hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
027cb06589f657f84e8fa6dbf439ccac00f3e55a4cbee522a1cf3b003aceab5e | """
==========================
Axis Direction Demo Step01
==========================
"""
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist
def setup_axes(fig, rect):
ax = axisartist.Subplot(fig, rect)
fig.add_axes(ax)
ax.set_ylim(-0.1, 1.5)
ax.set_yticks([0, 1])
ax.axis[:].set_visible(False)
ax.axis["x"] = ax.new_floating_axis(1, 0.5)
ax.axis["x"].set_axisline_style("->", size=1.5)
return ax
fig = plt.figure(figsize=(3, 2.5))
fig.subplots_adjust(top=0.8)
ax1 = setup_axes(fig, "111")
ax1.axis["x"].set_axis_direction("left")
plt.show()
|
95003ce2ae9cb5d7154820b6b461b05ff77b5f1d3d33df63df7e6964aa115683 | """
========================
Demo Ticklabel Direction
========================
"""
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist.axislines as axislines
def setup_axes(fig, rect):
ax = axislines.Subplot(fig, rect)
fig.add_subplot(ax)
ax.set_yticks([0.2, 0.8])
ax.set_xticks([0.2, 0.8])
return ax
fig = plt.figure(figsize=(6, 3))
fig.subplots_adjust(bottom=0.2)
ax = setup_axes(fig, 131)
for axis in ax.axis.values():
axis.major_ticks.set_tick_out(True)
# or you can simply do "ax.axis[:].major_ticks.set_tick_out(True)"
ax = setup_axes(fig, 132)
ax.axis["left"].set_axis_direction("right")
ax.axis["bottom"].set_axis_direction("top")
ax.axis["right"].set_axis_direction("left")
ax.axis["top"].set_axis_direction("bottom")
ax = setup_axes(fig, 133)
ax.axis["left"].set_axis_direction("right")
ax.axis[:].major_ticks.set_tick_out(True)
ax.axis["left"].label.set_text("Long Label Left")
ax.axis["bottom"].label.set_text("Label Bottom")
ax.axis["right"].label.set_text("Long Label Right")
ax.axis["right"].label.set_visible(True)
ax.axis["left"].label.set_pad(0)
ax.axis["bottom"].label.set_pad(10)
plt.show()
|
c702109403ce1bf8278fbb4f0f4d4431b59890f7b4bec1e419a2349d8396789c | """
==================
Demo Floating Axis
==================
Axis within rectangular frame
The following code demonstrates how to put a floating polar curve within a
rectangular box. In order to get a better sense of polar curves, please look at
demo_curvelinear_grid.py.
"""
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axisartist import GridHelperCurveLinear
def curvelinear_test2(fig):
"""Polar projection, but in a rectangular box.
"""
# see demo_curvelinear_grid.py for details
tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()
extreme_finder = angle_helper.ExtremeFinderCycle(20,
20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0,
np.inf),
)
grid_locator1 = angle_helper.LocatorDMS(12)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1
)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
fig.add_subplot(ax1)
# Now creates floating axis
# floating axis whose first coordinate (theta) is fixed at 60
ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
axis.label.set_text(r"$\theta = 60^{\circ}$")
axis.label.set_visible(True)
# floating axis whose second coordinate (r) is fixed at 6
ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
axis.label.set_text(r"$r = 6$")
ax1.set_aspect(1.)
ax1.set_xlim(-5, 12)
ax1.set_ylim(-5, 10)
ax1.grid(True)
fig = plt.figure(figsize=(5, 5))
curvelinear_test2(fig)
plt.show()
|
40bc729a9d6fdd543c24187de0eb3af6242dfb3e5c63badd69787c5183f3ecd9 | """
===================
Demo Axis Direction
===================
"""
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist.angle_helper as angle_helper
import mpl_toolkits.axisartist.grid_finder as grid_finder
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D
import mpl_toolkits.axisartist as axisartist
from mpl_toolkits.axisartist.grid_helper_curvelinear import \
GridHelperCurveLinear
def setup_axes(fig, rect):
"""
polar projection, but in a rectangular box.
"""
# see demo_curvelinear_grid.py for details
tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf),
)
grid_locator1 = angle_helper.LocatorDMS(12)
grid_locator2 = grid_finder.MaxNLocator(5)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1
)
ax1 = axisartist.Subplot(fig, rect, grid_helper=grid_helper)
ax1.axis[:].toggle(ticklabels=False)
fig.add_subplot(ax1)
ax1.set_aspect(1.)
ax1.set_xlim(-5, 12)
ax1.set_ylim(-5, 10)
return ax1
def add_floating_axis1(ax1):
ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 30)
axis.label.set_text(r"$\theta = 30^{\circ}$")
axis.label.set_visible(True)
return axis
def add_floating_axis2(ax1):
ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
axis.label.set_text(r"$r = 6$")
axis.label.set_visible(True)
return axis
fig = plt.figure(figsize=(8, 4))
fig.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.99,
wspace=0.01, hspace=0.01)
for i, d in enumerate(["bottom", "left", "top", "right"]):
ax1 = setup_axes(fig, rect=241++i)
axis = add_floating_axis1(ax1)
axis.set_axis_direction(d)
ax1.annotate(d, (0, 1), (5, -5),
xycoords="axes fraction", textcoords="offset points",
va="top", ha="left")
for i, d in enumerate(["bottom", "left", "top", "right"]):
ax1 = setup_axes(fig, rect=245++i)
axis = add_floating_axis2(ax1)
axis.set_axis_direction(d)
ax1.annotate(d, (0, 1), (5, -5),
xycoords="axes fraction", textcoords="offset points",
va="top", ha="left")
plt.show()
|
5790405556a11796f772aec25571572b3f621f1cc9d7174e605a5d8af3b92d6b | """
===============
Basic pie chart
===============
Demo of a basic pie chart plus a few additional features.
In addition to the basic pie chart, this demo shows a few optional features:
* slice labels
* auto-labeling the percentage
* offsetting a slice with "explode"
* drop-shadow
* custom start angle
Note about the custom start angle:
The default ``startangle`` is 0, which would start the "Frogs" slice on the
positive x-axis. This example sets ``startangle = 90`` such that everything is
rotated counter-clockwise by 90 degrees, and the frog slice starts on the
positive y-axis.
"""
import matplotlib.pyplot as plt
# Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pie
matplotlib.pyplot.pie
|
68b78ac82349d6807b41a2b45ae18148b62fa8f15491d64997299625d028fc9f | """
=========
Pie Demo2
=========
Make a pie charts using :meth:`~.axes.Axes.pie`.
This example demonstrates some pie chart features like labels, varying size,
autolabeling the percentage, offsetting a slice and adding a shadow.
"""
import matplotlib.pyplot as plt
# Some data
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15, 30, 45, 10]
# Make figure and axes
fig, axs = plt.subplots(2, 2)
# A standard pie plot
axs[0, 0].pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True)
# Shift the second slice using explode
axs[0, 1].pie(fracs, labels=labels, autopct='%.0f%%', shadow=True,
explode=(0, 0.1, 0, 0))
# Adapt radius and text size for a smaller pie
patches, texts, autotexts = axs[1, 0].pie(fracs, labels=labels,
autopct='%.0f%%',
textprops={'size': 'smaller'},
shadow=True, radius=0.5)
# Make percent texts even smaller
plt.setp(autotexts, size='x-small')
autotexts[0].set_color('white')
# Use a smaller explode and turn of the shadow for better visibility
patches, texts, autotexts = axs[1, 1].pie(fracs, labels=labels,
autopct='%.0f%%',
textprops={'size': 'smaller'},
shadow=False, radius=0.5,
explode=(0, 0.05, 0, 0))
plt.setp(autotexts, size='x-small')
autotexts[0].set_color('white')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pie
matplotlib.pyplot.pie
|
ce0a85e85185bf4c96376ff7a8e18e03c4e41018e3ec4e0e99e93fa8bbe3386e | """
=================
Nested pie charts
=================
The following examples show two ways to build a nested pie chart
in Matplotlib. Such charts are often referred to as donut charts.
"""
import matplotlib.pyplot as plt
import numpy as np
###############################################################################
# The most straightforward way to build a pie chart is to use the
# :meth:`pie method <matplotlib.axes.Axes.pie>`
#
# In this case, pie takes values corresponding to counts in a group.
# We'll first generate some fake data, corresponding to three groups.
# In the inner circle, we'll treat each number as belonging to its
# own group. In the outer circle, we'll plot them as members of their
# original 3 groups.
#
# The effect of the donut shape is achieved by setting a `width` to
# the pie's wedges through the `wedgeprops` argument.
fig, ax = plt.subplots()
size = 0.3
vals = np.array([[60., 32.], [37., 40.], [29., 10.]])
cmap = plt.get_cmap("tab20c")
outer_colors = cmap(np.arange(3)*4)
inner_colors = cmap(np.array([1, 2, 5, 6, 9, 10]))
ax.pie(vals.sum(axis=1), radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.pie(vals.flatten(), radius=1-size, colors=inner_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.set(aspect="equal", title='Pie plot with `ax.pie`')
plt.show()
###############################################################################
# However, you can accomplish the same output by using a bar plot on
# axes with a polar coordinate system. This may give more flexibility on
# the exact design of the plot.
#
# In this case, we need to map x-values of the bar chart onto radians of
# a circle. The cumulative sum of the values are used as the edges
# of the bars.
fig, ax = plt.subplots(subplot_kw=dict(polar=True))
size = 0.3
vals = np.array([[60., 32.], [37., 40.], [29., 10.]])
#normalize vals to 2 pi
valsnorm = vals/np.sum(vals)*2*np.pi
#obtain the ordinates of the bar edges
valsleft = np.cumsum(np.append(0, valsnorm.flatten()[:-1])).reshape(vals.shape)
cmap = plt.get_cmap("tab20c")
outer_colors = cmap(np.arange(3)*4)
inner_colors = cmap(np.array([1, 2, 5, 6, 9, 10]))
ax.bar(x=valsleft[:, 0],
width=valsnorm.sum(axis=1), bottom=1-size, height=size,
color=outer_colors, edgecolor='w', linewidth=1, align="edge")
ax.bar(x=valsleft.flatten(),
width=valsnorm.flatten(), bottom=1-2*size, height=size,
color=inner_colors, edgecolor='w', linewidth=1, align="edge")
ax.set(title="Pie plot with `ax.bar` and polar coordinates")
ax.set_axis_off()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pie
matplotlib.pyplot.pie
matplotlib.axes.Axes.bar
matplotlib.pyplot.bar
matplotlib.projections.polar
matplotlib.axes.Axes.set
matplotlib.axes.Axes.set_axis_off
|
331e98d7dab71415812745fc9fbe665d7f47dc00123c30dfa24f19dca3684a56 | """
==========
Polar Demo
==========
Demo of a line plot on a polar axis.
"""
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
ax = plt.subplot(111, projection='polar')
ax.plot(theta, r)
ax.set_rmax(2)
ax.set_rticks([0.5, 1, 1.5, 2]) # Less radial ticks
ax.set_rlabel_position(-22.5) # Move radial labels away from plotted line
ax.grid(True)
ax.set_title("A line plot on a polar axis", va='bottom')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.plot
matplotlib.projections.polar
matplotlib.projections.polar.PolarAxes
matplotlib.projections.polar.PolarAxes.set_rticks
matplotlib.projections.polar.PolarAxes.set_rmax
matplotlib.projections.polar.PolarAxes.set_rlabel_position
|
7ff2419bfb15a309c3c5a69924f250819a17913d21418a61b321c66ff0206607 | """
==========
Bar of pie
==========
Make a "bar of pie" chart where the first slice of the pie is
"exploded" into a bar chart with a further breakdown of said slice's
characteristics. The example demonstrates using a figure with multiple
sets of axes and using the axes patches list to add two ConnectionPatches
to link the subplot charts.
