we may be off by one # second near leap seconds (and very slightly off elsewhere) if scale == 'ut1': # calculate UTC using the offset we got; the ERFA routine # is tolerant of leap seconds, so will do this right jd1_utc, jd2_utc = erfa.ut1utc(jd1, jd2, delta.to_value(u.s)) # calculate a better estimate using the nearly correct UTC delta = iers_table.ut1_utc(jd1_utc, jd2_utc) self._set_delta_ut1_utc(delta) return self._delta_ut1_utc def _set_delta_ut1_utc(self, val): del self.cache if hasattr(val, 'to'): # Matches Quantity but also TimeDelta. val = val.to(u.second).value val = self._match_shape(val) self._delta_ut1_utc = val # Note can't use @property because _get_delta_tdb_tt is explicitly # called with the optional jd1 and jd2 args. delta_ut1_utc = property(_get_delta_ut1_utc, _set_delta_ut1_utc) """UT1 - UTC time scale offset""" # Property for ERFA DTR arg = TDB - TT def _get_delta_tdb_tt(self, jd1=None, jd2=None): if not hasattr(self, '_delta_tdb_tt'): # If jd1 and jd2 are not provided (which is the case for property # attribute access) then require that the time scale is TT or TDB. # Otherwise the computations here are not correct. if jd1 is None or jd2 is None: if self.scale not in ('tt', 'tdb'): raise ValueError('Accessing the delta_tdb_tt attribute ' 'is only possible for TT or TDB time ' 'scales') else: jd1 = self._time.jd1 jd2 = self._time.jd2_filled # First go from the current input time (which is either # TDB or TT) to an approximate UT1. Since TT and TDB are # pretty close (few msec?), assume TT. Similarly, since the # UT1 terms are very small, use UTC instead of UT1. njd1, njd2 = erfa.tttai(jd1, jd2) njd1, njd2 = erfa.taiutc(njd1, njd2) # subtract 0.5, so UT is fraction of the day from midnight ut = day_frac(njd1 - 0.5, njd2)[1] if self.location is None: from astropy.coordinates import EarthLocation location = EarthLocation.from_geodetic(0., 0., 0.) else: location = self.location # Geodetic params needed for d_tdb_tt() lon = location.lon rxy = np.hypot(location.x, location.y) z = location.z self._delta_tdb_tt = erfa.dtdb( jd1, jd2, ut, lon.to_value(u.radian), rxy.to_value(u.km), z.to_value(u.km)) return self._delta_tdb_tt def _set_delta_tdb_tt(self, val): del self.cache if hasattr(val, 'to'): # Matches Quantity but also TimeDelta. val = val.to(u.second).value val = self._match_shape(val) self._delta_tdb_tt = val # Note can't use @property because _get_delta_tdb_tt is explicitly # called with the optional jd1 and jd2 args. delta_tdb_tt = property(_get_delta_tdb_tt, _set_delta_tdb_tt) """TDB - TT time scale offset""" def __sub__(self, other): if not isinstance(other, Time): try: other = TimeDelta(other) except Exception: return NotImplemented # Tdelta - something is dealt with in TimeDelta, so we have # T - Tdelta = T # T - T = Tdelta other_is_delta = isinstance(other, TimeDelta) # we need a constant scale to calculate, which is guaranteed for # TimeDelta, but not for Time (which can be UTC) if other_is_delta: # T - Tdelta out = self.replicate() if self.scale in other.SCALES: if other.scale not in (out.scale, None): other = getattr(other, out.scale) else: if other.scale is None: out._set_scale('tai') else: if self.scale not in TIME_TYPES[other.scale]: raise TypeError("Cannot subtract Time and TimeDelta instances " "with scales '{0}' and '{1}'" .format(self.scale, other.scale)) out._set_scale(other.scale) # remove attributes that are invalidated by changing time for attr in ('_delta_ut1_utc', '_delta_tdb_tt'): if hasattr(out, attr): delattr(out, attr) else: # T - T # the scales should be compatible (e.g., cannot convert TDB to LOCAL) if other.scale not in self.SCALES: raise TypeError("Cannot subtract Time instances " "with scales '{0}' and '{1}'" .format(self.scale, other.scale)) self_time = (self._time if self.scale in TIME_DELTA_SCALES else self.tai._time) # set up TimeDelta, subtraction to be done shortly out = TimeDelta(self_time.jd1, self_time.jd2, format='jd', scale=self_time.scale) if other.scale != out.scale: other = getattr(other, out.scale) jd1 = out._time.jd1 - other._time.jd1 jd2 = out._time.jd2 - other._time.jd2 out._time.jd1, out._time.jd2 = day_frac(jd1, jd2) if other_is_delta: # Go back to left-side scale if needed out._set_scale(self.scale) return out def __add__(self, other): if not isinstance(other, Time): try: other = TimeDelta(other) except Exception: return NotImplemented # Tdelta + something is dealt with in TimeDelta, so we have # T + Tdelta = T # T + T = error if not isinstance(other, TimeDelta): raise OperandTypeError(self, other, '+') # ideally, we calculate in the scale of the Time item, since that is # what we want the output in, but this may not be possible, since # TimeDelta cannot be converted arbitrarily out = self.replicate() if self.scale in other.SCALES: if other.scale not in (out.scale, None): other = getattr(other, out.scale) else: if other.scale is None: out._set_scale('tai') else: if self.scale not in TIME_TYPES[other.scale]: raise TypeError("Cannot add Time and TimeDelta instances " "with scales '{0}' and '{1}'" .format(self.scale, other.scale)) out._set_scale(other.scale) # remove attributes that are invalidated by changing time for attr in ('_delta_ut1_utc', '_delta_tdb_tt'): if hasattr(out, attr): delattr(out, attr) jd1 = out._time.jd1 + other._time.jd1 jd2 = out._time.jd2 + other._time.jd2 out._time.jd1, out._time.jd2 = day_frac(jd1, jd2) # Go back to left-side scale if needed out._set_scale(self.scale) return out def __radd__(self, other): return self.__add__(other) def __rsub__(self, other): out = self.__sub__(other) return -out def _time_comparison(self, other, op): """If other is of same class as self, compare difference in self.scale. Otherwise, return NotImplemented """ if other.__class__ is not self.__class__: try: other = self.__class__(other, scale=self.scale) except Exception: # Let other have a go. return NotImplemented if(self.scale is not None and self.scale not in other.SCALES or other.scale is not None and other.scale not in self.SCALES): # Other will also not be able to do it, so raise a TypeError # immediately, allowing us to explain why it doesn't work. raise TypeError("Cannot compare {0} instances with scales " "'{1}' and '{2}'".format(self.__class__.__name__, self.scale, other.scale)) if self.scale is not None and other.scale is not None: other = getattr(other, self.scale) return op((self.jd1 - other.jd1) + (self.jd2 - other.jd2), 0.) def __lt__(self, other): return self._time_comparison(other, operator.lt) def __le__(self, other): return self._time_comparison(other, operator.le) def __eq__(self, other): """ If other is an incompatible object for comparison, return `False`. Otherwise, return `True` if the time difference between self and other is zero. """ return self._time_comparison(other, operator.eq) def __ne__(self, other): """ If other is an incompatible object for comparison, return `True`. Otherwise, return `False` if the time difference between self and other is zero. """ return self._time_comparison(other, operator.ne) def __gt__(self, other): return self._time_comparison(other, operator.gt) def __ge__(self, other): return self._time_comparison(other, operator.ge) def to_datetime(self, timezone=None): tm = self.replicate(format='datetime') return tm._shaped_like_input(tm._time.to_value(timezone)) to_datetime.__doc__ = TimeDatetime.to_value.__doc__ class TimeDelta(Time): """ Represent the time difference between two times. A TimeDelta object is initialized with one or more times in the ``val`` argument. The input times in ``val`` must conform to the specified ``format``. The optional ``val2`` time input should be supplied only for numeric input formats (e.g. JD) where very high precision (better than 64-bit precision) is required. The allowed values for ``format`` can be listed with:: >>> list(TimeDelta.FORMATS) ['sec', 'jd', 'datetime'] Note that for time differences, the scale can be among three groups: geocentric ('tai', 'tt', 'tcg'), barycentric ('tcb', 'tdb'), and rotational ('ut1'). Within each of these, the scales for time differences are the same. Conversion between geocentric and barycentric is possible, as there is only a scale factor change, but one cannot convert to or from 'ut1', as this requires knowledge of the actual times, not just their difference. For a similar reason, 'utc' is not a valid scale for a time difference: a UTC day is not always 86400 seconds. See also: - http://docs.astropy.org/en/stable/time/ - http://docs.astropy.org/en/stable/time/index.html#time-deltas Parameters ---------- val : sequence, ndarray, number, `~astropy.units.Quantity` or `~astropy.time.TimeDelta` object Value(s) to initialize the time difference(s). Any quantities will be converted appropriately (with care taken to avoid rounding errors for regular time units). val2 : sequence, ndarray, number, or `~astropy.units.Quantity`; optional Additional values, as needed to preserve precision. format : str, optional Format of input value(s) scale : str, optional Time scale of input value(s), must be one of the following values: ('tdb', 'tt', 'ut1', 'tcg', 'tcb', 'tai'). If not given (or ``None``), the scale is arbitrary; when added or subtracted from a ``Time`` instance, it will be used without conversion. copy : bool, optional Make a copy of the input values """ SCALES = TIME_DELTA_SCALES """List of time delta scales.""" FORMATS = TIME_DELTA_FORMATS """Dict of time delta formats.""" info = TimeDeltaInfo() def __init__(self, val, val2=None, format=None, scale=None, copy=False): if isinstance(val, TimeDelta): if scale is not None: self._set_scale(scale) else: if format is None: format = 'datetime' if isinstance(val, timedelta) else 'jd' self._init_from_vals(val, val2, format, scale, copy) if scale is not None: self.SCALES = TIME_DELTA_TYPES[scale] def replicate(self, *args, **kwargs): out = super().replicate(*args, **kwargs) out.SCALES = self.SCALES return out def to_datetime(self): """ Convert to ``datetime.timedelta`` object. """ tm = self.replicate(format='datetime') return tm._shaped_like_input(tm._time.value) def _set_scale(self, scale): """ This is the key routine that actually does time scale conversions. This is not public and not connected to the read-only scale property. """ if scale == self.scale: return if scale not in self.SCALES: raise ValueError("Scale {0!r} is not in the allowed scales {1}" .format(scale, sorted(self.SCALES))) # For TimeDelta, there can only be a change in scale factor, # which is written as time2 - time1 = scale_offset * time1 scale_offset = SCALE_OFFSETS[(self.scale, scale)] if scale_offset is None: self._time.scale = scale else: jd1, jd2 = self._time.jd1, self._time.jd2 offset1, offset2 = day_frac(jd1, jd2, factor=scale_offset) self._time = self.FORMATS[self.format]( jd1 + offset1, jd2 + offset2, scale, self.precision, self.in_subfmt, self.out_subfmt, from_jd=True) def __add__(self, other): # only deal with TimeDelta + TimeDelta if isinstance(other, Time): if not isinstance(other, TimeDelta): return other.__add__(self) else: try: other = TimeDelta(other) except Exception: return NotImplemented # the scales should be compatible (e.g., cannot convert TDB to TAI) if(self.scale is not None and self.scale not in other.SCALES or other.scale is not None and other.scale not in self.SCALES): raise TypeError("Cannot add TimeDelta instances with scales " "'{0}' and '{1}'".format(self.scale, other.scale)) # adjust the scale of other if the scale of self is set (or no scales) if self.scale is not None or other.scale is None: out = self.replicate() if other.scale is not None: other = getattr(other, self.scale) else: out = other.replicate() jd1 = self._time.jd1 + other._time.jd1 jd2 = self._time.jd2 + other._time.jd2 out._time.jd1, out._time.jd2 = day_frac(jd1, jd2) return out def __sub__(self, other): # only deal with TimeDelta - TimeDelta if isinstance(other, Time): if not isinstance(other, TimeDelta): raise OperandTypeError(self, other, '-') else: try: other = TimeDelta(other) except Exception: return NotImplemented # the scales should be compatible (e.g., cannot convert TDB to TAI) if(self.scale is not None and self.scale not in other.SCALES or other.scale is not None and other.scale not in self.SCALES): raise TypeError("Cannot subtract TimeDelta instances with scales " "'{0}' and '{1}'".format(self.scale, other.scale)) # adjust the scale of other if the scale of self is set (or no scales) if self.scale is not None or other.scale is None: out = self.replicate() if other.scale is not None: other = getattr(other, self.scale) else: out = other.replicate() jd1 = self._time.jd1 - other._time.jd1 jd2 = self._time.jd2 - other._time.jd2 out._time.jd1, out._time.jd2 = day_frac(jd1, jd2) return out def __neg__(self): """Negation of a `TimeDelta` object.""" new = self.copy() new._time.jd1 = -self._time.jd1 new._time.jd2 = -self._time.jd2 return new def __abs__(self): """Absolute value of a `TimeDelta` object.""" jd1, jd2 = self._time.jd1, self._time.jd2 negative = jd1 + jd2 < 0 new = self.copy() new._time.jd1 = np.where(negative, -jd1, jd1) new._time.jd2 = np.where(negative, -jd2, jd2) return new def __mul__(self, other): """Multiplication of `TimeDelta` objects by numbers/arrays.""" # Check needed since otherwise the self.jd1 * other multiplication # would enter here again (via __rmul__) if isinstance(other, Time) and not isinstance(other, TimeDelta): raise OperandTypeError(self, other, '*') elif ((isinstance(other, u.UnitBase) and other == u.dimensionless_unscaled) or (isinstance(other, str) and other == '')): return self.copy() # If other is something consistent with a dimensionless quantity # (could just be a float or an array), then we can just multiple in. try: other = u.Quantity(other, u.dimensionless_unscaled, copy=False) except Exception: # If not consistent with a dimensionless quantity, try downgrading # self to a quantity and see if things work. try: return self.to(u.day) * other except Exception: # The various ways we could multiply all failed; # returning NotImplemented to give other a final chance. return NotImplemented jd1, jd2 = day_frac(self.jd1, self.jd2, factor=other.value) out = TimeDelta(jd1, jd2, format='jd', scale=self.scale) if self.format != 'jd': out = out.replicate(format=self.format) return out def __rmul__(self, other): """Multiplication of numbers/arrays with `TimeDelta` objects.""" return self.__mul__(other) def __truediv__(self, other): """Division of `TimeDelta` objects by numbers/arrays.""" # Cannot do __mul__(1./other) as that looses precision if ((isinstance(other, u.UnitBase) and other == u.dimensionless_unscaled) or (isinstance(other, str) and other == '')): return self.copy() # If other is something consistent with a dimensionless quantity # (could just be a float or an array), then we can just divide in. try: other = u.Quantity(other, u.dimensionless_unscaled, copy=False) except Exception: # If not consistent with a dimensionless quantity, try downgrading # self to a quantity and see if things work. try: return self.to(u.day) / other except Exception: # The various ways we could divide all failed; # returning NotImplemented to give other a final chance. return NotImplemented jd1, jd2 = day_frac(self.jd1, self.jd2, divisor=other.value) out = TimeDelta(jd1, jd2, format='jd', scale=self.scale) if self.format != 'jd': out = out.replicate(format=self.format) return out def __rtruediv__(self, other): """Division by `TimeDelta` objects of numbers/arrays.""" # Here, we do not have to worry about returning NotImplemented, # since other has already had a chance to look at us. return other / self.to(u.day) def to(self, unit, equivalencies=[]): """ Convert to a quantity in the specified unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance, str The unit to convert to. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible (see :ref:`unit_equivalencies`). If `None`, no equivalencies will be applied at all, not even any set globallyq or within a context. Returns ------- quantity : `~astropy.units.Quantity` The quantity in the units specified. See also -------- to_value : get the numerical value in a given unit. """ return u.Quantity(self._time.jd1 + self._time.jd2, u.day).to(unit, equivalencies=equivalencies) def to_value(self, unit, equivalencies=[]): """ The numerical value in the specified unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance or str, optional The unit in which the value should be given. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible (see :ref:`unit_equivalencies`). If `None`, no equivalencies will be applied at all, not even any set globally or within a context. Returns ------- value : `~numpy.ndarray` or scalar The value in the units specified. See also -------- to : Convert to a `~astropy.units.Quantity` instance in a given unit. value : The time value in the current format. """ return u.Quantity(self._time.jd1 + self._time.jd2, u.day).to_value(unit, equivalencies=equivalencies) def _make_value_equivalent(self, item, value): """Coerce setitem value into an equivalent TimeDelta object""" if not isinstance(value, TimeDelta): try: value = self.__class__(value, scale=self.scale, format=self.format) except Exception as err: raise ValueError('cannot convert value to a compatible TimeDelta ' 'object: {}'.format(err)) return value class ScaleValueError(Exception): pass def _make_array(val, copy=False): """ Take ``val`` and convert/reshape to an array. If ``copy`` is `True` then copy input values. Returns ------- val : ndarray Array version of ``val``. """ val = np.array(val, copy=copy, subok=True) # Allow only float64, string or object arrays as input # (object is for datetime, maybe add more specific test later?) # This also ensures the right byteorder for float64 (closes #2942). if not (val.dtype == np.float64 or val.dtype.kind in 'OSUMa'): val = np.asanyarray(val, dtype=np.float64) return val def _check_for_masked_and_fill(val, val2): """ If ``val`` or ``val2`` are masked arrays then fill them and cast to ndarray. Returns a mask corresponding to the logical-or of masked elements in ``val`` and ``val2``. If neither is masked then the return ``mask`` is ``None``. If either ``val`` or ``val2`` are masked then they are replaced with filled versions of themselves. Parameters ---------- val : ndarray or MaskedArray Input val val2 : ndarray or MaskedArray Input val2 Returns ------- mask, val, val2: ndarray or None Mask: (None or bool ndarray), val, val2: ndarray """ def get_as_filled_ndarray(mask, val): """ Fill the given MaskedArray ``val`` from the first non-masked element in the array. This ensures that upstream Time initialization will succeed. Note that nothing happens if there are no masked elements. """ fill_value = None if np.any(val.mask): # Final mask is the logical-or of inputs mask = mask | val.mask # First unmasked element. If all elements are masked then # use fill_value=None from above which will use val.fill_value. # As long as the user has set this appropriately then all will # be fine. val_unmasked = val.compressed() # 1-d ndarray of unmasked values if len(val_unmasked) > 0: fill_value = val_unmasked[0] # Fill the input ``val``. If fill_value is None then this just returns # an ndarray view of val (no copy). val = val.filled(fill_value) return mask, val mask = False if isinstance(val, np.ma.MaskedArray): mask, val = get_as_filled_ndarray(mask, val) if isinstance(val2, np.ma.MaskedArray): mask, val2 = get_as_filled_ndarray(mask, val2) return mask, val, val2 class OperandTypeError(TypeError): def __init__(self, left, right, op=None): op_string = '' if op is None else ' for {0}'.format(op) super().__init__( "Unsupported operand type(s){0}: " "'{1}' and '{2}'".format(op_string, left.__class__.__name__, right.__class__.__name__))
26e6cd745611364011d2b529afc6752f526e856f489d23c05e0682d581988aa7
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """Time utilities. In particular, routines to do basic arithmetic on numbers represented by two doubles, using the procedure of Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363 -- http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf """ import numpy as np from astropy import units as u def day_frac(val1, val2, factor=None, divisor=None): """Return the sum of ``val1`` and ``val2`` as two float64s. The returned floats are an integer part and the fractional remainder, with the latter guaranteed to be within -0.5 and 0.5 (inclusive on either side, as the integer is rounded to even). The arithmetic is all done with exact floating point operations so no precision is lost to rounding error. It is assumed the sum is less than about 1e16, otherwise the remainder will be greater than 1.0. Parameters ---------- val1, val2 : array of float Values to be summed. factor : float, optional If given, multiply the sum by it. divisor : float, optional If given, divide the sum by it. Returns ------- day, frac : float64 Integer and fractional part of val1 + val2. """ # Add val1 and val2 exactly, returning the result as two float64s. # The first is the approximate sum (with some floating point error) # and the second is the error of the float64 sum. sum12, err12 = two_sum(val1, val2) if factor is not None: sum12, carry = two_product(sum12, factor) carry += err12 * factor sum12, err12 = two_sum(sum12, carry) if divisor is not None: q1 = sum12 / divisor p1, p2 = two_product(q1, divisor) d1, d2 = two_sum(sum12, -p1) d2 += err12 d2 -= p2 q2 = (d1 + d2) / divisor # 3-part float fine here; nothing can be lost sum12, err12 = two_sum(q1, q2) # get integer fraction day = np.round(sum12) extra, frac = two_sum(sum12, -day) frac += extra + err12 # Our fraction can now have gotten >0.5 or <-0.5, which means we would # loose one bit of precision. So, correct for that. excess = np.round(frac) day += excess extra, frac = two_sum(sum12, -day) frac += extra + err12 return day, frac def quantity_day_frac(val1, val2=None): """Like ``day_frac``, but for quantities with units of time. The quantities are separately converted to days. Here, we need to take care with the conversion since while the routines here can do accurate multiplication, the conversion factor itself may not be accurate. For instance, if the quantity is in seconds, the conversion factor is 1./86400., which is not exactly representable as a float. To work around this, for conversion factors less than unity, rather than multiply by that possibly inaccurate factor, the value is divided by the conversion factor of a day to that unit (i.e., by 86400. for seconds). For conversion factors larger than 1, such as 365.25 for years, we do just multiply. With this scheme, one has precise conversion factors for all regular time units that astropy defines. Note, however, that it does not necessarily work for all custom time units, and cannot work when conversion to time is via an equivalency. For those cases, one remains limited by the fact that Quantity calculations are done in double precision, not in quadruple precision as for time. """ if val2 is not None: res11, res12 = quantity_day_frac(val1) res21, res22 = quantity_day_frac(val2) # This summation is can at most lose 1 ULP in the second number. return res11 + res21, res12 + res22 try: factor = val1.unit.to(u.day) except Exception: # Not a simple scaling, so cannot do the full-precision one. # But at least try normal conversion, since equivalencies may be set. return val1.to_value(u.day), 0. if factor >= 1.: return day_frac(val1.value, 0., factor=factor) else: divisor = u.day.to(val1.unit) return day_frac(val1.value, 0., divisor=divisor) def two_sum(a, b): """ Add ``a`` and ``b`` exactly, returning the result as two float64s. The first is the approximate sum (with some floating point error) and the second is the error of the float64 sum. Using the procedure of Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363 http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf Returns ------- sum, err : float64 Approximate sum of a + b and the exact floating point error """ x = a + b eb = x - a eb = b - eb ea = x - b ea = a - ea return x, ea + eb def two_product(a, b): """ Multiple ``a`` and ``b`` exactly, returning the result as two float64s. The first is the approximate product (with some floating point error) and the second is the error of the float64 product. Uses the procedure of Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363 http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf Returns ------- prod, err : float64 Approximate product a * b and the exact floating point error """ x = a * b ah, al = split(a) bh, bl = split(b) y1 = ah * bh y = x - y1 y2 = al * bh y -= y2 y3 = ah * bl y -= y3 y4 = al * bl y = y4 - y return x, y def split(a): """ Split float64 in two aligned parts. Uses the procedure of Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363 http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf """ c = 134217729. * a # 2**27+1. abig = c - a ah = c - abig al = a - ah return ah, al
569de7c23d180c29b3687e75e5e3545f7a4164763bbffa858fd513baf9785fb5
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module defines the `Quantity` object, which represents a number with some associated units. `Quantity` objects support operations like ordinary numbers, but will deal with unit conversions internally. """ # Standard library import re import numbers from fractions import Fraction import warnings import numpy as np # AstroPy from .core import (Unit, dimensionless_unscaled, get_current_unit_registry, UnitBase, UnitsError, UnitConversionError, UnitTypeError) from .utils import is_effectively_unity from .format.latex import Latex from astropy.utils.compat import NUMPY_LT_1_14, NUMPY_LT_1_16, NUMPY_LT_1_17 from astropy.utils.compat.misc import override__dir__ from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning from astropy.utils.misc import isiterable, InheritDocstrings from astropy.utils.data_info import ParentDtypeInfo from astropy import config as _config from .quantity_helper import (converters_and_unit, can_have_arbitrary_unit, check_output) __all__ = ["Quantity", "SpecificTypeQuantity", "QuantityInfoBase", "QuantityInfo", "allclose", "isclose"] # We don't want to run doctests in the docstrings we inherit from Numpy __doctest_skip__ = ['Quantity.*'] _UNIT_NOT_INITIALISED = "(Unit not initialised)" _UFUNCS_FILTER_WARNINGS = {np.arcsin, np.arccos, np.arccosh, np.arctanh} class Conf(_config.ConfigNamespace): """ Configuration parameters for Quantity """ latex_array_threshold = _config.ConfigItem(100, 'The maximum size an array Quantity can be before its LaTeX ' 'representation for IPython gets "summarized" (meaning only the first ' 'and last few elements are shown with "..." between). Setting this to a ' 'negative number means that the value will instead be whatever numpy ' 'gets from get_printoptions.') conf = Conf() class QuantityIterator: """ Flat iterator object to iterate over Quantities A `QuantityIterator` iterator is returned by ``q.flat`` for any Quantity ``q``. It allows iterating over the array as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in C-contiguous style, with the last index varying the fastest. The iterator can also be indexed using basic slicing or advanced indexing. See Also -------- Quantity.flatten : Returns a flattened copy of an array. Notes ----- `QuantityIterator` is inspired by `~numpy.ma.core.MaskedIterator`. It is not exported by the `~astropy.units` module. Instead of instantiating a `QuantityIterator` directly, use `Quantity.flat`. """ def __init__(self, q): self._quantity = q self._dataiter = q.view(np.ndarray).flat def __iter__(self): return self def __getitem__(self, indx): out = self._dataiter.__getitem__(indx) # For single elements, ndarray.flat.__getitem__ returns scalars; these # need a new view as a Quantity. if isinstance(out, type(self._quantity)): return out else: return self._quantity._new_view(out) def __setitem__(self, index, value): self._dataiter[index] = self._quantity._to_own_unit(value) def __next__(self): """ Return the next value, or raise StopIteration. """ out = next(self._dataiter) # ndarray.flat._dataiter returns scalars, so need a view as a Quantity. return self._quantity._new_view(out) next = __next__ class QuantityInfoBase(ParentDtypeInfo): # This is on a base class rather than QuantityInfo directly, so that # it can be used for EarthLocationInfo yet make clear that that class # should not be considered a typical Quantity subclass by Table. attrs_from_parent = {'dtype', 'unit'} # dtype and unit taken from parent _supports_indexing = True @staticmethod def default_format(val): return '{0.value:}'.format(val) @staticmethod def possible_string_format_functions(format_): """Iterate through possible string-derived format functions. A string can either be a format specifier for the format built-in, a new-style format string, or an old-style format string. This method is overridden in order to suppress printing the unit in each row since it is already at the top in the column header. """ yield lambda format_, val: format(val.value, format_) yield lambda format_, val: format_.format(val.value) yield lambda format_, val: format_ % val.value class QuantityInfo(QuantityInfoBase): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. """ _represent_as_dict_attrs = ('value', 'unit') _construct_from_dict_args = ['value'] _represent_as_dict_primary_data = 'value' def new_like(self, cols, length, metadata_conflicts='warn', name=None): """ Return a new Quantity instance which is consistent with the input ``cols`` and has ``length`` rows. This is intended for creating an empty column object whose elements can be set in-place for table operations like join or vstack. Parameters ---------- cols : list List of input columns length : int Length of the output column object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output column name Returns ------- col : Quantity (or subclass) Empty instance of this class consistent with ``cols`` """ # Get merged info attributes like shape, dtype, format, description, etc. attrs = self.merge_cols_attributes(cols, metadata_conflicts, name, ('meta', 'format', 'description')) # Make an empty quantity using the unit of the last one. shape = (length,) + attrs.pop('shape') dtype = attrs.pop('dtype') # Use zeros so we do not get problems for Quantity subclasses such # as Longitude and Latitude, which cannot take arbitrary values. data = np.zeros(shape=shape, dtype=dtype) # Get arguments needed to reconstruct class map = {key: (data if key == 'value' else getattr(cols[-1], key)) for key in self._represent_as_dict_attrs} map['copy'] = False out = self._construct_from_dict(map) # Set remaining info attributes for attr, value in attrs.items(): setattr(out.info, attr, value) return out class Quantity(np.ndarray, metaclass=InheritDocstrings): """A `~astropy.units.Quantity` represents a number with some associated unit. See also: http://docs.astropy.org/en/stable/units/quantity.html Parameters ---------- value : number, `~numpy.ndarray`, `Quantity` object (sequence), str The numerical value of this quantity in the units given by unit. If a `Quantity` or sequence of them (or any other valid object with a ``unit`` attribute), creates a new `Quantity` object, converting to `unit` units as needed. If a string, it is converted to a number or `Quantity`, depending on whether a unit is present. unit : `~astropy.units.UnitBase` instance, str An object that represents the unit associated with the input value. Must be an `~astropy.units.UnitBase` object or a string parseable by the :mod:`~astropy.units` package. dtype : ~numpy.dtype, optional The dtype of the resulting Numpy array or scalar that will hold the value. If not provided, it is determined from the input, except that any input that cannot represent float (integer and bool) is converted to float. copy : bool, optional If `True` (default), then the value is copied. Otherwise, a copy will only be made if ``__array__`` returns a copy, if value is a nested sequence, or if a copy is needed to satisfy an explicitly given ``dtype``. (The `False` option is intended mostly for internal use, to speed up initialization where a copy is known to have been made. Use with care.) order : {'C', 'F', 'A'}, optional Specify the order of the array. As in `~numpy.array`. This parameter is ignored if the input is a `Quantity` and ``copy=False``. subok : bool, optional If `False` (default), the returned array will be forced to be a `Quantity`. Otherwise, `Quantity` subclasses will be passed through, or a subclass appropriate for the unit will be used (such as `~astropy.units.Dex` for ``u.dex(u.AA)``). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement. This parameter is ignored if the input is a `Quantity` and ``copy=False``. Raises ------ TypeError If the value provided is not a Python numeric type. TypeError If the unit provided is not either a :class:`~astropy.units.Unit` object or a parseable string unit. Notes ----- Quantities can also be created by multiplying a number or array with a :class:`~astropy.units.Unit`. See http://docs.astropy.org/en/latest/units/ """ # Need to set a class-level default for _equivalencies, or # Constants can not initialize properly _equivalencies = [] # Default unit for initialization; can be overridden by subclasses, # possibly to `None` to indicate there is no default unit. _default_unit = dimensionless_unscaled # Ensures views have an undefined unit. _unit = None __array_priority__ = 10000 def __new__(cls, value, unit=None, dtype=None, copy=True, order=None, subok=False, ndmin=0): if unit is not None: # convert unit first, to avoid multiple string->unit conversions unit = Unit(unit) # if we allow subclasses, allow a class from the unit. if subok: qcls = getattr(unit, '_quantity_class', cls) if issubclass(qcls, cls): cls = qcls # optimize speed for Quantity with no dtype given, copy=False if isinstance(value, Quantity): if unit is not None and unit is not value.unit: value = value.to(unit) # the above already makes a copy (with float dtype) copy = False if type(value) is not cls and not (subok and isinstance(value, cls)): value = value.view(cls) if dtype is None: if not copy: return value if not (np.can_cast(np.float32, value.dtype) or value.dtype.fields): dtype = float return np.array(value, dtype=dtype, copy=copy, order=order, subok=True, ndmin=ndmin) # Maybe str, or list/tuple of Quantity? If so, this may set value_unit. # To ensure array remains fast, we short-circuit it. value_unit = None if not isinstance(value, np.ndarray): if isinstance(value, str): # The first part of the regex string matches any integer/float; # the second parts adds possible trailing .+-, which will break # the float function below and ensure things like 1.2.3deg # will not work. pattern = (r'\s*[+-]?' r'((\d+\.?\d*)|(\.\d+)|([nN][aA][nN])|' r'([iI][nN][fF]([iI][nN][iI][tT][yY]){0,1}))' r'([eE][+-]?\d+)?' r'[.+-]?') v = re.match(pattern, value) unit_string = None try: value = float(v.group()) except Exception: raise TypeError('Cannot parse "{0}" as a {1}. It does not ' 'start with a number.' .format(value, cls.__name__)) unit_string = v.string[v.end():].strip() if unit_string: value_unit = Unit(unit_string) if unit is None: unit = value_unit # signal no conversion needed below. elif (isiterable(value) and len(value) > 0 and all(isinstance(v, Quantity) for v in value)): # Convert all quantities to the same unit. if unit is None: unit = value[0].unit value = [q.to_value(unit) for q in value] value_unit = unit # signal below that conversion has been done if value_unit is None: # If the value has a `unit` attribute and if not None # (for Columns with uninitialized unit), treat it like a quantity. value_unit = getattr(value, 'unit', None) if value_unit is None: # Default to dimensionless for no (initialized) unit attribute. if unit is None: unit = cls._default_unit value_unit = unit # signal below that no conversion is needed else: try: value_unit = Unit(value_unit) except Exception as exc: raise TypeError("The unit attribute {0!r} of the input could " "not be parsed as an astropy Unit, raising " "the following exception:\n{1}" .format(value.unit, exc)) if unit is None: unit = value_unit elif unit is not value_unit: copy = False # copy will be made in conversion at end value = np.array(value, dtype=dtype, copy=copy, order=order, subok=False, ndmin=ndmin) # check that array contains numbers or long int objects if (value.dtype.kind in 'OSU' and not (value.dtype.kind == 'O' and isinstance(value.item(() if value.ndim == 0 else 0), numbers.Number))): raise TypeError("The value must be a valid Python or " "Numpy numeric type.") # by default, cast any integer, boolean, etc., to float if dtype is None and (not (np.can_cast(np.float32, value.dtype) or value.dtype.fields) or value.dtype.kind == 'O'): value = value.astype(float) value = value.view(cls) value._set_unit(value_unit) if unit is value_unit: return value else: # here we had non-Quantity input that had a "unit" attribute # with a unit different from the desired one. So, convert. return value.to(unit) def __array_finalize__(self, obj): # If we're a new object or viewing an ndarray, nothing has to be done. if obj is None or obj.__class__ is np.ndarray: return # If our unit is not set and obj has a valid one, use it. if self._unit is None: unit = getattr(obj, '_unit', None) if unit is not None: self._set_unit(unit) # Copy info if the original had `info` defined. Because of the way the # DataInfo works, `'info' in obj.__dict__` is False until the # `info` attribute is accessed or set. if 'info' in obj.__dict__: self.info = obj.info def __array_wrap__(self, obj, context=None): if context is None: # Methods like .squeeze() created a new `ndarray` and then call # __array_wrap__ to turn the array into self's subclass. return self._new_view(obj) raise NotImplementedError('__array_wrap__ should not be used ' 'with a context any more, since we require ' 'numpy >=1.13. Please raise an issue on ' 'https://github.com/astropy/astropy') def __array_ufunc__(self, function, method, *inputs, **kwargs): """Wrap numpy ufuncs, taking care of units. Parameters ---------- function : callable ufunc to wrap. method : str Ufunc method: ``__call__``, ``at``, ``reduce``, etc. inputs : tuple Input arrays. kwargs : keyword arguments As passed on, with ``out`` containing possible quantity output. Returns ------- result : `~astropy.units.Quantity` Results of the ufunc, with the unit set properly. """ # Determine required conversion functions -- to bring the unit of the # input to that expected (e.g., radian for np.sin), or to get # consistent units between two inputs (e.g., in np.add) -- # and the unit of the result (or tuple of units for nout > 1). converters, unit = converters_and_unit(function, method, *inputs) out = kwargs.get('out', None) # Avoid loop back by turning any Quantity output into array views. if out is not None: # If pre-allocated output is used, check it is suitable. # This also returns array view, to ensure we don't loop back. if function.nout == 1: out = out[0] out_array = check_output(out, unit, inputs, function=function) # Ensure output argument remains a tuple. kwargs['out'] = (out_array,) if function.nout == 1 else out_array # Same for inputs, but here also convert if necessary. arrays = [] for input_, converter in zip(inputs, converters): input_ = getattr(input_, 'value', input_) arrays.append(converter(input_) if converter else input_) # Call our superclass's __array_ufunc__ result = super().__array_ufunc__(function, method, *arrays, **kwargs) # If unit is None, a plain array is expected (e.g., comparisons), which # means we're done. # We're also done if the result was None (for method 'at') or # NotImplemented, which can happen if other inputs/outputs override # __array_ufunc__; hopefully, they can then deal with us. if unit is None or result is None or result is NotImplemented: return result return self._result_as_quantity(result, unit, out) def _result_as_quantity(self, result, unit, out): """Turn result into a quantity with the given unit. If no output is given, it will take a view of the array as a quantity, and set the unit. If output is given, those should be quantity views of the result arrays, and the function will just set the unit. Parameters ---------- result : `~numpy.ndarray` or tuple of `~numpy.ndarray` Array(s) which need to be turned into quantity. unit : `~astropy.units.Unit` Unit for the quantities to be returned (or `None` if the result should not be a quantity). Should be tuple if result is a tuple. out : `~astropy.units.Quantity` or None Possible output quantity. Should be `None` or a tuple if result is a tuple. Returns ------- out : `~astropy.units.Quantity` With units set. """ if isinstance(result, tuple): if out is None: out = (None,) * len(result) return tuple(self._result_as_quantity(result_, unit_, out_) for (result_, unit_, out_) in zip(result, unit, out)) if out is None: # View the result array as a Quantity with the proper unit. return result if unit is None else self._new_view(result, unit) # For given output, just set the unit. We know the unit is not None and # the output is of the correct Quantity subclass, as it was passed # through check_output. out._set_unit(unit) return out def __quantity_subclass__(self, unit): """ Overridden by subclasses to change what kind of view is created based on the output unit of an operation. Parameters ---------- unit : UnitBase The unit for which the appropriate class should be returned Returns ------- tuple : - `Quantity` subclass - bool: True if subclasses of the given class are ok """ return Quantity, True def _new_view(self, obj=None, unit=None): """ Create a Quantity view of some array-like input, and set the unit By default, return a view of ``obj`` of the same class as ``self`` and with the same unit. Subclasses can override the type of class for a given unit using ``__quantity_subclass__``, and can ensure properties other than the unit are copied using ``__array_finalize__``. If the given unit defines a ``_quantity_class`` of which ``self`` is not an instance, a view using this class is taken. Parameters ---------- obj : ndarray or scalar, optional The array to create a view of. If obj is a numpy or python scalar, it will be converted to an array scalar. By default, ``self`` is converted. unit : `UnitBase`, or anything convertible to a :class:`~astropy.units.Unit`, optional The unit of the resulting object. It is used to select a subclass, and explicitly assigned to the view if given. If not given, the subclass and unit will be that of ``self``. Returns ------- view : Quantity subclass """ # Determine the unit and quantity subclass that we need for the view. if unit is None: unit = self.unit quantity_subclass = self.__class__ elif unit is self.unit and self.__class__ is Quantity: # The second part is because we should not presume what other # classes want to do for the same unit. E.g., Constant will # always want to fall back to Quantity, and relies on going # through `__quantity_subclass__`. quantity_subclass = Quantity else: unit = Unit(unit) quantity_subclass = getattr(unit, '_quantity_class', Quantity) if isinstance(self, quantity_subclass): quantity_subclass, subok = self.__quantity_subclass__(unit) if subok: quantity_subclass = self.__class__ # We only want to propagate information from ``self`` to our new view, # so obj should be a regular array. By using ``np.array``, we also # convert python and numpy scalars, which cannot be viewed as arrays # and thus not as Quantity either, to zero-dimensional arrays. # (These are turned back into scalar in `.value`) # Note that for an ndarray input, the np.array call takes only double # ``obj.__class is np.ndarray``. So, not worth special-casing. if obj is None: obj = self.view(np.ndarray) else: obj = np.array(obj, copy=False) # Take the view, set the unit, and update possible other properties # such as ``info``, ``wrap_angle`` in `Longitude`, etc. view = obj.view(quantity_subclass) view._set_unit(unit) view.__array_finalize__(self) return view def _set_unit(self, unit): """Set the unit. This is used anywhere the unit is set or modified, i.e., in the initilizer, in ``__imul__`` and ``__itruediv__`` for in-place multiplication and division by another unit, as well as in ``__array_finalize__`` for wrapping up views. For Quantity, it just sets the unit, but subclasses can override it to check that, e.g., a unit is consistent. """ if not isinstance(unit, UnitBase): # Trying to go through a string ensures that, e.g., Magnitudes with # dimensionless physical unit become Quantity with units of mag. unit = Unit(str(unit), parse_strict='silent') if not isinstance(unit, UnitBase): raise UnitTypeError( "{0} instances require {1} units, not {2} instances." .format(type(self).__name__, UnitBase, type(unit))) self._unit = unit def __deepcopy__(self, memo): # If we don't define this, ``copy.deepcopy(quantity)`` will # return a bare Numpy array. return self.copy() def __reduce__(self): # patch to pickle Quantity objects (ndarray subclasses), see # http://www.mail-archive.com/[email protected]/msg02446.html object_state = list(super().__reduce__()) object_state[2] = (object_state[2], self.__dict__) return tuple(object_state) def __setstate__(self, state): # patch to unpickle Quantity objects (ndarray subclasses), see # http://www.mail-archive.com/[email protected]/msg02446.html nd_state, own_state = state super().__setstate__(nd_state) self.__dict__.update(own_state) info = QuantityInfo() def _to_value(self, unit, equivalencies=[]): """Helper method for to and to_value.""" if equivalencies == []: equivalencies = self._equivalencies return self.unit.to(unit, self.view(np.ndarray), equivalencies=equivalencies) def to(self, unit, equivalencies=[]): """ Return a new `~astropy.units.Quantity` object with the specified unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance, str An object that represents the unit to convert to. Must be an `~astropy.units.UnitBase` object or a string parseable by the `~astropy.units` package. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. If not provided or ``[]``, class default equivalencies will be used (none for `~astropy.units.Quantity`, but may be set for subclasses) If `None`, no equivalencies will be applied at all, not even any set globally or within a context. See also -------- to_value : get the numerical value in a given unit. """ # We don't use `to_value` below since we always want to make a copy # and don't want to slow down this method (esp. the scalar case). unit = Unit(unit) return self._new_view(self._to_value(unit, equivalencies), unit) def to_value(self, unit=None, equivalencies=[]): """ The numerical value, possibly in a different unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance or str, optional The unit in which the value should be given. If not given or `None`, use the current unit. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible (see :ref:`unit_equivalencies`). If not provided or ``[]``, class default equivalencies will be used (none for `~astropy.units.Quantity`, but may be set for subclasses). If `None`, no equivalencies will be applied at all, not even any set globally or within a context. Returns ------- value : `~numpy.ndarray` or scalar The value in the units specified. For arrays, this will be a view of the data if no unit conversion was necessary. See also -------- to : Get a new instance in a different unit. """ if unit is None or unit is self.unit: value = self.view(np.ndarray) else: unit = Unit(unit) # We want a view if the unit does not change. One could check # with "==", but that calculates the scale that we need anyway. # TODO: would be better for `unit.to` to have an in-place flag. try: scale = self.unit._to(unit) except Exception: # Short-cut failed; try default (maybe equivalencies help). value = self._to_value(unit, equivalencies) else: value = self.view(np.ndarray) if not is_effectively_unity(scale): # not in-place! value = value * scale return value if self.shape else (value[()] if self.dtype.fields else value.item()) value = property(to_value, doc="""The numerical value of this instance. See also -------- to_value : Get the numerical value in a given unit. """) @property def unit(self): """ A `~astropy.units.UnitBase` object representing the unit of this quantity. """ return self._unit @property def equivalencies(self): """ A list of equivalencies that will be applied by default during unit conversions. """ return self._equivalencies @property def si(self): """ Returns a copy of the current `Quantity` instance with SI units. The value of the resulting object will be scaled. """ si_unit = self.unit.si return self._new_view(self.value * si_unit.scale, si_unit / si_unit.scale) @property def cgs(self): """ Returns a copy of the current `Quantity` instance with CGS units. The value of the resulting object will be scaled. """ cgs_unit = self.unit.cgs return self._new_view(self.value * cgs_unit.scale, cgs_unit / cgs_unit.scale) @property def isscalar(self): """ True if the `value` of this quantity is a scalar, or False if it is an array-like object. .. note:: This is subtly different from `numpy.isscalar` in that `numpy.isscalar` returns False for a zero-dimensional array (e.g. ``np.array(1)``), while this is True for quantities, since quantities cannot represent true numpy scalars. """ return not self.shape # This flag controls whether convenience conversion members, such # as `q.m` equivalent to `q.to_value(u.m)` are available. This is # not turned on on Quantity itself, but is on some subclasses of # Quantity, such as `astropy.coordinates.Angle`. _include_easy_conversion_members = False @override__dir__ def __dir__(self): """ Quantities are able to directly convert to other units that have the same physical type. This function is implemented in order to make autocompletion still work correctly in IPython. """ if not self._include_easy_conversion_members: return [] extra_members = set() equivalencies = Unit._normalize_equivalencies(self.equivalencies) for equivalent in self.unit._get_units_with_same_physical_type( equivalencies): extra_members.update(equivalent.names) return extra_members def __getattr__(self, attr): """ Quantities are able to directly convert to other units that have the same physical type. """ if not self._include_easy_conversion_members: raise AttributeError( "'{0}' object has no '{1}' member".format( self.__class__.__name__, attr)) def get_virtual_unit_attribute(): registry = get_current_unit_registry().registry to_unit = registry.get(attr, None) if to_unit is None: return None try: return self.unit.to( to_unit, self.value, equivalencies=self.equivalencies) except UnitsError: return None value = get_virtual_unit_attribute() if value is None: raise AttributeError( "{0} instance has no attribute '{1}'".format( self.__class__.__name__, attr)) else: return value # Equality needs to be handled explicitly as ndarray.__eq__ gives # DeprecationWarnings on any error, which is distracting. On the other # hand, for structured arrays, the ufunc does not work, so we do use # __eq__ and live with the warnings. def __eq__(self, other): try: if self.dtype.kind == 'V': return super().__eq__(other) else: return np.equal(self, other) except UnitsError: return False except TypeError: return NotImplemented def __ne__(self, other): try: if self.dtype.kind == 'V': return super().__ne__(other) else: return np.not_equal(self, other) except UnitsError: return True except TypeError: return NotImplemented # Unit conversion operator (<<). def __lshift__(self, other): try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented return self.__class__(self, other, copy=False, subok=True) def __ilshift__(self, other): try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented try: factor = self.unit._to(other) except UnitConversionError: # Maybe via equivalencies? Now we do make a temporary copy. try: value = self._to_value(other) except UnitConversionError: return NotImplemented self.view(np.ndarray)[...] = value else: self.view(np.ndarray)[...] *= factor self._set_unit(other) return self def __rlshift__(self, other): if not self.isscalar: return NotImplemented return Unit(self).__rlshift__(other) # Give warning for other >> self, since probably other << self was meant. def __rrshift__(self, other): warnings.warn(">> is not implemented. Did you mean to convert " "something to this quantity as a unit using '<<'?", AstropyWarning) return NotImplemented # Also define __rshift__ and __irshift__ so we override default ndarray # behaviour, but instead of emitting a warning here, let it be done by # other (which likely is a unit if this was a mistake). def __rshift__(self, other): return NotImplemented def __irshift__(self, other): return NotImplemented # Arithmetic operations def __mul__(self, other): """ Multiplication between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): try: return self._new_view(self.copy(), other * self.unit) except UnitsError: # let other try to deal with it return NotImplemented return super().__mul__(other) def __imul__(self, other): """In-place multiplication between `Quantity` objects and others.""" if isinstance(other, (UnitBase, str)): self._set_unit(other * self.unit) return self return super().__imul__(other) def __rmul__(self, other): """ Right Multiplication between `Quantity` objects and other objects. """ return self.__mul__(other) def __truediv__(self, other): """ Division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): try: return self._new_view(self.copy(), self.unit / other) except UnitsError: # let other try to deal with it return NotImplemented return super().__truediv__(other) def __itruediv__(self, other): """Inplace division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): self._set_unit(self.unit / other) return self return super().__itruediv__(other) def __rtruediv__(self, other): """ Right Division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): return self._new_view(1. / self.value, other / self.unit) return super().__rtruediv__(other) def __div__(self, other): """ Division between `Quantity` objects. """ return self.__truediv__(other) def __idiv__(self, other): """ Division between `Quantity` objects. """ return self.__itruediv__(other) def __rdiv__(self, other): """ Division between `Quantity` objects. """ return self.__rtruediv__(other) def __pow__(self, other): if isinstance(other, Fraction): # Avoid getting object arrays by raising the value to a Fraction. return self._new_view(self.value ** float(other), self.unit ** other) return super().__pow__(other) # For Py>=3.5 if NUMPY_LT_1_16: def __matmul__(self, other): result_unit = self.unit * getattr(other, 'unit', dimensionless_unscaled) result_array = np.matmul(self.value, getattr(other, 'value', other)) return self._new_view(result_array, result_unit) def __rmatmul__(self, other): result_unit = self.unit * getattr(other, 'unit', dimensionless_unscaled) result_array = np.matmul(getattr(other, 'value', other), self.value) return self._new_view(result_array, result_unit) # In numpy 1.13, 1.14, a np.positive ufunc exists, but ndarray.__pos__ # does not go through it, so we define it, to allow subclasses to override # it inside __array_ufunc__. This can be removed if a solution to # https://github.com/numpy/numpy/issues/9081 is merged. def __pos__(self): """Plus the quantity.""" return np.positive(self) # other overrides of special functions def __hash__(self): return hash(self.value) ^ hash(self.unit) def __iter__(self): if self.isscalar: raise TypeError( "'{cls}' object with a scalar value is not iterable" .format(cls=self.__class__.__name__)) # Otherwise return a generator def quantity_iter(): for val in self.value: yield self._new_view(val) return quantity_iter() def __getitem__(self, key): try: out = super().__getitem__(key) except IndexError: # We want zero-dimensional Quantity objects to behave like scalars, # so they should raise a TypeError rather than an IndexError. if self.isscalar: raise TypeError( "'{cls}' object with a scalar value does not support " "indexing".format(cls=self.__class__.__name__)) else: raise # For single elements, ndarray.__getitem__ returns scalars; these # need a new view as a Quantity. if type(out) is not type(self): out = self._new_view(out) return out def __setitem__(self, i, value): # update indices in info if the info property has been accessed # (in which case 'info' in self.__dict__ is True; this is guaranteed # to be the case if we're part of a table). if not self.isscalar and 'info' in self.__dict__: self.info.adjust_indices(i, value, len(self)) self.view(np.ndarray).__setitem__(i, self._to_own_unit(value)) # __contains__ is OK def __bool__(self): """Quantities should always be treated as non-False; there is too much potential for ambiguity otherwise. """ warnings.warn('The truth value of a Quantity is ambiguous. ' 'In the future this will raise a ValueError.', AstropyDeprecationWarning) return True def __len__(self): if self.isscalar: raise TypeError("'{cls}' object with a scalar value has no " "len()".format(cls=self.__class__.__name__)) else: return len(self.value) # Numerical types def __float__(self): try: return float(self.to_value(dimensionless_unscaled)) except (UnitsError, TypeError): raise TypeError('only dimensionless scalar quantities can be ' 'converted to Python scalars') def __int__(self): try: return int(self.to_value(dimensionless_unscaled)) except (UnitsError, TypeError): raise TypeError('only dimensionless scalar quantities can be ' 'converted to Python scalars') def __index__(self): # for indices, we do not want to mess around with scaling at all, # so unlike for float, int, we insist here on unscaled dimensionless try: assert self.unit.is_unity() return self.value.__index__() except Exception: raise TypeError('only integer dimensionless scalar quantities ' 'can be converted to a Python index') # TODO: we may want to add a hook for dimensionless quantities? @property def _unitstr(self): if self.unit is None: unitstr = _UNIT_NOT_INITIALISED else: unitstr = str(self.unit) if unitstr: unitstr = ' ' + unitstr return unitstr def to_string(self, unit=None, precision=None, format=None, subfmt=None): """ Generate a string representation of the quantity and its unit. The behavior of this function can be altered via the `numpy.set_printoptions` function and its various keywords. The exception to this is the ``threshold`` keyword, which is controlled via the ``[units.quantity]`` configuration item ``latex_array_threshold``. This is treated separately because the numpy default of 1000 is too big for most browsers to handle. Parameters ---------- unit : `~astropy.units.UnitBase`, optional Specifies the unit. If not provided, the unit used to initialize the quantity will be used. precision : numeric, optional The level of decimal precision. If `None`, or not provided, it will be determined from NumPy print options. format : str, optional The format of the result. If not provided, an unadorned string is returned. Supported values are: - 'latex': Return a LaTeX-formatted string subfmt : str, optional Subformat of the result. For the moment, only used for format="latex". Supported values are: - 'inline': Use ``$ ... $`` as delimiters. - 'display': Use ``$\\displaystyle ... $`` as delimiters. Returns ------- lstr A string with the contents of this Quantity """ if unit is not None and unit != self.unit: return self.to(unit).to_string( unit=None, precision=precision, format=format, subfmt=subfmt) formats = { None: None, "latex": { None: ("$", "$"), "inline": ("$", "$"), "display": (r"$\displaystyle ", r"$"), }, } if format not in formats: raise ValueError("Unknown format '{0}'".format(format)) elif format is None: return '{0}{1:s}'.format(self.value, self._unitstr) # else, for the moment we assume format="latex" # need to do try/finally because "threshold" cannot be overridden # with array2string pops = np.get_printoptions() format_spec = '.{}g'.format( precision if precision is not None else pops['precision']) def float_formatter(value): return Latex.format_exponential_notation(value, format_spec=format_spec) def complex_formatter(value): return '({0}{1}i)'.format( Latex.format_exponential_notation(value.real, format_spec=format_spec), Latex.format_exponential_notation(value.imag, format_spec='+' + format_spec)) try: formatter = {'float_kind': float_formatter, 'complex_kind': complex_formatter} if conf.latex_array_threshold > -1: np.set_printoptions(threshold=conf.latex_array_threshold, formatter=formatter) # the view is needed for the scalar case - value might be float if NUMPY_LT_1_14: # style deprecated in 1.14 latex_value = np.array2string( self.view(np.ndarray), style=(float_formatter if self.dtype.kind == 'f' else complex_formatter if self.dtype.kind == 'c' else repr), max_line_width=np.inf, separator=',~') else: latex_value = np.array2string( self.view(np.ndarray), max_line_width=np.inf, separator=',~') latex_value = latex_value.replace('...', r'\dots') finally: np.set_printoptions(**pops) # Format unit # [1:-1] strips the '$' on either side needed for math mode latex_unit = (self.unit._repr_latex_()[1:-1] # note this is unicode if self.unit is not None else _UNIT_NOT_INITIALISED) delimiter_left, delimiter_right = formats[format][subfmt] return r'{left}{0} \; {1}{right}'.format(latex_value, latex_unit, left=delimiter_left, right=delimiter_right) def __str__(self): return self.to_string() def __repr__(self): prefixstr = '<' + self.__class__.__name__ + ' ' sep = ',' if NUMPY_LT_1_14 else ', ' arrstr = np.array2string(self.view(np.ndarray), separator=sep, prefix=prefixstr) return '{0}{1}{2:s}>'.format(prefixstr, arrstr, self._unitstr) def _repr_latex_(self): """ Generate a latex representation of the quantity and its unit. Returns ------- lstr A LaTeX string with the contents of this Quantity """ # NOTE: This should change to display format in a future release return self.to_string(format='latex', subfmt='inline') def __format__(self, format_spec): """ Format quantities using the new-style python formatting codes as specifiers for the number. If the format specifier correctly applies itself to the value, then it is used to format only the value. If it cannot be applied to the value, then it is applied to the whole string. """ try: value = format(self.value, format_spec) full_format_spec = "s" except ValueError: value = self.value full_format_spec = format_spec return format("{0}{1:s}".format(value, self._unitstr), full_format_spec) def decompose(self, bases=[]): """ Generates a new `Quantity` with the units decomposed. Decomposed units have only irreducible units in them (see `astropy.units.UnitBase.decompose`). Parameters ---------- bases : sequence of UnitBase, optional The bases to decompose into. When not provided, decomposes down to any irreducible units. When provided, the decomposed result will only contain the given units. This will raises a `~astropy.units.UnitsError` if it's not possible to do so. Returns ------- newq : `~astropy.units.Quantity` A new object equal to this quantity with units decomposed. """ return self._decompose(False, bases=bases) def _decompose(self, allowscaledunits=False, bases=[]): """ Generates a new `Quantity` with the units decomposed. Decomposed units have only irreducible units in them (see `astropy.units.UnitBase.decompose`). Parameters ---------- allowscaledunits : bool If True, the resulting `Quantity` may have a scale factor associated with it. If False, any scaling in the unit will be subsumed into the value of the resulting `Quantity` bases : sequence of UnitBase, optional The bases to decompose into. When not provided, decomposes down to any irreducible units. When provided, the decomposed result will only contain the given units. This will raises a `~astropy.units.UnitsError` if it's not possible to do so. Returns ------- newq : `~astropy.units.Quantity` A new object equal to this quantity with units decomposed. """ new_unit = self.unit.decompose(bases=bases) # Be careful here because self.value usually is a view of self; # be sure that the original value is not being modified. if not allowscaledunits and hasattr(new_unit, 'scale'): new_value = self.value * new_unit.scale new_unit = new_unit / new_unit.scale return self._new_view(new_value, new_unit) else: return self._new_view(self.copy(), new_unit) # These functions need to be overridden to take into account the units # Array conversion # http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#array-conversion def item(self, *args): return self._new_view(super().item(*args)) def tolist(self): raise NotImplementedError("cannot make a list of Quantities. Get " "list of values with q.value.list()") def _to_own_unit(self, value, check_precision=True): try: _value = value.to_value(self.unit) except AttributeError: # We're not a Quantity, so let's try a more general conversion. # Plain arrays will be converted to dimensionless in the process, # but anything with a unit attribute will use that. as_quantity = Quantity(value) try: _value = as_quantity.to_value(self.unit) except UnitsError: # last chance: if this was not something with a unit # and is all 0, inf, or nan, we treat it as arbitrary unit. if (not hasattr(value, 'unit') and can_have_arbitrary_unit(as_quantity.value)): _value = as_quantity.value else: raise if check_precision: # If, e.g., we are casting double to float, we want to fail if # precision is lost, but let things pass if it works. _value = np.array(_value, copy=False) if not np.can_cast(_value.dtype, self.dtype): self_dtype_array = np.array(_value, self.dtype) if not np.all(np.logical_or(self_dtype_array == _value, np.isnan(_value))): raise TypeError("cannot convert value type to array type " "without precision loss") return _value def itemset(self, *args): if len(args) == 0: raise ValueError("itemset must have at least one argument") self.view(np.ndarray).itemset(*(args[:-1] + (self._to_own_unit(args[-1]),))) def tostring(self, order='C'): raise NotImplementedError("cannot write Quantities to string. Write " "array with q.value.tostring(...).") def tofile(self, fid, sep="", format="%s"): raise NotImplementedError("cannot write Quantities to file. Write " "array with q.value.tofile(...)") def dump(self, file): raise NotImplementedError("cannot dump Quantities to file. Write " "array with q.value.dump()") def dumps(self): raise NotImplementedError("cannot dump Quantities to string. Write " "array with q.value.dumps()") # astype, byteswap, copy, view, getfield, setflags OK as is def fill(self, value): self.view(np.ndarray).fill(self._to_own_unit(value)) # Shape manipulation: resize cannot be done (does not own data), but # shape, transpose, swapaxes, flatten, ravel, squeeze all OK. Only # the flat iterator needs to be overwritten, otherwise single items are # returned as numbers. @property def flat(self): """A 1-D iterator over the Quantity array. This returns a ``QuantityIterator`` instance, which behaves the same as the `~numpy.flatiter` instance returned by `~numpy.ndarray.flat`, and is similar to, but not a subclass of, Python's built-in iterator object. """ return QuantityIterator(self) @flat.setter def flat(self, value): y = self.ravel() y[:] = value # Item selection and manipulation # repeat, sort, compress, diagonal OK def take(self, indices, axis=None, out=None, mode='raise'): out = super().take(indices, axis=axis, out=out, mode=mode) # For single elements, ndarray.take returns scalars; these # need a new view as a Quantity. if type(out) is not type(self): out = self._new_view(out) return out def put(self, indices, values, mode='raise'): self.view(np.ndarray).put(indices, self._to_own_unit(values), mode) def choose(self, choices, out=None, mode='raise'): raise NotImplementedError("cannot choose based on quantity. Choose " "using array with q.value.choose(...)") # ensure we do not return indices as quantities def argsort(self, axis=-1, kind='quicksort', order=None): return self.view(np.ndarray).argsort(axis=axis, kind=kind, order=order) def searchsorted(self, v, *args, **kwargs): return np.searchsorted(np.array(self), self._to_own_unit(v, check_precision=False), *args, **kwargs) # avoid numpy 1.6 problem def argmax(self, axis=None, out=None): return self.view(np.ndarray).argmax(axis, out=out) def argmin(self, axis=None, out=None): return self.view(np.ndarray).argmin(axis, out=out) # Calculation -- override ndarray methods to take into account units. # We use the corresponding numpy functions to evaluate the results, since # the methods do not always allow calling with keyword arguments. # For instance, np.array([0.,2.]).clip(a_min=0., a_max=1.) gives # TypeError: 'a_max' is an invalid keyword argument for this function. def _wrap_function(self, function, *args, unit=None, out=None, **kwargs): """Wrap a numpy function that processes self, returning a Quantity. Parameters ---------- function : callable Numpy function to wrap. args : positional arguments Any positional arguments to the function beyond the first argument (which will be set to ``self``). kwargs : keyword arguments Keyword arguments to the function. If present, the following arguments are treated specially: unit : `~astropy.units.Unit` Unit of the output result. If not given, the unit of ``self``. out : `~astropy.units.Quantity` A Quantity instance in which to store the output. Notes ----- Output should always be assigned via a keyword argument, otherwise no proper account of the unit is taken. Returns ------- out : `~astropy.units.Quantity` Result of the function call, with the unit set properly. """ if unit is None: unit = self.unit # Ensure we don't loop back by turning any Quantity into array views. args = (self.value,) + tuple((arg.value if isinstance(arg, Quantity) else arg) for arg in args) if out is not None: # If pre-allocated output is used, check it is suitable. # This also returns array view, to ensure we don't loop back. arrays = tuple(arg for arg in args if isinstance(arg, np.ndarray)) kwargs['out'] = check_output(out, unit, arrays, function=function) # Apply the function and turn it back into a Quantity. result = function(*args, **kwargs) return self._result_as_quantity(result, unit, out) if NUMPY_LT_1_17: def clip(self, a_min, a_max, out=None): return self._wrap_function(np.clip, self._to_own_unit(a_min), self._to_own_unit(a_max), out=out) def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): return self._wrap_function(np.trace, offset, axis1, axis2, dtype, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.var, axis, dtype, out=out, ddof=ddof, unit=self.unit**2) def std(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.std, axis, dtype, out=out, ddof=ddof) def mean(self, axis=None, dtype=None, out=None): return self._wrap_function(np.mean, axis, dtype, out=out) def round(self, decimals=0, out=None): return self._wrap_function(np.round, decimals, out=out) def dot(self, b, out=None): result_unit = self.unit * getattr(b, 'unit', dimensionless_unscaled) return self._wrap_function(np.dot, b, out=out, unit=result_unit) # Calculation: override methods that do not make sense. def all(self, axis=None, out=None): raise NotImplementedError("cannot evaluate truth value of quantities. " "Evaluate array with q.value.all(...)") def any(self, axis=None, out=None): raise NotImplementedError("cannot evaluate truth value of quantities. " "Evaluate array with q.value.any(...)") # Calculation: numpy functions that can be overridden with methods. def diff(self, n=1, axis=-1): return self._wrap_function(np.diff, n, axis) def ediff1d(self, to_end=None, to_begin=None): return self._wrap_function(np.ediff1d, to_end, to_begin) def nansum(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.nansum, axis, out=out, keepdims=keepdims) def insert(self, obj, values, axis=None): """ Insert values along the given axis before the given indices and return a new `~astropy.units.Quantity` object. This is a thin wrapper around the `numpy.insert` function. Parameters ---------- obj : int, slice or sequence of ints Object that defines the index or indices before which ``values`` is inserted. values : array-like Values to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. ``values`` should be shaped so that it can be broadcast appropriately The unit of ``values`` must be consistent with this quantity. axis : int, optional Axis along which to insert ``values``. If ``axis`` is None then the quantity array is flattened before insertion. Returns ------- out : `~astropy.units.Quantity` A copy of quantity with ``values`` inserted. Note that the insertion does not occur in-place: a new quantity array is returned. Examples -------- >>> import astropy.units as u >>> q = [1, 2] * u.m >>> q.insert(0, 50 * u.cm) <Quantity [ 0.5, 1., 2.] m> >>> q = [[1, 2], [3, 4]] * u.m >>> q.insert(1, [10, 20] * u.m, axis=0) <Quantity [[ 1., 2.], [ 10., 20.], [ 3., 4.]] m> >>> q.insert(1, 10 * u.m, axis=1) <Quantity [[ 1., 10., 2.], [ 3., 10., 4.]] m> """ out_array = np.insert(self.value, obj, self._to_own_unit(values), axis) return self._new_view(out_array) class SpecificTypeQuantity(Quantity): """Superclass for Quantities of specific physical type. Subclasses of these work just like :class:`~astropy.units.Quantity`, except that they are for specific physical types (and may have methods that are only appropriate for that type). Astropy examples are :class:`~astropy.coordinates.Angle` and :class:`~astropy.coordinates.Distance` At a minimum, subclasses should set ``_equivalent_unit`` to the unit associated with the physical type. """ # The unit for the specific physical type. Instances can only be created # with units that are equivalent to this. _equivalent_unit = None # The default unit used for views. Even with `None`, views of arrays # without units are possible, but will have an uninitalized unit. _unit = None # Default unit for initialization through the constructor. _default_unit = None # ensure that we get precedence over our superclass. __array_priority__ = Quantity.__array_priority__ + 10 def __quantity_subclass__(self, unit): if unit.is_equivalent(self._equivalent_unit): return type(self), True else: return super().__quantity_subclass__(unit)[0], False def _set_unit(self, unit): if unit is None or not unit.is_equivalent(self._equivalent_unit): raise UnitTypeError( "{0} instances require units equivalent to '{1}'" .format(type(self).__name__, self._equivalent_unit) + (", but no unit was given." if unit is None else ", so cannot set it to '{0}'.".format(unit))) super()._set_unit(unit) def isclose(a, b, rtol=1.e-5, atol=None, **kwargs): """ Notes ----- Returns True if two arrays are element-wise equal within a tolerance. This is a :class:`~astropy.units.Quantity`-aware version of :func:`numpy.isclose`. """ return np.isclose(*_unquantify_allclose_arguments(a, b, rtol, atol), **kwargs) def allclose(a, b, rtol=1.e-5, atol=None, **kwargs): """ Notes ----- Returns True if two arrays are element-wise equal within a tolerance. This is a :class:`~astropy.units.Quantity`-aware version of :func:`numpy.allclose`. """ return np.allclose(*_unquantify_allclose_arguments(a, b, rtol, atol), **kwargs) def _unquantify_allclose_arguments(actual, desired, rtol, atol): actual = Quantity(actual, subok=True, copy=False) desired = Quantity(desired, subok=True, copy=False) try: desired = desired.to(actual.unit) except UnitsError: raise UnitsError("Units for 'desired' ({0}) and 'actual' ({1}) " "are not convertible" .format(desired.unit, actual.unit)) if atol is None: # by default, we assume an absolute tolerance of 0 atol = Quantity(0) else: atol = Quantity(atol, subok=True, copy=False) try: atol = atol.to(actual.unit) except UnitsError: raise UnitsError("Units for 'atol' ({0}) and 'actual' ({1}) " "are not convertible" .format(atol.unit, actual.unit)) rtol = Quantity(rtol, subok=True, copy=False) try: rtol = rtol.to(dimensionless_unscaled) except Exception: raise UnitsError("`rtol` should be dimensionless") return actual.value, desired.value, rtol.value, atol.value
134f67e704c4d7fc977652535a88ba8100a92964406e9c3a7a076e77d4e39844
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains convenience functions for retrieving solar system ephemerides from jplephem. """ from urllib.parse import urlparse from collections import OrderedDict import numpy as np import os.path from .sky_coordinate import SkyCoord from astropy.utils.data import download_file from astropy.utils.decorators import classproperty from astropy.utils.state import ScienceState from astropy.utils import indent from astropy import units as u from astropy import _erfa as erfa from astropy.constants import c as speed_of_light from .representation import CartesianRepresentation from .orbital_elements import calc_moon from .builtin_frames import GCRS, ICRS from .builtin_frames.utils import get_jd12 __all__ = ["get_body", "get_moon", "get_body_barycentric", "get_body_barycentric_posvel", "solar_system_ephemeris"] DEFAULT_JPL_EPHEMERIS = 'de430' """List of kernel pairs needed to calculate positions of a given object.""" BODY_NAME_TO_KERNEL_SPEC = OrderedDict( (('sun', [(0, 10)]), ('mercury', [(0, 1), (1, 199)]), ('venus', [(0, 2), (2, 299)]), ('earth-moon-barycenter', [(0, 3)]), ('earth', [(0, 3), (3, 399)]), ('moon', [(0, 3), (3, 301)]), ('mars', [(0, 4)]), ('jupiter', [(0, 5)]), ('saturn', [(0, 6)]), ('uranus', [(0, 7)]), ('neptune', [(0, 8)]), ('pluto', [(0, 9)])) ) """Indices to the plan94 routine for the given object.""" PLAN94_BODY_NAME_TO_PLANET_INDEX = OrderedDict( (('mercury', 1), ('venus', 2), ('earth-moon-barycenter', 3), ('mars', 4), ('jupiter', 5), ('saturn', 6), ('uranus', 7), ('neptune', 8))) _EPHEMERIS_NOTE = """ You can either give an explicit ephemeris or use a default, which is normally a built-in ephemeris that does not require ephemeris files. To change the default to be the JPL ephemeris:: >>> from astropy.coordinates import solar_system_ephemeris >>> solar_system_ephemeris.set('jpl') # doctest: +SKIP Use of any JPL ephemeris requires the jplephem package (https://pypi.python.org/pypi/jplephem). If needed, the ephemeris file will be downloaded (and cached). One can check which bodies are covered by a given ephemeris using:: >>> solar_system_ephemeris.bodies ('earth', 'sun', 'moon', 'mercury', 'venus', 'earth-moon-barycenter', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune') """[1:-1] class solar_system_ephemeris(ScienceState): """Default ephemerides for calculating positions of Solar-System bodies. This can be one of the following:: - 'builtin': polynomial approximations to the orbital elements. - 'de430' or 'de432s': short-cuts for recent JPL dynamical models. - 'jpl': Alias for the default JPL ephemeris (currently, 'de430'). - URL: (str) The url to a SPK ephemeris in SPICE binary (.bsp) format. - PATH: (str) File path to a SPK ephemeris in SPICE binary (.bsp) format. - `None`: Ensure an Exception is raised without an explicit ephemeris. The default is 'builtin', which uses the ``epv00`` and ``plan94`` routines from the ``erfa`` implementation of the Standards Of Fundamental Astronomy library. Notes ----- Any file required will be downloaded (and cached) when the state is set. The default Satellite Planet Kernel (SPK) file from NASA JPL (de430) is ~120MB, and covers years ~1550-2650 CE [1]_. The smaller de432s file is ~10MB, and covers years 1950-2050 [2]_. Older versions of the JPL ephemerides (such as the widely used de200) can be used via their URL [3]_. .. [1] http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de430-de431.txt .. [2] http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de432s.txt .. [3] http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/ """ _value = 'builtin' _kernel = None @classmethod def validate(cls, value): # make no changes if value is None if value is None: return cls._value # Set up Kernel; if the file is not in cache, this will download it. cls.get_kernel(value) return value @classmethod def get_kernel(cls, value): # ScienceState only ensures the `_value` attribute is up to date, # so we need to be sure any kernel returned is consistent. if cls._kernel is None or cls._kernel.origin != value: if cls._kernel is not None: cls._kernel.daf.file.close() cls._kernel = None kernel = _get_kernel(value) if kernel is not None: kernel.origin = value cls._kernel = kernel return cls._kernel @classproperty def kernel(cls): return cls.get_kernel(cls._value) @classproperty def bodies(cls): if cls._value is None: return None if cls._value.lower() == 'builtin': return (('earth', 'sun', 'moon') + tuple(PLAN94_BODY_NAME_TO_PLANET_INDEX.keys())) else: return tuple(BODY_NAME_TO_KERNEL_SPEC.keys()) def _get_kernel(value): """ Try importing jplephem, download/retrieve from cache the Satellite Planet Kernel corresponding to the given ephemeris. """ if value is None or value.lower() == 'builtin': return None try: from jplephem.spk import SPK except ImportError: raise ImportError("Solar system JPL ephemeris calculations require " "the jplephem package " "(https://pypi.python.org/pypi/jplephem)") if value.lower() == 'jpl': value = DEFAULT_JPL_EPHEMERIS if value.lower() in ('de430', 'de432s'): value = ('http://naif.jpl.nasa.gov/pub/naif/generic_kernels' '/spk/planets/{:s}.bsp'.format(value.lower())) elif os.path.isfile(value): return SPK.open(value) else: try: urlparse(value) except Exception: raise ValueError('{} was not one of the standard strings and ' 'could not be parsed as a file path or URL'.format(value)) return SPK.open(download_file(value, cache=True)) def _get_body_barycentric_posvel(body, time, ephemeris=None, get_velocity=True): """Calculate the barycentric position (and velocity) of a solar system body. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` get_velocity : bool, optional Whether or not to calculate the velocity as well as the position. Returns ------- position : `~astropy.coordinates.CartesianRepresentation` or tuple Barycentric (ICRS) position or tuple of position and velocity. Notes ----- No velocity can be calculated with the built-in ephemeris for the Moon. Whether or not velocities are calculated makes little difference for the built-in ephemerides, but for most JPL ephemeris files, the execution time roughly doubles. """ if ephemeris is None: ephemeris = solar_system_ephemeris.get() if ephemeris is None: raise ValueError(_EPHEMERIS_NOTE) kernel = solar_system_ephemeris.kernel else: kernel = _get_kernel(ephemeris) jd1, jd2 = get_jd12(time, 'tdb') if kernel is None: body = body.lower() earth_pv_helio, earth_pv_bary = erfa.epv00(jd1, jd2) if body == 'earth': body_pv_bary = earth_pv_bary elif body == 'moon': if get_velocity: raise KeyError("the Moon's velocity cannot be calculated with " "the '{0}' ephemeris.".format(ephemeris)) return calc_moon(time).cartesian else: sun_pv_bary = erfa.pvmpv(earth_pv_bary, earth_pv_helio) if body == 'sun': body_pv_bary = sun_pv_bary else: try: body_index = PLAN94_BODY_NAME_TO_PLANET_INDEX[body] except KeyError: raise KeyError("{0}'s position and velocity cannot be " "calculated with the '{1}' ephemeris." .format(body, ephemeris)) body_pv_helio = erfa.plan94(jd1, jd2, body_index) body_pv_bary = erfa.pvppv(body_pv_helio, sun_pv_bary) body_pos_bary = CartesianRepresentation( body_pv_bary['p'], unit=u.au, xyz_axis=-1, copy=False) if get_velocity: body_vel_bary = CartesianRepresentation( body_pv_bary['v'], unit=u.au/u.day, xyz_axis=-1, copy=False) else: if isinstance(body, str): # Look up kernel chain for JPL ephemeris, based on name try: kernel_spec = BODY_NAME_TO_KERNEL_SPEC[body.lower()] except KeyError: raise KeyError("{0}'s position cannot be calculated with " "the {1} ephemeris.".format(body, ephemeris)) else: # otherwise, assume the user knows what their doing and intentionally # passed in a kernel chain kernel_spec = body # jplephem cannot handle multi-D arrays, so convert to 1D here. jd1_shape = getattr(jd1, 'shape', ()) if len(jd1_shape) > 1: jd1, jd2 = jd1.ravel(), jd2.ravel() # Note that we use the new jd1.shape here to create a 1D result array. # It is reshaped below. body_posvel_bary = np.zeros((2 if get_velocity else 1, 3) + getattr(jd1, 'shape', ())) for pair in kernel_spec: spk = kernel[pair] if spk.data_type == 3: # Type 3 kernels contain both position and velocity. posvel = spk.compute(jd1, jd2) if get_velocity: body_posvel_bary += posvel.reshape(body_posvel_bary.shape) else: body_posvel_bary[0] += posvel[:4] else: # spk.generate first yields the position and then the # derivative. If no velocities are desired, body_posvel_bary # has only one element and thus the loop ends after a single # iteration, avoiding the velocity calculation. for body_p_or_v, p_or_v in zip(body_posvel_bary, spk.generate(jd1, jd2)): body_p_or_v += p_or_v body_posvel_bary.shape = body_posvel_bary.shape[:2] + jd1_shape body_pos_bary = CartesianRepresentation(body_posvel_bary[0], unit=u.km, copy=False) if get_velocity: body_vel_bary = CartesianRepresentation(body_posvel_bary[1], unit=u.km/u.day, copy=False) return (body_pos_bary, body_vel_bary) if get_velocity else body_pos_bary def get_body_barycentric_posvel(body, time, ephemeris=None): """Calculate the barycentric position and velocity of a solar system body. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` Returns ------- position, velocity : tuple of `~astropy.coordinates.CartesianRepresentation` Tuple of barycentric (ICRS) position and velocity. See also -------- get_body_barycentric : to calculate position only. This is faster by about a factor two for JPL kernels, but has no speed advantage for the built-in ephemeris. Notes ----- The velocity cannot be calculated for the Moon. To just get the position, use :func:`~astropy.coordinates.get_body_barycentric`. """ return _get_body_barycentric_posvel(body, time, ephemeris) get_body_barycentric_posvel.__doc__ += indent(_EPHEMERIS_NOTE)[4:] def get_body_barycentric(body, time, ephemeris=None): """Calculate the barycentric position of a solar system body. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` Returns ------- position : `~astropy.coordinates.CartesianRepresentation` Barycentric (ICRS) position of the body in cartesian coordinates See also -------- get_body_barycentric_posvel : to calculate both position and velocity. Notes ----- """ return _get_body_barycentric_posvel(body, time, ephemeris, get_velocity=False) get_body_barycentric.__doc__ += indent(_EPHEMERIS_NOTE)[4:] def _get_apparent_body_position(body, time, ephemeris): """Calculate the apparent position of body ``body`` relative to Earth. This corrects for the light-travel time to the object. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``~astropy.coordinates.solar_system_ephemeris.set`` Returns ------- cartesian_position : `~astropy.coordinates.CartesianRepresentation` Barycentric (ICRS) apparent position of the body in cartesian coordinates """ if ephemeris is None: ephemeris = solar_system_ephemeris.get() # builtin ephemeris and moon is a special case, with no need to account for # light travel time, since this is already included in the Meeus algorithm # used. if ephemeris == 'builtin' and body.lower() == 'moon': return get_body_barycentric(body, time, ephemeris) # Calculate position given approximate light travel time. delta_light_travel_time = 20. * u.s emitted_time = time light_travel_time = 0. * u.s earth_loc = get_body_barycentric('earth', time, ephemeris) while np.any(np.fabs(delta_light_travel_time) > 1.0e-8*u.s): body_loc = get_body_barycentric(body, emitted_time, ephemeris) earth_distance = (body_loc - earth_loc).norm() delta_light_travel_time = (light_travel_time - earth_distance/speed_of_light) light_travel_time = earth_distance/speed_of_light emitted_time = time - light_travel_time return get_body_barycentric(body, emitted_time, ephemeris) _get_apparent_body_position.__doc__ += indent(_EPHEMERIS_NOTE)[4:] def get_body(body, time, location=None, ephemeris=None): """ Get a `~astropy.coordinates.SkyCoord` for a solar system body as observed from a location on Earth in the `~astropy.coordinates.GCRS` reference system. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. location : `~astropy.coordinates.EarthLocation`, optional Location of observer on the Earth. If not given, will be taken from ``time`` (if not present, a geocentric observer will be assumed). ephemeris : str, optional Ephemeris to use. If not given, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` (which is set to 'builtin' by default). Returns ------- skycoord : `~astropy.coordinates.SkyCoord` GCRS Coordinate for the body Notes ----- """ if location is None: location = time.location cartrep = _get_apparent_body_position(body, time, ephemeris) icrs = ICRS(cartrep) if location is not None: obsgeoloc, obsgeovel = location.get_gcrs_posvel(time) gcrs = icrs.transform_to(GCRS(obstime=time, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel)) else: gcrs = icrs.transform_to(GCRS(obstime=time)) return SkyCoord(gcrs) get_body.__doc__ += indent(_EPHEMERIS_NOTE)[4:] def get_moon(time, location=None, ephemeris=None): """ Get a `~astropy.coordinates.SkyCoord` for the Earth's Moon as observed from a location on Earth in the `~astropy.coordinates.GCRS` reference system. Parameters ---------- time : `~astropy.time.Time` Time of observation location : `~astropy.coordinates.EarthLocation` Location of observer on the Earth. If none is supplied, taken from ``time`` (if not present, a geocentric observer will be assumed). ephemeris : str, optional Ephemeris to use. If not given, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` (which is set to 'builtin' by default). Returns ------- skycoord : `~astropy.coordinates.SkyCoord` GCRS Coordinate for the Moon Notes ----- """ return get_body('moon', time, location=location, ephemeris=ephemeris) get_moon.__doc__ += indent(_EPHEMERIS_NOTE)[4:] def _apparent_position_in_true_coordinates(skycoord): """ Convert Skycoord in GCRS frame into one in which RA and Dec are defined w.r.t to the true equinox and poles of the Earth """ jd1, jd2 = get_jd12(skycoord.obstime, 'tt') _, _, _, _, _, _, _, rbpn = erfa.pn00a(jd1, jd2) return SkyCoord(skycoord.frame.realize_frame( skycoord.cartesian.transform(rbpn)))