"""
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch
import numpy as np
# make figure and assign axis objects
fig = plt.figure(figsize=(9, 5.0625))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
fig.subplots_adjust(wspace=0)
# pie chart parameters
ratios = [.27, .56, .17]
labels = ['Approve', 'Disapprove', 'Undecided']
explode = [0.1, 0, 0]
# rotate so that first wedge is split by the x-axis
angle = -180 * ratios[0]
ax1.pie(ratios, autopct='%1.1f%%', startangle=angle,
labels=labels, explode=explode)
# bar chart parameters
xpos = 0
bottom = 0
ratios = [.33, .54, .07, .06]
width = .2
colors = [[.1, .3, .5], [.1, .3, .3], [.1, .3, .7], [.1, .3, .9]]
for j in range(len(ratios)):
height = ratios[j]
ax2.bar(xpos, height, width, bottom=bottom, color=colors[j])
ypos = bottom + ax2.patches[j].get_height() / 2
bottom += height
ax2.text(xpos, ypos, "%d%%" % (ax2.patches[j].get_height() * 100),
ha='center')
ax2.set_title('Age of approvers')
ax2.legend(('50-65', 'Over 65', '35-49', 'Under 35'))
ax2.axis('off')
ax2.set_xlim(- 2.5 * width, 2.5 * width)
# use ConnectionPatch to draw lines between the two plots
# get the wedge data
theta1, theta2 = ax1.patches[0].theta1, ax1.patches[0].theta2
center, r = ax1.patches[0].center, ax1.patches[0].r
bar_height = sum([item.get_height() for item in ax2.patches])
# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(- width / 2, bar_height), xyB=(x, y),
coordsA="data", coordsB="data", axesA=ax2, axesB=ax1)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(- width / 2, 0), xyB=(x, y), coordsA="data",
coordsB="data", axesA=ax2, axesB=ax1)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pie
matplotlib.axes.Axes.bar
matplotlib.pyplot
matplotlib.patches.ConnectionPatch
|
ca00684ec46c7b0016440e574c2a23448d9b167c70b4224e0c925a4b973e1d5f | """
==========================
Scatter plot on polar axis
==========================
Size increases radially in this example and color increases with angle
(just to verify the symbols are being scattered correctly).
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# Compute areas and colors
N = 150
r = 2 * np.random.rand(N)
theta = 2 * np.pi * np.random.rand(N)
area = 200 * r**2
colors = theta
fig = plt.figure()
ax = fig.add_subplot(111, projection='polar')
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
###############################################################################
# Scatter plot on polar axis, with offset origin
# ----------------------------------------------
#
# The main difference with the previous plot is the configuration of the origin
# radius, producing an annulus. Additionally, the theta zero location is set to
# rotate the plot.
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
ax.set_rorigin(-2.5)
ax.set_theta_zero_location('W', offset=10)
###############################################################################
# Scatter plot on polar axis confined to a sector
# -----------------------------------------------
#
# The main difference with the previous plots is the configuration of the
# theta start and end limits, producing a sector instead of a full circle.
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
ax.set_thetamin(45)
ax.set_thetamax(135)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.scatter
matplotlib.pyplot.scatter
matplotlib.projections.polar
matplotlib.projections.polar.PolarAxes.set_rorigin
matplotlib.projections.polar.PolarAxes.set_theta_zero_location
matplotlib.projections.polar.PolarAxes.set_thetamin
matplotlib.projections.polar.PolarAxes.set_thetamax
|
c14586124ae336789d09b34836977e834d9955001f9bca9a664386152e80d965 | """
==========================
Labeling a pie and a donut
==========================
Welcome to the matplotlib bakery. We will create a pie and a donut
chart through the :meth:`pie method <matplotlib.axes.Axes.pie>` and
show how to label them with a :meth:`legend <matplotlib.axes.Axes.legend>`
as well as with :meth:`annotations <matplotlib.axes.Axes.annotate>`.
"""
###############################################################################
# As usual we would start by defining the imports and create a figure with
# subplots.
# Now it's time for the pie. Starting with a pie recipe, we create the data
# and a list of labels from it.
#
# We can provide a function to the ``autopct`` argument, which will expand
# automatic percentage labeling by showing absolute values; we calculate
# the latter back from relative data and the known sum of all values.
#
# We then create the pie and store the returned objects for later.
# The first returned element of the returned tuple is a list of the wedges.
# Those are
# :class:`matplotlib.patches.Wedge <matplotlib.patches.Wedge>` patches, which
# can directly be used as the handles for a legend. We can use the
# legend's ``bbox_to_anchor`` argument to position the legend outside of
# the pie. Here we use the axes coordinates ``(1, 0, 0.5, 1)`` together
# with the location ``"center left"``; i.e.
# the left central point of the legend will be at the left central point of the
# bounding box, spanning from ``(1,0)`` to ``(1.5,1)`` in axes coordinates.
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))
recipe = ["375 g flour",
"75 g sugar",
"250 g butter",
"300 g berries"]
data = [float(x.split()[0]) for x in recipe]
ingredients = [x.split()[-1] for x in recipe]
def func(pct, allvals):
absolute = int(pct/100.*np.sum(allvals))
return "{:.1f}%\n({:d} g)".format(pct, absolute)
wedges, texts, autotexts = ax.pie(data, autopct=lambda pct: func(pct, data),
textprops=dict(color="w"))
ax.legend(wedges, ingredients,
title="Ingredients",
loc="center left",
bbox_to_anchor=(1, 0, 0.5, 1))
plt.setp(autotexts, size=8, weight="bold")
ax.set_title("Matplotlib bakery: A pie")
plt.show()
###############################################################################
# Now it's time for the donut. Starting with a donut recipe, we transcribe
# the data to numbers (converting 1 egg to 50 g), and directly plot the pie.
# The pie? Wait... it's going to be donut, is it not?
# Well, as we see here, the donut is a pie, having a certain ``width`` set to
# the wedges, which is different from its radius. It's as easy as it gets.
# This is done via the ``wedgeprops`` argument.
#
# We then want to label the wedges via
# :meth:`annotations <matplotlib.axes.Axes.annotate>`. We first create some
# dictionaries of common properties, which we can later pass as keyword
# argument. We then iterate over all wedges and for each
#
# * calculate the angle of the wedge's center,
# * from that obtain the coordinates of the point at that angle on the
# circumference,
# * determine the horizontal alignment of the text, depending on which side
# of the circle the point lies,
# * update the connection style with the obtained angle to have the annotation
# arrow point outwards from the donut,
# * finally, create the annotation with all the previously
# determined parameters.
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))
recipe = ["225 g flour",
"90 g sugar",
"1 egg",
"60 g butter",
"100 ml milk",
"1/2 package of yeast"]
data = [225, 90, 50, 60, 100, 5]
wedges, texts = ax.pie(data, wedgeprops=dict(width=0.5), startangle=-40)
bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72)
kw = dict(arrowprops=dict(arrowstyle="-"),
bbox=bbox_props, zorder=0, va="center")
for i, p in enumerate(wedges):
ang = (p.theta2 - p.theta1)/2. + p.theta1
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({"connectionstyle": connectionstyle})
ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
horizontalalignment=horizontalalignment, **kw)
ax.set_title("Matplotlib bakery: A donut")
plt.show()
###############################################################################
# And here it is, the donut. Note however, that if we were to use this recipe,
# the ingredients would suffice for around 6 donuts - producing one huge
# donut is untested and might result in kitchen errors.
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pie
matplotlib.pyplot.pie
matplotlib.axes.Axes.legend
matplotlib.pyplot.legend
|
c3562809553aa5302a43cd4b25631af347c4cae80c323121f67d7fa6dad35557 | """
============
Polar Legend
============
Demo of a legend on a polar-axis plot.
"""
import matplotlib.pyplot as plt
import numpy as np
# radar green, solid grid lines
plt.rc('grid', color='#316931', linewidth=1, linestyle='-')
plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
# force square figure and square axes looks better for polar, IMO
fig = plt.figure(figsize=(8, 8))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8],
projection='polar', facecolor='#d5de9c')
r = np.arange(0, 3.0, 0.01)
theta = 2 * np.pi * r
ax.plot(theta, r, color='#ee8d18', lw=3, label='a line')
ax.plot(0.5 * theta, r, color='blue', ls='--', lw=3, label='another line')
ax.legend()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.plot
matplotlib.axes.Axes.legend
matplotlib.projections.polar
matplotlib.projections.polar.PolarAxes
|
8c2fc053237045a57be685620aa84057672b034abf1f50937a97f8a58f05fb87 | """
=======================
Bar chart on polar axis
=======================
Demo of bar plot on a polar axis.
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# Compute pie slices
N = 20
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)
colors = plt.cm.viridis(radii / 10.)
ax = plt.subplot(111, projection='polar')
ax.bar(theta, radii, width=width, bottom=0.0, color=colors, alpha=0.5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.bar
matplotlib.pyplot.bar
matplotlib.projections.polar
|
44cf80a8bfaaadcd76a07ca4ecc3c0c4e18f8ca5a475b62fb3b6aca2041d0857 | """
================
Image Nonuniform
================
This illustrates the NonUniformImage class. It is not
available via an Axes method but it is easily added to an
Axes instance as shown here.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import NonUniformImage
from matplotlib import cm
interp = 'nearest'
# Linear x array for cell centers:
x = np.linspace(-4, 4, 9)
# Highly nonlinear x array:
x2 = x**3
y = np.linspace(-4, 4, 9)
z = np.sqrt(x[np.newaxis, :]**2 + y[:, np.newaxis]**2)
fig, axs = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
fig.suptitle('NonUniformImage class', fontsize='large')
ax = axs[0, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
cmap=cm.Purples)
im.set_data(x, y, z)
ax.images.append(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)
ax = axs[0, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
cmap=cm.Purples)
im.set_data(x2, y, z)
ax.images.append(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)
interp = 'bilinear'
ax = axs[1, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
cmap=cm.Purples)
im.set_data(x, y, z)
ax.images.append(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)
ax = axs[1, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
cmap=cm.Purples)
im.set_data(x2, y, z)
ax.images.append(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)
plt.show()
|
9ad297f5a2199853a24342b365fb49b5f338a30c879187725da2e742f7c23f87 | """
=============
QuadMesh Demo
=============
`~.axes.Axes.pcolormesh` uses a `~matplotlib.collections.QuadMesh`,
a faster generalization of `~.axes.Axes.pcolor`, but with some restrictions.
This demo illustrates a bug in quadmesh with masked data.
"""
import copy
from matplotlib import cm, pyplot as plt
import numpy as np
n = 12
x = np.linspace(-1.5, 1.5, n)
y = np.linspace(-1.5, 1.5, n * 2)
X, Y = np.meshgrid(x, y)
Qx = np.cos(Y) - np.cos(X)
Qz = np.sin(Y) + np.sin(X)
Z = np.sqrt(X**2 + Y**2) / 5
Z = (Z - Z.min()) / (Z.max() - Z.min())
# The color array can include masked values.
Zm = np.ma.masked_where(np.abs(Qz) < 0.5 * np.max(Qz), Z)
fig, axs = plt.subplots(nrows=1, ncols=3)
axs[0].pcolormesh(Qx, Qz, Z, shading='gouraud')
axs[0].set_title('Without masked values')
# You can control the color of the masked region. We copy the default colormap
# before modifying it.
cmap = copy.copy(cm.get_cmap(plt.rcParams['image.cmap']))
cmap.set_bad('y', 1.0)
axs[1].pcolormesh(Qx, Qz, Zm, shading='gouraud', cmap=cmap)
axs[1].set_title('With masked values')
# Or use the default, which is transparent.
axs[2].pcolormesh(Qx, Qz, Zm, shading='gouraud')
axs[2].set_title('With masked values')
fig.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
import matplotlib
matplotlib.axes.Axes.pcolormesh
matplotlib.pyplot.pcolormesh
|
91925124dec610fe855bb30e154ae2ae934481ba6c89b35cfb065d2ec5cdbede | """
=================
Contourf Hatching
=================
Demo filled contour plots with hatched patterns.
"""
import matplotlib.pyplot as plt
import numpy as np
# invent some numbers, turning the x and y arrays into simple
# 2d arrays, which make combining them together easier.
x = np.linspace(-3, 5, 150).reshape(1, -1)
y = np.linspace(-3, 5, 120).reshape(-1, 1)
z = np.cos(x) + np.sin(y)
# we no longer need x and y to be 2 dimensional, so flatten them.
x, y = x.flatten(), y.flatten()
###############################################################################
# Plot 1: the simplest hatched plot with a colorbar
fig1, ax1 = plt.subplots()
cs = ax1.contourf(x, y, z, hatches=['-', '/', '\\', '//'],
cmap='gray', extend='both', alpha=0.5)
fig1.colorbar(cs)
###############################################################################
# Plot 2: a plot of hatches without color with a legend
fig2, ax2 = plt.subplots()
n_levels = 6
ax2.contour(x, y, z, n_levels, colors='black', linestyles='-')
cs = ax2.contourf(x, y, z, n_levels, colors='none',
hatches=['.', '/', '\\', None, '\\\\', '*'],
extend='lower')
# create a legend for the contour set
artists, labels = cs.legend_elements()
ax2.legend(artists, labels, handleheight=2)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.axes.Axes.legend
matplotlib.pyplot.legend
matplotlib.contour.ContourSet
matplotlib.contour.ContourSet.legend_elements
|
0f8919c63267155eb24425429e293bac959b12ffd1ab01373f4779979a986f94 | """
===============
Shading example
===============
Example showing how to make shaded relief plots like Mathematica_ or
`Generic Mapping Tools`_.
.. _Mathematica: http://reference.wolfram.com/mathematica/ref/ReliefPlot.html
.. _Generic Mapping Tools: https://gmt.soest.hawaii.edu/
"""
import numpy as np
from matplotlib import cbook
import matplotlib.pyplot as plt
from matplotlib.colors import LightSource
def main():
# Test data
x, y = np.mgrid[-5:5:0.05, -5:5:0.05]
z = 5 * (np.sqrt(x**2 + y**2) + np.sin(x**2 + y**2))
with cbook.get_sample_data('jacksboro_fault_dem.npz') as file, \
np.load(file) as dem:
elev = dem['elevation']
fig = compare(z, plt.cm.copper)
fig.suptitle('HSV Blending Looks Best with Smooth Surfaces', y=0.95)
fig = compare(elev, plt.cm.gist_earth, ve=0.05)
fig.suptitle('Overlay Blending Looks Best with Rough Surfaces', y=0.95)
plt.show()
def compare(z, cmap, ve=1):
# Create subplots and hide ticks
fig, axs = plt.subplots(ncols=2, nrows=2)
for ax in axs.flat:
ax.set(xticks=[], yticks=[])
# Illuminate the scene from the northwest
ls = LightSource(azdeg=315, altdeg=45)
axs[0, 0].imshow(z, cmap=cmap)
axs[0, 0].set(xlabel='Colormapped Data')
axs[0, 1].imshow(ls.hillshade(z, vert_exag=ve), cmap='gray')
axs[0, 1].set(xlabel='Illumination Intensity')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='hsv')
axs[1, 0].imshow(rgb)
axs[1, 0].set(xlabel='Blend Mode: "hsv" (default)')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='overlay')
axs[1, 1].imshow(rgb)
axs[1, 1].set(xlabel='Blend Mode: "overlay"')
return fig
if __name__ == '__main__':
main()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown in this example:
import matplotlib
matplotlib.colors.LightSource
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
|
b8a73bf684ee32344a096d419ef2dabe26fb63439e73d3d3261f71837e972166 | """
============
Contour Demo
============
Illustrate simple contour plotting, contours on an image with
a colorbar for the contours, and labelled contours.
See also the :doc:`contour image example
</gallery/images_contours_and_fields/contour_image>`.
"""
import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
###############################################################################
# Create a simple contour plot with labels using default colors. The
# inline argument to clabel will control whether the labels are draw
# over the line segments of the contour, removing the lines beneath
# the label
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
ax.clabel(CS, inline=1, fontsize=10)
ax.set_title('Simplest default with labels')
###############################################################################
# contour labels can be placed manually by providing list of positions
# (in data coordinate). See ginput_manual_clabel.py for interactive
# placement.
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]
ax.clabel(CS, inline=1, fontsize=10, manual=manual_locations)
ax.set_title('labels at selected locations')
###############################################################################
# You can force all the contours to be the same color.
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
colors='k', # negative contours will be dashed by default
)
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours dashed')
###############################################################################
# You can set negative contours to be solid instead of dashed:
matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
colors='k', # negative contours will be dashed by default
)
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Single color - negative contours solid')
###############################################################################
# And you can manually specify the colors of the contour
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, 6,
linewidths=np.arange(.5, 4, .5),
colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5')
)
ax.clabel(CS, fontsize=9, inline=1)
ax.set_title('Crazy lines')
###############################################################################
# Or you can use a colormap to specify the colors; the default
# colormap will be used for the contour lines
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='bilinear', origin='lower',
cmap=cm.gray, extent=(-3, 3, -2, 2))
levels = np.arange(-1.2, 1.6, 0.2)
CS = ax.contour(Z, levels, origin='lower', cmap='flag',
linewidths=2, extent=(-3, 3, -2, 2))
# Thicken the zero contour.
zc = CS.collections[6]
plt.setp(zc, linewidth=4)
ax.clabel(CS, levels[1::2], # label every second level
inline=1, fmt='%1.1f', fontsize=14)
# make a colorbar for the contour lines
CB = fig.colorbar(CS, shrink=0.8, extend='both')
ax.set_title('Lines with colorbar')
# We can still add a colorbar for the image, too.
CBI = fig.colorbar(im, orientation='horizontal', shrink=0.8)
# This makes the original colorbar look a bit out of place,
# so let's improve its position.
l, b, w, h = ax.get_position().bounds
ll, bb, ww, hh = CB.ax.get_position().bounds
CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.axes.Axes.clabel
matplotlib.pyplot.clabel
matplotlib.axes.Axes.set_position
matplotlib.axes.Axes.get_position
|
56f887aa3ddb1230b274b336bc91df2a63a7d1fc1e13ac534df34216fc628d43 | """
===============
Tricontour Demo
===============
Contour plots of unstructured triangular grids.
"""
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
###############################################################################
# Creating a Triangulation without specifying the triangles results in the
# Delaunay triangulation of the points.
# First create the x and y coordinates of the points.
n_angles = 48
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()
# Create the Triangulation; no triangles so Delaunay triangulation created.
triang = tri.Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
###############################################################################
# pcolor plot.
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tcf = ax1.tricontourf(triang, z)
fig1.colorbar(tcf)
ax1.tricontour(triang, z, colors='k')
ax1.set_title('Contour plot of Delaunay triangulation')
###############################################################################
# You can specify your own triangulation rather than perform a Delaunay
# triangulation of the points, where each triangle is given by the indices of
# the three points that make up the triangle, ordered in either a clockwise or
# anticlockwise manner.
xy = np.asarray([
[-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
[-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
[-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
[-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
[-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
[-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
[-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
[-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
[-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
[-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
[-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
[-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
[-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
[ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
[ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
[ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
[-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
[-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
[-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
x0 = -5
y0 = 52
z = np.exp(-0.01 * ((x - x0) ** 2 + (y - y0) ** 2))
triangles = np.asarray([
[67, 66, 1], [65, 2, 66], [ 1, 66, 2], [64, 2, 65], [63, 3, 64],
[60, 59, 57], [ 2, 64, 3], [ 3, 63, 4], [ 0, 67, 1], [62, 4, 63],
[57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
[ 6, 5, 9], [61, 68, 62], [69, 68, 61], [ 9, 5, 70], [ 6, 8, 7],
[ 4, 70, 5], [ 8, 6, 9], [56, 69, 57], [69, 56, 52], [70, 10, 9],
[54, 53, 55], [56, 55, 53], [68, 70, 4], [52, 56, 53], [11, 10, 12],
[69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
[52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
[49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
[48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
[21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
[20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
[72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
[72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
[42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
[33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])
###############################################################################
# Rather than create a Triangulation object, can simply pass x, y and triangles
# arrays to tripcolor directly. It would be better to use a Triangulation
# object if the same triangulation was to be used more than once to save
# duplicated calculations.
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
tcf = ax2.tricontourf(x, y, triangles, z)
fig2.colorbar(tcf)
ax2.set_title('Contour plot of user-specified triangulation')
ax2.set_xlabel('Longitude (degrees)')
ax2.set_ylabel('Latitude (degrees)')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tricontourf
matplotlib.pyplot.tricontourf
matplotlib.tri.Triangulation
|
1e396a388bdd68bcf9a8856ff2f3a2a93204d31adfd5532cec6eb3e6e1c86379 | """
============
Layer Images
============
Layer images above one another using alpha blending
"""
import matplotlib.pyplot as plt
import numpy as np
def func3(x, y):
return (1 - x / 2 + x**5 + y**3) * np.exp(-(x**2 + y**2))
# make these smaller to increase the resolution
dx, dy = 0.05, 0.05
x = np.arange(-3.0, 3.0, dx)
y = np.arange(-3.0, 3.0, dy)
X, Y = np.meshgrid(x, y)
# when layering multiple images, the images need to have the same
# extent. This does not mean they need to have the same shape, but
# they both need to render to the same coordinate system determined by
# xmin, xmax, ymin, ymax. Note if you use different interpolations
# for the images their apparent extent could be different due to
# interpolation edge effects
extent = np.min(x), np.max(x), np.min(y), np.max(y)
fig = plt.figure(frameon=False)
Z1 = np.add.outer(range(8), range(8)) % 2 # chessboard
im1 = plt.imshow(Z1, cmap=plt.cm.gray, interpolation='nearest',
extent=extent)
Z2 = func3(X, Y)
im2 = plt.imshow(Z2, cmap=plt.cm.viridis, alpha=.9, interpolation='bilinear',
extent=extent)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
|
e971a28f852e7d1bcd7f32b76701f82f8656106b534b20c35e5c05c79103df89 | """
==========
Image Demo
==========
Many ways to plot images in Matplotlib.
The most common way to plot images in Matplotlib is with
:meth:`~.axes.Axes.imshow`. The following examples demonstrate much of the
functionality of imshow and the many images you can create.