2e4edd1dda79546c4e9247ccbff96c731b89e382043a9e564c66ea28aa975e62
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # This module includes files automatically generated from ply (these end in # _lextab.py and _parsetab.py). To generate these files, remove them from this # folder, then build astropy and run the tests in-place: # # python setup.py build_ext --inplace # pytest astropy/coordinates # # You can then commit the changes to the re-generated _lextab.py and # _parsetab.py files. """ This module contains utility functions that are for internal use in astropy.coordinates.angles. Mainly they are conversions from one format of data to another. """ import os from warnings import warn import numpy as np from .errors import (IllegalHourWarning, IllegalHourError, IllegalMinuteWarning, IllegalMinuteError, IllegalSecondWarning, IllegalSecondError) from astropy.utils import format_exception from astropy import units as u TAB_HEADER = """# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # This file was automatically generated from ply. To re-generate this file, # remove it from this folder, then build astropy and run the tests in-place: # # python setup.py build_ext --inplace # pytest astropy/coordinates # # You can then commit the changes to this file. """ class _AngleParser: """ Parses the various angle formats including: * 01:02:30.43 degrees * 1 2 0 hours * 1°2′3″ * 1d2m3s * -1h2m3s This class should not be used directly. Use `parse_angle` instead. """ def __init__(self): # TODO: in principle, the parser should be invalidated if we change unit # system (from CDS to FITS, say). Might want to keep a link to the # unit_registry used, and regenerate the parser/lexer if it changes. # Alternatively, perhaps one should not worry at all and just pre- # generate the parser for each release (as done for unit formats). # For some discussion of this problem, see # https://github.com/astropy/astropy/issues/5350#issuecomment-248770151 if '_parser' not in _AngleParser.__dict__: _AngleParser._parser, _AngleParser._lexer = self._make_parser() @classmethod def _get_simple_unit_names(cls): simple_units = set( u.radian.find_equivalent_units(include_prefix_units=True)) simple_unit_names = set() # We filter out degree and hourangle, since those are treated # separately. for unit in simple_units: if unit != u.deg and unit != u.hourangle: simple_unit_names.update(unit.names) return sorted(simple_unit_names) @classmethod def _make_parser(cls): from astropy.extern.ply import lex, yacc # List of token names. tokens = ( 'SIGN', 'UINT', 'UFLOAT', 'COLON', 'DEGREE', 'HOUR', 'MINUTE', 'SECOND', 'SIMPLE_UNIT' ) # NOTE THE ORDERING OF THESE RULES IS IMPORTANT!! # Regular expression rules for simple tokens def t_UFLOAT(t): r'((\d+\.\d*)|(\.\d+))([eE][+-−]?\d+)?' # The above includes Unicode "MINUS SIGN" \u2212. It is # important to include the hyphen last, or the regex will # treat this as a range. t.value = float(t.value.replace('−', '-')) return t def t_UINT(t): r'\d+' t.value = int(t.value) return t def t_SIGN(t): r'[+−-]' # The above include Unicode "MINUS SIGN" \u2212. It is # important to include the hyphen last, or the regex will # treat this as a range. if t.value == '+': t.value = 1.0 else: t.value = -1.0 return t def t_SIMPLE_UNIT(t): t.value = u.Unit(t.value) return t t_SIMPLE_UNIT.__doc__ = '|'.join( '(?:{0})'.format(x) for x in cls._get_simple_unit_names()) t_COLON = ':' t_DEGREE = r'd(eg(ree(s)?)?)?|°' t_HOUR = r'hour(s)?|h(r)?|ʰ' t_MINUTE = r'm(in(ute(s)?)?)?|′|\'|ᵐ' t_SECOND = r's(ec(ond(s)?)?)?|″|\"|ˢ' # A string containing ignored characters (spaces) t_ignore = ' ' # Error handling rule def t_error(t): raise ValueError( "Invalid character at col {0}".format(t.lexpos)) lexer_exists = os.path.exists(os.path.join(os.path.dirname(__file__), 'angle_lextab.py')) # Build the lexer lexer = lex.lex(optimize=True, lextab='angle_lextab', outputdir=os.path.dirname(__file__)) if not lexer_exists: cls._add_tab_header('angle_lextab') def p_angle(p): ''' angle : hms | dms | arcsecond | arcminute | simple ''' p[0] = p[1] def p_sign(p): ''' sign : SIGN | ''' if len(p) == 2: p[0] = p[1] else: p[0] = 1.0 def p_ufloat(p): ''' ufloat : UFLOAT | UINT ''' p[0] = float(p[1]) def p_colon(p): ''' colon : sign UINT COLON ufloat | sign UINT COLON UINT COLON ufloat ''' if len(p) == 5: p[0] = (p[1] * p[2], p[4]) elif len(p) == 7: p[0] = (p[1] * p[2], p[4], p[6]) def p_spaced(p): ''' spaced : sign UINT ufloat | sign UINT UINT ufloat ''' if len(p) == 4: p[0] = (p[1] * p[2], p[3]) elif len(p) == 5: p[0] = (p[1] * p[2], p[3], p[4]) def p_generic(p): ''' generic : colon | spaced | sign UFLOAT | sign UINT ''' if len(p) == 2: p[0] = p[1] else: p[0] = p[1] * p[2] def p_hms(p): ''' hms : sign UINT HOUR | sign UINT HOUR ufloat | sign UINT HOUR UINT MINUTE | sign UINT HOUR UFLOAT MINUTE | sign UINT HOUR UINT MINUTE ufloat | sign UINT HOUR UINT MINUTE ufloat SECOND | generic HOUR ''' if len(p) == 3: p[0] = (p[1], u.hourangle) elif len(p) == 4: p[0] = (p[1] * p[2], u.hourangle) elif len(p) in (5, 6): p[0] = ((p[1] * p[2], p[4]), u.hourangle) elif len(p) in (7, 8): p[0] = ((p[1] * p[2], p[4], p[6]), u.hourangle) def p_dms(p): ''' dms : sign UINT DEGREE | sign UINT DEGREE ufloat | sign UINT DEGREE UINT MINUTE | sign UINT DEGREE UFLOAT MINUTE | sign UINT DEGREE UINT MINUTE ufloat | sign UINT DEGREE UINT MINUTE ufloat SECOND | generic DEGREE ''' if len(p) == 3: p[0] = (p[1], u.degree) elif len(p) == 4: p[0] = (p[1] * p[2], u.degree) elif len(p) in (5, 6): p[0] = ((p[1] * p[2], p[4]), u.degree) elif len(p) in (7, 8): p[0] = ((p[1] * p[2], p[4], p[6]), u.degree) def p_simple(p): ''' simple : generic | generic SIMPLE_UNIT ''' if len(p) == 2: p[0] = (p[1], None) else: p[0] = (p[1], p[2]) def p_arcsecond(p): ''' arcsecond : generic SECOND ''' p[0] = (p[1], u.arcsecond) def p_arcminute(p): ''' arcminute : generic MINUTE ''' p[0] = (p[1], u.arcminute) def p_error(p): raise ValueError parser_exists = os.path.exists(os.path.join(os.path.dirname(__file__), 'angle_parsetab.py')) parser = yacc.yacc(debug=False, tabmodule='angle_parsetab', outputdir=os.path.dirname(__file__), write_tables=True) if not parser_exists: cls._add_tab_header('angle_parsetab') return parser, lexer @classmethod def _add_tab_header(cls, name): lextab_file = os.path.join(os.path.dirname(__file__), name + '.py') with open(lextab_file, 'r') as f: contents = f.read() with open(lextab_file, 'w') as f: f.write(TAB_HEADER) f.write(contents) def parse(self, angle, unit, debug=False): try: found_angle, found_unit = self._parser.parse( angle, lexer=self._lexer, debug=debug) except ValueError as e: if str(e): raise ValueError("{0} in angle {1!r}".format( str(e), angle)) else: raise ValueError( "Syntax error parsing angle {0!r}".format(angle)) if unit is None and found_unit is None: raise u.UnitsError("No unit specified") return found_angle, found_unit def _check_hour_range(hrs): """ Checks that the given value is in the range (-24, 24). """ if np.any(np.abs(hrs) == 24.): warn(IllegalHourWarning(hrs, 'Treating as 24 hr')) elif np.any(hrs < -24.) or np.any(hrs > 24.): raise IllegalHourError(hrs) def _check_minute_range(m): """ Checks that the given value is in the range [0,60]. If the value is equal to 60, then a warning is raised. """ if np.any(m == 60.): warn(IllegalMinuteWarning(m, 'Treating as 0 min, +1 hr/deg')) elif np.any(m < -60.) or np.any(m > 60.): # "Error: minutes not in range [-60,60) ({0}).".format(min)) raise IllegalMinuteError(m) def _check_second_range(sec): """ Checks that the given value is in the range [0,60]. If the value is equal to 60, then a warning is raised. """ if np.any(sec == 60.): warn(IllegalSecondWarning(sec, 'Treating as 0 sec, +1 min')) elif sec is None: pass elif np.any(sec < -60.) or np.any(sec > 60.): # "Error: seconds not in range [-60,60) ({0}).".format(sec)) raise IllegalSecondError(sec) def check_hms_ranges(h, m, s): """ Checks that the given hour, minute and second are all within reasonable range. """ _check_hour_range(h) _check_minute_range(m) _check_second_range(s) return None def parse_angle(angle, unit=None, debug=False): """ Parses an input string value into an angle value. Parameters ---------- angle : str A string representing the angle. May be in one of the following forms: * 01:02:30.43 degrees * 1 2 0 hours * 1°2′3″ * 1d2m3s * -1h2m3s unit : `~astropy.units.UnitBase` instance, optional The unit used to interpret the string. If ``unit`` is not provided, the unit must be explicitly represented in the string, either at the end or as number separators. debug : bool, optional If `True`, print debugging information from the parser. Returns ------- value, unit : tuple ``value`` is the value as a floating point number or three-part tuple, and ``unit`` is a `Unit` instance which is either the unit passed in or the one explicitly mentioned in the input string. """ return _AngleParser().parse(angle, unit, debug=debug) def degrees_to_dms(d): """ Convert a floating-point degree value into a ``(degree, arcminute, arcsecond)`` tuple. """ sign = np.copysign(1.0, d) (df, d) = np.modf(np.abs(d)) # (degree fraction, degree) (mf, m) = np.modf(df * 60.) # (minute fraction, minute) s = mf * 60. return np.floor(sign * d), sign * np.floor(m), sign * s def dms_to_degrees(d, m, s=None): """ Convert degrees, arcminute, arcsecond to a float degrees value. """ _check_minute_range(m) _check_second_range(s) # determine sign sign = np.copysign(1.0, d) try: d = np.floor(np.abs(d)) if s is None: m = np.abs(m) s = 0 else: m = np.floor(np.abs(m)) s = np.abs(s) except ValueError: raise ValueError(format_exception( "{func}: dms values ({1[0]},{2[1]},{3[2]}) could not be " "converted to numbers.", d, m, s)) return sign * (d + m / 60. + s / 3600.) def hms_to_hours(h, m, s=None): """ Convert hour, minute, second to a float hour value. """ check_hms_ranges(h, m, s) # determine sign sign = np.copysign(1.0, h) try: h = np.floor(np.abs(h)) if s is None: m = np.abs(m) s = 0 else: m = np.floor(np.abs(m)) s = np.abs(s) except ValueError: raise ValueError(format_exception( "{func}: HMS values ({1[0]},{2[1]},{3[2]}) could not be " "converted to numbers.", h, m, s)) return sign * (h + m / 60. + s / 3600.) def hms_to_degrees(h, m, s): """ Convert hour, minute, second to a float degrees value. """ return hms_to_hours(h, m, s) * 15. def hms_to_radians(h, m, s): """ Convert hour, minute, second to a float radians value. """ return u.degree.to(u.radian, hms_to_degrees(h, m, s)) def hms_to_dms(h, m, s): """ Convert degrees, arcminutes, arcseconds to an ``(hour, minute, second)`` tuple. """ return degrees_to_dms(hms_to_degrees(h, m, s)) def hours_to_decimal(h): """ Convert any parseable hour value into a float value. """ from . import angles return angles.Angle(h, unit=u.hourangle).hour def hours_to_radians(h): """ Convert an angle in Hours to Radians. """ return u.hourangle.to(u.radian, h) def hours_to_hms(h): """ Convert an floating-point hour value into an ``(hour, minute, second)`` tuple. """ sign = np.copysign(1.0, h) (hf, h) = np.modf(np.abs(h)) # (degree fraction, degree) (mf, m) = np.modf(hf * 60.0) # (minute fraction, minute) s = mf * 60.0 return (np.floor(sign * h), sign * np.floor(m), sign * s) def radians_to_degrees(r): """ Convert an angle in Radians to Degrees. """ return u.radian.to(u.degree, r) def radians_to_hours(r): """ Convert an angle in Radians to Hours. """ return u.radian.to(u.hourangle, r) def radians_to_hms(r): """ Convert an angle in Radians to an ``(hour, minute, second)`` tuple. """ hours = radians_to_hours(r) return hours_to_hms(hours) def radians_to_dms(r): """ Convert an angle in Radians to an ``(degree, arcminute, arcsecond)`` tuple. """ degrees = u.radian.to(u.degree, r) return degrees_to_dms(degrees) def sexagesimal_to_string(values, precision=None, pad=False, sep=(':',), fields=3): """ Given an already separated tuple of sexagesimal values, returns a string. See `hours_to_string` and `degrees_to_string` for a higher-level interface to this functionality. """ # Check to see if values[0] is negative, using np.copysign to handle -0 sign = np.copysign(1.0, values[0]) # If the coordinates are negative, we need to take the absolute values. # We use np.abs because abs(-0) is -0 # TODO: Is this true? (MHvK, 2018-02-01: not on my system) values = [np.abs(value) for value in values] if pad: if sign == -1: pad = 3 else: pad = 2 else: pad = 0 if not isinstance(sep, tuple): sep = tuple(sep) if fields < 1 or fields > 3: raise ValueError( "fields must be 1, 2, or 3") if not sep: # empty string, False, or None, etc. sep = ('', '', '') elif len(sep) == 1: if fields == 3: sep = sep + (sep[0], '') elif fields == 2: sep = sep + ('', '') else: sep = ('', '', '') elif len(sep) == 2: sep = sep + ('',) elif len(sep) != 3: raise ValueError( "Invalid separator specification for converting angle to string.") # Simplify the expression based on the requested precision. For # example, if the seconds will round up to 60, we should convert # it to 0 and carry upwards. If the field is hidden (by the # fields kwarg) we round up around the middle, 30.0. if precision is None: rounding_thresh = 60.0 - (10.0 ** -4) else: rounding_thresh = 60.0 - (10.0 ** -precision) if fields == 3 and values[2] >= rounding_thresh: values[2] = 0.0 values[1] += 1.0 elif fields < 3 and values[2] >= 30.0: values[1] += 1.0 if fields >= 2 and values[1] >= 60.0: values[1] = 0.0 values[0] += 1.0 elif fields < 2 and values[1] >= 30.0: values[0] += 1.0 literal = [] last_value = '' literal.append('{0:0{pad}.0f}{sep[0]}') if fields >= 2: literal.append('{1:02d}{sep[1]}') if fields == 3: if precision is None: last_value = '{0:.4f}'.format(abs(values[2])) last_value = last_value.rstrip('0').rstrip('.') else: last_value = '{0:.{precision}f}'.format( abs(values[2]), precision=precision) if len(last_value) == 1 or last_value[1] == '.': last_value = '0' + last_value literal.append('{last_value}{sep[2]}') literal = ''.join(literal) return literal.format(np.copysign(values[0], sign), int(values[1]), values[2], sep=sep, pad=pad, last_value=last_value) def hours_to_string(h, precision=5, pad=False, sep=('h', 'm', 's'), fields=3): """ Takes a decimal hour value and returns a string formatted as hms with separator specified by the 'sep' parameter. ``h`` must be a scalar. """ h, m, s = hours_to_hms(h) return sexagesimal_to_string((h, m, s), precision=precision, pad=pad, sep=sep, fields=fields) def degrees_to_string(d, precision=5, pad=False, sep=':', fields=3): """ Takes a decimal hour value and returns a string formatted as dms with separator specified by the 'sep' parameter. ``d`` must be a scalar. """ d, m, s = degrees_to_dms(d) return sexagesimal_to_string((d, m, s), precision=precision, pad=pad, sep=sep, fields=fields) def angular_separation(lon1, lat1, lon2, lat2): """ Angular separation between two points on a sphere. Parameters ---------- lon1, lat1, lon2, lat2 : `Angle`, `~astropy.units.Quantity` or float Longitude and latitude of the two points. Quantities should be in angular units; floats in radians. Returns ------- angular separation : `~astropy.units.Quantity` or float Type depends on input; `Quantity` in angular units, or float in radians. Notes ----- The angular separation is calculated using the Vincenty formula [1]_, which is slightly more complex and computationally expensive than some alternatives, but is stable at at all distances, including the poles and antipodes. .. [1] https://en.wikipedia.org/wiki/Great-circle_distance """ sdlon = np.sin(lon2 - lon1) cdlon = np.cos(lon2 - lon1) slat1 = np.sin(lat1) slat2 = np.sin(lat2) clat1 = np.cos(lat1) clat2 = np.cos(lat2) num1 = clat2 * sdlon num2 = clat1 * slat2 - slat1 * clat2 * cdlon denominator = slat1 * slat2 + clat1 * clat2 * cdlon return np.arctan2(np.hypot(num1, num2), denominator) def position_angle(lon1, lat1, lon2, lat2): """ Position Angle (East of North) between two points on a sphere. Parameters ---------- lon1, lat1, lon2, lat2 : `Angle`, `~astropy.units.Quantity` or float Longitude and latitude of the two points. Quantities should be in angular units; floats in radians. Returns ------- pa : `~astropy.coordinates.Angle` The (positive) position angle of the vector pointing from position 1 to position 2. If any of the angles are arrays, this will contain an array following the appropriate `numpy` broadcasting rules. """ from .angles import Angle deltalon = lon2 - lon1 colat = np.cos(lat2) x = np.sin(lat2) * np.cos(lat1) - colat * np.sin(lat1) * np.cos(deltalon) y = np.sin(deltalon) * colat return Angle(np.arctan2(y, x), u.radian).wrap_at(360*u.deg) def offset_by(lon, lat, posang, distance): """ Point with the given offset from the given point. Parameters ---------- lon, lat, posang, distance : `Angle`, `~astropy.units.Quantity` or float Longitude and latitude of the starting point, position angle and distance to the final point. Quantities should be in angular units; floats in radians. Polar points at lat= +/-90 are treated as limit of +/-(90-epsilon) and same lon. Returns ------- lon, lat : `~astropy.coordinates.Angle` The position of the final point. If any of the angles are arrays, these will contain arrays following the appropriate `numpy` broadcasting rules. 0 <= lon < 2pi. Notes ----- """ from .angles import Angle # Calculations are done using the spherical trigonometry sine and cosine rules # of the triangle A at North Pole, B at starting point, C at final point # with angles A (change in lon), B (posang), C (not used, but negative reciprocal posang) # with sides a (distance), b (final co-latitude), c (starting colatitude) # B, a, c are knowns; A and b are unknowns # https://en.wikipedia.org/wiki/Spherical_trigonometry cos_a = np.cos(distance) sin_a = np.sin(distance) cos_c = np.sin(lat) sin_c = np.cos(lat) cos_B = np.cos(posang) sin_B = np.sin(posang) # cosine rule: Know two sides: a,c and included angle: B; get unknown side b cos_b = cos_c * cos_a + sin_c * sin_a * cos_B # sin_b = np.sqrt(1 - cos_b**2) # sine rule and cosine rule for A (using both lets arctan2 pick quadrant). # multiplying both sin_A and cos_A by x=sin_b * sin_c prevents /0 errors # at poles. Correct for the x=0 multiplication a few lines down. # sin_A/sin_a == sin_B/sin_b # Sine rule xsin_A = sin_a * sin_B * sin_c # cos_a == cos_b * cos_c + sin_b * sin_c * cos_A # cosine rule xcos_A = cos_a - cos_b * cos_c A = Angle(np.arctan2(xsin_A, xcos_A), u.radian) # Treat the poles as if they are infinitesimally far from pole but at given lon small_sin_c = sin_c < 1e-12 if small_sin_c.any(): # For south pole (cos_c = -1), A = posang; for North pole, A=180 deg - posang A_pole = (90*u.deg + cos_c*(90*u.deg-Angle(posang, u.radian))).to(u.rad) if A.shape: # broadcast to ensure the shape is like that of A, which is also # affected by the (possible) shapes of lat, posang, and distance. small_sin_c = np.broadcast_to(small_sin_c, A.shape) A[small_sin_c] = A_pole[small_sin_c] else: A = A_pole outlon = (Angle(lon, u.radian) + A).wrap_at(360.0*u.deg).to(u.deg) outlat = Angle(np.arcsin(cos_b), u.radian).to(u.deg) return outlon, outlat
46a0e4302697618c642e52cc1357797e43f3b70df697ae6f9246ddbe76d0575c
"""Implements the Astropy TestRunner which is a thin wrapper around py.test.""" import inspect import os import glob import copy import shlex import sys import tempfile import warnings import importlib from collections import OrderedDict from importlib.util import find_spec from functools import wraps from astropy.config.paths import set_temp_config, set_temp_cache from astropy.utils import find_current_module from astropy.utils.exceptions import AstropyWarning, AstropyDeprecationWarning __all__ = ['TestRunner', 'TestRunnerBase', 'keyword'] class keyword: """ A decorator to mark a method as keyword argument for the ``TestRunner``. Parameters ---------- default_value : `object` The default value for the keyword argument. (Default: `None`) priority : `int` keyword argument methods are executed in order of descending priority. """ def __init__(self, default_value=None, priority=0): self.default_value = default_value self.priority = priority def __call__(self, f): def keyword(*args, **kwargs): return f(*args, **kwargs) keyword._default_value = self.default_value keyword._priority = self.priority # Set __doc__ explicitly here rather than using wraps because we want # to keep the function name as keyword so we can inspect it later. keyword.__doc__ = f.__doc__ return keyword class TestRunnerBase: """ The base class for the TestRunner. A test runner can be constructed by creating a subclass of this class and defining 'keyword' methods. These are methods that have the `~astropy.tests.runner.keyword` decorator, these methods are used to construct allowed keyword arguments to the `~astropy.tests.runner.TestRunnerBase.run_tests` method as a way to allow customization of individual keyword arguments (and associated logic) without having to re-implement the whole `~astropy.tests.runner.TestRunnerBase.run_tests` method. Examples -------- A simple keyword method:: class MyRunner(TestRunnerBase): @keyword('default_value'): def spam(self, spam, kwargs): \"\"\" spam : `str` The parameter description for the run_tests docstring. \"\"\" # Return value must be a list with a CLI parameter for pytest. return ['--spam={}'.format(spam)] """ def __init__(self, base_path): self.base_path = os.path.abspath(base_path) def __new__(cls, *args, **kwargs): # Before constructing the class parse all the methods that have been # decorated with ``keyword``. # The objective of this method is to construct a default set of keyword # arguments to the ``run_tests`` method. It does this by inspecting the # methods of the class for functions with the name ``keyword`` which is # the name of the decorator wrapping function. Once it has created this # dictionary, it also formats the docstring of ``run_tests`` to be # comprised of the docstrings for the ``keyword`` methods. # To add a keyword argument to the ``run_tests`` method, define a new # method decorated with ``@keyword`` and with the ``self, name, kwargs`` # signature. # Get all 'function' members as the wrapped methods are functions functions = inspect.getmembers(cls, predicate=inspect.isfunction) # Filter out anything that's not got the name 'keyword' keywords = filter(lambda func: func[1].__name__ == 'keyword', functions) # Sort all keywords based on the priority flag. sorted_keywords = sorted(keywords, key=lambda x: x[1]._priority, reverse=True) cls.keywords = OrderedDict() doc_keywords = "" for name, func in sorted_keywords: # Here we test if the function has been overloaded to return # NotImplemented which is the way to disable arguments on # subclasses. If it has been disabled we need to remove it from the # default keywords dict. We do it in the try except block because # we do not have access to an instance of the class, so this is # going to error unless the method is just doing `return # NotImplemented`. try: # Second argument is False, as it is normally a bool. # The other two are placeholders for objects. if func(None, False, None) is NotImplemented: continue except Exception: pass # Construct the default kwargs dict and docstring cls.keywords[name] = func._default_value if func.__doc__: doc_keywords += ' '*8 doc_keywords += func.__doc__.strip() doc_keywords += '\n\n' cls.run_tests.__doc__ = cls.RUN_TESTS_DOCSTRING.format(keywords=doc_keywords) return super().__new__(cls) def _generate_args(self, **kwargs): # Update default values with passed kwargs # but don't modify the defaults keywords = copy.deepcopy(self.keywords) keywords.update(kwargs) # Iterate through the keywords (in order of priority) args = [] for keyword in keywords.keys(): func = getattr(self, keyword) result = func(keywords[keyword], keywords) # Allow disabling of options in a subclass if result is NotImplemented: raise TypeError("run_tests() got an unexpected keyword argument {}".format(keyword)) # keyword methods must return a list if not isinstance(result, list): raise TypeError("{} keyword method must return a list".format(keyword)) args += result return args RUN_TESTS_DOCSTRING = \ """ Run the tests for the package. This method builds arguments for and then calls ``pytest.main``. Parameters ---------- {keywords} """ _required_dependancies = ['pytest', 'pytest_remotedata', 'pytest_doctestplus'] _missing_dependancy_error = "Test dependencies are missing. You should install the 'pytest-astropy' package." @classmethod def _has_test_dependencies(cls): # pragma: no cover # Using the test runner will not work without these dependencies, but # pytest-openfiles is optional, so it's not listed here. for module in cls._required_dependancies: spec = find_spec(module) # Checking loader accounts for packages that were uninstalled if spec is None or spec.loader is None: raise RuntimeError(cls._missing_dependancy_error) def run_tests(self, **kwargs): # The following option will include eggs inside a .eggs folder in # sys.path when running the tests. This is possible so that when # runnning python setup.py test, test dependencies installed via e.g. # tests_requires are available here. This is not an advertised option # since it is only for internal use if kwargs.pop('add_local_eggs_to_path', False): # Add each egg to sys.path individually for egg in glob.glob(os.path.join('.eggs', '*.egg')): sys.path.insert(0, egg) # We now need to force reload pkg_resources in case any pytest # plugins were added above, so that their entry points are picked up import pkg_resources importlib.reload(pkg_resources) self._has_test_dependencies() # pragma: no cover # The docstring for this method is defined as a class variable. # This allows it to be built for each subclass in __new__. # Don't import pytest until it's actually needed to run the tests import pytest # Raise error for undefined kwargs allowed_kwargs = set(self.keywords.keys()) passed_kwargs = set(kwargs.keys()) if not passed_kwargs.issubset(allowed_kwargs): wrong_kwargs = list(passed_kwargs.difference(allowed_kwargs)) raise TypeError("run_tests() got an unexpected keyword argument {}".format(wrong_kwargs[0])) args = self._generate_args(**kwargs) if kwargs.get('plugins', None) is not None: plugins = kwargs.pop('plugins') elif self.keywords.get('plugins', None) is not None: plugins = self.keywords['plugins'] else: plugins = [] # Override the config locations to not make a new directory nor use # existing cache or config. Note that we need to do this here in # addition to in conftest.py - for users running tests interactively # in e.g. IPython, conftest.py would get read in too late, so we need # to do it here - but at the same time the code here doesn't work when # running tests in parallel mode because this uses subprocesses which # don't know about the temporary config/cache. astropy_config = tempfile.mkdtemp('astropy_config') astropy_cache = tempfile.mkdtemp('astropy_cache') # Have to use nested with statements for cross-Python support # Note, using these context managers here is superfluous if the # config_dir or cache_dir options to py.test are in use, but it's # also harmless to nest the contexts with set_temp_config(astropy_config, delete=True): with set_temp_cache(astropy_cache, delete=True): return pytest.main(args=args, plugins=plugins) @classmethod def make_test_runner_in(cls, path): """ Constructs a `TestRunner` to run in the given path, and returns a ``test()`` function which takes the same arguments as `TestRunner.run_tests`. The returned ``test()`` function will be defined in the module this was called from. This is used to implement the ``astropy.test()`` function (or the equivalent for affiliated packages). """ runner = cls(path) @wraps(runner.run_tests, ('__doc__',)) def test(**kwargs): return runner.run_tests(**kwargs) module = find_current_module(2) if module is not None: test.__module__ = module.__name__ # A somewhat unusual hack, but delete the attached __wrapped__ # attribute--although this is normally used to tell if the function # was wrapped with wraps, on some version of Python this is also # used to determine the signature to display in help() which is # not useful in this case. We don't really care in this case if the # function was wrapped either if hasattr(test, '__wrapped__'): del test.__wrapped__ test.__test__ = False return test class TestRunner(TestRunnerBase): """ A test runner for astropy tests """ def packages_path(self, packages, base_path, error=None, warning=None): """ Generates the path for multiple packages. Parameters ---------- packages : str Comma separated string of packages. base_path : str Base path to the source code or documentation. error : str Error message to be raised as ``ValueError``. Individual package name and path can be accessed by ``{name}`` and ``{path}`` respectively. No error is raised if `None`. (Default: `None`) warning : str Warning message to be issued. Individual package name and path can be accessed by ``{name}`` and ``{path}`` respectively. No warning is issues if `None`. (Default: `None`) Returns ------- paths : list of str List of stings of existing package paths. """ packages = packages.split(",") paths = [] for package in packages: path = os.path.join( base_path, package.replace('.', os.path.sep)) if not os.path.isdir(path): info = {'name': package, 'path': path} if error is not None: raise ValueError(error.format(**info)) if warning is not None: warnings.warn(warning.format(**info)) else: paths.append(path) return paths # Increase priority so this warning is displayed first. @keyword(priority=1000) def coverage(self, coverage, kwargs): if coverage: warnings.warn( "The coverage option is ignored on run_tests, since it " "can not be made to work in that context. Use " "'python setup.py test --coverage' instead.", AstropyWarning) return [] # test_path depends on self.package_path so make sure this runs before # test_path. @keyword(priority=1) def package(self, package, kwargs): """ package : str, optional The name of a specific package to test, e.g. 'io.fits' or 'utils'. Accepts comma separated string to specify multiple packages. If nothing is specified all default tests are run. """ if package is None: self.package_path = [self.base_path] else: error_message = ('package to test is not found: {name} ' '(at path {path}).') self.package_path = self.packages_path(package, self.base_path, error=error_message) if not kwargs['test_path']: return self.package_path return [] @keyword() def test_path(self, test_path, kwargs): """ test_path : str, optional Specify location to test by path. May be a single file or directory. Must be specified absolutely or relative to the calling directory. """ all_args = [] # Ensure that the package kwarg has been run. self.package(kwargs['package'], kwargs) if test_path: base, ext = os.path.splitext(test_path) if ext in ('.rst', ''): if kwargs['docs_path'] is None: # This shouldn't happen from "python setup.py test" raise ValueError( "Can not test .rst files without a docs_path " "specified.") abs_docs_path = os.path.abspath(kwargs['docs_path']) abs_test_path = os.path.abspath( os.path.join(abs_docs_path, os.pardir, test_path)) common = os.path.commonprefix((abs_docs_path, abs_test_path)) if os.path.exists(abs_test_path) and common == abs_docs_path: # Turn on the doctest_rst plugin all_args.append('--doctest-rst') test_path = abs_test_path # Check that the extensions are in the path and not at the end to # support specifying the name of the test, i.e. # test_quantity.py::test_unit if not (os.path.isdir(test_path) or ('.py' in test_path or '.rst' in test_path)): raise ValueError("Test path must be a directory or a path to " "a .py or .rst file") return all_args + [test_path] return [] @keyword() def args(self, args, kwargs): """ args : str, optional Additional arguments to be passed to ``pytest.main`` in the ``args`` keyword argument. """ if args: return shlex.split(args, posix=not sys.platform.startswith('win')) return [] @keyword(default_value=['astropy.tests.plugins.display']) def plugins(self, plugins, kwargs): """ plugins : list, optional Plugins to be passed to ``pytest.main`` in the ``plugins`` keyword argument. """ # Plugins are handled independently by `run_tests` so we define this # keyword just for the docstring return [] @keyword() def verbose(self, verbose, kwargs): """ verbose : bool, optional Convenience option to turn on verbose output from py.test. Passing True is the same as specifying ``-v`` in ``args``. """ if verbose: return ['-v'] return [] @keyword() def pastebin(self, pastebin, kwargs): """ pastebin : ('failed', 'all', None), optional Convenience option for turning on py.test pastebin output. Set to 'failed' to upload info for failed tests, or 'all' to upload info for all tests. """ if pastebin is not None: if pastebin in ['failed', 'all']: return ['--pastebin={0}'.format(pastebin)] else: raise ValueError("pastebin should be 'failed' or 'all'") return [] @keyword(default_value='none') def remote_data(self, remote_data, kwargs): """ remote_data : {'none', 'astropy', 'any'}, optional Controls whether to run tests marked with @pytest.mark.remote_data. This can be set to run no tests with remote data (``none``), only ones that use data from http://data.astropy.org (``astropy``), or all tests that use remote data (``any``). The default is ``none``. """ if remote_data is True: remote_data = 'any' elif remote_data is False: remote_data = 'none' elif remote_data not in ('none', 'astropy', 'any'): warnings.warn("The remote_data option should be one of " "none/astropy/any (found {0}). For backward-compatibility, " "assuming 'any', but you should change the option to be " "one of the supported ones to avoid issues in " "future.".format(remote_data), AstropyDeprecationWarning) remote_data = 'any' return ['--remote-data={0}'.format(remote_data)] @keyword() def pep8(self, pep8, kwargs): """ pep8 : bool, optional Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests. Same as specifying ``--pep8 -k pep8`` in ``args``. """ if pep8: try: import pytest_pep8 # pylint: disable=W0611 except ImportError: raise ImportError('PEP8 checking requires pytest-pep8 plugin: ' 'http://pypi.python.org/pypi/pytest-pep8') else: return ['--pep8', '-k', 'pep8'] return [] @keyword() def pdb(self, pdb, kwargs): """ pdb : bool, optional Turn on PDB post-mortem analysis for failing tests. Same as specifying ``--pdb`` in ``args``. """ if pdb: return ['--pdb'] return [] @keyword() def open_files(self, open_files, kwargs): """ open_files : bool, optional Fail when any tests leave files open. Off by default, because this adds extra run time to the test suite. Requires the ``psutil`` package. """ if open_files: if kwargs['parallel'] != 0: raise SystemError( "open file detection may not be used in conjunction with " "parallel testing.") try: import psutil # pylint: disable=W0611 except ImportError: raise SystemError( "open file detection requested, but psutil package " "is not installed.") return ['--open-files'] print("Checking for unclosed files") return [] @keyword(0) def parallel(self, parallel, kwargs): """ parallel : int or 'auto', optional When provided, run the tests in parallel on the specified number of CPUs. If parallel is ``'auto'``, it will use the all the cores on the machine. Requires the ``pytest-xdist`` plugin. """ if parallel != 0: try: from xdist import plugin # noqa except ImportError: raise SystemError( "running tests in parallel requires the pytest-xdist package") return ['-n', str(parallel)] return [] @keyword() def docs_path(self, docs_path, kwargs): """ docs_path : str, optional The path to the documentation .rst files. """ paths = [] if docs_path is not None and not kwargs['skip_docs']: if kwargs['package'] is not None: warning_message = ("Can not test .rst docs for {name}, since " "docs path ({path}) does not exist.") paths = self.packages_path(kwargs['package'], docs_path, warning=warning_message) elif not kwargs['test_path']: paths = [docs_path, ] if len(paths) and not kwargs['test_path']: paths.append('--doctest-rst') return paths @keyword() def skip_docs(self, skip_docs, kwargs): """ skip_docs : `bool`, optional When `True`, skips running the doctests in the .rst files. """ # Skip docs is a bool used by docs_path only. return [] @keyword() def repeat(self, repeat, kwargs): """ repeat : `int`, optional If set, specifies how many times each test should be run. This is useful for diagnosing sporadic failures. """ if repeat: return ['--repeat={0}'.format(repeat)] return [] # Override run_tests for astropy-specific fixes def run_tests(self, **kwargs): # This prevents cyclical import problems that make it # impossible to test packages that define Table types on their # own. from astropy.table import Table # pylint: disable=W0611 return super().run_tests(**kwargs)
1a2467b69cda9c55c3e1b10242f7939eb5f6dccbb4a519f585d612c18df08857
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants in SI units. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ import numpy as np from .constant import Constant, EMConstant # PHYSICAL CONSTANTS class CODATA2014(Constant): default_reference = 'CODATA 2014' _registry = {} _has_incompatible_units = set() class EMCODATA2014(CODATA2014, EMConstant): _registry = CODATA2014._registry h = CODATA2014('h', "Planck constant", 6.626070040e-34, 'J s', 0.000000081e-34, system='si') hbar = CODATA2014('hbar', "Reduced Planck constant", 1.054571800e-34, 'J s', 0.000000013e-34, system='si') k_B = CODATA2014('k_B', "Boltzmann constant", 1.38064852e-23, 'J / (K)', 0.00000079e-23, system='si') c = CODATA2014('c', "Speed of light in vacuum", 299792458., 'm / (s)', 0.0, system='si') G = CODATA2014('G', "Gravitational constant", 6.67408e-11, 'm3 / (kg s2)', 0.00031e-11, system='si') g0 = CODATA2014('g0', "Standard acceleration of gravity", 9.80665, 'm / s2', 0.0, system='si') m_p = CODATA2014('m_p', "Proton mass", 1.672621898e-27, 'kg', 0.000000021e-27, system='si') m_n = CODATA2014('m_n', "Neutron mass", 1.674927471e-27, 'kg', 0.000000021e-27, system='si') m_e = CODATA2014('m_e', "Electron mass", 9.10938356e-31, 'kg', 0.00000011e-31, system='si') u = CODATA2014('u', "Atomic mass", 1.660539040e-27, 'kg', 0.000000020e-27, system='si') sigma_sb = CODATA2014('sigma_sb', "Stefan-Boltzmann constant", 5.670367e-8, 'W / (K4 m2)', 0.000013e-8, system='si') e = EMCODATA2014('e', 'Electron charge', 1.6021766208e-19, 'C', 0.0000000098e-19, system='si') eps0 = EMCODATA2014('eps0', 'Electric constant', 8.854187817e-12, 'F/m', 0.0, system='si') N_A = CODATA2014('N_A', "Avogadro's number", 6.022140857e23, '1 / (mol)', 0.000000074e23, system='si') R = CODATA2014('R', "Gas constant", 8.3144598, 'J / (K mol)', 0.0000048, system='si') Ryd = CODATA2014('Ryd', 'Rydberg constant', 10973731.568508, '1 / (m)', 0.000065, system='si') a0 = CODATA2014('a0', "Bohr radius", 0.52917721067e-10, 'm', 0.00000000012e-10, system='si') muB = CODATA2014('muB', "Bohr magneton", 927.4009994e-26, 'J/T', 0.00002e-26, system='si') alpha = CODATA2014('alpha', "Fine-structure constant", 7.2973525664e-3, '', 0.0000000017e-3, system='si') atm = CODATA2014('atm', "Standard atmosphere", 101325, 'Pa', 0.0, system='si') mu0 = CODATA2014('mu0', "Magnetic constant", 4.0e-7 * np.pi, 'N/A2', 0.0, system='si') sigma_T = CODATA2014('sigma_T', "Thomson scattering cross-section", 0.66524587158e-28, 'm2', 0.00000000091e-28, system='si') b_wien = CODATA2014('b_wien', 'Wien wavelength displacement law constant', 2.8977729e-3, 'm K', 0.0000017e-3, system='si') # cgs constants # Only constants that cannot be converted directly from S.I. are defined here. e_esu = EMCODATA2014(e.abbrev, e.name, e.value * c.value * 10.0, 'statC', e.uncertainty * c.value * 10.0, system='esu') e_emu = EMCODATA2014(e.abbrev, e.name, e.value / 10, 'abC', e.uncertainty / 10, system='emu') e_gauss = EMCODATA2014(e.abbrev, e.name, e.value * c.value * 10.0, 'Fr', e.uncertainty * c.value * 10.0, system='gauss')
b204b3f802f764be09a477ce14d248e36047e03d22e460f03a0403c7f5571641
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains astronomical and physical constants for use in Astropy or other places. A typical use case might be:: >>> from astropy.constants import c, m_e >>> # ... define the mass of something you want the rest energy of as m ... >>> m = m_e >>> E = m * c**2 >>> E.to('MeV') # doctest: +FLOAT_CMP <Quantity 0.510998927603161 MeV> """ import warnings from contextlib import contextmanager from astropy.utils import find_current_module # Hack to make circular imports with units work from astropy import units del units # These lines import some namespaces into the top level from .constant import Constant, EMConstant # noqa from . import si # noqa from . import cgs # noqa from .config import codata, iaudata from . import utils as _utils # for updating the constants module docstring _lines = [ 'The following constants are available:\n', '========== ============== ================ =========================', ' Name Value Unit Description', '========== ============== ================ =========================', ] # Catch warnings about "already has a definition in the None system" with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'Constant .*already has a definition') _utils._set_c(codata, iaudata, find_current_module(), not_in_module_only=False, doclines=_lines, set_class=True) _lines.append(_lines[1]) if __doc__ is not None: __doc__ += '\n'.join(_lines) # TODO: Re-implement in a way that is more consistent with astropy.units. # See https://github.com/astropy/astropy/pull/7008 discussions. @contextmanager def set_enabled_constants(modname): """ Context manager to temporarily set values in the ``constants`` namespace to an older version. See :ref:`astropy-constants-prior` for usage. Parameters ---------- modname : {'astropyconst13'} Name of the module containing an older version. """ # Re-import here because these were deleted from namespace on init. import importlib import warnings from astropy.utils import find_current_module from . import utils as _utils try: modmodule = importlib.import_module('.constants.' + modname, 'astropy') codata_context = modmodule.codata iaudata_context = modmodule.iaudata except ImportError as exc: exc.args += ('Context manager does not currently handle {}' .format(modname),) raise module = find_current_module() # Ignore warnings about "Constant xxx already has a definition..." with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'Constant .*already has a definition') _utils._set_c(codata_context, iaudata_context, module, not_in_module_only=False, set_class=True) try: yield finally: with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'Constant .*already has a definition') _utils._set_c(codata, iaudata, module, not_in_module_only=False, set_class=True) # Clean up namespace del find_current_module del warnings del contextmanager del _utils del _lines
0d2497df52f4a6edcb2eaa63849922bcd5affd535d9f7421022a879a66a8f87f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants for Astropy v1.3 and earlier. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ from astropy.utils import find_current_module from . import utils as _utils from . import codata2010, iau2012 codata = codata2010 iaudata = iau2012 _utils._set_c(codata, iaudata, find_current_module()) # Clean up namespace del find_current_module del _utils
d69a5b75c154b28f5e845b688eea92e264c3f911f566e5c1e24f247de81b4812
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Configures the codata and iaudata used, possibly using user configuration. """ # Note: doing this in __init__ causes import problems with units, # as si.py and cgs.py have to import the result. import importlib import astropy phys_version = astropy.physical_constants.get() astro_version = astropy.astronomical_constants.get() codata = importlib.import_module('.constants.' + phys_version, 'astropy') iaudata = importlib.import_module('.constants.' + astro_version, 'astropy')
e1bdc518550c178fe7ec38835af77de8a223211b8b78d01747bee6bd1b34fab7
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants for Astropy v2.0. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ from astropy.utils import find_current_module from . import utils as _utils from . import codata2014, iau2015 codata = codata2014 iaudata = iau2015 _utils._set_c(codata, iaudata, find_current_module()) # Clean up namespace del find_current_module del _utils
1e46b78e34e0db15ac1cafd09df15a552f68893eddd6af075ba6597c9275d1fc
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants in cgs units. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ import itertools from .constant import Constant from .config import codata, iaudata for _nm, _c in itertools.chain(sorted(vars(codata).items()), sorted(vars(iaudata).items())): if (isinstance(_c, Constant) and _c.abbrev not in locals() and _c.system in ['esu', 'gauss', 'emu']): locals()[_c.abbrev] = _c
d659d750be5df7f8966cbf5df92a9ce364d83957182e42f2cc6397a59db4f264
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants in SI units. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ import itertools from .constant import Constant from .config import codata, iaudata for _nm, _c in itertools.chain(sorted(vars(codata).items()), sorted(vars(iaudata).items())): if (isinstance(_c, Constant) and _c.abbrev not in locals() and _c.system == 'si'): locals()[_c.abbrev] = _c
453e41a26e7540d60b74f43c14fc3ff9aff57ea717775d1649dd541933ed4357
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Astronomical and physics constants in SI units. See :mod:`astropy.constants` for a complete listing of constants defined in Astropy. """ import math from .constant import Constant, EMConstant # PHYSICAL CONSTANTS # https://en.wikipedia.org/wiki/2019_redefinition_of_SI_base_units class CODATA2018(Constant): default_reference = 'CODATA 2018' _registry = {} _has_incompatible_units = set() class EMCODATA2018(CODATA2018, EMConstant): _registry = CODATA2018._registry h = CODATA2018('h', "Planck constant", 6.62607015e-34, 'J s', 0.0, system='si') hbar = CODATA2018('hbar', "Reduced Planck constant", h.value / (2 * math.pi), 'J s', 0.0, system='si') k_B = CODATA2018('k_B', "Boltzmann constant", 1.380649e-23, 'J / (K)', 0.0, system='si') c = CODATA2018('c', "Speed of light in vacuum", 299792458., 'm / (s)', 0.0, system='si') G = CODATA2018('G', "Gravitational constant", 6.67430e-11, 'm3 / (kg s2)', 0.00015e-11, system='si') g0 = CODATA2018('g0', "Standard acceleration of gravity", 9.80665, 'm / s2', 0.0, system='si') m_p = CODATA2018('m_p', "Proton mass", 1.67262192369e-27, 'kg', 0.00000000051e-27, system='si') m_n = CODATA2018('m_n', "Neutron mass", 1.67492749804e-27, 'kg', 0.00000000095e-27, system='si') m_e = CODATA2018('m_e', "Electron mass", 9.1093837015e-31, 'kg', 0.0000000028e-31, system='si') u = CODATA2018('u', "Atomic mass", 1.66053906660e-27, 'kg', 0.00000000050e-27, system='si') sigma_sb = CODATA2018( 'sigma_sb', "Stefan-Boltzmann constant", 2 * math.pi ** 5 * k_B.value ** 4 / (15 * h.value ** 3 * c.value ** 2), 'W / (K4 m2)', 0.0, system='si') e = EMCODATA2018('e', 'Electron charge', 1.602176634e-19, 'C', 0.0, system='si') eps0 = EMCODATA2018('eps0', 'Vacuum electric permittivity', 8.8541878128e-12, 'F/m', 0.0000000013e-12, system='si') N_A = CODATA2018('N_A', "Avogadro's number", 6.02214076e23, '1 / (mol)', 0.0, system='si') R = CODATA2018('R', "Gas constant", k_B.value * N_A.value, 'J / (K mol)', 0.0, system='si') Ryd = CODATA2018('Ryd', 'Rydberg constant', 10973731.568160, '1 / (m)', 0.000021, system='si') a0 = CODATA2018('a0', "Bohr radius", 5.29177210903e-11, 'm', 0.00000000080e-11, system='si') muB = CODATA2018('muB', "Bohr magneton", 9.2740100783e-24, 'J/T', 0.0000000028e-24, system='si') alpha = CODATA2018('alpha', "Fine-structure constant", 7.2973525693e-3, '', 0.0000000011e-3, system='si') atm = CODATA2018('atm', "Standard atmosphere", 101325, 'Pa', 0.0, system='si') mu0 = CODATA2018('mu0', "Vacuum magnetic permeability", 1.25663706212e-6, 'N/A2', 0.00000000019e-6, system='si') sigma_T = CODATA2018('sigma_T', "Thomson scattering cross-section", 6.6524587321e-29, 'm2', 0.0000000060e-29, system='si') # Formula taken from NIST wall chart. # The numerical factor is from a numerical solution to the equation for the # maximum. See https://en.wikipedia.org/wiki/Wien%27s_displacement_law b_wien = CODATA2018('b_wien', 'Wien wavelength displacement law constant', h.value * c.value / (k_B.value * 4.965114231744276), 'm K', 0.0, system='si') # CGS constants. # Only constants that cannot be converted directly from S.I. are defined here. # Because both e and c are exact, these are also exact by definition. e_esu = EMCODATA2018(e.abbrev, e.name, e.value * c.value * 10.0, 'statC', 0.0, system='esu') e_emu = EMCODATA2018(e.abbrev, e.name, e.value / 10, 'abC', 0.0, system='emu') e_gauss = EMCODATA2018(e.abbrev, e.name, e.value * c.value * 10.0, 'Fr', 0.0, system='gauss')
48107bd491f70eb4083b75ed475ae6437a63dd3166ee9c4b473402d88fff3a5b
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import gc import sys import copy from io import StringIO from collections import OrderedDict import pytest import numpy as np from numpy.testing import assert_allclose, assert_array_equal from astropy.io import fits from astropy.tests.helper import (assert_follows_unicode_guidelines, ignore_warnings, catch_warnings) from astropy.utils.data import get_pkg_data_filename from astropy import table from astropy import units as u from astropy.time import Time, TimeDelta from .conftest import MaskedTable, MIXIN_COLS try: with ignore_warnings(DeprecationWarning): # Ignore DeprecationWarning on pandas import in Python 3.5--see # https://github.com/astropy/astropy/issues/4380 import pandas # pylint: disable=W0611 except ImportError: HAS_PANDAS = False else: HAS_PANDAS = True class SetupData: def _setup(self, table_types): self._table_type = table_types.Table self._column_type = table_types.Column @property def a(self): if self._column_type is not None: if not hasattr(self, '_a'): self._a = self._column_type( [1, 2, 3], name='a', format='%d', meta={'aa': [0, 1, 2, 3, 4]}) return self._a @property def b(self): if self._column_type is not None: if not hasattr(self, '_b'): self._b = self._column_type( [4, 5, 6], name='b', format='%d', meta={'aa': 1}) return self._b @property def c(self): if self._column_type is not None: if not hasattr(self, '_c'): self._c = self._column_type([7, 8, 9], 'c') return self._c @property def d(self): if self._column_type is not None: if not hasattr(self, '_d'): self._d = self._column_type([7, 8, 7], 'd') return self._d @property def obj(self): if self._column_type is not None: if not hasattr(self, '_obj'): self._obj = self._column_type([1, 'string', 3], 'obj', dtype='O') return self._obj @property def t(self): if self._table_type is not None: if not hasattr(self, '_t'): self._t = self._table_type([self.a, self.b]) return self._t @pytest.mark.usefixtures('table_types') class TestSetTableColumn(SetupData): def test_set_row(self, table_types): """Set a row from a tuple of values""" self._setup(table_types) t = table_types.Table([self.a, self.b]) t[1] = (20, 21) assert t['a'][0] == 1 assert t['a'][1] == 20 assert t['a'][2] == 3 assert t['b'][0] == 4 assert t['b'][1] == 21 assert t['b'][2] == 6 def test_set_row_existing(self, table_types): """Set a row from another existing row""" self._setup(table_types) t = table_types.Table([self.a, self.b]) t[0] = t[1] assert t[0][0] == 2 assert t[0][1] == 5 def test_set_row_fail_1(self, table_types): """Set a row from an incorrectly-sized or typed set of values""" self._setup(table_types) t = table_types.Table([self.a, self.b]) with pytest.raises(ValueError): t[1] = (20, 21, 22) with pytest.raises(ValueError): t[1] = 0 def test_set_row_fail_2(self, table_types): """Set a row from an incorrectly-typed tuple of values""" self._setup(table_types) t = table_types.Table([self.a, self.b]) with pytest.raises(ValueError): t[1] = ('abc', 'def') def test_set_new_col_new_table(self, table_types): """Create a new column in empty table using the item access syntax""" self._setup(table_types) t = table_types.Table() t['aa'] = self.a # Test that the new column name is 'aa' and that the values match assert np.all(t['aa'] == self.a) assert t.colnames == ['aa'] def test_set_new_col_new_table_quantity(self, table_types): """Create a new column (from a quantity) in empty table using the item access syntax""" self._setup(table_types) t = table_types.Table() t['aa'] = np.array([1, 2, 3]) * u.m assert np.all(t['aa'] == np.array([1, 2, 3])) assert t['aa'].unit == u.m t['bb'] = 3 * u.m assert np.all(t['bb'] == 3) assert t['bb'].unit == u.m def test_set_new_col_existing_table(self, table_types): """Create a new column in an existing table using the item access syntax""" self._setup(table_types) t = table_types.Table([self.a]) # Add a column t['bb'] = self.b assert np.all(t['bb'] == self.b) assert t.colnames == ['a', 'bb'] assert t['bb'].meta == self.b.meta assert t['bb'].format == self.b.format # Add another column t['c'] = t['a'] assert np.all(t['c'] == t['a']) assert t.colnames == ['a', 'bb', 'c'] assert t['c'].meta == t['a'].meta assert t['c'].format == t['a'].format # Add a multi-dimensional column t['d'] = table_types.Column(np.arange(12).reshape(3, 2, 2)) assert t['d'].shape == (3, 2, 2) assert t['d'][0, 0, 1] == 1 # Add column from a list t['e'] = ['hello', 'the', 'world'] assert np.all(t['e'] == np.array(['hello', 'the', 'world'])) # Make sure setting existing column still works t['e'] = ['world', 'hello', 'the'] assert np.all(t['e'] == np.array(['world', 'hello', 'the'])) # Add a column via broadcasting t['f'] = 10 assert np.all(t['f'] == 10) # Add a column from a Quantity t['g'] = np.array([1, 2, 3]) * u.m assert np.all(t['g'].data == np.array([1, 2, 3])) assert t['g'].unit == u.m # Add a column from a (scalar) Quantity t['g'] = 3 * u.m assert np.all(t['g'].data == 3) assert t['g'].unit == u.m def test_set_new_unmasked_col_existing_table(self, table_types): """Create a new column in an existing table using the item access syntax""" self._setup(table_types) t = table_types.Table([self.a]) # masked or unmasked b = table.Column(name='b', data=[1, 2, 3]) # unmasked t['b'] = b assert np.all(t['b'] == b) def test_set_new_masked_col_existing_table(self, table_types): """Create a new column in an existing table using the item access syntax""" self._setup(table_types) t = table_types.Table([self.a]) # masked or unmasked b = table.MaskedColumn(name='b', data=[1, 2, 3]) # masked t['b'] = b assert np.all(t['b'] == b) def test_set_new_col_existing_table_fail(self, table_types): """Generate failure when creating a new column using the item access syntax""" self._setup(table_types) t = table_types.Table([self.a]) # Wrong size with pytest.raises(ValueError): t['b'] = [1, 2] @pytest.mark.usefixtures('table_types') class TestEmptyData(): def test_1(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', dtype=int, length=100)) assert len(t['a']) == 100 def test_2(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', dtype=int, shape=(3, ), length=100)) assert len(t['a']) == 100 def test_3(self, table_types): t = table_types.Table() # length is not given t.add_column(table_types.Column(name='a', dtype=int)) assert len(t['a']) == 0 def test_4(self, table_types): t = table_types.Table() # length is not given t.add_column(table_types.Column(name='a', dtype=int, shape=(3, 4))) assert len(t['a']) == 0 def test_5(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a')) # dtype is not specified assert len(t['a']) == 0 def test_add_via_setitem_and_slice(self, table_types): """Test related to #3023 where a MaskedColumn is created with name=None and then gets changed to name='a'. After PR #2790 this test fails without the #3023 fix.""" t = table_types.Table() t['a'] = table_types.Column([1, 2, 3]) t2 = t[:] assert t2.colnames == t.colnames @pytest.mark.usefixtures('table_types') class TestNewFromColumns(): def test_simple(self, table_types): cols = [table_types.Column(name='a', data=[1, 2, 3]), table_types.Column(name='b', data=[4, 5, 6], dtype=np.float32)] t = table_types.Table(cols) assert np.all(t['a'].data == np.array([1, 2, 3])) assert np.all(t['b'].data == np.array([4, 5, 6], dtype=np.float32)) assert type(t['b'][1]) is np.float32 def test_from_np_array(self, table_types): cols = [table_types.Column(name='a', data=np.array([1, 2, 3], dtype=np.int64), dtype=np.float64), table_types.Column(name='b', data=np.array([4, 5, 6], dtype=np.float32))] t = table_types.Table(cols) assert np.all(t['a'] == np.array([1, 2, 3], dtype=np.float64)) assert np.all(t['b'] == np.array([4, 5, 6], dtype=np.float32)) assert type(t['a'][1]) is np.float64 assert type(t['b'][1]) is np.float32 def test_size_mismatch(self, table_types): cols = [table_types.Column(name='a', data=[1, 2, 3]), table_types.Column(name='b', data=[4, 5, 6, 7])] with pytest.raises(ValueError): table_types.Table(cols) def test_name_none(self, table_types): """Column with name=None can init a table whether or not names are supplied""" c = table_types.Column(data=[1, 2], name='c') d = table_types.Column(data=[3, 4]) t = table_types.Table([c, d], names=(None, 'd')) assert t.colnames == ['c', 'd'] t = table_types.Table([c, d]) assert t.colnames == ['c', 'col1'] @pytest.mark.usefixtures('table_types') class TestReverse(): def test_reverse(self, table_types): t = table_types.Table([[1, 2, 3], ['a', 'b', 'cc']]) t.reverse() assert np.all(t['col0'] == np.array([3, 2, 1])) assert np.all(t['col1'] == np.array(['cc', 'b', 'a'])) t2 = table_types.Table(t, copy=False) assert np.all(t2['col0'] == np.array([3, 2, 1])) assert np.all(t2['col1'] == np.array(['cc', 'b', 'a'])) t2 = table_types.Table(t, copy=True) assert np.all(t2['col0'] == np.array([3, 2, 1])) assert np.all(t2['col1'] == np.array(['cc', 'b', 'a'])) t2.sort('col0') assert np.all(t2['col0'] == np.array([1, 2, 3])) assert np.all(t2['col1'] == np.array(['a', 'b', 'cc'])) def test_reverse_big(self, table_types): x = np.arange(10000) y = x + 1 t = table_types.Table([x, y], names=('x', 'y')) t.reverse() assert np.all(t['x'] == x[::-1]) assert np.all(t['y'] == y[::-1]) @pytest.mark.usefixtures('table_types') class TestColumnAccess(): def test_1(self, table_types): t = table_types.Table() with pytest.raises(KeyError): t['a'] def test_2(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[1, 2, 3])) assert np.all(t['a'] == np.array([1, 2, 3])) with pytest.raises(KeyError): t['b'] # column does not exist def test_itercols(self, table_types): names = ['a', 'b', 'c'] t = table_types.Table([[1], [2], [3]], names=names) for name, col in zip(names, t.itercols()): assert name == col.name assert isinstance(col, table_types.Column) @pytest.mark.usefixtures('table_types') class TestAddLength(SetupData): def test_right_length(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) t.add_column(self.b) def test_too_long(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) with pytest.raises(ValueError): t.add_column(table_types.Column(name='b', data=[4, 5, 6, 7])) # data too long def test_too_short(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) with pytest.raises(ValueError): t.add_column(table_types.Column(name='b', data=[4, 5])) # data too short @pytest.mark.usefixtures('table_types') class TestAddPosition(SetupData): def test_1(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a, 0) def test_2(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a, 1) def test_3(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a, -1) def test_5(self, table_types): self._setup(table_types) t = table_types.Table() with pytest.raises(ValueError): t.index_column('b') def test_6(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a) t.add_column(self.b) assert t.columns.keys() == ['a', 'b'] def test_7(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) t.add_column(self.b, t.index_column('a')) assert t.columns.keys() == ['b', 'a'] def test_8(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) t.add_column(self.b, t.index_column('a') + 1) assert t.columns.keys() == ['a', 'b'] def test_9(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a) t.add_column(self.b, t.index_column('a') + 1) t.add_column(self.c, t.index_column('b')) assert t.columns.keys() == ['a', 'c', 'b'] def test_10(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a) ia = t.index_column('a') t.add_column(self.b, ia + 1) t.add_column(self.c, ia) assert t.columns.keys() == ['c', 'a', 'b'] @pytest.mark.usefixtures('table_types') class TestAddName(SetupData): def test_override_name(self, table_types): self._setup(table_types) t = table_types.Table() # Check that we can override the name of the input column in the Table t.add_column(self.a, name='b') t.add_column(self.b, name='a') assert t.columns.keys() == ['b', 'a'] # Check that we did not change the name of the input column assert self.a.info.name == 'a' assert self.b.info.name == 'b' # Now test with an input column from another table t2 = table_types.Table() t2.add_column(t['a'], name='c') assert t2.columns.keys() == ['c'] # Check that we did not change the name of the input column assert t.columns.keys() == ['b', 'a'] # Check that we can give a name if none was present col = table_types.Column([1, 2, 3]) t.add_column(col, name='c') assert t.columns.keys() == ['b', 'a', 'c'] def test_default_name(self, table_types): t = table_types.Table() col = table_types.Column([1, 2, 3]) t.add_column(col) assert t.columns.keys() == ['col0'] @pytest.mark.usefixtures('table_types') class TestInitFromTable(SetupData): def test_from_table_cols(self, table_types): """Ensure that using cols from an existing table gives a clean copy. """ self._setup(table_types) t = self.t cols = t.columns # Construct Table with cols via Table._new_from_cols t2a = table_types.Table([cols['a'], cols['b'], self.c]) # Construct with add_column t2b = table_types.Table() t2b.add_column(cols['a']) t2b.add_column(cols['b']) t2b.add_column(self.c) t['a'][1] = 20 t['b'][1] = 21 for t2 in [t2a, t2b]: t2['a'][2] = 10 t2['b'][2] = 11 t2['c'][2] = 12 t2.columns['a'].meta['aa'][3] = 10 assert np.all(t['a'] == np.array([1, 20, 3])) assert np.all(t['b'] == np.array([4, 21, 6])) assert np.all(t2['a'] == np.array([1, 2, 10])) assert np.all(t2['b'] == np.array([4, 5, 11])) assert np.all(t2['c'] == np.array([7, 8, 12])) assert t2['a'].name == 'a' assert t2.columns['a'].meta['aa'][3] == 10 assert t.columns['a'].meta['aa'][3] == 3 @pytest.mark.usefixtures('table_types') class TestAddColumns(SetupData): def test_add_columns1(self, table_types): self._setup(table_types) t = table_types.Table() t.add_columns([self.a, self.b, self.c]) assert t.colnames == ['a', 'b', 'c'] def test_add_columns2(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.add_columns([self.c, self.d]) assert t.colnames == ['a', 'b', 'c', 'd'] assert np.all(t['c'] == np.array([7, 8, 9])) def test_add_columns3(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.add_columns([self.c, self.d], indexes=[1, 0]) assert t.colnames == ['d', 'a', 'c', 'b'] def test_add_columns4(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.add_columns([self.c, self.d], indexes=[0, 0]) assert t.colnames == ['c', 'd', 'a', 'b'] def test_add_columns5(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.add_columns([self.c, self.d], indexes=[2, 2]) assert t.colnames == ['a', 'b', 'c', 'd'] def test_add_columns6(self, table_types): """Check that we can override column names.""" self._setup(table_types) t = table_types.Table() t.add_columns([self.a, self.b, self.c], names=['b', 'c', 'a']) assert t.colnames == ['b', 'c', 'a'] def test_add_columns7(self, table_types): """Check that default names are used when appropriate.""" t = table_types.Table() col0 = table_types.Column([1, 2, 3]) col1 = table_types.Column([4, 5, 3]) t.add_columns([col0, col1]) assert t.colnames == ['col0', 'col1'] def test_add_duplicate_column(self, table_types): self._setup(table_types) t = table_types.Table() t.add_column(self.a) with pytest.raises(ValueError): t.add_column(table_types.Column(name='a', data=[0, 1, 2])) t.add_column(table_types.Column(name='a', data=[0, 1, 2]), rename_duplicate=True) t.add_column(self.b) t.add_column(self.c) assert t.colnames == ['a', 'a_1', 'b', 'c'] t.add_column(table_types.Column(name='a', data=[0, 1, 2]), rename_duplicate=True) assert t.colnames == ['a', 'a_1', 'b', 'c', 'a_2'] # test adding column from a separate Table t1 = table_types.Table() t1.add_column(self.a) with pytest.raises(ValueError): t.add_column(t1['a']) t.add_column(t1['a'], rename_duplicate=True) t1['a'][0] = 100 # Change original column assert t.colnames == ['a', 'a_1', 'b', 'c', 'a_2', 'a_3'] assert t1.colnames == ['a'] # Check new column didn't change (since name conflict forced a copy) assert t['a_3'][0] == self.a[0] # Check that rename_duplicate=True is ok if there are no duplicates t.add_column(table_types.Column(name='q', data=[0, 1, 2]), rename_duplicate=True) assert t.colnames == ['a', 'a_1', 'b', 'c', 'a_2', 'a_3', 'q'] def test_add_duplicate_columns(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b, self.c]) with pytest.raises(ValueError): t.add_columns([table_types.Column(name='a', data=[0, 1, 2]), table_types.Column(name='b', data=[0, 1, 2])]) t.add_columns([table_types.Column(name='a', data=[0, 1, 2]), table_types.Column(name='b', data=[0, 1, 2])], rename_duplicate=True) t.add_column(self.d) assert t.colnames == ['a', 'b', 'c', 'a_1', 'b_1', 'd'] @pytest.mark.usefixtures('table_types') class TestAddRow(SetupData): @property def b(self): if self._column_type is not None: if not hasattr(self, '_b'): self._b = self._column_type(name='b', data=[4.0, 5.1, 6.2]) return self._b @property def c(self): if self._column_type is not None: if not hasattr(self, '_c'): self._c = self._column_type(name='c', data=['7', '8', '9']) return self._c @property def d(self): if self._column_type is not None: if not hasattr(self, '_d'): self._d = self._column_type(name='d', data=[[1, 2], [3, 4], [5, 6]]) return self._d @property def t(self): if self._table_type is not None: if not hasattr(self, '_t'): self._t = self._table_type([self.a, self.b, self.c]) return self._t def test_add_none_to_empty_table(self, table_types): self._setup(table_types) t = table_types.Table(names=('a', 'b', 'c'), dtype=('(2,)i', 'S4', 'O')) t.add_row() assert np.all(t['a'][0] == [0, 0]) assert t['b'][0] == '' assert t['c'][0] == 0 t.add_row() assert np.all(t['a'][1] == [0, 0]) assert t['b'][1] == '' assert t['c'][1] == 0 def test_add_stuff_to_empty_table(self, table_types): self._setup(table_types) t = table_types.Table(names=('a', 'b', 'obj'), dtype=('(2,)i', 'S8', 'O')) t.add_row([[1, 2], 'hello', 'world']) assert np.all(t['a'][0] == [1, 2]) assert t['b'][0] == 'hello' assert t['obj'][0] == 'world' # Make sure it is not repeating last row but instead # adding zeros (as documented) t.add_row() assert np.all(t['a'][1] == [0, 0]) assert t['b'][1] == '' assert t['obj'][1] == 0 def test_add_table_row(self, table_types): self._setup(table_types) t = self.t t['d'] = self.d t2 = table_types.Table([self.a, self.b, self.c, self.d]) t.add_row(t2[0]) assert len(t) == 4 assert np.all(t['a'] == np.array([1, 2, 3, 1])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 4.0])) assert np.all(t['c'] == np.array(['7', '8', '9', '7'])) assert np.all(t['d'] == np.array([[1, 2], [3, 4], [5, 6], [1, 2]])) def test_add_table_row_obj(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b, self.obj]) t.add_row([1, 4.0, [10]]) assert len(t) == 4 assert np.all(t['a'] == np.array([1, 2, 3, 1])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 4.0])) assert np.all(t['obj'] == np.array([1, 'string', 3, [10]], dtype='O')) def test_add_qtable_row_multidimensional(self): q = [[1, 2], [3, 4]] * u.m qt = table.QTable([q]) qt.add_row(([5, 6] * u.km,)) assert np.all(qt['col0'] == [[1, 2], [3, 4], [5000, 6000]] * u.m) def test_add_with_tuple(self, table_types): self._setup(table_types) t = self.t t.add_row((4, 7.2, '1')) assert len(t) == 4 assert np.all(t['a'] == np.array([1, 2, 3, 4])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 7.2])) assert np.all(t['c'] == np.array(['7', '8', '9', '1'])) def test_add_with_list(self, table_types): self._setup(table_types) t = self.t t.add_row([4, 7.2, '10']) assert len(t) == 4 assert np.all(t['a'] == np.array([1, 2, 3, 4])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 7.2])) assert np.all(t['c'] == np.array(['7', '8', '9', '1'])) def test_add_with_dict(self, table_types): self._setup(table_types) t = self.t t.add_row({'a': 4, 'b': 7.2}) assert len(t) == 4 assert np.all(t['a'] == np.array([1, 2, 3, 4])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 7.2])) if t.masked: assert np.all(t['c'] == np.array(['7', '8', '9', '7'])) else: assert np.all(t['c'] == np.array(['7', '8', '9', ''])) def test_add_with_none(self, table_types): self._setup(table_types) t = self.t t.add_row() assert len(t) == 4 assert np.all(t['a'].data == np.array([1, 2, 3, 0])) assert np.allclose(t['b'], np.array([4.0, 5.1, 6.2, 0.0])) assert np.all(t['c'].data == np.array(['7', '8', '9', ''])) def test_add_missing_column(self, table_types): self._setup(table_types) t = self.t with pytest.raises(ValueError): t.add_row({'bad_column': 1}) def test_wrong_size_tuple(self, table_types): self._setup(table_types) t = self.t with pytest.raises(ValueError): t.add_row((1, 2)) def test_wrong_vals_type(self, table_types): self._setup(table_types) t = self.t with pytest.raises(TypeError): t.add_row(1) def test_add_row_failures(self, table_types): self._setup(table_types) t = self.t t_copy = table_types.Table(t, copy=True) # Wrong number of columns try: t.add_row([1, 2, 3, 4]) except ValueError: pass assert len(t) == 3 assert np.all(t.as_array() == t_copy.as_array()) # Wrong data type try: t.add_row(['one', 2, 3]) except ValueError: pass assert len(t) == 3 assert np.all(t.as_array() == t_copy.as_array()) def test_insert_table_row(self, table_types): """ Light testing of Table.insert_row() method. The deep testing is done via the add_row() tests which calls insert_row(index=len(self), ...), so here just test that the added index parameter is handled correctly. """ self._setup(table_types) row = (10, 40.0, 'x', [10, 20]) for index in range(-3, 4): indices = np.insert(np.arange(3), index, 3) t = table_types.Table([self.a, self.b, self.c, self.d]) t2 = t.copy() t.add_row(row) # By now we know this works t2.insert_row(index, row) for name in t.colnames: if t[name].dtype.kind == 'f': assert np.allclose(t[name][indices], t2[name]) else: assert np.all(t[name][indices] == t2[name]) for index in (-4, 4): t = table_types.Table([self.a, self.b, self.c, self.d]) with pytest.raises(IndexError): t.insert_row(index, row) @pytest.mark.usefixtures('table_types') class TestTableColumn(SetupData): def test_column_view(self, table_types): self._setup(table_types) t = self.t a = t.columns['a'] a[2] = 10 assert t['a'][2] == 10 @pytest.mark.usefixtures('table_types') class TestArrayColumns(SetupData): def test_1d(self, table_types): self._setup(table_types) b = table_types.Column(name='b', dtype=int, shape=(2, ), length=3) t = table_types.Table([self.a]) t.add_column(b) assert t['b'].shape == (3, 2) assert t['b'][0].shape == (2, ) def test_2d(self, table_types): self._setup(table_types) b = table_types.Column(name='b', dtype=int, shape=(2, 4), length=3) t = table_types.Table([self.a]) t.add_column(b) assert t['b'].shape == (3, 2, 4) assert t['b'][0].shape == (2, 4) def test_3d(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) b = table_types.Column(name='b', dtype=int, shape=(2, 4, 6), length=3) t.add_column(b) assert t['b'].shape == (3, 2, 4, 6) assert t['b'][0].shape == (2, 4, 6) @pytest.mark.usefixtures('table_types') class TestRemove(SetupData): @property def t(self): if self._table_type is not None: if not hasattr(self, '_t'): self._t = self._table_type([self.a]) return self._t @property def t2(self): if self._table_type is not None: if not hasattr(self, '_t2'): self._t2 = self._table_type([self.a, self.b, self.c]) return self._t2 def test_1(self, table_types): self._setup(table_types) self.t.remove_columns('a') assert self.t.columns.keys() == [] assert self.t.as_array().size == 0 # Regression test for gh-8640 assert not self.t assert isinstance(self.t == None, np.ndarray) assert (self.t == None).size == 0 def test_2(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.remove_columns('a') assert self.t.columns.keys() == ['b'] assert self.t.dtype.names == ('b',) assert np.all(self.t['b'] == np.array([4, 5, 6])) def test_3(self, table_types): """Check remove_columns works for a single column with a name of more than one character. Regression test against #2699""" self._setup(table_types) self.t['new_column'] = self.t['a'] assert 'new_column' in self.t.columns.keys() self.t.remove_columns('new_column') assert 'new_column' not in self.t.columns.keys() def test_remove_nonexistent_row(self, table_types): self._setup(table_types) with pytest.raises(IndexError): self.t.remove_row(4) def test_remove_row_0(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) self.t.remove_row(0) assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['b'] == np.array([5, 6])) def test_remove_row_1(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) self.t.remove_row(1) assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['a'] == np.array([1, 3])) def test_remove_row_2(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) self.t.remove_row(2) assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['c'] == np.array([7, 8])) def test_remove_row_slice(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) self.t.remove_rows(slice(0, 2, 1)) assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['c'] == np.array([9])) def test_remove_row_list(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) self.t.remove_rows([0, 2]) assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['c'] == np.array([8])) def test_remove_row_preserves_meta(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.remove_rows([0, 2]) assert self.t['a'].meta == {'aa': [0, 1, 2, 3, 4]} assert self.t.dtype == np.dtype([(str('a'), 'int'), (str('b'), 'int')]) def test_delitem_row(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) del self.t[1] assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['a'] == np.array([1, 3])) @pytest.mark.parametrize("idx", [[0, 2], np.array([0, 2])]) def test_delitem_row_list(self, table_types, idx): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) del self.t[idx] assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['c'] == np.array([8])) def test_delitem_row_slice(self, table_types): self._setup(table_types) self.t.add_column(self.b) self.t.add_column(self.c) del self.t[0:2] assert self.t.colnames == ['a', 'b', 'c'] assert np.all(self.t['c'] == np.array([9])) def test_delitem_row_fail(self, table_types): self._setup(table_types) with pytest.raises(IndexError): del self.t[4] def test_delitem_row_float(self, table_types): self._setup(table_types) with pytest.raises(IndexError): del self.t[1.] def test_delitem1(self, table_types): self._setup(table_types) del self.t['a'] assert self.t.columns.keys() == [] assert self.t.as_array().size == 0 # Regression test for gh-8640 assert not self.t assert isinstance(self.t == None, np.ndarray) assert (self.t == None).size == 0 def test_delitem2(self, table_types): self._setup(table_types) del self.t2['b'] assert self.t2.colnames == ['a', 'c'] def test_delitems(self, table_types): self._setup(table_types) del self.t2['a', 'b'] assert self.t2.colnames == ['c'] def test_delitem_fail(self, table_types): self._setup(table_types) with pytest.raises(KeyError): del self.t['d'] @pytest.mark.usefixtures('table_types') class TestKeep(SetupData): def test_1(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.keep_columns([]) assert t.columns.keys() == [] assert t.as_array().size == 0 # Regression test for gh-8640 assert not t assert isinstance(t == None, np.ndarray) assert (t == None).size == 0 def test_2(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.keep_columns('b') assert t.columns.keys() == ['b'] assert t.dtype.names == ('b',) assert np.all(t['b'] == np.array([4, 5, 6])) @pytest.mark.usefixtures('table_types') class TestRename(SetupData): def test_1(self, table_types): self._setup(table_types) t = table_types.Table([self.a]) t.rename_column('a', 'b') assert t.columns.keys() == ['b'] assert t.dtype.names == ('b',) assert np.all(t['b'] == np.array([1, 2, 3])) def test_2(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t.rename_column('a', 'c') t.rename_column('b', 'a') assert t.columns.keys() == ['c', 'a'] assert t.dtype.names == ('c', 'a') if t.masked: assert t.mask.dtype.names == ('c', 'a') assert np.all(t['c'] == np.array([1, 2, 3])) assert np.all(t['a'] == np.array([4, 5, 6])) def test_rename_by_attr(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b]) t['a'].name = 'c' t['b'].name = 'a' assert t.columns.keys() == ['c', 'a'] assert t.dtype.names == ('c', 'a') assert np.all(t['c'] == np.array([1, 2, 3])) assert np.all(t['a'] == np.array([4, 5, 6])) def test_rename_columns(self, table_types): self._setup(table_types) t = table_types.Table([self.a, self.b, self.c]) t.rename_columns(('a', 'b', 'c'), ('aa', 'bb', 'cc')) assert t.colnames == ['aa', 'bb', 'cc'] t.rename_columns(['bb', 'cc'], ['b', 'c']) assert t.colnames == ['aa', 'b', 'c'] with pytest.raises(TypeError): t.rename_columns(('aa'), ['a']) with pytest.raises(ValueError): t.rename_columns(['a'], ['b', 'c']) @pytest.mark.usefixtures('table_types') class TestSort(): def test_single(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3])) t.add_column(table_types.Column(name='b', data=[6, 5, 4])) t.add_column(table_types.Column(name='c', data=[(1, 2), (3, 4), (4, 5)])) assert np.all(t['a'] == np.array([2, 1, 3])) assert np.all(t['b'] == np.array([6, 5, 4])) t.sort('a') assert np.all(t['a'] == np.array([1, 2, 3])) assert np.all(t['b'] == np.array([5, 6, 4])) assert np.all(t['c'] == np.array([[3, 4], [1, 2], [4, 5]])) t.sort('b') assert np.all(t['a'] == np.array([3, 1, 2])) assert np.all(t['b'] == np.array([4, 5, 6])) assert np.all(t['c'] == np.array([[4, 5], [3, 4], [1, 2]])) def test_single_reverse(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3])) t.add_column(table_types.Column(name='b', data=[6, 5, 4])) t.add_column(table_types.Column(name='c', data=[(1, 2), (3, 4), (4, 5)])) assert np.all(t['a'] == np.array([2, 1, 3])) assert np.all(t['b'] == np.array([6, 5, 4])) t.sort('a', reverse=True) assert np.all(t['a'] == np.array([3, 2, 1])) assert np.all(t['b'] == np.array([4, 6, 5])) assert np.all(t['c'] == np.array([[4, 5], [1, 2], [3, 4]])) t.sort('b', reverse=True) assert np.all(t['a'] == np.array([2, 1, 3])) assert np.all(t['b'] == np.array([6, 5, 4])) assert np.all(t['c'] == np.array([[1, 2], [3, 4], [4, 5]])) def test_single_big(self, table_types): """Sort a big-ish table with a non-trivial sort order""" x = np.arange(10000) y = np.sin(x) t = table_types.Table([x, y], names=('x', 'y')) t.sort('y') idx = np.argsort(y) assert np.all(t['x'] == x[idx]) assert np.all(t['y'] == y[idx]) @pytest.mark.parametrize('reverse', [True, False]) def test_empty_reverse(self, table_types, reverse): t = table_types.Table([[], []], dtype=['f4', 'U1']) t.sort('col1', reverse=reverse) def test_multiple(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3, 2, 3, 1])) t.add_column(table_types.Column(name='b', data=[6, 5, 4, 3, 5, 4])) assert np.all(t['a'] == np.array([2, 1, 3, 2, 3, 1])) assert np.all(t['b'] == np.array([6, 5, 4, 3, 5, 4])) t.sort(['a', 'b']) assert np.all(t['a'] == np.array([1, 1, 2, 2, 3, 3])) assert np.all(t['b'] == np.array([4, 5, 3, 6, 4, 5])) t.sort(['b', 'a']) assert np.all(t['a'] == np.array([2, 1, 3, 1, 3, 2])) assert np.all(t['b'] == np.array([3, 4, 4, 5, 5, 6])) t.sort(('a', 'b')) assert np.all(t['a'] == np.array([1, 1, 2, 2, 3, 3])) assert np.all(t['b'] == np.array([4, 5, 3, 6, 4, 5])) def test_multiple_reverse(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3, 2, 3, 1])) t.add_column(table_types.Column(name='b', data=[6, 5, 4, 3, 5, 4])) assert np.all(t['a'] == np.array([2, 1, 3, 2, 3, 1])) assert np.all(t['b'] == np.array([6, 5, 4, 3, 5, 4])) t.sort(['a', 'b'], reverse=True) assert np.all(t['a'] == np.array([3, 3, 2, 2, 1, 1])) assert np.all(t['b'] == np.array([5, 4, 6, 3, 5, 4])) t.sort(['b', 'a'], reverse=True) assert np.all(t['a'] == np.array([2, 3, 1, 3, 1, 2])) assert np.all(t['b'] == np.array([6, 5, 5, 4, 4, 3])) t.sort(('a', 'b'), reverse=True) assert np.all(t['a'] == np.array([3, 3, 2, 2, 1, 1])) assert np.all(t['b'] == np.array([5, 4, 6, 3, 5, 4])) def test_multiple_with_bytes(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='firstname', data=[b"Max", b"Jo", b"John"])) t.add_column(table_types.Column(name='name', data=[b"Miller", b"Miller", b"Jackson"])) t.add_column(table_types.Column(name='tel', data=[12, 15, 19])) t.sort(['name', 'firstname']) assert np.all([t['firstname'] == np.array([b"John", b"Jo", b"Max"])]) assert np.all([t['name'] == np.array([b"Jackson", b"Miller", b"Miller"])]) assert np.all([t['tel'] == np.array([19, 15, 12])]) def test_multiple_with_unicode(self, table_types): # Before Numpy 1.6.2, sorting with multiple column names # failed when a unicode column was present. t = table_types.Table() t.add_column(table_types.Column( name='firstname', data=[str(x) for x in ["Max", "Jo", "John"]])) t.add_column(table_types.Column( name='name', data=[str(x) for x in ["Miller", "Miller", "Jackson"]])) t.add_column(table_types.Column(name='tel', data=[12, 15, 19])) t.sort(['name', 'firstname']) assert np.all([t['firstname'] == np.array( [str(x) for x in ["John", "Jo", "Max"]])]) assert np.all([t['name'] == np.array( [str(x) for x in ["Jackson", "Miller", "Miller"]])]) assert np.all([t['tel'] == np.array([19, 15, 12])]) def test_argsort(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3, 2, 3, 1])) t.add_column(table_types.Column(name='b', data=[6, 5, 4, 3, 5, 4])) assert np.all(t.argsort() == t.as_array().argsort()) i0 = t.argsort('a') i1 = t.as_array().argsort(order=['a']) assert np.all(t['a'][i0] == t['a'][i1]) i0 = t.argsort(['a', 'b']) i1 = t.as_array().argsort(order=['a', 'b']) assert np.all(t['a'][i0] == t['a'][i1]) assert np.all(t['b'][i0] == t['b'][i1]) def test_argsort_reverse(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='a', data=[2, 1, 3, 2, 3, 1])) t.add_column(table_types.Column(name='b', data=[6, 5, 4, 3, 5, 4])) assert np.all(t.argsort(reverse=True) == np.array([4, 2, 0, 3, 1, 5])) i0 = t.argsort('a', reverse=True) i1 = np.array([4, 2, 3, 0, 5, 1]) assert np.all(t['a'][i0] == t['a'][i1]) i0 = t.argsort(['a', 'b'], reverse=True) i1 = np.array([4, 2, 0, 3, 1, 5]) assert np.all(t['a'][i0] == t['a'][i1]) assert np.all(t['b'][i0] == t['b'][i1]) def test_argsort_bytes(self, table_types): t = table_types.Table() t.add_column(table_types.Column(name='firstname', data=[b"Max", b"Jo", b"John"])) t.add_column(table_types.Column(name='name', data=[b"Miller", b"Miller", b"Jackson"])) t.add_column(table_types.Column(name='tel', data=[12, 15, 19])) assert np.all(t.argsort(['name', 'firstname']) == np.array([2, 1, 0])) def test_argsort_unicode(self, table_types): # Before Numpy 1.6.2, sorting with multiple column names # failed when a unicode column was present. t = table_types.Table() t.add_column(table_types.Column( name='firstname', data=[str(x) for x in ["Max", "Jo", "John"]])) t.add_column(table_types.Column( name='name', data=[str(x) for x in ["Miller", "Miller", "Jackson"]])) t.add_column(table_types.Column(name='tel', data=[12, 15, 19])) assert np.all(t.argsort(['name', 'firstname']) == np.array([2, 1, 0])) def test_rebuild_column_view_then_rename(self, table_types): """ Issue #2039 where renaming fails after any method that calls _rebuild_table_column_view (this includes sort and add_row). """ t = table_types.Table([[1]], names=('a',)) assert t.colnames == ['a'] assert t.dtype.names == ('a',) t.add_row((2,)) assert t.colnames == ['a'] assert t.dtype.names == ('a',) t.rename_column('a', 'b') assert t.colnames == ['b'] assert t.dtype.names == ('b',) t.sort('b') assert t.colnames == ['b'] assert t.dtype.names == ('b',) t.rename_column('b', 'c') assert t.colnames == ['c'] assert t.dtype.names == ('c',) @pytest.mark.usefixtures('table_types') class TestIterator(): def test_iterator(self, table_types): d = np.array([(2, 1), (3, 6), (4, 5)], dtype=[(str('a'), 'i4'), (str('b'), 'i4')]) t = table_types.Table(d) if t.masked: with pytest.raises(ValueError): t[0] == d[0] else: for row, np_row in zip(t, d): assert np.all(row == np_row) @pytest.mark.usefixtures('table_types') class TestSetMeta(): def test_set_meta(self, table_types): d = table_types.Table(names=('a', 'b')) d.meta['a'] = 1 d.meta['b'] = 1 d.meta['c'] = 1 d.meta['d'] = 1 assert list(d.meta.keys()) == ['a', 'b', 'c', 'd'] @pytest.mark.usefixtures('table_types') class TestConvertNumpyArray(): def test_convert_numpy_array(self, table_types): d = table_types.Table([[1, 2], [3, 4]], names=('a', 'b')) np_data = np.array(d) if table_types.Table is not MaskedTable: assert np.all(np_data == d.as_array()) assert np_data is not d.as_array() assert d.colnames == list(np_data.dtype.names) np_data = np.array(d, copy=False) if table_types.Table is not MaskedTable: assert np.all(np_data == d.as_array()) assert d.colnames == list(np_data.dtype.names) with pytest.raises(ValueError): np_data = np.array(d, dtype=[(str('c'), 'i8'), (str('d'), 'i8')]) def test_as_array_byteswap(self, table_types): """Test for https://github.com/astropy/astropy/pull/4080""" byte_orders = ('>', '<') native_order = byte_orders[sys.byteorder == 'little'] for order in byte_orders: col = table_types.Column([1.0, 2.0], name='a', dtype=order + 'f8') t = table_types.Table([col]) arr = t.as_array() assert arr['a'].dtype.byteorder in (native_order, '=') arr = t.as_array(keep_byteorder=True) if order == native_order: assert arr['a'].dtype.byteorder in (order, '=') else: assert arr['a'].dtype.byteorder == order def test_byteswap_fits_array(self, table_types): """ Test for https://github.com/astropy/astropy/pull/4080, demonstrating that FITS tables are converted to native byte order. """ non_native_order = ('>', '<')[sys.byteorder != 'little'] filename = get_pkg_data_filename('data/tb.fits', 'astropy.io.fits.tests') t = table_types.Table.read(filename) arr = t.as_array() for idx in range(len(arr.dtype)): assert arr.dtype[idx].byteorder != non_native_order with fits.open(filename, character_as_bytes=True) as hdul: data = hdul[1].data for colname in data.columns.names: assert np.all(data[colname] == arr[colname]) arr2 = t.as_array(keep_byteorder=True) for colname in data.columns.names: assert (data[colname].dtype.byteorder == arr2[colname].dtype.byteorder) def _assert_copies(t, t2, deep=True): assert t.colnames == t2.colnames np.testing.assert_array_equal(t.as_array(), t2.as_array()) assert t.meta == t2.meta for col, col2 in zip(t.columns.values(), t2.columns.values()): if deep: assert not np.may_share_memory(col, col2) else: assert np.may_share_memory(col, col2) def test_copy(): t = table.Table([[1, 2, 3], [2, 3, 4]], names=['x', 'y']) t2 = t.copy() _assert_copies(t, t2) def test_copy_masked(): t = table.Table([[1, 2, 3], [2, 3, 4]], names=['x', 'y'], masked=True, meta={'name': 'test'}) t['x'].mask == [True, False, True] t2 = t.copy() _assert_copies(t, t2) def test_copy_protocol(): t = table.Table([[1, 2, 3], [2, 3, 4]], names=['x', 'y']) t2 = copy.copy(t) t3 = copy.deepcopy(t) _assert_copies(t, t2, deep=False) _assert_copies(t, t3) def test_disallow_inequality_comparisons(): """ Regression test for #828 - disallow comparison operators on whole Table """ t = table.Table() with pytest.raises(TypeError): t > 2 with pytest.raises(TypeError): t < 1.1 with pytest.raises(TypeError): t >= 5.5 with pytest.raises(TypeError): t <= -1.1 def test_equality(): t = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 a 4.0 3', ' 0 a 0.0 4', ' 1 b 3.0 5', ' 1 a 2.0 6', ' 1 a 1.0 7', ], format='ascii') # All rows are equal assert np.all(t == t) # Assert no rows are different assert not np.any(t != t) # Check equality result for a given row assert np.all((t == t[3]) == np.array([0, 0, 0, 1, 0, 0, 0, 0], dtype=bool)) # Check inequality result for a given row assert np.all((t != t[3]) == np.array([1, 1, 1, 0, 1, 1, 1, 1], dtype=bool)) t2 = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 3 b 6.0 2', ' 2 a 4.0 3', ' 0 a 1.0 4', ' 1 b 3.0 5', ' 1 c 2.0 6', ' 1 a 1.0 7', ], format='ascii') # In the above cases, Row.