"""
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
from matplotlib.path import Path
from matplotlib.patches import PathPatch
###############################################################################
# First we'll generate a simple bivariate normal distribution.
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
origin='lower', extent=[-3, 3, -3, 3],
vmax=abs(Z).max(), vmin=-abs(Z).max())
plt.show()
###############################################################################
# It is also possible to show images of pictures.
# A sample image
with cbook.get_sample_data('ada.png') as image_file:
image = plt.imread(image_file)
fig, ax = plt.subplots()
ax.imshow(image)
ax.axis('off') # clear x-axis and y-axis
# And another image
w, h = 512, 512
with cbook.get_sample_data('ct.raw.gz') as datafile:
s = datafile.read()
A = np.frombuffer(s, np.uint16).astype(float).reshape((w, h))
A /= A.max()
fig, ax = plt.subplots()
extent = (0, 25, 0, 25)
im = ax.imshow(A, cmap=plt.cm.hot, origin='upper', extent=extent)
markers = [(15.9, 14.5), (16.8, 15)]
x, y = zip(*markers)
ax.plot(x, y, 'o')
ax.set_title('CT density')
plt.show()
###############################################################################
# Interpolating images
# --------------------
#
# It is also possible to interpolate images before displaying them. Be careful,
# as this may manipulate the way your data looks, but it can be helpful for
# achieving the look you want. Below we'll display the same (small) array,
# interpolated with three different interpolation methods.
#
# The center of the pixel at A[i,j] is plotted at i+0.5, i+0.5. If you
# are using interpolation='nearest', the region bounded by (i,j) and
# (i+1,j+1) will have the same color. If you are using interpolation,
# the pixel center will have the same color as it does with nearest, but
# other pixels will be interpolated between the neighboring pixels.
#
# To prevent edge effects when doing interpolation, Matplotlib pads the input
# array with identical pixels around the edge: if you have a 5x5 array with
# colors a-y as below::
#
# a b c d e
# f g h i j
# k l m n o
# p q r s t
# u v w x y
#
# Matplotlib computes the interpolation and resizing on the padded array ::
#
# a a b c d e e
# a a b c d e e
# f f g h i j j
# k k l m n o o
# p p q r s t t
# o u v w x y y
# o u v w x y y
#
# and then extracts the central region of the result. (Extremely old versions
# of Matplotlib (<0.63) did not pad the array, but instead adjusted the view
# limits to hide the affected edge areas.)
#
# This approach allows plotting the full extent of an array without
# edge effects, and for example to layer multiple images of different
# sizes over one another with different interpolation methods -- see
# :doc:`/gallery/images_contours_and_fields/layer_images`. It also implies
# a performance hit, as this new temporary, padded array must be created.
# Sophisticated interpolation also implies a performance hit; for maximal
# performance or very large images, interpolation='nearest' is suggested.
A = np.random.rand(5, 5)
fig, axs = plt.subplots(1, 3, figsize=(10, 3))
for ax, interp in zip(axs, ['nearest', 'bilinear', 'bicubic']):
ax.imshow(A, interpolation=interp)
ax.set_title(interp.capitalize())
ax.grid(True)
plt.show()
###############################################################################
# You can specify whether images should be plotted with the array origin
# x[0,0] in the upper left or lower right by using the origin parameter.
# You can also control the default setting image.origin in your
# :ref:`matplotlibrc file <customizing-with-matplotlibrc-files>`. For more on
# this topic see the :doc:`complete guide on origin and extent
# </tutorials/intermediate/imshow_extent>`.
x = np.arange(120).reshape((10, 12))
interp = 'bilinear'
fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(3, 5))
axs[0].set_title('blue should be up')
axs[0].imshow(x, origin='upper', interpolation=interp)
axs[1].set_title('blue should be down')
axs[1].imshow(x, origin='lower', interpolation=interp)
plt.show()
###############################################################################
# Finally, we'll show an image using a clip path.
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
path = Path([[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]])
patch = PathPatch(path, facecolor='none')
fig, ax = plt.subplots()
ax.add_patch(patch)
im = ax.imshow(Z, interpolation='bilinear', cmap=cm.gray,
origin='lower', extent=[-3, 3, -3, 3],
clip_path=patch, clip_on=True)
im.set_clip_path(patch)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.artist.Artist.set_clip_path
matplotlib.patches.PathPatch
|
106ed7f9494bb7e829bc22489d1bb622ddaf297c21fdec162275953dcf262778 | """
==============
Triinterp Demo
==============
Interpolation from triangular grid to quad grid.
"""
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import numpy as np
# Create triangulation.
x = np.asarray([0, 1, 2, 3, 0.5, 1.5, 2.5, 1, 2, 1.5])
y = np.asarray([0, 0, 0, 0, 1.0, 1.0, 1.0, 2, 2, 3.0])
triangles = [[0, 1, 4], [1, 2, 5], [2, 3, 6], [1, 5, 4], [2, 6, 5], [4, 5, 7],
[5, 6, 8], [5, 8, 7], [7, 8, 9]]
triang = mtri.Triangulation(x, y, triangles)
# Interpolate to regularly-spaced quad grid.
z = np.cos(1.5 * x) * np.cos(1.5 * y)
xi, yi = np.meshgrid(np.linspace(0, 3, 20), np.linspace(0, 3, 20))
interp_lin = mtri.LinearTriInterpolator(triang, z)
zi_lin = interp_lin(xi, yi)
interp_cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
zi_cubic_geom = interp_cubic_geom(xi, yi)
interp_cubic_min_E = mtri.CubicTriInterpolator(triang, z, kind='min_E')
zi_cubic_min_E = interp_cubic_min_E(xi, yi)
# Set up the figure
fig, axs = plt.subplots(nrows=2, ncols=2)
axs = axs.flatten()
# Plot the triangulation.
axs[0].tricontourf(triang, z)
axs[0].triplot(triang, 'ko-')
axs[0].set_title('Triangular grid')
# Plot linear interpolation to quad grid.
axs[1].contourf(xi, yi, zi_lin)
axs[1].plot(xi, yi, 'k-', lw=0.5, alpha=0.5)
axs[1].plot(xi.T, yi.T, 'k-', lw=0.5, alpha=0.5)
axs[1].set_title("Linear interpolation")
# Plot cubic interpolation to quad grid, kind=geom
axs[2].contourf(xi, yi, zi_cubic_geom)
axs[2].plot(xi, yi, 'k-', lw=0.5, alpha=0.5)
axs[2].plot(xi.T, yi.T, 'k-', lw=0.5, alpha=0.5)
axs[2].set_title("Cubic interpolation,\nkind='geom'")
# Plot cubic interpolation to quad grid, kind=min_E
axs[3].contourf(xi, yi, zi_cubic_min_E)
axs[3].plot(xi, yi, 'k-', lw=0.5, alpha=0.5)
axs[3].plot(xi.T, yi.T, 'k-', lw=0.5, alpha=0.5)
axs[3].set_title("Cubic interpolation,\nkind='min_E'")
fig.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tricontourf
matplotlib.pyplot.tricontourf
matplotlib.axes.Axes.triplot
matplotlib.pyplot.triplot
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.axes.Axes.plot
matplotlib.pyplot.plot
matplotlib.tri
matplotlib.tri.LinearTriInterpolator
matplotlib.tri.CubicTriInterpolator
matplotlib.tri.Triangulation
|
84f25071a438834748f52c4aa74c7aa7503092e23c2ec53547780dbaa33fe949 | """
===========
Pcolor Demo
===========
Generating images with :meth:`~.axes.Axes.pcolor`.
Pcolor allows you to generate 2-D image-style plots. Below we will show how
to do so in Matplotlib.
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
###############################################################################
# A simple pcolor demo
# --------------------
Z = np.random.rand(6, 10)
fig, (ax0, ax1) = plt.subplots(2, 1)
c = ax0.pcolor(Z)
ax0.set_title('default: no edges')
c = ax1.pcolor(Z, edgecolors='k', linewidths=4)
ax1.set_title('thick edges')
fig.tight_layout()
plt.show()
###############################################################################
# Comparing pcolor with similar functions
# ---------------------------------------
#
# Demonstrates similarities between :meth:`~.axes.Axes.pcolor`,
# :meth:`~.axes.Axes.pcolormesh`, :meth:`~.axes.Axes.imshow` and
# :meth:`~.axes.Axes.pcolorfast` for drawing quadrilateral grids.
# make these smaller to increase the resolution
dx, dy = 0.15, 0.05
# generate 2 2d grids for the x & y bounds
y, x = np.mgrid[slice(-3, 3 + dy, dy),
slice(-3, 3 + dx, dx)]
z = (1 - x / 2. + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
# x and y are bounds, so z should be the value *inside* those bounds.
# Therefore, remove the last value from the z array.
z = z[:-1, :-1]
z_min, z_max = -np.abs(z).max(), np.abs(z).max()
fig, axs = plt.subplots(2, 2)
ax = axs[0, 0]
c = ax.pcolor(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max)
ax.set_title('pcolor')
# set the limits of the plot to the limits of the data
ax.axis([x.min(), x.max(), y.min(), y.max()])
fig.colorbar(c, ax=ax)
ax = axs[0, 1]
c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max)
ax.set_title('pcolormesh')
# set the limits of the plot to the limits of the data
ax.axis([x.min(), x.max(), y.min(), y.max()])
fig.colorbar(c, ax=ax)
ax = axs[1, 0]
c = ax.imshow(z, cmap='RdBu', vmin=z_min, vmax=z_max,
extent=[x.min(), x.max(), y.min(), y.max()],
interpolation='nearest', origin='lower')
ax.set_title('image (nearest)')
fig.colorbar(c, ax=ax)
ax = axs[1, 1]
c = ax.pcolorfast(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max)
ax.set_title('pcolorfast')
fig.colorbar(c, ax=ax)
fig.tight_layout()
plt.show()
###############################################################################
# Pcolor with a log scale
# -----------------------
#
# The following shows pcolor plots with a log scale.
N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
# A low hump with a spike coming out.
# Needs to have z/colour axis on a log scale so we see both hump and spike.
# linear scale only shows the spike.
Z1 = np.exp(-(X)**2 - (Y)**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
Z = Z1 + 50 * Z2
fig, (ax0, ax1) = plt.subplots(2, 1)
c = ax0.pcolor(X, Y, Z,
norm=LogNorm(vmin=Z.min(), vmax=Z.max()), cmap='PuBu_r')
fig.colorbar(c, ax=ax0)
c = ax1.pcolor(X, Y, Z, cmap='PuBu_r')
fig.colorbar(c, ax=ax1)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.pcolor
matplotlib.pyplot.pcolor
matplotlib.axes.Axes.pcolormesh
matplotlib.pyplot.pcolormesh
matplotlib.axes.Axes.pcolorfast
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.LogNorm
|
9ac09755bae07e16a2e4efac53b4c89762799811391d900e3cd84bc9c91ccb13 | """
=============
Figimage Demo
=============
This illustrates placing images directly in the figure, with no Axes objects.
"""
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
Z = np.arange(10000).reshape((100, 100))
Z[:, 50:] = 1
im1 = fig.figimage(Z, xo=50, yo=0, origin='lower')
im2 = fig.figimage(Z, xo=100, yo=100, alpha=.8, origin='lower')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
matplotlib.figure.Figure
matplotlib.figure.Figure.figimage
matplotlib.pyplot.figimage
|
2aed24af805451cd5f961e593e731b0804f1e4e0ba0c4d7ac816b7fc45053d81 | """
============================
Affine transform of an image
============================
Prepending an affine transformation (:class:`~.transforms.Affine2D`)
to the :ref:`data transform <data-coords>`
of an image allows to manipulate the image's shape and orientation.
This is an example of the concept of
:ref:`transform chaining <transformation-pipeline>`.