__eq__ gets called, but now need to make sure # Table.__eq__ also gets called. assert np.all((t == t2) == np.array([1, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) assert np.all((t != t2) == np.array([0, 0, 1, 0, 1, 0, 1, 0], dtype=bool)) # Check that comparing to a structured array works assert np.all((t == t2.as_array()) == np.array([1, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) assert np.all((t.as_array() == t2) == np.array([1, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) def test_equality_masked(): t = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 a 4.0 3', ' 0 a 0.0 4', ' 1 b 3.0 5', ' 1 a 2.0 6', ' 1 a 1.0 7', ], format='ascii') # Make into masked table t = table.Table(t, masked=True) # All rows are equal assert np.all(t == t) # Assert no rows are different assert not np.any(t != t) # Check equality result for a given row assert np.all((t == t[3]) == np.array([0, 0, 0, 1, 0, 0, 0, 0], dtype=bool)) # Check inequality result for a given row assert np.all((t != t[3]) == np.array([1, 1, 1, 0, 1, 1, 1, 1], dtype=bool)) t2 = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 3 b 6.0 2', ' 2 a 4.0 3', ' 0 a 1.0 4', ' 1 b 3.0 5', ' 1 c 2.0 6', ' 1 a 1.0 7', ], format='ascii') # In the above cases, Row.__eq__ gets called, but now need to make sure # Table.__eq__ also gets called. assert np.all((t == t2) == np.array([1, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) assert np.all((t != t2) == np.array([0, 0, 1, 0, 1, 0, 1, 0], dtype=bool)) # Check that masking a value causes the row to differ t.mask['a'][0] = True assert np.all((t == t2) == np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) assert np.all((t != t2) == np.array([1, 0, 1, 0, 1, 0, 1, 0], dtype=bool)) # Check that comparing to a structured array works assert np.all((t == t2.as_array()) == np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) @pytest.mark.xfail def test_equality_masked_bug(): """ This highlights a Numpy bug. Once it works, it can be moved into the test_equality_masked test. Related Numpy bug report: https://github.com/numpy/numpy/issues/3840 """ t = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 a 4.0 3', ' 0 a 0.0 4', ' 1 b 3.0 5', ' 1 a 2.0 6', ' 1 a 1.0 7', ], format='ascii') t = table.Table(t, masked=True) t2 = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 3 b 6.0 2', ' 2 a 4.0 3', ' 0 a 1.0 4', ' 1 b 3.0 5', ' 1 c 2.0 6', ' 1 a 1.0 7', ], format='ascii') assert np.all((t.as_array() == t2) == np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=bool)) # Check that the meta descriptor is working as expected. The MetaBaseTest class # takes care of defining all the tests, and we simply have to define the class # and any minimal set of args to pass. from astropy.utils.tests.test_metadata import MetaBaseTest class TestMetaTable(MetaBaseTest): test_class = table.Table args = () def test_unicode_content(): # If we don't have unicode literals then return if isinstance('', bytes): return # Define unicode literals string_a = 'астрономическая питона' string_b = 'миллиарды световых лет' a = table.Table( [[string_a, 2], [string_b, 3]], names=('a', 'b')) assert string_a in str(a) # This only works because the coding of this file is utf-8, which # matches the default encoding of Table.__str__ assert string_a.encode('utf-8') in bytes(a) def test_unicode_policy(): t = table.Table.read([' a b c d', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 a 4.0 3', ' 0 a 0.0 4', ' 1 b 3.0 5', ' 1 a 2.0 6', ' 1 a 1.0 7', ], format='ascii') assert_follows_unicode_guidelines(t) @pytest.mark.parametrize('uni', ['питона', 'ascii']) def test_unicode_bytestring_conversion(table_types, uni): """ Test converting columns to all unicode or all bytestring. Thi makes two columns, one which is unicode (str in Py3) and one which is bytes (UTF-8 encoded). There are two code paths in the conversions, a faster one where the data are actually ASCII and a slower one where UTF-8 conversion is required. This tests both via the ``uni`` param. """ byt = uni.encode('utf-8') t = table_types.Table([[byt], [uni], [1]], dtype=('S', 'U', 'i')) assert t['col0'].dtype.kind == 'S' assert t['col1'].dtype.kind == 'U' assert t['col2'].dtype.kind == 'i' t['col0'].description = 'col0' t['col1'].description = 'col1' t['col0'].meta['val'] = 'val0' t['col1'].meta['val'] = 'val1' # Unicode to bytestring t1 = t.copy() t1.convert_unicode_to_bytestring() assert t1['col0'].dtype.kind == 'S' assert t1['col1'].dtype.kind == 'S' assert t1['col2'].dtype.kind == 'i' # Meta made it through assert t1['col0'].description == 'col0' assert t1['col1'].description == 'col1' assert t1['col0'].meta['val'] == 'val0' assert t1['col1'].meta['val'] == 'val1' # Need to de-fang the automatic unicode sandwiching of Table assert np.array(t1['col0'])[0] == byt assert np.array(t1['col1'])[0] == byt assert np.array(t1['col2'])[0] == 1 # Bytestring to unicode t1 = t.copy() t1.convert_bytestring_to_unicode() assert t1['col0'].dtype.kind == 'U' assert t1['col1'].dtype.kind == 'U' assert t1['col2'].dtype.kind == 'i' # Meta made it through assert t1['col0'].description == 'col0' assert t1['col1'].description == 'col1' assert t1['col0'].meta['val'] == 'val0' assert t1['col1'].meta['val'] == 'val1' # No need to de-fang the automatic unicode sandwiching of Table here, but # do just for consistency to prove things are working. assert np.array(t1['col0'])[0] == uni assert np.array(t1['col1'])[0] == uni assert np.array(t1['col2'])[0] == 1 def test_table_deletion(): """ Regression test for the reference cycle discussed in https://github.com/astropy/astropy/issues/2877 """ deleted = set() # A special table subclass which leaves a record when it is finalized class TestTable(table.Table): def __del__(self): deleted.add(id(self)) t = TestTable({'a': [1, 2, 3]}) the_id = id(t) assert t['a'].parent_table is t del t # Cleanup gc.collect() assert the_id in deleted def test_nested_iteration(): """ Regression test for issue 3358 where nested iteration over a single table fails. """ t = table.Table([[0, 1]], names=['a']) out = [] for r1 in t: for r2 in t: out.append((r1['a'], r2['a'])) assert out == [(0, 0), (0, 1), (1, 0), (1, 1)] def test_table_init_from_degenerate_arrays(table_types): t = table_types.Table(np.array([])) assert len(t.columns) == 0 with pytest.raises(ValueError): t = table_types.Table(np.array(0)) t = table_types.Table(np.array([1, 2, 3])) assert len(t.columns) == 3 @pytest.mark.skipif('not HAS_PANDAS') class TestPandas: def test_simple(self): t = table.Table() for endian in ['<', '>']: for kind in ['f', 'i']: for byte in ['2', '4', '8']: dtype = np.dtype(endian + kind + byte) x = np.array([1, 2, 3], dtype=dtype) t[endian + kind + byte] = x t['u'] = ['a', 'b', 'c'] t['s'] = ['a', 'b', 'c'] d = t.to_pandas() for column in t.columns: if column == 'u': assert np.all(t['u'] == np.array(['a', 'b', 'c'])) assert d[column].dtype == np.dtype("O") # upstream feature of pandas elif column == 's': assert np.all(t['s'] == np.array(['a', 'b', 'c'])) assert d[column].dtype == np.dtype("O") # upstream feature of pandas else: # We should be able to compare exact values here assert np.all(t[column] == d[column]) if t[column].dtype.byteorder in ('=', '|'): assert d[column].dtype == t[column].dtype else: assert d[column].dtype == t[column].byteswap().newbyteorder().dtype # Regression test for astropy/astropy#1156 - the following code gave a # ValueError: Big-endian buffer not supported on little-endian # compiler. We now automatically swap the endian-ness to native order # upon adding the arrays to the data frame. d[['<i4', '>i4']] d[['<f4', '>f4']] t2 = table.Table.from_pandas(d) for column in t.columns: if column in ('u', 's'): assert np.all(t[column] == t2[column]) else: assert_allclose(t[column], t2[column]) if t[column].dtype.byteorder in ('=', '|'): assert t[column].dtype == t2[column].dtype else: assert t[column].byteswap().newbyteorder().dtype == t2[column].dtype def test_2d(self): t = table.Table() t['a'] = [1, 2, 3] t['b'] = np.ones((3, 2)) with pytest.raises(ValueError) as exc: t.to_pandas() assert (exc.value.args[0] == "Cannot convert a table with multi-dimensional columns " "to a pandas DataFrame. Offending columns are: ['b']") def test_mixin_pandas(self): t = table.QTable() for name in sorted(MIXIN_COLS): if name != 'ndarray': t[name] = MIXIN_COLS[name] t['dt'] = TimeDelta([0, 2, 4, 6], format='sec') tp = t.to_pandas() t2 = table.Table.from_pandas(tp) assert np.allclose(t2['quantity'], [0, 1, 2, 3]) assert np.allclose(t2['longitude'], [0., 1., 5., 6.]) assert np.allclose(t2['latitude'], [5., 6., 10., 11.]) assert np.allclose(t2['skycoord.ra'], [0, 1, 2, 3]) assert np.allclose(t2['skycoord.dec'], [0, 1, 2, 3]) assert np.allclose(t2['arraywrap'], [0, 1, 2, 3]) assert np.allclose(t2['earthlocation.y'], [0, 110708, 547501, 654527], rtol=0, atol=1) # For pandas, Time, TimeDelta are the mixins that round-trip the class assert isinstance(t2['time'], Time) assert np.allclose(t2['time'].jyear, [2000, 2001, 2002, 2003]) assert np.all(t2['time'].isot == ['2000-01-01T12:00:00.000', '2000-12-31T18:00:00.000', '2002-01-01T00:00:00.000', '2003-01-01T06:00:00.000']) assert t2['time'].format == 'isot' # TimeDelta assert isinstance(t2['dt'], TimeDelta) assert np.allclose(t2['dt'].value, [0, 2, 4, 6]) assert t2['dt'].format == 'sec' def test_to_pandas_index(self): import pandas as pd row_index = pd.RangeIndex(0, 2, 1) tm_index = pd.DatetimeIndex(['1998-01-01', '2002-01-01'], dtype='datetime64[ns]', name='tm', freq=None) tm = Time([1998, 2002], format='jyear') x = [1, 2] t = table.QTable([tm, x], names=['tm', 'x']) tp = t.to_pandas() assert np.all(tp.index == row_index) tp = t.to_pandas(index='tm') assert np.all(tp.index == tm_index) t.add_index('tm') tp = t.to_pandas() assert np.all(tp.index == tm_index) # Make sure writing to pandas didn't hack the original table assert t['tm'].info.indices tp = t.to_pandas(index=True) assert np.all(tp.index == tm_index) tp = t.to_pandas(index=False) assert np.all(tp.index == row_index) with pytest.raises(ValueError) as err: t.to_pandas(index='not a column') assert 'index must be None, False' in str(err) def test_mixin_pandas_masked(self): tm = Time([1, 2, 3], format='cxcsec') dt = TimeDelta([1, 2, 3], format='sec') tm[1] = np.ma.masked dt[1] = np.ma.masked t = table.QTable([tm, dt], names=['tm', 'dt']) tp = t.to_pandas() assert np.all(tp['tm'].isnull() == [False, True, False]) assert np.all(tp['dt'].isnull() == [False, True, False]) t2 = table.Table.from_pandas(tp) assert np.all(t2['tm'].mask == tm.mask) assert np.ma.allclose(t2['tm'].jd, tm.jd, rtol=1e-14, atol=1e-14) assert np.all(t2['dt'].mask == dt.mask) assert np.ma.allclose(t2['dt'].jd, dt.jd, rtol=1e-14, atol=1e-14) def test_from_pandas_index(self): tm = Time([1998, 2002], format='jyear') x = [1, 2] t = table.Table([tm, x], names=['tm', 'x']) tp = t.to_pandas(index='tm') t2 = table.Table.from_pandas(tp) assert t2.colnames == ['x'] t2 = table.Table.from_pandas(tp, index=True) assert t2.colnames == ['tm', 'x'] assert np.allclose(t2['tm'].jyear, tm.jyear) def test_masking(self): t = table.Table(masked=True) t['a'] = [1, 2, 3] t['a'].mask = [True, False, True] t['b'] = [1., 2., 3.] t['b'].mask = [False, False, True] t['u'] = ['a', 'b', 'c'] t['u'].mask = [False, True, False] t['s'] = ['a', 'b', 'c'] t['s'].mask = [False, True, False] # https://github.com/astropy/astropy/issues/7741 t['Source'] = [2584290278794471936, 2584290038276303744, 2584288728310999296] t['Source'].mask = [False, False, False] d = t.to_pandas() t2 = table.Table.from_pandas(d) for name, column in t.columns.items(): assert np.all(column.data == t2[name].data) assert np.all(column.mask == t2[name].mask) # Masked integer type comes back as float. Nothing we can do about this. if column.dtype.kind == 'i': if np.any(column.mask): assert t2[name].dtype.kind == 'f' else: assert t2[name].dtype.kind == 'i' assert_array_equal(column.data, t2[name].data.astype(column.dtype)) else: if column.dtype.byteorder in ('=', '|'): assert column.dtype == t2[name].dtype else: assert column.byteswap().newbyteorder().dtype == t2[name].dtype @pytest.mark.usefixtures('table_types') class TestReplaceColumn(SetupData): def test_fail_replace_column(self, table_types): """Raise exception when trying to replace column via table.columns object""" self._setup(table_types) t = table_types.Table([self.a, self.b]) with pytest.raises(ValueError): t.columns['a'] = [1, 2, 3] with pytest.raises(ValueError): t.replace_column('not there', [1, 2, 3]) def test_replace_column(self, table_types): """Replace existing column with a new column""" self._setup(table_types) t = table_types.Table([self.a, self.b]) ta = t['a'] tb = t['b'] vals = [1.2, 3.4, 5.6] for col in (vals, table_types.Column(vals), table_types.Column(vals, name='a'), table_types.Column(vals, name='b')): t.replace_column('a', col) assert np.all(t['a'] == vals) assert t['a'] is not ta # New a column assert t['b'] is tb # Original b column unchanged assert t.colnames == ['a', 'b'] assert t['a'].meta == {} assert t['a'].format is None def test_replace_index_column(self, table_types): """Replace index column and generate expected exception""" self._setup(table_types) t = table_types.Table([self.a, self.b]) t.add_index('a') with pytest.raises(ValueError) as err: t.replace_column('a', [1, 2, 3]) assert err.value.args[0] == 'cannot replace a table index column' class Test__Astropy_Table__(): """ Test initializing a Table subclass from a table-like object that implements the __astropy_table__ interface method. """ class SimpleTable: def __init__(self): self.columns = [[1, 2, 3], [4, 5, 6], [7, 8, 9] * u.m] self.names = ['a', 'b', 'c'] self.meta = OrderedDict([('a', 1), ('b', 2)]) def __astropy_table__(self, cls, copy, **kwargs): a, b, c = self.columns c.info.name = 'c' cols = [table.Column(a, name='a'), table.MaskedColumn(b, name='b'), c] names = [col.info.name for col in cols] return cls(cols, names=names, copy=copy, meta=kwargs or self.meta) def test_simple_1(self): """Make a SimpleTable and convert to Table, QTable with copy=False, True""" for table_cls in (table.Table, table.QTable): col_c_class = u.Quantity if table_cls is table.QTable else table.MaskedColumn for cpy in (False, True): st = self.SimpleTable() # Test putting in a non-native kwarg `extra_meta` to Table initializer t = table_cls(st, copy=cpy, extra_meta='extra!') assert t.colnames == ['a', 'b', 'c'] assert t.meta == {'extra_meta': 'extra!'} assert np.all(t['a'] == st.columns[0]) assert np.all(t['b'] == st.columns[1]) vals = t['c'].value if table_cls is table.QTable else t['c'] assert np.all(st.columns[2].value == vals) assert isinstance(t['a'], table.MaskedColumn) assert isinstance(t['b'], table.MaskedColumn) assert isinstance(t['c'], col_c_class) assert t['c'].unit is u.m assert type(t) is table_cls # Copy being respected? t['a'][0] = 10 assert st.columns[0][0] == 1 if cpy else 10 def test_simple_2(self): """Test converting a SimpleTable and changing column names and types""" st = self.SimpleTable() dtypes = [np.int32, np.float32, np.float16] names = ['a', 'b', 'c'] meta = OrderedDict([('c', 3)]) t = table.Table(st, dtype=dtypes, names=names, meta=meta) assert t.colnames == names assert all(col.dtype.type is dtype for col, dtype in zip(t.columns.values(), dtypes)) # The supplied meta is overrides the existing meta. Changed in astropy 3.2. assert t.meta != st.meta assert t.meta == meta def test_kwargs_exception(self): """If extra kwargs provided but without initializing with a table-like object, exception is raised""" with pytest.raises(TypeError) as err: table.Table([[1]], extra_meta='extra!') assert '__init__() got unexpected keyword argument' in str(err) def test_table_meta_copy(): """ Test no copy vs light (key) copy vs deep copy of table meta for different situations. #8404. """ t = table.Table([[1]]) meta = {1: [1, 2]} # Assigning meta directly implies using direct object reference t.meta = meta assert t.meta is meta # Table slice implies key copy, so values are unchanged t2 = t[:] assert t2.meta is not t.meta # NOT the same OrderedDict object but equal assert t2.meta == t.meta assert t2.meta[1] is t.meta[1] # Value IS the list same object # Table init with copy=False implies key copy t2 = table.Table(t, copy=False) assert t2.meta is not t.meta # NOT the same OrderedDict object but equal assert t2.meta == t.meta assert t2.meta[1] is t.meta[1] # Value IS the same list object # Table init with copy=True implies deep copy t2 = table.Table(t, copy=True) assert t2.meta is not t.meta # NOT the same OrderedDict object but equal assert t2.meta == t.meta assert t2.meta[1] is not t.meta[1] # Value is NOT the same list object def test_table_meta_copy_with_meta_arg(): """ Test no copy vs light (key) copy vs deep copy of table meta when meta is supplied as a table init argument. #8404. """ meta = {1: [1, 2]} meta2 = {2: [3, 4]} t = table.Table([[1]], meta=meta, copy=False) assert t.meta is meta t = table.Table([[1]], meta=meta) # default copy=True assert t.meta is not meta assert t.meta == meta # Test initializing from existing table with meta with copy=False t2 = table.Table(t, meta=meta2, copy=False) assert t2.meta is meta2 assert t2.meta != t.meta # Change behavior in #8404 # Test initializing from existing table with meta with default copy=True t2 = table.Table(t, meta=meta2) assert t2.meta is not meta2 assert t2.meta != t.meta # Change behavior in #8404 # Table init with copy=True and empty dict meta gets that empty dict t2 = table.Table(t, copy=True, meta={}) assert t2.meta == {} # Table init with copy=True and kwarg meta=None gets the original table dict. # This is a somewhat ambiguous case because it could be interpreted as the # user wanting NO meta set on the output. This could be implemented by inspecting # call args. t2 = table.Table(t, copy=True, meta=None) assert t2.meta == t.meta # Test initializing empty table with meta with copy=False t = table.Table(meta=meta, copy=False) assert t.meta is meta assert t.meta[1] is meta[1] # Test initializing empty table with meta with default copy=True (deepcopy meta) t = table.Table(meta=meta) assert t.meta is not meta assert t.meta == meta assert t.meta[1] is not meta[1] def test_replace_column_qtable(): """Replace existing Quantity column with a new column in a QTable""" a = [1, 2, 3] * u.m b = [4, 5, 6] t = table.QTable([a, b], names=['a', 'b']) ta = t['a'] tb = t['b'] ta.info.meta = {'aa': [0, 1, 2, 3, 4]} ta.info.format = '%f' t.replace_column('a', a.to('cm')) assert np.all(t['a'] == ta) assert t['a'] is not ta # New a column assert t['b'] is tb # Original b column unchanged assert t.colnames == ['a', 'b'] assert t['a'].info.meta is None assert t['a'].info.format is None def test_replace_update_column_via_setitem(): """ Test table update like ``t['a'] = value``. This leverages off the already well-tested ``replace_column`` and in-place update ``t['a'][:] = value``, so this testing is fairly light. """ a = [1, 2] * u.m b = [3, 4] t = table.QTable([a, b], names=['a', 'b']) assert isinstance(t['a'], u.Quantity) # Inplace update ta = t['a'] t['a'] = 5 * u.m assert np.all(t['a'] == [5, 5] * u.m) assert t['a'] is ta # Replace t['a'] = [5, 6] assert np.all(t['a'] == [5, 6]) assert isinstance(t['a'], table.Column) assert t['a'] is not ta def test_replace_update_column_via_setitem_warnings_normal(): """ Test warnings related to table replace change in #5556: Normal warning-free replace """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) with catch_warnings() as w: with table.conf.set_temp('replace_warnings', ['refcount', 'attributes', 'slice']): t['a'] = 0 # in-place update assert len(w) == 0 t['a'] = [10, 20, 30] # replace column assert len(w) == 0 def test_replace_update_column_via_setitem_warnings_slice(): """ Test warnings related to table replace change in #5556: Replace a slice, one warning. """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) with catch_warnings() as w: with table.conf.set_temp('replace_warnings', ['refcount', 'attributes', 'slice']): t2 = t[:2] t2['a'] = 0 # in-place slice update assert np.all(t['a'] == [0, 0, 3]) assert len(w) == 0 t2['a'] = [10, 20] # replace slice assert len(w) == 1 assert "replaced column 'a' which looks like an array slice" in str(w[0].message) def test_replace_update_column_via_setitem_warnings_attributes(): """ Test warnings related to table replace change in #5556: Lost attributes. """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) t['a'].unit = 'm' with catch_warnings() as w: with table.conf.set_temp('replace_warnings', ['refcount', 'attributes', 'slice']): t['a'] = [10, 20, 30] assert len(w) == 1 assert "replaced column 'a' and column attributes ['unit']" in str(w[0].message) def test_replace_update_column_via_setitem_warnings_refcount(): """ Test warnings related to table replace change in #5556: Reference count changes. """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) ta = t['a'] # Generate an extra reference to original column with catch_warnings() as w: with table.conf.set_temp('replace_warnings', ['refcount', 'attributes', 'slice']): t['a'] = [10, 20, 30] assert len(w) == 1 assert "replaced column 'a' and the number of references" in str(w[0].message) def test_replace_update_column_via_setitem_warnings_always(): """ Test warnings related to table replace change in #5556: Test 'always' setting that raises warning for any replace. """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) with catch_warnings() as w: with table.conf.set_temp('replace_warnings', ['always']): t['a'] = 0 # in-place slice update assert len(w) == 0 from inspect import currentframe, getframeinfo frameinfo = getframeinfo(currentframe()) t['a'] = [10, 20, 30] # replace column assert len(w) == 1 assert "replaced column 'a'" == str(w[0].message) # Make sure the warning points back to the user code line assert w[0].lineno == frameinfo.lineno + 1 assert w[0].category is table.TableReplaceWarning assert 'test_table' in w[0].filename def test_replace_update_column_via_setitem_replace_inplace(): """ Test the replace_inplace config option related to #5556. In this case no replace is done. """ t = table.Table([[1, 2, 3], [4, 5, 6]], names=['a', 'b']) ta = t['a'] t['a'].unit = 'm' with catch_warnings() as w: with table.conf.set_temp('replace_inplace', True): with table.conf.set_temp('replace_warnings', ['always', 'refcount', 'attributes', 'slice']): t['a'] = 0 # in-place update assert len(w) == 0 assert ta is t['a'] t['a'] = [10, 20, 30] # normally replaces column, but not now assert len(w) == 0 assert ta is t['a'] assert np.all(t['a'] == [10, 20, 30]) def test_primary_key_is_inherited(): """Test whether a new Table inherits the primary_key attribute from its parent Table. Issue #4672""" t = table.Table([(2, 3, 2, 1), (8, 7, 6, 5)], names=('a', 'b')) t.add_index('a') original_key = t.primary_key # can't test if tuples are equal, so just check content assert original_key[0] is 'a' t2 = t[:] t3 = t.copy() t4 = table.Table(t) # test whether the reference is the same in the following assert original_key == t2.primary_key assert original_key == t3.primary_key assert original_key == t4.primary_key # just test one element, assume rest are equal if assert passes assert t.loc[1] == t2.loc[1] assert t.loc[1] == t3.loc[1] assert t.loc[1] == t4.loc[1] def test_qtable_read_for_ipac_table_with_char_columns(): '''Test that a char column of a QTable is assigned no unit and not a dimensionless unit, otherwise conversion of reader output to QTable fails.''' t1 = table.QTable([["A"]], names="B") out = StringIO() t1.write(out, format="ascii.ipac") t2 = table.QTable.read(out.getvalue(), format="ascii.ipac", guess=False) assert t2["B"].unit is None def test_create_table_from_final_row(): """Regression test for issue #8422: passing the last row of a table into Table should return a new table containing that row.""" t1 = table.Table([(1, 2)], names=['col']) row = t1[-1] t2 = table.Table(row)['col'] assert t2[0] == 2 def test_key_values_in_as_array(): # Test for cheking column slicing using key_values in Table.as_array() data_rows = [(1, 2.0, 'x'), (4, 5.0, 'y'), (5, 8.2, 'z')] # Creating a table with three columns t1 = table.Table(rows=data_rows, names=('a', 'b', 'c'), meta={'name': 'first table'}, dtype=('i4', 'f8', 'S1')) # Values of sliced column a,b is stored in a numpy array a = np.array([(1, 2.), (4, 5.), (5, 8.2)], dtype=[('a', '<i4'), ('b', '<f8')]) # Values fo sliced column c is stored in a numpy array b = np.array([(b'x',), (b'y',), (b'z',)], dtype=[('c', 'S1')]) # Comparing initialised array with sliced array using Table.as_array() assert np.array_equal(a, t1.as_array(names=['a', 'b'])) assert np.array_equal(b, t1.as_array(names=['c'])) def test_tolist(): t = table.Table([[1, 2, 3], [1.1, 2.2, 3.3], [b'foo', b'bar', b'hello']], names=('a', 'b', 'c')) assert t['a'].tolist() == [1, 2, 3] assert_array_equal(t['b'].tolist(), [1.1, 2.2, 3.3]) assert t['c'].tolist() == ['foo', 'bar', 'hello'] assert isinstance(t['a'].tolist()[0], int) assert isinstance(t['b'].tolist()[0], float) assert isinstance(t['c'].tolist()[0], str) t = table.Table([[[1, 2], [3, 4]], [[b'foo', b'bar'], [b'hello', b'world']]], names=('a', 'c')) assert t['a'].tolist() == [[1, 2], [3, 4]] assert t['c'].tolist() == [['foo', 'bar'], ['hello', 'world']] assert isinstance(t['a'].tolist()[0][0], int) assert isinstance(t['c'].tolist()[0][0], str)
9234fa223cc995b2322dd72eb71c395752fb5b615262c7f1fa6879e6afadb643
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import operator import pytest import numpy as np from astropy.tests.helper import assert_follows_unicode_guidelines, catch_warnings from astropy import table from astropy import units as u class TestColumn(): def test_subclass(self, Column): c = Column(name='a') assert isinstance(c, np.ndarray) c2 = c * 2 assert isinstance(c2, Column) assert isinstance(c2, np.ndarray) def test_numpy_ops(self, Column): """Show that basic numpy operations with Column behave sensibly""" arr = np.array([1, 2, 3]) c = Column(arr, name='a') for op, test_equal in ((operator.eq, True), (operator.ne, False), (operator.ge, True), (operator.gt, False), (operator.le, True), (operator.lt, False)): for eq in (op(c, arr), op(arr, c)): assert np.all(eq) if test_equal else not np.any(eq) assert len(eq) == 3 if Column is table.Column: assert type(eq) == np.ndarray else: assert type(eq) == np.ma.core.MaskedArray assert eq.dtype.str == '|b1' lt = c - 1 < arr assert np.all(lt) def test_numpy_boolean_ufuncs(self, Column): """Show that basic numpy operations with Column behave sensibly""" arr = np.array([1, 2, 3]) c = Column(arr, name='a') for ufunc, test_true in ((np.isfinite, True), (np.isinf, False), (np.isnan, False), (np.sign, True), (np.signbit, False)): result = ufunc(c) assert len(result) == len(c) assert np.all(result) if test_true else not np.any(result) if Column is table.Column: assert type(result) == np.ndarray else: assert type(result) == np.ma.core.MaskedArray if ufunc is not np.sign: assert result.dtype.str == '|b1' def test_view(self, Column): c = np.array([1, 2, 3], dtype=np.int64).view(Column) assert repr(c) == "<{0} dtype='int64' length=3>\n1\n2\n3".format(Column.__name__) def test_format(self, Column): """Show that the formatted output from str() works""" from astropy import conf with conf.set_temp('max_lines', 8): c1 = Column(np.arange(2000), name='a', dtype=float, format='%6.2f') assert str(c1).splitlines() == [' a ', '-------', ' 0.00', ' 1.00', ' ...', '1998.00', '1999.00', 'Length = 2000 rows'] def test_convert_numpy_array(self, Column): d = Column([1, 2, 3], name='a', dtype='i8') np_data = np.array(d) assert np.all(np_data == d) np_data = np.array(d, copy=False) assert np.all(np_data == d) np_data = np.array(d, dtype='i4') assert np.all(np_data == d) def test_convert_unit(self, Column): d = Column([1, 2, 3], name='a', dtype="f8", unit="m") d.convert_unit_to("km") assert np.all(d.data == [0.001, 0.002, 0.003]) def test_array_wrap(self): """Test that the __array_wrap__ method converts a reduction ufunc output that has a different shape into an ndarray view. Without this a method call like c.mean() returns a Column array object with length=1.""" # Mean and sum for a 1-d float column c = table.Column(name='a', data=[1., 2., 3.]) assert np.allclose(c.mean(), 2.0) assert isinstance(c.mean(), (np.floating, float)) assert np.allclose(c.sum(), 6.) assert isinstance(c.sum(), (np.floating, float)) # Non-reduction ufunc preserves Column class assert isinstance(np.cos(c), table.Column) # Sum for a 1-d int column c = table.Column(name='a', data=[1, 2, 3]) assert np.allclose(c.sum(), 6) assert isinstance(c.sum(), (np.integer, int)) # Sum for a 2-d int column c = table.Column(name='a', data=[[1, 2, 3], [4, 5, 6]]) assert c.sum() == 21 assert isinstance(c.sum(), (np.integer, int)) assert np.all(c.sum(axis=0) == [5, 7, 9]) assert c.sum(axis=0).shape == (3,) assert isinstance(c.sum(axis=0), np.ndarray) # Sum and mean for a 1-d masked column c = table.MaskedColumn(name='a', data=[1., 2., 3.], mask=[0, 0, 1]) assert np.allclose(c.mean(), 1.5) assert isinstance(c.mean(), (np.floating, float)) assert np.allclose(c.sum(), 3.) assert isinstance(c.sum(), (np.floating, float)) def test_name_none(self, Column): """Can create a column without supplying name, which defaults to None""" c = Column([1, 2]) assert c.name is None assert np.all(c == np.array([1, 2])) def test_quantity_init(self, Column): c = Column(data=np.array([1, 2, 3]) * u.m) assert np.all(c.data == np.array([1, 2, 3])) assert np.all(c.unit == u.m) c = Column(data=np.array([1, 2, 3]) * u.m, unit=u.cm) assert np.all(c.data == np.array([100, 200, 300])) assert np.all(c.unit == u.cm) def test_attrs_survive_getitem_after_change(self, Column): """ Test for issue #3023: when calling getitem with a MaskedArray subclass the original object attributes are not copied. """ c1 = Column([1, 2, 3], name='a', unit='m', format='%i', description='aa', meta={'a': 1}) c1.name = 'b' c1.unit = 'km' c1.format = '%d' c1.description = 'bb' c1.meta = {'bbb': 2} for item in (slice(None, None), slice(None, 1), np.array([0, 2]), np.array([False, True, False])): c2 = c1[item] assert c2.name == 'b' assert c2.unit is u.km assert c2.format == '%d' assert c2.description == 'bb' assert c2.meta == {'bbb': 2} # Make sure that calling getitem resulting in a scalar does # not copy attributes. val = c1[1] for attr in ('name', 'unit', 'format', 'description', 'meta'): assert not hasattr(val, attr) def test_to_quantity(self, Column): d = Column([1, 2, 3], name='a', dtype="f8", unit="m") assert np.all(d.quantity == ([1, 2, 3.] * u.m)) assert np.all(d.quantity.value == ([1, 2, 3.] * u.m).value) assert np.all(d.quantity == d.to('m')) assert np.all(d.quantity.value == d.to('m').value) np.testing.assert_allclose(d.to(u.km).value, ([.001, .002, .003] * u.km).value) np.testing.assert_allclose(d.to('km').value, ([.001, .002, .003] * u.km).value) np.testing.assert_allclose(d.to(u.MHz, u.equivalencies.spectral()).value, [299.792458, 149.896229, 99.93081933]) d_nounit = Column([1, 2, 3], name='a', dtype="f8", unit=None) with pytest.raises(u.UnitsError): d_nounit.to(u.km) assert np.all(d_nounit.to(u.dimensionless_unscaled) == np.array([1, 2, 3])) # make sure the correct copy/no copy behavior is happening q = [1, 3, 5]*u.km # to should always make a copy d.to(u.km)[:] = q np.testing.assert_allclose(d, [1, 2, 3]) # explcit copying of the quantity should not change the column d.quantity.copy()[:] = q np.testing.assert_allclose(d, [1, 2, 3]) # but quantity directly is a "view", accessing the underlying column d.quantity[:] = q np.testing.assert_allclose(d, [1000, 3000, 5000]) # view should also work for integers d2 = Column([1, 2, 3], name='a', dtype=int, unit="m") d2.quantity[:] = q np.testing.assert_allclose(d2, [1000, 3000, 5000]) # but it should fail for strings or other non-numeric tables d3 = Column(['arg', 'name', 'stuff'], name='a', unit="m") with pytest.raises(TypeError): d3.quantity def test_to_funcunit_quantity(self, Column): """ Tests for #8424, check if function-unit can be retrieved from column. """ d = Column([1, 2, 3], name='a', dtype="f8", unit="dex(AA)") assert np.all(d.quantity == ([1, 2, 3] * u.dex(u.AA))) assert np.all(d.quantity.value == ([1, 2, 3] * u.dex(u.AA)).value) assert np.all(d.quantity == d.to("dex(AA)")) assert np.all(d.quantity.value == d.to("dex(AA)").value) # make sure, casting to linear unit works q = [10, 100, 1000] * u.AA np.testing.assert_allclose(d.to(u.AA), q) def test_item_access_type(self, Column): """ Tests for #3095, which forces integer item access to always return a plain ndarray or MaskedArray, even in the case of a multi-dim column. """ integer_types = (int, np.int_) for int_type in integer_types: c = Column([[1, 2], [3, 4]]) i0 = int_type(0) i1 = int_type(1) assert np.all(c[i0] == [1, 2]) assert type(c[i0]) == (np.ma.MaskedArray if hasattr(Column, 'mask') else np.ndarray) assert c[i0].shape == (2,) c01 = c[i0:i1] assert np.all(c01 == [[1, 2]]) assert isinstance(c01, Column) assert c01.shape == (1, 2) c = Column([1, 2]) assert np.all(c[i0] == 1) assert isinstance(c[i0], np.integer) assert c[i0].shape == () c01 = c[i0:i1] assert np.all(c01 == [1]) assert isinstance(c01, Column) assert c01.shape == (1,) def test_insert_basic(self, Column): c = Column([0, 1, 2], name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) # Basic insert c1 = c.insert(1, 100) assert np.all(c1 == [0, 100, 1, 2]) assert c1.attrs_equal(c) assert type(c) is type(c1) if hasattr(c1, 'mask'): assert c1.data.shape == c1.mask.shape c1 = c.insert(-1, 100) assert np.all(c1 == [0, 1, 100, 2]) c1 = c.insert(3, 100) assert np.all(c1 == [0, 1, 2, 100]) c1 = c.insert(-3, 100) assert np.all(c1 == [100, 0, 1, 2]) c1 = c.insert(1, [100, 200, 300]) if hasattr(c1, 'mask'): assert c1.data.shape == c1.mask.shape # Out of bounds index with pytest.raises((ValueError, IndexError)): c1 = c.insert(-4, 100) with pytest.raises((ValueError, IndexError)): c1 = c.insert(4, 100) def test_insert_axis(self, Column): """Insert with non-default axis kwarg""" c = Column([[1, 2], [3, 4]]) c1 = c.insert(1, [5, 6], axis=None) assert np.all(c1 == [1, 5, 6, 2, 3, 4]) c1 = c.insert(1, [5, 6], axis=1) assert np.all(c1 == [[1, 5, 2], [3, 6, 4]]) def test_insert_multidim(self, Column): c = Column([[1, 2], [3, 4]], name='a', dtype=int) # Basic insert c1 = c.insert(1, [100, 200]) assert np.all(c1 == [[1, 2], [100, 200], [3, 4]]) # Broadcast c1 = c.insert(1, 100) assert np.all(c1 == [[1, 2], [100, 100], [3, 4]]) # Wrong shape with pytest.raises(ValueError): c1 = c.insert(1, [100, 200, 300]) def test_insert_object(self, Column): c = Column(['a', 1, None], name='a', dtype=object) # Basic insert c1 = c.insert(1, [100, 200]) assert np.all(c1 == ['a', [100, 200], 1, None]) def test_insert_masked(self): c = table.MaskedColumn([0, 1, 2], name='a', fill_value=9999, mask=[False, True, False]) # Basic insert c1 = c.insert(1, 100) assert np.all(c1.data.data == [0, 100, 1, 2]) assert c1.fill_value == 9999 assert np.all(c1.data.mask == [False, False, True, False]) assert type(c) is type(c1) for mask in (False, True): c1 = c.insert(1, 100, mask=mask) assert np.all(c1.data.data == [0, 100, 1, 2]) assert np.all(c1.data.mask == [False, mask, True, False]) def test_masked_multidim_as_list(self): data = np.ma.MaskedArray([1, 2], mask=[True, False]) c = table.MaskedColumn([data]) assert c.shape == (1, 2) assert np.all(c[0].mask == [True, False]) def test_insert_masked_multidim(self): c = table.MaskedColumn([[1, 2], [3, 4]], name='a', dtype=int) c1 = c.insert(1, [100, 200], mask=True) assert np.all(c1.data.data == [[1, 2], [100, 200], [3, 4]]) assert np.all(c1.data.mask == [[False, False], [True, True], [False, False]]) c1 = c.insert(1, [100, 200], mask=[True, False]) assert np.all(c1.data.data == [[1, 2], [100, 200], [3, 4]]) assert np.all(c1.data.mask == [[False, False], [True, False], [False, False]]) with pytest.raises(ValueError): c1 = c.insert(1, [100, 200], mask=[True, False, True]) def test_mask_on_non_masked_table(self): """ When table is not masked and trying to set mask on column then it's Raise AttributeError. """ t = table.Table([[1, 2], [3, 4]], names=('a', 'b'), dtype=('i4', 'f8')) with pytest.raises(AttributeError): t['a'].mask = [True, False] class TestAttrEqual(): """Bunch of tests originally from ATpy that test the attrs_equal method.""" def test_5(self, Column): c1 = Column(name='a', dtype=int, unit='mJy') c2 = Column(name='a', dtype=int, unit='mJy') assert c1.attrs_equal(c2) def test_6(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) assert c1.attrs_equal(c2) def test_7(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='b', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_8(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=float, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_9(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='erg.cm-2.s-1.Hz-1', format='%i', description='test column', meta={'c': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_10(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='mJy', format='%g', description='test column', meta={'c': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_11(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='mJy', format='%i', description='another test column', meta={'c': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_12(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'e': 8, 'd': 12}) assert not c1.attrs_equal(c2) def test_13(self, Column): c1 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 9, 'd': 12}) assert not c1.attrs_equal(c2) def test_col_and_masked_col(self): c1 = table.Column(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) c2 = table.MaskedColumn(name='a', dtype=int, unit='mJy', format='%i', description='test column', meta={'c': 8, 'd': 12}) assert c1.attrs_equal(c2) assert c2.attrs_equal(c1) # Check that the meta descriptor is working as expected. The MetaBaseTest class # takes care of defining all the tests, and we simply have to define the class # and any minimal set of args to pass. from astropy.utils.tests.test_metadata import MetaBaseTest class TestMetaColumn(MetaBaseTest): test_class = table.Column args = () class TestMetaMaskedColumn(MetaBaseTest): test_class = table.MaskedColumn args = () def test_getitem_metadata_regression(): """ Regression test for #1471: MaskedArray does not call __array_finalize__ so the meta-data was not getting copied over. By overloading _update_from we are able to work around this bug. """ # Make sure that meta-data gets propagated with __getitem__ c = table.Column(data=[1, 2], name='a', description='b', unit='m', format="%i", meta={'c': 8}) assert c[1:2].name == 'a' assert c[1:2].description == 'b' assert c[1:2].unit == 'm' assert c[1:2].format == '%i' assert c[1:2].meta['c'] == 8 c = table.MaskedColumn(data=[1, 2], name='a', description='b', unit='m', format="%i", meta={'c': 8}) assert c[1:2].name == 'a' assert c[1:2].description == 'b' assert c[1:2].unit == 'm' assert c[1:2].format == '%i' assert c[1:2].meta['c'] == 8 # As above, but with take() - check the method and the function c = table.Column(data=[1, 2, 3], name='a', description='b', unit='m', format="%i", meta={'c': 8}) for subset in [c.take([0, 1]), np.take(c, [0, 1])]: assert subset.name == 'a' assert subset.description == 'b' assert subset.unit == 'm' assert subset.format == '%i' assert subset.meta['c'] == 8 # Metadata isn't copied for scalar values for subset in [c.take(0), np.take(c, 0)]: assert subset == 1 assert subset.shape == () assert not isinstance(subset, table.Column) c = table.MaskedColumn(data=[1, 2, 3], name='a', description='b', unit='m', format="%i", meta={'c': 8}) for subset in [c.take([0, 1]), np.take(c, [0, 1])]: assert subset.name == 'a' assert subset.description == 'b' assert subset.unit == 'm' assert subset.format == '%i' assert subset.meta['c'] == 8 # Metadata isn't copied for scalar values for subset in [c.take(0), np.take(c, 0)]: assert subset == 1 assert subset.shape == () assert not isinstance(subset, table.MaskedColumn) def test_unicode_guidelines(): arr = np.array([1, 2, 3]) c = table.Column(arr, name='a') assert_follows_unicode_guidelines(c) def test_scalar_column(): """ Column is not designed to hold scalars, but for numpy 1.6 this can happen: >> type(np.std(table.Column([1, 2]))) astropy.table.column.Column """ c = table.Column(1.5) assert repr(c) == '1.5' assert str(c) == '1.5' def test_qtable_column_conversion(): """ Ensures that a QTable that gets assigned a unit switches to be Quantity-y """ qtab = table.QTable([[1, 2], [3, 4.2]], names=['i', 'f']) assert isinstance(qtab['i'], table.column.Column) assert isinstance(qtab['f'], table.column.Column) qtab['i'].unit = 'km/s' assert isinstance(qtab['i'], u.Quantity) assert isinstance(qtab['f'], table.column.Column) # should follow from the above, but good to make sure as a #4497 regression test assert isinstance(qtab['i'][0], u.Quantity) assert isinstance(qtab[0]['i'], u.Quantity) assert not isinstance(qtab['f'][0], u.Quantity) assert not isinstance(qtab[0]['f'], u.Quantity) # Regression test for #5342: if a function unit is assigned, the column # should become the appropriate FunctionQuantity subclass. qtab['f'].unit = u.dex(u.cm/u.s**2) assert isinstance(qtab['f'], u.Dex) @pytest.mark.parametrize('masked', [True, False]) def test_string_truncation_warning(masked): """ Test warnings associated with in-place assignment to a string column that results in truncation of the right hand side. """ t = table.Table([['aa', 'bb']], names=['a'], masked=masked) with catch_warnings() as w: from inspect import currentframe, getframeinfo t['a'][1] = 'cc' assert len(w) == 0 t['a'][:] = 'dd' assert len(w) == 0 with catch_warnings() as w: frameinfo = getframeinfo(currentframe()) t['a'][0] = 'eee' # replace item with string that gets truncated assert t['a'][0] == 'ee' assert len(w) == 1 assert ('truncated right side string(s) longer than 2 character(s)' in str(w[0].message)) # Make sure the warning points back to the user code line assert w[0].lineno == frameinfo.lineno + 1 assert w[0].category is table.StringTruncateWarning assert 'test_column' in w[0].filename with catch_warnings() as w: t['a'][:] = ['ff', 'ggg'] # replace item with string that gets truncated assert np.all(t['a'] == ['ff', 'gg']) assert len(w) == 1 assert ('truncated right side string(s) longer than 2 character(s)' in str(w[0].message)) with catch_warnings() as w: # Test the obscure case of assigning from an array that was originally # wider than any of the current elements (i.e. dtype is U4 but actual # elements are U1 at the time of assignment). val = np.array(['ffff', 'gggg']) val[:] = ['f', 'g'] t['a'][:] = val assert np.all(t['a'] == ['f', 'g']) assert len(w) == 0 def test_string_truncation_warning_masked(): """ Test warnings associated with in-place assignment to a string to a masked column, specifically where the right hand side contains np.ma.masked. """ # Test for strings, but also cover assignment of np.ma.masked to # int and float masked column setting. This was previously only # covered in an unrelated io.ascii test (test_line_endings) which # showed an unexpected difference between handling of str and numeric # masked arrays. for values in (['a', 'b'], [1, 2], [1.0, 2.0]): mc = table.MaskedColumn(values) with catch_warnings() as w: mc[1] = np.ma.masked assert len(w) == 0 assert np.all(mc.mask == [False, True]) mc[:] = np.ma.masked assert len(w) == 0 assert np.all(mc.mask == [True, True]) mc = table.MaskedColumn(['aa', 'bb']) with catch_warnings() as w: mc[:] = [np.ma.masked, 'ggg'] # replace item with string that gets truncated assert mc[1] == 'gg' assert np.all(mc.mask == [True, False]) assert len(w) == 1 assert ('truncated right side string(s) longer than 2 character(s)' in str(w[0].message)) @pytest.mark.parametrize('Column', (table.Column, table.MaskedColumn)) def test_col_unicode_sandwich_create_from_str(Column): """ Create a bytestring Column from strings (including unicode) in Py3. """ # a-umlaut is a 2-byte character in utf-8, test fails with ascii encoding. # Stress the system by injecting non-ASCII characters. uba = u'bä' c = Column([uba, 'def'], dtype='S') assert c.dtype.char == 'S' assert c[0] == uba assert isinstance(c[0], str) assert isinstance(c[:0], table.Column) assert np.all(c[:2] == np.array([uba, 'def'])) @pytest.mark.parametrize('Column', (table.Column, table.MaskedColumn)) def test_col_unicode_sandwich_bytes(Column): """ Create a bytestring Column from bytes and ensure that it works in Python 3 in a convenient way like in Python 2. """ # a-umlaut is a 2-byte character in utf-8, test fails with ascii encoding. # Stress the system by injecting non-ASCII characters. uba = u'bä' uba8 = uba.encode('utf-8') c = Column([uba8, b'def']) assert c.dtype.char == 'S' assert c[0] == uba assert isinstance(c[0], str) assert isinstance(c[:0], table.Column) assert np.all(c[:2] == np.array([uba, 'def'])) assert isinstance(c[:], table.Column) assert c[:].dtype.char == 'S' # Array / list comparisons assert np.all(c == [uba, 'def']) ok = c == [uba8, b'def'] assert type(ok) is type(c.data) assert ok.dtype.char == '?' assert np.all(ok) assert np.all(c == np.array([uba, u'def'])) assert np.all(c == np.array([uba8, b'def'])) # Scalar compare cmps = (uba, uba8) for cmp in cmps: ok = c == cmp assert type(ok) is type(c.data) assert np.all(ok == [True, False]) def test_col_unicode_sandwich_unicode(): """ Sanity check that Unicode Column behaves normally. """ # On Py2 the unicode must be ASCII-compatible, else the final test fails. uba = u'bä' uba8 = uba.encode('utf-8') c = table.Column([uba, 'def'], dtype='U') assert c[0] == uba assert isinstance(c[:0], table.Column) assert isinstance(c[0], str) assert np.all(c[:2] == np.array([uba, 'def'])) assert isinstance(c[:], table.Column) assert c[:].dtype.char == 'U' ok = c == [uba, 'def'] assert type(ok) == np.ndarray assert ok.dtype.char == '?' assert np.all(ok) assert np.all(c != [uba8, b'def']) def test_masked_col_unicode_sandwich(): """ Create a bytestring MaskedColumn and ensure that it works in Python 3 in a convenient way like in Python 2. """ c = table.MaskedColumn([b'abc', b'def']) c[1] = np.ma.masked assert isinstance(c[:0], table.MaskedColumn) assert isinstance(c[0], str) assert c[0] == 'abc' assert c[1] is np.ma.masked assert isinstance(c[:], table.MaskedColumn) assert c[:].dtype.char == 'S' ok = c == ['abc', 'def'] assert ok[0] == True assert ok[1] is np.ma.masked assert np.all(c == [b'abc', b'def']) assert np.all(c == np.array([u'abc', u'def'])) assert np.all(c == np.array([b'abc', b'def'])) for cmp in (u'abc', b'abc'): ok = c == cmp assert type(ok) is np.ma.MaskedArray assert ok[0] == True assert ok[1] is np.ma.masked @pytest.mark.parametrize('Column', (table.Column, table.MaskedColumn)) def test_unicode_sandwich_set(Column): """ Test setting """ uba = u'bä' c = Column([b'abc', b'def']) c[0] = b'aa' assert np.all(c == [u'aa', u'def']) c[0] = uba # a-umlaut is a 2-byte character in utf-8, test fails with ascii encoding assert np.all(c == [uba, u'def']) assert c.pformat() == [u'None', u'----', ' ' + uba, u' def'] c[:] = b'cc' assert np.all(c == [u'cc', u'cc']) c[:] = uba assert np.all(c == [uba, uba]) c[:] = '' c[:] = [uba, b'def'] assert np.all(c == [uba, b'def']) @pytest.mark.parametrize('class1', [table.MaskedColumn, table.Column]) @pytest.mark.parametrize('class2', [table.MaskedColumn, table.Column, str, list]) def test_unicode_sandwich_compare(class1, class2): """Test that comparing a bytestring Column/MaskedColumn with various str (unicode) object types gives the expected result. Tests #6838. """ obj1 = class1([b'a', b'c']) if class2 is str: obj2 = 'a' elif class2 is list: obj2 = ['a', 'b'] else: obj2 = class2(['a', 'b']) assert np.all((obj1 == obj2) == [True, False]) assert np.all((obj2 == obj1) == [True, False]) assert np.all((obj1 != obj2) == [False, True]) assert np.all((obj2 != obj1) == [False, True]) assert np.all((obj1 > obj2) == [False, True]) assert np.all((obj2 > obj1) == [False, False]) assert np.all((obj1 <= obj2) == [True, False]) assert np.all((obj2 <= obj1) == [True, True]) assert np.all((obj1 < obj2) == [False, False]) assert np.all((obj2 < obj1) == [False, True]) assert np.all((obj1 >= obj2) == [True, True]) assert np.all((obj2 >= obj1) == [True, False]) def test_unicode_sandwich_masked_compare(): """Test the fix for #6839 from #6899.""" c1 = table.MaskedColumn(['a', 'b', 'c', 'd'], mask=[True, False, True, False]) c2 = table.MaskedColumn([b'a', b'b', b'c', b'd'], mask=[True, True, False, False]) for cmp in ((c1 == c2), (c2 == c1)): assert cmp[0] is np.ma.masked assert cmp[1] is np.ma.masked assert cmp[2] is np.ma.masked assert cmp[3] for cmp in ((c1 != c2), (c2 != c1)): assert cmp[0] is np.ma.masked assert cmp[1] is np.ma.masked assert cmp[2] is np.ma.masked assert not cmp[3] # Note: comparisons <, >, >=, <= fail to return a masked array entirely, # see https://github.com/numpy/numpy/issues/10092.
b1cc7679202b138df739c9c5eeb3b9ea99d57aead79af4e1961f79b01c8d3585
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose, assert_array_equal, assert_array_less from astropy.modeling import models, InputParameterError from astropy.coordinates import Angle from astropy.modeling import fitting from astropy.tests.helper import catch_warnings from astropy.utils.exceptions import AstropyDeprecationWarning try: from scipy import optimize # pylint: disable=W0611 HAS_SCIPY = True except ImportError: HAS_SCIPY = False def test_sigma_constant(): """ Test that the GAUSSIAN_SIGMA_TO_FWHM constant matches the gaussian_sigma_to_fwhm constant in astropy.stats. We define it manually in astropy.modeling to avoid importing from astropy.stats. """ from astropy.stats.funcs import gaussian_sigma_to_fwhm from astropy.modeling.functional_models import GAUSSIAN_SIGMA_TO_FWHM assert gaussian_sigma_to_fwhm == GAUSSIAN_SIGMA_TO_FWHM def test_Trapezoid1D(): """Regression test for https://github.com/astropy/astropy/issues/1721""" model = models.Trapezoid1D(amplitude=4.2, x_0=2.0, width=1.0, slope=3) xx = np.linspace(0, 4, 8) yy = model(xx) yy_ref = [0., 1.41428571, 3.12857143, 4.2, 4.2, 3.12857143, 1.41428571, 0.] assert_allclose(yy, yy_ref, rtol=0, atol=1e-6) def test_Gaussian2D(): """ Test rotated elliptical Gaussian2D model. https://github.com/astropy/astropy/pull/2038 """ model = models.Gaussian2D(4.2, 1.7, 3.1, x_stddev=5.1, y_stddev=3.3, theta=np.pi/6.) y, x = np.mgrid[0:5, 0:5] g = model(x, y) g_ref = [[3.01907812, 2.99051889, 2.81271552, 2.5119566, 2.13012709], [3.55982239, 3.6086023, 3.4734158, 3.17454575, 2.75494838], [3.88059142, 4.0257528, 3.96554926, 3.70908389, 3.29410187], [3.91095768, 4.15212857, 4.18567526, 4.00652015, 3.64146544], [3.6440466, 3.95922417, 4.08454159, 4.00113878, 3.72161094]] assert_allclose(g, g_ref, rtol=0, atol=1e-6) assert_allclose([model.x_fwhm, model.y_fwhm], [12.009582229657841, 7.7709061486021325]) def test_Gaussian2DCovariance(): """ Test rotated elliptical Gaussian2D model when cov_matrix is input. https://github.com/astropy/astropy/pull/2199 """ cov_matrix = [[49., -16.], [-16., 9.]] model = models.Gaussian2D(17., 2.0, 2.5, cov_matrix=cov_matrix) y, x = np.mgrid[0:5, 0:5] g = model(x, y) g_ref = [[4.3744505, 5.8413977, 7.42988694, 9.00160175, 10.38794269], [8.83290201, 10.81772851, 12.61946384, 14.02225593, 14.84113227], [13.68528889, 15.37184621, 16.44637743, 16.76048705, 16.26953638], [16.26953638, 16.76048705, 16.44637743, 15.37184621, 13.68528889], [14.84113227, 14.02225593, 12.61946384, 10.81772851, 8.83290201]] assert_allclose(g, g_ref, rtol=0, atol=1e-6) def test_Gaussian2DRotation(): amplitude = 42 x_mean, y_mean = 0, 0 x_stddev, y_stddev = 2, 3 theta = Angle(10, 'deg') pars = dict(amplitude=amplitude, x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev) rotation = models.Rotation2D(angle=theta.degree) point1 = (x_mean + 2 * x_stddev, y_mean + 2 * y_stddev) point2 = rotation(*point1) g1 = models.Gaussian2D(theta=0, **pars) g2 = models.Gaussian2D(theta=theta.radian, **pars) value1 = g1(*point1) value2 = g2(*point2) assert_allclose(value1, value2) def test_Gaussian2D_invalid_inputs(): x_stddev = 5.1 y_stddev = 3.3 theta = 10 cov_matrix = [[49., -16.], [-16., 9.]] # first make sure the valid ones are OK models.Gaussian2D() models.Gaussian2D(x_stddev=x_stddev, y_stddev=y_stddev, theta=theta) models.Gaussian2D(x_stddev=None, y_stddev=y_stddev, theta=theta) models.Gaussian2D(x_stddev=x_stddev, y_stddev=None, theta=theta) models.Gaussian2D(x_stddev=x_stddev, y_stddev=y_stddev, theta=None) models.Gaussian2D(cov_matrix=cov_matrix) with pytest.raises(InputParameterError): models.Gaussian2D(x_stddev=0, cov_matrix=cov_matrix) with pytest.raises(InputParameterError): models.Gaussian2D(y_stddev=0, cov_matrix=cov_matrix) with pytest.raises(InputParameterError): models.Gaussian2D(theta=0, cov_matrix=cov_matrix) @pytest.mark.parametrize('gamma', (10, -10)) def test_moffat_fwhm(gamma): ans = 34.641016151377542 kwargs = {'gamma': gamma, 'alpha': 0.5} m1 = models.Moffat1D(**kwargs) m2 = models.Moffat2D(**kwargs) assert_allclose([m1.fwhm, m2.fwhm], ans) assert_array_less(0, [m1.fwhm, m2.fwhm]) def test_RedshiftScaleFactor(): """Like ``test_ScaleModel()``.""" # Scale by a scalar m = models.RedshiftScaleFactor(0.4) assert m(0) == 0 assert_array_equal(m([1, 2]), [1.4, 2.8]) assert_allclose(m.inverse(m([1, 2])), [1, 2]) # Scale by a list m = models.RedshiftScaleFactor([-0.5, 0, 0.5], n_models=3) assert_array_equal(m(0), 0) assert_array_equal(m([1, 2], model_set_axis=False), [[0.5, 1], [1, 2], [1.5, 3]]) assert_allclose(m.inverse(m([1, 2], model_set_axis=False)), [[1, 2], [1, 2], [1, 2]]) def test_Ellipse2D(): """Test Ellipse2D model.""" amplitude = 7.5 x0, y0 = 15, 15 theta = Angle(45, 'deg') em = models.Ellipse2D(amplitude, x0, y0, 7, 3, theta.radian) y, x = np.mgrid[0:30, 0:30] e = em(x, y) assert np.all(e[e > 0] == amplitude) assert e[y0, x0] == amplitude rotation = models.Rotation2D(angle=theta.degree) point1 = [2, 0] # Rotation2D center is (0, 0) point2 = rotation(*point1) point1 = np.array(point1) + [x0, y0] point2 = np.array(point2) + [x0, y0] e1 = models.Ellipse2D(amplitude, x0, y0, 7, 3, theta=0.) e2 = models.Ellipse2D(amplitude, x0, y0, 7, 3, theta=theta.radian) assert e1(*point1) == e2(*point2) def test_Ellipse2D_circular(): """Test that circular Ellipse2D agrees with Disk2D [3736].""" amplitude = 7.5 radius = 10 size = (radius * 2) + 1 y, x = np.mgrid[0:size, 0:size] ellipse = models.Ellipse2D(amplitude, radius, radius, radius, radius, theta=0)(x, y) disk = models.Disk2D(amplitude, radius, radius, radius)(x, y) assert np.all(ellipse == disk) def test_Scale_inverse(): m = models.Scale(1.2345) assert_allclose(m.inverse(m(6.789)), 6.789) def test_Multiply_inverse(): m = models.Multiply(1.2345) assert_allclose(m.inverse(m(6.789)), 6.789) def test_Shift_inverse(): m = models.Shift(1.2345) assert_allclose(m.inverse(m(6.789)), 6.789) @pytest.mark.skipif('not HAS_SCIPY') def test_Shift_model_levmar_fit(): """Test fitting Shift model with LevMarLSQFitter (issue #6103).""" init_model = models.Shift() x = np.arange(10) y = x+0.1 fitter = fitting.LevMarLSQFitter() fitted_model = fitter(init_model, x, y) assert_allclose(fitted_model.parameters, [0.1], atol=1e-15) def test_Shift_model_set_linear_fit(): """Test linear fitting of Shift model (issue #6103).""" init_model = models.Shift(offset=[0, 0], n_models=2) x = np.arange(10) yy = np.array([x+0.1, x-0.2]) fitter = fitting.LinearLSQFitter() fitted_model = fitter(init_model, x, yy) assert_allclose(fitted_model.parameters, [0.1, -0.2], atol=1e-15) @pytest.mark.parametrize('Model', (models.Scale, models.Multiply)) def test_Scale_model_set_linear_fit(Model): """Test linear fitting of Scale model (#6103).""" init_model = Model(factor=[0, 0], n_models=2) x = np.arange(-3, 7) yy = np.array([1.15*x, 0.96*x]) fitter = fitting.LinearLSQFitter() fitted_model = fitter(init_model, x, yy) assert_allclose(fitted_model.parameters, [1.15, 0.96], atol=1e-15) # https://github.com/astropy/astropy/issues/6178 def test_Ring2D_rout(): m = models.Ring2D(amplitude=1, x_0=1, y_0=1, r_in=2, r_out=5) assert m.width.value == 3 @pytest.mark.skipif("not HAS_SCIPY") def test_Voigt1D(): voi = models.Voigt1D(amplitude_L=-0.5, x_0=1.0, fwhm_L=5.0, fwhm_G=5.0) xarr = np.linspace(-5.0, 5.0, num=40) yarr = voi(xarr) voi_init = models.Voigt1D(amplitude_L=-1.0, x_0=1.0, fwhm_L=5.0, fwhm_G=5.0) fitter = fitting.LevMarLSQFitter() voi_fit = fitter(voi_init, xarr, yarr) assert_allclose(voi_fit.param_sets, voi.param_sets) @pytest.mark.skipif("not HAS_SCIPY") def test_compound_models_with_class_variables(): models_2d = [models.AiryDisk2D, models.Sersic2D] models_1d = [models.Sersic1D] for model_2d in models_2d: class CompoundModel2D(models.Const2D + model_2d): pass x, y = np.mgrid[:10, :10] f = CompoundModel2D()(x, y) assert f.shape == (10, 10) for model_1d in models_1d: class CompoundModel1D(models.Const1D + model_1d): pass x = np.arange(10) f = CompoundModel1D()(x) assert f.shape == (10,)
dbc7c1a47b4ebb3f46e33a4f2cde149c0559338bec5af040e0a89f688da98bc7
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import hashlib import os import pathlib import sys import tempfile import urllib.request import urllib.error import pytest from astropy.utils.data import (_get_download_cache_locs, CacheMissingWarning, get_pkg_data_filename, get_readable_fileobj, conf) from astropy.tests.helper import raises, catch_warnings TESTURL = 'http://www.astropy.org' TESTLOCAL = get_pkg_data_filename(os.path.join('data', 'local.dat')) # General file object function try: import bz2 # noqa except ImportError: HAS_BZ2 = False else: HAS_BZ2 = True try: import lzma # noqa except ImportError: HAS_XZ = False else: HAS_XZ = True @pytest.mark.remote_data(source='astropy') def test_download_nocache(): from astropy.utils.data import download_file fnout = download_file(TESTURL) assert os.path.isfile(fnout) @pytest.mark.remote_data(source='astropy') def test_download_parallel(): from astropy.utils.data import download_files_in_parallel main_url = conf.dataurl mirror_url = conf.dataurl_mirror fileloc = 'intersphinx/README' try: fnout = download_files_in_parallel([main_url, main_url + fileloc]) except urllib.error.URLError: # Use mirror if timed out fnout = download_files_in_parallel([mirror_url, mirror_url + fileloc]) assert all([os.path.isfile(f) for f in fnout]), fnout # NOTE: Does not need remote data. def test_download_mirror_cache(): import pathlib import shelve from astropy.utils.data import _find_pkg_data_path, download_file, get_cached_urls main_url = pathlib.Path( _find_pkg_data_path(os.path.join('data', 'dataurl'))).as_uri() + '/' mirror_url = pathlib.Path( _find_pkg_data_path(os.path.join('data', 'dataurl_mirror'))).as_uri() + '/' # noqa main_file = main_url + 'index.html' mirror_file = mirror_url + 'index.html' # Temporarily change data.conf. # This also test https://github.com/astropy/astropy/pull/8163 because # urlopen() on a local dir URI also gives URLError. with conf.set_temp('dataurl', main_url): with conf.set_temp('dataurl_mirror', mirror_url): # "Download" files by rerouting URLs to local URIs. download_file(main_file, cache=True) download_file(mirror_file, cache=True) # Now test that download_file looks in mirror's cache before # download. # https://github.com/astropy/astropy/issues/6982 dldir, urlmapfn = _get_download_cache_locs() with shelve.open(urlmapfn) as url2hash: del url2hash[main_file] # Comparing hash makes sure they download the same file # but does not guarantee they were downloaded from the same URL. assert (download_file(main_file, cache=True) == download_file(mirror_file, cache=True)) # This has to be called after the last download to obtain # an accurate view of cached URLs. # This is to ensure that main_file was not re-downloaded # unnecessarily. # This test also tests for "assert TESTURL in get_cached_urls()". c_urls = get_cached_urls() assert (mirror_file in c_urls) and (main_file not in c_urls) @pytest.mark.remote_data(source='astropy') def test_download_noprogress(): from astropy.utils.data import download_file fnout = download_file(TESTURL, show_progress=False) assert os.path.isfile(fnout) @pytest.mark.remote_data(source='astropy') def test_download_cache(): from astropy.utils.data import download_file, clear_download_cache download_dir = _get_download_cache_locs()[0] # Download the test URL and make sure it exists, then clear just that # URL and make sure it got deleted. fnout = download_file(TESTURL, cache=True) assert os.path.isdir(download_dir) assert os.path.isfile(fnout) clear_download_cache(TESTURL) assert not os.path.exists(fnout) # Test issues raised in #4427 with clear_download_cache() without a URL, # followed by subsequent download. fnout = download_file(TESTURL, cache=True) assert os.path.isfile(fnout) clear_download_cache() assert not os.path.exists(fnout) assert not os.path.exists(download_dir) fnout = download_file(TESTURL, cache=True) assert os.path.isfile(fnout) # Clearing download cache succeeds even if the URL does not exist. clear_download_cache('http://this_was_never_downloaded_before.com') # Make sure lockdir was released lockdir = os.path.join(download_dir, 'lock') assert not os.path.isdir(lockdir), 'Cache dir lock was not released!' @pytest.mark.remote_data(source='astropy') def test_url_nocache(): with get_readable_fileobj(TESTURL, cache=False, encoding='utf-8') as page: assert page.read().find('Astropy') > -1 @pytest.mark.remote_data(source='astropy') def test_find_by_hash(): from astropy.utils.data import clear_download_cache with get_readable_fileobj(TESTURL, encoding="binary", cache=True) as page: hash = hashlib.md5(page.read()) hashstr = 'hash/' + hash.hexdigest() fnout = get_pkg_data_filename(hashstr) assert os.path.isfile(fnout) clear_download_cache(hashstr[5:]) assert not os.path.isfile(fnout) lockdir = os.path.join(_get_download_cache_locs()[0], 'lock') assert not os.path.isdir(lockdir), 'Cache dir lock was not released!' @pytest.mark.remote_data(source='astropy') def test_find_invalid(): # this is of course not a real data file and not on any remote server, but # it should *try* to go to the remote server with pytest.raises(urllib.error.URLError): get_pkg_data_filename('kjfrhgjklahgiulrhgiuraehgiurhgiuhreglhurieghruelighiuerahiulruli') # Package data functions @pytest.mark.parametrize(('filename'), ['local.dat', 'local.dat.gz', 'local.dat.bz2', 'local.dat.xz']) def test_local_data_obj(filename): from astropy.utils.data import get_pkg_data_fileobj if (not HAS_BZ2 and 'bz2' in filename) or (not HAS_XZ and 'xz' in filename): with pytest.raises(ValueError) as e: with get_pkg_data_fileobj(os.path.join('data', filename), encoding='binary') as f: f.readline() # assert f.read().rstrip() == b'CONTENT' assert ' format files are not supported' in str(e) else: with get_pkg_data_fileobj(os.path.join('data', filename), encoding='binary') as f: f.readline() assert f.read().rstrip() == b'CONTENT' @pytest.fixture(params=['invalid.dat.bz2', 'invalid.dat.gz']) def bad_compressed(request, tmpdir): # These contents have valid headers for their respective file formats, but # are otherwise malformed and invalid. bz_content = b'BZhinvalid' gz_content = b'\x1f\x8b\x08invalid' datafile = tmpdir.join(request.param) filename = datafile.strpath if filename.endswith('.bz2'): contents = bz_content elif filename.endswith('.gz'): contents = gz_content else: contents = 'invalid' datafile.write(contents, mode='wb') return filename def test_local_data_obj_invalid(bad_compressed): is_bz2 = bad_compressed.endswith('.bz2') is_xz = bad_compressed.endswith('.xz') # Note, since these invalid files are created on the fly in order to avoid # problems with detection by antivirus software # (see https://github.com/astropy/astropy/issues/6520), it is no longer # possible to use ``get_pkg_data_fileobj`` to read the files. Technically, # they're not local anymore: they just live in a temporary directory # created by pytest. However, we can still use get_readable_fileobj for the # test. if (not HAS_BZ2 and is_bz2) or (not HAS_XZ and is_xz): with pytest.raises(ValueError) as e: with get_readable_fileobj(bad_compressed, encoding='binary') as f: f.read() assert ' format files are not supported' in str(e) else: with get_readable_fileobj(bad_compressed, encoding='binary') as f: assert f.read().rstrip().endswith(b'invalid') def test_local_data_name(): assert os.path.isfile(TESTLOCAL) and TESTLOCAL.endswith('local.dat') # TODO: if in the future, the root data/ directory is added in, the below # test should be uncommented and the README.rst should be replaced with # whatever file is there # get something in the astropy root # fnout2 = get_pkg_data_filename('../../data/README.rst') # assert os.path.isfile(fnout2) and fnout2.endswith('README.rst') def test_data_name_third_party_package(): """Regression test for issue #1256 Tests that `get_pkg_data_filename` works in a third-party package that doesn't make any relative imports from the module it's used from. Uses a test package under ``data/test_package``. """ # Get the actual data dir: data_dir = os.path.join(os.path.dirname(__file__), 'data') sys.path.insert(0, data_dir) try: import test_package filename = test_package.get_data_filename() assert filename == os.path.join(data_dir, 'test_package', 'data', 'foo.txt') finally: sys.path.pop(0) @raises(RuntimeError) def test_local_data_nonlocalfail(): # this would go *outside* the astropy tree get_pkg_data_filename('../../../data/README.rst') def test_compute_hash(tmpdir): from astropy.utils.data import compute_hash rands = b'1234567890abcdefghijklmnopqrstuvwxyz' filename = tmpdir.join('tmp.dat').strpath with open(filename, 'wb') as ntf: ntf.write(rands) ntf.flush() chhash = compute_hash(filename) shash = hashlib.md5(rands).hexdigest() assert chhash == shash def test_get_pkg_data_contents(): from astropy.utils.data import get_pkg_data_fileobj, get_pkg_data_contents with get_pkg_data_fileobj('data/local.dat') as f: contents1 = f.read() contents2 = get_pkg_data_contents('data/local.dat') assert contents1 == contents2 @pytest.mark.remote_data(source='astropy') def test_data_noastropy_fallback(monkeypatch): """ Tests to make sure the default behavior when the cache directory can't be located is correct """ from astropy.utils import data from astropy.config import paths # needed for testing the *real* lock at the end lockdir = os.path.join(_get_download_cache_locs()[0], 'lock') # better yet, set the configuration to make sure the temp files are deleted conf.delete_temporary_downloads_at_exit = True # make sure the config and cache directories are not searched monkeypatch.setenv(str('XDG_CONFIG_HOME'), 'foo') monkeypatch.delenv(str('XDG_CONFIG_HOME')) monkeypatch.setenv(str('XDG_CACHE_HOME'), 'bar') monkeypatch.delenv(str('XDG_CACHE_HOME')) monkeypatch.setattr(paths.set_temp_config, '_temp_path', None) monkeypatch.setattr(paths.set_temp_cache, '_temp_path', None) # make sure the _find_or_create_astropy_dir function fails as though the # astropy dir could not be accessed def osraiser(dirnm, linkto): raise OSError monkeypatch.setattr(paths, '_find_or_create_astropy_dir', osraiser) with pytest.raises(OSError): # make sure the config dir search fails paths.get_cache_dir() # first try with cache with catch_warnings(CacheMissingWarning) as w: fnout = data.download_file(TESTURL, cache=True) assert os.path.isfile(fnout) assert len(w) > 1 w1 = w.pop(0) w2 = w.pop(0) assert w1.category == CacheMissingWarning assert 'Remote data cache could not be accessed' in w1.message.args[0] assert w2.category == CacheMissingWarning assert 'File downloaded to temporary location' in w2.message.args[0] assert fnout == w2.message.args[1] # clearing the cache should be a no-up that doesn't affect fnout with catch_warnings(CacheMissingWarning) as w: data.clear_download_cache(TESTURL) assert os.path.isfile(fnout) # now remove it so tests don't clutter up the temp dir this should get # called at exit, anyway, but we do it here just to make sure it's working # correctly data._deltemps() assert not os.path.isfile(fnout) assert len(w) > 0 w3 = w.pop() assert w3.category == data.CacheMissingWarning assert 'Not clearing data cache - cache inacessable' in str(w3.message) # now try with no cache with catch_warnings(CacheMissingWarning) as w: fnnocache = data.download_file(TESTURL, cache=False) with open(fnnocache, 'rb') as page: assert page.read().decode('utf-8').find('Astropy') > -1 # no warnings should be raise in fileobj because cache is unnecessary assert len(w) == 0 # lockdir determined above as the *real* lockdir, not the temp one assert not os.path.isdir(lockdir), 'Cache dir lock was not released!' @pytest.mark.parametrize(('filename'), [ 'unicode.txt', 'unicode.txt.gz', pytest.param('unicode.txt.bz2', marks=pytest.mark.xfail(not HAS_BZ2, reason='no bz2 support')), pytest.param('unicode.txt.xz', marks=pytest.mark.xfail(not HAS_XZ, reason='no lzma support'))]) def test_read_unicode(filename): from astropy.utils.data import get_pkg_data_contents contents = get_pkg_data_contents(os.path.join('data', filename), encoding='utf-8') assert isinstance(contents, str) contents = contents.splitlines()[1] assert contents == "האסטרונומי פייתון" contents = get_pkg_data_contents(os.path.join('data', filename), encoding='binary') assert isinstance(contents, bytes) x = contents.splitlines()[1] assert x == (b"\xff\xd7\x94\xd7\x90\xd7\xa1\xd7\x98\xd7\xa8\xd7\x95\xd7\xa0" b"\xd7\x95\xd7\x9e\xd7\x99 \xd7\xa4\xd7\x99\xd7\x99\xd7\xaa\xd7\x95\xd7\x9f"[1:]) def test_compressed_stream(): import base64 gzipped_data = (b"H4sICIxwG1AAA2xvY2FsLmRhdAALycgsVkjLzElVANKlxakpCpl5CiUZqQ" b"olqcUl8Tn5yYk58SmJJYnxWmCRzLx0hbTSvOSSzPy8Yi5nf78QV78QLgAlLytnRQAAAA==") gzipped_data = base64.b64decode(gzipped_data) assert isinstance(gzipped_data, bytes) class FakeStream: """ A fake stream that has `read`, but no `seek`. """ def __init__(self, data): self.data = data def read(self, nbytes=None): if nbytes is None: result = self.data self.data = b'' else: result = self.data[:nbytes] self.data = self.data[nbytes:] return result stream = FakeStream(gzipped_data) with get_readable_fileobj(stream, encoding='binary') as f: f.readline() assert f.read().rstrip() == b'CONTENT' @pytest.mark.remote_data(source='astropy') def test_invalid_location_download(): """ checks that download_file gives a URLError and not an AttributeError, as its code pathway involves some fiddling with the exception. """ from astropy.utils.data import download_file with pytest.raises(urllib.error.URLError): download_file('http://www.astropy.org/nonexistentfile') def test_invalid_location_download_noconnect(): """ checks that download_file gives an OSError if the socket is blocked """ from astropy.utils.data import download_file # This should invoke socket's monkeypatched failure with pytest.raises(OSError): download_file('http://astropy.org/nonexistentfile') @pytest.mark.remote_data(source='astropy') def test_is_url_in_cache(): from astropy.utils.data import download_file, is_url_in_cache assert not is_url_in_cache('http://astropy.org/nonexistentfile') download_file(TESTURL, cache=True, show_progress=False) assert is_url_in_cache(TESTURL) def test_get_readable_fileobj_cleans_up_temporary_files(tmpdir, monkeypatch): """checks that get_readable_fileobj leaves no temporary files behind""" # Create a 'file://' URL pointing to a path on the local filesystem url = 'file://' + urllib.request.pathname2url(TESTLOCAL) # Save temporary files to a known location monkeypatch.setattr(tempfile, 'tempdir', str(tmpdir)) # Call get_readable_fileobj() as a context manager with get_readable_fileobj(url): pass # Get listing of files in temporary directory tempdir_listing = tmpdir.listdir() # Assert that the temporary file was empty after get_readable_fileobj() # context manager finished running assert len(tempdir_listing) == 0 def test_path_objects_get_readable_fileobj(): fpath = pathlib.Path(TESTLOCAL) with get_readable_fileobj(fpath) as f: assert f.read().rstrip() == ('This file is used in the test_local_data_* ' 'testing functions\nCONTENT') def test_nested_get_readable_fileobj(): """Ensure fileobj state is as expected when get_readable_fileobj() is called inside another get_readable_fileobj(). """ with get_readable_fileobj(TESTLOCAL, encoding='binary') as fileobj: with get_readable_fileobj(fileobj, encoding='UTF-8') as fileobj2: fileobj2.seek(1) fileobj.seek(1) # Theoretically, fileobj2 should be closed already here but it is not. # See https://github.com/astropy/astropy/pull/8675. # UNCOMMENT THIS WHEN PYTHON FINALLY LETS IT HAPPEN. #assert fileobj2.closed assert fileobj.closed and fileobj2.closed
bdc9e0ce7dd7f9e949ba04b42dd42674abfb3949e01446bde7ba21e7b0a44787
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is a collection of monkey patches and workarounds for bugs in earlier versions of Numpy. """ from astropy.utils import minversion __all__ = ['NUMPY_LT_1_14', 'NUMPY_LT_1_14_1', 'NUMPY_LT_1_14_2', 'NUMPY_LT_1_16', 'NUMPY_LT_1_17'] # TODO: It might also be nice to have aliases to these named for specific # features/bugs we're checking for (ex: # astropy.table.table._BROKEN_UNICODE_TABLE_SORT) NUMPY_LT_1_14 = not minversion('numpy', '1.14') NUMPY_LT_1_14_1 = not minversion('numpy', '1.14.1') NUMPY_LT_1_14_2 = not minversion('numpy', '1.14.2') NUMPY_LT_1_16 = not minversion('numpy', '1.16') NUMPY_LT_1_17 = not minversion('numpy', '1.17')
21e916fd9a3bc58eaf7f069a32b9c033f2314b8b91696a2e870dd4a14fed62a6
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest try: import matplotlib.pyplot as plt except ImportError: HAS_PLT = False else: HAS_PLT = True from astropy import units as u from astropy.coordinates import Angle from astropy.visualization.units import quantity_support @pytest.mark.skipif('not HAS_PLT') def test_units(): plt.figure() with quantity_support(): buff = io.BytesIO() plt.plot([1, 2, 3] * u.m, [3, 4, 5] * u.kg, label='label') plt.plot([105, 210, 315] * u.cm, [3050, 3025, 3010] * u.g) plt.legend() # Also test fill_between, which requires actual conversion to ndarray # with numpy >=1.10 (#4654). plt.fill_between([1, 3] * u.m, [3, 5] * u.kg, [3050, 3010] * u.g) plt.savefig(buff, format='svg') assert plt.gca().xaxis.get_units() == u.m assert plt.gca().yaxis.get_units() == u.kg plt.clf() @pytest.mark.skipif('not HAS_PLT') def test_units_errbarr(): pytest.importorskip("matplotlib", minversion="2.2") plt.figure() with quantity_support(): x = [1, 2, 3] * u.s y = [1, 2, 3] * u.m yerr = [3, 2, 1] * u.cm fig, ax = plt.subplots() ax.errorbar(x, y, yerr=yerr) assert ax.xaxis.get_units() == u.s assert ax.yaxis.get_units() == u.m plt.clf() @pytest.mark.skipif('not HAS_PLT') def test_incompatible_units(): # NOTE: minversion check does not work properly for matplotlib dev. try: # https://github.com/matplotlib/matplotlib/pull/13005 from matplotlib.units import ConversionError except ImportError: err_type = u.UnitConversionError else: err_type = ConversionError plt.figure() with quantity_support(): plt.plot([1, 2, 3] * u.m) with pytest.raises(err_type): plt.plot([105, 210, 315] * u.kg) plt.clf() @pytest.mark.skipif('not HAS_PLT') def test_quantity_subclass(): """Check that subclasses are recognized. This sadly is not done by matplotlib.units itself, though there is a PR to change it: https://github.com/matplotlib/matplotlib/pull/13536 """ plt.figure() with quantity_support(): plt.scatter(Angle([1, 2, 3], u.deg), [3, 4, 5] * u.kg) plt.scatter([105, 210, 315] * u.arcsec, [3050, 3025, 3010] * u.g) plt.plot(Angle([105, 210, 315], u.arcsec), [3050, 3025, 3010] * u.g) assert plt.gca().xaxis.get_units() == u.deg assert plt.gca().yaxis.get_units() == u.kg @pytest.mark.skipif('not HAS_PLT') def test_nested(): with quantity_support(): with quantity_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(Angle([1, 2, 3], u.deg), [3, 4, 5] * u.kg) assert ax.xaxis.get_units() == u.deg assert ax.yaxis.get_units() == u.kg fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(Angle([1, 2, 3], u.arcsec), [3, 4, 5] * u.pc) assert ax.xaxis.get_units() == u.arcsec assert ax.yaxis.get_units() == u.pc
715c366f8f0c70499f85dac2e0715d2532af98b5626ae587871edb8b1aacfd66
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest pytest.importorskip('matplotlib') # noqa import matplotlib.pyplot as plt from astropy.time import Time from astropy.visualization.time import time_support def get_ticklabels(axis): axis.figure.canvas.draw() return [x.get_text() for x in axis.get_ticklabels()] # We first check that we get the expected labels for different time intervals # for standard ISO formatting. This is a way to check both the locator and # formatter code. RANGE_CASES = [ # Interval of many years (('2014-03-22T12:30:30.9', '2077-03-22T12:30:32.1'), ['2020-01-01', '2040-01-01', '2060-01-01']), # Interval of a few years (('2014-03-22T12:30:30.9', '2017-03-22T12:30:32.1'), ['2015-01-01', '2016-01-01', '2017-01-01']), # Interval of just under a year (('2014-03-22T12:30:30.9', '2015-01-22T12:30:32.1'), ['2014-05-01', '2014-10-01']), # Interval of just over a month (('2014-03-22T12:30:30.9', '2014-04-23T12:30:32.1'), ['2014-04-01']), # Interval of just under a month (('2014-03-22T12:30:30.9', '2014-04-21T12:30:32.1'), ['2014-03-24', '2014-04-03', '2014-04-13']), # Interval of just over an hour (('2014-03-22T12:30:30.9', '2014-03-22T13:31:30.9'), ['2014-03-22T12:40:00.000', '2014-03-22T13:00:00.000', '2014-03-22T13:20:00.000']), # Interval of just under an hour (('2014-03-22T12:30:30.9', '2014-03-22T13:28:30.9'), ['2014-03-22T12:40:00.000', '2014-03-22T13:00:00.000', '2014-03-22T13:20:00.000']), # Interval of a few minutes (('2014-03-22T12:30:30.9', '2014-03-22T12:38:30.9'), ['2014-03-22T12:33:00.000', '2014-03-22T12:36:00.000']), # Interval of a few seconds (('2014-03-22T12:30:30.9', '2014-03-22T12:30:40.9'), ['2014-03-22T12:30:33.000', '2014-03-22T12:30:36.000', '2014-03-22T12:30:39.000']), # Interval of a couple of seconds (('2014-03-22T12:30:30.9', '2014-03-22T12:30:32.1'), ['2014-03-22T12:30:31.000', '2014-03-22T12:30:31.500', '2014-03-22T12:30:32.000']), # Interval of under a second (('2014-03-22T12:30:30.89', '2014-03-22T12:30:31.19'), ['2014-03-22T12:30:30.900', '2014-03-22T12:30:31.000', '2014-03-22T12:30:31.100']), ] @pytest.mark.parametrize(('interval', 'expected'), RANGE_CASES) def test_formatter_locator(interval, expected): # Check that the ticks and labels returned for the above cases are correct. with time_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time(interval[0]), Time(interval[1])) assert get_ticklabels(ax.xaxis) == expected FORMAT_CASES = [ ('byear', ['2020', '2040', '2060']), ('byear_str', ['B2020.000', 'B2040.000', 'B2060.000']), ('cxcsec', ['1000000000', '1500000000', '2000000000', '2500000000']), ('decimalyear', ['2020', '2040', '2060']), ('fits', ['2020-01-01T00:00:00.000', '2040-01-01T00:00:00.000', '2060-01-01T00:00:00.000']), ('gps', ['1500000000', '2000000000', '2500000000', '3000000000']), ('iso', ['2020-01-01 00:00:00.000', '2040-01-01 00:00:00.000', '2060-01-01 00:00:00.000']), ('isot', ['2020-01-01T00:00:00.000', '2040-01-01T00:00:00.000', '2060-01-01T00:00:00.000']), ('jd', ['2458000', '2464000', '2470000', '2476000']), ('jyear', ['2020', '2040', '2060']), ('jyear_str', ['J2020.000', 'J2040.000', 'J2060.000']), ('mjd', ['60000', '66000', '72000', '78000']), ('plot_date', ['738000', '744000', '750000', '756000']), ('unix', ['1500000000', '2000000000', '2500000000', '3000000000']), ('yday', ['2020:001:00:00:00.000', '2040:001:00:00:00.000', '2060:001:00:00:00.000']), ] @pytest.mark.parametrize(('format', 'expected'), FORMAT_CASES) def test_formats(format, expected): # Check that the locators/formatters work fine for all time formats with time_support(format=format, simplify=False): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time('2014-03-22T12:30:30.9'), Time('2077-03-22T12:30:32.1')) assert get_ticklabels(ax.xaxis) == expected ax.get_xlabel() == 'Time ({0})'.format(format) @pytest.mark.parametrize(('format', 'expected'), FORMAT_CASES) def test_auto_formats(format, expected): # Check that the format/scale is taken from the first time used. with time_support(simplify=False): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time(Time('2014-03-22T12:30:30.9'), format=format), Time('2077-03-22T12:30:32.1')) assert get_ticklabels(ax.xaxis) == expected ax.get_xlabel() == 'Time ({0})'.format(format) FORMAT_CASES_SIMPLIFY = [ ('fits', ['2020-01-01', '2040-01-01', '2060-01-01']), ('iso', ['2020-01-01', '2040-01-01', '2060-01-01']), ('isot', ['2020-01-01', '2040-01-01', '2060-01-01']), ('yday', ['2020', '2040', '2060']), ] @pytest.mark.parametrize(('format', 'expected'), FORMAT_CASES_SIMPLIFY) def test_formats_simplify(format, expected): # Check the use of the simplify= option with time_support(format=format, simplify=True): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time('2014-03-22T12:30:30.9'), Time('2077-03-22T12:30:32.1')) assert get_ticklabels(ax.xaxis) == expected def test_plot(): # Make sure that plot() works properly with time_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time('2014-03-22T12:30:30.9'), Time('2077-03-22T12:30:32.1')) ax.plot(Time(['2015-03-22T12:30:30.9', '2018-03-22T12:30:30.9', '2021-03-22T12:30:30.9'])) def test_nested(): with time_support(format='iso', simplify=False): with time_support(format='yday', simplify=True): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time('2014-03-22T12:30:30.9'), Time('2077-03-22T12:30:32.1')) assert get_ticklabels(ax.xaxis) == ['2020', '2040', '2060'] fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(Time('2014-03-22T12:30:30.9'), Time('2077-03-22T12:30:32.1')) assert get_ticklabels(ax.xaxis) == ['2020-01-01 00:00:00.000', '2040-01-01 00:00:00.000', '2060-01-01 00:00:00.000']
0775543fd1003fb5faa5f2168b2f093fcca41e21472165579c950825370bce83
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import pytest import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle, Rectangle from matplotlib import rc_context from astropy import units as u from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord from astropy.visualization.wcsaxes.patches import SphericalCircle from astropy.visualization.wcsaxes import WCSAxes from . import datasets from astropy.tests.image_tests import IMAGE_REFERENCE_DIR from astropy.visualization.wcsaxes.frame import EllipticalFrame class BaseImageTests: @classmethod def setup_class(cls): cls._data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data')) msx_header = os.path.join(cls._data_dir, 'msx_header') cls.msx_header = fits.Header.fromtextfile(msx_header) rosat_header = os.path.join(cls._data_dir, 'rosat_header') cls.rosat_header = fits.Header.fromtextfile(rosat_header) twoMASS_k_header = os.path.join(cls._data_dir, '2MASS_k_header') cls.twoMASS_k_header = fits.Header.fromtextfile(twoMASS_k_header) cube_header = os.path.join(cls._data_dir, 'cube_header') cls.cube_header = fits.Header.fromtextfile(cube_header) slice_header = os.path.join(cls._data_dir, 'slice_header') cls.slice_header = fits.Header.fromtextfile(slice_header) class TestBasic(BaseImageTests): @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_image_plot(self): # Test for plotting image and also setting values of ticks fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.msx_header), aspect='equal') ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_ticks([-0.30, 0., 0.20] * u.degree, size=5, width=1) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=1.5, style={}) @pytest.mark.parametrize('axisbelow', [True, False, 'line']) def test_axisbelow(self, axisbelow): # Test that tick marks, labels, and gridlines are drawn with the # correct zorder controlled by the axisbelow property. fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.msx_header), aspect='equal') ax.set_axisbelow(axisbelow) ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_ticks([-0.30, 0., 0.20] * u.degree, size=5, width=1) ax.grid() # Add an image (default zorder=0). ax.imshow(np.zeros((64, 64))) # Add a patch (default zorder=1). r = Rectangle((30., 50.), 60., 50., facecolor='green', edgecolor='red') ax.add_patch(r) # Add a line (default zorder=2). ax.plot([32, 128], [32, 128], linewidth=10) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_contour_overlay(self): # Test for overlaying contours on images hdu_msx = datasets.fetch_msx_hdu() wcs_msx = WCS(self.msx_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) # Overplot contour ax.contour(hdu_msx.data, transform=ax.get_transform(wcs_msx), colors='orange', levels=[2.5e-5, 5e-5, 1.e-4]) ax.coords[0].set_ticks(size=5, width=1) ax.coords[1].set_ticks(size=5, width=1) ax.set_xlim(0., 720.) ax.set_ylim(0., 720.) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_contourf_overlay(self): # Test for overlaying contours on images hdu_msx = datasets.fetch_msx_hdu() wcs_msx = WCS(self.msx_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) # Overplot contour ax.contourf(hdu_msx.data, transform=ax.get_transform(wcs_msx), levels=[2.5e-5, 5e-5, 1.e-4]) ax.coords[0].set_ticks(size=5, width=1) ax.coords[1].set_ticks(size=5, width=1) ax.set_xlim(0., 720.) ax.set_ylim(0., 720.) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_overlay_features_image(self): # Test for overlaying grid, changing format of ticks, setting spacing # and number of ticks fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.25, 0.25, 0.65, 0.65], projection=WCS(self.msx_header), aspect='equal') # Change the format of the ticks ax.coords[0].set_major_formatter('dd:mm:ss') ax.coords[1].set_major_formatter('dd:mm:ss.ssss') # Overlay grid on image ax.grid(color='red', alpha=1.0, lw=1, linestyle='dashed') # Set the spacing of ticks on the 'glon' axis to 4 arcsec ax.coords['glon'].set_ticks(spacing=4 * u.arcsec, size=5, width=1) # Set the number of ticks on the 'glat' axis to 9 ax.coords['glat'].set_ticks(number=9, size=5, width=1) # Set labels on axes ax.coords['glon'].set_axislabel('Galactic Longitude', minpad=1.6) ax.coords['glat'].set_axislabel('Galactic Latitude', minpad=-0.75) # Change the frame linewidth and color ax.coords.frame.set_color('red') ax.coords.frame.set_linewidth(2) assert ax.coords.frame.get_color() == 'red' assert ax.coords.frame.get_linewidth() == 2 return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_curvilinear_grid_patches_image(self): # Overlay curvilinear grid and patches on image fig = plt.figure(figsize=(8, 8)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.rosat_header), aspect='equal') ax.set_xlim(-0.5, 479.5) ax.set_ylim(-0.5, 239.5) ax.grid(color='black', alpha=1.0, lw=1, linestyle='dashed') p = Circle((300, 100), radius=40, ec='yellow', fc='none') ax.add_patch(p) p = Circle((30., 20.), radius=20., ec='orange', fc='none', transform=ax.get_transform('world')) ax.add_patch(p) p = Circle((60., 50.), radius=20., ec='red', fc='none', transform=ax.get_transform('fk5')) ax.add_patch(p) p = Circle((40., 60.), radius=20., ec='green', fc='none', transform=ax.get_transform('galactic')) ax.add_patch(p) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_cube_slice_image(self): # Test for cube slicing fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, 'y', 'x'), aspect='equal') ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[2].set_axislabel('Velocity m/s') ax.coords[1].set_ticks(spacing=0.2 * u.deg, width=1) ax.coords[2].set_ticks(spacing=400 * u.m / u.s, width=1) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].set_ticklabel(exclude_overlapping=True) ax.coords[1].grid(grid_type='contours', color='red', linestyle='solid') ax.coords[2].grid(grid_type='contours', color='red', linestyle='solid') return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_cube_slice_image_lonlat(self): # Test for cube slicing. Here we test with longitude and latitude since # there is some longitude-specific code in _update_grid_contour. fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=('x', 'y', 50), aspect='equal') ax.set_xlim(-0.5, 106.5) ax.set_ylim(-0.5, 106.5) ax.coords[0].grid(grid_type='contours', color='blue', linestyle='solid') ax.coords[1].grid(grid_type='contours', color='red', linestyle='solid') # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_plot_coord(self): fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(266 * u.deg, -29 * u.deg) ax.plot_coord(c, 'o') # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_plot_line(self): fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord([266, 266.8] * u.deg, [-29, -28.9] * u.deg) ax.plot_coord(c) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_changed_axis_units(self): # Test to see if changing the units of axis works fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, 'y', 'x'), aspect='equal') ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[2].set_major_formatter('x.xx') ax.coords[2].set_format_unit(u.km / u.s) ax.coords[2].set_axislabel('Velocity km/s') ax.coords[1].set_ticks(width=1) ax.coords[2].set_ticks(width=1) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].set_ticklabel(exclude_overlapping=True) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_minor_ticks(self): # Test for drawing minor ticks fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, 'y', 'x'), aspect='equal') ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[2].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].display_minor_ticks(True) ax.coords[1].display_minor_ticks(True) ax.coords[2].set_minor_frequency(3) ax.coords[1].set_minor_frequency(10) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_ticks_labels(self): fig = plt.figure(figsize=(6, 6)) ax = WCSAxes(fig, [0.1, 0.1, 0.7, 0.7], wcs=None) fig.add_axes(ax) ax.set_xlim(-0.5, 2) ax.set_ylim(-0.5, 2) ax.coords[0].set_ticks(size=10, color='blue', alpha=0.2, width=1) ax.coords[1].set_ticks(size=20, color='red', alpha=0.9, width=1) ax.coords[0].set_ticks_position('all') ax.coords[1].set_ticks_position('all') ax.coords[0].set_axislabel('X-axis', size=20) ax.coords[1].set_axislabel('Y-axis', color='green', size=25, weight='regular', style='normal', family='cmtt10') ax.coords[0].set_axislabel_position('t') ax.coords[1].set_axislabel_position('r') ax.coords[0].set_ticklabel(color='purple', size=15, alpha=1, weight='light', style='normal', family='cmss10') ax.coords[1].set_ticklabel(color='black', size=18, alpha=0.9, weight='bold', family='cmr10') ax.coords[0].set_ticklabel_position('all') ax.coords[1].set_ticklabel_position('r') return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_rcparams(self): # Test custom rcParams with rc_context({ 'axes.labelcolor': 'purple', 'axes.labelsize': 14, 'axes.labelweight': 'bold', 'axes.linewidth': 3, 'axes.facecolor': '0.5', 'axes.edgecolor': 'green', 'xtick.color': 'red', 'xtick.labelsize': 8, 'xtick.direction': 'in', 'xtick.minor.visible': True, 'xtick.minor.size': 5, 'xtick.major.size': 20, 'xtick.major.width': 3, 'xtick.major.pad': 10, 'grid.color': 'blue', 'grid.linestyle': ':', 'grid.linewidth': 1, 'grid.alpha': 0.5}): fig = plt.figure(figsize=(6, 6)) ax = WCSAxes(fig, [0.15, 0.1, 0.7, 0.7], wcs=None) fig.add_axes(ax) ax.set_xlim(-0.5, 2) ax.set_ylim(-0.5, 2) ax.grid() ax.set_xlabel('X label') ax.set_ylabel('Y label') ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_tick_angles(self): # Test that tick marks point in the correct direction, even when the # axes limits extend only over a few FITS pixels. Addresses #45, #46. w = WCS() w.wcs.ctype = ['RA---TAN', 'DEC--TAN'] w.wcs.crval = [90, 70] w.wcs.cdelt = [16, 16] w.wcs.crpix = [1, 1] w.wcs.radesys = 'ICRS' w.wcs.equinox = 2000.0 fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=w) ax.set_xlim(1, -1) ax.set_ylim(-1, 1) ax.grid(color='gray', alpha=0.5, linestyle='solid') ax.coords['ra'].set_ticks(color='red', size=20) ax.coords['dec'].set_ticks(color='red', size=20) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_tick_angles_non_square_axes(self): # Test that tick marks point in the correct direction, even when the # axes limits extend only over a few FITS pixels, and the axes are # non-square. w = WCS() w.wcs.ctype = ['RA---TAN', 'DEC--TAN'] w.wcs.crval = [90, 70] w.wcs.cdelt = [16, 16] w.wcs.crpix = [1, 1] w.wcs.radesys = 'ICRS' w.wcs.equinox = 2000.0 fig = plt.figure(figsize=(6, 3)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=w) ax.set_xlim(1, -1) ax.set_ylim(-1, 1) ax.grid(color='gray', alpha=0.5, linestyle='solid') ax.coords['ra'].set_ticks(color='red', size=20) ax.coords['dec'].set_ticks(color='red', size=20) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_set_coord_type(self): # Test for setting coord_type fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=WCS(self.msx_header), aspect='equal') ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_coord_type('scalar') ax.coords[1].set_coord_type('scalar') ax.coords[0].set_major_formatter('x.xxx') ax.coords[1].set_major_formatter('x.xxx') ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_ticks_regression(self): # Regression test for a bug that caused ticks aligned exactly with a # sampled frame point to not appear. This also checks that tick labels # don't get added more than once, and that no error occurs when e.g. # the top part of the frame is all at the same coordinate as one of the # potential ticks (which causes the tick angle calculation to return # NaN). wcs = WCS(self.slice_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect='auto') limits = wcs.wcs_world2pix([0, 0], [35e3, 80e3], 0)[1] ax.set_ylim(*limits) ax.coords[0].set_ticks(spacing=0.002 * u.deg) ax.coords[1].set_ticks(spacing=5 * u.km / u.s) ax.coords[0].set_ticklabel(alpha=0.5) # to see multiple labels ax.coords[1].set_ticklabel(alpha=0.5) ax.coords[0].set_ticklabel_position('all') ax.coords[1].set_ticklabel_position('all') return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, savefig_kwargs={'bbox_inches': 'tight'}, tolerance=0, style={}) def test_axislabels_regression(self): # Regression test for a bug that meant that if tick labels were made # invisible with ``set_visible(False)``, they were still added to the # list of bounding boxes for tick labels, but with default values of 0 # to 1, which caused issues. wcs = WCS(self.msx_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect='auto') ax.coords[0].set_axislabel("Label 1") ax.coords[1].set_axislabel("Label 2") ax.coords[1].set_axislabel_visibility_rule('always') ax.coords[1].ticklabels.set_visible(False) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, savefig_kwargs={'bbox_inches': 'tight'}, tolerance=0, style={}) def test_noncelestial_angular(self, tmpdir): # Regression test for a bug that meant that when passing a WCS that had # angular axes and using set_coord_type to set the coordinates to # longitude/latitude, but where the WCS wasn't recognized as celestial, # the WCS units are not converted to deg, so we can't assume that # transform will always return degrees. wcs = WCS(naxis=2) wcs.wcs.ctype = ['solar-x', 'solar-y'] wcs.wcs.cunit = ['arcsec', 'arcsec'] fig = plt.figure(figsize=(3, 3)) ax = fig.add_subplot(1, 1, 1, projection=wcs) ax.imshow(np.zeros([1024, 1024]), origin='lower') ax.coords[0].set_coord_type('longitude', coord_wrap=180) ax.coords[1].set_coord_type('latitude') ax.coords[0].set_major_formatter('s.s') ax.coords[1].set_major_formatter('s.s') ax.coords[0].set_format_unit(u.arcsec, show_decimal_unit=False) ax.coords[1].set_format_unit(u.arcsec, show_decimal_unit=False) ax.grid(color='white', ls='solid') # Force drawing (needed for format_coord) fig.savefig(tmpdir.join('nothing').strpath) assert ax.format_coord(512, 512) == '513.0 513.0 (world)' return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, savefig_kwargs={'bbox_inches': 'tight'}, tolerance=0, style={}) def test_patches_distortion(self, tmpdir): # Check how patches get distorted (and make sure that scatter markers # and SphericalCircle don't) wcs = WCS(self.msx_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect='equal') # Pixel coordinates r = Rectangle((30., 50.), 60., 50., edgecolor='green', facecolor='none') ax.add_patch(r) # FK5 coordinates r = Rectangle((266.4, -28.9), 0.3, 0.3, edgecolor='cyan', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(r) # FK5 coordinates c = Circle((266.4, -29.1), 0.15, edgecolor='magenta', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(c) # Pixel coordinates ax.scatter([40, 100, 130], [30, 130, 60], s=100, edgecolor='red', facecolor=(1, 0, 0, 0.5)) # World coordinates (should not be distorted) ax.scatter(266.78238, -28.769255, transform=ax.get_transform('fk5'), s=300, edgecolor='red', facecolor='none') # World coordinates (should not be distorted) r = SphericalCircle((266.4 * u.deg, -29.1 * u.deg), 0.15 * u.degree, edgecolor='purple', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(r) ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticklabel_visible(False) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_elliptical_frame(self): # Regression test for a bug (astropy/astropy#6063) that caused labels to # be incorrectly simplified. wcs = WCS(self.msx_header) fig = plt.figure(figsize=(5, 3)) ax = fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=wcs, frame_class=EllipticalFrame) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_hms_labels(self): # This tests the apparance of the hms superscripts in tick labels fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.3, 0.2, 0.65, 0.6], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 0.5) ax.set_ylim(-0.5, 0.5) ax.coords[0].set_ticks(spacing=0.2 * 15 * u.arcsec) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={'text.usetex': True}) def test_latex_labels(self): fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.3, 0.2, 0.65, 0.6], projection=WCS(self.twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 0.5) ax.set_ylim(-0.5, 0.5) ax.coords[0].set_ticks(spacing=0.2 * 15 * u.arcsec) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_tick_params(self): # This is a test to make sure that tick_params works correctly. We try # and test as much as possible with a single reference image. wcs = WCS() wcs.wcs.ctype = ['lon', 'lat'] fig = plt.figure(figsize=(6, 6)) # The first subplot tests: # - that plt.tick_params works # - that by default both axes are changed # - changing the tick direction and appearance, the label appearance and padding ax = fig.add_subplot(2, 2, 1, projection=wcs) plt.tick_params(direction='in', length=20, width=5, pad=6, labelsize=6, color='red', labelcolor='blue') # The second subplot tests: # - that specifying grid parameters doesn't actually cause the grid to # be shown (as expected) # - that axis= can be given integer coordinates or their string name # - that the tick positioning works (bottom/left/top/right) # Make sure that we can pass things that can index coords ax = fig.add_subplot(2, 2, 2, projection=wcs) plt.tick_params(axis=0, direction='in', length=20, width=5, pad=4, labelsize=6, color='red', labelcolor='blue', bottom=True, grid_color='purple') plt.tick_params(axis='lat', direction='out', labelsize=8, color='blue', labelcolor='purple', left=True, right=True, grid_color='red') # The third subplot tests: # - that ax.tick_params works # - that the grid has the correct settings once shown explicitly # - that we can use axis='x' and axis='y' ax = fig.add_subplot(2, 2, 3, projection=wcs) ax.tick_params(axis='x', direction='in', length=20, width=5, pad=20, labelsize=6, color='red', labelcolor='blue', bottom=True, grid_color='purple') ax.tick_params(axis='y', direction='out', labelsize=8, color='blue', labelcolor='purple', left=True, right=True, grid_color='red') plt.grid() # The final subplot tests: # - that we can use tick_params on a specific coordinate # - that the label positioning can be customized # - that the colors argument works # - that which='minor' works ax = fig.add_subplot(2, 2, 4, projection=wcs) ax.coords[0].tick_params(length=4, pad=2, colors='orange', labelbottom=True, labeltop=True, labelsize=10) ax.coords[1].display_minor_ticks(True) ax.coords[1].tick_params(which='minor', length=6) return fig
3355b6aee568d30f3735a5d4882fcd02d1a7637f1062162cde34da5aaed90899
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy._erfa import core as erfa from astropy.tests.helper import catch_warnings def test_erfa_wrapper(): """ Runs a set of tests that mostly make sure vectorization is working as expected """ jd = np.linspace(2456855.5, 2456855.5+1.0/24.0/60.0, 60*2+1) ra = np.linspace(0.0, np.pi*2.0, 5) dec = np.linspace(-np.pi/2.0, np.pi/2.0, 4) aob, zob, hob, dob, rob, eo = erfa.atco13(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, jd, 0.0, 0.0, 0.0, np.pi/4.0, 0.0, 0.0, 0.0, 1014.0, 0.0, 0.0, 0.5) assert aob.shape == (121,) aob, zob, hob, dob, rob, eo = erfa.atco13(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, jd[0], 0.0, 0.0, 0.0, np.pi/4.0, 0.0, 0.0, 0.0, 1014.0, 0.0, 0.0, 0.5) assert aob.shape == () aob, zob, hob, dob, rob, eo = erfa.atco13(ra[:, None, None], dec[None, :, None], 0.0, 0.0, 0.0, 0.0, jd[None, None, :], 0.0, 0.0, 0.0, np.pi/4.0, 0.0, 0.0, 0.0, 1014.0, 0.0, 0.0, 0.5) (aob.shape) == (5, 4, 121) iy, im, id, ihmsf = erfa.d2dtf("UTC", 3, jd, 0.0) assert iy.shape == (121,) assert ihmsf.shape == (121,) assert ihmsf.dtype == erfa.dt_hmsf iy, im, id, ihmsf = erfa.d2dtf("UTC", 3, jd[0], 0.0) assert iy.shape == () assert ihmsf.shape == () assert ihmsf.dtype == erfa.dt_hmsf def test_angle_ops(): sign, idmsf = erfa.a2af(6, -np.pi) assert sign == b'-' assert idmsf.item() == (180, 0, 0, 0) sign, ihmsf = erfa.a2tf(6, np.pi) assert sign == b'+' assert ihmsf.item() == (12, 0, 0, 0) rad = erfa.af2a('-', 180, 0, 0.0) np.testing.assert_allclose(rad, -np.pi) rad = erfa.tf2a('+', 12, 0, 0.0) np.testing.assert_allclose(rad, np.pi) rad = erfa.anp(3.*np.pi) np.testing.assert_allclose(rad, np.pi) rad = erfa.anpm(3.*np.pi) np.testing.assert_allclose(rad, -np.pi) sign, ihmsf = erfa.d2tf(1, -1.5) assert sign == b'-' assert ihmsf.item() == (36, 0, 0, 0) days = erfa.tf2d('+', 3, 0, 0.0) np.testing.assert_allclose(days, 0.125) def test_spherical_cartesian(): theta, phi = erfa.c2s([0.0, np.sqrt(2.0), np.sqrt(2.0)]) np.testing.assert_allclose(theta, np.pi/2.0) np.testing.assert_allclose(phi, np.pi/4.0) theta, phi, r = erfa.p2s([0.0, np.sqrt(2.0), np.sqrt(2.0)]) np.testing.assert_allclose(theta, np.pi/2.0) np.testing.assert_allclose(phi, np.pi/4.0) np.testing.assert_allclose(r, 2.0) pv = np.array(([0.0, np.sqrt(2.0), np.sqrt(2.0)], [1.0, 0.0, 0.0]), dtype=erfa.dt_pv) theta, phi, r, td, pd, rd = erfa.pv2s(pv) np.testing.assert_allclose(theta, np.pi/2.0) np.testing.assert_allclose(phi, np.pi/4.0) np.testing.assert_allclose(r, 2.0) np.testing.assert_allclose(td, -np.sqrt(2.0)/2.0) np.testing.assert_allclose(pd, 0.0) np.testing.assert_allclose(rd, 0.0) c = erfa.s2c(np.pi/2.0, np.pi/4.0) np.testing.assert_allclose(c, [0.0, np.sqrt(2.0)/2.0, np.sqrt(2.0)/2.0], atol=1e-14) c = erfa.s2p(np.pi/2.0, np.pi/4.0, 1.0) np.testing.assert_allclose(c, [0.0, np.sqrt(2.0)/2.0, np.sqrt(2.0)/2.0], atol=1e-14) pv = erfa.s2pv(np.pi/2.0, np.pi/4.0, 2.0, np.sqrt(2.0)/2.0, 0.0, 0.0) np.testing.assert_allclose(pv['p'], [0.0, np.sqrt(2.0), np.sqrt(2.0)], atol=1e-14) np.testing.assert_allclose(pv['v'], [-1.0, 0.0, 0.0], atol=1e-14) def test_errwarn_reporting(): """ Test that the ERFA error reporting mechanism works as it should """ # no warning erfa.dat(1990, 1, 1, 0.5) # check warning is raised for a scalar with catch_warnings() as w: erfa.dat(100, 1, 1, 0.5) assert len(w) == 1 assert w[0].category == erfa.ErfaWarning assert '1 of "dubious year (Note 1)"' in str(w[0].message) # and that the count is right for a vector. with catch_warnings() as w: erfa.dat([100, 200, 1990], 1, 1, 0.5) assert len(w) == 1 assert w[0].category == erfa.ErfaWarning assert '2 of "dubious year (Note 1)"' in str(w[0].message) try: erfa.dat(1990, [1, 34, 2], [1, 1, 43], 0.5) except erfa.ErfaError as e: if '1 of "bad day (Note 3)", 1 of "bad month"' not in e.args[0]: assert False, 'Raised the correct type of error, but wrong message: ' + e.args[0] try: erfa.dat(200, [1, 34, 2], [1, 1, 43], 0.5) except erfa.ErfaError as e: if 'warning' in e.args[0]: assert False, 'Raised the correct type of error, but there were warnings mixed in: ' + e.args[0] def test_vector_inouts(): """ Tests that ERFA functions working with vectors are correctly consumed and spit out """ # values are from test_erfa.c t_ab function pnat = [-0.76321968546737951, -0.60869453983060384, -0.21676408580639883] v = [2.1044018893653786e-5, -8.9108923304429319e-5, -3.8633714797716569e-5] s = 0.99980921395708788 bm1 = 0.99999999506209258 expected = [-0.7631631094219556269, -0.6087553082505590832, -0.2167926269368471279] res = erfa.ab(pnat, v, s, bm1) assert res.shape == (3,) np.testing.assert_allclose(res, expected) res2 = erfa.ab([pnat]*4, v, s, bm1) assert res2.shape == (4, 3) np.testing.assert_allclose(res2, [expected]*4) # here we stride an array and also do it Fortran-order to make sure # it all still works correctly with non-contig arrays pnata = np.array(pnat) arrin = np.array([pnata, pnata/2, pnata/3, pnata/4, pnata/5]*4, order='F') res3 = erfa.ab(arrin[::5], v, s, bm1) assert res3.shape == (4, 3) np.testing.assert_allclose(res3, [expected]*4) def test_pv_in(): jd1 = 2456165.5 jd2 = 0.401182685 pv = np.empty((), dtype=erfa.dt_pv) pv['p'] = [-6241497.16, 401346.896, -1251136.04] pv['v'] = [-29.264597, -455.021831, 0.0266151194] astrom = erfa.apcs13(jd1, jd2, pv) assert astrom.shape == () # values from t_erfa_c np.testing.assert_allclose(astrom['pmt'], 12.65133794027378508) np.testing.assert_allclose(astrom['em'], 1.010428384373318379) np.testing.assert_allclose(astrom['eb'], [0.9012691529023298391, -.4173999812023068781, -.1809906511146821008]) np.testing.assert_allclose(astrom['bpn'], np.eye(3)) # first make sure it *fails* if we mess with the input orders pvbad = np.empty_like(pv) pvbad['p'], pvbad['v'] = pv['v'], pv['p'] astrombad = erfa.apcs13(jd1, jd2, pvbad) assert not np.allclose(astrombad['em'], 1.010428384373318379) pvarr = np.array([pv]*3) astrom2 = erfa.apcs13(jd1, jd2, pvarr) assert astrom2.shape == (3,) np.testing.assert_allclose(astrom2['em'], 1.010428384373318379) # try striding of the input array to make non-contiguous pvmatarr = np.array([pv]*9)[::3] astrom3 = erfa.apcs13(jd1, jd2, pvmatarr) assert astrom3.shape == (3,) np.testing.assert_allclose(astrom3['em'], 1.010428384373318379) def test_structs(): """ Checks producing and consuming of ERFA c structs """ am, eo = erfa.apci13(2456165.5, [0.401182685, 1]) assert am.shape == (2, ) assert am.dtype == erfa.dt_eraASTROM assert eo.shape == (2, ) # a few spotchecks from test_erfa.c np.testing.assert_allclose(am[0]['pmt'], 12.65133794027378508) np.testing.assert_allclose(am[0]['v'], [0.4289638897157027528e-4, 0.8115034002544663526e-4, 0.3517555122593144633e-4]) ri, di = erfa.atciqz(2.71, 0.174, am[0]) np.testing.assert_allclose(ri, 2.709994899247599271) np.testing.assert_allclose(di, 0.1728740720983623469) def test_float32_input(): # Regression test for gh-8615 xyz = np.array([[1, 0, 0], [0.9, 0.1, 0]]) out64 = erfa.p2s(xyz) out32 = erfa.p2s(xyz.astype('f4')) np.testing.assert_allclose(out32, out64, rtol=1.e-5)
44f888ceea1ef92eb14fb0dad50facf0cf3a87415b7cf3428f9dcbf02808649d
import os import abc import numpy as np __all__ = ['BaseLowLevelWCS', 'validate_physical_types'] class BaseLowLevelWCS(metaclass=abc.ABCMeta): """ Abstract base class for the low-level WCS interface. This is described in `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_. """ @property @abc.abstractmethod def pixel_n_dim(self): """ The number of axes in the pixel coordinate system. """ @property @abc.abstractmethod def world_n_dim(self): """ The number of axes in the world coordinate system. """ @property @abc.abstractmethod def world_axis_physical_types(self): """ An iterable of strings describing the physical type for each world axis. These should be names from the VO UCD1+ controlled Vocabulary (http://www.ivoa.net/documents/latest/UCDlist.html). If no matching UCD type exists, this can instead be ``"custom:xxx"``, where ``xxx`` is an arbitrary string. Alternatively, if the physical type is unknown/undefined, an element can be `None`. """ @property @abc.abstractmethod def world_axis_units(self): """ An iterable of strings given the units of the world coordinates for each axis. The strings should follow the `IVOA VOUnit standard <http://ivoa.net/documents/VOUnits/>`_ (though as noted in the VOUnit specification document, units that do not follow this standard are still allowed, but just not recommended). """ @abc.abstractmethod def pixel_to_world_values(self, *pixel_arrays): """ Convert pixel coordinates to world coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays as input, and pixel coordinates should be zero-based. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a pixel is in a region where the WCS is not defined, NaN can be returned. The coordinates should be specified in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def array_index_to_world_values(self, *index_arrays): """ Convert array indices to world coordinates. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values` except that the indices should be given in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def world_to_pixel_values(self, *world_arrays): """ Convert world coordinates to pixel coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays as input in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a world coordinate does not have a matching pixel coordinate, NaN can be returned. The coordinates should be returned in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def world_to_array_index_values(self, *world_arrays): """ Convert world coordinates to array indices. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_to_pixel_values` except that the indices should be returned in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). The indices should be returned as rounded integers. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @property @abc.abstractmethod def world_axis_object_components(self): """ A list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` elements giving information on constructing high-level objects for the world coordinates. Each element of the list is a tuple with three items: * The first is a name for the world object this world array corresponds to, which *must* match the string names used in `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. Note that names might appear twice because two world arrays might correspond to a single world object (e.g. a celestial coordinate might have both “ra” and “dec” arrays, which correspond to a single sky coordinate object). * The second element is either a string keyword argument name or a positional index for the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. * The third argument is a string giving the name of the property to access on the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes` in order to get numerical values. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples. """ @property @abc.abstractmethod def world_axis_object_classes(self): """ A dictionary giving information on constructing high-level objects for the world coordinates. Each key of the dictionary is a string key from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components`, and each value is a tuple with three elements: * The first element of the tuple must be a class or a string specifying the fully-qualified name of a class, which will specify the actual Python object to be created. * The second element, should be a tuple specifying the positional arguments required to initialize the class. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components` specifies that the world coordinates should be passed as a positional argument, this this tuple should include `None` placeholders for the world coordinates. * The last tuple element must be a dictionary with the keyword arguments required to initialize the class. Note that we don't require the classes to be Astropy classes since there is no guarantee that Astropy will have all the classes to represent all kinds of world coordinates. Furthermore, we recommend that the output be kept as human-readable as possible. The classes used here should have the ability to do conversions by passing an instance as the first argument to the same class with different arguments (e.g. ``Time(Time(...), scale='tai')``). This is a requirement for the implementation of the high-level interface. The second and third tuple elements for each value of this dictionary can in turn contain either instances of classes, or if necessary can contain serialized versions that should take the same form as the main classes described above (a tuple with three elements with the fully qualified name of the class, then the positional arguments and the keyword arguments). For low-level API objects implemented in Python, we recommend simply returning the actual objects (not the serialized form) for optimal performance. Implementations should either always or never use serialized classes to represent Python objects, and should indicate which of these they follow using the `~astropy.wcs.wcsapi.BaseLowLevelWCS.serialized_classes` attribute. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples . """ # The following three properties have default fallback implementations, so # they are not abstract. @property def array_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(row, column)`` order (the convention for arrays in Python). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. """ return None @property def pixel_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(x, y)`` order (where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. If you are interested in getting a shape that is comparable to that of a Numpy array, you should use `~astropy.wcs.wcsapi.BaseLowLevelWCS.array_shape` instead. """ return None @property def pixel_bounds(self): """ The bounds (in pixel coordinates) inside which the WCS is defined, as a list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` ``(min, max)`` tuples. The bounds should be given in ``[(xmin, xmax), (ymin, ymax)]`` order. WCS solutions are sometimes only guaranteed to be accurate within a certain range of pixel values, for example when defining a WCS that includes fitted distortions. This is an optional property, and it should return `None` if a shape is not known or relevant. """ return None @property def axis_correlation_matrix(self): """ Returns an (`~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim`, `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim`) matrix that indicates using booleans whether a given world coordinate depends on a given pixel coordinate. This defaults to a matrix where all elements are `True` in the absence of any further information. For completely independent axes, the diagonal would be `True` and all other entries `False`. """ return np.ones((self.world_n_dim, self.pixel_n_dim), dtype=bool) @property def serialized_classes(self): """ Indicates whether Python objects are given in serialized form or as actual Python objects. """ return False def __str__(self): # Overall header s = '{0} Transformation\n\n'.format(self.__class__.__name__) s += ('This transformation has {0} pixel and {1} world dimensions\n\n' .format(self.pixel_n_dim, self.world_n_dim)) s += 'Array shape (Numpy order): {0}\n\n'.format(self.array_shape) # Pixel dimensions table array_shape = self.array_shape or (0,) pixel_shape = self.pixel_shape or (None,) * self.pixel_n_dim # Find largest between header size and value length pixel_dim_width = max(9, len(str(self.pixel_n_dim))) pixel_siz_width = max(9, len(str(max(array_shape)))) s += (('{0:' + str(pixel_dim_width) + 's}').format('Pixel Dim') + ' ' + ('{0:' + str(pixel_siz_width) + 's}').format('Data size') + ' ' + 'Bounds\n') for ipix in range(self.pixel_n_dim): s += (('{0:' + str(pixel_dim_width) + 'd}').format(ipix) + ' ' + (" "*5 + str(None) if pixel_shape[ipix] is None else ('{0:' + str(pixel_siz_width) + 'd}').format(pixel_shape[ipix])) + ' ' + '{0:s}'.format(str(None if self.pixel_bounds is None else self.pixel_bounds[ipix]) + '\n')) s += '\n' # World dimensions table # Find largest between header size and value length world_dim_width = max(9, len(str(self.world_n_dim))) world_typ_width = max(13, max(len(x) if x is not None else 0 for x in self.world_axis_physical_types)) s += (('{0:' + str(world_dim_width) + 's}').format('World Dim') + ' ' + ('{0:' + str(world_typ_width) + 's}').format('Physical Type') + ' ' + 'Units\n') for iwrl in range(self.world_n_dim): if self.world_axis_physical_types[iwrl] is not None: s += (('{0:' + str(world_dim_width) + 'd}').format(iwrl) + ' ' + ('{0:' + str(world_typ_width) + 's}').format(self.world_axis_physical_types[iwrl]) + ' ' + '{0:s}'.format(self.world_axis_units[iwrl] + '\n')) else: s += (('{0:' + str(world_dim_width) + 'd}').format(iwrl) + ' ' + ('{0:' + str(world_typ_width) + 's}').format('None') + ' ' + '{0:s}'.format('unknown' + '\n')) s += '\n' # Axis correlation matrix pixel_dim_width = max(3, len(str(self.world_n_dim))) s += 'Correlation between pixel and world axes:\n\n' s += (' ' * world_dim_width + ' ' + ('{0:^' + str(self.pixel_n_dim * 5 - 2) + 's}').format('Pixel Dim') + '\n') s += (('{0:' + str(world_dim_width) + 's}').format('World Dim') + ''.join([' ' + ('{0:' + str(pixel_dim_width) + 'd}').format(ipix) for ipix in range(self.pixel_n_dim)]) + '\n') matrix = self.axis_correlation_matrix matrix_str = np.empty(matrix.shape, dtype='U3') matrix_str[matrix] = 'yes' matrix_str[~matrix] = 'no' for iwrl in range(self.world_n_dim): s += (('{0:' + str(world_dim_width) + 'd}').format(iwrl) + ''.join([' ' + ('{0:>' + str(pixel_dim_width) + 's}').format(matrix_str[iwrl, ipix]) for ipix in range(self.pixel_n_dim)]) + '\n') # Make sure we get rid of the extra whitespace at the end of some lines return '\n'.join([l.rstrip() for l in s.splitlines()]) __repr__ = __str__ UCDS_FILE = os.path.join(os.path.dirname(__file__), 'data', 'ucds.txt') with open(UCDS_FILE) as f: VALID_UCDS = set([x.strip() for x in f.read().splitlines()[1:]]) def validate_physical_types(physical_types): """ Validate a list of physical types against the UCD1+ standard """ for physical_type in physical_types: if (physical_type is not None and physical_type not in VALID_UCDS and not physical_type.startswith('custom:')): raise ValueError("Invalid physical type: {0}".format(physical_type))
d009b396e00d0fc63f068279ae38137dda32273a7ebb2a48101b166e3150db2d
import abc from collections import defaultdict, OrderedDict import numpy as np from .utils import deserialize_class __all__ = ['BaseHighLevelWCS', 'HighLevelWCSMixin'] def rec_getattr(obj, att): for a in att.split('.'): obj = getattr(obj, a) return obj def default_order(components): order = [] for key, _, _ in components: if key not in order: order.append(key) return order class BaseHighLevelWCS(metaclass=abc.ABCMeta): """ Abstract base class for the high-level WCS interface. This is described in `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_. """ @property @abc.abstractmethod def low_level_wcs(self): """ Returns a reference to the underlying low-level WCS object. """ @abc.abstractmethod def pixel_to_world(self, *pixel_arrays): """ Convert pixel coordinates to world coordinates (represented by high-level objects). If a single high-level object is used to represent the world coordinates (i.e., if ``len(wcs.world_axis_object_classes) == 1``), it is returned as-is (not in a tuple/list), otherwise a tuple of high-level objects is returned. See `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values` for pixel indexing and ordering conventions. """ @abc.abstractmethod def array_index_to_world(self, *index_arrays): """ Convert array indices to world coordinates (represented by Astropy objects). If a single high-level object is used to represent the world coordinates (i.e., if ``len(wcs.world_axis_object_classes) == 1``), it is returned as-is (not in a tuple/list), otherwise a tuple of high-level objects is returned. See `~astropy.wcs.wcsapi.BaseLowLevelWCS.array_index_to_world_values` for pixel indexing and ordering conventions. """ @abc.abstractmethod def world_to_pixel(self, *world_objects): """ Convert world coordinates (represented by Astropy objects) to pixel coordinates. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. See `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_to_pixel_values` for pixel indexing and ordering conventions. """ @abc.abstractmethod def world_to_array_index(self, *world_objects): """ Convert world coordinates (represented by Astropy objects) to array indices. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. See `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_to_array_index_values` for pixel indexing and ordering conventions. The indices should be returned as rounded integers. """ class HighLevelWCSMixin(BaseHighLevelWCS): """ Mix-in class that automatically provides the high-level WCS API for the low-level WCS object given by the `~HighLevelWCSMixin.low_level_wcs` property. """ @property def low_level_wcs(self): return self def world_to_pixel(self, *world_objects): # Cache the classes and components since this may be expensive serialized_classes = self.low_level_wcs.world_axis_object_classes components = self.low_level_wcs.world_axis_object_components # Deserialize world_axis_object_classes using the default order classes = OrderedDict() for key in default_order(components): if self.low_level_wcs.serialized_classes: classes[key] = deserialize_class(serialized_classes[key], construct=False) else: classes[key] = serialized_classes[key] # Check that the number of classes matches the number of inputs if len(world_objects) != len(classes): raise ValueError("Number of world inputs ({0}) does not match " "expected ({1})".format(len(world_objects), len(classes))) # Determine whether the classes are uniquely matched, that is we check # whether there is only one of each class. world_by_key = {} unique_match = True for w in world_objects: matches = [] for key, (klass, _, _) in classes.items(): if isinstance(w, klass): matches.append(key) if len(matches) == 1: world_by_key[matches[0]] = w else: unique_match = False break # If the match is not unique, the order of the classes needs to match, # whereas if all classes are unique, we can still intelligently match # them even if the order is wrong. objects = {} if unique_match: for key, (klass, args, kwargs) in classes.items(): # FIXME: For now SkyCoord won't auto-convert upon initialization # https://github.com/astropy/astropy/issues/7689 from astropy.coordinates import SkyCoord if isinstance(world_by_key[key], SkyCoord): if 'frame' in kwargs: objects[key] = world_by_key[key].transform_to(kwargs['frame']) else: objects[key] = world_by_key[key] else: objects[key] = klass(world_by_key[key], *args, **kwargs) else: for ikey, key in enumerate(classes): klass, args, kwargs = classes[key] w = world_objects[ikey] if not isinstance(w, klass): raise ValueError("Expected the following order of world " "arguments: {0}".format(', '.join([k.__name__ for (k, _, _) in classes.values()]))) # FIXME: For now SkyCoord won't auto-convert upon initialization # https://github.com/astropy/astropy/issues/7689 from astropy.coordinates import SkyCoord if isinstance(w, SkyCoord): if 'frame' in kwargs: objects[key] = w.transform_to(kwargs['frame']) else: objects[key] = w else: objects[key] = klass(w, *args, **kwargs) # We now extract the attributes needed for the world values world = [] for key, _, attr in components: world.append(rec_getattr(objects[key], attr)) # Finally we convert to pixel coordinates pixel = self.low_level_wcs.world_to_pixel_values(*world) return pixel def pixel_to_world(self, *pixel_arrays): # Compute the world coordinate values world = self.low_level_wcs.pixel_to_world_values(*pixel_arrays) if self.world_n_dim == 1: world = (world,) # Cache the classes and components since this may be expensive components = self.low_level_wcs.world_axis_object_components classes = self.low_level_wcs.world_axis_object_classes # Deserialize classes if self.low_level_wcs.serialized_classes: classes_new = {} for key, value in classes.items(): classes_new[key] = deserialize_class(value, construct=False) classes = classes_new args = defaultdict(list) kwargs = defaultdict(dict) for i, (key, attr, _) in enumerate(components): if isinstance(attr, str): kwargs[key][attr] = world[i] else: while attr > len(args[key]) - 1: args[key].append(None) args[key][attr] = world[i] result = [] for key in default_order(components): klass, ar, kw = classes[key] result.append(klass(*args[key], *ar, **kwargs[key], **kw)) if len(result) == 1: return result[0] else: return result def array_index_to_world(self, *index_arrays): return self.pixel_to_world(*index_arrays[::-1]) def world_to_array_index(self, *world_objects): if self.pixel_n_dim == 1: return np.round(self.world_to_pixel(*world_objects)).astype(int) else: return tuple(np.round(self.world_to_pixel(*world_objects)[::-1]).astype(int).tolist())
1833bd43ce3ff19e69a62ed2d30a990a15bd0ab204bc1dd0085a5a4d41b90eba
import pytest from numpy.testing import assert_equal, assert_allclose from astropy.wcs import WCS from astropy.io.fits import Header from astropy.coordinates import SkyCoord, Galactic from astropy.units import Quantity from astropy.wcs.wcsapi.sliced_low_level_wcs import SlicedLowLevelWCS, sanitize_slices import astropy.units as u # To test the slicing we start off from standard FITS WCS # objects since those implement the low-level API. We create # a WCS for a spectral cube with axes in non-standard order # and with correlated celestial axes and an uncorrelated # spectral axis. HEADER_SPECTRAL_CUBE = """ NAXIS = 3 NAXIS1 = 10 NAXIS2 = 20 NAXIS3 = 30 CTYPE1 = GLAT-CAR CTYPE2 = FREQ CTYPE3 = GLON-CAR CRVAL1 = 10 CRVAL2 = 20 CRVAL3 = 25 CRPIX1 = 30 CRPIX2 = 40 CRPIX3 = 45 CDELT1 = -0.1 CDELT2 = 0.5 CDELT3 = 0.1 CUNIT1 = deg CUNIT2 = Hz CUNIT3 = deg """ WCS_SPECTRAL_CUBE = WCS(Header.fromstring(HEADER_SPECTRAL_CUBE, sep='\n')) WCS_SPECTRAL_CUBE.pixel_bounds = [(-1, 11), (-2, 18), (5, 15)] @pytest.mark.parametrize("item, ndim, expected", ( ([Ellipsis, 10], 4, [slice(None)] * 3 + [10]), ([10, slice(20, 30)], 5, [10, slice(20, 30)] + [slice(None)] * 3), ([10, Ellipsis, 8], 10, [10] + [slice(None)] * 8 + [8]) )) def test_sanitize_slice(item, ndim, expected): new_item = sanitize_slices(item, ndim) # FIXME: do we still need the first two since the third assert # should cover it all? assert len(new_item) == ndim assert all(isinstance(i, (slice, int)) for i in new_item) assert new_item == expected EXPECTED_ELLIPSIS_REPR = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): (30, 20, 10) Pixel Dim Data size Bounds 0 10 (-1, 11) 1 20 (-2, 18) 2 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_ellipsis(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE, Ellipsis) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 20, 10) assert wcs.pixel_shape == (10, 20, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(29, 39, 44), (10, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 39, 29), (10, 20, 25)) assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (29., 39., 44.)) assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 39, 29)) assert_equal(wcs.pixel_bounds, [(-1, 11), (-2, 18), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_ELLIPSIS_REPR.strip() EXPECTED_SPECTRAL_SLICE_REPR = """ SlicedLowLevelWCS Transformation This transformation has 2 pixel and 2 world dimensions Array shape (Numpy order): (30, 10) Pixel Dim Data size Bounds 0 10 (-1, 11) 1 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 0 yes yes 1 yes yes """ def test_spectral_slice(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE, [slice(None), 10]) assert wcs.pixel_n_dim == 2 assert wcs.world_n_dim == 2 assert wcs.array_shape == (30, 10) assert wcs.pixel_shape == (10, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, True], [True, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert_allclose(wcs.pixel_to_world_values(29, 44), (10, 25)) assert_allclose(wcs.array_index_to_world_values(44, 29), (10, 25)) assert_allclose(wcs.world_to_pixel_values(10, 25), (29., 44.)) assert_equal(wcs.world_to_array_index_values(10, 25), (44, 29)) assert_equal(wcs.pixel_bounds, [(-1, 11), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_SPECTRAL_SLICE_REPR.strip() EXPECTED_SPECTRAL_RANGE_REPR = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): (30, 6, 10) Pixel Dim Data size Bounds 0 10 (-1, 11) 1 6 (-6, 14) 2 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_spectral_range(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE, [slice(None), slice(4, 10)]) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 6, 10) assert wcs.pixel_shape == (10, 6, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(29, 35, 44), (10, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 35, 29), (10, 20, 25)) assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (29., 35., 44.)) assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 35, 29)) assert_equal(wcs.pixel_bounds, [(-1, 11), (-6, 14), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_SPECTRAL_RANGE_REPR.strip() EXPECTED_CELESTIAL_SLICE_REPR = """ SlicedLowLevelWCS Transformation This transformation has 2 pixel and 3 world dimensions Array shape (Numpy order): (30, 20) Pixel Dim Data size Bounds 0 20 (-2, 18) 1 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 0 no yes 1 yes no 2 no yes """ def test_celestial_slice(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE, [Ellipsis, 5]) assert wcs.pixel_n_dim == 2 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 20) assert wcs.pixel_shape == (20, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[False, True], [True, False], [False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(39, 44), (12.4, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 39), (12.4, 20, 25)) assert_allclose(wcs.world_to_pixel_values(12.4, 20, 25), (39., 44.)) assert_equal(wcs.world_to_array_index_values(12.4, 20, 25), (44, 39)) assert_equal(wcs.pixel_bounds, [(-2, 18), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_CELESTIAL_SLICE_REPR.strip() EXPECTED_CELESTIAL_RANGE_REPR = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): (30, 20, 5) Pixel Dim Data size Bounds 0 5 (-6, 6) 1 20 (-2, 18) 2 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_celestial_range(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE, [Ellipsis, slice(5, 10)]) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 20, 5) assert wcs.pixel_shape == (5, 20, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(24, 39, 44), (10, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 39, 24), (10, 20, 25)) assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (24., 39., 44.)) assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 39, 24)) assert_equal(wcs.pixel_bounds, [(-6, 6), (-2, 18), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_CELESTIAL_RANGE_REPR.strip() # Now try with a 90 degree rotation WCS_SPECTRAL_CUBE_ROT = WCS(Header.fromstring(HEADER_SPECTRAL_CUBE, sep='\n')) WCS_SPECTRAL_CUBE_ROT.wcs.pc = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] WCS_SPECTRAL_CUBE_ROT.wcs.crval[0] = 0 WCS_SPECTRAL_CUBE_ROT.pixel_bounds = [(-1, 11), (-2, 18), (5, 15)] EXPECTED_CELESTIAL_RANGE_ROT_REPR = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): (30, 20, 5) Pixel Dim Data size Bounds 0 5 (-6, 6) 1 20 (-2, 18) 2 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_celestial_range_rot(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE_ROT, [Ellipsis, slice(5, 10)]) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 20, 5) assert wcs.pixel_shape == (5, 20, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(14, 29, 34), (1, 15, 24)) assert_allclose(wcs.array_index_to_world_values(34, 29, 14), (1, 15, 24)) assert_allclose(wcs.world_to_pixel_values(1, 15, 24), (14., 29., 34.)) assert_equal(wcs.world_to_array_index_values(1, 15, 24), (34, 29, 14)) assert_equal(wcs.pixel_bounds, [(-6, 6), (-2, 18), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_CELESTIAL_RANGE_ROT_REPR.strip() HEADER_NO_SHAPE_CUBE = """ NAXIS = 3 CTYPE1 = GLAT-CAR CTYPE2 = FREQ CTYPE3 = GLON-CAR CRVAL1 = 10 CRVAL2 = 20 CRVAL3 = 25 CRPIX1 = 30 CRPIX2 = 40 CRPIX3 = 45 CDELT1 = -0.1 CDELT2 = 0.5 CDELT3 = 0.1 CUNIT1 = deg CUNIT2 = Hz CUNIT3 = deg """ WCS_NO_SHAPE_CUBE = WCS(Header.fromstring(HEADER_NO_SHAPE_CUBE, sep='\n')) EXPECTED_NO_SHAPE_REPR = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): None Pixel Dim Data size Bounds 0 None None 1 None None 2 None None World Dim Physical Type Units 0 pos.galactic.lat deg 1 em.freq Hz 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_no_array_shape(): wcs = SlicedLowLevelWCS(WCS_NO_SHAPE_CUBE, Ellipsis) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape is None assert wcs.pixel_shape is None assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('freq', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert wcs.world_axis_object_classes['freq'][0] is Quantity assert wcs.world_axis_object_classes['freq'][1] == () assert wcs.world_axis_object_classes['freq'][2] == {'unit': 'Hz'} assert_allclose(wcs.pixel_to_world_values(29, 39, 44), (10, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 39, 29), (10, 20, 25)) assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (29., 39., 44.)) assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 39, 29)) assert str(wcs) == repr(wcs) == EXPECTED_NO_SHAPE_REPR.strip() # Testing the WCS object having some physical types as None/Unknown HEADER_SPECTRAL_CUBE_NONE_TYPES = { 'CTYPE1': 'GLAT-CAR', 'CUNIT1': 'deg', 'CDELT1': -0.1, 'CRPIX1': 30, 'CRVAL1': 10, 'NAXIS1': 10, 'CTYPE2': '', 'CUNIT2': 'Hz', 'CDELT2': 0.5, 'CRPIX2': 40, 'CRVAL2': 20, 'NAXIS2': 20, 'CTYPE3': 'GLON-CAR', 'CUNIT3': 'deg', 'CDELT3': 0.1, 'CRPIX3': 45, 'CRVAL3': 25, 'NAXIS3': 30 } WCS_SPECTRAL_CUBE_NONE_TYPES = WCS(header=HEADER_SPECTRAL_CUBE_NONE_TYPES) WCS_SPECTRAL_CUBE_NONE_TYPES.pixel_bounds = [(-1, 11), (-2, 18), (5, 15)] EXPECTED_ELLIPSIS_REPR_NONE_TYPES = """ SlicedLowLevelWCS Transformation This transformation has 3 pixel and 3 world dimensions Array shape (Numpy order): (30, 20, 10) Pixel Dim Data size Bounds 0 10 (-1, 11) 1 20 (-2, 18) 2 30 (5, 15) World Dim Physical Type Units 0 pos.galactic.lat deg 1 None unknown 2 pos.galactic.lon deg Correlation between pixel and world axes: Pixel Dim World Dim 0 1 2 0 yes no yes 1 no yes no 2 yes no yes """ def test_ellipsis_none_types(): wcs = SlicedLowLevelWCS(WCS_SPECTRAL_CUBE_NONE_TYPES, Ellipsis) assert wcs.pixel_n_dim == 3 assert wcs.world_n_dim == 3 assert wcs.array_shape == (30, 20, 10) assert wcs.pixel_shape == (10, 20, 30) assert wcs.world_axis_physical_types == ['pos.galactic.lat', None, 'pos.galactic.lon'] assert wcs.world_axis_units == ['deg', 'Hz', 'deg'] assert_equal(wcs.axis_correlation_matrix, [[True, False, True], [False, True, False], [True, False, True]]) assert wcs.world_axis_object_components == [('celestial', 1, 'spherical.lat.degree'), ('world', 0, 'value'), ('celestial', 0, 'spherical.lon.degree')] assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord assert wcs.world_axis_object_classes['celestial'][1] == () assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic) assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg assert_allclose(wcs.pixel_to_world_values(29, 39, 44), (10, 20, 25)) assert_allclose(wcs.array_index_to_world_values(44, 39, 29), (10, 20, 25)) assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (29., 39., 44.)) assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 39, 29)) assert_equal(wcs.pixel_bounds, [(-1, 11), (-2, 18), (5, 15)]) assert str(wcs) == repr(wcs) == EXPECTED_ELLIPSIS_REPR_NONE_TYPES.strip()
bfd15a35e09a0114a0c9698b11408eb2d890f99932092e10302ab719671aad9d
import functools import pytest import numpy as np from astropy.time import Time, TimeDelta allclose_jd = functools.partial(np.allclose, rtol=2. ** -52, atol=0) allclose_jd2 = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52) # 20 ps atol allclose_sec = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52 * 24 * 3600) # 20 ps atol tiny = 2. ** -52 dt_tiny = TimeDelta(tiny, format='jd') def test_abs_jd2_always_less_than_half(): """Make jd2 approach +/-0.5, and check that it doesn't go over.""" t1 = Time(2400000.5, [-tiny, +tiny], format='jd') assert np.all(t1.jd1 % 1 == 0) assert np.all(abs(t1.jd2) < 0.5) t2 = Time(2400000., [[0.5-tiny, 0.5+tiny], [-0.5-tiny, -0.5+tiny]], format='jd') assert np.all(t2.jd1 % 1 == 0) assert np.all(abs(t2.jd2) < 0.5) def test_addition(): """Check that an addition at the limit of precision (2^-52) is seen""" t = Time(2455555., 0.5, format='jd', scale='utc') t_dt = t + dt_tiny assert t_dt.jd1 == t.jd1 and t_dt.jd2 != t.jd2 # Check that the addition is exactly reversed by the corresponding subtraction t2 = t_dt - dt_tiny assert t2.jd1 == t.jd1 and t2.jd2 == t.jd2 def test_mult_div(): """Test precision with multiply and divide""" dt_small = 6 * dt_tiny # pick a number that will leave remainder if divided by 6. dt_big = TimeDelta(20000., format='jd') dt_big_small_by_6 = (dt_big + dt_small) / 6. dt_frac = dt_big_small_by_6 - TimeDelta(3333., format='jd') assert allclose_jd2(dt_frac.jd2, 0.33333333333333354) def test_init_variations(): """Check that 3 ways of specifying a time + small offset are equivalent""" dt_tiny_sec = dt_tiny.jd2 * 86400. t1 = Time(1e11, format='cxcsec') + dt_tiny t2 = Time(1e11, dt_tiny_sec, format='cxcsec') t3 = Time(dt_tiny_sec, 1e11, format='cxcsec') assert t1.jd1 == t2.jd1 assert t1.jd2 == t3.jd2 assert t1.jd1 == t2.jd1 assert t1.jd2 == t3.jd2 def test_precision_exceeds_64bit(): """ Check that Time object really holds more precision than float64 by looking at the (naively) summed 64-bit result and asserting equality at the bit level. """ t1 = Time(1.23456789e11, format='cxcsec') t2 = t1 + dt_tiny assert t1.jd == t2.jd def test_through_scale_change(): """Check that precision holds through scale change (cxcsec is TT)""" t0 = Time(1.0, format='cxcsec') t1 = Time(1.23456789e11, format='cxcsec') dt_tt = t1 - t0 dt_tai = t1.tai - t0.tai assert allclose_jd(dt_tt.jd1, dt_tai.jd1) assert allclose_jd2(dt_tt.jd2, dt_tai.jd2) def test_iso_init(): """Check when initializing from ISO date""" t1 = Time('2000:001:00:00:00.00000001', scale='tai') t2 = Time('3000:001:13:00:00.00000002', scale='tai') dt = t2 - t1 assert allclose_jd2(dt.jd2, 13. / 24. + 1e-8 / 86400. - 1.0) def test_jd1_is_mult_of_one(): """ Check that jd1 is a multiple of 1. """ t1 = Time('2000:001:00:00:00.00000001', scale='tai') assert np.round(t1.jd1) == t1.jd1 t1 = Time(1.23456789, 12345678.90123456, format='jd', scale='tai') assert np.round(t1.jd1) == t1.jd1 @pytest.mark.xfail def test_precision_neg(): """ Check precision when jd1 is negative. Currently fails because ERFA routines use a test like jd1 > jd2 to decide which component to update. Should be abs(jd1) > abs(jd2). """ t1 = Time(-100000.123456, format='jd', scale='tt') assert np.round(t1.jd1) == t1.jd1 t1_tai = t1.tai assert np.round(t1_tai.jd1) == t1_tai.jd1 def test_precision_epoch(): """ Check that input via epoch also has full precision, i.e., against regression on https://github.com/astropy/astropy/pull/366 """ t_utc = Time(range(1980, 2001), format='jyear', scale='utc') t_tai = Time(range(1980, 2001), format='jyear', scale='tai') dt = t_utc - t_tai assert allclose_sec(dt.sec, np.round(dt.sec)) def test_leap_seconds_rounded_correctly(): """Regression tests against #2083, where a leap second was rounded incorrectly by the underlying ERFA routine.""" t = Time(['2012-06-30 23:59:59.413', '2012-07-01 00:00:00.413'], scale='ut1', precision=3).utc assert np.all(t.iso == np.array(['2012-06-30 23:59:60.000', '2012-07-01 00:00:00.000'])) # with the bug, both yielded '2012-06-30 23:59:60.000'
919aa6b59fbb099c9224e774ff3cf672bc37b9513c689c0577238187aacd998e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import functools import pytest import numpy as np from astropy.time import Time, TimeDelta from astropy import units as u from astropy.table import Column allclose_sec = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52 * 24 * 3600) # 20 ps atol class TestTimeQuantity(): """Test Interaction of Time with Quantities""" def test_valid_quantity_input(self): """Test Time formats that are allowed to take quantity input.""" q = 2450000.125*u.day t1 = Time(q, format='jd', scale='utc') assert t1.value == q.value q2 = q.to(u.second) t2 = Time(q2, format='jd', scale='utc') assert t2.value == q.value == q2.to_value(u.day) q3 = q-2400000.5*u.day t3 = Time(q3, format='mjd', scale='utc') assert t3.value == q3.value # test we can deal with two quantity arguments, with different units qs = 24.*36.*u.second t4 = Time(q3, qs, format='mjd', scale='utc') assert t4.value == (q3+qs).to_value(u.day) qy = 1990.*u.yr ty1 = Time(qy, format='jyear', scale='utc') assert ty1.value == qy.value ty2 = Time(qy.to(u.day), format='jyear', scale='utc') assert ty2.value == qy.value qy2 = 10.*u.yr tcxc = Time(qy2, format='cxcsec') assert tcxc.value == qy2.to_value(u.second) tgps = Time(qy2, format='gps') assert tgps.value == qy2.to_value(u.second) tunix = Time(qy2, format='unix') assert tunix.value == qy2.to_value(u.second) qd = 2000.*365.*u.day tplt = Time(qd, format='plot_date', scale='utc') assert tplt.value == qd.value def test_invalid_quantity_input(self): with pytest.raises(u.UnitsError): Time(2450000.*u.m, format='jd', scale='utc') with pytest.raises(u.UnitsError): Time(2450000.*u.dimensionless_unscaled, format='jd', scale='utc') def test_column_with_and_without_units(self): """Ensure a Column without a unit is treated as an array [#3648]""" a = np.arange(50000., 50010.) ta = Time(a, format='mjd') c1 = Column(np.arange(50000., 50010.), name='mjd') tc1 = Time(c1, format='mjd') assert np.all(ta == tc1) c2 = Column(np.arange(50000., 50010.), name='mjd', unit='day') tc2 = Time(c2, format='mjd') assert np.all(ta == tc2) c3 = Column(np.arange(50000., 50010.), name='mjd', unit='m') with pytest.raises(u.UnitsError): Time(c3, format='mjd') def test_no_quantity_input_allowed(self): """Time formats that are not allowed to take Quantity input.""" qy = 1990.*u.yr for fmt in ('iso', 'yday', 'datetime', 'byear', 'byear_str', 'jyear_str'): with pytest.raises(ValueError): Time(qy, format=fmt, scale='utc') def test_valid_quantity_operations(self): """Check that adding a time-valued quantity to a Time gives a Time""" t0 = Time(100000., format='cxcsec') q1 = 10.*u.second t1 = t0 + q1 assert isinstance(t1, Time) assert t1.value == t0.value+q1.to_value(u.second) q2 = 1.*u.day t2 = t0 - q2 assert allclose_sec(t2.value, t0.value-q2.to_value(u.second)) # check broadcasting q3 = np.arange(15.).reshape(3, 5) * u.hour t3 = t0 - q3 assert t3.shape == q3.shape assert allclose_sec(t3.value, t0.value-q3.to_value(u.second)) def test_invalid_quantity_operations(self): """Check that comparisons of Time with quantities does not work (even for time-like, since we cannot compare Time to TimeDelta)""" with pytest.raises(TypeError): Time(100000., format='cxcsec') > 10.*u.m with pytest.raises(TypeError): Time(100000., format='cxcsec') > 10.*u.second class TestTimeDeltaQuantity(): """Test interaction of TimeDelta with Quantities""" def test_valid_quantity_input(self): """Test that TimeDelta can take quantity input.""" q = 500.25*u.day dt1 = TimeDelta(q, format='jd') assert dt1.value == q.value dt2 = TimeDelta(q, format='sec') assert dt2.value == q.to_value(u.second) dt3 = TimeDelta(q) assert dt3.value == q.value def test_invalid_quantity_input(self): with pytest.raises(u.UnitsError): TimeDelta(2450000.*u.m, format='jd') with pytest.raises(u.UnitsError): Time(2450000.*u.dimensionless_unscaled, format='jd', scale='utc') with pytest.raises(TypeError): TimeDelta(100, format='sec') > 10.*u.m def test_quantity_output(self): q = 500.25*u.day dt = TimeDelta(q) assert dt.to(u.day) == q assert dt.to_value(u.day) == q.value assert dt.to(u.second).value == q.to_value(u.second) assert dt.to_value(u.second) == q.to_value(u.second) with pytest.raises(u.UnitsError): dt.to(u.m) with pytest.raises(u.UnitsError): dt.to_value(u.m) def test_valid_quantity_operations1(self): """Check adding/substracting/comparing a time-valued quantity works with a TimeDelta. Addition/subtraction should give TimeDelta""" t0 = TimeDelta(106400., format='sec') q1 = 10.*u.second t1 = t0 + q1 assert isinstance(t1, TimeDelta) assert t1.value == t0.value+q1.to_value(u.second) q2 = 1.*u.day t2 = t0 - q2 assert isinstance(t2, TimeDelta) assert allclose_sec(t2.value, t0.value-q2.to_value(u.second)) # now comparisons assert t0 > q1 assert t0 < 1.*u.yr # and broadcasting q3 = np.arange(12.).reshape(4, 3) * u.hour t3 = t0 + q3 assert isinstance(t3, TimeDelta) assert t3.shape == q3.shape assert allclose_sec(t3.value, t0.value + q3.to_value(u.second)) def test_valid_quantity_operations2(self): """Check that TimeDelta is treated as a quantity where possible.""" t0 = TimeDelta(100000., format='sec') f = 1./t0 assert isinstance(f, u.Quantity) assert f.unit == 1./u.day g = 10.*u.m/u.second**2 v = t0 * g assert isinstance(v, u.Quantity) assert u.allclose(v, t0.sec * g.value * u.m / u.second) q = np.log10(t0/u.second) assert isinstance(q, u.Quantity) assert q.value == np.log10(t0.sec) s = 1.*u.m v = s/t0 assert isinstance(v, u.Quantity) assert u.allclose(v, 1. / t0.sec * u.m / u.s) t = 1.*u.s t2 = t0 * t assert isinstance(t2, u.Quantity) assert u.allclose(t2, t0.sec * u.s ** 2) t3 = [1] / t0 assert isinstance(t3, u.Quantity) assert u.allclose(t3, 1 / (t0.sec * u.s)) # broadcasting t1 = TimeDelta(np.arange(100000., 100012.).reshape(6, 2), format='sec') f = np.array([1., 2.]) * u.cycle * u.Hz phase = f * t1 assert isinstance(phase, u.Quantity) assert phase.shape == t1.shape assert u.allclose(phase, t1.sec * f.value * u.cycle) q = t0 * t1 assert isinstance(q, u.Quantity) assert np.all(q == t0.to(u.day) * t1.to(u.day)) q = t1 / t0 assert isinstance(q, u.Quantity) assert np.all(q == t1.to(u.day) / t0.to(u.day)) def test_valid_quantity_operations3(self): """Test a TimeDelta remains one if possible.""" t0 = TimeDelta(10., format='jd') q = 10. * u.one t1 = q * t0 assert isinstance(t1, TimeDelta) assert t1 == TimeDelta(100., format='jd') t2 = t0 * q assert isinstance(t2, TimeDelta) assert t2 == TimeDelta(100., format='jd') t3 = t0 / q assert isinstance(t3, TimeDelta) assert t3 == TimeDelta(1., format='jd') q2 = 1. * u.percent t4 = t0 * q2 assert isinstance(t4, TimeDelta) assert abs(t4 - TimeDelta(0.1, format='jd')) < 1. * u.ns q3 = 1. * u.hr / (36. * u.s) t5 = q3 * t0 assert isinstance(t4, TimeDelta) assert abs(t5 - TimeDelta(1000., format='jd')) < 1. * u.ns # Test multiplication with a unit. t6 = t0 * u.one assert isinstance(t6, TimeDelta) assert t6 == TimeDelta(10., format='jd') t7 = u.one * t0 assert isinstance(t7, TimeDelta) assert t7 == TimeDelta(10., format='jd') t8 = t0 * '' assert isinstance(t8, TimeDelta) assert t8 == TimeDelta(10., format='jd') t9 = '' * t0 assert isinstance(t9, TimeDelta) assert t9 == TimeDelta(10., format='jd') t10 = t0 / u.one assert isinstance(t10, TimeDelta) assert t6 == TimeDelta(10., format='jd') t11 = t0 / '' assert isinstance(t11, TimeDelta) assert t11 == TimeDelta(10., format='jd') t12 = t0 / [1] assert isinstance(t12, TimeDelta) assert t12 == TimeDelta(10., format='jd') t13 = [1] * t0 assert isinstance(t13, TimeDelta) assert t13 == TimeDelta(10., format='jd') def test_invalid_quantity_operations(self): """Check comparisons of TimeDelta with non-time quantities fails.""" with pytest.raises(TypeError): TimeDelta(100000., format='sec') > 10.*u.m def test_invalid_quantity_operations2(self): """Check that operations with non-time/quantity fail.""" td = TimeDelta(100000., format='sec') with pytest.raises(TypeError): td * object() with pytest.raises(TypeError): td / object() def test_invalid_quantity_broadcast(self): """Check broadcasting rules in interactions with Quantity.""" t0 = TimeDelta(np.arange(12.).reshape(4, 3), format='sec') with pytest.raises(ValueError): t0 + np.arange(4.) * u.s class TestDeltaAttributes(): def test_delta_ut1_utc(self): t = Time('2010-01-01 00:00:00', format='iso', scale='utc', precision=6) t.delta_ut1_utc = 0.3 * u.s assert t.ut1.iso == '2010-01-01 00:00:00.300000' t.delta_ut1_utc = 0.4 / 60. * u.minute assert t.ut1.iso == '2010-01-01 00:00:00.400000' with pytest.raises(u.UnitsError): t.delta_ut1_utc = 0.4 * u.m # Also check that a TimeDelta works. t.delta_ut1_utc = TimeDelta(0.3, format='sec') assert t.ut1.iso == '2010-01-01 00:00:00.300000' t.delta_ut1_utc = TimeDelta(0.5/24./3600., format='jd') assert t.ut1.iso == '2010-01-01 00:00:00.500000' def test_delta_tdb_tt(self): t = Time('2010-01-01 00:00:00', format='iso', scale='tt', precision=6) t.delta_tdb_tt = 20. * u.second assert t.tdb.iso == '2010-01-01 00:00:20.000000' t.delta_tdb_tt = 30. / 60. * u.minute assert t.tdb.iso == '2010-01-01 00:00:30.000000' with pytest.raises(u.UnitsError): t.delta_tdb_tt = 0.4 * u.m # Also check that a TimeDelta works. t.delta_tdb_tt = TimeDelta(40., format='sec') assert t.tdb.iso == '2010-01-01 00:00:40.000000' t.delta_tdb_tt = TimeDelta(50./24./3600., format='jd') assert t.tdb.iso == '2010-01-01 00:00:50.000000' @pytest.mark.parametrize('q1, q2', ((5e8*u.s, None), (5e17*u.ns, None), (4e8*u.s, 1e17*u.ns), (4e14*u.us, 1e17*u.ns))) def test_quantity_conversion_rounding(q1, q2): """Check that no rounding errors are incurred by unit conversion. This occurred before as quantities in seconds were converted to days before trying to split them into two-part doubles. See gh-7622. """ t = Time('2001-01-01T00:00:00.', scale='tai') expected = Time('2016-11-05T00:53:20.', scale='tai') if q2 is None: t0 = t + q1 else: t0 = t + q1 + q2 assert abs(t0 - expected) < 20 * u.ps dt1 = TimeDelta(q1, q2) t1 = t + dt1 assert abs(t1 - expected) < 20 * u.ps dt2 = TimeDelta(q1, q2, format='sec') t2 = t + dt2 assert abs(t2 - expected) < 20 * u.ps
795ac1595045742d91339457f460071ba027e5a450ee61fa34a15ae63c6b75fb
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # The idea for this module (but no code) was borrowed from the # quantities (http://pythonhosted.org/quantities/) package. """Helper functions for Quantity. In particular, this implements the logic that determines scaling and result units for a given ufunc, given input units. """ from fractions import Fraction import numpy as np from . import UFUNC_HELPERS, UNSUPPORTED_UFUNCS from astropy.units.core import ( UnitsError, UnitConversionError, UnitTypeError, dimensionless_unscaled, get_current_unit_registry) def _d(unit): if unit is None: return dimensionless_unscaled else: return unit def get_converter(from_unit, to_unit): """Like Unit._get_converter, except returns None if no scaling is needed, i.e., if the inferred scale is unity.""" try: scale = from_unit._to(to_unit) except UnitsError: return from_unit._apply_equivalencies( from_unit, to_unit, get_current_unit_registry().equivalencies) except AttributeError: raise UnitTypeError("Unit '{0}' cannot be converted to '{1}'" .format(from_unit, to_unit)) if scale == 1.: return None else: return lambda val: scale * val def get_converters_and_unit(f, unit1, unit2): converters = [None, None] # By default, we try adjusting unit2 to unit1, so that the result will # be unit1 as well. But if there is no second unit, we have to try # adjusting unit1 (to dimensionless, see below). if unit2 is None: if unit1 is None: # No units for any input -- e.g., np.add(a1, a2, out=q) return converters, dimensionless_unscaled changeable = 0 # swap units. unit2 = unit1 unit1 = None elif unit2 is unit1: # ensure identical units is fast ("==" is slow, so avoid that). return converters, unit1 else: changeable = 1 # Try to get a converter from unit2 to unit1. if unit1 is None: try: converters[changeable] = get_converter(unit2, dimensionless_unscaled) except UnitsError: # special case: would be OK if unitless number is zero, inf, nan converters[1-changeable] = False return converters, unit2 else: return converters, dimensionless_unscaled else: try: converters[changeable] = get_converter(unit2, unit1) except UnitsError: raise UnitConversionError( "Can only apply '{0}' function to quantities " "with compatible dimensions" .format(f.__name__)) return converters, unit1 # SINGLE ARGUMENT UFUNC HELPERS # # The functions below take a single argument, which is the quantity upon which # the ufunc is being used. The output of the helper function should be two # values: a list with a single converter to be used to scale the input before # it is being passed to the ufunc (or None if no conversion is needed), and # the unit the output will be in. def helper_onearg_test(f, unit): return ([None], None) def helper_invariant(f, unit): return ([None], _d(unit)) def helper_square(f, unit): return ([None], unit ** 2 if unit is not None else dimensionless_unscaled) def helper_reciprocal(f, unit): return ([None], unit ** -1 if unit is not None else dimensionless_unscaled) one_half = 0.5 # faster than Fraction(1, 2) one_third = Fraction(1, 3) def helper_sqrt(f, unit): return ([None], unit ** one_half if unit is not None else dimensionless_unscaled) def helper_cbrt(f, unit): return ([None], (unit ** one_third if unit is not None else dimensionless_unscaled)) def helper_modf(f, unit): if unit is None: return [None], (dimensionless_unscaled, dimensionless_unscaled) try: return ([get_converter(unit, dimensionless_unscaled)], (dimensionless_unscaled, dimensionless_unscaled)) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) def helper__ones_like(f, unit): return [None], dimensionless_unscaled def helper_dimensionless_to_dimensionless(f, unit): if unit is None: return [None], dimensionless_unscaled try: return ([get_converter(unit, dimensionless_unscaled)], dimensionless_unscaled) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) def helper_dimensionless_to_radian(f, unit): from astropy.units.si import radian if unit is None: return [None], radian try: return [get_converter(unit, dimensionless_unscaled)], radian except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) def helper_degree_to_radian(f, unit): from astropy.units.si import degree, radian try: return [get_converter(unit, degree)], radian except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) def helper_radian_to_degree(f, unit): from astropy.units.si import degree, radian try: return [get_converter(unit, radian)], degree except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) def helper_radian_to_dimensionless(f, unit): from astropy.units.si import radian try: return [get_converter(unit, radian)], dimensionless_unscaled except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) def helper_frexp(f, unit): if not unit.is_unity(): raise UnitTypeError("Can only apply '{0}' function to " "unscaled dimensionless quantities" .format(f.__name__)) return [None], (None, None) # TWO ARGUMENT UFUNC HELPERS # # The functions below take a two arguments. The output of the helper function # should be two values: a tuple of two converters to be used to scale the # inputs before being passed to the ufunc (None if no conversion is needed), # and the unit the output will be in. def helper_multiplication(f, unit1, unit2): return [None, None], _d(unit1) * _d(unit2) def helper_division(f, unit1, unit2): return [None, None], _d(unit1) / _d(unit2) def helper_power(f, unit1, unit2): # TODO: find a better way to do this, currently need to signal that one # still needs to raise power of unit1 in main code if unit2 is None: return [None, None], False try: return [None, get_converter(unit2, dimensionless_unscaled)], False except UnitsError: raise UnitTypeError("Can only raise something to a " "dimensionless quantity") def helper_ldexp(f, unit1, unit2): if unit2 is not None: raise TypeError("Cannot use ldexp with a quantity " "as second argument.") else: return [None, None], _d(unit1) def helper_copysign(f, unit1, unit2): # if first arg is not a quantity, just return plain array if unit1 is None: return [None, None], None else: return [None, None], unit1 def helper_heaviside(f, unit1, unit2): try: converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply 'heaviside' function with a " "dimensionless second argument.") return ([None, converter2], dimensionless_unscaled) def helper_two_arg_dimensionless(f, unit1, unit2): try: converter1 = (get_converter(unit1, dimensionless_unscaled) if unit1 is not None else None) converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) return ([converter1, converter2], dimensionless_unscaled) # This used to be a separate function that just called get_converters_and_unit. # Using it directly saves a few us; keeping the clearer name. helper_twoarg_invariant = get_converters_and_unit def helper_twoarg_comparison(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, None def helper_twoarg_invtrig(f, unit1, unit2): from astropy.units.si import radian converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, radian def helper_twoarg_floor_divide(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, dimensionless_unscaled def helper_divmod(f, unit1, unit2): converters, result_unit = get_converters_and_unit(f, unit1, unit2) return converters, (dimensionless_unscaled, result_unit) def helper_clip(f, unit1, unit2, unit3): # Treat the array being clipped as primary. converters = [None] if unit1 is None: result_unit = dimensionless_unscaled try: converters += [(None if unit is None else get_converter(unit, dimensionless_unscaled)) for unit in (unit2, unit3)] except UnitsError: raise UnitConversionError( "Can only apply '{0}' function to quantities with " "compatible dimensions".format(f.__name__)) else: result_unit = unit1 for unit in unit2, unit3: try: converter = get_converter(_d(unit), result_unit) except UnitsError: if unit is None: # special case: OK if unitless number is zero, inf, nan converters.append(False) else: raise UnitConversionError( "Can only apply '{0}' function to quantities with " "compatible dimensions".format(f.__name__)) else: converters.append(converter) return converters, result_unit # list of ufuncs: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs UNSUPPORTED_UFUNCS |= { np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.invert, np.left_shift, np.right_shift, np.logical_and, np.logical_or, np.logical_xor, np.logical_not} for name in 'isnat', 'gcd', 'lcm': # isnat was introduced in numpy 1.14, gcd+lcm in 1.15 ufunc = getattr(np, name, None) if isinstance(ufunc, np.ufunc): UNSUPPORTED_UFUNCS |= {ufunc} # SINGLE ARGUMENT UFUNCS # ufuncs that return a boolean and do not care about the unit onearg_test_ufuncs = (np.isfinite, np.isinf, np.isnan, np.sign, np.signbit) for ufunc in onearg_test_ufuncs: UFUNC_HELPERS[ufunc] = helper_onearg_test # ufuncs that return a value with the same unit as the input invariant_ufuncs = (np.absolute, np.fabs, np.conj, np.conjugate, np.negative, np.spacing, np.rint, np.floor, np.ceil, np.trunc, np.positive) for ufunc in invariant_ufuncs: UFUNC_HELPERS[ufunc] = helper_invariant # ufuncs that require dimensionless input and and give dimensionless output dimensionless_to_dimensionless_ufuncs = (np.exp, np.expm1, np.exp2, np.log, np.log10, np.log2, np.log1p) # As found out in gh-7058, some numpy 1.13 conda installations also provide # np.erf, even though upstream doesn't have it. We include it if present. if isinstance(getattr(np.core.umath, 'erf', None), np.ufunc): dimensionless_to_dimensionless_ufuncs += (np.core.umath.erf,) for ufunc in dimensionless_to_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_dimensionless_to_dimensionless # ufuncs that require dimensionless input and give output in radians dimensionless_to_radian_ufuncs = (np.arccos, np.arcsin, np.arctan, np.arccosh, np.arcsinh, np.arctanh) for ufunc in dimensionless_to_radian_ufuncs: UFUNC_HELPERS[ufunc] = helper_dimensionless_to_radian # ufuncs that require input in degrees and give output in radians degree_to_radian_ufuncs = (np.radians, np.deg2rad) for ufunc in degree_to_radian_ufuncs: UFUNC_HELPERS[ufunc] = helper_degree_to_radian # ufuncs that require input in radians and give output in degrees radian_to_degree_ufuncs = (np.degrees, np.rad2deg) for ufunc in radian_to_degree_ufuncs: UFUNC_HELPERS[ufunc] = helper_radian_to_degree # ufuncs that require input in radians and give dimensionless output radian_to_dimensionless_ufuncs = (np.cos, np.sin, np.tan, np.cosh, np.sinh, np.tanh) for ufunc in radian_to_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_radian_to_dimensionless # ufuncs handled as special cases UFUNC_HELPERS[np.sqrt] = helper_sqrt UFUNC_HELPERS[np.square] = helper_square UFUNC_HELPERS[np.reciprocal] = helper_reciprocal UFUNC_HELPERS[np.cbrt] = helper_cbrt UFUNC_HELPERS[np.core.umath._ones_like] = helper__ones_like UFUNC_HELPERS[np.modf] = helper_modf UFUNC_HELPERS[np.frexp] = helper_frexp # TWO ARGUMENT UFUNCS # two argument ufuncs that require dimensionless input and and give # dimensionless output two_arg_dimensionless_ufuncs = (np.logaddexp, np.logaddexp2) for ufunc in two_arg_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_two_arg_dimensionless # two argument ufuncs that return a value with the same unit as the input twoarg_invariant_ufuncs = (np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.fmin, np.fmax, np.nextafter, np.remainder, np.mod, np.fmod) for ufunc in twoarg_invariant_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_invariant # two argument ufuncs that need compatible inputs and return a boolean twoarg_comparison_ufuncs = (np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal) for ufunc in twoarg_comparison_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_comparison # two argument ufuncs that do inverse trigonometry twoarg_invtrig_ufuncs = (np.arctan2,) # another private function in numpy; use getattr in case it disappears if isinstance(getattr(np.core.umath, '_arg', None), np.ufunc): twoarg_invtrig_ufuncs += (np.core.umath._arg,) for ufunc in twoarg_invtrig_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_invtrig # ufuncs handled as special cases UFUNC_HELPERS[np.multiply] = helper_multiplication if isinstance(getattr(np, 'matmul', None), np.ufunc): UFUNC_HELPERS[np.matmul] = helper_multiplication UFUNC_HELPERS[np.divide] = helper_division UFUNC_HELPERS[np.true_divide] = helper_division UFUNC_HELPERS[np.power] = helper_power UFUNC_HELPERS[np.ldexp] = helper_ldexp UFUNC_HELPERS[np.copysign] = helper_copysign UFUNC_HELPERS[np.floor_divide] = helper_twoarg_floor_divide UFUNC_HELPERS[np.heaviside] = helper_heaviside UFUNC_HELPERS[np.float_power] = helper_power UFUNC_HELPERS[np.divmod] = helper_divmod # Check for clip ufunc; note that np.clip is a wrapper function, not the ufunc. if isinstance(getattr(np.core.umath, 'clip', None), np.ufunc): UFUNC_HELPERS[np.core.umath.clip] = helper_clip
aeed7b1bc7a611f03398cfbb2ed10c82a796fd8276cb65ff98ea6ace6557a590
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """Converters for Quantity.""" import numpy as np from astropy.units.core import (UnitsError, UnitConversionError, UnitTypeError, dimensionless_unscaled) __all__ = ['can_have_arbitrary_unit', 'converters_and_unit', 'check_output', 'UFUNC_HELPERS', 'UNSUPPORTED_UFUNCS'] class UfuncHelpers(dict): """Registry of unit conversion functions to help ufunc evaluation. Based on dict for quick access, but with a missing method to load helpers for additional modules such as scipy.special and erfa. Such modules should be registered using ``register_module``. """ UNSUPPORTED = set() def register_module(self, module, names, importer): """Register (but do not import) a set of ufunc helpers. Parameters ---------- module : str Name of the module with the ufuncs (e.g., 'scipy.special'). names : iterable of str Names of the module ufuncs for which helpers are available. importer : callable Function that imports the ufuncs and returns a dict of helpers keyed by those ufuncs. If the value is `None`, the ufunc is explicitly *not* supported. """ self.modules[module] = {'names': names, 'importer': importer} @property def modules(self): """Modules for which helpers are available (but not yet loaded).""" if not hasattr(self, '_modules'): self._modules = {} return self._modules def import_module(self, module): """Import the helpers from the given module using its helper function. Parameters ---------- module : str Name of the module. Has to have been registered beforehand. """ module_info = self.modules.pop(module) self.update(module_info['importer']()) def __missing__(self, ufunc): """Called if a ufunc is not found. Check if the ufunc is in any of the available modules, and, if so, import the helpers for that module. """ if ufunc in self.UNSUPPORTED: raise TypeError("Cannot use ufunc '{0}' with quantities" .format(ufunc.__name__)) for module, module_info in list(self.modules.items()): if ufunc.__name__ in module_info['names']: # A ufunc with the same name is supported by this module. # Of course, this doesn't necessarily mean it is the # right module. So, we try let the importer do its work. # If it fails (e.g., for `scipy.special`), then that's # fine, just raise the TypeError. If it succeeds, but # the ufunc is not found, that is also fine: we will # enter __missing__ again and either find another # module or get the TypeError there. try: self.import_module(module) except ImportError: pass else: return self[ufunc] raise TypeError("unknown ufunc {0}. If you believe this ufunc " "should be supported, please raise an issue on " "https://github.com/astropy/astropy" .format(ufunc.__name__)) def __setitem__(self, key, value): # Implementation note: in principle, we could just let `None` # mean that something is not implemented, but this means an # extra if clause for the output, slowing down the common # path where a ufunc is supported. if value is None: self.UNSUPPORTED |= {key} self.pop(key, None) else: super().__setitem__(key, value) self.UNSUPPORTED -= {key} UFUNC_HELPERS = UfuncHelpers() UNSUPPORTED_UFUNCS = UFUNC_HELPERS.UNSUPPORTED def can_have_arbitrary_unit(value): """Test whether the items in value can have arbitrary units Numbers whose value does not change upon a unit change, i.e., zero, infinity, or not-a-number Parameters ---------- value : number or array Returns ------- `True` if each member is either zero or not finite, `False` otherwise """ return np.all(np.logical_or(np.equal(value, 0.), ~np.isfinite(value))) def converters_and_unit(function, method, *args): """Determine the required converters and the unit of the ufunc result. Converters are functions required to convert to a ufunc's expected unit, e.g., radian for np.sin; or to ensure units of two inputs are consistent, e.g., for np.add. In these examples, the unit of the result would be dimensionless_unscaled for np.sin, and the same consistent unit for np.add. Parameters ---------- function : `~numpy.ufunc` Numpy universal function method : str Method with which the function is evaluated, e.g., '__call__', 'reduce', etc. *args : Quantity or other ndarray subclass Input arguments to the function Raises ------ TypeError : when the specified function cannot be used with Quantities (e.g., np.logical_or), or when the routine does not know how to handle the specified function (in which case an issue should be raised on https://github.com/astropy/astropy). UnitTypeError : when the conversion to the required (or consistent) units is not possible. """ # Check whether we support this ufunc, by getting the helper function # (defined in helpers) which returns a list of function(s) that convert the # input(s) to the unit required for the ufunc, as well as the unit the # result will have (a tuple of units if there are multiple outputs). ufunc_helper = UFUNC_HELPERS[function] if method == '__call__' or (method == 'outer' and function.nin == 2): # Find out the units of the arguments passed to the ufunc; usually, # at least one is a quantity, but for two-argument ufuncs, the second # could also be a Numpy array, etc. These are given unit=None. units = [getattr(arg, 'unit', None) for arg in args] # Determine possible conversion functions, and the result unit. converters, result_unit = ufunc_helper(function, *units) if any(converter is False for converter in converters): # for multi-argument ufuncs with a quantity and a non-quantity, # the quantity normally needs to be dimensionless, *except* # if the non-quantity can have arbitrary unit, i.e., when it # is all zero, infinity or NaN. In that case, the non-quantity # can just have the unit of the quantity # (this allows, e.g., `q > 0.` independent of unit) try: # Don't fold this loop in the test above: this rare case # should not make the common case slower. for i, converter in enumerate(converters): if converter is not False: continue if can_have_arbitrary_unit(args[i]): converters[i] = None else: raise UnitConversionError( "Can only apply '{0}' function to " "dimensionless quantities when other " "argument is not a quantity (unless the " "latter is all zero/infinity/nan)" .format(function.__name__)) except TypeError: # _can_have_arbitrary_unit failed: arg could not be compared # with zero or checked to be finite. Then, ufunc will fail too. raise TypeError("Unsupported operand type(s) for ufunc {0}: " "'{1}'".format(function.__name__, ','.join([arg.__class__.__name__ for arg in args]))) # In the case of np.power and np.float_power, the unit itself needs to # be modified by an amount that depends on one of the input values, # so we need to treat this as a special case. # TODO: find a better way to deal with this. if result_unit is False: if units[0] is None or units[0] == dimensionless_unscaled: result_unit = dimensionless_unscaled else: if units[1] is None: p = args[1] else: p = args[1].to(dimensionless_unscaled).value try: result_unit = units[0] ** p except ValueError as exc: # Changing the unit does not work for, e.g., array-shaped # power, but this is OK if we're (scaled) dimensionless. try: converters[0] = units[0]._get_converter( dimensionless_unscaled) except UnitConversionError: raise exc else: result_unit = dimensionless_unscaled else: # methods for which the unit should stay the same nin = function.nin unit = getattr(args[0], 'unit', None) if method == 'at' and nin <= 2: if nin == 1: units = [unit] else: units = [unit, getattr(args[2], 'unit', None)] converters, result_unit = ufunc_helper(function, *units) # ensure there is no 'converter' for indices (2nd argument) converters.insert(1, None) elif method in {'reduce', 'accumulate', 'reduceat'} and nin == 2: converters, result_unit = ufunc_helper(function, unit, unit) converters = converters[:1] if method == 'reduceat': # add 'scale' for indices (2nd argument) converters += [None] else: if method in {'reduce', 'accumulate', 'reduceat', 'outer'} and nin != 2: raise ValueError("{0} only supported for binary functions" .format(method)) raise TypeError("Unexpected ufunc method {0}. If this should " "work, please raise an issue on" "https://github.com/astropy/astropy" .format(method)) # for all but __call__ method, scaling is not allowed if unit is not None and result_unit is None: raise TypeError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as the result is not a " "Quantity.".format(function.__name__, method)) if (converters[0] is not None or (unit is not None and unit is not result_unit and (not result_unit.is_equivalent(unit) or result_unit.to(unit) != 1.))): # NOTE: this cannot be the more logical UnitTypeError, since # then things like np.cumprod will not longer fail (they check # for TypeError). raise UnitsError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as it would change the unit." .format(function.__name__, method)) return converters, result_unit def check_output(output, unit, inputs, function=None): """Check that function output can be stored in the output array given. Parameters ---------- output : array or `~astropy.units.Quantity` or tuple Array that should hold the function output (or tuple of such arrays). unit : `~astropy.units.Unit` or None, or tuple Unit that the output will have, or `None` for pure numbers (should be tuple of same if output is a tuple of outputs). inputs : tuple Any input arguments. These should be castable to the output. function : callable The function that will be producing the output. If given, used to give a more informative error message. Returns ------- arrays : `~numpy.ndarray` view of ``output`` (or tuple of such views). Raises ------ UnitTypeError : If ``unit`` is inconsistent with the class of ``output`` TypeError : If the ``inputs`` cannot be cast safely to ``output``. """ if isinstance(output, tuple): return tuple(check_output(output_, unit_, inputs, function) for output_, unit_ in zip(output, unit)) # ``None`` indicates no actual array is needed. This can happen, e.g., # with np.modf(a, out=(None, b)). if output is None: return None if hasattr(output, '__quantity_subclass__'): # Check that we're not trying to store a plain Numpy array or a # Quantity with an inconsistent unit (e.g., not angular for Angle). if unit is None: raise TypeError("Cannot store non-quantity output{0} in {1} " "instance".format( (" from {0} function".format(function.__name__) if function is not None else ""), type(output))) if output.__quantity_subclass__(unit)[0] is not type(output): raise UnitTypeError( "Cannot store output with unit '{0}'{1} " "in {2} instance. Use {3} instance instead." .format(unit, (" from {0} function".format(function.__name__) if function is not None else ""), type(output), output.__quantity_subclass__(unit)[0])) # Turn into ndarray, so we do not loop into array_wrap/array_ufunc # if the output is used to store results of a function. output = output.view(np.ndarray) else: # output is not a Quantity, so cannot obtain a unit. if not (unit is None or unit is dimensionless_unscaled): raise UnitTypeError("Cannot store quantity with dimension " "{0}in a non-Quantity instance." .format("" if function is None else "resulting from {0} function " .format(function.__name__))) # check we can handle the dtype (e.g., that we are not int # when float is required). if not np.can_cast(np.result_type(*inputs), output.dtype, casting='same_kind'): raise TypeError("Arguments cannot be cast safely to inplace " "output with dtype={0}".format(output.dtype)) return output