For the backends that support draw_image with optional affine
transform (e.g., agg, ps backend), the image of the output should
have its boundary match the dashed yellow rectangle.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
def get_image():
delta = 0.25
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2)
return Z
def do_plot(ax, Z, transform):
im = ax.imshow(Z, interpolation='none',
origin='lower',
extent=[-2, 4, -3, 2], clip_on=True)
trans_data = transform + ax.transData
im.set_transform(trans_data)
# display intended extent of the image
x1, x2, y1, y2 = im.get_extent()
ax.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], "y--",
transform=trans_data)
ax.set_xlim(-5, 5)
ax.set_ylim(-4, 4)
# prepare image and figure
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
Z = get_image()
# image rotation
do_plot(ax1, Z, mtransforms.Affine2D().rotate_deg(30))
# image skew
do_plot(ax2, Z, mtransforms.Affine2D().skew_deg(30, 15))
# scale and reflection
do_plot(ax3, Z, mtransforms.Affine2D().scale(-1, .5))
# everything and a translation
do_plot(ax4, Z, mtransforms.Affine2D().
rotate_deg(30).skew_deg(30, 15).scale(-1, .5).translate(.5, -1))
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.transforms.Affine2D
|
41d4ac0b23ab4c3535f4dc3cb6152cdf4f25f0be0b3d966976280a75fd246b4d | """
========================================================
Demonstration of advanced quiver and quiverkey functions
========================================================
Demonstrates some more advanced options for `~.axes.Axes.quiver`. For a simple
example refer to :doc:`/gallery/images_contours_and_fields/quiver_simple_demo`.
Known problem: the plot autoscaling does not take into account the arrows, so
those on the boundaries are often out of the picture. This is *not* an easy
problem to solve in a perfectly general way. The workaround is to manually
expand the Axes objects.
"""
import matplotlib.pyplot as plt
import numpy as np
X, Y = np.meshgrid(np.arange(0, 2 * np.pi, .2), np.arange(0, 2 * np.pi, .2))
U = np.cos(X)
V = np.sin(Y)
###############################################################################
fig1, ax1 = plt.subplots()
ax1.set_title('Arrows scale with plot width, not view')
Q = ax1.quiver(X, Y, U, V, units='width')
qk = ax1.quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',
coordinates='figure')
###############################################################################
fig2, ax2 = plt.subplots()
ax2.set_title("pivot='mid'; every third arrow; units='inches'")
Q = ax2.quiver(X[::3, ::3], Y[::3, ::3], U[::3, ::3], V[::3, ::3],
pivot='mid', units='inches')
qk = ax2.quiverkey(Q, 0.9, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E',
coordinates='figure')
ax2.scatter(X[::3, ::3], Y[::3, ::3], color='r', s=5)
###############################################################################
fig3, ax3 = plt.subplots()
ax3.set_title("pivot='tip'; scales with x view")
M = np.hypot(U, V)
Q = ax3.quiver(X, Y, U, V, M, units='x', pivot='tip', width=0.022,
scale=1 / 0.15)
qk = ax3.quiverkey(Q, 0.9, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E',
coordinates='figure')
ax3.scatter(X, Y, color='k', s=5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
import matplotlib
matplotlib.axes.Axes.quiver
matplotlib.pyplot.quiver
matplotlib.axes.Axes.quiverkey
matplotlib.pyplot.quiverkey
|
ab745bcfad6efbe24a301b2c41eb66aa1833c4e50fa97290707a144b3ca17028 | """
==========================
Tricontour Smooth Delaunay
==========================
Demonstrates high-resolution tricontouring of a random set of points;
a `matplotlib.tri.TriAnalyzer` is used to improve the plot quality.
The initial data points and triangular grid for this demo are:
- a set of random points is instantiated, inside [-1, 1] x [-1, 1] square
- A Delaunay triangulation of these points is then computed, of which a
random subset of triangles is masked out by the user (based on
*init_mask_frac* parameter). This simulates invalidated data.
The proposed generic procedure to obtain a high resolution contouring of such
a data set is the following:
1. Compute an extended mask with a `matplotlib.tri.TriAnalyzer`, which will
exclude badly shaped (flat) triangles from the border of the
triangulation. Apply the mask to the triangulation (using set_mask).
2. Refine and interpolate the data using a
`matplotlib.tri.UniformTriRefiner`.
3. Plot the refined data with `~.axes.Axes.tricontour`.
"""
from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
#-----------------------------------------------------------------------------
# Analytical test function
#-----------------------------------------------------------------------------
def experiment_res(x, y):
"""An analytic function representing experiment results."""
x = 2 * x
r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2)
theta1 = np.arctan2(0.5 - x, 0.5 - y)
r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2)
theta2 = np.arctan2(-x - 0.2, -y - 0.2)
z = (4 * (np.exp((r1/10)**2) - 1) * 30 * np.cos(3 * theta1) +
(np.exp((r2/10)**2) - 1) * 30 * np.cos(5 * theta2) +
2 * (x**2 + y**2))
return (np.max(z) - z) / (np.max(z) - np.min(z))
#-----------------------------------------------------------------------------
# Generating the initial data test points and triangulation for the demo
#-----------------------------------------------------------------------------
# User parameters for data test points
n_test = 200 # Number of test data points, tested from 3 to 5000 for subdiv=3
subdiv = 3 # Number of recursive subdivisions of the initial mesh for smooth
# plots. Values >3 might result in a very high number of triangles
# for the refine mesh: new triangles numbering = (4**subdiv)*ntri
init_mask_frac = 0.0 # Float > 0. adjusting the proportion of
# (invalid) initial triangles which will be masked
# out. Enter 0 for no mask.
min_circle_ratio = .01 # Minimum circle ratio - border triangles with circle
# ratio below this will be masked if they touch a
# border. Suggested value 0.01; use -1 to keep
# all triangles.
# Random points
random_gen = np.random.RandomState(seed=19680801)
x_test = random_gen.uniform(-1., 1., size=n_test)
y_test = random_gen.uniform(-1., 1., size=n_test)
z_test = experiment_res(x_test, y_test)
# meshing with Delaunay triangulation
tri = Triangulation(x_test, y_test)
ntri = tri.triangles.shape[0]
# Some invalid data are masked out
mask_init = np.zeros(ntri, dtype=bool)
masked_tri = random_gen.randint(0, ntri, int(ntri * init_mask_frac))
mask_init[masked_tri] = True
tri.set_mask(mask_init)
#-----------------------------------------------------------------------------
# Improving the triangulation before high-res plots: removing flat triangles
#-----------------------------------------------------------------------------
# masking badly shaped triangles at the border of the triangular mesh.
mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
tri.set_mask(mask)
# refining the data
refiner = UniformTriRefiner(tri)
tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv)
# analytical 'results' for comparison
z_expected = experiment_res(tri_refi.x, tri_refi.y)
# for the demo: loading the 'flat' triangles for plot
flat_tri = Triangulation(x_test, y_test)
flat_tri.set_mask(~mask)
#-----------------------------------------------------------------------------
# Now the plots
#-----------------------------------------------------------------------------
# User options for plots
plot_tri = True # plot of base triangulation
plot_masked_tri = True # plot of excessively flat excluded triangles
plot_refi_tri = False # plot of refined triangulation
plot_expected = False # plot of analytical function values for comparison
# Graphical options for tricontouring
levels = np.arange(0., 1., 0.025)
cmap = cm.get_cmap(name='Blues', lut=None)
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.set_title("Filtering a Delaunay mesh\n" +
"(application to high-resolution tricontouring)")
# 1) plot of the refined (computed) data contours:
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
linewidths=[2.0, 0.5, 1.0, 0.5])
# 2) plot of the expected (analytical) data contours (dashed):
if plot_expected:
ax.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap,
linestyles='--')
# 3) plot of the fine mesh on which interpolation was done:
if plot_refi_tri:
ax.triplot(tri_refi, color='0.97')
# 4) plot of the initial 'coarse' mesh:
if plot_tri:
ax.triplot(tri, color='0.7')
# 4) plot of the unvalidated triangles from naive Delaunay Triangulation:
if plot_masked_tri:
ax.triplot(flat_tri, color='red')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tricontour
matplotlib.pyplot.tricontour
matplotlib.axes.Axes.tricontourf
matplotlib.pyplot.tricontourf
matplotlib.axes.Axes.triplot
matplotlib.pyplot.triplot
matplotlib.tri
matplotlib.tri.Triangulation
matplotlib.tri.TriAnalyzer
matplotlib.tri.UniformTriRefiner
|
142f3e72e0d1dbe8aaf6caa17b32c5ce49e34049ae21230878a48540b75b9250 | """
============
Triplot Demo
============
Creating and plotting unstructured triangular grids.
"""
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
###############################################################################
# Creating a Triangulation without specifying the triangles results in the
# Delaunay triangulation of the points.
# First create the x and y coordinates of the points.
n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
# Create the Triangulation; no triangles so Delaunay triangulation created.
triang = tri.Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
###############################################################################
# Plot the triangulation.
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
ax1.triplot(triang, 'bo-', lw=1)
ax1.set_title('triplot of Delaunay triangulation')
###############################################################################
# You can specify your own triangulation rather than perform a Delaunay
# triangulation of the points, where each triangle is given by the indices of
# the three points that make up the triangle, ordered in either a clockwise or
# anticlockwise manner.
xy = np.asarray([
[-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
[-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
[-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
[-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
[-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
[-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
[-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
[-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
[-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
[-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
[-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
[-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
[-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
[ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
[ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
[ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
[-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
[-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
[-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
triangles = np.asarray([
[67, 66, 1], [65, 2, 66], [ 1, 66, 2], [64, 2, 65], [63, 3, 64],
[60, 59, 57], [ 2, 64, 3], [ 3, 63, 4], [ 0, 67, 1], [62, 4, 63],
[57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
[ 6, 5, 9], [61, 68, 62], [69, 68, 61], [ 9, 5, 70], [ 6, 8, 7],
[ 4, 70, 5], [ 8, 6, 9], [56, 69, 57], [69, 56, 52], [70, 10, 9],
[54, 53, 55], [56, 55, 53], [68, 70, 4], [52, 56, 53], [11, 10, 12],
[69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
[52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
[49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
[48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
[21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
[20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
[72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
[72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
[42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
[33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])
###############################################################################
# Rather than create a Triangulation object, can simply pass x, y and triangles
# arrays to triplot directly. It would be better to use a Triangulation object
# if the same triangulation was to be used more than once to save duplicated
# calculations.
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
ax2.triplot(x, y, triangles, 'go-', lw=1.0)
ax2.set_title('triplot of user-specified triangulation')
ax2.set_xlabel('Longitude (degrees)')
ax2.set_ylabel('Latitude (degrees)')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.triplot
matplotlib.pyplot.triplot
matplotlib.tri
matplotlib.tri.Triangulation
|
aabc84611a648c5dc5ad21615eadd97f4b1bae9e99f61f1f7af295e74da59097 | """
==================
Contour Label Demo
==================
Illustrate some of the more advanced things that one can do with
contour labels.
See also the :doc:`contour demo example
</gallery/images_contours_and_fields/contour_demo>`.