1e6aa17460f74d2c339c911a8e894f9c87bb1a0ac3a5ac41469b44359352279a
# coding: utf-8 # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test the Quantity class and related. """ import copy import pickle import decimal from fractions import Fraction import pytest import numpy as np from numpy.testing import (assert_allclose, assert_array_equal, assert_array_almost_equal) from astropy.tests.helper import catch_warnings, raises from astropy.utils import isiterable, minversion from astropy.utils.compat import NUMPY_LT_1_14 from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning from astropy import units as u from astropy.units.quantity import _UNIT_NOT_INITIALISED try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from distutils.version import LooseVersion MATPLOTLIB_LT_15 = LooseVersion(matplotlib.__version__) < LooseVersion("1.5") HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False """ The Quantity class will represent a number + unit + uncertainty """ class TestQuantityCreation: def test_1(self): # create objects through operations with Unit objects: quantity = 11.42 * u.meter # returns a Quantity object assert isinstance(quantity, u.Quantity) quantity = u.meter * 11.42 # returns a Quantity object assert isinstance(quantity, u.Quantity) quantity = 11.42 / u.meter assert isinstance(quantity, u.Quantity) quantity = u.meter / 11.42 assert isinstance(quantity, u.Quantity) quantity = 11.42 * u.meter / u.second assert isinstance(quantity, u.Quantity) with pytest.raises(TypeError): quantity = 182.234 + u.meter with pytest.raises(TypeError): quantity = 182.234 - u.meter with pytest.raises(TypeError): quantity = 182.234 % u.meter def test_2(self): # create objects using the Quantity constructor: q1 = u.Quantity(11.412, unit=u.meter) q2 = u.Quantity(21.52, "cm") q3 = u.Quantity(11.412) # By default quantities that don't specify a unit are unscaled # dimensionless assert q3.unit == u.Unit(1) with pytest.raises(TypeError): q4 = u.Quantity(object(), unit=u.m) def test_3(self): # with pytest.raises(u.UnitsError): with pytest.raises(ValueError): # Until @mdboom fixes the errors in units q1 = u.Quantity(11.412, unit="testingggg") def test_nan_inf(self): # Not-a-number q = u.Quantity('nan', unit='cm') assert np.isnan(q.value) q = u.Quantity('NaN', unit='cm') assert np.isnan(q.value) q = u.Quantity('-nan', unit='cm') # float() allows this assert np.isnan(q.value) q = u.Quantity('nan cm') assert np.isnan(q.value) assert q.unit == u.cm # Infinity q = u.Quantity('inf', unit='cm') assert np.isinf(q.value) q = u.Quantity('-inf', unit='cm') assert np.isinf(q.value) q = u.Quantity('inf cm') assert np.isinf(q.value) assert q.unit == u.cm q = u.Quantity('Infinity', unit='cm') # float() allows this assert np.isinf(q.value) # make sure these strings don't parse... with pytest.raises(TypeError): q = u.Quantity('', unit='cm') with pytest.raises(TypeError): q = u.Quantity('spam', unit='cm') def test_unit_property(self): # test getting and setting 'unit' attribute q1 = u.Quantity(11.4, unit=u.meter) with pytest.raises(AttributeError): q1.unit = u.cm def test_preserve_dtype(self): """Test that if an explicit dtype is given, it is used, while if not, numbers are converted to float (including decimal.Decimal, which numpy converts to an object; closes #1419) """ # If dtype is specified, use it, but if not, convert int, bool to float q1 = u.Quantity(12, unit=u.m / u.s, dtype=int) assert q1.dtype == int q2 = u.Quantity(q1) assert q2.dtype == float assert q2.value == float(q1.value) assert q2.unit == q1.unit # but we should preserve float32 a3 = np.array([1., 2.], dtype=np.float32) q3 = u.Quantity(a3, u.yr) assert q3.dtype == a3.dtype # items stored as objects by numpy should be converted to float # by default q4 = u.Quantity(decimal.Decimal('10.25'), u.m) assert q4.dtype == float q5 = u.Quantity(decimal.Decimal('10.25'), u.m, dtype=object) assert q5.dtype == object def test_copy(self): # By default, a new quantity is constructed, but not if copy=False a = np.arange(10.) q0 = u.Quantity(a, unit=u.m / u.s) assert q0.base is not a q1 = u.Quantity(a, unit=u.m / u.s, copy=False) assert q1.base is a q2 = u.Quantity(q0) assert q2 is not q0 assert q2.base is not q0.base q2 = u.Quantity(q0, copy=False) assert q2 is q0 assert q2.base is q0.base q3 = u.Quantity(q0, q0.unit, copy=False) assert q3 is q0 assert q3.base is q0.base q4 = u.Quantity(q0, u.cm / u.s, copy=False) assert q4 is not q0 assert q4.base is not q0.base def test_subok(self): """Test subok can be used to keep class, or to insist on Quantity""" class MyQuantitySubclass(u.Quantity): pass myq = MyQuantitySubclass(np.arange(10.), u.m) # try both with and without changing the unit assert type(u.Quantity(myq)) is u.Quantity assert type(u.Quantity(myq, subok=True)) is MyQuantitySubclass assert type(u.Quantity(myq, u.km)) is u.Quantity assert type(u.Quantity(myq, u.km, subok=True)) is MyQuantitySubclass def test_order(self): """Test that order is correctly propagated to np.array""" ac = np.array(np.arange(10.), order='C') qcc = u.Quantity(ac, u.m, order='C') assert qcc.flags['C_CONTIGUOUS'] qcf = u.Quantity(ac, u.m, order='F') assert qcf.flags['F_CONTIGUOUS'] qca = u.Quantity(ac, u.m, order='A') assert qca.flags['C_CONTIGUOUS'] # check it works also when passing in a quantity assert u.Quantity(qcc, order='C').flags['C_CONTIGUOUS'] assert u.Quantity(qcc, order='A').flags['C_CONTIGUOUS'] assert u.Quantity(qcc, order='F').flags['F_CONTIGUOUS'] af = np.array(np.arange(10.), order='F') qfc = u.Quantity(af, u.m, order='C') assert qfc.flags['C_CONTIGUOUS'] qff = u.Quantity(ac, u.m, order='F') assert qff.flags['F_CONTIGUOUS'] qfa = u.Quantity(af, u.m, order='A') assert qfa.flags['F_CONTIGUOUS'] assert u.Quantity(qff, order='C').flags['C_CONTIGUOUS'] assert u.Quantity(qff, order='A').flags['F_CONTIGUOUS'] assert u.Quantity(qff, order='F').flags['F_CONTIGUOUS'] def test_ndmin(self): """Test that ndmin is correctly propagated to np.array""" a = np.arange(10.) q1 = u.Quantity(a, u.m, ndmin=1) assert q1.ndim == 1 and q1.shape == (10,) q2 = u.Quantity(a, u.m, ndmin=2) assert q2.ndim == 2 and q2.shape == (1, 10) # check it works also when passing in a quantity q3 = u.Quantity(q1, u.m, ndmin=3) assert q3.ndim == 3 and q3.shape == (1, 1, 10) def test_non_quantity_with_unit(self): """Test that unit attributes in objects get recognized.""" class MyQuantityLookalike(np.ndarray): pass a = np.arange(3.) mylookalike = a.copy().view(MyQuantityLookalike) mylookalike.unit = 'm' q1 = u.Quantity(mylookalike) assert isinstance(q1, u.Quantity) assert q1.unit is u.m assert np.all(q1.value == a) q2 = u.Quantity(mylookalike, u.mm) assert q2.unit is u.mm assert np.all(q2.value == 1000.*a) q3 = u.Quantity(mylookalike, copy=False) assert np.all(q3.value == mylookalike) q3[2] = 0 assert q3[2] == 0. assert mylookalike[2] == 0. mylookalike = a.copy().view(MyQuantityLookalike) mylookalike.unit = u.m q4 = u.Quantity(mylookalike, u.mm, copy=False) q4[2] = 0 assert q4[2] == 0. assert mylookalike[2] == 2. mylookalike.unit = 'nonsense' with pytest.raises(TypeError): u.Quantity(mylookalike) def test_creation_via_view(self): # This works but is no better than 1. * u.m q1 = 1. << u.m assert isinstance(q1, u.Quantity) assert q1.unit == u.m assert q1.value == 1. # With an array, we get an actual view. a2 = np.arange(10.) q2 = a2 << u.m / u.s assert isinstance(q2, u.Quantity) assert q2.unit == u.m / u.s assert np.all(q2.value == a2) a2[9] = 0. assert np.all(q2.value == a2) # But with a unit change we get a copy. q3 = q2 << u.mm / u.s assert isinstance(q3, u.Quantity) assert q3.unit == u.mm / u.s assert np.all(q3.value == a2 * 1000.) a2[8] = 0. assert q3[8].value == 8000. # Without a unit change, we do get a view. q4 = q2 << q2.unit a2[7] = 0. assert np.all(q4.value == a2) with pytest.raises(u.UnitsError): q2 << u.s # But one can do an in-place unit change. a2_copy = a2.copy() q2 <<= u.mm / u.s assert q2.unit == u.mm / u.s # Of course, this changes a2 as well. assert np.all(q2.value == a2) # Sanity check on the values. assert np.all(q2.value == a2_copy * 1000.) a2[8] = -1. # Using quantities, one can also work with strings. q5 = q2 << 'km/hr' assert q5.unit == u.km / u.hr assert np.all(q5 == q2) # Finally, we can use scalar quantities as units. not_quite_a_foot = 30. * u.cm a6 = np.arange(5.) q6 = a6 << not_quite_a_foot assert q6.unit == u.Unit(not_quite_a_foot) assert np.all(q6.to_value(u.cm) == 30. * a6) def test_rshift_warns(self): with pytest.raises(TypeError), \ catch_warnings() as warning_lines: 1 >> u.m assert len(warning_lines) == 1 assert warning_lines[0].category == AstropyWarning assert 'is not implemented' in str(warning_lines[0].message) q = 1. * u.km with pytest.raises(TypeError), \ catch_warnings() as warning_lines: q >> u.m assert len(warning_lines) == 1 assert warning_lines[0].category == AstropyWarning assert 'is not implemented' in str(warning_lines[0].message) with pytest.raises(TypeError), \ catch_warnings() as warning_lines: q >>= u.m assert len(warning_lines) == 1 assert warning_lines[0].category == AstropyWarning assert 'is not implemented' in str(warning_lines[0].message) with pytest.raises(TypeError), \ catch_warnings() as warning_lines: 1. >> q assert len(warning_lines) == 1 assert warning_lines[0].category == AstropyWarning assert 'is not implemented' in str(warning_lines[0].message) class TestQuantityOperations: q1 = u.Quantity(11.42, u.meter) q2 = u.Quantity(8.0, u.centimeter) def test_addition(self): # Take units from left object, q1 new_quantity = self.q1 + self.q2 assert new_quantity.value == 11.5 assert new_quantity.unit == u.meter # Take units from left object, q2 new_quantity = self.q2 + self.q1 assert new_quantity.value == 1150.0 assert new_quantity.unit == u.centimeter new_q = u.Quantity(1500.1, u.m) + u.Quantity(13.5, u.km) assert new_q.unit == u.m assert new_q.value == 15000.1 def test_subtraction(self): # Take units from left object, q1 new_quantity = self.q1 - self.q2 assert new_quantity.value == 11.34 assert new_quantity.unit == u.meter # Take units from left object, q2 new_quantity = self.q2 - self.q1 assert new_quantity.value == -1134.0 assert new_quantity.unit == u.centimeter def test_multiplication(self): # Take units from left object, q1 new_quantity = self.q1 * self.q2 assert new_quantity.value == 91.36 assert new_quantity.unit == (u.meter * u.centimeter) # Take units from left object, q2 new_quantity = self.q2 * self.q1 assert new_quantity.value == 91.36 assert new_quantity.unit == (u.centimeter * u.meter) # Multiply with a number new_quantity = 15. * self.q1 assert new_quantity.value == 171.3 assert new_quantity.unit == u.meter # Multiply with a number new_quantity = self.q1 * 15. assert new_quantity.value == 171.3 assert new_quantity.unit == u.meter def test_division(self): # Take units from left object, q1 new_quantity = self.q1 / self.q2 assert_array_almost_equal(new_quantity.value, 1.4275, decimal=5) assert new_quantity.unit == (u.meter / u.centimeter) # Take units from left object, q2 new_quantity = self.q2 / self.q1 assert_array_almost_equal(new_quantity.value, 0.70052539404553416, decimal=16) assert new_quantity.unit == (u.centimeter / u.meter) q1 = u.Quantity(11.4, unit=u.meter) q2 = u.Quantity(10.0, unit=u.second) new_quantity = q1 / q2 assert_array_almost_equal(new_quantity.value, 1.14, decimal=10) assert new_quantity.unit == (u.meter / u.second) # divide with a number new_quantity = self.q1 / 10. assert new_quantity.value == 1.142 assert new_quantity.unit == u.meter # divide with a number new_quantity = 11.42 / self.q1 assert new_quantity.value == 1. assert new_quantity.unit == u.Unit("1/m") def test_commutativity(self): """Regression test for issue #587.""" new_q = u.Quantity(11.42, 'm*s') assert self.q1 * u.s == u.s * self.q1 == new_q assert self.q1 / u.s == u.Quantity(11.42, 'm/s') assert u.s / self.q1 == u.Quantity(1 / 11.42, 's/m') def test_power(self): # raise quantity to a power new_quantity = self.q1 ** 2 assert_array_almost_equal(new_quantity.value, 130.4164, decimal=5) assert new_quantity.unit == u.Unit("m^2") new_quantity = self.q1 ** 3 assert_array_almost_equal(new_quantity.value, 1489.355288, decimal=7) assert new_quantity.unit == u.Unit("m^3") def test_matrix_multiplication(self): a = np.eye(3) q = a * u.m result1 = q @ a assert np.all(result1 == q) result2 = a @ q assert np.all(result2 == q) result3 = q @ q assert np.all(result3 == a * u.m ** 2) # less trivial case. q2 = np.array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]], [[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]]) / u.s result4 = q @ q2 assert np.all(result4 == np.matmul(a, q2.value) * q.unit * q2.unit) def test_unary(self): # Test the minus unary operator new_quantity = -self.q1 assert new_quantity.value == -self.q1.value assert new_quantity.unit == self.q1.unit new_quantity = -(-self.q1) assert new_quantity.value == self.q1.value assert new_quantity.unit == self.q1.unit # Test the plus unary operator new_quantity = +self.q1 assert new_quantity.value == self.q1.value assert new_quantity.unit == self.q1.unit def test_abs(self): q = 1. * u.m / u.s new_quantity = abs(q) assert new_quantity.value == q.value assert new_quantity.unit == q.unit q = -1. * u.m / u.s new_quantity = abs(q) assert new_quantity.value == -q.value assert new_quantity.unit == q.unit def test_incompatible_units(self): """ When trying to add or subtract units that aren't compatible, throw an error """ q1 = u.Quantity(11.412, unit=u.meter) q2 = u.Quantity(21.52, unit=u.second) with pytest.raises(u.UnitsError): new_q = q1 + q2 def test_non_number_type(self): q1 = u.Quantity(11.412, unit=u.meter) with pytest.raises(TypeError) as exc: q1 + {'a': 1} assert exc.value.args[0].startswith( "Unsupported operand type(s) for ufunc add:") with pytest.raises(TypeError): q1 + u.meter def test_dimensionless_operations(self): # test conversion to dimensionless dq = 3. * u.m / u.km dq1 = dq + 1. * u.mm / u.km assert dq1.value == 3.001 assert dq1.unit == dq.unit dq2 = dq + 1. assert dq2.value == 1.003 assert dq2.unit == u.dimensionless_unscaled # this test will check that operations with dimensionless Quantities # don't work with pytest.raises(u.UnitsError): self.q1 + u.Quantity(0.1, unit=u.Unit("")) with pytest.raises(u.UnitsError): self.q1 - u.Quantity(0.1, unit=u.Unit("")) # and test that scaling of integers works q = u.Quantity(np.array([1, 2, 3]), u.m / u.km, dtype=int) q2 = q + np.array([4, 5, 6]) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, np.array([4.001, 5.002, 6.003])) # but not if doing it inplace with pytest.raises(TypeError): q += np.array([1, 2, 3]) # except if it is actually possible q = np.array([1, 2, 3]) * u.km / u.m q += np.array([4, 5, 6]) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == np.array([1004, 2005, 3006])) def test_complicated_operation(self): """ Perform a more complicated test """ from astropy.units import imperial # Multiple units distance = u.Quantity(15., u.meter) time = u.Quantity(11., u.second) velocity = (distance / time).to(imperial.mile / u.hour) assert_array_almost_equal( velocity.value, 3.05037, decimal=5) G = u.Quantity(6.673E-11, u.m ** 3 / u.kg / u.s ** 2) new_q = ((1. / (4. * np.pi * G)).to(u.pc ** -3 / u.s ** -2 * u.kg)) # Area side1 = u.Quantity(11., u.centimeter) side2 = u.Quantity(7., u.centimeter) area = side1 * side2 assert_array_almost_equal(area.value, 77., decimal=15) assert area.unit == u.cm * u.cm def test_comparison(self): # equality/ non-equality is straightforward for quantity objects assert (1 / (u.cm * u.cm)) == 1 * u.cm ** -2 assert 1 * u.m == 100 * u.cm assert 1 * u.m != 1 * u.cm # when one is a unit, Quantity does not know what to do, # but unit is fine with it, so it still works unit = u.cm**3 q = 1. * unit assert q.__eq__(unit) is NotImplemented assert unit.__eq__(q) is True assert q == unit q = 1000. * u.mm**3 assert q == unit # mismatched types should never work assert not 1. * u.cm == 1. assert 1. * u.cm != 1. # comparison with zero should raise a deprecation warning for quantity in (1. * u.cm, 1. * u.dimensionless_unscaled): with catch_warnings(AstropyDeprecationWarning) as warning_lines: bool(quantity) assert warning_lines[0].category == AstropyDeprecationWarning assert (str(warning_lines[0].message) == 'The truth value of ' 'a Quantity is ambiguous. In the future this will ' 'raise a ValueError.') def test_numeric_converters(self): # float, int, long, and __index__ should only work for single # quantities, of appropriate type, and only if they are dimensionless. # for index, this should be unscaled as well # (Check on __index__ is also a regression test for #1557) # quantities with units should never convert, or be usable as an index q1 = u.Quantity(1, u.m) converter_err_msg = ("only dimensionless scalar quantities " "can be converted to Python scalars") index_err_msg = ("only integer dimensionless scalar quantities " "can be converted to a Python index") with pytest.raises(TypeError) as exc: float(q1) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: int(q1) assert exc.value.args[0] == converter_err_msg # We used to test `q1 * ['a', 'b', 'c'] here, but that that worked # at all was a really odd confluence of bugs. Since it doesn't work # in numpy >=1.10 any more, just go directly for `__index__` (which # makes the test more similar to the `int`, `long`, etc., tests). with pytest.raises(TypeError) as exc: q1.__index__() assert exc.value.args[0] == index_err_msg # dimensionless but scaled is OK, however q2 = u.Quantity(1.23, u.m / u.km) assert float(q2) == float(q2.to_value(u.dimensionless_unscaled)) assert int(q2) == int(q2.to_value(u.dimensionless_unscaled)) with pytest.raises(TypeError) as exc: q2.__index__() assert exc.value.args[0] == index_err_msg # dimensionless unscaled is OK, though for index needs to be int q3 = u.Quantity(1.23, u.dimensionless_unscaled) assert float(q3) == 1.23 assert int(q3) == 1 with pytest.raises(TypeError) as exc: q3.__index__() assert exc.value.args[0] == index_err_msg # integer dimensionless unscaled is good for all q4 = u.Quantity(2, u.dimensionless_unscaled, dtype=int) assert float(q4) == 2. assert int(q4) == 2 assert q4.__index__() == 2 # but arrays are not OK q5 = u.Quantity([1, 2], u.m) with pytest.raises(TypeError) as exc: float(q5) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: int(q5) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: q5.__index__() assert exc.value.args[0] == index_err_msg # See https://github.com/numpy/numpy/issues/5074 # It seems unlikely this will be resolved, so xfail'ing it. @pytest.mark.xfail(reason="list multiplication only works for numpy <=1.10") def test_numeric_converter_to_index_in_practice(self): """Test that use of __index__ actually works.""" q4 = u.Quantity(2, u.dimensionless_unscaled, dtype=int) assert q4 * ['a', 'b', 'c'] == ['a', 'b', 'c', 'a', 'b', 'c'] def test_array_converters(self): # Scalar quantity q = u.Quantity(1.23, u.m) assert np.all(np.array(q) == np.array([1.23])) # Array quantity q = u.Quantity([1., 2., 3.], u.m) assert np.all(np.array(q) == np.array([1., 2., 3.])) def test_quantity_conversion(): q1 = u.Quantity(0.1, unit=u.meter) value = q1.value assert value == 0.1 value_in_km = q1.to_value(u.kilometer) assert value_in_km == 0.0001 new_quantity = q1.to(u.kilometer) assert new_quantity.value == 0.0001 with pytest.raises(u.UnitsError): q1.to(u.zettastokes) with pytest.raises(u.UnitsError): q1.to_value(u.zettastokes) def test_quantity_value_views(): q1 = u.Quantity([1., 2.], unit=u.meter) # views if the unit is the same. v1 = q1.value v1[0] = 0. assert np.all(q1 == [0., 2.] * u.meter) v2 = q1.to_value() v2[1] = 3. assert np.all(q1 == [0., 3.] * u.meter) v3 = q1.to_value('m') v3[0] = 1. assert np.all(q1 == [1., 3.] * u.meter) v4 = q1.to_value('cm') v4[0] = 0. # copy if different unit. assert np.all(q1 == [1., 3.] * u.meter) def test_quantity_conversion_with_equiv(): q1 = u.Quantity(0.1, unit=u.meter) v2 = q1.to_value(u.Hz, equivalencies=u.spectral()) assert_allclose(v2, 2997924580.0) q2 = q1.to(u.Hz, equivalencies=u.spectral()) assert_allclose(q2.value, v2) q1 = u.Quantity(0.4, unit=u.arcsecond) v2 = q1.to_value(u.au, equivalencies=u.parallax()) q2 = q1.to(u.au, equivalencies=u.parallax()) v3 = q2.to_value(u.arcminute, equivalencies=u.parallax()) q3 = q2.to(u.arcminute, equivalencies=u.parallax()) assert_allclose(v2, 515662.015) assert_allclose(q2.value, v2) assert q2.unit == u.au assert_allclose(v3, 0.0066666667) assert_allclose(q3.value, v3) assert q3.unit == u.arcminute def test_quantity_conversion_equivalency_passed_on(): class MySpectral(u.Quantity): _equivalencies = u.spectral() def __quantity_view__(self, obj, unit): return obj.view(MySpectral) def __quantity_instance__(self, *args, **kwargs): return MySpectral(*args, **kwargs) q1 = MySpectral([1000, 2000], unit=u.Hz) q2 = q1.to(u.nm) assert q2.unit == u.nm q3 = q2.to(u.Hz) assert q3.unit == u.Hz assert_allclose(q3.value, q1.value) q4 = MySpectral([1000, 2000], unit=u.nm) q5 = q4.to(u.Hz).to(u.nm) assert q5.unit == u.nm assert_allclose(q4.value, q5.value) # Regression test for issue #2315, divide-by-zero error when examining 0*unit def test_self_equivalency(): assert u.deg.is_equivalent(0*u.radian) assert u.deg.is_equivalent(1*u.radian) def test_si(): q1 = 10. * u.m * u.s ** 2 / (200. * u.ms) ** 2 # 250 meters assert q1.si.value == 250 assert q1.si.unit == u.m q = 10. * u.m # 10 meters assert q.si.value == 10 assert q.si.unit == u.m q = 10. / u.m # 10 1 / meters assert q.si.value == 10 assert q.si.unit == (1 / u.m) def test_cgs(): q1 = 10. * u.cm * u.s ** 2 / (200. * u.ms) ** 2 # 250 centimeters assert q1.cgs.value == 250 assert q1.cgs.unit == u.cm q = 10. * u.m # 10 centimeters assert q.cgs.value == 1000 assert q.cgs.unit == u.cm q = 10. / u.cm # 10 1 / centimeters assert q.cgs.value == 10 assert q.cgs.unit == (1 / u.cm) q = 10. * u.Pa # 10 pascals assert q.cgs.value == 100 assert q.cgs.unit == u.barye class TestQuantityComparison: def test_quantity_equality(self): with catch_warnings(DeprecationWarning) as w: assert u.Quantity(1000, unit='m') == u.Quantity(1, unit='km') assert not (u.Quantity(1, unit='m') == u.Quantity(1, unit='km')) # for ==, !=, return False, True if units do not match assert (u.Quantity(1100, unit=u.m) != u.Quantity(1, unit=u.s)) is True assert (u.Quantity(1100, unit=u.m) == u.Quantity(1, unit=u.s)) is False assert (u.Quantity(0, unit=u.m) == u.Quantity(0, unit=u.s)) is False # But allow comparison with 0, +/-inf if latter unitless assert u.Quantity(0, u.m) == 0. assert u.Quantity(1, u.m) != 0. assert u.Quantity(1, u.m) != np.inf assert u.Quantity(np.inf, u.m) == np.inf assert len(w) == 0 def test_quantity_equality_array(self): with catch_warnings(DeprecationWarning) as w: a = u.Quantity([0., 1., 1000.], u.m) b = u.Quantity(1., u.km) eq = a == b ne = a != b assert np.all(eq == [False, False, True]) assert np.all(eq != ne) # For mismatched units, we should just get True, False c = u.Quantity(1., u.s) eq = a == c ne = a != c assert eq is False assert ne is True # Constants are treated as dimensionless, so False too. eq = a == 1. ne = a != 1. assert eq is False assert ne is True # But 0 can have any units, so we can compare. eq = a == 0 ne = a != 0 assert np.all(eq == [True, False, False]) assert np.all(eq != ne) # But we do not extend that to arrays; they should have the same unit. d = np.array([0, 1., 1000.]) eq = a == d ne = a != d assert eq is False assert ne is True assert len(w) == 0 def test_quantity_comparison(self): assert u.Quantity(1100, unit=u.meter) > u.Quantity(1, unit=u.kilometer) assert u.Quantity(900, unit=u.meter) < u.Quantity(1, unit=u.kilometer) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) > u.Quantity(1, unit=u.second) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) < u.Quantity(1, unit=u.second) assert u.Quantity(1100, unit=u.meter) >= u.Quantity(1, unit=u.kilometer) assert u.Quantity(1000, unit=u.meter) >= u.Quantity(1, unit=u.kilometer) assert u.Quantity(900, unit=u.meter) <= u.Quantity(1, unit=u.kilometer) assert u.Quantity(1000, unit=u.meter) <= u.Quantity(1, unit=u.kilometer) with pytest.raises(u.UnitsError): assert u.Quantity( 1100, unit=u.meter) >= u.Quantity(1, unit=u.second) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) <= u.Quantity(1, unit=u.second) assert u.Quantity(1200, unit=u.meter) != u.Quantity(1, unit=u.kilometer) class TestQuantityDisplay: scalarintq = u.Quantity(1, unit='m', dtype=int) scalarfloatq = u.Quantity(1.3, unit='m') arrq = u.Quantity([1, 2.3, 8.9], unit='m') scalar_complex_q = u.Quantity(complex(1.0, 2.0)) scalar_big_complex_q = u.Quantity(complex(1.0, 2.0e27) * 1e25) scalar_big_neg_complex_q = u.Quantity(complex(-1.0, -2.0e27) * 1e36) arr_complex_q = u.Quantity(np.arange(3) * (complex(-1.0, -2.0e27) * 1e36)) big_arr_complex_q = u.Quantity(np.arange(125) * (complex(-1.0, -2.0e27) * 1e36)) def test_dimensionless_quantity_repr(self): q2 = u.Quantity(1., unit='m-1') q3 = u.Quantity(1, unit='m-1', dtype=int) if NUMPY_LT_1_14: assert repr(self.scalarintq * q2) == "<Quantity 1.0>" assert repr(self.arrq * q2) == "<Quantity [ 1. , 2.3, 8.9]>" else: assert repr(self.scalarintq * q2) == "<Quantity 1.>" assert repr(self.arrq * q2) == "<Quantity [1. , 2.3, 8.9]>" assert repr(self.scalarintq * q3) == "<Quantity 1>" def test_dimensionless_quantity_str(self): q2 = u.Quantity(1., unit='m-1') q3 = u.Quantity(1, unit='m-1', dtype=int) assert str(self.scalarintq * q2) == "1.0" assert str(self.scalarintq * q3) == "1" if NUMPY_LT_1_14: assert str(self.arrq * q2) == "[ 1. 2.3 8.9]" else: assert str(self.arrq * q2) == "[1. 2.3 8.9]" def test_dimensionless_quantity_format(self): q1 = u.Quantity(3.14) assert format(q1, '.2f') == '3.14' def test_scalar_quantity_str(self): assert str(self.scalarintq) == "1 m" assert str(self.scalarfloatq) == "1.3 m" def test_scalar_quantity_repr(self): assert repr(self.scalarintq) == "<Quantity 1 m>" assert repr(self.scalarfloatq) == "<Quantity 1.3 m>" def test_array_quantity_str(self): if NUMPY_LT_1_14: assert str(self.arrq) == "[ 1. 2.3 8.9] m" else: assert str(self.arrq) == "[1. 2.3 8.9] m" def test_array_quantity_repr(self): if NUMPY_LT_1_14: assert repr(self.arrq) == "<Quantity [ 1. , 2.3, 8.9] m>" else: assert repr(self.arrq) == "<Quantity [1. , 2.3, 8.9] m>" def test_scalar_quantity_format(self): assert format(self.scalarintq, '02d') == "01 m" assert format(self.scalarfloatq, '.1f') == "1.3 m" assert format(self.scalarfloatq, '.0f') == "1 m" def test_uninitialized_unit_format(self): bad_quantity = np.arange(10.).view(u.Quantity) assert str(bad_quantity).endswith(_UNIT_NOT_INITIALISED) assert repr(bad_quantity).endswith(_UNIT_NOT_INITIALISED + '>') def test_to_string(self): qscalar = u.Quantity(1.5e14, 'm/s') # __str__ is the default `format` assert str(qscalar) == qscalar.to_string() res = 'Quantity as KMS: 150000000000.0 km / s' assert "Quantity as KMS: {0}".format(qscalar.to_string(unit=u.km / u.s)) == res res = r'$1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$' assert qscalar.to_string(format="latex") == res res = r'$1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$' assert qscalar.to_string(format="latex", subfmt="inline") == res res = r'$\displaystyle 1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$' assert qscalar.to_string(format="latex", subfmt="display") == res def test_repr_latex(self): from astropy.units.quantity import conf q2scalar = u.Quantity(1.5e14, 'm/s') assert self.scalarintq._repr_latex_() == r'$1 \; \mathrm{m}$' assert self.scalarfloatq._repr_latex_() == r'$1.3 \; \mathrm{m}$' assert (q2scalar._repr_latex_() == r'$1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$') assert self.arrq._repr_latex_() == r'$[1,~2.3,~8.9] \; \mathrm{m}$' # Complex quantities assert self.scalar_complex_q._repr_latex_() == r'$(1+2i) \; \mathrm{}$' assert (self.scalar_big_complex_q._repr_latex_() == r'$(1 \times 10^{25}+2 \times 10^{52}i) \; \mathrm{}$') assert (self.scalar_big_neg_complex_q._repr_latex_() == r'$(-1 \times 10^{36}-2 \times 10^{63}i) \; \mathrm{}$') assert (self.arr_complex_q._repr_latex_() == (r'$[(0-0i),~(-1 \times 10^{36}-2 \times 10^{63}i),' r'~(-2 \times 10^{36}-4 \times 10^{63}i)] \; \mathrm{}$')) assert r'\dots' in self.big_arr_complex_q._repr_latex_() qmed = np.arange(100)*u.m qbig = np.arange(1000)*u.m qvbig = np.arange(10000)*1e9*u.m pops = np.get_printoptions() oldlat = conf.latex_array_threshold try: # check precision behavior q = u.Quantity(987654321.123456789, 'm/s') qa = np.array([7.89123, 123456789.987654321, 0]) * u.cm np.set_printoptions(precision=8) assert q._repr_latex_() == r'$9.8765432 \times 10^{8} \; \mathrm{\frac{m}{s}}$' assert qa._repr_latex_() == r'$[7.89123,~1.2345679 \times 10^{8},~0] \; \mathrm{cm}$' np.set_printoptions(precision=2) assert q._repr_latex_() == r'$9.9 \times 10^{8} \; \mathrm{\frac{m}{s}}$' assert qa._repr_latex_() == r'$[7.9,~1.2 \times 10^{8},~0] \; \mathrm{cm}$' # check thresholding behavior conf.latex_array_threshold = 100 # should be default lsmed = qmed._repr_latex_() assert r'\dots' not in lsmed lsbig = qbig._repr_latex_() assert r'\dots' in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig conf.latex_array_threshold = 1001 lsmed = qmed._repr_latex_() assert r'\dots' not in lsmed lsbig = qbig._repr_latex_() assert r'\dots' not in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig conf.latex_array_threshold = -1 # means use the numpy threshold np.set_printoptions(threshold=99) lsmed = qmed._repr_latex_() assert r'\dots' in lsmed lsbig = qbig._repr_latex_() assert r'\dots' in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig finally: # prevent side-effects from influencing other tests np.set_printoptions(**pops) conf.latex_array_threshold = oldlat qinfnan = [np.inf, -np.inf, np.nan] * u.m assert qinfnan._repr_latex_() == r'$[\infty,~-\infty,~{\rm NaN}] \; \mathrm{m}$' def test_decompose(): q1 = 5 * u.N assert q1.decompose() == (5 * u.kg * u.m * u.s ** -2) def test_decompose_regression(): """ Regression test for bug #1163 If decompose was called multiple times on a Quantity with an array and a scale != 1, the result changed every time. This is because the value was being referenced not copied, then modified, which changed the original value. """ q = np.array([1, 2, 3]) * u.m / (2. * u.km) assert np.all(q.decompose().value == np.array([0.0005, 0.001, 0.0015])) assert np.all(q == np.array([1, 2, 3]) * u.m / (2. * u.km)) assert np.all(q.decompose().value == np.array([0.0005, 0.001, 0.0015])) def test_arrays(): """ Test using quantites with array values """ qsec = u.Quantity(np.arange(10), u.second) assert isinstance(qsec.value, np.ndarray) assert not qsec.isscalar # len and indexing should work for arrays assert len(qsec) == len(qsec.value) qsecsub25 = qsec[2:5] assert qsecsub25.unit == qsec.unit assert isinstance(qsecsub25, u.Quantity) assert len(qsecsub25) == 3 # make sure isscalar, len, and indexing behave correcly for non-arrays. qsecnotarray = u.Quantity(10., u.second) assert qsecnotarray.isscalar with pytest.raises(TypeError): len(qsecnotarray) with pytest.raises(TypeError): qsecnotarray[0] qseclen0array = u.Quantity(np.array(10), u.second, dtype=int) # 0d numpy array should act basically like a scalar assert qseclen0array.isscalar with pytest.raises(TypeError): len(qseclen0array) with pytest.raises(TypeError): qseclen0array[0] assert isinstance(qseclen0array.value, int) a = np.array([(1., 2., 3.), (4., 5., 6.), (7., 8., 9.)], dtype=[('x', float), ('y', float), ('z', float)]) qkpc = u.Quantity(a, u.kpc) assert not qkpc.isscalar qkpc0 = qkpc[0] assert qkpc0.value == a[0] assert qkpc0.unit == qkpc.unit assert isinstance(qkpc0, u.Quantity) assert qkpc0.isscalar qkpcx = qkpc['x'] assert np.all(qkpcx.value == a['x']) assert qkpcx.unit == qkpc.unit assert isinstance(qkpcx, u.Quantity) assert not qkpcx.isscalar qkpcx1 = qkpc['x'][1] assert qkpcx1.unit == qkpc.unit assert isinstance(qkpcx1, u.Quantity) assert qkpcx1.isscalar qkpc1x = qkpc[1]['x'] assert qkpc1x.isscalar assert qkpc1x == qkpcx1 # can also create from lists, will auto-convert to arrays qsec = u.Quantity(list(range(10)), u.second) assert isinstance(qsec.value, np.ndarray) # quantity math should work with arrays assert_array_equal((qsec * 2).value, (np.arange(10) * 2)) assert_array_equal((qsec / 2).value, (np.arange(10) / 2)) # quantity addition/subtraction should *not* work with arrays b/c unit # ambiguous with pytest.raises(u.UnitsError): assert_array_equal((qsec + 2).value, (np.arange(10) + 2)) with pytest.raises(u.UnitsError): assert_array_equal((qsec - 2).value, (np.arange(10) + 2)) # should create by unit multiplication, too qsec2 = np.arange(10) * u.second qsec3 = u.second * np.arange(10) assert np.all(qsec == qsec2) assert np.all(qsec2 == qsec3) # make sure numerical-converters fail when arrays are present with pytest.raises(TypeError): float(qsec) with pytest.raises(TypeError): int(qsec) def test_array_indexing_slicing(): q = np.array([1., 2., 3.]) * u.m assert q[0] == 1. * u.m assert np.all(q[0:2] == u.Quantity([1., 2.], u.m)) def test_array_setslice(): q = np.array([1., 2., 3.]) * u.m q[1:2] = np.array([400.]) * u.cm assert np.all(q == np.array([1., 4., 3.]) * u.m) def test_inverse_quantity(): """ Regression test from issue #679 """ q = u.Quantity(4., u.meter / u.second) qot = q / 2 toq = 2 / q npqot = q / np.array(2) assert npqot.value == 2.0 assert npqot.unit == (u.meter / u.second) assert qot.value == 2.0 assert qot.unit == (u.meter / u.second) assert toq.value == 0.5 assert toq.unit == (u.second / u.meter) def test_quantity_mutability(): q = u.Quantity(9.8, u.meter / u.second / u.second) with pytest.raises(AttributeError): q.value = 3 with pytest.raises(AttributeError): q.unit = u.kg def test_quantity_initialized_with_quantity(): q1 = u.Quantity(60, u.second) q2 = u.Quantity(q1, u.minute) assert q2.value == 1 q3 = u.Quantity([q1, q2], u.second) assert q3[0].value == 60 assert q3[1].value == 60 q4 = u.Quantity([q2, q1]) assert q4.unit == q2.unit assert q4[0].value == 1 assert q4[1].value == 1 def test_quantity_string_unit(): q1 = 1. * u.m / 's' assert q1.value == 1 assert q1.unit == (u.m / u.s) q2 = q1 * "m" assert q2.unit == ((u.m * u.m) / u.s) @raises(ValueError) def test_quantity_invalid_unit_string(): "foo" * u.m def test_implicit_conversion(): q = u.Quantity(1.0, u.meter) # Manually turn this on to simulate what might happen in a subclass q._include_easy_conversion_members = True assert_allclose(q.centimeter, 100) assert_allclose(q.cm, 100) assert_allclose(q.parsec, 3.240779289469756e-17) def test_implicit_conversion_autocomplete(): q = u.Quantity(1.0, u.meter) # Manually turn this on to simulate what might happen in a subclass q._include_easy_conversion_members = True q.foo = 42 attrs = dir(q) assert 'centimeter' in attrs assert 'cm' in attrs assert 'parsec' in attrs assert 'foo' in attrs assert 'to' in attrs assert 'value' in attrs # Something from the base class, object assert '__setattr__' in attrs with pytest.raises(AttributeError): q.l def test_quantity_iterability(): """Regressiont est for issue #878. Scalar quantities should not be iterable and should raise a type error on iteration. """ q1 = [15.0, 17.0] * u.m assert isiterable(q1) q2 = next(iter(q1)) assert q2 == 15.0 * u.m assert not isiterable(q2) pytest.raises(TypeError, iter, q2) def test_copy(): q1 = u.Quantity(np.array([[1., 2., 3.], [4., 5., 6.]]), unit=u.m) q2 = q1.copy() assert np.all(q1.value == q2.value) assert q1.unit == q2.unit assert q1.dtype == q2.dtype assert q1.value is not q2.value q3 = q1.copy(order='F') assert q3.flags['F_CONTIGUOUS'] assert np.all(q1.value == q3.value) assert q1.unit == q3.unit assert q1.dtype == q3.dtype assert q1.value is not q3.value q4 = q1.copy(order='C') assert q4.flags['C_CONTIGUOUS'] assert np.all(q1.value == q4.value) assert q1.unit == q4.unit assert q1.dtype == q4.dtype assert q1.value is not q4.value def test_deepcopy(): q1 = u.Quantity(np.array([1., 2., 3.]), unit=u.m) q2 = copy.deepcopy(q1) assert isinstance(q2, u.Quantity) assert np.all(q1.value == q2.value) assert q1.unit == q2.unit assert q1.dtype == q2.dtype assert q1.value is not q2.value def test_equality_numpy_scalar(): """ A regression test to ensure that numpy scalars are correctly compared (which originally failed due to the lack of ``__array_priority__``). """ assert 10 != 10. * u.m assert np.int64(10) != 10 * u.m assert 10 * u.m != np.int64(10) def test_quantity_pickelability(): """ Testing pickleability of quantity """ q1 = np.arange(10) * u.m q2 = pickle.loads(pickle.dumps(q1)) assert np.all(q1.value == q2.value) assert q1.unit.is_equivalent(q2.unit) assert q1.unit == q2.unit def test_quantity_initialisation_from_string(): q = u.Quantity('1') assert q.unit == u.dimensionless_unscaled assert q.value == 1. q = u.Quantity('1.5 m/s') assert q.unit == u.m/u.s assert q.value == 1.5 assert u.Unit(q) == u.Unit('1.5 m/s') q = u.Quantity('.5 m') assert q == u.Quantity(0.5, u.m) q = u.Quantity('-1e1km') assert q == u.Quantity(-10, u.km) q = u.Quantity('-1e+1km') assert q == u.Quantity(-10, u.km) q = u.Quantity('+.5km') assert q == u.Quantity(.5, u.km) q = u.Quantity('+5e-1km') assert q == u.Quantity(.5, u.km) q = u.Quantity('5', u.m) assert q == u.Quantity(5., u.m) q = u.Quantity('5 km', u.m) assert q.value == 5000. assert q.unit == u.m q = u.Quantity('5Em') assert q == u.Quantity(5., u.Em) with pytest.raises(TypeError): u.Quantity('') with pytest.raises(TypeError): u.Quantity('m') with pytest.raises(TypeError): u.Quantity('1.2.3 deg') with pytest.raises(TypeError): u.Quantity('1+deg') with pytest.raises(TypeError): u.Quantity('1-2deg') with pytest.raises(TypeError): u.Quantity('1.2e-13.3m') with pytest.raises(TypeError): u.Quantity(['5']) with pytest.raises(TypeError): u.Quantity(np.array(['5'])) with pytest.raises(ValueError): u.Quantity('5E') with pytest.raises(ValueError): u.Quantity('5 foo') def test_unsupported(): q1 = np.arange(10) * u.m with pytest.raises(TypeError): q2 = np.bitwise_and(q1, q1) def test_unit_identity(): q = 1.0 * u.hour assert q.unit is u.hour def test_quantity_to_view(): q1 = np.array([1000, 2000]) * u.m q2 = q1.to(u.km) assert q1.value[0] == 1000 assert q2.value[0] == 1 @raises(ValueError) def test_quantity_tuple_power(): (5.0 * u.m) ** (1, 2) def test_quantity_fraction_power(): q = (25.0 * u.m**2) ** Fraction(1, 2) assert q.value == 5. assert q.unit == u.m # Regression check to ensure we didn't create an object type by raising # the value of the quantity to a Fraction. [#3922] assert q.dtype.kind == 'f' def test_inherit_docstrings(): assert u.Quantity.argmax.__doc__ == np.ndarray.argmax.__doc__ def test_quantity_from_table(): """ Checks that units from tables are respected when converted to a Quantity. This also generically checks the use of *anything* with a `unit` attribute passed into Quantity """ from astropy.table import Table t = Table(data=[np.arange(5), np.arange(5)], names=['a', 'b']) t['a'].unit = u.kpc qa = u.Quantity(t['a']) assert qa.unit == u.kpc assert_array_equal(qa.value, t['a']) qb = u.Quantity(t['b']) assert qb.unit == u.dimensionless_unscaled assert_array_equal(qb.value, t['b']) # This does *not* auto-convert, because it's not necessarily obvious that's # desired. Instead we revert to standard `Quantity` behavior qap = u.Quantity(t['a'], u.pc) assert qap.unit == u.pc assert_array_equal(qap.value, t['a'] * 1000) qbp = u.Quantity(t['b'], u.pc) assert qbp.unit == u.pc assert_array_equal(qbp.value, t['b']) def test_assign_slice_with_quantity_like(): # Regression tests for gh-5961 from astropy.table import Table, Column # first check directly that we can use a Column to assign to a slice. c = Column(np.arange(10.), unit=u.mm) q = u.Quantity(c) q[:2] = c[:2] # next check that we do not fail the original problem. t = Table() t['x'] = np.arange(10) * u.mm t['y'] = np.ones(10) * u.mm assert type(t['x']) is Column xy = np.vstack([t['x'], t['y']]).T * u.mm ii = [0, 2, 4] assert xy[ii, 0].unit == t['x'][ii].unit # should not raise anything xy[ii, 0] = t['x'][ii] def test_insert(): """ Test Quantity.insert method. This does not test the full capabilities of the underlying np.insert, but hits the key functionality for Quantity. """ q = [1, 2] * u.m # Insert a compatible float with different units q2 = q.insert(0, 1 * u.km) assert np.all(q2.value == [1000, 1, 2]) assert q2.unit is u.m assert q2.dtype.kind == 'f' if minversion(np, '1.8.0'): q2 = q.insert(1, [1, 2] * u.km) assert np.all(q2.value == [1, 1000, 2000, 2]) assert q2.unit is u.m # Cannot convert 1.5 * u.s to m with pytest.raises(u.UnitsError): q.insert(1, 1.5 * u.s) # Tests with multi-dim quantity q = [[1, 2], [3, 4]] * u.m q2 = q.insert(1, [10, 20] * u.m, axis=0) assert np.all(q2.value == [[1, 2], [10, 20], [3, 4]]) q2 = q.insert(1, [10, 20] * u.m, axis=1) assert np.all(q2.value == [[1, 10, 2], [3, 20, 4]]) q2 = q.insert(1, 10 * u.m, axis=1) assert np.all(q2.value == [[1, 10, 2], [3, 10, 4]]) def test_repr_array_of_quantity(): """ Test print/repr of object arrays of Quantity objects with different units. Regression test for the issue first reported in https://github.com/astropy/astropy/issues/3777 """ a = np.array([1 * u.m, 2 * u.s], dtype=object) if NUMPY_LT_1_14: assert repr(a) == 'array([<Quantity 1.0 m>, <Quantity 2.0 s>], dtype=object)' assert str(a) == '[<Quantity 1.0 m> <Quantity 2.0 s>]' else: assert repr(a) == 'array([<Quantity 1. m>, <Quantity 2. s>], dtype=object)' assert str(a) == '[<Quantity 1. m> <Quantity 2. s>]' class TestSpecificTypeQuantity: def setup(self): class Length(u.SpecificTypeQuantity): _equivalent_unit = u.m class Length2(Length): _default_unit = u.m class Length3(Length): _unit = u.m self.Length = Length self.Length2 = Length2 self.Length3 = Length3 def test_creation(self): l = self.Length(np.arange(10.)*u.km) assert type(l) is self.Length with pytest.raises(u.UnitTypeError): self.Length(np.arange(10.) * u.hour) with pytest.raises(u.UnitTypeError): self.Length(np.arange(10.)) l2 = self.Length2(np.arange(5.)) assert type(l2) is self.Length2 assert l2._default_unit is self.Length2._default_unit with pytest.raises(u.UnitTypeError): self.Length3(np.arange(10.)) def test_view(self): l = (np.arange(5.) * u.km).view(self.Length) assert type(l) is self.Length with pytest.raises(u.UnitTypeError): (np.arange(5.) * u.s).view(self.Length) v = np.arange(5.).view(self.Length) assert type(v) is self.Length assert v._unit is None l3 = np.ones((2, 2)).view(self.Length3) assert type(l3) is self.Length3 assert l3.unit is self.Length3._unit def test_operation_precedence_and_fallback(self): l = self.Length(np.arange(5.)*u.cm) sum1 = l + 1.*u.m assert type(sum1) is self.Length sum2 = 1.*u.km + l assert type(sum2) is self.Length sum3 = l + l assert type(sum3) is self.Length res1 = l * (1.*u.m) assert type(res1) is u.Quantity res2 = l * l assert type(res2) is u.Quantity @pytest.mark.skipif('not HAS_MATPLOTLIB') @pytest.mark.xfail('MATPLOTLIB_LT_15') class TestQuantityMatplotlib: """Test if passing matplotlib quantities works. TODO: create PNG output and check against reference image once `astropy.wcsaxes` is merged, which provides the machinery for this. See https://github.com/astropy/astropy/issues/1881 See https://github.com/astropy/astropy/pull/2139 """ def test_plot(self): data = u.Quantity([4, 5, 6], 's') plt.plot(data) def test_scatter(self): x = u.Quantity([4, 5, 6], 'second') y = [1, 3, 4] * u.m plt.scatter(x, y) def test_unit_class_override(): class MyQuantity(u.Quantity): pass my_unit = u.Unit("my_deg", u.deg) my_unit._quantity_class = MyQuantity q1 = u.Quantity(1., my_unit) assert type(q1) is u.Quantity q2 = u.Quantity(1., my_unit, subok=True) assert type(q2) is MyQuantity class QuantityMimic: def __init__(self, value, unit): self.value = value self.unit = unit def __array__(self): return np.array(self.value) class QuantityMimic2(QuantityMimic): def to(self, unit): return u.Quantity(self.value, self.unit).to(unit) def to_value(self, unit): return u.Quantity(self.value, self.unit).to_value(unit) class TestQuantityMimics: """Test Quantity Mimics that are not ndarray subclasses.""" @pytest.mark.parametrize('Mimic', (QuantityMimic, QuantityMimic2)) def test_mimic_input(self, Mimic): value = np.arange(10.) mimic = Mimic(value, u.m) q = u.Quantity(mimic) assert q.unit == u.m assert np.all(q.value == value) q2 = u.Quantity(mimic, u.cm) assert q2.unit == u.cm assert np.all(q2.value == 100 * value) @pytest.mark.parametrize('Mimic', (QuantityMimic, QuantityMimic2)) def test_mimic_setting(self, Mimic): mimic = Mimic([1., 2.], u.m) q = u.Quantity(np.arange(10.), u.cm) q[8:] = mimic assert np.all(q[:8].value == np.arange(8.)) assert np.all(q[8:].value == [100., 200.])
14af49c875e963079f266826b5b7e61618031733746160f0dd39fbef50f9d3a8
# The purpose of these tests are to ensure that calling ufuncs with quantities # returns quantities with the right units, or raises exceptions. import warnings from collections import namedtuple import pytest import numpy as np from numpy.testing import assert_allclose from astropy import units as u from astropy.units import quantity_helper as qh from astropy._erfa import ufunc as erfa_ufunc from astropy.tests.helper import raises try: import scipy # pylint: disable=W0611 except ImportError: HAS_SCIPY = False else: HAS_SCIPY = True testcase = namedtuple('testcase', ['f', 'q_in', 'q_out']) testexc = namedtuple('testexc', ['f', 'q_in', 'exc', 'msg']) testwarn = namedtuple('testwarn', ['f', 'q_in', 'wfilter']) @pytest.mark.skip def test_testcase(tc): results = tc.f(*tc.q_in) # careful of the following line, would break on a function returning # a single tuple (as opposed to tuple of return values) results = (results, ) if type(results) != tuple else results for result, expected in zip(results, tc.q_out): assert result.unit == expected.unit assert_allclose(result.value, expected.value, atol=1.E-15) @pytest.mark.skip def test_testexc(te): with pytest.raises(te.exc) as exc: te.f(*te.q_in) if te.msg is not None: assert te.msg in exc.value.args[0] @pytest.mark.skip def test_testwarn(tw): with warnings.catch_warnings(): warnings.filterwarnings(tw.wfilter) tw.f(*tw.q_in) class TestUfuncHelpers: # Note that this test should work even if scipy is present, since # the scipy.special ufuncs are only loaded on demand. # The test passes independently of whether erfa is already loaded # (which will be the case for a full test, since coordinates uses it). def test_coverage(self): """Test that we cover all ufunc's""" all_np_ufuncs = set([ufunc for ufunc in np.core.umath.__dict__.values() if isinstance(ufunc, np.ufunc)]) all_q_ufuncs = (qh.UNSUPPORTED_UFUNCS | set(qh.UFUNC_HELPERS.keys())) # Check that every numpy ufunc is covered. assert all_np_ufuncs - all_q_ufuncs == set() # Check that all ufuncs we cover come from numpy or erfa. # (Since coverage for erfa is incomplete, we do not check # this the other way). all_erfa_ufuncs = set([ufunc for ufunc in erfa_ufunc.__dict__.values() if isinstance(ufunc, np.ufunc)]) assert (all_q_ufuncs - all_np_ufuncs - all_erfa_ufuncs == set()) def test_scipy_registered(self): # Should be registered as existing even if scipy is not available. assert 'scipy.special' in qh.UFUNC_HELPERS.modules def test_removal_addition(self): assert np.add in qh.UFUNC_HELPERS assert np.add not in qh.UNSUPPORTED_UFUNCS qh.UFUNC_HELPERS[np.add] = None assert np.add not in qh.UFUNC_HELPERS assert np.add in qh.UNSUPPORTED_UFUNCS qh.UFUNC_HELPERS[np.add] = qh.UFUNC_HELPERS[np.subtract] assert np.add in qh.UFUNC_HELPERS assert np.add not in qh.UNSUPPORTED_UFUNCS class TestQuantityTrigonometricFuncs: """ Test trigonometric functions """ @pytest.mark.parametrize('tc', ( testcase( f=np.sin, q_in=(30. * u.degree, ), q_out=(0.5*u.dimensionless_unscaled, ) ), testcase( f=np.sin, q_in=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), q_out=(np.array([0., 1. / np.sqrt(2.), 1.]) * u.one, ) ), testcase( f=np.arcsin, q_in=(np.sin(30. * u.degree), ), q_out=(np.radians(30.) * u.radian, ) ), testcase( f=np.arcsin, q_in=(np.sin(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian), ), q_out=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ) ), testcase( f=np.cos, q_in=(np.pi / 3. * u.radian, ), q_out=(0.5 * u.dimensionless_unscaled, ) ), testcase( f=np.cos, q_in=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), q_out=(np.array([1., 1. / np.sqrt(2.), 0.]) * u.one, ) ), testcase( f=np.arccos, q_in=(np.cos(np.pi / 3. * u.radian), ), q_out=(np.pi / 3. * u.radian, ) ), testcase( f=np.arccos, q_in=(np.cos(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian), ), q_out=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), ), testcase( f=np.tan, q_in=(np.pi / 3. * u.radian, ), q_out=(np.sqrt(3.) * u.dimensionless_unscaled, ) ), testcase( f=np.tan, q_in=(np.array([0., 45., 135., 180.]) * u.degree, ), q_out=(np.array([0., 1., -1., 0.]) * u.dimensionless_unscaled, ) ), testcase( f=np.arctan, q_in=(np.tan(np.pi / 3. * u.radian), ), q_out=(np.pi / 3. * u.radian, ) ), testcase( f=np.arctan, q_in=(np.tan(np.array([10., 30., 70., 80.]) * u.degree), ), q_out=(np.radians(np.array([10., 30., 70., 80.]) * u.degree), ) ), testcase( f=np.arctan2, q_in=(np.array([10., 30., 70., 80.]) * u.m, 2.0 * u.km), q_out=(np.arctan2(np.array([10., 30., 70., 80.]), 2000.) * u.radian, ) ), testcase( f=np.arctan2, q_in=((np.array([10., 80.]) * u.m / (2.0 * u.km)).to(u.one), 1.), q_out=(np.arctan2(np.array([10., 80.]) / 2000., 1.) * u.radian, ) ), testcase( f=np.deg2rad, q_in=(180. * u.degree, ), q_out=(np.pi * u.radian, ) ), testcase( f=np.radians, q_in=(180. * u.degree, ), q_out=(np.pi * u.radian, ) ), testcase( f=np.deg2rad, q_in=(3. * u.radian, ), q_out=(3. * u.radian, ) ), testcase( f=np.radians, q_in=(3. * u.radian, ), q_out=(3. * u.radian, ) ), testcase( f=np.rad2deg, q_in=(60. * u.degree, ), q_out=(60. * u.degree, ) ), testcase( f=np.degrees, q_in=(60. * u.degree, ), q_out=(60. * u.degree, ) ), testcase( f=np.rad2deg, q_in=(np.pi * u.radian, ), q_out=(180. * u.degree, ) ), testcase( f=np.degrees, q_in=(np.pi * u.radian, ), q_out=(180. * u.degree, ) ) )) def test_testcases(self, tc): return test_testcase(tc) @pytest.mark.parametrize('te', ( testexc( f=np.deg2rad, q_in=(3. * u.m, ), exc=TypeError, msg=None ), testexc( f=np.radians, q_in=(3. * u.m, ), exc=TypeError, msg=None ), testexc( f=np.rad2deg, q_in=(3. * u.m), exc=TypeError, msg=None ), testexc( f=np.degrees, q_in=(3. * u.m), exc=TypeError, msg=None ), testexc( f=np.sin, q_in=(3. * u.m, ), exc=TypeError, msg="Can only apply 'sin' function to quantities with angle units" ), testexc( f=np.arcsin, q_in=(3. * u.m, ), exc=TypeError, msg="Can only apply 'arcsin' function to dimensionless quantities" ), testexc( f=np.cos, q_in=(3. * u.s, ), exc=TypeError, msg="Can only apply 'cos' function to quantities with angle units" ), testexc( f=np.arccos, q_in=(3. * u.s, ), exc=TypeError, msg="Can only apply 'arccos' function to dimensionless quantities" ), testexc( f=np.tan, q_in=(np.array([1, 2, 3]) * u.N, ), exc=TypeError, msg="Can only apply 'tan' function to quantities with angle units" ), testexc( f=np.arctan, q_in=(np.array([1, 2, 3]) * u.N, ), exc=TypeError, msg="Can only apply 'arctan' function to dimensionless quantities" ), testexc( f=np.arctan2, q_in=(np.array([1, 2, 3]) * u.N, 1. * u.s), exc=u.UnitsError, msg="compatible dimensions" ), testexc( f=np.arctan2, q_in=(np.array([1, 2, 3]) * u.N, 1.), exc=u.UnitsError, msg="dimensionless quantities when other arg" ) )) def test_testexcs(self, te): return test_testexc(te) @pytest.mark.parametrize('tw', ( testwarn( f=np.arcsin, q_in=(27. * u.pc / (15 * u.kpc), ), wfilter='error' ), )) def test_testwarns(self, tw): return test_testwarn(tw) class TestQuantityMathFuncs: """ Test other mathematical functions """ def test_multiply_scalar(self): assert np.multiply(4. * u.m, 2. / u.s) == 8. * u.m / u.s assert np.multiply(4. * u.m, 2.) == 8. * u.m assert np.multiply(4., 2. / u.s) == 8. / u.s def test_multiply_array(self): assert np.all(np.multiply(np.arange(3.) * u.m, 2. / u.s) == np.arange(0, 6., 2.) * u.m / u.s) @pytest.mark.skipif(not isinstance(getattr(np, 'matmul', None), np.ufunc), reason="np.matmul is not yet a gufunc") def test_matmul(self): q = np.arange(3.) * u.m r = np.matmul(q, q) assert r == 5. * u.m ** 2 # less trivial case. q1 = np.eye(3) * u.m q2 = np.array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]], [[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]]) / u.s r2 = np.matmul(q1, q2) assert np.all(r2 == np.matmul(q1.value, q2.value) * q1.unit * q2.unit) @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_scalar(self, function): assert function(4. * u.m, 2. * u.s) == function(4., 2.) * u.m / u.s assert function(4. * u.m, 2.) == function(4., 2.) * u.m assert function(4., 2. * u.s) == function(4., 2.) / u.s @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_array(self, function): assert np.all(function(np.arange(3.) * u.m, 2. * u.s) == function(np.arange(3.), 2.) * u.m / u.s) def test_floor_divide_remainder_and_divmod(self): inch = u.Unit(0.0254 * u.m) dividend = np.array([1., 2., 3.]) * u.m divisor = np.array([3., 4., 5.]) * inch quotient = dividend // divisor remainder = dividend % divisor assert_allclose(quotient.value, [13., 19., 23.]) assert quotient.unit == u.dimensionless_unscaled assert_allclose(remainder.value, [0.0094, 0.0696, 0.079]) assert remainder.unit == dividend.unit quotient2 = np.floor_divide(dividend, divisor) remainder2 = np.remainder(dividend, divisor) assert np.all(quotient2 == quotient) assert np.all(remainder2 == remainder) quotient3, remainder3 = divmod(dividend, divisor) assert np.all(quotient3 == quotient) assert np.all(remainder3 == remainder) with pytest.raises(TypeError): divmod(dividend, u.km) with pytest.raises(TypeError): dividend // u.km with pytest.raises(TypeError): dividend % u.km quotient4, remainder4 = np.divmod(dividend, divisor) assert np.all(quotient4 == quotient) assert np.all(remainder4 == remainder) with pytest.raises(TypeError): np.divmod(dividend, u.km) def test_sqrt_scalar(self): assert np.sqrt(4. * u.m) == 2. * u.m ** 0.5 def test_sqrt_array(self): assert np.all(np.sqrt(np.array([1., 4., 9.]) * u.m) == np.array([1., 2., 3.]) * u.m ** 0.5) def test_square_scalar(self): assert np.square(4. * u.m) == 16. * u.m ** 2 def test_square_array(self): assert np.all(np.square(np.array([1., 2., 3.]) * u.m) == np.array([1., 4., 9.]) * u.m ** 2) def test_reciprocal_scalar(self): assert np.reciprocal(4. * u.m) == 0.25 / u.m def test_reciprocal_array(self): assert np.all(np.reciprocal(np.array([1., 2., 4.]) * u.m) == np.array([1., 0.5, 0.25]) / u.m) def test_heaviside_scalar(self): assert np.heaviside(0. * u.m, 0.5) == 0.5 * u.dimensionless_unscaled assert np.heaviside(0. * u.s, 25 * u.percent) == 0.25 * u.dimensionless_unscaled assert np.heaviside(2. * u.J, 0.25) == 1. * u.dimensionless_unscaled def test_heaviside_array(self): values = np.array([-1., 0., 0., +1.]) halfway = np.array([0.75, 0.25, 0.75, 0.25]) * u.dimensionless_unscaled assert np.all(np.heaviside(values * u.m, halfway * u.dimensionless_unscaled) == [0, 0.25, 0.75, +1.] * u.dimensionless_unscaled) @pytest.mark.parametrize('function', (np.cbrt, )) def test_cbrt_scalar(self, function): assert function(8. * u.m**3) == 2. * u.m @pytest.mark.parametrize('function', (np.cbrt, )) def test_cbrt_array(self, function): # Calculate cbrt on both sides since on Windows the cube root of 64 # does not exactly equal 4. See 4388. values = np.array([1., 8., 64.]) assert np.all(function(values * u.m**3) == function(values) * u.m) def test_power_scalar(self): assert np.power(4. * u.m, 2.) == 16. * u.m ** 2 assert np.power(4., 200. * u.cm / u.m) == \ u.Quantity(16., u.dimensionless_unscaled) # regression check on #1696 assert np.power(4. * u.m, 0.) == 1. * u.dimensionless_unscaled def test_power_array(self): assert np.all(np.power(np.array([1., 2., 3.]) * u.m, 3.) == np.array([1., 8., 27.]) * u.m ** 3) # regression check on #1696 assert np.all(np.power(np.arange(4.) * u.m, 0.) == 1. * u.dimensionless_unscaled) # float_power only introduced in numpy 1.12 @pytest.mark.skipif("not hasattr(np, 'float_power')") def test_float_power_array(self): assert np.all(np.float_power(np.array([1., 2., 3.]) * u.m, 3.) == np.array([1., 8., 27.]) * u.m ** 3) # regression check on #1696 assert np.all(np.float_power(np.arange(4.) * u.m, 0.) == 1. * u.dimensionless_unscaled) @raises(ValueError) def test_power_array_array(self): np.power(4. * u.m, [2., 4.]) @raises(ValueError) def test_power_array_array2(self): np.power([2., 4.] * u.m, [2., 4.]) def test_power_array_array3(self): # Identical unit fractions are converted automatically to dimensionless # and should be allowed as base for np.power: #4764 q = [2., 4.] * u.m / u.m powers = [2., 4.] res = np.power(q, powers) assert np.all(res.value == q.value ** powers) assert res.unit == u.dimensionless_unscaled # The same holds for unit fractions that are scaled dimensionless. q2 = [2., 4.] * u.m / u.cm # Test also against different types of exponent for cls in (list, tuple, np.array, np.ma.array, u.Quantity): res2 = np.power(q2, cls(powers)) assert np.all(res2.value == q2.to_value(1) ** powers) assert res2.unit == u.dimensionless_unscaled # Though for single powers, we keep the composite unit. res3 = q2 ** 2 assert np.all(res3.value == q2.value ** 2) assert res3.unit == q2.unit ** 2 assert np.all(res3 == q2 ** [2, 2]) def test_power_invalid(self): with pytest.raises(TypeError) as exc: np.power(3., 4. * u.m) assert "raise something to a dimensionless" in exc.value.args[0] def test_copysign_scalar(self): assert np.copysign(3 * u.m, 1.) == 3. * u.m assert np.copysign(3 * u.m, 1. * u.s) == 3. * u.m assert np.copysign(3 * u.m, -1.) == -3. * u.m assert np.copysign(3 * u.m, -1. * u.s) == -3. * u.m def test_copysign_array(self): assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1.) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1. * u.m) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, np.array([-2., 2., -4.]) * u.m) == np.array([-1., 2., -3.]) * u.s) q = np.copysign(np.array([1., 2., 3.]), -3 * u.m) assert np.all(q == np.array([-1., -2., -3.])) assert not isinstance(q, u.Quantity) def test_ldexp_scalar(self): assert np.ldexp(4. * u.m, 2) == 16. * u.m def test_ldexp_array(self): assert np.all(np.ldexp(np.array([1., 2., 3.]) * u.m, [3, 2, 1]) == np.array([8., 8., 6.]) * u.m) def test_ldexp_invalid(self): with pytest.raises(TypeError): np.ldexp(3. * u.m, 4.) with pytest.raises(TypeError): np.ldexp(3., u.Quantity(4, u.m, dtype=int)) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_scalar(self, function): q = function(3. * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert q.value == function(0.5) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == function(np.array([1. / 3., 1. / 2., 1.]))) # should also work on quantities that can be made dimensionless q2 = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, function(np.array([100. / 3., 100. / 2., 100.]))) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_invalid_units(self, function): # Can't use exp() with non-dimensionless quantities with pytest.raises(TypeError) as exc: function(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{0}' function to " "dimensionless quantities" .format(function.__name__)) def test_modf_scalar(self): q = np.modf(9. * u.m / (600. * u.cm)) assert q == (0.5 * u.dimensionless_unscaled, 1. * u.dimensionless_unscaled) def test_modf_array(self): v = np.arange(10.) * u.m / (500. * u.cm) q = np.modf(v) n = np.modf(v.to_value(u.dimensionless_unscaled)) assert q[0].unit == u.dimensionless_unscaled assert q[1].unit == u.dimensionless_unscaled assert all(q[0].value == n[0]) assert all(q[1].value == n[1]) def test_frexp_scalar(self): q = np.frexp(3. * u.m / (6. * u.m)) assert q == (np.array(0.5), np.array(0.0)) def test_frexp_array(self): q = np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert all((_q0, _q1) == np.frexp(_d) for _q0, _q1, _d in zip(q[0], q[1], [1. / 3., 1. / 2., 1.])) def test_frexp_invalid_units(self): # Can't use prod() with non-dimensionless quantities with pytest.raises(TypeError) as exc: np.frexp(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") # also does not work on quantities that can be made dimensionless with pytest.raises(TypeError) as exc: np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm), 1.) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, function(np.array([100. / 3., 100. / 2., 100.]), 1.)) @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_invalid_units(self, function): with pytest.raises(TypeError) as exc: function(1. * u.km / u.s, 3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{0}' function to " "dimensionless quantities" .format(function.__name__)) class TestInvariantUfuncs: @pytest.mark.parametrize(('ufunc'), [np.absolute, np.fabs, np.conj, np.conjugate, np.negative, np.spacing, np.rint, np.floor, np.ceil, np.positive]) def test_invariant_scalar(self, ufunc): q_i = 4.7 * u.m q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert q_o.value == ufunc(q_i.value) @pytest.mark.parametrize(('ufunc'), [np.absolute, np.conjugate, np.negative, np.rint, np.floor, np.ceil]) def test_invariant_array(self, ufunc): q_i = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert np.all(q_o.value == ufunc(q_i.value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_scalar(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.km q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_array(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.us q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_one_arbitrary(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s arbitrary_unit_value = np.array([0.]) q_o = ufunc(q_i1, arbitrary_unit_value) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, arbitrary_unit_value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] class TestComparisonUfuncs: @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_valid_units(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.Ms q_o = ufunc(q_i1, q_i2) assert not isinstance(q_o, u.Quantity) assert q_o.dtype == bool assert np.all(q_o == ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) q_o2 = ufunc(q_i1 / q_i2, 2.) assert not isinstance(q_o2, u.Quantity) assert q_o2.dtype == bool assert np.all(q_o2 == ufunc((q_i1 / q_i2) .to_value(u.dimensionless_unscaled), 2.)) # comparison with 0., inf, nan is OK even for dimensional quantities for arbitrary_unit_value in (0., np.inf, np.nan): ufunc(q_i1, arbitrary_unit_value) ufunc(q_i1, arbitrary_unit_value*np.ones(len(q_i1))) # and just for completeness ufunc(q_i1, np.array([0., np.inf, np.nan])) @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] class TestInplaceUfuncs: @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace(self, value): # without scaling s = value * u.rad check = s np.sin(s, out=s) assert check is s assert check.unit == u.dimensionless_unscaled # with scaling s2 = (value * u.rad).to(u.deg) check2 = s2 np.sin(s2, out=s2) assert check2 is s2 assert check2.unit == u.dimensionless_unscaled assert_allclose(s.value, s2.value) @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace_2(self, value): """Check inplace works with non-quantity input and quantity output""" s = value * u.m check = s np.absolute(value, out=s) assert check is s assert np.all(check.value == np.absolute(value)) assert check.unit is u.dimensionless_unscaled np.sqrt(value, out=s) assert check is s assert np.all(check.value == np.sqrt(value)) assert check.unit is u.dimensionless_unscaled np.exp(value, out=s) assert check is s assert np.all(check.value == np.exp(value)) assert check.unit is u.dimensionless_unscaled np.arcsin(value/10., out=s) assert check is s assert np.all(check.value == np.arcsin(value/10.)) assert check.unit is u.radian @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_two_output_ufunc_inplace(self, value): v = 100. * value * u.cm / u.m v_copy = v.copy() tmp = v.copy() check = v np.modf(v, tmp, v) assert check is v assert check.unit == u.dimensionless_unscaled v2 = v_copy.to(u.dimensionless_unscaled) check2 = v2 np.modf(v2, tmp, v2) assert check2 is v2 assert check2.unit == u.dimensionless_unscaled # can also replace in last position if no scaling is needed v3 = v_copy.to(u.dimensionless_unscaled) check3 = v3 np.modf(v3, v3, tmp) assert check3 is v3 assert check3.unit == u.dimensionless_unscaled # And now, with numpy >= 1.13, one can also replace input with # first output when scaling v4 = v_copy.copy() check4 = v4 np.modf(v4, v4, tmp) assert check4 is v4 assert check4.unit == u.dimensionless_unscaled @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_ufunc_inplace_1(self, value): s = value * u.cycle check = s s /= 2. assert check is s assert np.all(check.value == value / 2.) s /= u.s assert check is s assert check.unit == u.cycle / u.s s *= 2. * u.s assert check is s assert np.all(check == value * u.cycle) @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_ufunc_inplace_2(self, value): s = value * u.cycle check = s np.arctan2(s, s, out=s) assert check is s assert check.unit == u.radian with pytest.raises(u.UnitsError): s += 1. * u.m assert check is s assert check.unit == u.radian np.arctan2(1. * u.deg, s, out=s) assert check is s assert check.unit == u.radian np.add(1. * u.deg, s, out=s) assert check is s assert check.unit == u.deg np.multiply(2. / u.s, s, out=s) assert check is s assert check.unit == u.deg / u.s def test_two_argument_ufunc_inplace_3(self): s = np.array([1., 2., 3.]) * u.dimensionless_unscaled np.add(np.array([1., 2., 3.]), np.array([1., 2., 3.]) * 2., out=s) assert np.all(s.value == np.array([3., 6., 9.])) assert s.unit is u.dimensionless_unscaled np.arctan2(np.array([1., 2., 3.]), np.array([1., 2., 3.]) * 2., out=s) assert_allclose(s.value, np.arctan2(1., 2.)) assert s.unit is u.radian @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_two_output_ufunc_inplace(self, value): v = value * u.m divisor = 70.*u.cm v1 = v.copy() tmp = v.copy() check = np.divmod(v1, divisor, out=(tmp, v1)) assert check[0] is tmp and check[1] is v1 assert tmp.unit == u.dimensionless_unscaled assert v1.unit == v.unit v2 = v.copy() check2 = np.divmod(v2, divisor, out=(v2, tmp)) assert check2[0] is v2 and check2[1] is tmp assert v2.unit == u.dimensionless_unscaled assert tmp.unit == v.unit v3a = v.copy() v3b = v.copy() check3 = np.divmod(v3a, divisor, out=(v3a, v3b)) assert check3[0] is v3a and check3[1] is v3b assert v3a.unit == u.dimensionless_unscaled assert v3b.unit == v.unit def test_ufunc_inplace_non_contiguous_data(self): # ensure inplace works also for non-contiguous data (closes #1834) s = np.arange(10.) * u.m s_copy = s.copy() s2 = s[::2] s2 += 1. * u.cm assert np.all(s[::2] > s_copy[::2]) assert np.all(s[1::2] == s_copy[1::2]) def test_ufunc_inplace_non_standard_dtype(self): """Check that inplace operations check properly for casting. First two tests that check that float32 is kept close #3976. """ a1 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32) a1 *= np.float32(10) assert a1.unit is u.m assert a1.dtype == np.float32 a2 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32) a2 += (20.*u.km) assert a2.unit is u.m assert a2.dtype == np.float32 # For integer, in-place only works if no conversion is done. a3 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32) a3 += u.Quantity(10, u.m, dtype=np.int64) assert a3.unit is u.m assert a3.dtype == np.int32 a4 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32) with pytest.raises(TypeError): a4 += u.Quantity(10, u.mm, dtype=np.int64) @pytest.mark.skipif(not hasattr(np.core.umath, 'clip'), reason='no clip ufunc available') class TestClip: """Test the clip ufunc. In numpy, this is hidden behind a function that does not backwards compatibility checks. We explicitly test the ufunc here. """ def setup(self): self.clip = np.core.umath.clip def test_clip_simple(self): q = np.arange(-1., 10.) * u.m q_min = 125 * u.cm q_max = 0.0055 * u.km result = self.clip(q, q_min, q_max) assert result.unit == q.unit expected = self.clip(q.value, q_min.to_value(q.unit), q_max.to_value(q.unit)) * q.unit assert np.all(result == expected) def test_clip_unitless_parts(self): q = np.arange(-1., 10.) * u.m qlim = 0.0055 * u.km # one-sided result1 = self.clip(q, -np.inf, qlim) expected1 = self.clip(q.value, -np.inf, qlim.to_value(q.unit)) * q.unit assert np.all(result1 == expected1) result2 = self.clip(q, qlim, np.inf) expected2 = self.clip(q.value, qlim.to_value(q.unit), np.inf) * q.unit assert np.all(result2 == expected2) # Zero result3 = self.clip(q, np.zeros(q.shape), qlim) expected3 = self.clip(q.value, 0, qlim.to_value(q.unit)) * q.unit assert np.all(result3 == expected3) # Two unitless parts, array-shaped. result4 = self.clip(q, np.zeros(q.shape), np.full(q.shape, np.inf)) expected4 = self.clip(q.value, 0, np.inf) * q.unit assert np.all(result4 == expected4) def test_clip_dimensionless(self): q = np.arange(-1., 10.) * u.dimensionless_unscaled result = self.clip(q, 200 * u.percent, 5.) expected = self.clip(q, 2., 5.) assert result.unit == u.dimensionless_unscaled assert np.all(result == expected) def test_clip_ndarray(self): a = np.arange(-1., 10.) result = self.clip(a, 200 * u.percent, 5. * u.dimensionless_unscaled) assert isinstance(result, u.Quantity) expected = self.clip(a, 2., 5.) * u.dimensionless_unscaled assert np.all(result == expected) def test_clip_quantity_inplace(self): q = np.arange(-1., 10.) * u.m q_min = 125 * u.cm q_max = 0.0055 * u.km expected = self.clip(q.value, q_min.to_value(q.unit), q_max.to_value(q.unit)) * q.unit result = self.clip(q, q_min, q_max, out=q) assert result is q assert np.all(result == expected) def test_clip_ndarray_dimensionless_output(self): a = np.arange(-1., 10.) q = np.zeros_like(a) * u.m expected = self.clip(a, 2., 5.) * u.dimensionless_unscaled result = self.clip(a, 200 * u.percent, 5. * u.dimensionless_unscaled, out=q) assert result is q assert result.unit == u.dimensionless_unscaled assert np.all(result == expected) def test_clip_errors(self): q = np.arange(-1., 10.) * u.m with pytest.raises(u.UnitsError): self.clip(q, 0, 1*u.s) with pytest.raises(u.UnitsError): self.clip(q.value, 0, 1*u.s) with pytest.raises(u.UnitsError): self.clip(q, -1, 0.) with pytest.raises(u.UnitsError): self.clip(q, 0., 1.) class TestUfuncAt: """Test that 'at' method for ufuncs (calculates in-place at given indices) For Quantities, since calculations are in-place, it makes sense only if the result is still a quantity, and if the unit does not have to change """ def test_one_argument_ufunc_at(self): q = np.arange(10.) * u.m i = np.array([1, 2]) qv = q.value.copy() np.negative.at(q, i) np.negative.at(qv, i) assert np.all(q.value == qv) assert q.unit is u.m # cannot change from quantity to bool array with pytest.raises(TypeError): np.isfinite.at(q, i) # for selective in-place, cannot change the unit with pytest.raises(u.UnitsError): np.square.at(q, i) # except if the unit does not change (i.e., dimensionless) d = np.arange(10.) * u.dimensionless_unscaled dv = d.value.copy() np.square.at(d, i) np.square.at(dv, i) assert np.all(d.value == dv) assert d.unit is u.dimensionless_unscaled d = np.arange(10.) * u.dimensionless_unscaled dv = d.value.copy() np.log.at(d, i) np.log.at(dv, i) assert np.all(d.value == dv) assert d.unit is u.dimensionless_unscaled # also for sine it doesn't work, even if given an angle a = np.arange(10.) * u.radian with pytest.raises(u.UnitsError): np.sin.at(a, i) # except, for consistency, if we have made radian equivalent to # dimensionless (though hopefully it will never be needed) av = a.value.copy() with u.add_enabled_equivalencies(u.dimensionless_angles()): np.sin.at(a, i) np.sin.at(av, i) assert_allclose(a.value, av) # but we won't do double conversion ad = np.arange(10.) * u.degree with pytest.raises(u.UnitsError): np.sin.at(ad, i) def test_two_argument_ufunc_at(self): s = np.arange(10.) * u.m i = np.array([1, 2]) check = s.value.copy() np.add.at(s, i, 1.*u.km) np.add.at(check, i, 1000.) assert np.all(s.value == check) assert s.unit is u.m with pytest.raises(u.UnitsError): np.add.at(s, i, 1.*u.s) # also raise UnitsError if unit would have to be changed with pytest.raises(u.UnitsError): np.multiply.at(s, i, 1*u.s) # but be fine if it does not s = np.arange(10.) * u.m check = s.value.copy() np.multiply.at(s, i, 2.*u.dimensionless_unscaled) np.multiply.at(check, i, 2) assert np.all(s.value == check) s = np.arange(10.) * u.m np.multiply.at(s, i, 2.) assert np.all(s.value == check) # of course cannot change class of data either with pytest.raises(TypeError): np.greater.at(s, i, 1.*u.km) class TestUfuncReduceReduceatAccumulate: """Test 'reduce', 'reduceat' and 'accumulate' methods for ufuncs For Quantities, it makes sense only if the unit does not have to change """ def test_one_argument_ufunc_reduce_accumulate(self): # one argument cannot be used s = np.arange(10.) * u.radian i = np.array([0, 5, 1, 6]) with pytest.raises(ValueError): np.sin.reduce(s) with pytest.raises(ValueError): np.sin.accumulate(s) with pytest.raises(ValueError): np.sin.reduceat(s, i) def test_two_argument_ufunc_reduce_accumulate(self): s = np.arange(10.) * u.m i = np.array([0, 5, 1, 6]) check = s.value.copy() s_add_reduce = np.add.reduce(s) check_add_reduce = np.add.reduce(check) assert s_add_reduce.value == check_add_reduce assert s_add_reduce.unit is u.m s_add_accumulate = np.add.accumulate(s) check_add_accumulate = np.add.accumulate(check) assert np.all(s_add_accumulate.value == check_add_accumulate) assert s_add_accumulate.unit is u.m s_add_reduceat = np.add.reduceat(s, i) check_add_reduceat = np.add.reduceat(check, i) assert np.all(s_add_reduceat.value == check_add_reduceat) assert s_add_reduceat.unit is u.m # reduce(at) or accumulate on comparisons makes no sense, # as intermediate result is not even a Quantity with pytest.raises(TypeError): np.greater.reduce(s) with pytest.raises(TypeError): np.greater.accumulate(s) with pytest.raises(TypeError): np.greater.reduceat(s, i) # raise UnitsError if unit would have to be changed with pytest.raises(u.UnitsError): np.multiply.reduce(s) with pytest.raises(u.UnitsError): np.multiply.accumulate(s) with pytest.raises(u.UnitsError): np.multiply.reduceat(s, i) # but be fine if it does not s = np.arange(10.) * u.dimensionless_unscaled check = s.value.copy() s_multiply_reduce = np.multiply.reduce(s) check_multiply_reduce = np.multiply.reduce(check) assert s_multiply_reduce.value == check_multiply_reduce assert s_multiply_reduce.unit is u.dimensionless_unscaled s_multiply_accumulate = np.multiply.accumulate(s) check_multiply_accumulate = np.multiply.accumulate(check) assert np.all(s_multiply_accumulate.value == check_multiply_accumulate) assert s_multiply_accumulate.unit is u.dimensionless_unscaled s_multiply_reduceat = np.multiply.reduceat(s, i) check_multiply_reduceat = np.multiply.reduceat(check, i) assert np.all(s_multiply_reduceat.value == check_multiply_reduceat) assert s_multiply_reduceat.unit is u.dimensionless_unscaled class TestUfuncOuter: """Test 'outer' methods for ufuncs Just a few spot checks, since it uses the same code as the regular ufunc call """ def test_one_argument_ufunc_outer(self): # one argument cannot be used s = np.arange(10.) * u.radian with pytest.raises(ValueError): np.sin.outer(s) def test_two_argument_ufunc_outer(self): s1 = np.arange(10.) * u.m s2 = np.arange(2.) * u.s check1 = s1.value check2 = s2.value s12_multiply_outer = np.multiply.outer(s1, s2) check12_multiply_outer = np.multiply.outer(check1, check2) assert np.all(s12_multiply_outer.value == check12_multiply_outer) assert s12_multiply_outer.unit == s1.unit * s2.unit # raise UnitsError if appropriate with pytest.raises(u.UnitsError): np.add.outer(s1, s2) # but be fine if it does not s3 = np.arange(2.) * s1.unit check3 = s3.value s13_add_outer = np.add.outer(s1, s3) check13_add_outer = np.add.outer(check1, check3) assert np.all(s13_add_outer.value == check13_add_outer) assert s13_add_outer.unit is s1.unit s13_greater_outer = np.greater.outer(s1, s3) check13_greater_outer = np.greater.outer(check1, check3) assert type(s13_greater_outer) is np.ndarray assert np.all(s13_greater_outer == check13_greater_outer) if HAS_SCIPY: from scipy import special as sps def test_scipy_registration(): """Check that scipy gets loaded upon first use.""" assert sps.erf not in qh.UFUNC_HELPERS sps.erf(1. * u.percent) assert sps.erf in qh.UFUNC_HELPERS class TestScipySpecialUfuncs: erf_like_ufuncs = ( sps.erf, sps.gamma, sps.loggamma, sps.gammasgn, sps.psi, sps.rgamma, sps.erfc, sps.erfcx, sps.erfi, sps.wofz, sps.dawsn, sps.entr, sps.exprel, sps.expm1, sps.log1p, sps.exp2, sps.exp10) @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_scalar(self, function): TestQuantityMathFuncs.test_exp_scalar(None, function) @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_array(self, function): TestQuantityMathFuncs.test_exp_array(None, function) @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_invalid_units(self, function): TestQuantityMathFuncs.test_exp_invalid_units(None, function) @pytest.mark.parametrize('function', (sps.cbrt, )) def test_cbrt_scalar(self, function): TestQuantityMathFuncs.test_cbrt_scalar(None, function) @pytest.mark.parametrize('function', (sps.cbrt, )) def test_cbrt_array(self, function): TestQuantityMathFuncs.test_cbrt_array(None, function) @pytest.mark.parametrize('function', (sps.radian, )) def test_radian(self, function): q1 = function(180. * u.degree, 0. * u.arcmin, 0. * u.arcsec) assert_allclose(q1.value, np.pi) assert q1.unit == u.radian q2 = function(0. * u.degree, 30. * u.arcmin, 0. * u.arcsec) assert_allclose(q2.value, (30. * u.arcmin).to(u.radian).value) assert q2.unit == u.radian q3 = function(0. * u.degree, 0. * u.arcmin, 30. * u.arcsec) assert_allclose(q3.value, (30. * u.arcsec).to(u.radian).value) # the following doesn't make much sense in terms of the name of the # routine, but we check it gives the correct result. q4 = function(3. * u.radian, 0. * u.arcmin, 0. * u.arcsec) assert_allclose(q4.value, 3.) assert q4.unit == u.radian with pytest.raises(TypeError): function(3. * u.m, 2. * u.s, 1. * u.kg) jv_like_ufuncs = ( sps.jv, sps.jn, sps.jve, sps.yn, sps.yv, sps.yve, sps.kn, sps.kv, sps.kve, sps.iv, sps.ive, sps.hankel1, sps.hankel1e, sps.hankel2, sps.hankel2e) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_scalar(self, function): q = function(2. * u.m / (2. * u.m), 3. * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert q.value == function(1.0, 0.5) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_array(self, function): q = function(np.ones(3) * u.m / (1. * u.m), np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == function( np.ones(3), np.array([1. / 3., 1. / 2., 1.])) ) # should also work on quantities that can be made dimensionless q2 = function(np.ones(3) * u.m / (1. * u.m), np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, function(np.ones(3), np.array([100. / 3., 100. / 2., 100.]))) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_invalid_units(self, function): # Can't use jv() with non-dimensionless quantities with pytest.raises(TypeError) as exc: function(1. * u.kg, 3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{0}' function to " "dimensionless quantities" .format(function.__name__))
5cede9baf482798fc9ea1612650d91c64d6d0c41db2804edf87e6ffd62b83aa7
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """Function Units and Quantities.""" from abc import ABCMeta, abstractmethod import numpy as np from astropy.units import (Unit, UnitBase, UnitsError, UnitTypeError, UnitConversionError, dimensionless_unscaled, Quantity) __all__ = ['FunctionUnitBase', 'FunctionQuantity'] SUPPORTED_UFUNCS = set(getattr(np.core.umath, ufunc) for ufunc in ( 'isfinite', 'isinf', 'isnan', 'sign', 'signbit', 'rint', 'floor', 'ceil', 'trunc', '_ones_like', 'ones_like', 'positive') if hasattr(np.core.umath, ufunc)) # TODO: the following could work if helper changed relative to Quantity: # - spacing should return dimensionless, not same unit # - negative should negate unit too, # - add, subtract, comparisons can work if units added/subtracted SUPPORTED_FUNCTIONS = set(getattr(np, function) for function in ('clip', 'trace', 'mean', 'min', 'max', 'round')) # subclassing UnitBase or CompositeUnit was found to be problematic, requiring # a large number of overrides. Hence, define new class. class FunctionUnitBase(metaclass=ABCMeta): """Abstract base class for function units. Function units are functions containing a physical unit, such as dB(mW). Most of the arithmetic operations on function units are defined in this base class. While instantiation is defined, this class should not be used directly. Rather, subclasses should be used that override the abstract properties `_default_function_unit` and `_quantity_class`, and the abstract methods `from_physical`, and `to_physical`. Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, the same as the function unit set by the subclass. """ # ↓↓↓ the following four need to be set by subclasses # Make this a property so we can ensure subclasses define it. @property @abstractmethod def _default_function_unit(self): """Default function unit corresponding to the function. This property should be overridden by subclasses, with, e.g., `~astropy.unit.MagUnit` returning `~astropy.unit.mag`. """ # This has to be a property because the function quantity will not be # known at unit definition time, as it gets defined after. @property @abstractmethod def _quantity_class(self): """Function quantity class corresponding to this function unit. This property should be overridden by subclasses, with, e.g., `~astropy.unit.MagUnit` returning `~astropy.unit.Magnitude`. """ @abstractmethod def from_physical(self, x): """Transformation from value in physical to value in function units. This method should be overridden by subclasses. It is used to provide automatic transformations using an equivalency. """ @abstractmethod def to_physical(self, x): """Transformation from value in function to value in physical units. This method should be overridden by subclasses. It is used to provide automatic transformations using an equivalency. """ # ↑↑↑ the above four need to be set by subclasses # have priority over arrays, regular units, and regular quantities __array_priority__ = 30000 def __init__(self, physical_unit=None, function_unit=None): if physical_unit is None: self._physical_unit = dimensionless_unscaled else: self._physical_unit = Unit(physical_unit) if (not isinstance(self._physical_unit, UnitBase) or self._physical_unit.is_equivalent( self._default_function_unit)): raise UnitConversionError("Unit {0} is not a physical unit." .format(self._physical_unit)) if function_unit is None: self._function_unit = self._default_function_unit else: # any function unit should be equivalent to subclass default function_unit = Unit(getattr(function_unit, 'function_unit', function_unit)) if function_unit.is_equivalent(self._default_function_unit): self._function_unit = function_unit else: raise UnitConversionError( "Cannot initialize '{0}' instance with function unit '{1}'" ", as it is not equivalent to default function unit '{2}'." .format(self.__class__.__name__, function_unit, self._default_function_unit)) def _copy(self, physical_unit=None): """Copy oneself, possibly with a different physical unit.""" if physical_unit is None: physical_unit = self.physical_unit return self.__class__(physical_unit, self.function_unit) @property def physical_unit(self): return self._physical_unit @property def function_unit(self): return self._function_unit @property def equivalencies(self): """List of equivalencies between function and physical units. Uses the `from_physical` and `to_physical` methods. """ return [(self, self.physical_unit, self.to_physical, self.from_physical)] # ↓↓↓ properties/methods required to behave like a unit def decompose(self, bases=set()): """Copy the current unit with the physical unit decomposed. For details, see `~astropy.units.UnitBase.decompose`. """ return self._copy(self.physical_unit.decompose(bases)) @property def si(self): """Copy the current function unit with the physical unit in SI.""" return self._copy(self.physical_unit.si) @property def cgs(self): """Copy the current function unit with the physical unit in CGS.""" return self._copy(self.physical_unit.cgs) def _get_physical_type_id(self): """Get physical type corresponding to physical unit.""" return self.physical_unit._get_physical_type_id() @property def physical_type(self): """Return the physical type of the physical unit (e.g., 'length').""" return self.physical_unit.physical_type def is_equivalent(self, other, equivalencies=[]): """ Returns `True` if this unit is equivalent to ``other``. Parameters ---------- other : unit object or string or tuple The unit to convert to. If a tuple of units is specified, this method returns true if the unit matches any of those in the tuple. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. This list is in addition to the built-in equivalencies between the function unit and the physical one, as well as possible global defaults set by, e.g., `~astropy.units.set_enabled_equivalencies`. Use `None` to turn off any global equivalencies. Returns ------- bool """ if isinstance(other, tuple): return any(self.is_equivalent(u, equivalencies=equivalencies) for u in other) other_physical_unit = getattr(other, 'physical_unit', ( dimensionless_unscaled if self.function_unit.is_equivalent(other) else other)) return self.physical_unit.is_equivalent(other_physical_unit, equivalencies) def to(self, other, value=1., equivalencies=[]): """ Return the converted values in the specified unit. Parameters ---------- other : `~astropy.units.Unit` object, `~astropy.units.function.FunctionUnitBase` object or string The unit to convert to. value : scalar int or float, or sequence convertible to array, optional Value(s) in the current unit to be converted to the specified unit. If not provided, defaults to 1.0. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. This list is in meant to treat only equivalencies between different physical units; the build-in equivalency between the function unit and the physical one is automatically taken into account. Returns ------- values : scalar or array Converted value(s). Input value sequences are returned as numpy arrays. Raises ------ UnitsError If units are inconsistent. """ # conversion to one's own physical unit should be fastest if other is self.physical_unit: return self.to_physical(value) other_function_unit = getattr(other, 'function_unit', other) if self.function_unit.is_equivalent(other_function_unit): # when other is an equivalent function unit: # first convert physical units to other's physical units other_physical_unit = getattr(other, 'physical_unit', dimensionless_unscaled) if self.physical_unit != other_physical_unit: value_other_physical = self.physical_unit.to( other_physical_unit, self.to_physical(value), equivalencies) # make function unit again, in own system value = self.from_physical(value_other_physical) # convert possible difference in function unit (e.g., dex->dB) return self.function_unit.to(other_function_unit, value) else: try: # when other is not a function unit return self.physical_unit.to(other, self.to_physical(value), equivalencies) except UnitConversionError as e: if self.function_unit == Unit('mag'): # One can get to raw magnitudes via math that strips the dimensions off. # Include extra information in the exception to remind users of this. msg = "Did you perhaps subtract magnitudes so the unit got lost?" e.args += (msg,) raise e else: raise def is_unity(self): return False def __eq__(self, other): return (self.physical_unit == getattr(other, 'physical_unit', dimensionless_unscaled) and self.function_unit == getattr(other, 'function_unit', other)) def __ne__(self, other): return not self.__eq__(other) def __rlshift__(self, other): """Unit converstion operator ``<<``""" try: return self._quantity_class(other, self, copy=False, subok=True) except Exception: return NotImplemented def __mul__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return self.function_unit * other else: raise UnitsError("Cannot multiply a function unit " "with a physical dimension with any unit.") else: # Anything not like a unit, try initialising as a function quantity. try: return self._quantity_class(other, unit=self) except Exception: return NotImplemented def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return self.function_unit / other else: raise UnitsError("Cannot divide a function unit " "with a physical dimension by any unit.") else: # Anything not like a unit, try initialising as a function quantity. try: return self._quantity_class(1./other, unit=self) except Exception: return NotImplemented def __rdiv__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return other / self.function_unit else: raise UnitsError("Cannot divide a function unit " "with a physical dimension into any unit") else: # Don't know what to do with anything not like a unit. return NotImplemented __truediv__ = __div__ __rtruediv__ = __rdiv__ def __pow__(self, power): if power == 0: return dimensionless_unscaled elif power == 1: return self._copy() if self.physical_unit == dimensionless_unscaled: return self.function_unit ** power raise UnitsError("Cannot raise a function unit " "with a physical dimension to any power but 0 or 1.") def __pos__(self): return self._copy() def to_string(self, format='generic'): """ Output the unit in the given format as a string. The physical unit is appended, within parentheses, to the function unit, as in "dB(mW)", with both units set using the given format Parameters ---------- format : `astropy.units.format.Base` instance or str The name of a format or a formatter object. If not provided, defaults to the generic format. """ if format not in ('generic', 'unscaled', 'latex'): raise ValueError("Function units cannot be written in {0} format. " "Only 'generic', 'unscaled' and 'latex' are " "supported.".format(format)) self_str = self.function_unit.to_string(format) pu_str = self.physical_unit.to_string(format) if pu_str == '': pu_str = '1' if format == 'latex': self_str += r'$\mathrm{{\left( {0} \right)}}$'.format( pu_str[1:-1]) # need to strip leading and trailing "$" else: self_str += '({0})'.format(pu_str) return self_str def __str__(self): """Return string representation for unit.""" self_str = str(self.function_unit) pu_str = str(self.physical_unit) if pu_str: self_str += '({0})'.format(pu_str) return self_str def __repr__(self): # By default, try to give a representation using `Unit(<string>)`, # with string such that parsing it would give the correct FunctionUnit. if callable(self.function_unit): return 'Unit("{0}")'.format(self.to_string()) else: return '{0}("{1}"{2})'.format( self.__class__.__name__, self.physical_unit, "" if self.function_unit is self._default_function_unit else ', unit="{0}"'.format(self.function_unit)) def _repr_latex_(self): """ Generate latex representation of unit name. This is used by the IPython notebook to print a unit with a nice layout. Returns ------- Latex string """ return self.to_string('latex') def __hash__(self): return hash((self.function_unit, self.physical_unit)) class FunctionQuantity(Quantity): """A representation of a (scaled) function of a number with a unit. Function quantities are quantities whose units are functions containing a physical unit, such as dB(mW). Most of the arithmetic operations on function quantities are defined in this base class. While instantiation is also defined here, this class should not be instantiated directly. Rather, subclasses should be made which have ``_unit_class`` pointing back to the corresponding function unit class. Parameters ---------- value : number, sequence of convertible items, `~astropy.units.Quantity`, or `~astropy.units.function.FunctionQuantity` The numerical value of the function quantity. If a number or a `~astropy.units.Quantity` with a function unit, it will be converted to ``unit`` and the physical unit will be inferred from ``unit``. If a `~astropy.units.Quantity` with just a physical unit, it will converted to the function unit, after, if necessary, converting it to the physical unit inferred from ``unit``. unit : string, `~astropy.units.UnitBase` or `~astropy.units.function.FunctionUnitBase` instance, optional For an `~astropy.units.function.FunctionUnitBase` instance, the physical unit will be taken from it; for other input, it will be inferred from ``value``. By default, ``unit`` is set by the subclass. dtype : `~numpy.dtype`, optional The dtype of the resulting Numpy array or scalar that will hold the value. If not provided, it is determined from the input, except that any input that cannot represent float (integer and bool) is converted to float. copy : bool, optional If `True` (default), then the value is copied. Otherwise, a copy will only be made if ``__array__`` returns a copy, if value is a nested sequence, or if a copy is needed to satisfy an explicitly given ``dtype``. (The `False` option is intended mostly for internal use, to speed up initialization where a copy is known to have been made. Use with care.) order : {'C', 'F', 'A'}, optional Specify the order of the array. As in `~numpy.array`. Ignored if the input does not need to be converted and ``copy=False``. subok : bool, optional If `False` (default), the returned array will be forced to be of the class used. Otherwise, subclasses will be passed through. ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement. This parameter is ignored if the input is a `~astropy.units.Quantity` and ``copy=False``. Raises ------ TypeError If the value provided is not a Python numeric type. TypeError If the unit provided is not a `~astropy.units.function.FunctionUnitBase` or `~astropy.units.Unit` object, or a parseable string unit. """ _unit_class = None """Default `~astropy.units.function.FunctionUnitBase` subclass. This should be overridden by subclasses. """ # Ensure priority over ndarray, regular Unit & Quantity, and FunctionUnit. __array_priority__ = 40000 # Define functions that work on FunctionQuantity. _supported_ufuncs = SUPPORTED_UFUNCS _supported_functions = SUPPORTED_FUNCTIONS def __new__(cls, value, unit=None, dtype=None, copy=True, order=None, subok=False, ndmin=0): if unit is not None: # Convert possible string input to a (function) unit. unit = Unit(unit) if not isinstance(unit, FunctionUnitBase): # By default, use value's physical unit. value_unit = getattr(value, 'unit', None) if value_unit is None: # if iterable, see if first item has a unit # (mixed lists fail in super call below). try: value_unit = getattr(value[0], 'unit') except Exception: pass physical_unit = getattr(value_unit, 'physical_unit', value_unit) unit = cls._unit_class(physical_unit, function_unit=unit) # initialise! return super().__new__(cls, value, unit, dtype=dtype, copy=copy, order=order, subok=subok, ndmin=ndmin) # ↓↓↓ properties not found in Quantity @property def physical(self): """The physical quantity corresponding the function one.""" return self.to(self.unit.physical_unit) @property def _function_view(self): """View as Quantity with function unit, dropping the physical unit. Use `~astropy.units.quantity.Quantity.value` for just the value. """ return self._new_view(unit=self.unit.function_unit) # ↓↓↓ methods overridden to change the behavior @property def si(self): """Return a copy with the physical unit in SI units.""" return self.__class__(self.physical.si) @property def cgs(self): """Return a copy with the physical unit in CGS units.""" return self.__class__(self.physical.cgs) def decompose(self, bases=[]): """Generate a new `FunctionQuantity` with the physical unit decomposed. For details, see `~astropy.units.Quantity.decompose`. """ return self.__class__(self.physical.decompose(bases)) # ↓↓↓ methods overridden to add additional behavior def __quantity_subclass__(self, unit): if isinstance(unit, FunctionUnitBase): return self.__class__, True else: return super().__quantity_subclass__(unit)[0], False def _set_unit(self, unit): if not isinstance(unit, self._unit_class): # Have to take care of, e.g., (10*u.mag).view(u.Magnitude) try: # "or 'nonsense'" ensures `None` breaks, just in case. unit = self._unit_class(function_unit=unit or 'nonsense') except Exception: raise UnitTypeError( "{0} instances require {1} function units" .format(type(self).__name__, self._unit_class.__name__) + ", so cannot set it to '{0}'.".format(unit)) self._unit = unit def __array_ufunc__(self, function, method, *inputs, **kwargs): # TODO: it would be more logical to have this in Quantity already, # instead of in UFUNC_HELPERS, where it cannot be overridden. # And really it should just return NotImplemented, since possibly # another argument might know what to do. if function not in self._supported_ufuncs: raise UnitTypeError( "Cannot use ufunc '{0}' with function quantities" .format(function.__name__)) return super().__array_ufunc__(function, method, *inputs, **kwargs) # ↓↓↓ methods overridden to change behavior def __mul__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view * other raise UnitTypeError("Cannot multiply function quantities which " "are not dimensionless with anything.") def __truediv__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view / other raise UnitTypeError("Cannot divide function quantities which " "are not dimensionless by anything.") def __rtruediv__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view.__rdiv__(other) raise UnitTypeError("Cannot divide function quantities which " "are not dimensionless into anything.") def _comparison(self, other, comparison_func): """Do a comparison between self and other, raising UnitsError when other cannot be converted to self because it has different physical unit, and returning NotImplemented when there are other errors.""" try: # will raise a UnitsError if physical units not equivalent other_in_own_unit = self._to_own_unit(other, check_precision=False) except UnitsError as exc: if self.unit.physical_unit != dimensionless_unscaled: raise exc try: other_in_own_unit = self._function_view._to_own_unit( other, check_precision=False) except Exception: raise exc except Exception: return NotImplemented return comparison_func(other_in_own_unit) def __eq__(self, other): try: return self._comparison(other, self.value.__eq__) except UnitsError: return False def __ne__(self, other): try: return self._comparison(other, self.value.__ne__) except UnitsError: return True def __gt__(self, other): return self._comparison(other, self.value.__gt__) def __ge__(self, other): return self._comparison(other, self.value.__ge__) def __lt__(self, other): return self._comparison(other, self.value.__lt__) def __le__(self, other): return self._comparison(other, self.value.__le__) def __lshift__(self, other): """Unit converstion operator `<<`""" try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented return self.__class__(self, other, copy=False, subok=True) # Ensure Quantity methods are used only if they make sense. def _wrap_function(self, function, *args, **kwargs): if function in self._supported_functions: return super()._wrap_function(function, *args, **kwargs) # For dimensionless, we can convert to regular quantities. if all(arg.unit.physical_unit == dimensionless_unscaled for arg in (self,) + args if (hasattr(arg, 'unit') and hasattr(arg.unit, 'physical_unit'))): args = tuple(getattr(arg, '_function_view', arg) for arg in args) return self._function_view._wrap_function(function, *args, **kwargs) raise TypeError("Cannot use method that uses function '{0}' with " "function quantities that are not dimensionless." .format(function.__name__)) # Override functions that are supported but do not use _wrap_function # in Quantity. def max(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.max, axis, out=out, keepdims=keepdims) def min(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.min, axis, out=out, keepdims=keepdims) def sum(self, axis=None, dtype=None, out=None, keepdims=False): return self._wrap_function(np.sum, axis, dtype, out=out, keepdims=keepdims) def cumsum(self, axis=None, dtype=None, out=None): return self._wrap_function(np.cumsum, axis, dtype, out=out) def clip(self, a_min, a_max, out=None): return self._wrap_function(np.clip, self._to_own_unit(a_min), self._to_own_unit(a_max), out=out)
0266f9e2298aae96e27a909e8f8623db9b1804837b8d5cadac4a06ad7cb49a8d
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package contains the coordinate frames actually implemented by astropy. Users shouldn't use this module directly, but rather import from the `astropy.coordinates` module. While it is likely to exist for the long-term, the existence of this package and details of its organization should be considered an implementation detail, and is not guaranteed to hold for future versions of astropy. Notes ----- The builtin frame classes are all imported automatically into this package's namespace, so there's no need to access the sub-modules directly. To implement a new frame in Astropy, a developer should add the frame as a new module in this package. Any "self" transformations (i.e., those that transform from one frame to another frame of the same class) should be included in that module. Transformation functions connecting the new frame to other frames should be in a separate module, which should be imported in this package's ``__init__.py`` to ensure the transformations are hooked up when this package is imported. Placing the trasnformation functions in separate modules avoids circular dependencies, because they need references to the frame classes. """ from .baseradec import BaseRADecFrame from .icrs import ICRS from .fk5 import FK5 from .fk4 import FK4, FK4NoETerms from .galactic import Galactic from .galactocentric import Galactocentric from .lsr import LSR, GalacticLSR from .supergalactic import Supergalactic from .altaz import AltAz from .gcrs import GCRS, PrecessedGeocentric from .cirs import CIRS from .itrs import ITRS from .hcrs import HCRS from .ecliptic import * # there are a lot of these so we don't list them all explicitly from .skyoffset import SkyOffsetFrame # need to import transformations so that they get registered in the graph from . import icrs_fk5_transforms from . import fk4_fk5_transforms from . import galactic_transforms from . import supergalactic_transforms from . import icrs_cirs_transforms from . import cirs_observed_transforms from . import intermediate_rotation_transforms from . import ecliptic_transforms from astropy.coordinates.baseframe import frame_transform_graph # we define an __all__ because otherwise the transformation modules # get included __all__ = ['ICRS', 'FK5', 'FK4', 'FK4NoETerms', 'Galactic', 'Galactocentric', 'Supergalactic', 'AltAz', 'GCRS', 'CIRS', 'ITRS', 'HCRS', 'PrecessedGeocentric', 'GeocentricMeanEcliptic', 'BarycentricMeanEcliptic', 'HeliocentricMeanEcliptic', 'GeocentricTrueEcliptic', 'BarycentricTrueEcliptic', 'HeliocentricTrueEcliptic', 'SkyOffsetFrame', 'GalacticLSR', 'LSR', 'BaseEclipticFrame', 'BaseRADecFrame', 'make_transform_graph_docs', 'HeliocentricEclipticIAU76', 'CustomBarycentricEcliptic'] def make_transform_graph_docs(transform_graph): """ Generates a string that can be used in other docstrings to include a transformation graph, showing the available transforms and coordinate systems. Parameters ---------- transform_graph : `~.coordinates.TransformGraph` Returns ------- docstring : str A string that can be added to the end of a docstring to show the transform graph. """ from textwrap import dedent coosys = [transform_graph.lookup_name(item) for item in transform_graph.get_names()] # currently, all of the priorities are set to 1, so we don't need to show # then in the transform graph. graphstr = transform_graph.to_dot_graph(addnodes=coosys, priorities=False) docstr = """ The diagram below shows all of the built in coordinate systems, their aliases (useful for converting other coordinates to them using attribute-style access) and the pre-defined transformations between them. The user is free to override any of these transformations by defining new transformations between these systems, but the pre-defined transformations should be sufficient for typical usage. The color of an edge in the graph (i.e. the transformations between two frames) is set by the type of transformation; the legend box defines the mapping from transform class name to color. .. Wrap the graph in a div with a custom class to allow themeing. .. container:: frametransformgraph .. graphviz:: """ docstr = dedent(docstr) + ' ' + graphstr.replace('\n', '\n ') # colors are in dictionary at the bottom of transformations.py from astropy.coordinates.transformations import trans_to_color html_list_items = [] for cls, color in trans_to_color.items(): block = u""" <li style='list-style: none;'> <p style="font-size: 12px;line-height: 24px;font-weight: normal;color: #848484;padding: 0;margin: 0;"> <b>{0}:</b> <span style="font-size: 24px; color: {1};"><b>➝</b></span> </p> </li> """.format(cls.__name__, color) html_list_items.append(block) graph_legend = u""" .. raw:: html <ul> {} </ul> """.format("\n".join(html_list_items)) docstr = docstr + dedent(graph_legend) return docstr _transform_graph_docs = make_transform_graph_docs(frame_transform_graph)
3f27209690f2382ffe67a7a9396a08cd1324dfbd2a41a89e3b9ea06c7ba6b71d
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting from ICRS/HCRS to CIRS and anything in between (currently that means GCRS) """ import numpy as np from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference, AffineTransform from astropy.coordinates.representation import (SphericalRepresentation, CartesianRepresentation, UnitSphericalRepresentation, CartesianDifferential) from astropy import _erfa as erfa from .icrs import ICRS from .gcrs import GCRS from .cirs import CIRS from .hcrs import HCRS from .utils import get_jd12, aticq, atciqz, get_cip, prepare_earth_position_vel # First the ICRS/CIRS related transforms @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, CIRS) def icrs_to_cirs(icrs_coo, cirs_frame): # first set up the astrometry context for ICRS<->CIRS jd1, jd2 = get_jd12(cirs_frame.obstime, 'tdb') x, y, s = get_cip(jd1, jd2) earth_pv, earth_heliocentric = prepare_earth_position_vel(cirs_frame.obstime) astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s) if icrs_coo.data.get_name() == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just do the infinite-distance/no parallax calculation usrepr = icrs_coo.represent_as(UnitSphericalRepresentation) i_ra = usrepr.lon.to_value(u.radian) i_dec = usrepr.lat.to_value(u.radian) cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom) newrep = UnitSphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), copy=False) else: # When there is a distance, we first offset for parallax to get the # astrometric coordinate direction and *then* run the ERFA transform for # no parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) i_ra = srepr.lon.to_value(u.radian) i_dec = srepr.lat.to_value(u.radian) cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom) newrep = SphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), distance=srepr.distance, copy=False) return cirs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, ICRS) def cirs_to_icrs(cirs_coo, icrs_frame): srepr = cirs_coo.represent_as(SphericalRepresentation) cirs_ra = srepr.lon.to_value(u.radian) cirs_dec = srepr.lat.to_value(u.radian) # set up the astrometry context for ICRS<->cirs and then convert to # astrometric coordinate direction jd1, jd2 = get_jd12(cirs_coo.obstime, 'tdb') x, y, s = get_cip(jd1, jd2) earth_pv, earth_heliocentric = prepare_earth_position_vel(cirs_coo.obstime) astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s) i_ra, i_dec = aticq(cirs_ra, cirs_dec, astrom) if cirs_coo.data.get_name() == 'unitspherical' or cirs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_cirs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False) astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, CIRS) def cirs_to_cirs(from_coo, to_frame): if np.all(from_coo.obstime == to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: # the CIRS<-> CIRS transform actually goes through ICRS. This has a # subtle implication that a point in CIRS is uniquely determined # by the corresponding astrometric ICRS coordinate *at its # current time*. This has some subtle implications in terms of GR, but # is sort of glossed over in the current scheme because we are dropping # distances anyway. return from_coo.transform_to(ICRS).transform_to(to_frame) # Now the GCRS-related transforms to/from ICRS @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, GCRS) def icrs_to_gcrs(icrs_coo, gcrs_frame): # first set up the astrometry context for ICRS<->GCRS. There are a few steps... # get the position and velocity arrays for the observatory. Need to # have xyz in last dimension, and pos/vel in one-but-last. # (Note could use np.stack once our minimum numpy version is >=1.10.) obs_pv = erfa.pav2pv( gcrs_frame.obsgeoloc.get_xyz(xyz_axis=-1).to_value(u.m), gcrs_frame.obsgeovel.get_xyz(xyz_axis=-1).to_value(u.m/u.s)) # find the position and velocity of earth jd1, jd2 = get_jd12(gcrs_frame.obstime, 'tdb') earth_pv, earth_heliocentric = prepare_earth_position_vel(gcrs_frame.obstime) # get astrometry context object, astrom. astrom = erfa.apcs(jd1, jd2, obs_pv, earth_pv, earth_heliocentric) if icrs_coo.data.get_name() == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just do the infinite-distance/no parallax calculation usrepr = icrs_coo.represent_as(UnitSphericalRepresentation) i_ra = usrepr.lon.to_value(u.radian) i_dec = usrepr.lat.to_value(u.radian) gcrs_ra, gcrs_dec = atciqz(i_ra, i_dec, astrom) newrep = UnitSphericalRepresentation(lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), copy=False) else: # When there is a distance, we first offset for parallax to get the # BCRS coordinate direction and *then* run the ERFA transform for no # parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) i_ra = srepr.lon.to_value(u.radian) i_dec = srepr.lat.to_value(u.radian) gcrs_ra, gcrs_dec = atciqz(i_ra, i_dec, astrom) newrep = SphericalRepresentation(lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), distance=srepr.distance, copy=False) return gcrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, ICRS) def gcrs_to_icrs(gcrs_coo, icrs_frame): srepr = gcrs_coo.represent_as(SphericalRepresentation) gcrs_ra = srepr.lon.to_value(u.radian) gcrs_dec = srepr.lat.to_value(u.radian) # set up the astrometry context for ICRS<->GCRS and then convert to BCRS # coordinate direction obs_pv = erfa.pav2pv( gcrs_coo.obsgeoloc.get_xyz(xyz_axis=-1).to_value(u.m), gcrs_coo.obsgeovel.get_xyz(xyz_axis=-1).to_value(u.m/u.s)) jd1, jd2 = get_jd12(gcrs_coo.obstime, 'tdb') earth_pv, earth_heliocentric = prepare_earth_position_vel(gcrs_coo.obstime) astrom = erfa.apcs(jd1, jd2, obs_pv, earth_pv, earth_heliocentric) i_ra, i_dec = aticq(gcrs_ra, gcrs_dec, astrom) if gcrs_coo.data.get_name() == 'unitspherical' or gcrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_gcrs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False) astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, GCRS) def gcrs_to_gcrs(from_coo, to_frame): if (np.all(from_coo.obstime == to_frame.obstime) and np.all(from_coo.obsgeoloc == to_frame.obsgeoloc)): return to_frame.realize_frame(from_coo.data) else: # like CIRS, we do this self-transform via ICRS return from_coo.transform_to(ICRS).transform_to(to_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, HCRS) def gcrs_to_hcrs(gcrs_coo, hcrs_frame): if np.any(gcrs_coo.obstime != hcrs_frame.obstime): # if they GCRS obstime and HCRS obstime are not the same, we first # have to move to a GCRS where they are. frameattrs = gcrs_coo.get_frame_attr_names() frameattrs['obstime'] = hcrs_frame.obstime gcrs_coo = gcrs_coo.transform_to(GCRS(**frameattrs)) srepr = gcrs_coo.represent_as(SphericalRepresentation) gcrs_ra = srepr.lon.to_value(u.radian) gcrs_dec = srepr.lat.to_value(u.radian) # set up the astrometry context for ICRS<->GCRS and then convert to ICRS # coordinate direction obs_pv = erfa.pav2pv( gcrs_coo.obsgeoloc.get_xyz(xyz_axis=-1).to_value(u.m), gcrs_coo.obsgeovel.get_xyz(xyz_axis=-1).to_value(u.m/u.s)) jd1, jd2 = get_jd12(hcrs_frame.obstime, 'tdb') earth_pv, earth_heliocentric = prepare_earth_position_vel(gcrs_coo.obstime) astrom = erfa.apcs(jd1, jd2, obs_pv, earth_pv, earth_heliocentric) i_ra, i_dec = aticq(gcrs_ra, gcrs_dec, astrom) # convert to Quantity objects i_ra = u.Quantity(i_ra, u.radian, copy=False) i_dec = u.Quantity(i_dec, u.radian, copy=False) if gcrs_coo.data.get_name() == 'unitspherical' or gcrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=i_dec, lon=i_ra, copy=False) else: # When there is a distance, apply the parallax/offset to the # Heliocentre as the last step to ensure round-tripping with the # hcrs_to_gcrs transform # Note that the distance in intermedrep is *not* a real distance as it # does not include the offset back to the Heliocentre intermedrep = SphericalRepresentation(lat=i_dec, lon=i_ra, distance=srepr.distance, copy=False) # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. Shapes are (X) and (X,3), where (X) is the # shape resulting from broadcasting the shape of the times object # against the shape of the pv array. # broadcast em to eh and scale eh eh = astrom['eh'] * astrom['em'][..., np.newaxis] eh = CartesianRepresentation(eh, unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep.to_cartesian() + eh return hcrs_frame.realize_frame(newrep) _NEED_ORIGIN_HINT = ("The input {0} coordinates do not have length units. This " "probably means you created coordinates with lat/lon but " "no distance. Heliocentric<->ICRS transforms cannot " "function in this case because there is an origin shift.") @frame_transform_graph.transform(AffineTransform, HCRS, ICRS) def hcrs_to_icrs(hcrs_coo, icrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(hcrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(hcrs_coo.__class__.__name__)) if hcrs_coo.data.differentials: from astropy.coordinates.solar_system import get_body_barycentric_posvel bary_sun_pos, bary_sun_vel = get_body_barycentric_posvel('sun', hcrs_coo.obstime) bary_sun_vel = bary_sun_vel.represent_as(CartesianDifferential) bary_sun_pos = bary_sun_pos.with_differentials(bary_sun_vel) else: from astropy.coordinates.solar_system import get_body_barycentric bary_sun_pos = get_body_barycentric('sun', hcrs_coo.obstime) bary_sun_vel = None return None, bary_sun_pos @frame_transform_graph.transform(AffineTransform, ICRS, HCRS) def icrs_to_hcrs(icrs_coo, hcrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(icrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(icrs_coo.__class__.__name__)) if icrs_coo.data.differentials: from astropy.coordinates.solar_system import get_body_barycentric_posvel bary_sun_pos, bary_sun_vel = get_body_barycentric_posvel('sun', hcrs_frame.obstime) bary_sun_pos = -bary_sun_pos bary_sun_vel = -bary_sun_vel.represent_as(CartesianDifferential) bary_sun_pos = bary_sun_pos.with_differentials(bary_sun_vel) else: from astropy.coordinates.solar_system import get_body_barycentric bary_sun_pos = -get_body_barycentric('sun', hcrs_frame.obstime) bary_sun_vel = None return None, bary_sun_pos @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HCRS, HCRS) def hcrs_to_hcrs(from_coo, to_frame): if np.all(from_coo.obstime == to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: # like CIRS, we do this self-transform via ICRS return from_coo.transform_to(ICRS).transform_to(to_frame)
88c5b3f41144fb318be8d5e13a0ad03dc0c80b0dc5f6a8e5b93d60b9b45b419f
import pytest import numpy as np from urllib.error import HTTPError from astropy.time import Time from astropy import units as u from astropy.constants import c from astropy.coordinates.builtin_frames import GCRS from astropy.coordinates.earth import EarthLocation from astropy.coordinates.sky_coordinate import SkyCoord from astropy.coordinates.solar_system import (get_body, get_moon, BODY_NAME_TO_KERNEL_SPEC, _apparent_position_in_true_coordinates, get_body_barycentric, get_body_barycentric_posvel) from astropy.coordinates.funcs import get_sun from astropy.tests.helper import assert_quantity_allclose from astropy.units import allclose as quantity_allclose from astropy.utils.data import download_file try: import jplephem # pylint: disable=W0611 except ImportError: HAS_JPLEPHEM = False else: HAS_JPLEPHEM = True try: from skyfield.api import load # pylint: disable=W0611 except ImportError: HAS_SKYFIELD = False else: HAS_SKYFIELD = True de432s_separation_tolerance_planets = 5*u.arcsec de432s_separation_tolerance_moon = 5*u.arcsec de432s_distance_tolerance = 20*u.km skyfield_angular_separation_tolerance = 1*u.arcsec skyfield_separation_tolerance = 10*u.km @pytest.mark.remote_data @pytest.mark.skipif(str('not HAS_SKYFIELD')) def test_positions_skyfield(): """ Test positions against those generated by skyfield. """ t = Time('1980-03-25 00:00') location = None # skyfield ephemeris planets = load('de421.bsp') ts = load.timescale() mercury, jupiter, moon = planets['mercury'], planets['jupiter barycenter'], planets['moon'] earth = planets['earth'] skyfield_t = ts.from_astropy(t) if location is not None: earth = earth.topos(latitude_degrees=location.lat.to_value(u.deg), longitude_degrees=location.lon.to_value(u.deg), elevation_m=location.height.to_value(u.m)) skyfield_mercury = earth.at(skyfield_t).observe(mercury).apparent() skyfield_jupiter = earth.at(skyfield_t).observe(jupiter).apparent() skyfield_moon = earth.at(skyfield_t).observe(moon).apparent() if location is not None: obsgeoloc, obsgeovel = location.get_gcrs_posvel(t) frame = GCRS(obstime=t, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel) else: frame = GCRS(obstime=t) ra, dec, dist = skyfield_mercury.radec(epoch='date') skyfield_mercury = SkyCoord(ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame) ra, dec, dist = skyfield_jupiter.radec(epoch='date') skyfield_jupiter = SkyCoord(ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame) ra, dec, dist = skyfield_moon.radec(epoch='date') skyfield_moon = SkyCoord(ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame) moon_astropy = get_moon(t, location, ephemeris='de430') mercury_astropy = get_body('mercury', t, location, ephemeris='de430') jupiter_astropy = get_body('jupiter', t, location, ephemeris='de430') # convert to true equator and equinox jupiter_astropy = _apparent_position_in_true_coordinates(jupiter_astropy) mercury_astropy = _apparent_position_in_true_coordinates(mercury_astropy) moon_astropy = _apparent_position_in_true_coordinates(moon_astropy) assert (moon_astropy.separation(skyfield_moon) < skyfield_angular_separation_tolerance) assert (moon_astropy.separation_3d(skyfield_moon) < skyfield_separation_tolerance) assert (jupiter_astropy.separation(skyfield_jupiter) < skyfield_angular_separation_tolerance) assert (jupiter_astropy.separation_3d(skyfield_jupiter) < skyfield_separation_tolerance) assert (mercury_astropy.separation(skyfield_mercury) < skyfield_angular_separation_tolerance) assert (mercury_astropy.separation_3d(skyfield_mercury) < skyfield_separation_tolerance) class TestPositionsGeocentric: """ Test positions against those generated by JPL Horizons accessed on 2016-03-28, with refraction turned on. """ def setup(self): self.t = Time('1980-03-25 00:00') self.frame = GCRS(obstime=self.t) # Results returned by JPL Horizons web interface self.horizons = { 'mercury': SkyCoord(ra='22h41m47.78s', dec='-08d29m32.0s', distance=c*6.323037*u.min, frame=self.frame), 'moon': SkyCoord(ra='07h32m02.62s', dec='+18d34m05.0s', distance=c*0.021921*u.min, frame=self.frame), 'jupiter': SkyCoord(ra='10h17m12.82s', dec='+12d02m57.0s', distance=c*37.694557*u.min, frame=self.frame), 'sun': SkyCoord(ra='00h16m31.00s', dec='+01d47m16.9s', distance=c*8.294858*u.min, frame=self.frame)} @pytest.mark.parametrize(('body', 'sep_tol', 'dist_tol'), (('mercury', 7.*u.arcsec, 1000*u.km), ('jupiter', 78.*u.arcsec, 76000*u.km), ('moon', 20.*u.arcsec, 80*u.km), ('sun', 5.*u.arcsec, 11.*u.km))) def test_erfa_planet(self, body, sep_tol, dist_tol): """Test predictions using erfa/plan94. Accuracies are maximum deviations listed in erfa/plan94.c, for Jupiter and Mercury, and that quoted in Meeus "Astronomical Algorithms" (1998) for the Moon. """ astropy = get_body(body, self.t, ephemeris='builtin') horizons = self.horizons[body] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert astropy.separation(horizons) < sep_tol # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=dist_tol) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize('body', ('mercury', 'jupiter', 'sun')) def test_de432s_planet(self, body): astropy = get_body(body, self.t, ephemeris='de432s') horizons = self.horizons[body] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert (astropy.separation(horizons) < de432s_separation_tolerance_planets) # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=de432s_distance_tolerance) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') def test_de432s_moon(self): astropy = get_moon(self.t, ephemeris='de432s') horizons = self.horizons['moon'] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert (astropy.separation(horizons) < de432s_separation_tolerance_moon) # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=de432s_distance_tolerance) @pytest.mark.remote_data class TestPositionKittPeak: """ Test positions against those generated by JPL Horizons accessed on 2016-03-28, with refraction turned on. """ def setup(self): kitt_peak = EarthLocation.from_geodetic(lon=-111.6*u.deg, lat=31.963333333333342*u.deg, height=2120*u.m) self.t = Time('2014-09-25T00:00', location=kitt_peak) obsgeoloc, obsgeovel = kitt_peak.get_gcrs_posvel(self.t) self.frame = GCRS(obstime=self.t, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel) # Results returned by JPL Horizons web interface self.horizons = { 'mercury': SkyCoord(ra='13h38m58.50s', dec='-13d34m42.6s', distance=c*7.699020*u.min, frame=self.frame), 'moon': SkyCoord(ra='12h33m12.85s', dec='-05d17m54.4s', distance=c*0.022054*u.min, frame=self.frame), 'jupiter': SkyCoord(ra='09h09m55.55s', dec='+16d51m57.8s', distance=c*49.244937*u.min, frame=self.frame)} @pytest.mark.parametrize(('body', 'sep_tol', 'dist_tol'), (('mercury', 7.*u.arcsec, 500*u.km), ('jupiter', 78.*u.arcsec, 82000*u.km))) def test_erfa_planet(self, body, sep_tol, dist_tol): """Test predictions using erfa/plan94. Accuracies are maximum deviations listed in erfa/plan94.c. """ # Add uncertainty in position of Earth dist_tol = dist_tol + 1300 * u.km astropy = get_body(body, self.t, ephemeris='builtin') horizons = self.horizons[body] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert astropy.separation(horizons) < sep_tol # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=dist_tol) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize('body', ('mercury', 'jupiter')) def test_de432s_planet(self, body): astropy = get_body(body, self.t, ephemeris='de432s') horizons = self.horizons[body] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert (astropy.separation(horizons) < de432s_separation_tolerance_planets) # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=de432s_distance_tolerance) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') def test_de432s_moon(self): astropy = get_moon(self.t, ephemeris='de432s') horizons = self.horizons['moon'] # convert to true equator and equinox astropy = _apparent_position_in_true_coordinates(astropy) # Assert sky coordinates are close. assert (astropy.separation(horizons) < de432s_separation_tolerance_moon) # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=de432s_distance_tolerance) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize('bodyname', ('mercury', 'jupiter')) def test_custom_kernel_spec_body(self, bodyname): """ Checks that giving a kernel specifier instead of a body name works """ coord_by_name = get_body(bodyname, self.t, ephemeris='de432s') kspec = BODY_NAME_TO_KERNEL_SPEC[bodyname] coord_by_kspec = get_body(kspec, self.t, ephemeris='de432s') assert_quantity_allclose(coord_by_name.ra, coord_by_kspec.ra) assert_quantity_allclose(coord_by_name.dec, coord_by_kspec.dec) assert_quantity_allclose(coord_by_name.distance, coord_by_kspec.distance) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize('time', (Time('1960-01-12 00:00'), Time('1980-03-25 00:00'), Time('2010-10-13 00:00'))) def test_get_sun_consistency(time): """ Test that the sun from JPL and the builtin get_sun match """ sun_jpl_gcrs = get_body('sun', time, ephemeris='de432s') builtin_get_sun = get_sun(time) sep = builtin_get_sun.separation(sun_jpl_gcrs) assert sep < 0.1*u.arcsec def test_get_moon_nonscalar_regression(): """ Test that the builtin ephemeris works with non-scalar times. See Issue #5069. """ times = Time(["2015-08-28 03:30", "2015-09-05 10:30"]) # the following line will raise an Exception if the bug recurs. get_moon(times, ephemeris='builtin') def test_barycentric_pos_posvel_same(): # Check that the two routines give identical results. ep1 = get_body_barycentric('earth', Time('2016-03-20T12:30:00')) ep2, _ = get_body_barycentric_posvel('earth', Time('2016-03-20T12:30:00')) assert np.all(ep1.xyz == ep2.xyz) def test_earth_barycentric_velocity_rough(): # Check that a time near the equinox gives roughly the right result. ep, ev = get_body_barycentric_posvel('earth', Time('2016-03-20T12:30:00')) assert_quantity_allclose(ep.xyz, [-1., 0., 0.]*u.AU, atol=0.01*u.AU) expected = u.Quantity([0.*u.one, np.cos(23.5*u.deg), np.sin(23.5*u.deg)]) * -30. * u.km / u.s assert_quantity_allclose(ev.xyz, expected, atol=1.*u.km/u.s) def test_earth_barycentric_velocity_multi_d(): # Might as well test it with a multidimensional array too. t = Time('2016-03-20T12:30:00') + np.arange(8.).reshape(2, 2, 2) * u.yr / 2. ep, ev = get_body_barycentric_posvel('earth', t) # note: assert_quantity_allclose doesn't like the shape mismatch. # this is a problem with np.testing.assert_allclose. assert quantity_allclose(ep.get_xyz(xyz_axis=-1), [[-1., 0., 0.], [+1., 0., 0.]]*u.AU, atol=0.06*u.AU) expected = u.Quantity([0.*u.one, np.cos(23.5*u.deg), np.sin(23.5*u.deg)]) * ([[-30.], [30.]] * u.km / u.s) assert quantity_allclose(ev.get_xyz(xyz_axis=-1), expected, atol=2.*u.km/u.s) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize(('body', 'pos_tol', 'vel_tol'), (('mercury', 1000.*u.km, 1.*u.km/u.s), ('jupiter', 100000.*u.km, 2.*u.km/u.s), ('earth', 10*u.km, 10*u.mm/u.s))) def test_barycentric_velocity_consistency(body, pos_tol, vel_tol): # Tolerances are about 1.5 times the rms listed for plan94 and epv00, # except for Mercury (which nominally is 334 km rms) t = Time('2016-03-20T12:30:00') ep, ev = get_body_barycentric_posvel(body, t, ephemeris='builtin') dp, dv = get_body_barycentric_posvel(body, t, ephemeris='de432s') assert_quantity_allclose(ep.xyz, dp.xyz, atol=pos_tol) assert_quantity_allclose(ev.xyz, dv.xyz, atol=vel_tol) # Might as well test it with a multidimensional array too. t = Time('2016-03-20T12:30:00') + np.arange(8.).reshape(2, 2, 2) * u.yr / 2. ep, ev = get_body_barycentric_posvel(body, t, ephemeris='builtin') dp, dv = get_body_barycentric_posvel(body, t, ephemeris='de432s') assert_quantity_allclose(ep.xyz, dp.xyz, atol=pos_tol) assert_quantity_allclose(ev.xyz, dv.xyz, atol=vel_tol) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') @pytest.mark.parametrize('time', (Time('1960-01-12 00:00'), Time('1980-03-25 00:00'), Time('2010-10-13 00:00'))) def test_url_or_file_ephemeris(time): # URL for ephemeris de432s used for testing: url = 'http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp' # Pass the ephemeris directly as a URL. coord_by_url = get_body('earth', time, ephemeris=url) # Translate the URL to the cached location on the filesystem. # Since we just used the url above, it should already have been downloaded. filepath = download_file(url, cache=True) # Get the coordinates using the file path directly: coord_by_filepath = get_body('earth', time, ephemeris=filepath) # Using the URL or filepath should give exactly the same results: assert_quantity_allclose(coord_by_url.ra, coord_by_filepath.ra) assert_quantity_allclose(coord_by_url.dec, coord_by_filepath.dec) assert_quantity_allclose(coord_by_url.distance, coord_by_filepath.distance) @pytest.mark.remote_data @pytest.mark.skipif('not HAS_JPLEPHEM') def test_url_ephemeris_wrong_input(): # Try loading a non-existing URL: time = Time('1960-01-12 00:00') with pytest.raises(HTTPError): get_body('earth', time, ephemeris='http://data.astropy.org/path/to/nonexisting/file.bsp') @pytest.mark.skipif('not HAS_JPLEPHEM') def test_file_ephemeris_wrong_input(): time = Time('1960-01-12 00:00') # Try loading a non-existing file: with pytest.raises(ValueError): get_body('earth', time, ephemeris='/path/to/nonexisting/file.bsp') # Try loading a file that does exist, but is not an ephemeris file: with pytest.raises(ValueError): get_body('earth', time, ephemeris=__file__)
fde8370144b2030415f4f1e849d7ca0dde31dd48b11b36b7fb726108f06734c4
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy import units as u from astropy.coordinates.distances import Distance from astropy.coordinates.builtin_frames import (ICRS, FK5, FK4, FK4NoETerms, Galactic, Supergalactic, Galactocentric, HCRS, GCRS, LSR) from astropy.coordinates import SkyCoord from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.coordinates import EarthLocation, CartesianRepresentation from astropy.time import Time from astropy.units import allclose # used below in the next parametrized test m31_sys = [ICRS, FK5, FK4, Galactic] m31_coo = [(10.6847929, 41.2690650), (10.6847929, 41.2690650), (10.0004738, 40.9952444), (121.1744050, -21.5729360)] m31_dist = Distance(770, u.kpc) convert_precision = 1 * u.arcsec roundtrip_precision = 1e-4 * u.degree dist_precision = 1e-9 * u.kpc m31_params = [] for i in range(len(m31_sys)): for j in range(len(m31_sys)): if i < j: m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j])) @pytest.mark.parametrize(('fromsys', 'tosys', 'fromcoo', 'tocoo'), m31_params) def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED. """ coo1 = fromsys(ra=fromcoo[0]*u.deg, dec=fromcoo[1]*u.deg, distance=m31_dist) coo2 = coo1.transform_to(tosys) if tosys is FK4: coo2_prec = coo2.transform_to(FK4(equinox=Time('B1950'))) assert (coo2_prec.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec assert (coo2_prec.spherical.lat - tocoo[1]*u.deg) < convert_precision else: assert (coo2.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec assert (coo2.spherical.lat - tocoo[1]*u.deg) < convert_precision assert coo1.distance.unit == u.kpc assert coo2.distance.unit == u.kpc assert m31_dist.unit == u.kpc assert (coo2.distance - m31_dist) < dist_precision # check round-tripping coo1_2 = coo2.transform_to(fromsys) assert (coo1_2.spherical.lon - fromcoo[0]*u.deg) < roundtrip_precision assert (coo1_2.spherical.lat - fromcoo[1]*u.deg) < roundtrip_precision assert (coo1_2.distance - m31_dist) < dist_precision def test_precession(): """ Ensures that FK4 and FK5 coordinates precess their equinoxes """ j2000 = Time('J2000') b1950 = Time('B1950') j1975 = Time('J1975') b1975 = Time('B1975') fk4 = FK4(ra=1*u.radian, dec=0.5*u.radian) assert fk4.equinox.byear == b1950.byear fk4_2 = fk4.transform_to(FK4(equinox=b1975)) assert fk4_2.equinox.byear == b1975.byear fk5 = FK5(ra=1*u.radian, dec=0.5*u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK4(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear def test_fk5_galactic(): """ Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic. """ fk5 = FK5(ra=1*u.deg, dec=2*u.deg) direct = fk5.transform_to(Galactic) indirect = fk5.transform_to(FK4).transform_to(Galactic) assert direct.separation(indirect).degree < 1.e-10 direct = fk5.transform_to(Galactic) indirect = fk5.transform_to(FK4NoETerms).transform_to(Galactic) assert direct.separation(indirect).degree < 1.e-10 def test_galactocentric(): # when z_sun=0, transformation should be very similar to Galactic icrs_coord = ICRS(ra=np.linspace(0, 360, 10)*u.deg, dec=np.linspace(-90, 90, 10)*u.deg, distance=1.*u.kpc) g_xyz = icrs_coord.transform_to(Galactic).cartesian.xyz gc_xyz = icrs_coord.transform_to(Galactocentric(z_sun=0*u.kpc)).cartesian.xyz diff = np.abs(g_xyz - gc_xyz) assert allclose(diff[0], 8.3*u.kpc, atol=1E-5*u.kpc) assert allclose(diff[1:], 0*u.kpc, atol=1E-5*u.kpc) # generate some test coordinates g = Galactic(l=[0, 0, 45, 315]*u.deg, b=[-45, 45, 0, 0]*u.deg, distance=[np.sqrt(2)]*4*u.kpc) xyz = g.transform_to(Galactocentric(galcen_distance=1.*u.kpc, z_sun=0.*u.pc)).cartesian.xyz true_xyz = np.array([[0, 0, -1.], [0, 0, 1], [0, 1, 0], [0, -1, 0]]).T*u.kpc assert allclose(xyz.to(u.kpc), true_xyz.to(u.kpc), atol=1E-5*u.kpc) # check that ND arrays work # from Galactocentric to Galactic x = np.linspace(-10., 10., 100) * u.kpc y = np.linspace(-10., 10., 100) * u.kpc z = np.zeros_like(x) g1 = Galactocentric(x=x, y=y, z=z) g2 = Galactocentric(x=x.reshape(100, 1, 1), y=y.reshape(100, 1, 1), z=z.reshape(100, 1, 1)) g1t = g1.transform_to(Galactic) g2t = g2.transform_to(Galactic) assert_allclose(g1t.cartesian.xyz, g2t.cartesian.xyz[:, :, 0, 0]) # from Galactic to Galactocentric l = np.linspace(15, 30., 100) * u.deg b = np.linspace(-10., 10., 100) * u.deg d = np.ones_like(l.value) * u.kpc g1 = Galactic(l=l, b=b, distance=d) g2 = Galactic(l=l.reshape(100, 1, 1), b=b.reshape(100, 1, 1), distance=d.reshape(100, 1, 1)) g1t = g1.transform_to(Galactocentric) g2t = g2.transform_to(Galactocentric) np.testing.assert_almost_equal(g1t.cartesian.xyz.value, g2t.cartesian.xyz.value[:, :, 0, 0]) def test_supergalactic(): """ Check Galactic<->Supergalactic and Galactic<->ICRS conversion. """ # Check supergalactic North pole. npole = Galactic(l=47.37*u.degree, b=+6.32*u.degree) assert allclose(npole.transform_to(Supergalactic).sgb.deg, +90, atol=1e-9) # Check the origin of supergalactic longitude. lon0 = Supergalactic(sgl=0*u.degree, sgb=0*u.degree) lon0_gal = lon0.transform_to(Galactic) assert allclose(lon0_gal.l.deg, 137.37, atol=1e-9) assert allclose(lon0_gal.b.deg, 0, atol=1e-9) # Test Galactic<->ICRS with some positions that appear in Foley et al. 2008 # (http://adsabs.harvard.edu/abs/2008A%26A...484..143F) # GRB 021219 supergalactic = Supergalactic(sgl=29.91*u.degree, sgb=+73.72*u.degree) icrs = SkyCoord('18h50m27s +31d57m17s') assert supergalactic.separation(icrs) < 0.005 * u.degree # GRB 030320 supergalactic = Supergalactic(sgl=-174.44*u.degree, sgb=+46.17*u.degree) icrs = SkyCoord('17h51m36s -25d18m52s') assert supergalactic.separation(icrs) < 0.005 * u.degree class TestHCRS(): """ Check HCRS<->ICRS coordinate conversions. Uses ICRS Solar positions predicted by get_body_barycentric; with `t1` and `tarr` as defined below, the ICRS Solar positions were predicted using, e.g. coord.ICRS(coord.get_body_barycentric(tarr, 'sun')). """ def setup(self): self.t1 = Time("2013-02-02T23:00") self.t2 = Time("2013-08-02T23:00") self.tarr = Time(["2013-02-02T23:00", "2013-08-02T23:00"]) self.sun_icrs_scalar = ICRS(ra=244.52984668*u.deg, dec=-22.36943723*u.deg, distance=406615.66347377*u.km) # array of positions corresponds to times in `tarr` self.sun_icrs_arr = ICRS(ra=[244.52989062, 271.40976248]*u.deg, dec=[-22.36943605, -25.07431079]*u.deg, distance=[406615.66347377, 375484.13558956]*u.km) # corresponding HCRS positions self.sun_hcrs_t1 = HCRS(CartesianRepresentation([0.0, 0.0, 0.0] * u.km), obstime=self.t1) twod_rep = CartesianRepresentation([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] * u.km) self.sun_hcrs_tarr = HCRS(twod_rep, obstime=self.tarr) self.tolerance = 5*u.km def test_from_hcrs(self): # test scalar transform transformed = self.sun_hcrs_t1.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_scalar) assert_allclose(separation, 0*u.km, atol=self.tolerance) # test non-scalar positions and times transformed = self.sun_hcrs_tarr.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_arr) assert_allclose(separation, 0*u.km, atol=self.tolerance) def test_from_icrs(self): # scalar positions transformed = self.sun_icrs_scalar.transform_to(HCRS(obstime=self.t1)) separation = transformed.separation_3d(self.sun_hcrs_t1) assert_allclose(separation, 0*u.km, atol=self.tolerance) # nonscalar positions transformed = self.sun_icrs_arr.transform_to(HCRS(obstime=self.tarr)) separation = transformed.separation_3d(self.sun_hcrs_tarr) assert_allclose(separation, 0*u.km, atol=self.tolerance) class TestHelioBaryCentric(): """ Check GCRS<->Heliocentric and Barycentric coordinate conversions. Uses the WHT observing site (information grabbed from data/sites.json). """ def setup(self): wht = EarthLocation(342.12*u.deg, 28.758333333333333*u.deg, 2327*u.m) self.obstime = Time("2013-02-02T23:00") self.wht_itrs = wht.get_itrs(obstime=self.obstime) @pytest.mark.remote_data def test_heliocentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) helio = gcrs.transform_to(HCRS(obstime=self.obstime)) # Check it doesn't change from previous times. previous = [-1.02597256e+11, 9.71725820e+10, 4.21268419e+10] * u.m assert_allclose(helio.cartesian.xyz, previous) # And that it agrees with SLALIB to within 14km helio_slalib = [-0.685820296, 0.6495585893, 0.2816005464] * u.au assert np.sqrt(((helio.cartesian.xyz - helio_slalib)**2).sum()) < 14. * u.km @pytest.mark.remote_data def test_barycentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) bary = gcrs.transform_to(ICRS()) previous = [-1.02758958e+11, 9.68331109e+10, 4.19720938e+10] * u.m assert_allclose(bary.cartesian.xyz, previous) # And that it agrees with SLALIB answer to within 14km bary_slalib = [-0.6869012079, 0.6472893646, 0.2805661191] * u.au assert np.sqrt(((bary.cartesian.xyz - bary_slalib)**2).sum()) < 14. * u.km def test_lsr_sanity(): # random numbers, but zero velocity in ICRS frame icrs = ICRS(ra=15.1241*u.deg, dec=17.5143*u.deg, distance=150.12*u.pc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) lsr = icrs.transform_to(LSR) lsr_diff = lsr.data.differentials['s'] cart_lsr_vel = lsr_diff.represent_as(CartesianRepresentation, base=lsr.data) lsr_vel = ICRS(cart_lsr_vel) gal_lsr = lsr_vel.transform_to(Galactic).cartesian.xyz assert allclose(gal_lsr.to(u.km/u.s, u.dimensionless_angles()), lsr.v_bary.d_xyz) # moving with LSR velocity lsr = LSR(ra=15.1241*u.deg, dec=17.5143*u.deg, distance=150.12*u.pc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) icrs = lsr.transform_to(ICRS) icrs_diff = icrs.data.differentials['s'] cart_vel = icrs_diff.represent_as(CartesianRepresentation, base=icrs.data) vel = ICRS(cart_vel) gal_icrs = vel.transform_to(Galactic).cartesian.xyz assert allclose(gal_icrs.to(u.km/u.s, u.dimensionless_angles()), -lsr.v_bary.d_xyz) def test_hcrs_icrs_differentials(): # Regression to ensure that we can transform velocities from HCRS to LSR. # Numbers taken from the original issue, gh-6835. hcrs = HCRS(ra=8.67*u.deg, dec=53.09*u.deg, distance=117*u.pc, pm_ra_cosdec=4.8*u.mas/u.yr, pm_dec=-15.16*u.mas/u.yr, radial_velocity=23.42*u.km/u.s) icrs = hcrs.transform_to(ICRS) # The position and velocity should not change much assert allclose(hcrs.cartesian.xyz, icrs.cartesian.xyz, rtol=1e-8) assert allclose(hcrs.velocity.d_xyz, icrs.velocity.d_xyz, rtol=1e-2) hcrs2 = icrs.transform_to(HCRS) # The values should round trip assert allclose(hcrs.cartesian.xyz, hcrs2.cartesian.xyz, rtol=1e-12) assert allclose(hcrs.velocity.d_xyz, hcrs2.velocity.d_xyz, rtol=1e-12)
46e65bf9d0295309bb07a8f4c36fade178302dd10fcdbd270efa4cf942831110
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Regression tests for coordinates-related bugs that don't have an obvious other place to live """ import io import copy import pytest import numpy as np from astropy import units as u from astropy.coordinates import (AltAz, EarthLocation, SkyCoord, get_sun, ICRS, GeocentricMeanEcliptic, Longitude, Latitude, GCRS, HCRS, CIRS, get_moon, FK4, FK4NoETerms, BaseCoordinateFrame, ITRS, QuantityAttribute, UnitSphericalRepresentation, SphericalRepresentation, CartesianRepresentation, FunctionTransform) from astropy.coordinates.sites import get_builtin_sites from astropy.time import Time from astropy.utils import iers from astropy.table import Table from astropy.tests.helper import assert_quantity_allclose, catch_warnings from .test_matching import HAS_SCIPY, OLDER_SCIPY from astropy.units import allclose as quantity_allclose try: import yaml # pylint: disable=W0611 HAS_YAML = True except ImportError: HAS_YAML = False def test_regression_5085(): """ PR #5085 was put in place to fix the following issue. Issue: https://github.com/astropy/astropy/issues/5069 At root was the transformation of Ecliptic coordinates with non-scalar times. """ # Note: for regression test, we need to be sure that we use UTC for the # epoch, even though more properly that should be TT; but the "expected" # values were calculated using that. j2000 = Time('J2000', scale='utc') times = Time(["2015-08-28 03:30", "2015-09-05 10:30", "2015-09-15 18:35"]) latitudes = Latitude([3.9807075, -5.00733806, 1.69539491]*u.deg) longitudes = Longitude([311.79678613, 72.86626741, 199.58698226]*u.deg) distances = u.Quantity([0.00243266, 0.0025424, 0.00271296]*u.au) coo = GeocentricMeanEcliptic(lat=latitudes, lon=longitudes, distance=distances, obstime=times, equinox=times) # expected result ras = Longitude([310.50095400, 314.67109920, 319.56507428]*u.deg) decs = Latitude([-18.25190443, -17.1556676, -15.71616522]*u.deg) distances = u.Quantity([1.78309901, 1.710874, 1.61326649]*u.au) expected_result = GCRS(ra=ras, dec=decs, distance=distances, obstime=j2000).cartesian.xyz actual_result = coo.transform_to(GCRS(obstime=j2000)).cartesian.xyz assert_quantity_allclose(expected_result, actual_result) @pytest.mark.remote_data def test_regression_3920(): """ Issue: https://github.com/astropy/astropy/issues/3920 """ loc = EarthLocation.from_geodetic(0*u.deg, 0*u.deg, 0) time = Time('2010-1-1') aa = AltAz(location=loc, obstime=time) sc = SkyCoord(10*u.deg, 3*u.deg) assert sc.transform_to(aa).shape == tuple() # That part makes sense: the input is a scalar so the output is too sc2 = SkyCoord(10*u.deg, 3*u.deg, 1*u.AU) assert sc2.transform_to(aa).shape == tuple() # in 3920 that assert fails, because the shape is (1,) # check that the same behavior occurs even if transform is from low-level classes icoo = ICRS(sc.data) icoo2 = ICRS(sc2.data) assert icoo.transform_to(aa).shape == tuple() assert icoo2.transform_to(aa).shape == tuple() @pytest.mark.remote_data def test_regression_3938(): """ Issue: https://github.com/astropy/astropy/issues/3938 """ # Set up list of targets - we don't use `from_name` here to avoid # remote_data requirements, but it does the same thing # vega = SkyCoord.from_name('Vega') vega = SkyCoord(279.23473479*u.deg, 38.78368896*u.deg) # capella = SkyCoord.from_name('Capella') capella = SkyCoord(79.17232794*u.deg, 45.99799147*u.deg) # sirius = SkyCoord.from_name('Sirius') sirius = SkyCoord(101.28715533*u.deg, -16.71611586*u.deg) targets = [vega, capella, sirius] # Feed list of targets into SkyCoord combined_coords = SkyCoord(targets) # Set up AltAz frame time = Time('2012-01-01 00:00:00') location = EarthLocation('10d', '45d', 0) aa = AltAz(location=location, obstime=time) combined_coords.transform_to(aa) # in 3938 the above yields ``UnitConversionError: '' (dimensionless) and 'pc' (length) are not convertible`` def test_regression_3998(): """ Issue: https://github.com/astropy/astropy/issues/3998 """ time = Time('2012-01-01 00:00:00') assert time.isscalar sun = get_sun(time) assert sun.isscalar # in 3998, the above yields False - `sun` is a length-1 vector assert sun.obstime is time @pytest.mark.remote_data def test_regression_4033(): """ Issue: https://github.com/astropy/astropy/issues/4033 """ # alb = SkyCoord.from_name('Albireo') alb = SkyCoord(292.68033548*u.deg, 27.95968007*u.deg) alb_wdist = SkyCoord(alb, distance=133*u.pc) # de = SkyCoord.from_name('Deneb') de = SkyCoord(310.35797975*u.deg, 45.28033881*u.deg) de_wdist = SkyCoord(de, distance=802*u.pc) aa = AltAz(location=EarthLocation(lat=45*u.deg, lon=0*u.deg), obstime='2010-1-1') deaa = de.transform_to(aa) albaa = alb.transform_to(aa) alb_wdistaa = alb_wdist.transform_to(aa) de_wdistaa = de_wdist.transform_to(aa) # these work fine sepnod = deaa.separation(albaa) sepwd = deaa.separation(alb_wdistaa) assert_quantity_allclose(sepnod, 22.2862*u.deg, rtol=1e-6) assert_quantity_allclose(sepwd, 22.2862*u.deg, rtol=1e-6) # parallax should be present when distance added assert np.abs(sepnod - sepwd) > 1*u.marcsec # in 4033, the following fail with a recursion error assert_quantity_allclose(de_wdistaa.separation(alb_wdistaa), 22.2862*u.deg, rtol=1e-3) assert_quantity_allclose(alb_wdistaa.separation(deaa), 22.2862*u.deg, rtol=1e-3) @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') @pytest.mark.skipif(OLDER_SCIPY, reason='Scipy too old') def test_regression_4082(): """ Issue: https://github.com/astropy/astropy/issues/4082 """ from astropy.coordinates import search_around_sky, search_around_3d cat = SkyCoord([10.076, 10.00455], [18.54746, 18.54896], unit='deg') search_around_sky(cat[0:1], cat, seplimit=u.arcsec * 60, storekdtree=False) # in the issue, this raises a TypeError # also check 3d for good measure, although it's not really affected by this bug directly cat3d = SkyCoord([10.076, 10.00455]*u.deg, [18.54746, 18.54896]*u.deg, distance=[0.1, 1.5]*u.kpc) search_around_3d(cat3d[0:1], cat3d, 1*u.kpc, storekdtree=False) def test_regression_4210(): """ Issue: https://github.com/astropy/astropy/issues/4210 Related PR with actual change: https://github.com/astropy/astropy/pull/4211 """ crd = SkyCoord(0*u.deg, 0*u.deg, distance=1*u.AU) ecl = crd.geocentricmeanecliptic # bug was that "lambda", which at the time was the name of the geocentric # ecliptic longitude, is a reserved keyword. So this just makes sure the # new name is are all valid ecl.lon # and for good measure, check the other ecliptic systems are all the same # names for their attributes from astropy.coordinates.builtin_frames import ecliptic for frame_name in ecliptic.__all__: eclcls = getattr(ecliptic, frame_name) eclobj = eclcls(1*u.deg, 2*u.deg, 3*u.AU) eclobj.lat eclobj.lon eclobj.distance def test_regression_futuretimes_4302(): """ Checks that an error is not raised for future times not covered by IERS tables (at least in a simple transform like CIRS->ITRS that simply requires the UTC<->UT1 conversion). Relevant comment: https://github.com/astropy/astropy/pull/4302#discussion_r44836531 """ from astropy.utils.exceptions import AstropyWarning # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils if hasattr(utils, '__warningregistry__'): utils.__warningregistry__.clear() with catch_warnings() as found_warnings: future_time = Time('2511-5-1') c = CIRS(1*u.deg, 2*u.deg, obstime=future_time) c.transform_to(ITRS(obstime=future_time)) if not isinstance(iers.IERS_Auto.iers_table, iers.IERS_Auto): saw_iers_warnings = False for w in found_warnings: if issubclass(w.category, AstropyWarning): if '(some) times are outside of range covered by IERS table' in str(w.message): saw_iers_warnings = True break assert saw_iers_warnings, 'Never saw IERS warning' def test_regression_4996(): # this part is the actual regression test deltat = np.linspace(-12, 12, 1000)*u.hour times = Time('2012-7-13 00:00:00') + deltat suncoo = get_sun(times) assert suncoo.shape == (len(times),) # and this is an additional test to make sure more complex arrays work times2 = Time('2012-7-13 00:00:00') + deltat.reshape(10, 20, 5) suncoo2 = get_sun(times2) assert suncoo2.shape == times2.shape # this is intentionally not allclose - they should be *exactly* the same assert np.all(suncoo.ra.ravel() == suncoo2.ra.ravel()) def test_regression_4293(): """Really just an extra test on FK4 no e, after finding that the units were not always taken correctly. This test is against explicitly doing the transformations on pp170 of Explanatory Supplement to the Astronomical Almanac (Seidelmann, 2005). See https://github.com/astropy/astropy/pull/4293#issuecomment-234973086 """ # Check all over sky, but avoiding poles (note that FK4 did not ignore # e terms within 10∘ of the poles... see p170 of explan.supp.). ra, dec = np.meshgrid(np.arange(0, 359, 45), np.arange(-80, 81, 40)) fk4 = FK4(ra.ravel() * u.deg, dec.ravel() * u.deg) Dc = -0.065838*u.arcsec Dd = +0.335299*u.arcsec # Dc * tan(obliquity), as given on p.170 Dctano = -0.028553*u.arcsec fk4noe_dec = (fk4.dec - (Dd*np.cos(fk4.ra) - Dc*np.sin(fk4.ra))*np.sin(fk4.dec) - Dctano*np.cos(fk4.dec)) fk4noe_ra = fk4.ra - (Dc*np.cos(fk4.ra) + Dd*np.sin(fk4.ra)) / np.cos(fk4.dec) fk4noe = fk4.transform_to(FK4NoETerms) # Tolerance here just set to how well the coordinates match, which is much # better than the claimed accuracy of <1 mas for this first-order in # v_earth/c approximation. # Interestingly, if one divides by np.cos(fk4noe_dec) in the ra correction, # the match becomes good to 2 μas. assert_quantity_allclose(fk4noe.ra, fk4noe_ra, atol=11.*u.uas, rtol=0) assert_quantity_allclose(fk4noe.dec, fk4noe_dec, atol=3.*u.uas, rtol=0) @pytest.mark.remote_data def test_regression_4926(): times = Time('2010-01-1') + np.arange(20)*u.day green = get_builtin_sites()['greenwich'] # this is the regression test moon = get_moon(times, green) # this is an additional test to make sure the GCRS->ICRS transform works for complex shapes moon.transform_to(ICRS()) # and some others to increase coverage of transforms moon.transform_to(HCRS(obstime="J2000")) moon.transform_to(HCRS(obstime=times)) def test_regression_5209(): "check that distances are not lost on SkyCoord init" time = Time('2015-01-01') moon = get_moon(time) new_coord = SkyCoord([moon]) assert_quantity_allclose(new_coord[0].distance, moon.distance) @pytest.mark.remote_data def test_regression_5133(): N = 1000 np.random.seed(12345) lon = np.random.uniform(-10, 10, N) * u.deg lat = np.random.uniform(50, 52, N) * u.deg alt = np.random.uniform(0, 10., N) * u.km time = Time('2010-1-1') objects = EarthLocation.from_geodetic(lon, lat, height=alt) itrs_coo = objects.get_itrs(time) homes = [EarthLocation.from_geodetic(lon=-1 * u.deg, lat=52 * u.deg, height=h) for h in (0, 1000, 10000)*u.km] altaz_frames = [AltAz(obstime=time, location=h) for h in homes] altaz_coos = [itrs_coo.transform_to(f) for f in altaz_frames] # they should all be different for coo in altaz_coos[1:]: assert not quantity_allclose(coo.az, coo.az[0]) assert not quantity_allclose(coo.alt, coo.alt[0]) @pytest.mark.remote_data def test_itrs_vals_5133(): time = Time('2010-1-1') el = EarthLocation.from_geodetic(lon=20*u.deg, lat=45*u.deg, height=0*u.km) lons = [20, 30, 20]*u.deg lats = [44, 45, 45]*u.deg alts = [0, 0, 10]*u.km coos = [EarthLocation.from_geodetic(lon, lat, height=alt).get_itrs(time) for lon, lat, alt in zip(lons, lats, alts)] aaf = AltAz(obstime=time, location=el) aacs = [coo.transform_to(aaf) for coo in coos] assert all([coo.isscalar for coo in aacs]) # the ~1 arcsec tolerance is b/c aberration makes it not exact assert_quantity_allclose(aacs[0].az, 180*u.deg, atol=1*u.arcsec) assert aacs[0].alt < 0*u.deg assert aacs[0].distance > 50*u.km # it should *not* actually be 90 degrees, b/c constant latitude is not # straight east anywhere except the equator... but should be close-ish assert_quantity_allclose(aacs[1].az, 90*u.deg, atol=5*u.deg) assert aacs[1].alt < 0*u.deg assert aacs[1].distance > 50*u.km assert_quantity_allclose(aacs[2].alt, 90*u.deg, atol=1*u.arcsec) assert_quantity_allclose(aacs[2].distance, 10*u.km) @pytest.mark.remote_data def test_regression_simple_5133(): t = Time('J2010') obj = EarthLocation(-1*u.deg, 52*u.deg, height=[100., 0.]*u.km) home = EarthLocation(-1*u.deg, 52*u.deg, height=10.*u.km) aa = obj.get_itrs(t).transform_to(AltAz(obstime=t, location=home)) # az is more-or-less undefined for straight up or down assert_quantity_allclose(aa.alt, [90, -90]*u.deg, rtol=1e-5) assert_quantity_allclose(aa.distance, [90, 10]*u.km) def test_regression_5743(): sc = SkyCoord([5, 10], [20, 30], unit=u.deg, obstime=['2017-01-01T00:00', '2017-01-01T00:10']) assert sc[0].obstime.shape == tuple() @pytest.mark.remote_data def test_regression_5889_5890(): # ensure we can represent all Representations and transform to ND frames greenwich = EarthLocation( *u.Quantity([3980608.90246817, -102.47522911, 4966861.27310067], unit=u.m)) times = Time("2017-03-20T12:00:00") + np.linspace(-2, 2, 3)*u.hour moon = get_moon(times, location=greenwich) targets = SkyCoord([350.7*u.deg, 260.7*u.deg], [18.4*u.deg, 22.4*u.deg]) targs2d = targets[:, np.newaxis] targs2d.transform_to(moon) def test_regression_6236(): # sunpy changes its representation upon initialisation of a frame, # including via `realize_frame`. Ensure this works. class MyFrame(BaseCoordinateFrame): default_representation = CartesianRepresentation my_attr = QuantityAttribute(default=0, unit=u.m) class MySpecialFrame(MyFrame): def __init__(self, *args, **kwargs): _rep_kwarg = kwargs.get('representation_type', None) super().__init__(*args, **kwargs) if not _rep_kwarg: self.representation_type = self.default_representation self._data = self.data.represent_as(self.representation_type) rep1 = UnitSphericalRepresentation([0., 1]*u.deg, [2., 3.]*u.deg) rep2 = SphericalRepresentation([10., 11]*u.deg, [12., 13.]*u.deg, [14., 15.]*u.kpc) mf1 = MyFrame(rep1, my_attr=1.*u.km) mf2 = mf1.realize_frame(rep2) # Normally, data is stored as is, but the representation gets set to a # default, even if a different representation instance was passed in. # realize_frame should do the same. Just in case, check attrs are passed. assert mf1.data is rep1 assert mf2.data is rep2 assert mf1.representation_type is CartesianRepresentation assert mf2.representation_type is CartesianRepresentation assert mf2.my_attr == mf1.my_attr # It should be independent of whether I set the reprensentation explicitly mf3 = MyFrame(rep1, my_attr=1.*u.km, representation_type='unitspherical') mf4 = mf3.realize_frame(rep2) assert mf3.data is rep1 assert mf4.data is rep2 assert mf3.representation_type is UnitSphericalRepresentation assert mf4.representation_type is CartesianRepresentation assert mf4.my_attr == mf3.my_attr # This should be enough to help sunpy, but just to be sure, a test # even closer to what is done there, i.e., transform the representation. msf1 = MySpecialFrame(rep1, my_attr=1.*u.km) msf2 = msf1.realize_frame(rep2) assert msf1.data is not rep1 # Gets transformed to Cartesian. assert msf2.data is not rep2 assert type(msf1.data) is CartesianRepresentation assert type(msf2.data) is CartesianRepresentation assert msf1.representation_type is CartesianRepresentation assert msf2.representation_type is CartesianRepresentation assert msf2.my_attr == msf1.my_attr # And finally a test where the input is not transformed. msf3 = MySpecialFrame(rep1, my_attr=1.*u.km, representation_type='unitspherical') msf4 = msf3.realize_frame(rep2) assert msf3.data is rep1 assert msf4.data is not rep2 assert msf3.representation_type is UnitSphericalRepresentation assert msf4.representation_type is CartesianRepresentation assert msf4.my_attr == msf3.my_attr @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') @pytest.mark.skipif(OLDER_SCIPY, reason='Scipy too old') def test_regression_6347(): sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg) sc2 = SkyCoord([1.1, 2.1]*u.deg, [3.1, 4.1]*u.deg) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_sky(sc2, 10*u.arcmin) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_sky(sc2, 1*u.arcmin) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_sky(sc2, 10*u.arcmin) assert len(d2d_10) == 2 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') @pytest.mark.skipif(OLDER_SCIPY, reason='Scipy too old') def test_regression_6347_3d(): sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, [5, 6]*u.kpc) sc2 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, [5.1, 6.1]*u.kpc) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_3d(sc2, 500*u.pc) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_3d(sc2, 50*u.pc) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_3d(sc2, 500*u.pc) assert len(d2d_10) > 0 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) def test_regression_6300(): """Check that importing old frame attribute names from astropy.coordinates still works. See comments at end of #6300 """ from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.coordinates import CartesianRepresentation from astropy.coordinates import (TimeFrameAttribute, QuantityFrameAttribute, CartesianRepresentationFrameAttribute) with catch_warnings() as found_warnings: attr = TimeFrameAttribute(default=Time("J2000")) for w in found_warnings: if issubclass(w.category, AstropyDeprecationWarning): break else: assert False, "Deprecation warning not raised" with catch_warnings() as found_warnings: attr = QuantityFrameAttribute(default=5*u.km) for w in found_warnings: if issubclass(w.category, AstropyDeprecationWarning): break else: assert False, "Deprecation warning not raised" with catch_warnings() as found_warnings: attr = CartesianRepresentationFrameAttribute( default=CartesianRepresentation([5,6,7]*u.kpc)) for w in found_warnings: if issubclass(w.category, AstropyDeprecationWarning): break else: assert False, "Deprecation warning not raised" @pytest.mark.remote_data def test_gcrs_itrs_cartesian_repr(): # issue 6436: transformation failed if coordinate representation was # Cartesian gcrs = GCRS(CartesianRepresentation((859.07256, -4137.20368, 5295.56871), unit='km'), representation_type='cartesian') gcrs.transform_to(ITRS) @pytest.mark.skipif('not HAS_YAML') def test_regression_6446(): # this succeeds even before 6446: sc1 = SkyCoord([1, 2], [3, 4], unit='deg') t1 = Table([sc1]) sio1 = io.StringIO() t1.write(sio1, format='ascii.ecsv') # but this fails due to the 6446 bug c1 = SkyCoord(1, 3, unit='deg') c2 = SkyCoord(2, 4, unit='deg') sc2 = SkyCoord([c1, c2]) t2 = Table([sc2]) sio2 = io.StringIO() t2.write(sio2, format='ascii.ecsv') assert sio1.getvalue() == sio2.getvalue() def test_regression_6448(): """ This tests the more narrow problem reported in 6446 that 6448 is meant to fix. `test_regression_6446` also covers this, but this test is provided so that this is still tested even if YAML isn't installed. """ sc1 = SkyCoord([1, 2], [3, 4], unit='deg') # this should always succeed even prior to 6448 assert sc1.galcen_v_sun is None c1 = SkyCoord(1, 3, unit='deg') c2 = SkyCoord(2, 4, unit='deg') sc2 = SkyCoord([c1, c2]) # without 6448 this fails assert sc2.galcen_v_sun is None def test_regression_6597(): frame_name = 'galactic' c1 = SkyCoord(1, 3, unit='deg', frame=frame_name) c2 = SkyCoord(2, 4, unit='deg', frame=frame_name) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame_name def test_regression_6597_2(): """ This tests the more subtle flaw that #6597 indirectly uncovered: that even in the case that the frames are ra/dec, they still might be the wrong *kind* """ frame = FK4(equinox='J1949') c1 = SkyCoord(1, 3, unit='deg', frame=frame) c2 = SkyCoord(2, 4, unit='deg', frame=frame) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame.name @pytest.mark.remote_data def test_regression_6697(): """ Test for regression of a bug in get_gcrs_posvel that introduced errors at the 1m/s level. Comparison data is derived from calculation in PINT https://github.com/nanograv/PINT/blob/master/pint/erfautils.py """ pint_vels = CartesianRepresentation(*(348.63632871, -212.31704928, -0.60154936), unit=u.m/u.s) location = EarthLocation(*(5327448.9957829, -1718665.73869569, 3051566.90295403), unit=u.m) t = Time(2458036.161966612, format='jd') obsgeopos, obsgeovel = location.get_gcrs_posvel(t) delta = (obsgeovel-pint_vels).norm() assert delta < 1*u.cm/u.s def test_regression_8138(): sc = SkyCoord(1*u.deg, 2*u.deg) newframe = GCRS() sc2 = sc.transform_to(newframe) assert newframe.is_equivalent_frame(sc2.frame) def test_regression_8276(): from astropy.coordinates import baseframe with pytest.raises(TypeError) as excinfo: class MyFrame(BaseCoordinateFrame): a = QuantityAttribute(unit=u.m) # note that the remainder of this with clause does not get executed # because an exception is raised here. A future PR is planned to # allow the default to be left off, after which the rest of this # test will get executed, so it is being left in place. See # https://github.com/astropy/astropy/pull/8300 for more info # we save the transform graph so that it doesn't acidentally mess with other tests old_transform_graph = baseframe.frame_transform_graph try: baseframe.frame_transform_graph = copy.copy(baseframe.frame_transform_graph) # as reported in 8276, this fails right here because registering the # transform tries to create a frame attribute @baseframe.frame_transform_graph.transform(FunctionTransform, MyFrame, AltAz) def trans(my_frame_coord, altaz_frame): pass # should also be able to *create* the Frame at this point MyFrame() finally: baseframe.frame_transform_graph = old_transform_graph assert "missing 1 required positional argument: 'default'" in str(excinfo.value) def test_regression_8615(): # note this is a "higher-level" symptom of the problem # _erfa/tests/test_erfa:test_float32_input is testing for, but is kept here # due to being a more practical version of the issue. crf = CartesianRepresentation(np.array([3, 0, 4], dtype=float) * u.pc) srf = SphericalRepresentation.from_cartesian(crf) # does not error in 8615 cr = CartesianRepresentation(np.array([3, 0, 4], dtype='f4') * u.pc) sr = SphericalRepresentation.from_cartesian(cr) # errors in 8615 assert_quantity_allclose(sr.distance, 5 * u.pc) assert_quantity_allclose(srf.distance, 5 * u.pc)
db83cab250c8b87109ebc70cbf2f6529856270670122eb15eee80157ab8eae5c