"""
import matplotlib
import numpy as np
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
###############################################################################
# Define our surface
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
###############################################################################
# Make contour labels using creative float classes
# Follows suggestion of Manuel Metz
# Define a class that forces representation of float to look a certain way
# This remove trailing zero so '1.0' becomes '1'
class nf(float):
def __repr__(self):
s = f'{self:.1f}'
return f'{self:.0f}' if s[-1] == '0' else s
# Basic contour plot
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z)
# Recast levels to new class
CS.levels = [nf(val) for val in CS.levels]
# Label levels with specially formatted floats
if plt.rcParams["text.usetex"]:
fmt = r'%r \%%'
else:
fmt = '%r %%'
ax.clabel(CS, CS.levels, inline=True, fmt=fmt, fontsize=10)
###############################################################################
# Label contours with arbitrary strings using a dictionary
fig1, ax1 = plt.subplots()
# Basic contour plot
CS1 = ax1.contour(X, Y, Z)
fmt = {}
strs = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh']
for l, s in zip(CS1.levels, strs):
fmt[l] = s
# Label every other level using strings
ax1.clabel(CS1, CS1.levels[::2], inline=True, fmt=fmt, fontsize=10)
###############################################################################
# Use a Formatter
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X, Y, 100**Z, locator=plt.LogLocator())
fmt = ticker.LogFormatterMathtext()
fmt.create_dummy_axis()
ax2.clabel(CS2, CS2.levels, fmt=fmt)
ax2.set_title("$100^Z$")
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.clabel
matplotlib.pyplot.clabel
matplotlib.ticker.LogFormatterMathtext
matplotlib.ticker.TickHelper.create_dummy_axis
|
401387442a4ec7cb7c9c95c58b8ae4227d3493a16f7a9dca9a952ae2dc4c45e9 | """
=============
Contour Image
=============
Test combinations of contouring, filled contouring, and image plotting.
For contour labelling, see also the :doc:`contour demo example
</gallery/images_contours_and_fields/contour_demo>`.
The emphasis in this demo is on showing how to make contours register
correctly on images, and on how to get both of them oriented as desired.
In particular, note the usage of the :doc:`"origin" and "extent"
</tutorials/intermediate/imshow_extent>` keyword arguments to imshow and
contour.
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
# Default delta is large because that makes it fast, and it illustrates
# the correct registration between image and contours.
delta = 0.5
extent = (-3, 4, -4, 3)
x = np.arange(-3.0, 4.001, delta)
y = np.arange(-4.0, 3.001, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Boost the upper limit to avoid truncation errors.
levels = np.arange(-2.0, 1.601, 0.4)
norm = cm.colors.Normalize(vmax=abs(Z).max(), vmin=-abs(Z).max())
cmap = cm.PRGn
fig, _axs = plt.subplots(nrows=2, ncols=2)
fig.subplots_adjust(hspace=0.3)
axs = _axs.flatten()
cset1 = axs[0].contourf(X, Y, Z, levels, norm=norm,
cmap=cm.get_cmap(cmap, len(levels) - 1))
# It is not necessary, but for the colormap, we need only the
# number of levels minus 1. To avoid discretization error, use
# either this number or a large number such as the default (256).
# If we want lines as well as filled regions, we need to call
# contour separately; don't try to change the edgecolor or edgewidth
# of the polygons in the collections returned by contourf.
# Use levels output from previous call to guarantee they are the same.
cset2 = axs[0].contour(X, Y, Z, cset1.levels, colors='k')
# We don't really need dashed contour lines to indicate negative
# regions, so let's turn them off.
for c in cset2.collections:
c.set_linestyle('solid')
# It is easier here to make a separate call to contour than
# to set up an array of colors and linewidths.
# We are making a thick green line as a zero contour.
# Specify the zero level as a tuple with only 0 in it.
cset3 = axs[0].contour(X, Y, Z, (0,), colors='g', linewidths=2)
axs[0].set_title('Filled contours')
fig.colorbar(cset1, ax=axs[0])
axs[1].imshow(Z, extent=extent, cmap=cmap, norm=norm)
axs[1].contour(Z, levels, colors='k', origin='upper', extent=extent)
axs[1].set_title("Image, origin 'upper'")
axs[2].imshow(Z, origin='lower', extent=extent, cmap=cmap, norm=norm)
axs[2].contour(Z, levels, colors='k', origin='lower', extent=extent)
axs[2].set_title("Image, origin 'lower'")
# We will use the interpolation "nearest" here to show the actual
# image pixels.
# Note that the contour lines don't extend to the edge of the box.
# This is intentional. The Z values are defined at the center of each
# image pixel (each color block on the following subplot), so the
# domain that is contoured does not extend beyond these pixel centers.
im = axs[3].imshow(Z, interpolation='nearest', extent=extent,
cmap=cmap, norm=norm)
axs[3].contour(Z, levels, colors='k', origin='image', extent=extent)
ylim = axs[3].get_ylim()
axs[3].set_ylim(ylim[::-1])
axs[3].set_title("Origin from rc, reversed y-axis")
fig.colorbar(im, ax=axs[3])
fig.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.Normalize
|
b19ff180f2a68875ffd5924aa8d8be51f615f1727d92a27df557eaed485970df | """
===========================================
Blend transparency with color in 2-D images
===========================================
Blend transparency with color to highlight parts of data with imshow.
A common use for :func:`matplotlib.pyplot.imshow` is to plot a 2-D statistical
map. While ``imshow`` makes it easy to visualize a 2-D matrix as an image,
it doesn't easily let you add transparency to the output. For example, one can
plot a statistic (such as a t-statistic) and color the transparency of
each pixel according to its p-value. This example demonstrates how you can
achieve this effect using :class:`matplotlib.colors.Normalize`. Note that it is
not possible to directly pass alpha values to :func:`matplotlib.pyplot.imshow`.
First we will generate some data, in this case, we'll create two 2-D "blobs"
in a 2-D grid. One blob will be positive, and the other negative.
"""
# sphinx_gallery_thumbnail_number = 3
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
def normal_pdf(x, mean, var):
return np.exp(-(x - mean)**2 / (2*var))
# Generate the space in which the blobs will live
xmin, xmax, ymin, ymax = (0, 100, 0, 100)
n_bins = 100
xx = np.linspace(xmin, xmax, n_bins)
yy = np.linspace(ymin, ymax, n_bins)
# Generate the blobs. The range of the values is roughly -.0002 to .0002
means_high = [20, 50]
means_low = [50, 60]
var = [150, 200]
gauss_x_high = normal_pdf(xx, means_high[0], var[0])
gauss_y_high = normal_pdf(yy, means_high[1], var[0])
gauss_x_low = normal_pdf(xx, means_low[0], var[1])
gauss_y_low = normal_pdf(yy, means_low[1], var[1])
weights = (np.outer(gauss_y_high, gauss_x_high)
- np.outer(gauss_y_low, gauss_x_low))
# We'll also create a grey background into which the pixels will fade
greys = np.full((*weights.shape, 3), 70, dtype=np.uint8)
# First we'll plot these blobs using only ``imshow``.
vmax = np.abs(weights).max()
vmin = -vmax
cmap = plt.cm.RdYlBu
fig, ax = plt.subplots()
ax.imshow(greys)
ax.imshow(weights, extent=(xmin, xmax, ymin, ymax), cmap=cmap)
ax.set_axis_off()
###############################################################################
# Blending in transparency
# ========================
#
# The simplest way to include transparency when plotting data with
# :func:`matplotlib.pyplot.imshow` is to convert the 2-D data array to a
# 3-D image array of rgba values. This can be done with
# :class:`matplotlib.colors.Normalize`. For example, we'll create a gradient
# moving from left to right below.
# Create an alpha channel of linearly increasing values moving to the right.
alphas = np.ones(weights.shape)
alphas[:, 30:] = np.linspace(1, 0, 70)
# Normalize the colors b/w 0 and 1, we'll then pass an MxNx4 array to imshow
colors = Normalize(vmin, vmax, clip=True)(weights)
colors = cmap(colors)
# Now set the alpha channel to the one we created above
colors[..., -1] = alphas
# Create the figure and image
# Note that the absolute values may be slightly different
fig, ax = plt.subplots()
ax.imshow(greys)
ax.imshow(colors, extent=(xmin, xmax, ymin, ymax))
ax.set_axis_off()
###############################################################################
# Using transparency to highlight values with high amplitude
# ==========================================================
#
# Finally, we'll recreate the same plot, but this time we'll use transparency
# to highlight the extreme values in the data. This is often used to highlight
# data points with smaller p-values. We'll also add in contour lines to
# highlight the image values.
# Create an alpha channel based on weight values
# Any value whose absolute value is > .0001 will have zero transparency
alphas = Normalize(0, .3, clip=True)(np.abs(weights))
alphas = np.clip(alphas, .4, 1) # alpha value clipped at the bottom at .4
# Normalize the colors b/w 0 and 1, we'll then pass an MxNx4 array to imshow
colors = Normalize(vmin, vmax)(weights)
colors = cmap(colors)
# Now set the alpha channel to the one we created above
colors[..., -1] = alphas
# Create the figure and image
# Note that the absolute values may be slightly different
fig, ax = plt.subplots()
ax.imshow(greys)
ax.imshow(colors, extent=(xmin, xmax, ymin, ymax))
# Add contour lines to further highlight different levels.
ax.contour(weights[::-1], levels=[-.1, .1], colors='k', linestyles='-')
ax.set_axis_off()
plt.show()
ax.contour(weights[::-1], levels=[-.0001, .0001], colors='k', linestyles='-')
ax.set_axis_off()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.colors.Normalize
matplotlib.axes.Axes.set_axis_off
|
ea2c8b968915e0dd061920a5cd5ec60b57eca9c17dac6b792b28cb7f42e63a7d | """
===================
Contour Corner Mask
===================
Illustrate the difference between ``corner_mask=False`` and
``corner_mask=True`` for masked contour plots.
"""
import matplotlib.pyplot as plt
import numpy as np
# Data to plot.
x, y = np.meshgrid(np.arange(7), np.arange(10))
z = np.sin(0.5 * x) * np.cos(0.52 * y)
# Mask various z values.
mask = np.zeros_like(z, dtype=bool)
mask[2, 3:5] = True
mask[3:5, 4] = True
mask[7, 2] = True
mask[5, 0] = True
mask[0, 6] = True
z = np.ma.array(z, mask=mask)
corner_masks = [False, True]
fig, axs = plt.subplots(ncols=2)
for ax, corner_mask in zip(axs, corner_masks):
cs = ax.contourf(x, y, z, corner_mask=corner_mask)
ax.contour(cs, colors='k')
ax.set_title('corner_mask = {0}'.format(corner_mask))
# Plot grid.
ax.grid(c='k', ls='-', alpha=0.3)
# Indicate masked points with red circles.
ax.plot(np.ma.array(x, mask=~mask), y, 'ro')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
|
2103c75f5c716c550644d6a64b6702be44bb6d31e834fdf2eceefcdd81d97585 | """
============
Image Masked
============
imshow with masked array input and out-of-range colors.
The second subplot illustrates the use of BoundaryNorm to
get a filled contour effect.
"""
from copy import copy
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
# compute some interesting data
x0, x1 = -5, 5
y0, y1 = -3, 3
x = np.linspace(x0, x1, 500)
y = np.linspace(y0, y1, 500)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Set up a colormap:
# use copy so that we do not mutate the global colormap instance
palette = copy(plt.cm.gray)
palette.set_over('r', 1.0)
palette.set_under('g', 1.0)
palette.set_bad('b', 1.0)
# Alternatively, we could use
# palette.set_bad(alpha = 0.0)
# to make the bad region transparent. This is the default.
# If you comment out all the palette.set* lines, you will see
# all the defaults; under and over will be colored with the
# first and last colors in the palette, respectively.
Zm = np.ma.masked_where(Z > 1.2, Z)
# By setting vmin and vmax in the norm, we establish the
# range to which the regular palette color scale is applied.
# Anything above that range is colored based on palette.set_over, etc.
# set up the Axes objects
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 5.4))
# plot using 'continuous' color map
im = ax1.imshow(Zm, interpolation='bilinear',
cmap=palette,
norm=colors.Normalize(vmin=-1.0, vmax=1.0),
aspect='auto',
origin='lower',
extent=[x0, x1, y0, y1])
ax1.set_title('Green=low, Red=high, Blue=masked')
cbar = fig.colorbar(im, extend='both', shrink=0.9, ax=ax1)
cbar.set_label('uniform')
for ticklabel in ax1.xaxis.get_ticklabels():
ticklabel.set_visible(False)
# Plot using a small number of colors, with unevenly spaced boundaries.
im = ax2.imshow(Zm, interpolation='nearest',
cmap=palette,
norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1],
ncolors=palette.N),
aspect='auto',
origin='lower',
extent=[x0, x1, y0, y1])
ax2.set_title('With BoundaryNorm')
cbar = fig.colorbar(im, extend='both', spacing='proportional',
shrink=0.9, ax=ax2)
cbar.set_label('proportional')
fig.suptitle('imshow, with out-of-range and masked data')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.BoundaryNorm
matplotlib.colorbar.ColorbarBase.set_label
|
acf39e61d53035c0bb2c81ccd88f1386b0bd46b0185f56fe380a494b63dcce45 | """
=======
Matshow
=======
Simple `~.axes.Axes.matshow` example.
"""
import matplotlib.pyplot as plt
import numpy as np
def samplemat(dims):
"""Make a matrix with all zeros and increasing elements on the diagonal"""
aa = np.zeros(dims)
for i in range(min(dims)):
aa[i, i] = i
return aa
# Display matrix
plt.matshow(samplemat((15, 15)))
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.matshow
matplotlib.pyplot.matshow
|
f1093189bb1563af354482661a8a97a1aef3df0b6e3cb43d196b53a10d56f868 | """
===========
Multi Image
===========
Make a set of images with a single colormap, norm, and colorbar.
"""
from matplotlib import colors
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(19680801)
Nr = 3
Nc = 2
cmap = "cool"
fig, axs = plt.subplots(Nr, Nc)
fig.suptitle('Multiple images')
images = []
for i in range(Nr):
for j in range(Nc):
# Generate data with a range that varies from one plot to the next.
data = ((1 + i + j) / 10) * np.random.rand(10, 20) * 1e-6
images.append(axs[i, j].imshow(data, cmap=cmap))
axs[i, j].label_outer()
# Find the min and max of all colors for use in setting the color scale.
vmin = min(image.get_array().min() for image in images)
vmax = max(image.get_array().max() for image in images)
norm = colors.Normalize(vmin=vmin, vmax=vmax)
for im in images:
im.set_norm(norm)
fig.colorbar(images[0], ax=axs, orientation='horizontal', fraction=.1)
# Make images respond to changes in the norm of other images (e.g. via the
# "edit axis, curves and images parameters" GUI on Qt), but be careful not to
# recurse infinitely!
def update(changed_image):
for im in images:
if (changed_image.get_cmap() != im.get_cmap()
or changed_image.get_clim() != im.get_clim()):
im.set_cmap(changed_image.get_cmap())
im.set_clim(changed_image.get_clim())
for im in images:
im.callbacksSM.connect('changed', update)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.Normalize
matplotlib.cm.ScalarMappable.set_cmap
matplotlib.cm.ScalarMappable.set_norm
matplotlib.cm.ScalarMappable.set_clim
matplotlib.cbook.CallbackRegistry.connect
|
ad954e95bf178a826be87fec8bb239cef2e3face55c0ca6a9efd76e5a71c769f | """
==============
Tripcolor Demo
==============
Pseudocolor plots of unstructured triangular grids.
"""
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
###############################################################################
# Creating a Triangulation without specifying the triangles results in the
# Delaunay triangulation of the points.
# First create the x and y coordinates of the points.
n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()
# Create the Triangulation; no triangles so Delaunay triangulation created.
triang = tri.Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
###############################################################################
# tripcolor plot.
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, z, shading='flat')
fig1.colorbar(tpc)
ax1.set_title('tripcolor of Delaunay triangulation, flat shading')
###############################################################################
# Illustrate Gouraud shading.
fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
tpc = ax2.tripcolor(triang, z, shading='gouraud')
fig2.colorbar(tpc)
ax2.set_title('tripcolor of Delaunay triangulation, gouraud shading')
###############################################################################
# You can specify your own triangulation rather than perform a Delaunay
# triangulation of the points, where each triangle is given by the indices of
# the three points that make up the triangle, ordered in either a clockwise or
# anticlockwise manner.
xy = np.asarray([
[-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
[-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
[-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
[-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
[-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
[-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
[-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
[-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
[-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
[-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
[-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
[-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
[-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
[ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
[ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
[ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
[-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
[-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
[-0.077, 0.990], [-0.059, 0.993]])
x, y = np.rad2deg(xy).T
triangles = np.asarray([
[67, 66, 1], [65, 2, 66], [ 1, 66, 2], [64, 2, 65], [63, 3, 64],
[60, 59, 57], [ 2, 64, 3], [ 3, 63, 4], [ 0, 67, 1], [62, 4, 63],
[57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
[ 6, 5, 9], [61, 68, 62], [69, 68, 61], [ 9, 5, 70], [ 6, 8, 7],
[ 4, 70, 5], [ 8, 6, 9], [56, 69, 57], [69, 56, 52], [70, 10, 9],
[54, 53, 55], [56, 55, 53], [68, 70, 4], [52, 56, 53], [11, 10, 12],
[69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
[52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
[49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
[48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
[21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
[20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
[72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
[72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
[42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
[33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])
xmid = x[triangles].mean(axis=1)
ymid = y[triangles].mean(axis=1)
x0 = -5
y0 = 52
zfaces = np.exp(-0.01 * ((xmid - x0) * (xmid - x0) +
(ymid - y0) * (ymid - y0)))
###############################################################################
# Rather than create a Triangulation object, can simply pass x, y and triangles
# arrays to tripcolor directly. It would be better to use a Triangulation
# object if the same triangulation was to be used more than once to save
# duplicated calculations.
# Can specify one color value per face rather than one per point by using the
# facecolors kwarg.
fig3, ax3 = plt.subplots()
ax3.set_aspect('equal')
tpc = ax3.tripcolor(x, y, triangles, facecolors=zfaces, edgecolors='k')
fig3.colorbar(tpc)
ax3.set_title('tripcolor of user-specified triangulation')
ax3.set_xlabel('Longitude (degrees)')
ax3.set_ylabel('Latitude (degrees)')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tripcolor
matplotlib.pyplot.tripcolor
matplotlib.tri
matplotlib.tri.Triangulation
|
d5f7a1a639b93e7547823922ee13148209e2a5c9bcf6ef4884851c4b7f108f53 | """
======================
Tricontour Smooth User
======================
Demonstrates high-resolution tricontouring on user-defined triangular grids
with `matplotlib.tri.UniformTriRefiner`.
"""
import matplotlib.tri as tri
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
#-----------------------------------------------------------------------------
# Analytical test function
#-----------------------------------------------------------------------------
def function_z(x, y):
r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2)
theta1 = np.arctan2(0.5 - x, 0.5 - y)
r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2)
theta2 = np.arctan2(-x - 0.2, -y - 0.2)
z = -(2 * (np.exp((r1 / 10)**2) - 1) * 30. * np.cos(7. * theta1) +
(np.exp((r2 / 10)**2) - 1) * 30. * np.cos(11. * theta2) +
0.7 * (x**2 + y**2))
return (np.max(z) - z) / (np.max(z) - np.min(z))
#-----------------------------------------------------------------------------
# Creating a Triangulation
#-----------------------------------------------------------------------------
# First create the x and y coordinates of the points.
n_angles = 20
n_radii = 10
min_radius = 0.15
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = function_z(x, y)
# Now create the Triangulation.
# (Creating a Triangulation without specifying the triangles results in the
# Delaunay triangulation of the points.)
triang = tri.Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
#-----------------------------------------------------------------------------
# Refine data
#-----------------------------------------------------------------------------
refiner = tri.UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(z, subdiv=3)
#-----------------------------------------------------------------------------
# Plot the triangulation and the high-res iso-contours
#-----------------------------------------------------------------------------
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.triplot(triang, lw=0.5, color='white')
levels = np.arange(0., 1., 0.025)
cmap = cm.get_cmap(name='terrain', lut=None)
ax.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap)
ax.tricontour(tri_refi, z_test_refi, levels=levels,
colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
linewidths=[1.0, 0.5, 0.5, 0.5, 0.5])
ax.set_title("High-resolution tricontouring")
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tricontour
matplotlib.pyplot.tricontour
matplotlib.axes.Axes.tricontourf
matplotlib.pyplot.tricontourf
matplotlib.tri
matplotlib.tri.Triangulation
matplotlib.tri.UniformTriRefiner
|
a9eb2459f6285b9baa8e57bacb223a6d32f1333636cbdec35354f66604389811 | """
=================================
Interpolations for imshow/matshow
=================================
This example displays the difference between interpolation methods for
:meth:`~.axes.Axes.imshow` and :meth:`~.axes.Axes.matshow`.
If `interpolation` is None, it defaults to the ``image.interpolation``
:doc:`rc parameter </tutorials/introductory/customizing>`.
If the interpolation is ``'none'``, then no interpolation is performed
for the Agg, ps and pdf backends. Other backends will default to ``'nearest'``.
For the Agg, ps and pdf backends, ``interpolation = 'none'`` works well when a
big image is scaled down, while ``interpolation = 'nearest'`` works well when
a small image is scaled up.
"""
import matplotlib.pyplot as plt
import numpy as np
methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']
# Fixing random state for reproducibility
np.random.seed(19680801)
grid = np.random.rand(4, 4)
fig, axs = plt.subplots(nrows=3, ncols=6, figsize=(9, 6),
subplot_kw={'xticks': [], 'yticks': []})
for ax, interp_method in zip(axs.flat, methods):
ax.imshow(grid, interpolation=interp_method, cmap='viridis')
ax.set_title(str(interp_method))
plt.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
|
f5a7df8c07a53b9f37ca6b171b4d67710febdebc366a192040e4f25f46a4cfb7 | """
=======================================
Contour plot of irregularly spaced data
=======================================
Comparison of a contour plot of irregularly spaced data interpolated
on a regular grid versus a tricontour plot for an unstructured triangular grid.
Since `~.axes.Axes.contour` and `~.axes.Axes.contourf` expect the data to live
on a regular grid, plotting a contour plot of irregularly spaced data requires
different methods. The two options are:
* Interpolate the data to a regular grid first. This can be done with on-board
means, e.g. via `~.tri.LinearTriInterpolator` or using external functionality
e.g. via `scipy.interpolate.griddata`. Then plot the interpolated data with
the usual `~.axes.Axes.contour`.
* Directly use `~.axes.Axes.tricontour` or `~.axes.Axes.tricontourf` which will
perform a triangulation internally.
This example shows both methods in action.