# Licensed under a 3-clause BSD style license - see PYFITS.rst import collections import copy import itertools import re import warnings from .card import Card, _pad, KEYWORD_LENGTH, UNDEFINED from .file import _File from .util import (encode_ascii, decode_ascii, fileobj_closed, fileobj_is_binary, path_like) from ._utils import parse_header from astropy.utils import isiterable from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.decorators import deprecated_renamed_argument BLOCK_SIZE = 2880 # the FITS block size # This regular expression can match a *valid* END card which just consists of # the string 'END' followed by all spaces, or an *invalid* end card which # consists of END, followed by any character that is *not* a valid character # for a valid FITS keyword (that is, this is not a keyword like 'ENDER' which # starts with 'END' but is not 'END'), followed by any arbitrary bytes. An # invalid end card may also consist of just 'END' with no trailing bytes. HEADER_END_RE = re.compile(encode_ascii( r'(?:(?P<valid>END {77}) *)|(?P<invalid>END$|END {0,76}[^A-Z0-9_-])')) # According to the FITS standard the only characters that may appear in a # header record are the restricted ASCII chars from 0x20 through 0x7E. VALID_HEADER_CHARS = set(map(chr, range(0x20, 0x7F))) END_CARD = 'END' + ' ' * 77 __doctest_skip__ = ['Header', 'Header.comments', 'Header.fromtextfile', 'Header.totextfile', 'Header.set', 'Header.update'] class Header: """ FITS header class. This class exposes both a dict-like interface and a list-like interface to FITS headers. The header may be indexed by keyword and, like a dict, the associated value will be returned. When the header contains cards with duplicate keywords, only the value of the first card with the given keyword will be returned. It is also possible to use a 2-tuple as the index in the form (keyword, n)--this returns the n-th value with that keyword, in the case where there are duplicate keywords. For example:: >>> header['NAXIS'] 0 >>> header[('FOO', 1)] # Return the value of the second FOO keyword 'foo' The header may also be indexed by card number:: >>> header[0] # Return the value of the first card in the header 'T' Commentary keywords such as HISTORY and COMMENT are special cases: When indexing the Header object with either 'HISTORY' or 'COMMENT' a list of all the HISTORY/COMMENT values is returned:: >>> header['HISTORY'] This is the first history entry in this header. This is the second history entry in this header. ... See the Astropy documentation for more details on working with headers. """ def __init__(self, cards=[], copy=False): """ Construct a `Header` from an iterable and/or text file. Parameters ---------- cards : A list of `Card` objects, optional The cards to initialize the header with. Also allowed are other `Header` (or `dict`-like) objects. .. versionchanged:: 1.2 Allowed ``cards`` to be a `dict`-like object. copy : bool, optional If ``True`` copies the ``cards`` if they were another `Header` instance. Default is ``False``. .. versionadded:: 1.3 """ self.clear() if isinstance(cards, Header): if copy: cards = cards.copy() cards = cards.cards elif isinstance(cards, dict): cards = cards.items() for card in cards: self.append(card, end=True) self._modified = False def __len__(self): return len(self._cards) def __iter__(self): for card in self._cards: yield card.keyword def __contains__(self, keyword): if keyword in self._keyword_indices or keyword in self._rvkc_indices: # For the most common case (single, standard form keyword lookup) # this will work and is an O(1) check. If it fails that doesn't # guarantee absence, just that we have to perform the full set of # checks in self._cardindex return True try: self._cardindex(keyword) except (KeyError, IndexError): return False return True def __getitem__(self, key): if isinstance(key, slice): return Header([copy.copy(c) for c in self._cards[key]]) elif self._haswildcard(key): return Header([copy.copy(self._cards[idx]) for idx in self._wildcardmatch(key)]) elif (isinstance(key, str) and key.upper() in Card._commentary_keywords): key = key.upper() # Special case for commentary cards return _HeaderCommentaryCards(self, key) if isinstance(key, tuple): keyword = key[0] else: keyword = key card = self._cards[self._cardindex(key)] if card.field_specifier is not None and keyword == card.rawkeyword: # This is RVKC; if only the top-level keyword was specified return # the raw value, not the parsed out float value return card.rawvalue value = card.value if value == UNDEFINED: return None return value def __setitem__(self, key, value): if self._set_slice(key, value, self): return if isinstance(value, tuple): if not (0 < len(value) <= 2): raise ValueError( 'A Header item may be set with either a scalar value, ' 'a 1-tuple containing a scalar value, or a 2-tuple ' 'containing a scalar value and comment string.') if len(value) == 1: value, comment = value[0], None if value is None: value = UNDEFINED elif len(value) == 2: value, comment = value if value is None: value = UNDEFINED if comment is None: comment = '' else: comment = None card = None if isinstance(key, int): card = self._cards[key] elif isinstance(key, tuple): card = self._cards[self._cardindex(key)] if value is None: value = UNDEFINED if card: card.value = value if comment is not None: card.comment = comment if card._modified: self._modified = True else: # If we get an IndexError that should be raised; we don't allow # assignment to non-existing indices self._update((key, value, comment)) def __delitem__(self, key): if isinstance(key, slice) or self._haswildcard(key): # This is very inefficient but it's not a commonly used feature. # If someone out there complains that they make heavy use of slice # deletions and it's too slow, well, we can worry about it then # [the solution is not too complicated--it would be wait 'til all # the cards are deleted before updating _keyword_indices rather # than updating it once for each card that gets deleted] if isinstance(key, slice): indices = range(*key.indices(len(self))) # If the slice step is backwards we want to reverse it, because # it will be reversed in a few lines... if key.step and key.step < 0: indices = reversed(indices) else: indices = self._wildcardmatch(key) for idx in reversed(indices): del self[idx] return elif isinstance(key, str): # delete ALL cards with the same keyword name key = Card.normalize_keyword(key) indices = self._keyword_indices if key not in self._keyword_indices: indices = self._rvkc_indices if key not in indices: # if keyword is not present raise KeyError. # To delete keyword without caring if they were present, # Header.remove(Keyword) can be used with optional argument ignore_missing as True raise KeyError("Keyword '{}' not found.".format(key)) for idx in reversed(indices[key]): # Have to copy the indices list since it will be modified below del self[idx] return idx = self._cardindex(key) card = self._cards[idx] keyword = card.keyword del self._cards[idx] keyword = Card.normalize_keyword(keyword) indices = self._keyword_indices[keyword] indices.remove(idx) if not indices: del self._keyword_indices[keyword] # Also update RVKC indices if necessary :/ if card.field_specifier is not None: indices = self._rvkc_indices[card.rawkeyword] indices.remove(idx) if not indices: del self._rvkc_indices[card.rawkeyword] # We also need to update all other indices self._updateindices(idx, increment=False) self._modified = True def __repr__(self): return self.tostring(sep='\n', endcard=False, padding=False) def __str__(self): return self.tostring() def __eq__(self, other): """ Two Headers are equal only if they have the exact same string representation. """ return str(self) == str(other) def __add__(self, other): temp = self.copy(strip=False) temp.extend(other) return temp def __iadd__(self, other): self.extend(other) return self def _ipython_key_completions_(self): return self.__iter__() @property def cards(self): """ The underlying physical cards that make up this Header; it can be looked at, but it should not be modified directly. """ return _CardAccessor(self) @property def comments(self): """ View the comments associated with each keyword, if any. For example, to see the comment on the NAXIS keyword: >>> header.comments['NAXIS'] number of data axes Comments can also be updated through this interface: >>> header.comments['NAXIS'] = 'Number of data axes' """ return _HeaderComments(self) @property def _modified(self): """ Whether or not the header has been modified; this is a property so that it can also check each card for modifications--cards may have been modified directly without the header containing it otherwise knowing. """ modified_cards = any(c._modified for c in self._cards) if modified_cards: # If any cards were modified then by definition the header was # modified self.__dict__['_modified'] = True return self.__dict__['_modified'] @_modified.setter def _modified(self, val): self.__dict__['_modified'] = val @classmethod def fromstring(cls, data, sep=''): """ Creates an HDU header from a byte string containing the entire header data. Parameters ---------- data : str or bytes String or bytes containing the entire header. In the case of bytes they will be decoded using latin-1 (only plain ASCII characters are allowed in FITS headers but latin-1 allows us to retain any invalid bytes that might appear in malformatted FITS files). sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). In general this is only used in cases where a header was printed as text (e.g. with newlines after each card) and you want to create a new `Header` from it by copy/pasting. Examples -------- >>> from astropy.io.fits import Header >>> hdr = Header({'SIMPLE': True}) >>> Header.fromstring(hdr.tostring()) == hdr True If you want to create a `Header` from printed text it's not necessary to have the exact binary structure as it would appear in a FITS file, with the full 80 byte card length. Rather, each "card" can end in a newline and does not have to be padded out to a full card length as long as it "looks like" a FITS header: >>> hdr = Header.fromstring(\"\"\"\\ ... SIMPLE = T / conforms to FITS standard ... BITPIX = 8 / array data type ... NAXIS = 0 / number of array dimensions ... EXTEND = T ... \"\"\", sep='\\n') >>> hdr['SIMPLE'] True >>> hdr['BITPIX'] 8 >>> len(hdr) 4 Returns ------- header A new `Header` instance. """ cards = [] # If the card separator contains characters that may validly appear in # a card, the only way to unambiguously distinguish between cards is to # require that they be Card.length long. However, if the separator # contains non-valid characters (namely \n) the cards may be split # immediately at the separator require_full_cardlength = set(sep).issubset(VALID_HEADER_CHARS) if isinstance(data, bytes): # FITS supports only ASCII, but decode as latin1 and just take all # bytes for now; if it results in mojibake due to e.g. UTF-8 # encoded data in a FITS header that's OK because it shouldn't be # there in the first place--accepting it here still gives us the # opportunity to display warnings later during validation CONTINUE = b'CONTINUE' END = b'END' end_card = END_CARD.encode('ascii') sep = sep.encode('latin1') empty = b'' else: CONTINUE = 'CONTINUE' END = 'END' end_card = END_CARD empty = '' # Split the header into individual cards idx = 0 image = [] while idx < len(data): if require_full_cardlength: end_idx = idx + Card.length else: try: end_idx = data.index(sep, idx) except ValueError: end_idx = len(data) next_image = data[idx:end_idx] idx = end_idx + len(sep) if image: if next_image[:8] == CONTINUE: image.append(next_image) continue cards.append(Card.fromstring(empty.join(image))) if require_full_cardlength: if next_image == end_card: image = [] break else: if next_image.split(sep)[0].rstrip() == END: image = [] break image = [next_image] # Add the last image that was found before the end, if any if image: cards.append(Card.fromstring(empty.join(image))) return cls._fromcards(cards) @classmethod def fromfile(cls, fileobj, sep='', endcard=True, padding=True): """ Similar to :meth:`Header.fromstring`, but reads the header string from a given file-like object or filename. Parameters ---------- fileobj : str, file-like A filename or an open file-like object from which a FITS header is to be read. For open file handles the file pointer must be at the beginning of the header. sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). endcard : bool, optional If True (the default) the header must end with an END card in order to be considered valid. If an END card is not found an `OSError` is raised. padding : bool, optional If True (the default) the header will be required to be padded out to a multiple of 2880, the FITS header block size. Otherwise any padding, or lack thereof, is ignored. Returns ------- header A new `Header` instance. """ close_file = False if isinstance(fileobj, path_like): # If sep is non-empty we are trying to read a header printed to a # text file, so open in text mode by default to support newline # handling; if a binary-mode file object is passed in, the user is # then on their own w.r.t. newline handling. # # Otherwise assume we are reading from an actual FITS file and open # in binary mode. if sep: fileobj = open(fileobj, 'r', encoding='latin1') else: fileobj = open(fileobj, 'rb') close_file = True try: is_binary = fileobj_is_binary(fileobj) def block_iter(nbytes): while True: data = fileobj.read(nbytes) if data: yield data else: break return cls._from_blocks(block_iter, is_binary, sep, endcard, padding)[1] finally: if close_file: fileobj.close() @classmethod def _fromcards(cls, cards): header = cls() for idx, card in enumerate(cards): header._cards.append(card) keyword = Card.normalize_keyword(card.keyword) header._keyword_indices[keyword].append(idx) if card.field_specifier is not None: header._rvkc_indices[card.rawkeyword].append(idx) header._modified = False return header @classmethod def _from_blocks(cls, block_iter, is_binary, sep, endcard, padding): """ The meat of `Header.fromfile`; in a separate method so that `Header.fromfile` itself is just responsible for wrapping file handling. Also used by `_BaseHDU.fromstring`. ``block_iter`` should be a callable which, given a block size n (typically 2880 bytes as used by the FITS standard) returns an iterator of byte strings of that block size. ``is_binary`` specifies whether the returned blocks are bytes or text Returns both the entire header *string*, and the `Header` object returned by Header.fromstring on that string. """ actual_block_size = _block_size(sep) clen = Card.length + len(sep) blocks = block_iter(actual_block_size) # Read the first header block. try: block = next(blocks) except StopIteration: raise EOFError() if not is_binary: # TODO: There needs to be error handling at *this* level for # non-ASCII characters; maybe at this stage decoding latin-1 might # be safer block = encode_ascii(block) read_blocks = [] is_eof = False end_found = False # continue reading header blocks until END card or EOF is reached while True: # find the END card end_found, block = cls._find_end_card(block, clen) read_blocks.append(decode_ascii(block)) if end_found: break try: block = next(blocks) except StopIteration: is_eof = True break if not block: is_eof = True break if not is_binary: block = encode_ascii(block) if not end_found and is_eof and endcard: # TODO: Pass this error to validation framework as an ERROR, # rather than raising an exception raise OSError('Header missing END card.') header_str = ''.join(read_blocks) _check_padding(header_str, actual_block_size, is_eof, check_block_size=padding) return header_str, cls.fromstring(header_str, sep=sep) @classmethod def _find_end_card(cls, block, card_len): """ Utility method to search a header block for the END card and handle invalid END cards. This method can also returned a modified copy of the input header block in case an invalid end card needs to be sanitized. """ for mo in HEADER_END_RE.finditer(block): # Ensure the END card was found, and it started on the # boundary of a new card (see ticket #142) if mo.start() % card_len != 0: continue # This must be the last header block, otherwise the # file is malformatted if mo.group('invalid'): offset = mo.start() trailing = block[offset + 3:offset + card_len - 3].rstrip() if trailing: trailing = repr(trailing).lstrip('ub') # TODO: Pass this warning up to the validation framework warnings.warn( 'Unexpected bytes trailing END keyword: {0}; these ' 'bytes will be replaced with spaces on write.'.format( trailing), AstropyUserWarning) else: # TODO: Pass this warning up to the validation framework warnings.warn( 'Missing padding to end of the FITS block after the ' 'END keyword; additional spaces will be appended to ' 'the file upon writing to pad out to {0} ' 'bytes.'.format(BLOCK_SIZE), AstropyUserWarning) # Sanitize out invalid END card now that the appropriate # warnings have been issued block = (block[:offset] + encode_ascii(END_CARD) + block[offset + len(END_CARD):]) return True, block return False, block def tostring(self, sep='', endcard=True, padding=True): r""" Returns a string representation of the header. By default this uses no separator between cards, adds the END card, and pads the string with spaces to the next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file. Parameters ---------- sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If True (default) adds the END card to the end of the header string padding : bool, optional If True (default) pads the string with spaces out to the next multiple of 2880 characters Returns ------- s : str A string representing a FITS header. """ lines = [] for card in self._cards: s = str(card) # Cards with CONTINUE cards may be longer than 80 chars; so break # them into multiple lines while s: lines.append(s[:Card.length]) s = s[Card.length:] s = sep.join(lines) if endcard: s += sep + _pad('END') if padding: s += ' ' * _pad_length(len(s)) return s @deprecated_renamed_argument('clobber', 'overwrite', '2.0') def tofile(self, fileobj, sep='', endcard=True, padding=True, overwrite=False): r""" Writes the header to file or file-like object. By default this writes the header exactly as it would be written to a FITS file, with the END card included and padding to the next multiple of 2880 bytes. However, aspects of this may be controlled. Parameters ---------- fileobj : str, file, optional Either the pathname of a file, or an open file handle or file-like object sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If `True` (default) adds the END card to the end of the header string padding : bool, optional If `True` (default) pads the string with spaces out to the next multiple of 2880 characters overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. .. versionchanged:: 1.3 ``overwrite`` replaces the deprecated ``clobber`` argument. """ close_file = fileobj_closed(fileobj) if not isinstance(fileobj, _File): fileobj = _File(fileobj, mode='ostream', overwrite=overwrite) try: blocks = self.tostring(sep=sep, endcard=endcard, padding=padding) actual_block_size = _block_size(sep) if padding and len(blocks) % actual_block_size != 0: raise OSError( 'Header size ({}) is not a multiple of block ' 'size ({}).'.format( len(blocks) - actual_block_size + BLOCK_SIZE, BLOCK_SIZE)) if not fileobj.simulateonly: fileobj.flush() try: offset = fileobj.tell() except (AttributeError, OSError): offset = 0 fileobj.write(blocks.encode('ascii')) fileobj.flush() finally: if close_file: fileobj.close() @classmethod def fromtextfile(cls, fileobj, endcard=False): """ Read a header from a simple text file or file-like object. Equivalent to:: >>> Header.fromfile(fileobj, sep='\\n', endcard=False, ... padding=False) See Also -------- fromfile """ return cls.fromfile(fileobj, sep='\n', endcard=endcard, padding=False) @deprecated_renamed_argument('clobber', 'overwrite', '2.0') def totextfile(self, fileobj, endcard=False, overwrite=False): """ Write the header as text to a file or a file-like object. Equivalent to:: >>> Header.tofile(fileobj, sep='\\n', endcard=False, ... padding=False, overwrite=overwrite) .. versionchanged:: 1.3 ``overwrite`` replaces the deprecated ``clobber`` argument. See Also -------- tofile """ self.tofile(fileobj, sep='\n', endcard=endcard, padding=False, overwrite=overwrite) def clear(self): """ Remove all cards from the header. """ self._cards = [] self._keyword_indices = collections.defaultdict(list) self._rvkc_indices = collections.defaultdict(list) def copy(self, strip=False): """ Make a copy of the :class:`Header`. .. versionchanged:: 1.3 `copy.copy` and `copy.deepcopy` on a `Header` will call this method. Parameters ---------- strip : bool, optional If `True`, strip any headers that are specific to one of the standard HDU types, so that this header can be used in a different HDU. Returns ------- header A new :class:`Header` instance. """ tmp = Header((copy.copy(card) for card in self._cards)) if strip: tmp._strip() return tmp def __copy__(self): return self.copy() def __deepcopy__(self, *args, **kwargs): return self.copy() @classmethod def fromkeys(cls, iterable, value=None): """ Similar to :meth:`dict.fromkeys`--creates a new `Header` from an iterable of keywords and an optional default value. This method is not likely to be particularly useful for creating real world FITS headers, but it is useful for testing. Parameters ---------- iterable Any iterable that returns strings representing FITS keywords. value : optional A default value to assign to each keyword; must be a valid type for FITS keywords. Returns ------- header A new `Header` instance. """ d = cls() if not isinstance(value, tuple): value = (value,) for key in iterable: d.append((key,) + value) return d def get(self, key, default=None): """ Similar to :meth:`dict.get`--returns the value associated with keyword in the header, or a default value if the keyword is not found. Parameters ---------- key : str A keyword that may or may not be in the header. default : optional A default value to return if the keyword is not found in the header. Returns ------- value The value associated with the given keyword, or the default value if the keyword is not in the header. """ try: return self[key] except (KeyError, IndexError): return default def set(self, keyword, value=None, comment=None, before=None, after=None): """ Set the value and/or comment and/or position of a specified keyword. If the keyword does not already exist in the header, a new keyword is created in the specified position, or appended to the end of the header if no position is specified. This method is similar to :meth:`Header.update` prior to Astropy v0.1. .. note:: It should be noted that ``header.set(keyword, value)`` and ``header.set(keyword, value, comment)`` are equivalent to ``header[keyword] = value`` and ``header[keyword] = (value, comment)`` respectively. New keywords can also be inserted relative to existing keywords using, for example:: >>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes')) to insert before an existing keyword, or:: >>> header.insert('NAXIS', ('NAXIS1', 4096), after=True) to insert after an existing keyword. The only advantage of using :meth:`Header.set` is that it easily replaces the old usage of :meth:`Header.update` both conceptually and in terms of function signature. Parameters ---------- keyword : str A header keyword value : str, optional The value to set for the given keyword; if None the existing value is kept, but '' may be used to set a blank value comment : str, optional The comment to set for the given keyword; if None the existing comment is kept, but ``''`` may be used to set a blank comment before : str, int, optional Name of the keyword, or index of the `Card` before which this card should be located in the header. The argument ``before`` takes precedence over ``after`` if both specified. after : str, int, optional Name of the keyword, or index of the `Card` after which this card should be located in the header. """ # Create a temporary card that looks like the one being set; if the # temporary card turns out to be a RVKC this will make it easier to # deal with the idiosyncrasies thereof # Don't try to make a temporary card though if they keyword looks like # it might be a HIERARCH card or is otherwise invalid--this step is # only for validating RVKCs. if (len(keyword) <= KEYWORD_LENGTH and Card._keywd_FSC_RE.match(keyword) and keyword not in self._keyword_indices): new_card = Card(keyword, value, comment) new_keyword = new_card.keyword else: new_keyword = keyword if (new_keyword not in Card._commentary_keywords and new_keyword in self): if comment is None: comment = self.comments[keyword] if value is None: value = self[keyword] self[keyword] = (value, comment) if before is not None or after is not None: card = self._cards[self._cardindex(keyword)] self._relativeinsert(card, before=before, after=after, replace=True) elif before is not None or after is not None: self._relativeinsert((keyword, value, comment), before=before, after=after) else: self[keyword] = (value, comment) def items(self): """Like :meth:`dict.items`.""" for card in self._cards: yield (card.keyword, card.value) def keys(self): """ Like :meth:`dict.keys`--iterating directly over the `Header` instance has the same behavior. """ for card in self._cards: yield card.keyword def values(self): """Like :meth:`dict.values`.""" for card in self._cards: yield card.value def pop(self, *args): """ Works like :meth:`list.pop` if no arguments or an index argument are supplied; otherwise works like :meth:`dict.pop`. """ if len(args) > 2: raise TypeError('Header.pop expected at most 2 arguments, got ' '{}'.format(len(args))) if len(args) == 0: key = -1 else: key = args[0] try: value = self[key] except (KeyError, IndexError): if len(args) == 2: return args[1] raise del self[key] return value def popitem(self): """Similar to :meth:`dict.popitem`.""" try: k, v = next(self.items()) except StopIteration: raise KeyError('Header is empty') del self[k] return k, v def setdefault(self, key, default=None): """Similar to :meth:`dict.setdefault`.""" try: return self[key] except (KeyError, IndexError): self[key] = default return default def update(self, *args, **kwargs): """ Update the Header with new keyword values, updating the values of existing keywords and appending new keywords otherwise; similar to `dict.update`. `update` accepts either a dict-like object or an iterable. In the former case the keys must be header keywords and the values may be either scalar values or (value, comment) tuples. In the case of an iterable the items must be (keyword, value) tuples or (keyword, value, comment) tuples. Arbitrary arguments are also accepted, in which case the update() is called again with the kwargs dict as its only argument. That is, :: >>> header.update(NAXIS1=100, NAXIS2=100) is equivalent to:: header.update({'NAXIS1': 100, 'NAXIS2': 100}) .. warning:: As this method works similarly to `dict.update` it is very different from the ``Header.update()`` method in Astropy v0.1. Use of the old API was **deprecated** for a long time and is now removed. Most uses of the old API can be replaced as follows: * Replace :: header.update(keyword, value) with :: header[keyword] = value * Replace :: header.update(keyword, value, comment=comment) with :: header[keyword] = (value, comment) * Replace :: header.update(keyword, value, before=before_keyword) with :: header.insert(before_keyword, (keyword, value)) * Replace :: header.update(keyword, value, after=after_keyword) with :: header.insert(after_keyword, (keyword, value), after=True) See also :meth:`Header.set` which is a new method that provides an interface similar to the old ``Header.update()`` and may help make transition a little easier. """ if args: other = args[0] else: other = None def update_from_dict(k, v): if not isinstance(v, tuple): card = Card(k, v) elif 0 < len(v) <= 2: card = Card(*((k,) + v)) else: raise ValueError( 'Header update value for key %r is invalid; the ' 'value must be either a scalar, a 1-tuple ' 'containing the scalar value, or a 2-tuple ' 'containing the value and a comment string.' % k) self._update(card) if other is None: pass elif isinstance(other, Header): for card in other.cards: self._update(card) elif hasattr(other, 'items'): for k, v in other.items(): update_from_dict(k, v) elif hasattr(other, 'keys'): for k in other.keys(): update_from_dict(k, other[k]) else: for idx, card in enumerate(other): if isinstance(card, Card): self._update(card) elif isinstance(card, tuple) and (1 < len(card) <= 3): self._update(Card(*card)) else: raise ValueError( 'Header update sequence item #{} is invalid; ' 'the item must either be a 2-tuple containing ' 'a keyword and value, or a 3-tuple containing ' 'a keyword, value, and comment string.'.format(idx)) if kwargs: self.update(kwargs) def append(self, card=None, useblanks=True, bottom=False, end=False): """ Appends a new keyword+value card to the end of the Header, similar to `list.append`. By default if the last cards in the Header have commentary keywords, this will append the new keyword before the commentary (unless the new keyword is also commentary). Also differs from `list.append` in that it can be called with no arguments: In this case a blank card is appended to the end of the Header. In the case all the keyword arguments are ignored. Parameters ---------- card : str, tuple A keyword or a (keyword, value, [comment]) tuple representing a single header card; the comment is optional in which case a 2-tuple may be used useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. bottom : bool, optional If True, instead of appending after the last non-commentary card, append after the last non-blank card. end : bool, optional If True, ignore the useblanks and bottom options, and append at the very end of the Header. """ if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif card is None: card = Card() elif not isinstance(card, Card): raise ValueError( 'The value appended to a Header must be either a keyword or ' '(keyword, value, [comment]) tuple; got: {!r}'.format(card)) if not end and card.is_blank: # Blank cards should always just be appended to the end end = True if end: self._cards.append(card) idx = len(self._cards) - 1 else: idx = len(self._cards) - 1 while idx >= 0 and self._cards[idx].is_blank: idx -= 1 if not bottom and card.keyword not in Card._commentary_keywords: while (idx >= 0 and self._cards[idx].keyword in Card._commentary_keywords): idx -= 1 idx += 1 self._cards.insert(idx, card) self._updateindices(idx) keyword = Card.normalize_keyword(card.keyword) self._keyword_indices[keyword].append(idx) if card.field_specifier is not None: self._rvkc_indices[card.rawkeyword].append(idx) if not end: # If the appended card was a commentary card, and it was appended # before existing cards with the same keyword, the indices for # cards with that keyword may have changed if not bottom and card.keyword in Card._commentary_keywords: self._keyword_indices[keyword].sort() # Finally, if useblanks, delete a blank cards from the end if useblanks and self._countblanks(): # Don't do this unless there is at least one blanks at the end # of the header; we need to convert the card to its string # image to see how long it is. In the vast majority of cases # this will just be 80 (Card.length) but it may be longer for # CONTINUE cards self._useblanks(len(str(card)) // Card.length) self._modified = True def extend(self, cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bottom=False, end=False): """ Appends multiple keyword+value cards to the end of the header, similar to `list.extend`. Parameters ---------- cards : iterable An iterable of (keyword, value, [comment]) tuples; see `Header.append`. strip : bool, optional Remove any keywords that have meaning only to specific types of HDUs, so that only more general keywords are added from extension Header or Card list (default: `True`). unique : bool, optional If `True`, ensures that no duplicate keywords are appended; keywords already in this header are simply discarded. The exception is commentary keywords (COMMENT, HISTORY, etc.): they are only treated as duplicates if their values match. update : bool, optional If `True`, update the current header with the values and comments from duplicate keywords in the input header. This supersedes the ``unique`` argument. Commentary keywords are treated the same as if ``unique=True``. update_first : bool, optional If the first keyword in the header is 'SIMPLE', and the first keyword in the input header is 'XTENSION', the 'SIMPLE' keyword is replaced by the 'XTENSION' keyword. Likewise if the first keyword in the header is 'XTENSION' and the first keyword in the input header is 'SIMPLE', the 'XTENSION' keyword is replaced by the 'SIMPLE' keyword. This behavior is otherwise dumb as to whether or not the resulting header is a valid primary or extension header. This is mostly provided to support backwards compatibility with the old ``Header.fromTxtFile`` method, and only applies if ``update=True``. useblanks, bottom, end : bool, optional These arguments are passed to :meth:`Header.append` while appending new cards to the header. """ temp = Header(cards) if strip: temp._strip() if len(self): first = self._cards[0].keyword else: first = None # We don't immediately modify the header, because first we need to sift # out any duplicates in the new header prior to adding them to the # existing header, but while *allowing* duplicates from the header # being extended from (see ticket #156) extend_cards = [] for idx, card in enumerate(temp.cards): keyword = card.keyword if keyword not in Card._commentary_keywords: if unique and not update and keyword in self: continue elif update: if idx == 0 and update_first: # Dumbly update the first keyword to either SIMPLE or # XTENSION as the case may be, as was in the case in # Header.fromTxtFile if ((keyword == 'SIMPLE' and first == 'XTENSION') or (keyword == 'XTENSION' and first == 'SIMPLE')): del self[0] self.insert(0, card) else: self[keyword] = (card.value, card.comment) elif keyword in self: self[keyword] = (card.value, card.comment) else: extend_cards.append(card) else: extend_cards.append(card) else: if (unique or update) and keyword in self: if card.is_blank: extend_cards.append(card) continue for value in self[keyword]: if value == card.value: break else: extend_cards.append(card) else: extend_cards.append(card) for card in extend_cards: self.append(card, useblanks=useblanks, bottom=bottom, end=end) def count(self, keyword): """ Returns the count of the given keyword in the header, similar to `list.count` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to count instances of in the header """ keyword = Card.normalize_keyword(keyword) # We have to look before we leap, since otherwise _keyword_indices, # being a defaultdict, will create an entry for the nonexistent keyword if keyword not in self._keyword_indices: raise KeyError("Keyword {!r} not found.".format(keyword)) return len(self._keyword_indices[keyword]) def index(self, keyword, start=None, stop=None): """ Returns the index if the first instance of the given keyword in the header, similar to `list.index` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to look up in the list of all keywords in the header start : int, optional The lower bound for the index stop : int, optional The upper bound for the index """ if start is None: start = 0 if stop is None: stop = len(self._cards) if stop < start: step = -1 else: step = 1 norm_keyword = Card.normalize_keyword(keyword) for idx in range(start, stop, step): if self._cards[idx].keyword.upper() == norm_keyword: return idx else: raise ValueError('The keyword {!r} is not in the ' ' header.'.format(keyword)) def insert(self, key, card, useblanks=True, after=False): """ Inserts a new keyword+value card into the Header at a given location, similar to `list.insert`. Parameters ---------- key : int, str, or tuple The index into the list of header keywords before which the new keyword should be inserted, or the name of a keyword before which the new keyword should be inserted. Can also accept a (keyword, index) tuple for inserting around duplicate keywords. card : str, tuple A keyword or a (keyword, value, [comment]) tuple; see `Header.append` useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. after : bool, optional If set to `True`, insert *after* the specified index or keyword, rather than before it. Defaults to `False`. """ if not isinstance(key, int): # Don't pass through ints to _cardindex because it will not take # kindly to indices outside the existing number of cards in the # header, which insert needs to be able to support (for example # when inserting into empty headers) idx = self._cardindex(key) else: idx = key if after: if idx == -1: idx = len(self._cards) else: idx += 1 if idx >= len(self._cards): # This is just an append (Though it must be an append absolutely to # the bottom, ignoring blanks, etc.--the point of the insert method # is that you get exactly what you asked for with no surprises) self.append(card, end=True) return if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif not isinstance(card, Card): raise ValueError( 'The value inserted into a Header must be either a keyword or ' '(keyword, value, [comment]) tuple; got: {!r}'.format(card)) self._cards.insert(idx, card) keyword = card.keyword # If idx was < 0, determine the actual index according to the rules # used by list.insert() if idx < 0: idx += len(self._cards) - 1 if idx < 0: idx = 0 # All the keyword indices above the insertion point must be updated self._updateindices(idx) keyword = Card.normalize_keyword(keyword) self._keyword_indices[keyword].append(idx) count = len(self._keyword_indices[keyword]) if count > 1: # There were already keywords with this same name if keyword not in Card._commentary_keywords: warnings.warn( 'A {!r} keyword already exists in this header. Inserting ' 'duplicate keyword.'.format(keyword), AstropyUserWarning) self._keyword_indices[keyword].sort() if card.field_specifier is not None: # Update the index of RVKC as well rvkc_indices = self._rvkc_indices[card.rawkeyword] rvkc_indices.append(idx) rvkc_indices.sort() if useblanks: self._useblanks(len(str(card)) // Card.length) self._modified = True def remove(self, keyword, ignore_missing=False, remove_all=False): """ Removes the first instance of the given keyword from the header similar to `list.remove` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword of which to remove the first instance in the header. ignore_missing : bool, optional When True, ignores missing keywords. Otherwise, if the keyword is not present in the header a KeyError is raised. remove_all : bool, optional When True, all instances of keyword will be removed. Otherwise only the first instance of the given keyword is removed. """ keyword = Card.normalize_keyword(keyword) if keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] if remove_all: while keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] elif not ignore_missing: raise KeyError("Keyword '{}' not found.".format(keyword)) def rename_keyword(self, oldkeyword, newkeyword, force=False): """ Rename a card's keyword in the header. Parameters ---------- oldkeyword : str or int Old keyword or card index newkeyword : str New keyword force : bool, optional When `True`, if the new keyword already exists in the header, force the creation of a duplicate keyword. Otherwise a `ValueError` is raised. """ oldkeyword = Card.normalize_keyword(oldkeyword) newkeyword = Card.normalize_keyword(newkeyword) if newkeyword == 'CONTINUE': raise ValueError('Can not rename to CONTINUE') if (newkeyword in Card._commentary_keywords or oldkeyword in Card._commentary_keywords): if not (newkeyword in Card._commentary_keywords and oldkeyword in Card._commentary_keywords): raise ValueError('Regular and commentary keys can not be ' 'renamed to each other.') elif not force and newkeyword in self: raise ValueError('Intended keyword {} already exists in header.' .format(newkeyword)) idx = self.index(oldkeyword) card = self._cards[idx] del self[idx] self.insert(idx, (newkeyword, card.value, card.comment)) def add_history(self, value, before=None, after=None): """ Add a ``HISTORY`` card. Parameters ---------- value : str History text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('HISTORY', value, before=before, after=after) def add_comment(self, value, before=None, after=None): """ Add a ``COMMENT`` card. Parameters ---------- value : str Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('COMMENT', value, before=before, after=after) def add_blank(self, value='', before=None, after=None): """ Add a blank card. Parameters ---------- value : str, optional Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('', value, before=before, after=after) def _update(self, card): """ The real update code. If keyword already exists, its value and/or comment will be updated. Otherwise a new card will be appended. This will not create a duplicate keyword except in the case of commentary cards. The only other way to force creation of a duplicate is to use the insert(), append(), or extend() methods. """ keyword, value, comment = card # Lookups for existing/known keywords are case-insensitive keyword = keyword.upper() if keyword.startswith('HIERARCH '): keyword = keyword[9:] if (keyword not in Card._commentary_keywords and keyword in self._keyword_indices): # Easy; just update the value/comment idx = self._keyword_indices[keyword][0] existing_card = self._cards[idx] existing_card.value = value if comment is not None: # '' should be used to explicitly blank a comment existing_card.comment = comment if existing_card._modified: self._modified = True elif keyword in Card._commentary_keywords: cards = self._splitcommentary(keyword, value) if keyword in self._keyword_indices: # Append after the last keyword of the same type idx = self.index(keyword, start=len(self) - 1, stop=-1) isblank = not (keyword or value or comment) for c in reversed(cards): self.insert(idx + 1, c, useblanks=(not isblank)) else: for c in cards: self.append(c, bottom=True) else: # A new keyword! self.append() will handle updating _modified self.append(card) def _cardindex(self, key): """Returns an index into the ._cards list given a valid lookup key.""" # This used to just set key = (key, 0) and then go on to act as if the # user passed in a tuple, but it's much more common to just be given a # string as the key, so optimize more for that case if isinstance(key, str): keyword = key n = 0 elif isinstance(key, int): # If < 0, determine the actual index if key < 0: key += len(self._cards) if key < 0 or key >= len(self._cards): raise IndexError('Header index out of range.') return key elif isinstance(key, slice): return key elif isinstance(key, tuple): if (len(key) != 2 or not isinstance(key[0], str) or not isinstance(key[1], int)): raise ValueError( 'Tuple indices must be 2-tuples consisting of a ' 'keyword string and an integer index.') keyword, n = key else: raise ValueError( 'Header indices must be either a string, a 2-tuple, or ' 'an integer.') keyword = Card.normalize_keyword(keyword) # Returns the index into _cards for the n-th card with the given # keyword (where n is 0-based) indices = self._keyword_indices.get(keyword, None) if keyword and not indices: if len(keyword) > KEYWORD_LENGTH or '.' in keyword: raise KeyError("Keyword {!r} not found.".format(keyword)) else: # Maybe it's a RVKC? indices = self._rvkc_indices.get(keyword, None) if not indices: raise KeyError("Keyword {!r} not found.".format(keyword)) try: return indices[n] except IndexError: raise IndexError('There are only {} {!r} cards in the ' 'header.'.format(len(indices), keyword)) def _keyword_from_index(self, idx): """ Given an integer index, return the (keyword, repeat) tuple that index refers to. For most keywords the repeat will always be zero, but it may be greater than zero for keywords that are duplicated (especially commentary keywords). In a sense this is the inverse of self.index, except that it also supports duplicates. """ if idx < 0: idx += len(self._cards) keyword = self._cards[idx].keyword keyword = Card.normalize_keyword(keyword) repeat = self._keyword_indices[keyword].index(idx) return keyword, repeat def _relativeinsert(self, card, before=None, after=None, replace=False): """ Inserts a new card before or after an existing card; used to implement support for the legacy before/after keyword arguments to Header.update(). If replace=True, move an existing card with the same keyword. """ if before is None: insertionkey = after else: insertionkey = before def get_insertion_idx(): if not (isinstance(insertionkey, int) and insertionkey >= len(self._cards)): idx = self._cardindex(insertionkey) else: idx = insertionkey if before is None: idx += 1 return idx if replace: # The card presumably already exists somewhere in the header. # Check whether or not we actually have to move it; if it does need # to be moved we just delete it and then it will be reinserted # below old_idx = self._cardindex(card.keyword) insertion_idx = get_insertion_idx() if (insertion_idx >= len(self._cards) and old_idx == len(self._cards) - 1): # The card would be appended to the end, but it's already at # the end return if before is not None: if old_idx == insertion_idx - 1: return elif after is not None and old_idx == insertion_idx: return del self[old_idx] # Even if replace=True, the insertion idx may have changed since the # old card was deleted idx = get_insertion_idx() if card[0] in Card._commentary_keywords: cards = reversed(self._splitcommentary(card[0], card[1])) else: cards = [card] for c in cards: self.insert(idx, c) def _updateindices(self, idx, increment=True): """ For all cards with index above idx, increment or decrement its index value in the keyword_indices dict. """ if idx > len(self._cards): # Save us some effort return increment = 1 if increment else -1 for index_sets in (self._keyword_indices, self._rvkc_indices): for indices in index_sets.values(): for jdx, keyword_index in enumerate(indices): if keyword_index >= idx: indices[jdx] += increment def _countblanks(self): """Returns the number of blank cards at the end of the Header.""" for idx in range(1, len(self._cards)): if not self._cards[-idx].is_blank: return idx - 1 return 0 def _useblanks(self, count): for _ in range(count): if self._cards[-1].is_blank: del self[-1] else: break def _haswildcard(self, keyword): """Return `True` if the input keyword contains a wildcard pattern.""" return (isinstance(keyword, str) and (keyword.endswith('...') or '*' in keyword or '?' in keyword)) def _wildcardmatch(self, pattern): """ Returns a list of indices of the cards matching the given wildcard pattern. * '*' matches 0 or more characters * '?' matches a single character * '...' matches 0 or more of any non-whitespace character """ pattern = pattern.replace('*', r'.*').replace('?', r'.') pattern = pattern.replace('...', r'\S*') + '$' pattern_re = re.compile(pattern, re.I) return [idx for idx, card in enumerate(self._cards) if pattern_re.match(card.keyword)] def _set_slice(self, key, value, target): """ Used to implement Header.__setitem__ and CardAccessor.__setitem__. """ if isinstance(key, slice) or self._haswildcard(key): if isinstance(key, slice): indices = range(*key.indices(len(target))) else: indices = self._wildcardmatch(key) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): target[idx] = val return True return False def _splitcommentary(self, keyword, value): """ Given a commentary keyword and value, returns a list of the one or more cards needed to represent the full value. This is primarily used to create the multiple commentary cards needed to represent a long value that won't fit into a single commentary card. """ # The maximum value in each card can be the maximum card length minus # the maximum key length (which can include spaces if they key length # less than 8 maxlen = Card.length - KEYWORD_LENGTH valuestr = str(value) if len(valuestr) <= maxlen: # The value can fit in a single card cards = [Card(keyword, value)] else: # The value must be split across multiple consecutive commentary # cards idx = 0 cards = [] while idx < len(valuestr): cards.append(Card(keyword, valuestr[idx:idx + maxlen])) idx += maxlen return cards def _strip(self): """ Strip cards specific to a certain kind of header. Strip cards like ``SIMPLE``, ``BITPIX``, etc. so the rest of the header can be used to reconstruct another kind of header. """ # TODO: Previously this only deleted some cards specific to an HDU if # _hdutype matched that type. But it seemed simple enough to just # delete all desired cards anyways, and just ignore the KeyErrors if # they don't exist. # However, it might be desirable to make this extendable somehow--have # a way for HDU classes to specify some headers that are specific only # to that type, and should be removed otherwise. if 'NAXIS' in self: naxis = self['NAXIS'] else: naxis = 0 if 'TFIELDS' in self: tfields = self['TFIELDS'] else: tfields = 0 for idx in range(naxis): try: del self['NAXIS' + str(idx + 1)] except KeyError: pass for name in ('TFORM', 'TSCAL', 'TZERO', 'TNULL', 'TTYPE', 'TUNIT', 'TDISP', 'TDIM', 'THEAP', 'TBCOL'): for idx in range(tfields): try: del self[name + str(idx + 1)] except KeyError: pass for name in ('SIMPLE', 'XTENSION', 'BITPIX', 'NAXIS', 'EXTEND', 'PCOUNT', 'GCOUNT', 'GROUPS', 'BSCALE', 'BZERO', 'TFIELDS'): try: del self[name] except KeyError: pass def _add_commentary(self, key, value, before=None, after=None): """ Add a commentary card. If ``before`` and ``after`` are `None`, add to the last occurrence of cards of the same name (except blank card). If there is no card (or blank card), append at the end. """ if before is not None or after is not None: self._relativeinsert((key, value), before=before, after=after) else: self[key] = value collections.abc.MutableSequence.register(Header) collections.abc.MutableMapping.register(Header) class _DelayedHeader: """ Descriptor used to create the Header object from the header string that was stored in HDU._header_str when parsing the file. """ def __get__(self, obj, owner=None): try: return obj.__dict__['_header'] except KeyError: if obj._header_str is not None: hdr = Header.fromstring(obj._header_str) obj._header_str = None else: raise AttributeError("'{}' object has no attribute '_header'" .format(obj.__class__.__name__)) obj.__dict__['_header'] = hdr return hdr def __set__(self, obj, val): obj.__dict__['_header'] = val def __delete__(self, obj): del obj.__dict__['_header'] class _BasicHeaderCards: """ This class allows to access cards with the _BasicHeader.cards attribute. This is needed because during the HDU class detection, some HDUs uses the .cards interface. Cards cannot be modified here as the _BasicHeader object will be deleted once the HDU object is created. """ def __init__(self, header): self.header = header def __getitem__(self, key): # .cards is a list of cards, so key here is an integer. # get the keyword name from its index. key = self.header._keys[key] # then we get the card from the _BasicHeader._cards list, or parse it # if needed. try: return self.header._cards[key] except KeyError: cardstr = self.header._raw_cards[key] card = Card.fromstring(cardstr) self.header._cards[key] = card return card class _BasicHeader(collections.abc.Mapping): """This class provides a fast header parsing, without all the additional features of the Header class. Here only standard keywords are parsed, no support for CONTINUE, HIERARCH, COMMENT, HISTORY, or rvkc. The raw card images are stored and parsed only if needed. The idea is that to create the HDU objects, only a small subset of standard cards is needed. Once a card is parsed, which is deferred to the Card class, the Card object is kept in a cache. This is useful because a small subset of cards is used a lot in the HDU creation process (NAXIS, XTENSION, ...). """ def __init__(self, cards): # dict of (keywords, card images) self._raw_cards = cards self._keys = list(cards.keys()) # dict of (keyword, Card object) storing the parsed cards self._cards = {} # the _BasicHeaderCards object allows to access Card objects from # keyword indices self.cards = _BasicHeaderCards(self) self._modified = False def __getitem__(self, key): if isinstance(key, int): key = self._keys[key] try: return self._cards[key].value except KeyError: # parse the Card and store it cardstr = self._raw_cards[key] self._cards[key] = card = Card.fromstring(cardstr) return card.value def __len__(self): return len(self._raw_cards) def __iter__(self): return iter(self._raw_cards) def index(self, keyword): return self._keys.index(keyword) @classmethod def fromfile(cls, fileobj): """The main method to parse a FITS header from a file. The parsing is done with the parse_header function implemented in Cython.""" close_file = False if isinstance(fileobj, str): fileobj = open(fileobj, 'rb') close_file = True try: header_str, cards = parse_header(fileobj) _check_padding(header_str, BLOCK_SIZE, False) return header_str, cls(cards) finally: if close_file: fileobj.close() class _CardAccessor: """ This is a generic class for wrapping a Header in such a way that you can use the header's slice/filtering capabilities to return a subset of cards and do something with them. This is sort of the opposite notion of the old CardList class--whereas Header used to use CardList to get lists of cards, this uses Header to get lists of cards. """ # TODO: Consider giving this dict/list methods like Header itself def __init__(self, header): self._header = header def __repr__(self): return '\n'.join(repr(c) for c in self._header._cards) def __len__(self): return len(self._header._cards) def __iter__(self): return iter(self._header._cards) def __eq__(self, other): # If the `other` item is a scalar we will still treat it as equal if # this _CardAccessor only contains one item if not isiterable(other) or isinstance(other, str): if len(self) == 1: other = [other] else: return False for a, b in itertools.zip_longest(self, other): if a != b: return False else: return True def __ne__(self, other): return not (self == other) def __getitem__(self, item): if isinstance(item, slice) or self._header._haswildcard(item): return self.__class__(self._header[item]) idx = self._header._cardindex(item) return self._header._cards[idx] def _setslice(self, item, value): """ Helper for implementing __setitem__ on _CardAccessor subclasses; slices should always be handled in this same way. """ if isinstance(item, slice) or self._header._haswildcard(item): if isinstance(item, slice): indices = range(*item.indices(len(self))) else: indices = self._header._wildcardmatch(item) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): self[idx] = val return True return False collections.abc.Mapping.register(_CardAccessor) collections.abc.Sequence.register(_CardAccessor) class _HeaderComments(_CardAccessor): """ A class used internally by the Header class for the Header.comments attribute access. This object can be used to display all the keyword comments in the Header, or look up the comments on specific keywords. It allows all the same forms of keyword lookup as the Header class itself, but returns comments instead of values. """ def __iter__(self): for card in self._header._cards: yield card.comment def __repr__(self): """Returns a simple list of all keywords and their comments.""" keyword_length = KEYWORD_LENGTH for card in self._header._cards: keyword_length = max(keyword_length, len(card.keyword)) return '\n'.join('{:>{len}} {}'.format(c.keyword, c.comment, len=keyword_length) for c in self._header._cards) def __getitem__(self, item): """ Slices and filter strings return a new _HeaderComments containing the returned cards. Otherwise the comment of a single card is returned. """ item = super().__getitem__(item) if isinstance(item, _HeaderComments): # The item key was a slice return item return item.comment def __setitem__(self, item, comment): """ Set/update the comment on specified card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, comment, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards idx = self._header._cardindex(item) value = self._header[idx] self._header[idx] = (value, comment) class _HeaderCommentaryCards(_CardAccessor): """ This is used to return a list-like sequence over all the values in the header for a given commentary keyword, such as HISTORY. """ def __init__(self, header, keyword=''): super().__init__(header) self._keyword = keyword self._count = self._header.count(self._keyword) self._indices = slice(self._count).indices(self._count) # __len__ and __iter__ need to be overridden from the base class due to the # different approach this class has to take for slicing def __len__(self): return len(range(*self._indices)) def __iter__(self): for idx in range(*self._indices): yield self._header[(self._keyword, idx)] def __repr__(self): return '\n'.join(self) def __getitem__(self, idx): if isinstance(idx, slice): n = self.__class__(self._header, self._keyword) n._indices = idx.indices(self._count) return n elif not isinstance(idx, int): raise ValueError('{} index must be an integer'.format(self._keyword)) idx = list(range(*self._indices))[idx] return self._header[(self._keyword, idx)] def __setitem__(self, item, value): """ Set the value of a specified commentary card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, value, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards self._header[(self._keyword, item)] = value def _block_size(sep): """ Determine the size of a FITS header block if a non-blank separator is used between cards. """ return BLOCK_SIZE + (len(sep) * (BLOCK_SIZE // Card.length - 1)) def _pad_length(stringlen): """Bytes needed to pad the input stringlen to the next FITS block.""" return (BLOCK_SIZE - (stringlen % BLOCK_SIZE)) % BLOCK_SIZE def _check_padding(header_str, block_size, is_eof, check_block_size=True): # Strip any zero-padding (see ticket #106) if header_str and header_str[-1] == '\0': if is_eof and header_str.strip('\0') == '': # TODO: Pass this warning to validation framework warnings.warn( 'Unexpected extra padding at the end of the file. This ' 'padding may not be preserved when saving changes.', AstropyUserWarning) raise EOFError() else: # Replace the illegal null bytes with spaces as required by # the FITS standard, and issue a nasty warning # TODO: Pass this warning to validation framework warnings.warn( 'Header block contains null bytes instead of spaces for ' 'padding, and is not FITS-compliant. Nulls may be ' 'replaced with spaces upon writing.', AstropyUserWarning) header_str.replace('\0', ' ') if check_block_size and (len(header_str) % block_size) != 0: # This error message ignores the length of the separator for # now, but maybe it shouldn't? actual_len = len(header_str) - block_size + BLOCK_SIZE # TODO: Pass this error to validation framework raise ValueError('Header size is not multiple of {0}: {1}' .format(BLOCK_SIZE, actual_len))
f9eda3a430231b651b36096f8b017acf8b70de6e820062eeac9ca5725adf7108
# Licensed under a 3-clause BSD style license - see PYFITS.rst """ Convenience functions ===================== The functions in this module provide shortcuts for some of the most basic operations on FITS files, such as reading and updating the header. They are included directly in the 'astropy.io.fits' namespace so that they can be used like:: astropy.io.fits.getheader(...) These functions are primarily for convenience when working with FITS files in the command-line interpreter. If performing several operations on the same file, such as in a script, it is better to *not* use these functions, as each one must open and re-parse the file. In such cases it is better to use :func:`astropy.io.fits.open` and work directly with the :class:`astropy.io.fits.HDUList` object and underlying HDU objects. Several of the convenience functions, such as `getheader` and `getdata` support special arguments for selecting which extension HDU to use when working with a multi-extension FITS file. There are a few supported argument formats for selecting the extension. See the documentation for `getdata` for an explanation of all the different formats. .. warning:: All arguments to convenience functions other than the filename that are *not* for selecting the extension HDU should be passed in as keyword arguments. This is to avoid ambiguity and conflicts with the extension arguments. For example, to set NAXIS=1 on the Primary HDU: Wrong:: astropy.io.fits.setval('myimage.fits', 'NAXIS', 1) The above example will try to set the NAXIS value on the first extension HDU to blank. That is, the argument '1' is assumed to specify an extension HDU. Right:: astropy.io.fits.setval('myimage.fits', 'NAXIS', value=1) This will set the NAXIS keyword to 1 on the primary HDU (the default). To specify the first extension HDU use:: astropy.io.fits.setval('myimage.fits', 'NAXIS', value=1, ext=1) This complexity arises out of the attempt to simultaneously support multiple argument formats that were used in past versions of PyFITS. Unfortunately, it is not possible to support all formats without introducing some ambiguity. A future Astropy release may standardize around a single format and officially deprecate the other formats. """ import operator import os import warnings import numpy as np from .diff import FITSDiff, HDUDiff from .file import FILE_MODES, _File from .hdu.base import _BaseHDU, _ValidHDU from .hdu.hdulist import fitsopen, HDUList from .hdu.image import PrimaryHDU, ImageHDU from .hdu.table import BinTableHDU from .header import Header from .util import fileobj_closed, fileobj_name, fileobj_mode, _is_int from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.decorators import deprecated_renamed_argument __all__ = ['getheader', 'getdata', 'getval', 'setval', 'delval', 'writeto', 'append', 'update', 'info', 'tabledump', 'tableload', 'table_to_hdu', 'printdiff'] def getheader(filename, *args, **kwargs): """ Get the header from an extension of a FITS file. Parameters ---------- filename : file path, file object, or file like object File to get header from. If an opened file object, its mode must be one of the following rb, rb+, or ab+). ext, extname, extver The rest of the arguments are for extension specification. See the `getdata` documentation for explanations/examples. kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. Returns ------- header : `Header` object """ mode, closed = _get_file_mode(filename) hdulist, extidx = _getext(filename, mode, *args, **kwargs) try: hdu = hdulist[extidx] header = hdu.header finally: hdulist.close(closed=closed) return header def getdata(filename, *args, header=None, lower=None, upper=None, view=None, **kwargs): """ Get the data from an extension of a FITS file (and optionally the header). Parameters ---------- filename : file path, file object, or file like object File to get data from. If opened, mode must be one of the following rb, rb+, or ab+. ext The rest of the arguments are for extension specification. They are flexible and are best illustrated by examples. No extra arguments implies the primary header:: getdata('in.fits') By extension number:: getdata('in.fits', 0) # the primary header getdata('in.fits', 2) # the second extension getdata('in.fits', ext=2) # the second extension By name, i.e., ``EXTNAME`` value (if unique):: getdata('in.fits', 'sci') getdata('in.fits', extname='sci') # equivalent Note ``EXTNAME`` values are not case sensitive By combination of ``EXTNAME`` and EXTVER`` as separate arguments or as a tuple:: getdata('in.fits', 'sci', 2) # EXTNAME='SCI' & EXTVER=2 getdata('in.fits', extname='sci', extver=2) # equivalent getdata('in.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: getdata('in.fits', ext=('sci',1), extname='err', extver=2) header : bool, optional If `True`, return the data and the header of the specified HDU as a tuple. lower, upper : bool, optional If ``lower`` or ``upper`` are `True`, the field names in the returned data object will be converted to lower or upper case, respectively. view : ndarray, optional When given, the data will be returned wrapped in the given ndarray subclass by calling:: data.view(view) kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. Returns ------- array : array, record array or groups data object Type depends on the type of the extension being referenced. If the optional keyword ``header`` is set to `True`, this function will return a (``data``, ``header``) tuple. """ mode, closed = _get_file_mode(filename) hdulist, extidx = _getext(filename, mode, *args, **kwargs) try: hdu = hdulist[extidx] data = hdu.data if data is None and extidx == 0: try: hdu = hdulist[1] data = hdu.data except IndexError: raise IndexError('No data in this HDU.') if data is None: raise IndexError('No data in this HDU.') if header: hdr = hdu.header finally: hdulist.close(closed=closed) # Change case of names if requested trans = None if lower: trans = operator.methodcaller('lower') elif upper: trans = operator.methodcaller('upper') if trans: if data.dtype.names is None: # this data does not have fields return if data.dtype.descr[0][0] == '': # this data does not have fields return data.dtype.names = [trans(n) for n in data.dtype.names] # allow different views into the underlying ndarray. Keep the original # view just in case there is a problem if isinstance(view, type) and issubclass(view, np.ndarray): data = data.view(view) if header: return data, hdr else: return data def getval(filename, keyword, *args, **kwargs): """ Get a keyword's value from a header in a FITS file. Parameters ---------- filename : file path, file object, or file like object Name of the FITS file, or file object (if opened, mode must be one of the following rb, rb+, or ab+). keyword : str Keyword name ext, extname, extver The rest of the arguments are for extension specification. See `getdata` for explanations/examples. kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. Returns ------- keyword value : str, int, or float """ if 'do_not_scale_image_data' not in kwargs: kwargs['do_not_scale_image_data'] = True hdr = getheader(filename, *args, **kwargs) return hdr[keyword] def setval(filename, keyword, *args, value=None, comment=None, before=None, after=None, savecomment=False, **kwargs): """ Set a keyword's value from a header in a FITS file. If the keyword already exists, it's value/comment will be updated. If it does not exist, a new card will be created and it will be placed before or after the specified location. If no ``before`` or ``after`` is specified, it will be appended at the end. When updating more than one keyword in a file, this convenience function is a much less efficient approach compared with opening the file for update, modifying the header, and closing the file. Parameters ---------- filename : file path, file object, or file like object Name of the FITS file, or file object If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. keyword : str Keyword name value : str, int, float, optional Keyword value (default: `None`, meaning don't modify) comment : str, optional Keyword comment, (default: `None`, meaning don't modify) before : str, int, optional Name of the keyword, or index of the card before which the new card will be placed. The argument ``before`` takes precedence over ``after`` if both are specified (default: `None`). after : str, int, optional Name of the keyword, or index of the card after which the new card will be placed. (default: `None`). savecomment : bool, optional When `True`, preserve the current comment for an existing keyword. The argument ``savecomment`` takes precedence over ``comment`` if both specified. If ``comment`` is not specified then the current comment will automatically be preserved (default: `False`). ext, extname, extver The rest of the arguments are for extension specification. See `getdata` for explanations/examples. kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. """ if 'do_not_scale_image_data' not in kwargs: kwargs['do_not_scale_image_data'] = True closed = fileobj_closed(filename) hdulist, extidx = _getext(filename, 'update', *args, **kwargs) try: if keyword in hdulist[extidx].header and savecomment: comment = None hdulist[extidx].header.set(keyword, value, comment, before, after) finally: hdulist.close(closed=closed) def delval(filename, keyword, *args, **kwargs): """ Delete all instances of keyword from a header in a FITS file. Parameters ---------- filename : file path, file object, or file like object Name of the FITS file, or file object If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. keyword : str, int Keyword name or index ext, extname, extver The rest of the arguments are for extension specification. See `getdata` for explanations/examples. kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. """ if 'do_not_scale_image_data' not in kwargs: kwargs['do_not_scale_image_data'] = True closed = fileobj_closed(filename) hdulist, extidx = _getext(filename, 'update', *args, **kwargs) try: del hdulist[extidx].header[keyword] finally: hdulist.close(closed=closed) @deprecated_renamed_argument('clobber', 'overwrite', '2.0') def writeto(filename, data, header=None, output_verify='exception', overwrite=False, checksum=False): """ Create a new FITS file using the supplied data/header. Parameters ---------- filename : file path, file object, or file like object File to write to. If opened, must be opened in a writeable binary mode such as 'wb' or 'ab+'. data : array, record array, or groups data object data to write to the new file header : `Header` object, optional the header associated with ``data``. If `None`, a header of the appropriate type is created for the supplied data. This argument is optional. output_verify : str Output verification option. Must be one of ``"fix"``, ``"silentfix"``, ``"ignore"``, ``"warn"``, or ``"exception"``. May also be any combination of ``"fix"`` or ``"silentfix"`` with ``"+ignore"``, ``+warn``, or ``+exception" (e.g. ``"fix+warn"``). See :ref:`verify` for more info. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. .. versionchanged:: 1.3 ``overwrite`` replaces the deprecated ``clobber`` argument. checksum : bool, optional If `True`, adds both ``DATASUM`` and ``CHECKSUM`` cards to the headers of all HDU's written to the file. """ hdu = _makehdu(data, header) if hdu.is_image and not isinstance(hdu, PrimaryHDU): hdu = PrimaryHDU(data, header=header) hdu.writeto(filename, overwrite=overwrite, output_verify=output_verify, checksum=checksum) def table_to_hdu(table, character_as_bytes=False): """ Convert an `~astropy.table.Table` object to a FITS `~astropy.io.fits.BinTableHDU`. Parameters ---------- table : astropy.table.Table The table to convert. character_as_bytes : bool Whether to return bytes for string columns when accessed from the HDU. By default this is `False` and (unicode) strings are returned, but for large tables this may use up a lot of memory. Returns ------- table_hdu : `~astropy.io.fits.BinTableHDU` The FITS binary table HDU. """ # Avoid circular imports from .connect import is_column_keyword, REMOVE_KEYWORDS from .column import python_to_tdisp # Header to store Time related metadata hdr = None # Not all tables with mixin columns are supported if table.has_mixin_columns: # Import is done here, in order to avoid it at build time as erfa is not # yet available then. from astropy.table.column import BaseColumn from astropy.time import Time from astropy.units import Quantity from .fitstime import time_to_fits # Only those columns which are instances of BaseColumn, Quantity or Time can # be written unsupported_cols = table.columns.not_isinstance((BaseColumn, Quantity, Time)) if unsupported_cols: unsupported_names = [col.info.name for col in unsupported_cols] raise ValueError('cannot write table with mixin column(s) {0}' .format(unsupported_names)) time_cols = table.columns.isinstance(Time) if time_cols: table, hdr = time_to_fits(table) # Create a new HDU object if table.masked: # float column's default mask value needs to be Nan for column in table.columns.values(): fill_value = column.get_fill_value() if column.dtype.kind == 'f' and np.allclose(fill_value, 1e20): column.set_fill_value(np.nan) # TODO: it might be better to construct the FITS table directly from # the Table columns, rather than go via a structured array. table_hdu = BinTableHDU.from_columns(np.array(table.filled()), header=hdr, character_as_bytes=True) for col in table_hdu.columns: # Binary FITS tables support TNULL *only* for integer data columns # TODO: Determine a schema for handling non-integer masked columns # in FITS (if at all possible) int_formats = ('B', 'I', 'J', 'K') if not (col.format in int_formats or col.format.p_format in int_formats): continue # The astype is necessary because if the string column is less # than one character, the fill value will be N/A by default which # is too long, and so no values will get masked. fill_value = table[col.name].get_fill_value() col.null = fill_value.astype(table[col.name].dtype) else: table_hdu = BinTableHDU.from_columns(np.array(table.filled()), header=hdr, character_as_bytes=character_as_bytes) # Set units and format display for output HDU for col in table_hdu.columns: if table[col.name].info.format is not None: # check for boolean types, special format case logical = table[col.name].info.dtype == bool tdisp_format = python_to_tdisp(table[col.name].info.format, logical_dtype=logical) if tdisp_format is not None: col.disp = tdisp_format unit = table[col.name].unit if unit is not None: # Local imports to avoid importing units when it is not required, # e.g. for command-line scripts from astropy.units import Unit from astropy.units.format.fits import UnitScaleError try: col.unit = unit.to_string(format='fits') except UnitScaleError: scale = unit.scale raise UnitScaleError( "The column '{0}' could not be stored in FITS format " "because it has a scale '({1})' that " "is not recognized by the FITS standard. Either scale " "the data or change the units.".format(col.name, str(scale))) except ValueError: warnings.warn( "The unit '{0}' could not be saved to FITS format".format( unit.to_string()), AstropyUserWarning) # Try creating a Unit to issue a warning if the unit is not FITS compliant Unit(col.unit, format='fits', parse_strict='warn') # Column-specific override keywords for coordinate columns coord_meta = table.meta.pop('__coordinate_columns__', {}) for col_name, col_info in coord_meta.items(): col = table_hdu.columns[col_name] # Set the column coordinate attributes from data saved earlier. # Note: have to set all three, even if we have no data. for attr in 'coord_type', 'coord_unit', 'time_ref_pos': setattr(col, attr, col_info.get(attr, None)) for key, value in table.meta.items(): if is_column_keyword(key.upper()) or key.upper() in REMOVE_KEYWORDS: warnings.warn( "Meta-data keyword {0} will be ignored since it conflicts " "with a FITS reserved keyword".format(key), AstropyUserWarning) # Convert to FITS format if key == 'comments': key = 'comment' if isinstance(value, list): for item in value: try: table_hdu.header.append((key, item)) except ValueError: warnings.warn( "Attribute `{0}` of type {1} cannot be added to " "FITS Header - skipping".format(key, type(value)), AstropyUserWarning) else: try: table_hdu.header[key] = value except ValueError: warnings.warn( "Attribute `{0}` of type {1} cannot be added to FITS " "Header - skipping".format(key, type(value)), AstropyUserWarning) return table_hdu def append(filename, data, header=None, checksum=False, verify=True, **kwargs): """ Append the header/data to FITS file if filename exists, create if not. If only ``data`` is supplied, a minimal header is created. Parameters ---------- filename : file path, file object, or file like object File to write to. If opened, must be opened for update (rb+) unless it is a new file, then it must be opened for append (ab+). A file or `~gzip.GzipFile` object opened for update will be closed after return. data : array, table, or group data object the new data used for appending header : `Header` object, optional The header associated with ``data``. If `None`, an appropriate header will be created for the data object supplied. checksum : bool, optional When `True` adds both ``DATASUM`` and ``CHECKSUM`` cards to the header of the HDU when written to the file. verify : bool, optional When `True`, the existing FITS file will be read in to verify it for correctness before appending. When `False`, content is simply appended to the end of the file. Setting ``verify`` to `False` can be much faster. kwargs Additional arguments are passed to: - `~astropy.io.fits.writeto` if the file does not exist or is empty. In this case ``output_verify`` is the only possible argument. - `~astropy.io.fits.open` if ``verify`` is True or if ``filename`` is a file object. - Otherwise no additional arguments can be used. """ name, closed, noexist_or_empty = _stat_filename_or_fileobj(filename) if noexist_or_empty: # # The input file or file like object either doesn't exits or is # empty. Use the writeto convenience function to write the # output to the empty object. # writeto(filename, data, header, checksum=checksum, **kwargs) else: hdu = _makehdu(data, header) if isinstance(hdu, PrimaryHDU): hdu = ImageHDU(data, header) if verify or not closed: f = fitsopen(filename, mode='append', **kwargs) try: f.append(hdu) # Set a flag in the HDU so that only this HDU gets a checksum # when writing the file. hdu._output_checksum = checksum finally: f.close(closed=closed) else: f = _File(filename, mode='append') try: hdu._output_checksum = checksum hdu._writeto(f) finally: f.close() def update(filename, data, *args, **kwargs): """ Update the specified extension with the input data/header. Parameters ---------- filename : file path, file object, or file like object File to update. If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. data : array, table, or group data object the new data used for updating header : `Header` object, optional The header associated with ``data``. If `None`, an appropriate header will be created for the data object supplied. ext, extname, extver The rest of the arguments are flexible: the 3rd argument can be the header associated with the data. If the 3rd argument is not a `Header`, it (and other positional arguments) are assumed to be the extension specification(s). Header and extension specs can also be keyword arguments. For example:: update(file, dat, hdr, 'sci') # update the 'sci' extension update(file, dat, 3) # update the 3rd extension update(file, dat, hdr, 3) # update the 3rd extension update(file, dat, 'sci', 2) # update the 2nd SCI extension update(file, dat, 3, header=hdr) # update the 3rd extension update(file, dat, header=hdr, ext=5) # update the 5th extension kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. """ # The arguments to this function are a bit trickier to deal with than others # in this module, since the documentation has promised that the header # argument can be an optional positional argument. if args and isinstance(args[0], Header): header = args[0] args = args[1:] else: header = None # The header can also be a keyword argument--if both are provided the # keyword takes precedence header = kwargs.pop('header', header) new_hdu = _makehdu(data, header) closed = fileobj_closed(filename) hdulist, _ext = _getext(filename, 'update', *args, **kwargs) try: hdulist[_ext] = new_hdu finally: hdulist.close(closed=closed) def info(filename, output=None, **kwargs): """ Print the summary information on a FITS file. This includes the name, type, length of header, data shape and type for each extension. Parameters ---------- filename : file path, file object, or file like object FITS file to obtain info from. If opened, mode must be one of the following: rb, rb+, or ab+ (i.e. the file must be readable). output : file, bool, optional A file-like object to write the output to. If ``False``, does not output to a file and instead returns a list of tuples representing the HDU info. Writes to ``sys.stdout`` by default. kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function sets ``ignore_missing_end=True`` by default. """ mode, closed = _get_file_mode(filename, default='readonly') # Set the default value for the ignore_missing_end parameter if 'ignore_missing_end' not in kwargs: kwargs['ignore_missing_end'] = True f = fitsopen(filename, mode=mode, **kwargs) try: ret = f.info(output=output) finally: if closed: f.close() return ret def printdiff(inputa, inputb, *args, **kwargs): """ Compare two parts of a FITS file, including entire FITS files, FITS `HDUList` objects and FITS ``HDU`` objects. Parameters ---------- inputa : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputb``. inputb : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputa``. ext, extname, extver Additional positional arguments are for extension specification if your inputs are string filenames (will not work if ``inputa`` and ``inputb`` are ``HDU`` objects or `HDUList` objects). They are flexible and are best illustrated by examples. In addition to using these arguments positionally you can directly call the keyword parameters ``ext``, ``extname``. By extension number:: printdiff('inA.fits', 'inB.fits', 0) # the primary HDU printdiff('inA.fits', 'inB.fits', 2) # the second extension printdiff('inA.fits', 'inB.fits', ext=2) # the second extension By name, i.e., ``EXTNAME`` value (if unique). ``EXTNAME`` values are not case sensitive: printdiff('inA.fits', 'inB.fits', 'sci') printdiff('inA.fits', 'inB.fits', extname='sci') # equivalent By combination of ``EXTNAME`` and ``EXTVER`` as separate arguments or as a tuple:: printdiff('inA.fits', 'inB.fits', 'sci', 2) # EXTNAME='SCI' # & EXTVER=2 printdiff('inA.fits', 'inB.fits', extname='sci', extver=2) # equivalent printdiff('inA.fits', 'inB.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: printdiff('inA.fits', 'inB.fits', ext=('sci', 1), extname='err', extver=2) kwargs Any additional keyword arguments to be passed to `~astropy.io.fits.FITSDiff`. Notes ----- The primary use for the `printdiff` function is to allow quick print out of a FITS difference report and will write to ``sys.stdout``. To save the diff report to a file please use `~astropy.io.fits.FITSDiff` directly. """ # Pop extension keywords extension = {key: kwargs.pop(key) for key in ['ext', 'extname', 'extver'] if key in kwargs} has_extensions = args or extension if isinstance(inputa, str) and has_extensions: # Use handy _getext to interpret any ext keywords, but # will need to close a if fails modea, closeda = _get_file_mode(inputa) modeb, closedb = _get_file_mode(inputb) hdulista, extidxa = _getext(inputa, modea, *args, **extension) # Have to close a if b doesn't make it try: hdulistb, extidxb = _getext(inputb, modeb, *args, **extension) except Exception: hdulista.close(closed=closeda) raise try: hdua = hdulista[extidxa] hdub = hdulistb[extidxb] # See below print for note print(HDUDiff(hdua, hdub, **kwargs).report()) finally: hdulista.close(closed=closeda) hdulistb.close(closed=closedb) # If input is not a string, can feed HDU objects or HDUList directly, # but can't currently handle extensions elif isinstance(inputa, _ValidHDU) and has_extensions: raise ValueError("Cannot use extension keywords when providing an " "HDU object.") elif isinstance(inputa, _ValidHDU) and not has_extensions: print(HDUDiff(inputa, inputb, **kwargs).report()) elif isinstance(inputa, HDUList) and has_extensions: raise NotImplementedError("Extension specification with HDUList " "objects not implemented.") # This function is EXCLUSIVELY for printing the diff report to screen # in a one-liner call, hence the use of print instead of logging else: print(FITSDiff(inputa, inputb, **kwargs).report()) @deprecated_renamed_argument('clobber', 'overwrite', '2.0') def tabledump(filename, datafile=None, cdfile=None, hfile=None, ext=1, overwrite=False): """ Dump a table HDU to a file in ASCII format. The table may be dumped in three separate files, one containing column definitions, one containing header parameters, and one for table data. Parameters ---------- filename : file path, file object or file-like object Input fits file. datafile : file path, file object or file-like object, optional Output data file. The default is the root name of the input fits file appended with an underscore, followed by the extension number (ext), followed by the extension ``.txt``. cdfile : file path, file object or file-like object, optional Output column definitions file. The default is `None`, no column definitions output is produced. hfile : file path, file object or file-like object, optional Output header parameters file. The default is `None`, no header parameters output is produced. ext : int The number of the extension containing the table HDU to be dumped. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. .. versionchanged:: 1.3 ``overwrite`` replaces the deprecated ``clobber`` argument. Notes ----- The primary use for the `tabledump` function is to allow editing in a standard text editor of the table data and parameters. The `tableload` function can be used to reassemble the table from the three ASCII files. """ # allow file object to already be opened in any of the valid modes # and leave the file in the same state (opened or closed) as when # the function was called mode, closed = _get_file_mode(filename, default='readonly') f = fitsopen(filename, mode=mode) # Create the default data file name if one was not provided try: if not datafile: root, tail = os.path.splitext(f._file.name) datafile = root + '_' + repr(ext) + '.txt' # Dump the data from the HDU to the files f[ext].dump(datafile, cdfile, hfile, overwrite) finally: if closed: f.close() if isinstance(tabledump.__doc__, str): tabledump.__doc__ += BinTableHDU._tdump_file_format.replace('\n', '\n ') def tableload(datafile, cdfile, hfile=None): """ Create a table from the input ASCII files. The input is from up to three separate files, one containing column definitions, one containing header parameters, and one containing column data. The header parameters file is not required. When the header parameters file is absent a minimal header is constructed. Parameters ---------- datafile : file path, file object or file-like object Input data file containing the table data in ASCII format. cdfile : file path, file object or file-like object Input column definition file containing the names, formats, display formats, physical units, multidimensional array dimensions, undefined values, scale factors, and offsets associated with the columns in the table. hfile : file path, file object or file-like object, optional Input parameter definition file containing the header parameter definitions to be associated with the table. If `None`, a minimal header is constructed. Notes ----- The primary use for the `tableload` function is to allow the input of ASCII data that was edited in a standard text editor of the table data and parameters. The tabledump function can be used to create the initial ASCII files. """ return BinTableHDU.load(datafile, cdfile, hfile, replace=True) if isinstance(tableload.__doc__, str): tableload.__doc__ += BinTableHDU._tdump_file_format.replace('\n', '\n ') def _getext(filename, mode, *args, ext=None, extname=None, extver=None, **kwargs): """ Open the input file, return the `HDUList` and the extension. This supports several different styles of extension selection. See the :func:`getdata()` documentation for the different possibilities. """ err_msg = ('Redundant/conflicting extension arguments(s): {}'.format( {'args': args, 'ext': ext, 'extname': extname, 'extver': extver})) # This code would be much simpler if just one way of specifying an # extension were picked. But now we need to support all possible ways for # the time being. if len(args) == 1: # Must be either an extension number, an extension name, or an # (extname, extver) tuple if _is_int(args[0]) or (isinstance(ext, tuple) and len(ext) == 2): if ext is not None or extname is not None or extver is not None: raise TypeError(err_msg) ext = args[0] elif isinstance(args[0], str): # The first arg is an extension name; it could still be valid # to provide an extver kwarg if ext is not None or extname is not None: raise TypeError(err_msg) extname = args[0] else: # Take whatever we have as the ext argument; we'll validate it # below ext = args[0] elif len(args) == 2: # Must be an extname and extver if ext is not None or extname is not None or extver is not None: raise TypeError(err_msg) extname = args[0] extver = args[1] elif len(args) > 2: raise TypeError('Too many positional arguments.') if (ext is not None and not (_is_int(ext) or (isinstance(ext, tuple) and len(ext) == 2 and isinstance(ext[0], str) and _is_int(ext[1])))): raise ValueError( 'The ext keyword must be either an extension number ' '(zero-indexed) or a (extname, extver) tuple.') if extname is not None and not isinstance(extname, str): raise ValueError('The extname argument must be a string.') if extver is not None and not _is_int(extver): raise ValueError('The extver argument must be an integer.') if ext is None and extname is None and extver is None: ext = 0 elif ext is not None and (extname is not None or extver is not None): raise TypeError(err_msg) elif extname: if extver: ext = (extname, extver) else: ext = (extname, 1) elif extver and extname is None: raise TypeError('extver alone cannot specify an extension.') hdulist = fitsopen(filename, mode=mode, **kwargs) return hdulist, ext def _makehdu(data, header): if header is None: header = Header() hdu = _BaseHDU._from_data(data, header) if hdu.__class__ in (_BaseHDU, _ValidHDU): # The HDU type was unrecognized, possibly due to a # nonexistent/incomplete header if ((isinstance(data, np.ndarray) and data.dtype.fields is not None) or isinstance(data, np.recarray)): hdu = BinTableHDU(data, header=header) elif isinstance(data, np.ndarray): hdu = ImageHDU(data, header=header) else: raise KeyError('Data must be a numpy array.') return hdu def _stat_filename_or_fileobj(filename): closed = fileobj_closed(filename) name = fileobj_name(filename) or '' try: loc = filename.tell() except AttributeError: loc = 0 noexist_or_empty = ((name and (not os.path.exists(name) or (os.path.getsize(name) == 0))) or (not name and loc == 0)) return name, closed, noexist_or_empty def _get_file_mode(filename, default='readonly'): """ Allow file object to already be opened in any of the valid modes and and leave the file in the same state (opened or closed) as when the function was called. """ mode = default closed = fileobj_closed(filename) fmode = fileobj_mode(filename) if fmode is not None: mode = FILE_MODES.get(fmode) if mode is None: raise OSError( "File mode of the input file object ({!r}) cannot be used to " "read/write FITS files.".format(fmode)) return mode, closed
0928f1aa18907f0a458e7ab8a6a18a78475c67aaced6cb48e0cd1e9198859566
# Licensed under a 3-clause BSD style license - see PYFITS.rst import gzip import itertools import io import mmap import operator import os import platform import signal import sys import tempfile import textwrap import threading import warnings import weakref from contextlib import contextmanager, suppress from functools import wraps from astropy.utils import data from distutils.version import LooseVersion import numpy as np from astropy.utils.exceptions import AstropyUserWarning try: # Support the Python 3.6 PathLike ABC where possible from os import PathLike path_like = (str, PathLike) except ImportError: path_like = (str,) cmp = lambda a, b: (a > b) - (a < b) all_integer_types = (int, np.integer) class NotifierMixin: """ Mixin class that provides services by which objects can register listeners to changes on that object. All methods provided by this class are underscored, since this is intended for internal use to communicate between classes in a generic way, and is not machinery that should be exposed to users of the classes involved. Use the ``_add_listener`` method to register a listener on an instance of the notifier. This registers the listener with a weak reference, so if no other references to the listener exist it is automatically dropped from the list and does not need to be manually removed. Call the ``_notify`` method on the notifier to update all listeners upon changes. ``_notify('change_type', *args, **kwargs)`` results in calling ``listener._update_change_type(*args, **kwargs)`` on all listeners subscribed to that notifier. If a particular listener does not have the appropriate update method it is ignored. Examples -------- >>> class Widget(NotifierMixin): ... state = 1 ... def __init__(self, name): ... self.name = name ... def update_state(self): ... self.state += 1 ... self._notify('widget_state_changed', self) ... >>> class WidgetListener: ... def _update_widget_state_changed(self, widget): ... print('Widget {0} changed state to {1}'.format( ... widget.name, widget.state)) ... >>> widget = Widget('fred') >>> listener = WidgetListener() >>> widget._add_listener(listener) >>> widget.update_state() Widget fred changed state to 2 """ _listeners = None def _add_listener(self, listener): """ Add an object to the list of listeners to notify of changes to this object. This adds a weakref to the list of listeners that is removed from the listeners list when the listener has no other references to it. """ if self._listeners is None: self._listeners = weakref.WeakValueDictionary() self._listeners[id(listener)] = listener def _remove_listener(self, listener): """ Removes the specified listener from the listeners list. This relies on object identity (i.e. the ``is`` operator). """ if self._listeners is None: return with suppress(KeyError): del self._listeners[id(listener)] def _notify(self, notification, *args, **kwargs): """ Notify all listeners of some particular state change by calling their ``_update_<notification>`` method with the given ``*args`` and ``**kwargs``. The notification does not by default include the object that actually changed (``self``), but it certainly may if required. """ if self._listeners is None: return method_name = '_update_{0}'.format(notification) for listener in self._listeners.valuerefs(): # Use valuerefs instead of itervaluerefs; see # https://github.com/astropy/astropy/issues/4015 listener = listener() # dereference weakref if listener is None: continue if hasattr(listener, method_name): method = getattr(listener, method_name) if callable(method): method(*args, **kwargs) def __getstate__(self): """ Exclude listeners when saving the listener's state, since they may be ephemeral. """ # TODO: This hasn't come up often, but if anyone needs to pickle HDU # objects it will be necessary when HDU objects' states are restored to # re-register themselves as listeners on their new column instances. try: state = super().__getstate__() except AttributeError: # Chances are the super object doesn't have a getstate state = self.__dict__.copy() state['_listeners'] = None return state def first(iterable): """ Returns the first item returned by iterating over an iterable object. Example: >>> a = [1, 2, 3] >>> first(a) 1 """ return next(iter(iterable)) def itersubclasses(cls, _seen=None): """ Generator over all subclasses of a given class, in depth first order. >>> class A: pass >>> class B(A): pass >>> class C(A): pass >>> class D(B,C): pass >>> class E(D): pass >>> >>> for cls in itersubclasses(A): ... print(cls.__name__) B D E C >>> # get ALL classes currently defined >>> [cls.__name__ for cls in itersubclasses(object)] [...'tuple', ...'type', ...] From http://code.activestate.com/recipes/576949/ """ if _seen is None: _seen = set() try: subs = cls.__subclasses__() except TypeError: # fails only when cls is type subs = cls.__subclasses__(cls) for sub in sorted(subs, key=operator.attrgetter('__name__')): if sub not in _seen: _seen.add(sub) yield sub for sub in itersubclasses(sub, _seen): yield sub def ignore_sigint(func): """ This decorator registers a custom SIGINT handler to catch and ignore SIGINT until the wrapped function is completed. """ @wraps(func) def wrapped(*args, **kwargs): # Get the name of the current thread and determine if this is a single # threaded application curr_thread = threading.currentThread() single_thread = (threading.activeCount() == 1 and curr_thread.getName() == 'MainThread') class SigintHandler: def __init__(self): self.sigint_received = False def __call__(self, signum, frame): warnings.warn('KeyboardInterrupt ignored until {} is ' 'complete!'.format(func.__name__), AstropyUserWarning) self.sigint_received = True sigint_handler = SigintHandler() # Define new signal interput handler if single_thread: # Install new handler old_handler = signal.signal(signal.SIGINT, sigint_handler) try: func(*args, **kwargs) finally: if single_thread: if old_handler is not None: signal.signal(signal.SIGINT, old_handler) else: signal.signal(signal.SIGINT, signal.SIG_DFL) if sigint_handler.sigint_received: raise KeyboardInterrupt return wrapped def pairwise(iterable): """Return the items of an iterable paired with its next item. Ex: s -> (s0,s1), (s1,s2), (s2,s3), .... """ a, b = itertools.tee(iterable) for _ in b: # Just a little trick to advance b without having to catch # StopIter if b happens to be empty break return zip(a, b) def encode_ascii(s): if isinstance(s, str): return s.encode('ascii') elif (isinstance(s, np.ndarray) and issubclass(s.dtype.type, np.str_)): ns = np.char.encode(s, 'ascii').view(type(s)) if ns.dtype.itemsize != s.dtype.itemsize / 4: ns = ns.astype((np.bytes_, s.dtype.itemsize / 4)) return ns elif (isinstance(s, np.ndarray) and not issubclass(s.dtype.type, np.bytes_)): raise TypeError('string operation on non-string array') return s def decode_ascii(s): if isinstance(s, bytes): try: return s.decode('ascii') except UnicodeDecodeError: warnings.warn('non-ASCII characters are present in the FITS ' 'file header and have been replaced by "?" ' 'characters', AstropyUserWarning) s = s.decode('ascii', errors='replace') return s.replace(u'\ufffd', '?') elif (isinstance(s, np.ndarray) and issubclass(s.dtype.type, np.bytes_)): # np.char.encode/decode annoyingly don't preserve the type of the # array, hence the view() call # It also doesn't necessarily preserve widths of the strings, # hence the astype() if s.size == 0: # Numpy apparently also has a bug that if a string array is # empty calling np.char.decode on it returns an empty float64 # array wth dt = s.dtype.str.replace('S', 'U') ns = np.array([], dtype=dt).view(type(s)) else: ns = np.char.decode(s, 'ascii').view(type(s)) if ns.dtype.itemsize / 4 != s.dtype.itemsize: ns = ns.astype((np.str_, s.dtype.itemsize)) return ns elif (isinstance(s, np.ndarray) and not issubclass(s.dtype.type, np.str_)): # Don't silently pass through on non-string arrays; we don't want # to hide errors where things that are not stringy are attempting # to be decoded raise TypeError('string operation on non-string array') return s def isreadable(f): """ Returns True if the file-like object can be read from. This is a common- sense approximation of io.IOBase.readable. """ if hasattr(f, 'readable'): return f.readable() if hasattr(f, 'closed') and f.closed: # This mimics the behavior of io.IOBase.readable raise ValueError('I/O operation on closed file') if not hasattr(f, 'read'): return False if hasattr(f, 'mode') and not any(c in f.mode for c in 'r+'): return False # Not closed, has a 'read()' method, and either has no known mode or a # readable mode--should be good enough to assume 'readable' return True def iswritable(f): """ Returns True if the file-like object can be written to. This is a common- sense approximation of io.IOBase.writable. """ if hasattr(f, 'writable'): return f.writable() if hasattr(f, 'closed') and f.closed: # This mimics the behavior of io.IOBase.writable raise ValueError('I/O operation on closed file') if not hasattr(f, 'write'): return False if hasattr(f, 'mode') and not any(c in f.mode for c in 'wa+'): return False # Note closed, has a 'write()' method, and either has no known mode or a # mode that supports writing--should be good enough to assume 'writable' return True def isfile(f): """ Returns True if the given object represents an OS-level file (that is, ``isinstance(f, file)``). On Python 3 this also returns True if the given object is higher level wrapper on top of a FileIO object, such as a TextIOWrapper. """ if isinstance(f, io.FileIO): return True elif hasattr(f, 'buffer'): return isfile(f.buffer) elif hasattr(f, 'raw'): return isfile(f.raw) return False def fileobj_open(filename, mode): """ A wrapper around the `open()` builtin. This exists because `open()` returns an `io.BufferedReader` by default. This is bad, because `io.BufferedReader` doesn't support random access, which we need in some cases. We must call open with buffering=0 to get a raw random-access file reader. """ return open(filename, mode, buffering=0) def fileobj_name(f): """ Returns the 'name' of file-like object f, if it has anything that could be called its name. Otherwise f's class or type is returned. If f is a string f itself is returned. """ if isinstance(f, str): return f elif isinstance(f, gzip.GzipFile): # The .name attribute on GzipFiles does not always represent the name # of the file being read/written--it can also represent the original # name of the file being compressed # See the documentation at # https://docs.python.org/3/library/gzip.html#gzip.GzipFile # As such, for gzip files only return the name of the underlying # fileobj, if it exists return fileobj_name(f.fileobj) elif hasattr(f, 'name'): return f.name elif hasattr(f, 'filename'): return f.filename elif hasattr(f, '__class__'): return str(f.__class__) else: return str(type(f)) def fileobj_closed(f): """ Returns True if the given file-like object is closed or if f is a string (and assumed to be a pathname). Returns False for all other types of objects, under the assumption that they are file-like objects with no sense of a 'closed' state. """ if isinstance(f, str): return True if hasattr(f, 'closed'): return f.closed elif hasattr(f, 'fileobj') and hasattr(f.fileobj, 'closed'): return f.fileobj.closed elif hasattr(f, 'fp') and hasattr(f.fp, 'closed'): return f.fp.closed else: return False def fileobj_mode(f): """ Returns the 'mode' string of a file-like object if such a thing exists. Otherwise returns None. """ # Go from most to least specific--for example gzip objects have a 'mode' # attribute, but it's not analogous to the file.mode attribute # gzip.GzipFile -like if hasattr(f, 'fileobj') and hasattr(f.fileobj, 'mode'): fileobj = f.fileobj # astropy.io.fits._File -like, doesn't need additional checks because it's # already validated elif hasattr(f, 'fileobj_mode'): return f.fileobj_mode # PIL-Image -like investigate the fp (filebuffer) elif hasattr(f, 'fp') and hasattr(f.fp, 'mode'): fileobj = f.fp # FILEIO -like (normal open(...)), keep as is. elif hasattr(f, 'mode'): fileobj = f # Doesn't look like a file-like object, for example strings, urls or paths. else: return None return _fileobj_normalize_mode(fileobj) def _fileobj_normalize_mode(f): """Takes care of some corner cases in Python where the mode string is either oddly formatted or does not truly represent the file mode. """ mode = f.mode # Special case: Gzip modes: if isinstance(f, gzip.GzipFile): # GzipFiles can be either readonly or writeonly if mode == gzip.READ: return 'rb' elif mode == gzip.WRITE: return 'wb' else: return None # This shouldn't happen? # Sometimes Python can produce modes like 'r+b' which will be normalized # here to 'rb+' if '+' in mode: mode = mode.replace('+', '') mode += '+' return mode def fileobj_is_binary(f): """ Returns True if the give file or file-like object has a file open in binary mode. When in doubt, returns True by default. """ # This is kind of a hack for this to work correctly with _File objects, # which, for the time being, are *always* binary if hasattr(f, 'binary'): return f.binary if isinstance(f, io.TextIOBase): return False mode = fileobj_mode(f) if mode: return 'b' in mode else: return True def translate(s, table, deletechars): if deletechars: table = table.copy() for c in deletechars: table[ord(c)] = None return s.translate(table) def fill(text, width, **kwargs): """ Like :func:`textwrap.wrap` but preserves existing paragraphs which :func:`textwrap.wrap` does not otherwise handle well. Also handles section headers. """ paragraphs = text.split('\n\n') def maybe_fill(t): if all(len(l) < width for l in t.splitlines()): return t else: return textwrap.fill(t, width, **kwargs) return '\n\n'.join(maybe_fill(p) for p in paragraphs) # On MacOS X 10.8 and earlier, there is a bug that causes numpy.fromfile to # fail when reading over 2Gb of data. If we detect these versions of MacOS X, # we can instead read the data in chunks. To avoid performance penalties at # import time, we defer the setting of this global variable until the first # time it is needed. CHUNKED_FROMFILE = None def _array_from_file(infile, dtype, count): """Create a numpy array from a file or a file-like object.""" if isfile(infile): global CHUNKED_FROMFILE if CHUNKED_FROMFILE is None: if (sys.platform == 'darwin' and LooseVersion(platform.mac_ver()[0]) < LooseVersion('10.9')): CHUNKED_FROMFILE = True else: CHUNKED_FROMFILE = False if CHUNKED_FROMFILE: chunk_size = int(1024 ** 3 / dtype.itemsize) # 1Gb to be safe if count < chunk_size: return np.fromfile(infile, dtype=dtype, count=count) else: array = np.empty(count, dtype=dtype) for beg in range(0, count, chunk_size): end = min(count, beg + chunk_size) array[beg:end] = np.fromfile(infile, dtype=dtype, count=end - beg) return array else: return np.fromfile(infile, dtype=dtype, count=count) else: # treat as file-like object with "read" method; this includes gzip file # objects, because numpy.fromfile just reads the compressed bytes from # their underlying file object, instead of the decompressed bytes read_size = np.dtype(dtype).itemsize * count s = infile.read(read_size) array = np.ndarray(buffer=s, dtype=dtype, shape=(count,)) # copy is needed because np.frombuffer returns a read-only view of the # underlying buffer array = array.copy() return array _OSX_WRITE_LIMIT = (2 ** 32) - 1 _WIN_WRITE_LIMIT = (2 ** 31) - 1 def _array_to_file(arr, outfile): """ Write a numpy array to a file or a file-like object. Parameters ---------- arr : `~numpy.ndarray` The Numpy array to write. outfile : file-like A file-like object such as a Python file object, an `io.BytesIO`, or anything else with a ``write`` method. The file object must support the buffer interface in its ``write``. If writing directly to an on-disk file this delegates directly to `ndarray.tofile`. Otherwise a slower Python implementation is used. """ if isfile(outfile) and not isinstance(outfile, io.BufferedIOBase): write = lambda a, f: a.tofile(f) else: write = _array_to_file_like # Implements a workaround for a bug deep in OSX's stdlib file writing # functions; on 64-bit OSX it is not possible to correctly write a number # of bytes greater than 2 ** 32 and divisible by 4096 (or possibly 8192-- # whatever the default blocksize for the filesystem is). # This issue should have a workaround in Numpy too, but hasn't been # implemented there yet: https://github.com/astropy/astropy/issues/839 # # Apparently Windows has its own fwrite bug: # https://github.com/numpy/numpy/issues/2256 if (sys.platform == 'darwin' and arr.nbytes >= _OSX_WRITE_LIMIT + 1 and arr.nbytes % 4096 == 0): # chunksize is a count of elements in the array, not bytes chunksize = _OSX_WRITE_LIMIT // arr.itemsize elif sys.platform.startswith('win'): chunksize = _WIN_WRITE_LIMIT // arr.itemsize else: # Just pass the whole array to the write routine return write(arr, outfile) # Write one chunk at a time for systems whose fwrite chokes on large # writes. idx = 0 arr = arr.view(np.ndarray).flatten() while idx < arr.nbytes: write(arr[idx:idx + chunksize], outfile) idx += chunksize def _array_to_file_like(arr, fileobj): """ Write a `~numpy.ndarray` to a file-like object (which is not supported by `numpy.ndarray.tofile`). """ # If the array is empty, we can simply take a shortcut and return since # there is nothing to write. if len(arr) == 0: return if arr.flags.contiguous: # It suffices to just pass the underlying buffer directly to the # fileobj's write (assuming it supports the buffer interface). If # it does not have the buffer interface, a TypeError should be returned # in which case we can fall back to the other methods. try: fileobj.write(arr.data) except TypeError: pass else: return if hasattr(np, 'nditer'): # nditer version for non-contiguous arrays for item in np.nditer(arr, order='C'): fileobj.write(item.tostring()) else: # Slower version for Numpy versions without nditer; # The problem with flatiter is it doesn't preserve the original # byteorder byteorder = arr.dtype.byteorder if ((sys.byteorder == 'little' and byteorder == '>') or (sys.byteorder == 'big' and byteorder == '<')): for item in arr.flat: fileobj.write(item.byteswap().tostring()) else: for item in arr.flat: fileobj.write(item.tostring()) def _write_string(f, s): """ Write a string to a file, encoding to ASCII if the file is open in binary mode, or decoding if the file is open in text mode. """ # Assume if the file object doesn't have a specific mode, that the mode is # binary binmode = fileobj_is_binary(f) if binmode and isinstance(s, str): s = encode_ascii(s) elif not binmode and not isinstance(f, str): s = decode_ascii(s) f.write(s) def _convert_array(array, dtype): """ Converts an array to a new dtype--if the itemsize of the new dtype is the same as the old dtype and both types are not numeric, a view is returned. Otherwise a new array must be created. """ if array.dtype == dtype: return array elif (array.dtype.itemsize == dtype.itemsize and not (np.issubdtype(array.dtype, np.number) and np.issubdtype(dtype, np.number))): # Includes a special case when both dtypes are at least numeric to # account for ticket #218: https://aeon.stsci.edu/ssb/trac/pyfits/ticket/218 return array.view(dtype) else: return array.astype(dtype) def _unsigned_zero(dtype): """ Given a numpy dtype, finds its "zero" point, which is exactly in the middle of its range. """ assert dtype.kind == 'u' return 1 << (dtype.itemsize * 8 - 1) def _is_pseudo_unsigned(dtype): return dtype.kind == 'u' and dtype.itemsize >= 2 def _is_int(val): return isinstance(val, all_integer_types) def _str_to_num(val): """Converts a given string to either an int or a float if necessary.""" try: num = int(val) except ValueError: # If this fails then an exception should be raised anyways num = float(val) return num def _words_group(input, strlen): """ Split a long string into parts where each part is no longer than ``strlen`` and no word is cut into two pieces. But if there is one single word which is longer than ``strlen``, then it will be split in the middle of the word. """ words = [] nblanks = input.count(' ') nmax = max(nblanks, len(input) // strlen + 1) arr = np.frombuffer((input + ' ').encode('utf8'), dtype='S1') # locations of the blanks blank_loc = np.nonzero(arr == b' ')[0] offset = 0 xoffset = 0 for idx in range(nmax): try: loc = np.nonzero(blank_loc >= strlen + offset)[0][0] offset = blank_loc[loc - 1] + 1 if loc == 0: offset = -1 except Exception: offset = len(input) # check for one word longer than strlen, break in the middle if offset <= xoffset: offset = xoffset + strlen # collect the pieces in a list words.append(input[xoffset:offset]) if len(input) == offset: break xoffset = offset return words def _tmp_name(input): """ Create a temporary file name which should not already exist. Use the directory of the input file as the base name of the mkstemp() output. """ if input is not None: input = os.path.dirname(input) f, fn = tempfile.mkstemp(dir=input) os.close(f) return fn def _get_array_mmap(array): """ If the array has an mmap.mmap at base of its base chain, return the mmap object; otherwise return None. """ if isinstance(array, mmap.mmap): return array base = array while hasattr(base, 'base') and base.base is not None: if isinstance(base.base, mmap.mmap): return base.base base = base.base @contextmanager def _free_space_check(hdulist, dirname=None): try: yield except OSError as exc: error_message = '' if not isinstance(hdulist, list): hdulist = [hdulist, ] if dirname is None: dirname = os.path.dirname(hdulist._file.name) if os.path.isdir(dirname): free_space = data.get_free_space_in_dir(dirname) hdulist_size = sum(hdu.size for hdu in hdulist) if free_space < hdulist_size: error_message = ("Not enough space on disk: requested {}, " "available {}. ".format(hdulist_size, free_space)) for hdu in hdulist: hdu._close() raise OSError(error_message + str(exc)) def _extract_number(value, default): """ Attempts to extract an integer number from the given value. If the extraction fails, the value of the 'default' argument is returned. """ try: # The _str_to_num method converts the value to string/float # so we need to perform one additional conversion to int on top return int(_str_to_num(value)) except (TypeError, ValueError): return default def get_testdata_filepath(filename): """ Return a string representing the path to the file requested from the io.fits test data set. .. versionadded:: 2.0.3 Parameters ---------- filename : str The filename of the test data file. Returns ------- filepath : str The path to the requested file. """ return data.get_pkg_data_filename( 'io/fits/tests/data/{}'.format(filename), 'astropy') def _rstrip_inplace(array): """ Performs an in-place rstrip operation on string arrays. This is necessary since the built-in `np.char.rstrip` in Numpy does not perform an in-place calculation. """ # The following implementation convert the string to unsigned integers of # the right length. Trailing spaces (which are represented as 32) are then # converted to null characters (represented as zeros). To avoid creating # large temporary mask arrays, we loop over chunks (attempting to do that # on a 1-D version of the array; large memory may still be needed in the # unlikely case that a string array has small first dimension and cannot # be represented as a contiguous 1-D array in memory). dt = array.dtype if dt.kind not in 'SU': raise TypeError("This function can only be used on string arrays") # View the array as appropriate integers. The last dimension will # equal the number of characters in each string. bpc = 1 if dt.kind == 'S' else 4 dt_int = "({0},){1}u{2}".format(dt.itemsize // bpc, dt.byteorder, bpc) b = array.view(dt_int, np.ndarray) # For optimal speed, work in chunks of the internal ufunc buffer size. bufsize = np.getbufsize() # Attempt to have the strings as a 1-D array to give the chunk known size. # Note: the code will work if this fails; the chunks will just be larger. if b.ndim > 2: try: b.shape = -1, b.shape[-1] except AttributeError: # can occur for non-contiguous arrays pass for j in range(0, b.shape[0], bufsize): c = b[j:j + bufsize] # Mask which will tell whether we're in a sequence of trailing spaces. mask = np.ones(c.shape[:-1], dtype=bool) # Loop over the characters in the strings, in reverse order. We process # the i-th character of all strings in the chunk at the same time. If # the character is 32, this corresponds to a space, and we then change # this to 0. We then construct a new mask to find rows where the # i-th character is 0 (null) and the i-1-th is 32 (space) and repeat. for i in range(-1, -c.shape[-1], -1): mask &= c[..., i] == 32 c[..., i][mask] = 0 mask = c[..., i] == 0 return array
2224e90bab2ce0b04b92216ebbc98e1edef0a983d70c68063c86d04b86f372d7
# Licensed under a 3-clause BSD style license - see PYFITS.rst import re import warnings import numpy as np from .util import _str_to_num, _is_int, translate, _words_group from .verify import _Verify, _ErrList, VerifyError, VerifyWarning from . import conf from astropy.utils.exceptions import AstropyUserWarning __all__ = ['Card', 'Undefined'] FIX_FP_TABLE = str.maketrans('de', 'DE') FIX_FP_TABLE2 = str.maketrans('dD', 'eE') CARD_LENGTH = 80 BLANK_CARD = ' ' * CARD_LENGTH KEYWORD_LENGTH = 8 # The max length for FITS-standard keywords VALUE_INDICATOR = '= ' # The standard FITS value indicator VALUE_INDICATOR_LEN = len(VALUE_INDICATOR) HIERARCH_VALUE_INDICATOR = '=' # HIERARCH cards may use a shortened indicator class Undefined: """Undefined value.""" def __init__(self): # This __init__ is required to be here for Sphinx documentation pass UNDEFINED = Undefined() class Card(_Verify): length = CARD_LENGTH """The length of a Card image; should always be 80 for valid FITS files.""" # String for a FITS standard compliant (FSC) keyword. _keywd_FSC_RE = re.compile(r'^[A-Z0-9_-]{0,%d}$' % KEYWORD_LENGTH) # This will match any printable ASCII character excluding '=' _keywd_hierarch_RE = re.compile(r'^(?:HIERARCH +)?(?:^[ -<>-~]+ ?)+$', re.I) # A number sub-string, either an integer or a float in fixed or # scientific notation. One for FSC and one for non-FSC (NFSC) format: # NFSC allows lower case of DE for exponent, allows space between sign, # digits, exponent sign, and exponents _digits_FSC = r'(\.\d+|\d+(\.\d*)?)([DE][+-]?\d+)?' _digits_NFSC = r'(\.\d+|\d+(\.\d*)?) *([deDE] *[+-]? *\d+)?' _numr_FSC = r'[+-]?' + _digits_FSC _numr_NFSC = r'[+-]? *' + _digits_NFSC # This regex helps delete leading zeros from numbers, otherwise # Python might evaluate them as octal values (this is not-greedy, however, # so it may not strip leading zeros from a float, which is fine) _number_FSC_RE = re.compile(r'(?P<sign>[+-])?0*?(?P<digt>{})'.format( _digits_FSC)) _number_NFSC_RE = re.compile(r'(?P<sign>[+-])? *0*?(?P<digt>{})'.format( _digits_NFSC)) # FSC commentary card string which must contain printable ASCII characters. # Note: \Z matches the end of the string without allowing newlines _ascii_text_re = re.compile(r'[ -~]*\Z') # Checks for a valid value/comment string. It returns a match object # for a valid value/comment string. # The valu group will return a match if a FITS string, boolean, # number, or complex value is found, otherwise it will return # None, meaning the keyword is undefined. The comment field will # return a match if the comment separator is found, though the # comment maybe an empty string. _value_FSC_RE = re.compile( r'(?P<valu_field> *' r'(?P<valu>' # The <strg> regex is not correct for all cases, but # it comes pretty darn close. It appears to find the # end of a string rather well, but will accept # strings with an odd number of single quotes, # instead of issuing an error. The FITS standard # appears vague on this issue and only states that a # string should not end with two single quotes, # whereas it should not end with an even number of # quotes to be precise. # # Note that a non-greedy match is done for a string, # since a greedy match will find a single-quote after # the comment separator resulting in an incorrect # match. r'\'(?P<strg>([ -~]+?|\'\'|)) *?\'(?=$|/| )|' r'(?P<bool>[FT])|' r'(?P<numr>' + _numr_FSC + r')|' r'(?P<cplx>\( *' r'(?P<real>' + _numr_FSC + r') *, *' r'(?P<imag>' + _numr_FSC + r') *\))' r')? *)' r'(?P<comm_field>' r'(?P<sepr>/ *)' r'(?P<comm>[!-~][ -~]*)?' r')?$') _value_NFSC_RE = re.compile( r'(?P<valu_field> *' r'(?P<valu>' r'\'(?P<strg>([ -~]+?|\'\'|) *?)\'(?=$|/| )|' r'(?P<bool>[FT])|' r'(?P<numr>' + _numr_NFSC + r')|' r'(?P<cplx>\( *' r'(?P<real>' + _numr_NFSC + r') *, *' r'(?P<imag>' + _numr_NFSC + r') *\))' r')? *)' r'(?P<comm_field>' r'(?P<sepr>/ *)' r'(?P<comm>(.|\n)*)' r')?$') _rvkc_identifier = r'[a-zA-Z_]\w*' _rvkc_field = _rvkc_identifier + r'(\.\d+)?' _rvkc_field_specifier_s = r'{}(\.{})*'.format(_rvkc_field, _rvkc_field) _rvkc_field_specifier_val = (r'(?P<keyword>{}): (?P<val>{})'.format( _rvkc_field_specifier_s, _numr_FSC)) _rvkc_keyword_val = r'\'(?P<rawval>{})\''.format(_rvkc_field_specifier_val) _rvkc_keyword_val_comm = (r' *{} *(/ *(?P<comm>[ -~]*))?$'.format( _rvkc_keyword_val)) _rvkc_field_specifier_val_RE = re.compile(_rvkc_field_specifier_val + '$') # regular expression to extract the key and the field specifier from a # string that is being used to index into a card list that contains # record value keyword cards (ex. 'DP1.AXIS.1') _rvkc_keyword_name_RE = ( re.compile(r'(?P<keyword>{})\.(?P<field_specifier>{})$'.format( _rvkc_identifier, _rvkc_field_specifier_s))) # regular expression to extract the field specifier and value and comment # from the string value of a record value keyword card # (ex "'AXIS.1: 1' / a comment") _rvkc_keyword_val_comm_RE = re.compile(_rvkc_keyword_val_comm) _commentary_keywords = {'', 'COMMENT', 'HISTORY', 'END'} _special_keywords = _commentary_keywords.union(['CONTINUE']) # The default value indicator; may be changed if required by a convention # (namely HIERARCH cards) _value_indicator = VALUE_INDICATOR def __init__(self, keyword=None, value=None, comment=None, **kwargs): # For backwards compatibility, support the 'key' keyword argument: if keyword is None and 'key' in kwargs: keyword = kwargs['key'] self._keyword = None self._value = None self._comment = None self._valuestring = None self._image = None # This attribute is set to False when creating the card from a card # image to ensure that the contents of the image get verified at some # point self._verified = True # A flag to conveniently mark whether or not this was a valid HIERARCH # card self._hierarch = False # If the card could not be parsed according the the FITS standard or # any recognized non-standard conventions, this will be True self._invalid = False self._field_specifier = None # These are used primarily only by RVKCs self._rawkeyword = None self._rawvalue = None if not (keyword is not None and value is not None and self._check_if_rvkc(keyword, value)): # If _check_if_rvkc passes, it will handle setting the keyword and # value if keyword is not None: self.keyword = keyword if value is not None: self.value = value if comment is not None: self.comment = comment self._modified = False self._valuemodified = False def __repr__(self): return repr((self.keyword, self.value, self.comment)) def __str__(self): return self.image def __len__(self): return 3 def __getitem__(self, index): return (self.keyword, self.value, self.comment)[index] @property def keyword(self): """Returns the keyword name parsed from the card image.""" if self._keyword is not None: return self._keyword elif self._image: self._keyword = self._parse_keyword() return self._keyword else: self.keyword = '' return '' @keyword.setter def keyword(self, keyword): """Set the key attribute; once set it cannot be modified.""" if self._keyword is not None: raise AttributeError( 'Once set, the Card keyword may not be modified') elif isinstance(keyword, str): # Be nice and remove trailing whitespace--some FITS code always # pads keywords out with spaces; leading whitespace, however, # should be strictly disallowed. keyword = keyword.rstrip() keyword_upper = keyword.upper() if (len(keyword) <= KEYWORD_LENGTH and self._keywd_FSC_RE.match(keyword_upper)): # For keywords with length > 8 they will be HIERARCH cards, # and can have arbitrary case keywords if keyword_upper == 'END': raise ValueError("Keyword 'END' not allowed.") keyword = keyword_upper elif self._keywd_hierarch_RE.match(keyword): # In prior versions of PyFITS (*) HIERARCH cards would only be # created if the user-supplied keyword explicitly started with # 'HIERARCH '. Now we will create them automatically for long # keywords, but we still want to support the old behavior too; # the old behavior makes it possible to create HEIRARCH cards # that would otherwise be recognized as RVKCs # (*) This has never affected Astropy, because it was changed # before PyFITS was merged into Astropy! self._hierarch = True self._value_indicator = HIERARCH_VALUE_INDICATOR if keyword_upper[:9] == 'HIERARCH ': # The user explicitly asked for a HIERARCH card, so don't # bug them about it... keyword = keyword[9:].strip() else: # We'll gladly create a HIERARCH card, but a warning is # also displayed warnings.warn( 'Keyword name {!r} is greater than 8 characters or ' 'contains characters not allowed by the FITS ' 'standard; a HIERARCH card will be created.'.format( keyword), VerifyWarning) else: raise ValueError('Illegal keyword name: {!r}.'.format(keyword)) self._keyword = keyword self._modified = True else: raise ValueError('Keyword name {!r} is not a string.'.format(keyword)) @property def value(self): """The value associated with the keyword stored in this card.""" if self.field_specifier: return float(self._value) if self._value is not None: value = self._value elif self._valuestring is not None or self._image: value = self._value = self._parse_value() else: if self._keyword == '': self._value = value = '' else: self._value = value = UNDEFINED if conf.strip_header_whitespace and isinstance(value, str): value = value.rstrip() return value @value.setter def value(self, value): if self._invalid: raise ValueError( 'The value of invalid/unparseable cards cannot set. Either ' 'delete this card from the header or replace it.') if value is None: value = UNDEFINED try: oldvalue = self.value except VerifyError: # probably a parsing error, falling back to the internal _value # which should be None. This may happen while calling _fix_value. oldvalue = self._value if oldvalue is None: oldvalue = UNDEFINED if not isinstance(value, (str, int, float, complex, bool, Undefined, np.floating, np.integer, np.complexfloating, np.bool_)): raise ValueError('Illegal value: {!r}.'.format(value)) if isinstance(value, float) and (np.isnan(value) or np.isinf(value)): raise ValueError("Floating point {!r} values are not allowed " "in FITS headers.".format(value)) elif isinstance(value, str): m = self._ascii_text_re.match(value) if not m: raise ValueError( 'FITS header values must contain standard printable ASCII ' 'characters; {!r} contains characters not representable in ' 'ASCII or non-printable characters.'.format(value)) elif isinstance(value, bytes): # Allow str, but only if they can be decoded to ASCII text; note # this is not even allowed on Python 3 since the `bytes` type is # not included in `str`. Presently we simply don't # allow bytes to be assigned to headers, as doing so would too # easily mask potential user error valid = True try: text_value = value.decode('ascii') except UnicodeDecodeError: valid = False else: # Check against the printable characters regexp as well m = self._ascii_text_re.match(text_value) valid = m is not None if not valid: raise ValueError( 'FITS header values must contain standard printable ASCII ' 'characters; {!r} contains characters/bytes that do not ' 'represent printable characters in ASCII.'.format(value)) elif isinstance(value, np.bool_): value = bool(value) if (conf.strip_header_whitespace and (isinstance(oldvalue, str) and isinstance(value, str))): # Ignore extra whitespace when comparing the new value to the old different = oldvalue.rstrip() != value.rstrip() elif isinstance(oldvalue, bool) or isinstance(value, bool): different = oldvalue is not value else: different = (oldvalue != value or not isinstance(value, type(oldvalue))) if different: self._value = value self._rawvalue = None self._modified = True self._valuestring = None self._valuemodified = True if self.field_specifier: try: self._value = _int_or_float(self._value) except ValueError: raise ValueError('value {} is not a float'.format( self._value)) @value.deleter def value(self): if self._invalid: raise ValueError( 'The value of invalid/unparseable cards cannot deleted. ' 'Either delete this card from the header or replace it.') if not self.field_specifier: self.value = '' else: raise AttributeError('Values cannot be deleted from record-valued ' 'keyword cards') @property def rawkeyword(self): """On record-valued keyword cards this is the name of the standard <= 8 character FITS keyword that this RVKC is stored in. Otherwise it is the card's normal keyword. """ if self._rawkeyword is not None: return self._rawkeyword elif self.field_specifier is not None: self._rawkeyword = self.keyword.split('.', 1)[0] return self._rawkeyword else: return self.keyword @property def rawvalue(self): """On record-valued keyword cards this is the raw string value in the ``<field-specifier>: <value>`` format stored in the card in order to represent a RVKC. Otherwise it is the card's normal value. """ if self._rawvalue is not None: return self._rawvalue elif self.field_specifier is not None: self._rawvalue = '{}: {}'.format(self.field_specifier, self.value) return self._rawvalue else: return self.value @property def comment(self): """Get the comment attribute from the card image if not already set.""" if self._comment is not None: return self._comment elif self._image: self._comment = self._parse_comment() return self._comment else: self._comment = '' return '' @comment.setter def comment(self, comment): if self._invalid: raise ValueError( 'The comment of invalid/unparseable cards cannot set. Either ' 'delete this card from the header or replace it.') if comment is None: comment = '' if isinstance(comment, str): m = self._ascii_text_re.match(comment) if not m: raise ValueError( 'FITS header comments must contain standard printable ' 'ASCII characters; {!r} contains characters not ' 'representable in ASCII or non-printable characters.' .format(comment)) try: oldcomment = self.comment except VerifyError: # probably a parsing error, falling back to the internal _comment # which should be None. oldcomment = self._comment if oldcomment is None: oldcomment = '' if comment != oldcomment: self._comment = comment self._modified = True @comment.deleter def comment(self): if self._invalid: raise ValueError( 'The comment of invalid/unparseable cards cannot deleted. ' 'Either delete this card from the header or replace it.') self.comment = '' @property def field_specifier(self): """ The field-specifier of record-valued keyword cards; always `None` on normal cards. """ # Ensure that the keyword exists and has been parsed--the will set the # internal _field_specifier attribute if this is a RVKC. if self.keyword: return self._field_specifier else: return None @field_specifier.setter def field_specifier(self, field_specifier): if not field_specifier: raise ValueError('The field-specifier may not be blank in ' 'record-valued keyword cards.') elif not self.field_specifier: raise AttributeError('Cannot coerce cards to be record-valued ' 'keyword cards by setting the ' 'field_specifier attribute') elif field_specifier != self.field_specifier: self._field_specifier = field_specifier # The keyword need also be updated keyword = self._keyword.split('.', 1)[0] self._keyword = '.'.join([keyword, field_specifier]) self._modified = True @field_specifier.deleter def field_specifier(self): raise AttributeError('The field_specifier attribute may not be ' 'deleted from record-valued keyword cards.') @property def image(self): """ The card "image", that is, the 80 byte character string that represents this card in an actual FITS header. """ if self._image and not self._verified: self.verify('fix+warn') if self._image is None or self._modified: self._image = self._format_image() return self._image @property def is_blank(self): """ `True` if the card is completely blank--that is, it has no keyword, value, or comment. It appears in the header as 80 spaces. Returns `False` otherwise. """ if not self._verified: # The card image has not been parsed yet; compare directly with the # string representation of a blank card return self._image == BLANK_CARD # If the keyword, value, and comment are all empty (for self.value # explicitly check that it is a string value, since a blank value is # returned as '') return (not self.keyword and (isinstance(self.value, str) and not self.value) and not self.comment) @classmethod def fromstring(cls, image): """ Construct a `Card` object from a (raw) string. It will pad the string if it is not the length of a card image (80 columns). If the card image is longer than 80 columns, assume it contains ``CONTINUE`` card(s). """ card = cls() if isinstance(image, bytes): # FITS supports only ASCII, but decode as latin1 and just take all # bytes for now; if it results in mojibake due to e.g. UTF-8 # encoded data in a FITS header that's OK because it shouldn't be # there in the first place image = image.decode('latin1') card._image = _pad(image) card._verified = False return card @classmethod def normalize_keyword(cls, keyword): """ `classmethod` to convert a keyword value that may contain a field-specifier to uppercase. The effect is to raise the key to uppercase and leave the field specifier in its original case. Parameters ---------- keyword : or str A keyword value or a ``keyword.field-specifier`` value """ # Test first for the most common case: a standard FITS keyword provided # in standard all-caps if (len(keyword) <= KEYWORD_LENGTH and cls._keywd_FSC_RE.match(keyword)): return keyword # Test if this is a record-valued keyword match = cls._rvkc_keyword_name_RE.match(keyword) if match: return '.'.join((match.group('keyword').strip().upper(), match.group('field_specifier'))) elif len(keyword) > 9 and keyword[:9].upper() == 'HIERARCH ': # Remove 'HIERARCH' from HIERARCH keywords; this could lead to # ambiguity if there is actually a keyword card containing # "HIERARCH HIERARCH", but shame on you if you do that. return keyword[9:].strip().upper() else: # A normal FITS keyword, but provided in non-standard case return keyword.strip().upper() def _check_if_rvkc(self, *args): """ Determine whether or not the card is a record-valued keyword card. If one argument is given, that argument is treated as a full card image and parsed as such. If two arguments are given, the first is treated as the card keyword (including the field-specifier if the card is intended as a RVKC), and the second as the card value OR the first value can be the base keyword, and the second value the 'field-specifier: value' string. If the check passes the ._keyword, ._value, and .field_specifier keywords are set. Examples -------- :: self._check_if_rvkc('DP1', 'AXIS.1: 2') self._check_if_rvkc('DP1.AXIS.1', 2) self._check_if_rvkc('DP1 = AXIS.1: 2') """ if not conf.enable_record_valued_keyword_cards: return False if len(args) == 1: return self._check_if_rvkc_image(*args) elif len(args) == 2: keyword, value = args if not isinstance(keyword, str): return False if keyword in self._commentary_keywords: return False match = self._rvkc_keyword_name_RE.match(keyword) if match and isinstance(value, (int, float)): self._init_rvkc(match.group('keyword'), match.group('field_specifier'), None, value) return True # Testing for ': ' is a quick way to avoid running the full regular # expression, speeding this up for the majority of cases if isinstance(value, str) and value.find(': ') > 0: match = self._rvkc_field_specifier_val_RE.match(value) if match and self._keywd_FSC_RE.match(keyword): self._init_rvkc(keyword, match.group('keyword'), value, match.group('val')) return True def _check_if_rvkc_image(self, *args): """ Implements `Card._check_if_rvkc` for the case of an unparsed card image. If given one argument this is the full intact image. If given two arguments the card has already been split between keyword and value+comment at the standard value indicator '= '. """ if len(args) == 1: image = args[0] eq_idx = image.find(VALUE_INDICATOR) if eq_idx < 0 or eq_idx > 9: return False keyword = image[:eq_idx] rest = image[eq_idx + VALUE_INDICATOR_LEN:] else: keyword, rest = args rest = rest.lstrip() # This test allows us to skip running the full regular expression for # the majority of cards that do not contain strings or that definitely # do not contain RVKC field-specifiers; it's very much a # micro-optimization but it does make a measurable difference if not rest or rest[0] != "'" or rest.find(': ') < 2: return False match = self._rvkc_keyword_val_comm_RE.match(rest) if match: self._init_rvkc(keyword, match.group('keyword'), match.group('rawval'), match.group('val')) return True def _init_rvkc(self, keyword, field_specifier, field, value): """ Sort of addendum to Card.__init__ to set the appropriate internal attributes if the card was determined to be a RVKC. """ keyword_upper = keyword.upper() self._keyword = '.'.join((keyword_upper, field_specifier)) self._rawkeyword = keyword_upper self._field_specifier = field_specifier self._value = _int_or_float(value) self._rawvalue = field def _parse_keyword(self): keyword = self._image[:KEYWORD_LENGTH].strip() keyword_upper = keyword.upper() if keyword_upper in self._special_keywords: return keyword_upper elif (keyword_upper == 'HIERARCH' and self._image[8] == ' ' and HIERARCH_VALUE_INDICATOR in self._image): # This is valid HIERARCH card as described by the HIERARCH keyword # convention: # http://fits.gsfc.nasa.gov/registry/hierarch_keyword.html self._hierarch = True self._value_indicator = HIERARCH_VALUE_INDICATOR keyword = self._image.split(HIERARCH_VALUE_INDICATOR, 1)[0][9:] return keyword.strip() else: val_ind_idx = self._image.find(VALUE_INDICATOR) if 0 <= val_ind_idx <= KEYWORD_LENGTH: # The value indicator should appear in byte 8, but we are # flexible and allow this to be fixed if val_ind_idx < KEYWORD_LENGTH: keyword = keyword[:val_ind_idx] keyword_upper = keyword_upper[:val_ind_idx] rest = self._image[val_ind_idx + VALUE_INDICATOR_LEN:] # So far this looks like a standard FITS keyword; check whether # the value represents a RVKC; if so then we pass things off to # the RVKC parser if self._check_if_rvkc_image(keyword, rest): return self._keyword return keyword_upper else: warnings.warn( 'The following header keyword is invalid or follows an ' 'unrecognized non-standard convention:\n{}' .format(self._image), AstropyUserWarning) self._invalid = True return keyword def _parse_value(self): """Extract the keyword value from the card image.""" # for commentary cards, no need to parse further # Likewise for invalid cards if self.keyword.upper() in self._commentary_keywords or self._invalid: return self._image[KEYWORD_LENGTH:].rstrip() if self._check_if_rvkc(self._image): return self._value if len(self._image) > self.length: values = [] for card in self._itersubcards(): value = card.value.rstrip().replace("''", "'") if value and value[-1] == '&': value = value[:-1] values.append(value) value = ''.join(values) self._valuestring = value return value m = self._value_NFSC_RE.match(self._split()[1]) if m is None: raise VerifyError("Unparsable card ({}), fix it first with " ".verify('fix').".format(self.keyword)) if m.group('bool') is not None: value = m.group('bool') == 'T' elif m.group('strg') is not None: value = re.sub("''", "'", m.group('strg')) elif m.group('numr') is not None: # Check for numbers with leading 0s. numr = self._number_NFSC_RE.match(m.group('numr')) digt = translate(numr.group('digt'), FIX_FP_TABLE2, ' ') if numr.group('sign') is None: sign = '' else: sign = numr.group('sign') value = _str_to_num(sign + digt) elif m.group('cplx') is not None: # Check for numbers with leading 0s. real = self._number_NFSC_RE.match(m.group('real')) rdigt = translate(real.group('digt'), FIX_FP_TABLE2, ' ') if real.group('sign') is None: rsign = '' else: rsign = real.group('sign') value = _str_to_num(rsign + rdigt) imag = self._number_NFSC_RE.match(m.group('imag')) idigt = translate(imag.group('digt'), FIX_FP_TABLE2, ' ') if imag.group('sign') is None: isign = '' else: isign = imag.group('sign') value += _str_to_num(isign + idigt) * 1j else: value = UNDEFINED if not self._valuestring: self._valuestring = m.group('valu') return value def _parse_comment(self): """Extract the keyword value from the card image.""" # for commentary cards, no need to parse further # likewise for invalid/unparseable cards if self.keyword in Card._commentary_keywords or self._invalid: return '' if len(self._image) > self.length: comments = [] for card in self._itersubcards(): if card.comment: comments.append(card.comment) comment = '/ ' + ' '.join(comments).rstrip() m = self._value_NFSC_RE.match(comment) else: m = self._value_NFSC_RE.match(self._split()[1]) if m is not None: comment = m.group('comm') if comment: return comment.rstrip() return '' def _split(self): """ Split the card image between the keyword and the rest of the card. """ if self._image is not None: # If we already have a card image, don't try to rebuild a new card # image, which self.image would do image = self._image else: image = self.image if self.keyword in self._special_keywords: keyword, valuecomment = image.split(' ', 1) else: try: delim_index = image.index(self._value_indicator) except ValueError: delim_index = None # The equal sign may not be any higher than column 10; anything # past that must be considered part of the card value if delim_index is None: keyword = image[:KEYWORD_LENGTH] valuecomment = image[KEYWORD_LENGTH:] elif delim_index > 10 and image[:9] != 'HIERARCH ': keyword = image[:8] valuecomment = image[8:] else: keyword, valuecomment = image.split(self._value_indicator, 1) return keyword.strip(), valuecomment.strip() def _fix_keyword(self): if self.field_specifier: keyword, field_specifier = self._keyword.split('.', 1) self._keyword = '.'.join([keyword.upper(), field_specifier]) else: self._keyword = self._keyword.upper() self._modified = True def _fix_value(self): """Fix the card image for fixable non-standard compliance.""" value = None keyword, valuecomment = self._split() m = self._value_NFSC_RE.match(valuecomment) # for the unparsable case if m is None: try: value, comment = valuecomment.split('/', 1) self.value = value.strip() self.comment = comment.strip() except (ValueError, IndexError): self.value = valuecomment self._valuestring = self._value return elif m.group('numr') is not None: numr = self._number_NFSC_RE.match(m.group('numr')) value = translate(numr.group('digt'), FIX_FP_TABLE, ' ') if numr.group('sign') is not None: value = numr.group('sign') + value elif m.group('cplx') is not None: real = self._number_NFSC_RE.match(m.group('real')) rdigt = translate(real.group('digt'), FIX_FP_TABLE, ' ') if real.group('sign') is not None: rdigt = real.group('sign') + rdigt imag = self._number_NFSC_RE.match(m.group('imag')) idigt = translate(imag.group('digt'), FIX_FP_TABLE, ' ') if imag.group('sign') is not None: idigt = imag.group('sign') + idigt value = '({}, {})'.format(rdigt, idigt) self._valuestring = value # The value itself has not been modified, but its serialized # representation (as stored in self._valuestring) has been changed, so # still set this card as having been modified (see ticket #137) self._modified = True def _format_keyword(self): if self.keyword: if self.field_specifier: return '{:{len}}'.format(self.keyword.split('.', 1)[0], len=KEYWORD_LENGTH) elif self._hierarch: return 'HIERARCH {} '.format(self.keyword) else: return '{:{len}}'.format(self.keyword, len=KEYWORD_LENGTH) else: return ' ' * KEYWORD_LENGTH def _format_value(self): # value string float_types = (float, np.floating, complex, np.complexfloating) # Force the value to be parsed out first value = self.value # But work with the underlying raw value instead (to preserve # whitespace, for now...) value = self._value if self.keyword in self._commentary_keywords: # The value of a commentary card must be just a raw unprocessed # string value = str(value) elif (self._valuestring and not self._valuemodified and isinstance(self.value, float_types)): # Keep the existing formatting for float/complex numbers value = '{:>20}'.format(self._valuestring) elif self.field_specifier: value = _format_value(self._value).strip() value = "'{}: {}'".format(self.field_specifier, value) else: value = _format_value(value) # For HIERARCH cards the value should be shortened to conserve space if not self.field_specifier and len(self.keyword) > KEYWORD_LENGTH: value = value.strip() return value def _format_comment(self): if not self.comment: return '' else: return ' / {}'.format(self._comment) def _format_image(self): keyword = self._format_keyword() value = self._format_value() is_commentary = keyword.strip() in self._commentary_keywords if is_commentary: comment = '' else: comment = self._format_comment() # equal sign string # by default use the standard value indicator even for HIERARCH cards; # later we may abbreviate it if necessary delimiter = VALUE_INDICATOR if is_commentary: delimiter = '' # put all parts together output = ''.join([keyword, delimiter, value, comment]) # For HIERARCH cards we can save a bit of space if necessary by # removing the space between the keyword and the equals sign; I'm # guessing this is part of the HIEARCH card specification keywordvalue_length = len(keyword) + len(delimiter) + len(value) if (keywordvalue_length > self.length and keyword.startswith('HIERARCH')): if (keywordvalue_length == self.length + 1 and keyword[-1] == ' '): output = ''.join([keyword[:-1], delimiter, value, comment]) else: # I guess the HIERARCH card spec is incompatible with CONTINUE # cards raise ValueError('The header keyword {!r} with its value is ' 'too long'.format(self.keyword)) if len(output) <= self.length: output = '{:80}'.format(output) else: # longstring case (CONTINUE card) # try not to use CONTINUE if the string value can fit in one line. # Instead, just truncate the comment if (isinstance(self.value, str) and len(value) > (self.length - 10)): output = self._format_long_image() else: warnings.warn('Card is too long, comment will be truncated.', VerifyWarning) output = output[:Card.length] return output def _format_long_image(self): """ Break up long string value/comment into ``CONTINUE`` cards. This is a primitive implementation: it will put the value string in one block and the comment string in another. Also, it does not break at the blank space between words. So it may not look pretty. """ if self.keyword in Card._commentary_keywords: return self._format_long_commentary_image() value_length = 67 comment_length = 64 output = [] # do the value string value = self._value.replace("'", "''") words = _words_group(value, value_length) for idx, word in enumerate(words): if idx == 0: headstr = '{:{len}}= '.format(self.keyword, len=KEYWORD_LENGTH) else: headstr = 'CONTINUE ' # If this is the final CONTINUE remove the '&' if not self.comment and idx == len(words) - 1: value_format = "'{}'" else: value_format = "'{}&'" value = value_format.format(word) output.append('{:80}'.format(headstr + value)) # do the comment string comment_format = "{}" if self.comment: words = _words_group(self.comment, comment_length) for idx, word in enumerate(words): # If this is the final CONTINUE remove the '&' if idx == len(words) - 1: headstr = "CONTINUE '' / " else: headstr = "CONTINUE '&' / " comment = headstr + comment_format.format(word) output.append('{:80}'.format(comment)) return ''.join(output) def _format_long_commentary_image(self): """ If a commentary card's value is too long to fit on a single card, this will render the card as multiple consecutive commentary card of the same type. """ maxlen = Card.length - KEYWORD_LENGTH value = self._format_value() output = [] idx = 0 while idx < len(value): output.append(str(Card(self.keyword, value[idx:idx + maxlen]))) idx += maxlen return ''.join(output) def _verify(self, option='warn'): self._verified = True errs = _ErrList([]) fix_text = ('Fixed {!r} card to meet the FITS ' 'standard.'.format(self.keyword)) # Don't try to verify cards that already don't meet any recognizable # standard if self._invalid: return errs # verify the equal sign position if (self.keyword not in self._commentary_keywords and (self._image and self._image[:9].upper() != 'HIERARCH ' and self._image.find('=') != 8)): errs.append(self.run_option( option, err_text='Card {!r} is not FITS standard (equal sign not ' 'at column 8).'.format(self.keyword), fix_text=fix_text, fix=self._fix_value)) # verify the key, it is never fixable # always fix silently the case where "=" is before column 9, # since there is no way to communicate back to the _keys. if ((self._image and self._image[:8].upper() == 'HIERARCH') or self._hierarch): pass else: if self._image: # PyFITS will auto-uppercase any standard keyword, so lowercase # keywords can only occur if they came from the wild keyword = self._split()[0] if keyword != keyword.upper(): # Keyword should be uppercase unless it's a HIERARCH card errs.append(self.run_option( option, err_text='Card keyword {!r} is not upper case.'.format( keyword), fix_text=fix_text, fix=self._fix_keyword)) keyword = self.keyword if self.field_specifier: keyword = keyword.split('.', 1)[0] if not self._keywd_FSC_RE.match(keyword): errs.append(self.run_option( option, err_text='Illegal keyword name {!r}'.format(keyword), fixable=False)) # verify the value, it may be fixable keyword, valuecomment = self._split() if self.keyword in self._commentary_keywords: # For commentary keywords all that needs to be ensured is that it # contains only printable ASCII characters if not self._ascii_text_re.match(valuecomment): errs.append(self.run_option( option, err_text='Unprintable string {!r}; commentary cards may ' 'only contain printable ASCII characters'.format( valuecomment), fixable=False)) else: m = self._value_FSC_RE.match(valuecomment) if not m: errs.append(self.run_option( option, err_text='Card {!r} is not FITS standard (invalid value ' 'string: {!r}).'.format(self.keyword, valuecomment), fix_text=fix_text, fix=self._fix_value)) # verify the comment (string), it is never fixable m = self._value_NFSC_RE.match(valuecomment) if m is not None: comment = m.group('comm') if comment is not None: if not self._ascii_text_re.match(comment): errs.append(self.run_option( option, err_text=('Unprintable string {!r}; header comments ' 'may only contain printable ASCII ' 'characters'.format(comment)), fixable=False)) return errs def _itersubcards(self): """ If the card image is greater than 80 characters, it should consist of a normal card followed by one or more CONTINUE card. This method returns the subcards that make up this logical card. """ ncards = len(self._image) // Card.length for idx in range(0, Card.length * ncards, Card.length): card = Card.fromstring(self._image[idx:idx + Card.length]) if idx > 0 and card.keyword.upper() != 'CONTINUE': raise VerifyError( 'Long card images must have CONTINUE cards after ' 'the first card.') if not isinstance(card.value, str): raise VerifyError('CONTINUE cards must have string values.') yield card def _int_or_float(s): """ Converts an a string to an int if possible, or to a float. If the string is neither a string or a float a value error is raised. """ if isinstance(s, float): # Already a float so just pass through return s try: return int(s) except (ValueError, TypeError): try: return float(s) except (ValueError, TypeError) as e: raise ValueError(str(e)) def _format_value(value): """ Converts a card value to its appropriate string representation as defined by the FITS format. """ # string value should occupies at least 8 columns, unless it is # a null string if isinstance(value, str): if value == '': return "''" else: exp_val_str = value.replace("'", "''") val_str = "'{:8}'".format(exp_val_str) return '{:20}'.format(val_str) # must be before int checking since bool is also int elif isinstance(value, (bool, np.bool_)): return '{:>20}'.format(repr(value)[0]) # T or F elif _is_int(value): return '{:>20d}'.format(value) elif isinstance(value, (float, np.floating)): return '{:>20}'.format(_format_float(value)) elif isinstance(value, (complex, np.complexfloating)): val_str = '({}, {})'.format(_format_float(value.real), _format_float(value.imag)) return '{:>20}'.format(val_str) elif isinstance(value, Undefined): return '' else: return '' def _format_float(value): """Format a floating number to make sure it gets the decimal point.""" value_str = '{:.16G}'.format(value) if '.' not in value_str and 'E' not in value_str: value_str += '.0' elif 'E' in value_str: # On some Windows builds of Python (and possibly other platforms?) the # exponent is zero-padded out to, it seems, three digits. Normalize # the format to pad only to two digits. significand, exponent = value_str.split('E') if exponent[0] in ('+', '-'): sign = exponent[0] exponent = exponent[1:] else: sign = '' value_str = '{}E{}{:02d}'.format(significand, sign, int(exponent)) # Limit the value string to at most 20 characters. str_len = len(value_str) if str_len > 20: idx = value_str.find('E') if idx < 0: value_str = value_str[:20] else: value_str = value_str[:20 - (str_len - idx)] + value_str[idx:] return value_str def _pad(input): """Pad blank space to the input string to be multiple of 80.""" _len = len(input) if _len == Card.length: return input elif _len > Card.length: strlen = _len % Card.length if strlen == 0: return input else: return input + ' ' * (Card.length - strlen) # minimum length is 80 else: strlen = _len % Card.length return input + ' ' * (Card.length - strlen)
18965e4b231adee9211af0babc5e2fc9ff50ac7fd0fc2bfb39950f3a5f260a05
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module handles the conversion of various VOTABLE datatypes to/from TABLEDATA_ and BINARY_ formats. """ # STDLIB import re import sys from struct import unpack as _struct_unpack from struct import pack as _struct_pack # THIRD-PARTY import numpy as np from numpy import ma # ASTROPY from astropy.utils.xml.writer import xml_escape_cdata # LOCAL from .exceptions import (vo_raise, vo_warn, warn_or_raise, W01, W30, W31, W39, W46, W47, W49, W51, E01, E02, E03, E04, E05, E06) __all__ = ['get_converter', 'Converter', 'table_column_to_votable_datatype'] pedantic_array_splitter = re.compile(r" +") array_splitter = re.compile(r"\s+|(?:\s*,\s*)") """ A regex to handle splitting values on either whitespace or commas. SPEC: Usage of commas is not actually allowed by the spec, but many files in the wild use them. """ _zero_int = b'\0\0\0\0' _empty_bytes = b'' _zero_byte = b'\0' struct_unpack = _struct_unpack struct_pack = _struct_pack if sys.byteorder == 'little': def _ensure_bigendian(x): if x.dtype.byteorder != '>': return x.byteswap() return x else: def _ensure_bigendian(x): if x.dtype.byteorder == '<': return x.byteswap() return x def _make_masked_array(data, mask): """ Masked arrays of zero length that also have a mask of zero length cause problems in Numpy (at least in 1.6.2). This function creates a masked array from data and a mask, unless it is zero length. """ # np.ma doesn't like setting mask to [] if len(data): return ma.array( np.array(data), mask=np.array(mask, dtype='bool')) else: return ma.array(np.array(data)) def bitarray_to_bool(data, length): """ Converts a bit array (a string of bits in a bytes object) to a boolean Numpy array. Parameters ---------- data : bytes The bit array. The most significant byte is read first. length : int The number of bits to read. The least significant bits in the data bytes beyond length will be ignored. Returns ------- array : numpy bool array """ results = [] for byte in data: for bit_no in range(7, -1, -1): bit = byte & (1 << bit_no) bit = (bit != 0) results.append(bit) if len(results) == length: break if len(results) == length: break return np.array(results, dtype='b1') def bool_to_bitarray(value): """ Converts a numpy boolean array to a bit array (a string of bits in a bytes object). Parameters ---------- value : numpy bool array Returns ------- bit_array : bytes The first value in the input array will be the most significant bit in the result. The length will be `floor((N + 7) / 8)` where `N` is the length of `value`. """ value = value.flat bit_no = 7 byte = 0 bytes = [] for v in value: if v: byte |= 1 << bit_no if bit_no == 0: bytes.append(byte) bit_no = 7 byte = 0 else: bit_no -= 1 if bit_no != 7: bytes.append(byte) return struct_pack("{}B".format(len(bytes)), *bytes) class Converter: """ The base class for all converters. Each subclass handles converting a specific VOTABLE data type to/from the TABLEDATA_ and BINARY_ on-disk representations. Parameters ---------- field : `~astropy.io.votable.tree.Field` object describing the datatype config : dict The parser configuration dictionary pos : tuple The position in the XML file where the FIELD object was found. Used for error messages. """ def __init__(self, field, config=None, pos=None): pass @staticmethod def _parse_length(read): return struct_unpack(">I", read(4))[0] @staticmethod def _write_length(length): return struct_pack(">I", int(length)) def supports_empty_values(self, config): """ Returns True when the field can be completely empty. """ return config.get('version_1_3_or_later') def parse(self, value, config=None, pos=None): """ Convert the string *value* from the TABLEDATA_ format into an object with the correct native in-memory datatype and mask flag. Parameters ---------- value : str value in TABLEDATA format Returns ------- native : tuple (value, mask) The value as a Numpy array or scalar, and *mask* is True if the value is missing. """ raise NotImplementedError( "This datatype must implement a 'parse' method.") def parse_scalar(self, value, config=None, pos=None): """ Parse a single scalar of the underlying type of the converter. For non-array converters, this is equivalent to parse. For array converters, this is used to parse a single element of the array. Parameters ---------- value : str value in TABLEDATA format Returns ------- native : tuple (value, mask) The value as a Numpy array or scalar, and *mask* is True if the value is missing. """ return self.parse(value, config, pos) def output(self, value, mask): """ Convert the object *value* (in the native in-memory datatype) to a unicode string suitable for serializing in the TABLEDATA_ format. Parameters ---------- value : native type corresponding to this converter The value mask : bool If `True`, will return the string representation of a masked value. Returns ------- tabledata_repr : unicode """ raise NotImplementedError( "This datatype must implement a 'output' method.") def binparse(self, read): """ Reads some number of bytes from the BINARY_ format representation by calling the function *read*, and returns the native in-memory object representation for the datatype handled by *self*. Parameters ---------- read : function A function that given a number of bytes, returns a byte string. Returns ------- native : tuple (value, mask) The value as a Numpy array or scalar, and *mask* is True if the value is missing. """ raise NotImplementedError( "This datatype must implement a 'binparse' method.") def binoutput(self, value, mask): """ Convert the object *value* in the native in-memory datatype to a string of bytes suitable for serialization in the BINARY_ format. Parameters ---------- value : native type corresponding to this converter The value mask : bool If `True`, will return the string representation of a masked value. Returns ------- bytes : byte string The binary representation of the value, suitable for serialization in the BINARY_ format. """ raise NotImplementedError( "This datatype must implement a 'binoutput' method.") class Char(Converter): """ Handles the char datatype. (7-bit unsigned characters) Missing values are not handled for string or unicode types. """ default = _empty_bytes def __init__(self, field, config=None, pos=None): if config is None: config = {} Converter.__init__(self, field, config, pos) if field.arraysize is None: vo_warn(W47, (), config, pos) field.arraysize = '1' if field.arraysize == '*': self.format = 'O' self.binparse = self._binparse_var self.binoutput = self._binoutput_var self.arraysize = '*' else: if field.arraysize.endswith('*'): field.arraysize = field.arraysize[:-1] try: self.arraysize = int(field.arraysize) except ValueError: vo_raise(E01, (field.arraysize, 'char', field.ID), config) self.format = 'S{:d}'.format(self.arraysize) self.binparse = self._binparse_fixed self.binoutput = self._binoutput_fixed self._struct_format = ">{:d}s".format(self.arraysize) if config.get('verify', 'ignore') == 'exception': self.parse = self._ascii_parse else: self.parse = self._str_parse def supports_empty_values(self, config): return True def _ascii_parse(self, value, config=None, pos=None): if self.arraysize != '*' and len(value) > self.arraysize: vo_warn(W46, ('char', self.arraysize), config, pos) return value.encode('ascii'), False def _str_parse(self, value, config=None, pos=None): if self.arraysize != '*' and len(value) > self.arraysize: vo_warn(W46, ('char', self.arraysize), config, pos) return value.encode('utf-8'), False def output(self, value, mask): if mask: return '' if not isinstance(value, str): value = value.decode('ascii') return xml_escape_cdata(value) def _binparse_var(self, read): length = self._parse_length(read) return read(length), False def _binparse_fixed(self, read): s = struct_unpack(self._struct_format, read(self.arraysize))[0] end = s.find(_zero_byte) if end != -1: return s[:end], False return s, False def _binoutput_var(self, value, mask): if mask or value is None or value == '': return _zero_int return self._write_length(len(value)) + value def _binoutput_fixed(self, value, mask): if mask: value = _empty_bytes return struct_pack(self._struct_format, value) class UnicodeChar(Converter): """ Handles the unicodeChar data type. UTF-16-BE. Missing values are not handled for string or unicode types. """ default = '' def __init__(self, field, config=None, pos=None): Converter.__init__(self, field, config, pos) if field.arraysize is None: vo_warn(W47, (), config, pos) field.arraysize = '1' if field.arraysize == '*': self.format = 'O' self.binparse = self._binparse_var self.binoutput = self._binoutput_var self.arraysize = '*' else: try: self.arraysize = int(field.arraysize) except ValueError: vo_raise(E01, (field.arraysize, 'unicode', field.ID), config) self.format = 'U{:d}'.format(self.arraysize) self.binparse = self._binparse_fixed self.binoutput = self._binoutput_fixed self._struct_format = ">{:d}s".format(self.arraysize * 2) def parse(self, value, config=None, pos=None): if self.arraysize != '*' and len(value) > self.arraysize: vo_warn(W46, ('unicodeChar', self.arraysize), config, pos) return value, False def output(self, value, mask): if mask: return '' return xml_escape_cdata(str(value)) def _binparse_var(self, read): length = self._parse_length(read) return read(length * 2).decode('utf_16_be'), False def _binparse_fixed(self, read): s = struct_unpack(self._struct_format, read(self.arraysize * 2))[0] s = s.decode('utf_16_be') end = s.find('\0') if end != -1: return s[:end], False return s, False def _binoutput_var(self, value, mask): if mask or value is None or value == '': return _zero_int encoded = value.encode('utf_16_be') return self._write_length(len(encoded) / 2) + encoded def _binoutput_fixed(self, value, mask): if mask: value = '' return struct_pack(self._struct_format, value.encode('utf_16_be')) class Array(Converter): """ Handles both fixed and variable-lengths arrays. """ def __init__(self, field, config=None, pos=None): if config is None: config = {} Converter.__init__(self, field, config, pos) if config.get('verify', 'ignore') == 'exception': self._splitter = self._splitter_pedantic else: self._splitter = self._splitter_lax def parse_scalar(self, value, config=None, pos=0): return self._base.parse_scalar(value, config, pos) @staticmethod def _splitter_pedantic(value, config=None, pos=None): return pedantic_array_splitter.split(value) @staticmethod def _splitter_lax(value, config=None, pos=None): if ',' in value: vo_warn(W01, (), config, pos) return array_splitter.split(value) class VarArray(Array): """ Handles variable lengths arrays (i.e. where *arraysize* is '*'). """ format = 'O' def __init__(self, field, base, arraysize, config=None, pos=None): Array.__init__(self, field, config) self._base = base self.default = np.array([], dtype=self._base.format) def output(self, value, mask): output = self._base.output result = [output(x, m) for x, m in np.broadcast(value, mask)] return ' '.join(result) def binparse(self, read): length = self._parse_length(read) result = [] result_mask = [] binparse = self._base.binparse for i in range(length): val, mask = binparse(read) result.append(val) result_mask.append(mask) return _make_masked_array(result, result_mask), False def binoutput(self, value, mask): if value is None or len(value) == 0: return _zero_int length = len(value) result = [self._write_length(length)] binoutput = self._base.binoutput for x, m in zip(value, value.mask): result.append(binoutput(x, m)) return _empty_bytes.join(result) class ArrayVarArray(VarArray): """ Handles an array of variable-length arrays, i.e. where *arraysize* ends in '*'. """ def parse(self, value, config=None, pos=None): if value.strip() == '': return ma.array([]), False parts = self._splitter(value, config, pos) items = self._base._items parse_parts = self._base.parse_parts if len(parts) % items != 0: vo_raise(E02, (items, len(parts)), config, pos) result = [] result_mask = [] for i in range(0, len(parts), items): value, mask = parse_parts(parts[i:i+items], config, pos) result.append(value) result_mask.append(mask) return _make_masked_array(result, result_mask), False class ScalarVarArray(VarArray): """ Handles a variable-length array of numeric scalars. """ def parse(self, value, config=None, pos=None): if value.strip() == '': return ma.array([]), False parts = self._splitter(value, config, pos) parse = self._base.parse result = [] result_mask = [] for x in parts: value, mask = parse(x, config, pos) result.append(value) result_mask.append(mask) return _make_masked_array(result, result_mask), False class NumericArray(Array): """ Handles a fixed-length array of numeric scalars. """ vararray_type = ArrayVarArray def __init__(self, field, base, arraysize, config=None, pos=None): Array.__init__(self, field, config, pos) self._base = base self._arraysize = arraysize self.format = "{}{}".format(tuple(arraysize), base.format) self._items = 1 for dim in arraysize: self._items *= dim self._memsize = np.dtype(self.format).itemsize self._bigendian_format = '>' + self.format self.default = np.empty(arraysize, dtype=self._base.format) self.default[...] = self._base.default def parse(self, value, config=None, pos=None): if config is None: config = {} elif config['version_1_3_or_later'] and value == '': return np.zeros(self._arraysize, dtype=self._base.format), True parts = self._splitter(value, config, pos) if len(parts) != self._items: warn_or_raise(E02, E02, (self._items, len(parts)), config, pos) if config.get('verify', 'ignore') == 'exception': return self.parse_parts(parts, config, pos) else: if len(parts) == self._items: pass elif len(parts) > self._items: parts = parts[:self._items] else: parts = (parts + ([self._base.default] * (self._items - len(parts)))) return self.parse_parts(parts, config, pos) def parse_parts(self, parts, config=None, pos=None): base_parse = self._base.parse result = [] result_mask = [] for x in parts: value, mask = base_parse(x, config, pos) result.append(value) result_mask.append(mask) result = np.array(result, dtype=self._base.format).reshape( self._arraysize) result_mask = np.array(result_mask, dtype='bool').reshape( self._arraysize) return result, result_mask def output(self, value, mask): base_output = self._base.output value = np.asarray(value) mask = np.asarray(mask) return ' '.join(base_output(x, m) for x, m in zip(value.flat, mask.flat)) def binparse(self, read): result = np.frombuffer(read(self._memsize), dtype=self._bigendian_format)[0] result_mask = self._base.is_null(result) return result, result_mask def binoutput(self, value, mask): filtered = self._base.filter_array(value, mask) filtered = _ensure_bigendian(filtered) return filtered.tostring() class Numeric(Converter): """ The base class for all numeric data types. """ array_type = NumericArray vararray_type = ScalarVarArray null = None def __init__(self, field, config=None, pos=None): Converter.__init__(self, field, config, pos) self._memsize = np.dtype(self.format).itemsize self._bigendian_format = '>' + self.format if field.values.null is not None: self.null = np.asarray(field.values.null, dtype=self.format) self.default = self.null self.is_null = self._is_null else: self.is_null = np.isnan def binparse(self, read): result = np.frombuffer(read(self._memsize), dtype=self._bigendian_format) return result[0], self.is_null(result[0]) def _is_null(self, value): return value == self.null class FloatingPoint(Numeric): """ The base class for floating-point datatypes. """ default = np.nan def __init__(self, field, config=None, pos=None): if config is None: config = {} Numeric.__init__(self, field, config, pos) precision = field.precision width = field.width if precision is None: format_parts = ['{!r:>'] else: format_parts = ['{:'] if width is not None: format_parts.append(str(width)) if precision is not None: if precision.startswith("E"): format_parts.append('.{:d}g'.format(int(precision[1:]))) elif precision.startswith("F"): format_parts.append('.{:d}f'.format(int(precision[1:]))) else: format_parts.append('.{:d}f'.format(int(precision))) format_parts.append('}') self._output_format = ''.join(format_parts) self.nan = np.array(np.nan, self.format) if self.null is None: self._null_output = 'NaN' self._null_binoutput = self.binoutput(self.nan, False) self.filter_array = self._filter_nan else: self._null_output = self.output(np.asarray(self.null), False) self._null_binoutput = self.binoutput(np.asarray(self.null), False) self.filter_array = self._filter_null if config.get('verify', 'ignore') == 'exception': self.parse = self._parse_pedantic else: self.parse = self._parse_permissive def supports_empty_values(self, config): return True def _parse_pedantic(self, value, config=None, pos=None): if value.strip() == '': return self.null, True f = float(value) return f, self.is_null(f) def _parse_permissive(self, value, config=None, pos=None): try: f = float(value) return f, self.is_null(f) except ValueError: # IRSA VOTables use the word 'null' to specify empty values, # but this is not defined in the VOTable spec. if value.strip() != '': vo_warn(W30, value, config, pos) return self.null, True @property def output_format(self): return self._output_format def output(self, value, mask): if mask: return self._null_output if np.isfinite(value): if not np.isscalar(value): value = value.dtype.type(value) result = self._output_format.format(value) if result.startswith('array'): raise RuntimeError() if (self._output_format[2] == 'r' and result.endswith('.0')): result = result[:-2] return result elif np.isnan(value): return 'NaN' elif np.isposinf(value): return '+InF' elif np.isneginf(value): return '-InF' # Should never raise vo_raise("Invalid floating point value '{}'".format(value)) def binoutput(self, value, mask): if mask: return self._null_binoutput value = _ensure_bigendian(value) return value.tostring() def _filter_nan(self, value, mask): return np.where(mask, np.nan, value) def _filter_null(self, value, mask): return np.where(mask, self.null, value) class Double(FloatingPoint): """ Handles the double datatype. Double-precision IEEE floating-point. """ format = 'f8' class Float(FloatingPoint): """ Handles the float datatype. Single-precision IEEE floating-point. """ format = 'f4' class Integer(Numeric): """ The base class for all the integral datatypes. """ default = 0 def __init__(self, field, config=None, pos=None): Numeric.__init__(self, field, config, pos) def parse(self, value, config=None, pos=None): if config is None: config = {} mask = False if isinstance(value, str): value = value.lower() if value == '': if config['version_1_3_or_later']: mask = True else: warn_or_raise(W49, W49, (), config, pos) if self.null is not None: value = self.null else: value = self.default elif value == 'nan': mask = True if self.null is None: warn_or_raise(W31, W31, (), config, pos) value = self.default else: value = self.null elif value.startswith('0x'): value = int(value[2:], 16) else: value = int(value, 10) else: value = int(value) if self.null is not None and value == self.null: mask = True if value < self.val_range[0]: warn_or_raise(W51, W51, (value, self.bit_size), config, pos) value = self.val_range[0] elif value > self.val_range[1]: warn_or_raise(W51, W51, (value, self.bit_size), config, pos) value = self.val_range[1] return value, mask def output(self, value, mask): if mask: if self.null is None: warn_or_raise(W31, W31) return 'NaN' return str(self.null) return str(value) def binoutput(self, value, mask): if mask: if self.null is None: vo_raise(W31) else: value = self.null value = _ensure_bigendian(value) return value.tostring() def filter_array(self, value, mask): if np.any(mask): if self.null is not None: return np.where(mask, self.null, value) else: vo_raise(W31) return value class UnsignedByte(Integer): """ Handles the unsignedByte datatype. Unsigned 8-bit integer. """ format = 'u1' val_range = (0, 255) bit_size = '8-bit unsigned' class Short(Integer): """ Handles the short datatype. Signed 16-bit integer. """ format = 'i2' val_range = (-32768, 32767) bit_size = '16-bit' class Int(Integer): """ Handles the int datatype. Signed 32-bit integer. """ format = 'i4' val_range = (-2147483648, 2147483647) bit_size = '32-bit' class Long(Integer): """ Handles the long datatype. Signed 64-bit integer. """ format = 'i8' val_range = (-9223372036854775808, 9223372036854775807) bit_size = '64-bit' class ComplexArrayVarArray(VarArray): """ Handles an array of variable-length arrays of complex numbers. """ def parse(self, value, config=None, pos=None): if value.strip() == '': return ma.array([]), True parts = self._splitter(value, config, pos) items = self._base._items parse_parts = self._base.parse_parts if len(parts) % items != 0: vo_raise(E02, (items, len(parts)), config, pos) result = [] result_mask = [] for i in range(0, len(parts), items): value, mask = parse_parts(parts[i:i + items], config, pos) result.append(value) result_mask.append(mask) return _make_masked_array(result, result_mask), False class ComplexVarArray(VarArray): """ Handles a variable-length array of complex numbers. """ def parse(self, value, config=None, pos=None): if value.strip() == '': return ma.array([]), True parts = self._splitter(value, config, pos) parse_parts = self._base.parse_parts result = [] result_mask = [] for i in range(0, len(parts), 2): value = [float(x) for x in parts[i:i + 2]] value, mask = parse_parts(value, config, pos) result.append(value) result_mask.append(mask) return _make_masked_array( np.array(result, dtype=self._base.format), result_mask), False class ComplexArray(NumericArray): """ Handles a fixed-size array of complex numbers. """ vararray_type = ComplexArrayVarArray def __init__(self, field, base, arraysize, config=None, pos=None): NumericArray.__init__(self, field, base, arraysize, config, pos) self._items *= 2 def parse(self, value, config=None, pos=None): parts = self._splitter(value, config, pos) if parts == ['']: parts = [] return self.parse_parts(parts, config, pos) def parse_parts(self, parts, config=None, pos=None): if len(parts) != self._items: vo_raise(E02, (self._items, len(parts)), config, pos) base_parse = self._base.parse_parts result = [] result_mask = [] for i in range(0, self._items, 2): value = [float(x) for x in parts[i:i + 2]] value, mask = base_parse(value, config, pos) result.append(value) result_mask.append(mask) result = np.array( result, dtype=self._base.format).reshape(self._arraysize) result_mask = np.array( result_mask, dtype='bool').reshape(self._arraysize) return result, result_mask class Complex(FloatingPoint, Array): """ The base class for complex numbers. """ array_type = ComplexArray vararray_type = ComplexVarArray default = np.nan def __init__(self, field, config=None, pos=None): FloatingPoint.__init__(self, field, config, pos) Array.__init__(self, field, config, pos) def parse(self, value, config=None, pos=None): stripped = value.strip() if stripped == '' or stripped.lower() == 'nan': return np.nan, True splitter = self._splitter parts = [float(x) for x in splitter(value, config, pos)] if len(parts) != 2: vo_raise(E03, (value,), config, pos) return self.parse_parts(parts, config, pos) _parse_permissive = parse _parse_pedantic = parse def parse_parts(self, parts, config=None, pos=None): value = complex(*parts) return value, self.is_null(value) def output(self, value, mask): if mask: if self.null is None: return 'NaN' else: value = self.null real = self._output_format.format(float(value.real)) imag = self._output_format.format(float(value.imag)) if self._output_format[2] == 'r': if real.endswith('.0'): real = real[:-2] if imag.endswith('.0'): imag = imag[:-2] return real + ' ' + imag class FloatComplex(Complex): """ Handle floatComplex datatype. Pair of single-precision IEEE floating-point numbers. """ format = 'c8' class DoubleComplex(Complex): """ Handle doubleComplex datatype. Pair of double-precision IEEE floating-point numbers. """ format = 'c16' class BitArray(NumericArray): """ Handles an array of bits. """ vararray_type = ArrayVarArray def __init__(self, field, base, arraysize, config=None, pos=None): NumericArray.__init__(self, field, base, arraysize, config, pos) self._bytes = ((self._items - 1) // 8) + 1 @staticmethod def _splitter_pedantic(value, config=None, pos=None): return list(re.sub(r'\s', '', value)) @staticmethod def _splitter_lax(value, config=None, pos=None): if ',' in value: vo_warn(W01, (), config, pos) return list(re.sub(r'\s|,', '', value)) def output(self, value, mask): if np.any(mask): vo_warn(W39) value = np.asarray(value) mapping = {False: '0', True: '1'} return ''.join(mapping[x] for x in value.flat) def binparse(self, read): data = read(self._bytes) result = bitarray_to_bool(data, self._items) result = result.reshape(self._arraysize) result_mask = np.zeros(self._arraysize, dtype='b1') return result, result_mask def binoutput(self, value, mask): if np.any(mask): vo_warn(W39) return bool_to_bitarray(value) class Bit(Converter): """ Handles the bit datatype. """ format = 'b1' array_type = BitArray vararray_type = ScalarVarArray default = False binary_one = b'\x08' binary_zero = b'\0' def parse(self, value, config=None, pos=None): if config is None: config = {} mapping = {'1': True, '0': False} if value is False or value.strip() == '': if not config['version_1_3_or_later']: warn_or_raise(W49, W49, (), config, pos) return False, True else: try: return mapping[value], False except KeyError: vo_raise(E04, (value,), config, pos) def output(self, value, mask): if mask: vo_warn(W39) if value: return '1' else: return '0' def binparse(self, read): data = read(1) return (ord(data) & 0x8) != 0, False def binoutput(self, value, mask): if mask: vo_warn(W39) if value: return self.binary_one return self.binary_zero class BooleanArray(NumericArray): """ Handles an array of boolean values. """ vararray_type = ArrayVarArray def binparse(self, read): data = read(self._items) binparse = self._base.binparse_value result = [] result_mask = [] for char in data: value, mask = binparse(char) result.append(value) result_mask.append(mask) result = np.array(result, dtype='b1').reshape( self._arraysize) result_mask = np.array(result_mask, dtype='b1').reshape( self._arraysize) return result, result_mask def binoutput(self, value, mask): binoutput = self._base.binoutput value = np.asarray(value) mask = np.asarray(mask) result = [binoutput(x, m) for x, m in np.broadcast(value.flat, mask.flat)] return _empty_bytes.join(result) class Boolean(Converter): """ Handles the boolean datatype. """ format = 'b1' array_type = BooleanArray vararray_type = ScalarVarArray default = False binary_question_mark = b'?' binary_true = b'T' binary_false = b'F' def parse(self, value, config=None, pos=None): if value == '': return False, True if value is False: return False, True mapping = {'TRUE': (True, False), 'FALSE': (False, False), '1': (True, False), '0': (False, False), 'T': (True, False), 'F': (False, False), '\0': (False, True), ' ': (False, True), '?': (False, True), '': (False, True)} try: return mapping[value.upper()] except KeyError: vo_raise(E05, (value,), config, pos) def output(self, value, mask): if mask: return '?' if value: return 'T' return 'F' def binparse(self, read): value = ord(read(1)) return self.binparse_value(value) _binparse_mapping = { ord('T'): (True, False), ord('t'): (True, False), ord('1'): (True, False), ord('F'): (False, False), ord('f'): (False, False), ord('0'): (False, False), ord('\0'): (False, True), ord(' '): (False, True), ord('?'): (False, True)} def binparse_value(self, value): try: return self._binparse_mapping[value] except KeyError: vo_raise(E05, (value,)) def binoutput(self, value, mask): if mask: return self.binary_question_mark if value: return self.binary_true return self.binary_false converter_mapping = { 'double': Double, 'float': Float, 'bit': Bit, 'boolean': Boolean, 'unsignedByte': UnsignedByte, 'short': Short, 'int': Int, 'long': Long, 'floatComplex': FloatComplex, 'doubleComplex': DoubleComplex, 'char': Char, 'unicodeChar': UnicodeChar} def get_converter(field, config=None, pos=None): """ Get an appropriate converter instance for a given field. Parameters ---------- field : astropy.io.votable.tree.Field config : dict, optional Parser configuration dictionary pos : tuple Position in the input XML file. Used for error messages. Returns ------- converter : astropy.io.votable.converters.Converter """ if config is None: config = {} if field.datatype not in converter_mapping: vo_raise(E06, (field.datatype, field.ID), config) cls = converter_mapping[field.datatype] converter = cls(field, config, pos) arraysize = field.arraysize # With numeric datatypes, special things need to happen for # arrays. if (field.datatype not in ('char', 'unicodeChar') and arraysize is not None): if arraysize[-1] == '*': arraysize = arraysize[:-1] last_x = arraysize.rfind('x') if last_x == -1: arraysize = '' else: arraysize = arraysize[:last_x] fixed = False else: fixed = True if arraysize != '': arraysize = [int(x) for x in arraysize.split("x")] arraysize.reverse() else: arraysize = [] if arraysize != []: converter = converter.array_type( field, converter, arraysize, config) if not fixed: converter = converter.vararray_type( field, converter, arraysize, config) return converter numpy_dtype_to_field_mapping = { np.float64().dtype.num: 'double', np.float32().dtype.num: 'float', np.bool_().dtype.num: 'bit', np.uint8().dtype.num: 'unsignedByte', np.int16().dtype.num: 'short', np.int32().dtype.num: 'int', np.int64().dtype.num: 'long', np.complex64().dtype.num: 'floatComplex', np.complex128().dtype.num: 'doubleComplex', np.unicode_().dtype.num: 'unicodeChar' } numpy_dtype_to_field_mapping[np.bytes_().dtype.num] = 'char' def _all_bytes(column): for x in column: if not isinstance(x, bytes): return False return True def _all_unicode(column): for x in column: if not isinstance(x, str): return False return True def _all_matching_dtype(column): first_dtype = False first_shape = () for x in column: if not isinstance(x, np.ndarray) or len(x) == 0: continue if first_dtype is False: first_dtype = x.dtype first_shape = x.shape[1:] elif first_dtype != x.dtype: return False, () elif first_shape != x.shape[1:]: first_shape = () return first_dtype, first_shape def numpy_to_votable_dtype(dtype, shape): """ Converts a numpy dtype and shape to a dictionary of attributes for a VOTable FIELD element and correspond to that type. Parameters ---------- dtype : Numpy dtype instance shape : tuple Returns ------- attributes : dict A dict containing 'datatype' and 'arraysize' keys that can be set on a VOTable FIELD element. """ if dtype.num not in numpy_dtype_to_field_mapping: raise TypeError( "{0!r} can not be represented in VOTable".format(dtype)) if dtype.char == 'S': return {'datatype': 'char', 'arraysize': str(dtype.itemsize)} elif dtype.char == 'U': return {'datatype': 'unicodeChar', 'arraysize': str(dtype.itemsize // 4)} else: result = { 'datatype': numpy_dtype_to_field_mapping[dtype.num]} if len(shape): result['arraysize'] = 'x'.join(str(x) for x in shape) return result def table_column_to_votable_datatype(column): """ Given a `astropy.table.Column` instance, returns the attributes necessary to create a VOTable FIELD element that corresponds to the type of the column. This necessarily must perform some heuristics to determine the type of variable length arrays fields, since they are not directly supported by Numpy. If the column has dtype of "object", it performs the following tests: - If all elements are byte or unicode strings, it creates a variable-length byte or unicode field, respectively. - If all elements are numpy arrays of the same dtype and with a consistent shape in all but the first dimension, it creates a variable length array of fixed sized arrays. If the dtypes match, but the shapes do not, a variable length array is created. If the dtype of the input is not understood, it sets the data type to the most inclusive: a variable length unicodeChar array. Parameters ---------- column : `astropy.table.Column` instance Returns ------- attributes : dict A dict containing 'datatype' and 'arraysize' keys that can be set on a VOTable FIELD element. """ if column.dtype.char == 'O': if isinstance(column[0], bytes): if _all_bytes(column[1:]): return {'datatype': 'char', 'arraysize': '*'} elif isinstance(column[0], str): if _all_unicode(column[1:]): return {'datatype': 'unicodeChar', 'arraysize': '*'} elif isinstance(column[0], np.ndarray): dtype, shape = _all_matching_dtype(column) if dtype is not False: result = numpy_to_votable_dtype(dtype, shape) if 'arraysize' not in result: result['arraysize'] = '*' else: result['arraysize'] += '*' return result # All bets are off, do the most generic thing return {'datatype': 'unicodeChar', 'arraysize': '*'} return numpy_to_votable_dtype(column.dtype, column.shape[1:])