"""
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
np.random.seed(19680801)
npts = 200
ngridx = 100
ngridy = 200
x = np.random.uniform(-2, 2, npts)
y = np.random.uniform(-2, 2, npts)
z = x * np.exp(-x**2 - y**2)
fig, (ax1, ax2) = plt.subplots(nrows=2)
# -----------------------
# Interpolation on a grid
# -----------------------
# A contour plot of irregularly spaced data coordinates
# via interpolation on a grid.
# Create grid values first.
xi = np.linspace(-2.1, 2.1, ngridx)
yi = np.linspace(-2.1, 2.1, ngridy)
# Perform linear interpolation of the data (x,y)
# on a grid defined by (xi,yi)
triang = tri.Triangulation(x, y)
interpolator = tri.LinearTriInterpolator(triang, z)
Xi, Yi = np.meshgrid(xi, yi)
zi = interpolator(Xi, Yi)
# Note that scipy.interpolate provides means to interpolate data on a grid
# as well. The following would be an alternative to the four lines above:
#from scipy.interpolate import griddata
#zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='linear')
ax1.contour(xi, yi, zi, levels=14, linewidths=0.5, colors='k')
cntr1 = ax1.contourf(xi, yi, zi, levels=14, cmap="RdBu_r")
fig.colorbar(cntr1, ax=ax1)
ax1.plot(x, y, 'ko', ms=3)
ax1.axis((-2, 2, -2, 2))
ax1.set_title('grid and contour (%d points, %d grid points)' %
(npts, ngridx * ngridy))
# ----------
# Tricontour
# ----------
# Directly supply the unordered, irregularly spaced coordinates
# to tricontour.
ax2.tricontour(x, y, z, levels=14, linewidths=0.5, colors='k')
cntr2 = ax2.tricontourf(x, y, z, levels=14, cmap="RdBu_r")
fig.colorbar(cntr2, ax=ax2)
ax2.plot(x, y, 'ko', ms=3)
ax2.axis((-2, 2, -2, 2))
ax2.set_title('tricontour (%d points)' % npts)
plt.subplots_adjust(hspace=0.5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.axes.Axes.tricontour
matplotlib.pyplot.tricontour
matplotlib.axes.Axes.tricontourf
matplotlib.pyplot.tricontourf
|
eb86f2d59ffb59aa252905fdaf5e655e7844f7cbe5232f14abb98dbd4ba04798 | """
=========
Spy Demos
=========
Plot the sparsity pattern of arrays.
"""
import matplotlib.pyplot as plt
import numpy as np
fig, axs = plt.subplots(2, 2)
ax1 = axs[0, 0]
ax2 = axs[0, 1]
ax3 = axs[1, 0]
ax4 = axs[1, 1]
x = np.random.randn(20, 20)
x[5, :] = 0.
x[:, 12] = 0.
ax1.spy(x, markersize=5)
ax2.spy(x, precision=0.1, markersize=5)
ax3.spy(x)
ax4.spy(x, precision=0.1)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.spy
matplotlib.pyplot.spy
|
589e0d010654564ec4360fe36d7c7f4315b5741d653f35aeb31466cc57385db6 | """
==================================
Modifying the coordinate formatter
==================================
Modify the coordinate formatter to report the image "z"
value of the nearest pixel given x and y.
This functionality is built in by default, but it
is still useful to show how to customize the
`~.axes.Axes.format_coord` function.
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
X = 10*np.random.rand(5, 3)
fig, ax = plt.subplots()
ax.imshow(X, interpolation='nearest')
numrows, numcols = X.shape
def format_coord(x, y):
col = int(x + 0.5)
row = int(y + 0.5)
if col >= 0 and col < numcols and row >= 0 and row < numrows:
z = X[row, col]
return 'x=%1.4f, y=%1.4f, z=%1.4f' % (x, y, z)
else:
return 'x=%1.4f, y=%1.4f' % (x, y)
ax.format_coord = format_coord
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.format_coord
matplotlib.axes.Axes.imshow
|
076a57c88373f3eee44d78526656d84bccae17c0c0854cd8455b7544de23eba1 | """
=============
Contourf Demo
=============
How to use the :meth:`.axes.Axes.contourf` method to create filled contour plots.
"""
import numpy as np
import matplotlib.pyplot as plt
origin = 'lower'
delta = 0.025
x = y = np.arange(-3.0, 3.01, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
nr, nc = Z.shape
# put NaNs in one corner:
Z[-nr // 6:, -nc // 6:] = np.nan
# contourf will convert these to masked
Z = np.ma.array(Z)
# mask another corner:
Z[:nr // 6, :nc // 6] = np.ma.masked
# mask a circle in the middle:
interior = np.sqrt(X**2 + Y**2) < 0.5
Z[interior] = np.ma.masked
# We are using automatic selection of contour levels;
# this is usually not such a good idea, because they don't
# occur on nice boundaries, but we do it here for purposes
# of illustration.
fig1, ax2 = plt.subplots(constrained_layout=True)
CS = ax2.contourf(X, Y, Z, 10, cmap=plt.cm.bone, origin=origin)
# Note that in the following, we explicitly pass in a subset of
# the contour levels used for the filled contours. Alternatively,
# We could pass in additional levels to provide extra resolution,
# or leave out the levels kwarg to use all of the original levels.
CS2 = ax2.contour(CS, levels=CS.levels[::2], colors='r', origin=origin)
ax2.set_title('Nonsense (3 masked regions)')
ax2.set_xlabel('word length anomaly')
ax2.set_ylabel('sentence length anomaly')
# Make a colorbar for the ContourSet returned by the contourf call.
cbar = fig1.colorbar(CS)
cbar.ax.set_ylabel('verbosity coefficient')
# Add the contour line levels to the colorbar
cbar.add_lines(CS2)
fig2, ax2 = plt.subplots(constrained_layout=True)
# Now make a contour plot with the levels specified,
# and with the colormap generated automatically from a list
# of colors.
levels = [-1.5, -1, -0.5, 0, 0.5, 1]
CS3 = ax2.contourf(X, Y, Z, levels,
colors=('r', 'g', 'b'),
origin=origin,
extend='both')
# Our data range extends outside the range of levels; make
# data below the lowest contour level yellow, and above the
# highest level cyan:
CS3.cmap.set_under('yellow')
CS3.cmap.set_over('cyan')
CS4 = ax2.contour(X, Y, Z, levels,
colors=('k',),
linewidths=(3,),
origin=origin)
ax2.set_title('Listed colors (3 masked regions)')
ax2.clabel(CS4, fmt='%2.1f', colors='w', fontsize=14)
# Notice that the colorbar command gets all the information it
# needs from the ContourSet object, CS3.
fig2.colorbar(CS3)
# Illustrate all 4 possible "extend" settings:
extends = ["neither", "both", "min", "max"]
cmap = plt.cm.get_cmap("winter")
cmap.set_under("magenta")
cmap.set_over("yellow")
# Note: contouring simply excludes masked or nan regions, so
# instead of using the "bad" colormap value for them, it draws
# nothing at all in them. Therefore the following would have
# no effect:
# cmap.set_bad("red")
fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax, extend in zip(axs.ravel(), extends):
cs = ax.contourf(X, Y, Z, levels, cmap=cmap, extend=extend, origin=origin)
fig.colorbar(cs, ax=ax, shrink=0.9)
ax.set_title("extend = %s" % extend)
ax.locator_params(nbins=4)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contour
matplotlib.pyplot.contour
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.axes.Axes.clabel
matplotlib.pyplot.clabel
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.Colormap
matplotlib.colors.Colormap.set_bad
matplotlib.colors.Colormap.set_under
matplotlib.colors.Colormap.set_over
|
20402d998c11c704dc49a4903ebe28e35339136862f41a5f8c666a6aa13a5a80 | """
================
Trigradient Demo
================
Demonstrates computation of gradient with
`matplotlib.tri.CubicTriInterpolator`.
"""
from matplotlib.tri import (
Triangulation, UniformTriRefiner, CubicTriInterpolator)
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
#-----------------------------------------------------------------------------
# Electrical potential of a dipole
#-----------------------------------------------------------------------------
def dipole_potential(x, y):
"""The electric dipole potential V, at position *x*, *y*."""
r_sq = x**2 + y**2
theta = np.arctan2(y, x)
z = np.cos(theta)/r_sq
return (np.max(z) - z) / (np.max(z) - np.min(z))
#-----------------------------------------------------------------------------
# Creating a Triangulation
#-----------------------------------------------------------------------------
# First create the x and y coordinates of the points.
n_angles = 30
n_radii = 10
min_radius = 0.2
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii*np.cos(angles)).flatten()
y = (radii*np.sin(angles)).flatten()
V = dipole_potential(x, y)
# Create the Triangulation; no triangles specified so Delaunay triangulation
# created.
triang = Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
#-----------------------------------------------------------------------------
# Refine data - interpolates the electrical potential V
#-----------------------------------------------------------------------------
refiner = UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)
#-----------------------------------------------------------------------------
# Computes the electrical field (Ex, Ey) as gradient of electrical potential
#-----------------------------------------------------------------------------
tci = CubicTriInterpolator(triang, -V)
# Gradient requested here at the mesh nodes but could be anywhere else:
(Ex, Ey) = tci.gradient(triang.x, triang.y)
E_norm = np.sqrt(Ex**2 + Ey**2)
#-----------------------------------------------------------------------------
# Plot the triangulation, the potential iso-contours and the vector field
#-----------------------------------------------------------------------------
fig, ax = plt.subplots()
ax.set_aspect('equal')
# Enforce the margins, and enlarge them to give room for the vectors.
ax.use_sticky_edges = False
ax.margins(0.07)
ax.triplot(triang, color='0.8')
levels = np.arange(0., 1., 0.01)
cmap = cm.get_cmap(name='hot', lut=None)
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
linewidths=[2.0, 1.0, 1.0, 1.0])
# Plots direction of the electrical vector field
ax.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,
units='xy', scale=10., zorder=3, color='blue',
width=0.007, headwidth=3., headlength=4.)
ax.set_title('Gradient plot: an electrical dipole')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.tricontour
matplotlib.pyplot.tricontour
matplotlib.axes.Axes.triplot
matplotlib.pyplot.triplot
matplotlib.tri
matplotlib.tri.Triangulation
matplotlib.tri.CubicTriInterpolator
matplotlib.tri.CubicTriInterpolator.gradient
matplotlib.tri.UniformTriRefiner
matplotlib.axes.Axes.quiver
matplotlib.pyplot.quiver
|
cf6e150fe84f6070bde973ceb8234491920fe4a651f005385a6d769b6931a2c1 | """
==============
BboxImage Demo
==============
A :class:`~matplotlib.image.BboxImage` can be used to position
an image according to a bounding box. This demo shows how to
show an image inside a `text.Text`'s bounding box as well as
how to manually create a bounding box for the image.
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
from matplotlib.transforms import Bbox, TransformedBbox
fig, (ax1, ax2) = plt.subplots(ncols=2)
# ----------------------------
# Create a BboxImage with Text
# ----------------------------
txt = ax1.text(0.5, 0.5, "test", size=30, ha="center", color="w")
kwargs = dict()
bbox_image = BboxImage(txt.get_window_extent,
norm=None,
origin=None,
clip_on=False,
**kwargs
)
a = np.arange(256).reshape(1, 256)/256.
bbox_image.set_data(a)
ax1.add_artist(bbox_image)
# ------------------------------------
# Create a BboxImage for each colormap
# ------------------------------------
a = np.linspace(0, 1, 256).reshape(1, -1)
a = np.vstack((a, a))
# List of all colormaps; skip reversed colormaps.
maps = sorted(m for m in plt.cm.cmap_d if not m.endswith("_r"))
ncol = 2
nrow = len(maps)//ncol + 1
xpad_fraction = 0.3
dx = 1./(ncol + xpad_fraction*(ncol - 1))
ypad_fraction = 0.3
dy = 1./(nrow + ypad_fraction*(nrow - 1))
for i, m in enumerate(maps):
ix, iy = divmod(i, nrow)
bbox0 = Bbox.from_bounds(ix*dx*(1 + xpad_fraction),
1. - iy*dy*(1 + ypad_fraction) - dy,
dx, dy)
bbox = TransformedBbox(bbox0, ax2.transAxes)
bbox_image = BboxImage(bbox,
cmap=plt.get_cmap(m),
norm=None,
origin=None,
**kwargs
)
bbox_image.set_data(a)
ax2.add_artist(bbox_image)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.image.BboxImage
matplotlib.transforms.Bbox
matplotlib.transforms.TransformedBbox
matplotlib.text.Text
|
da29b4880e1573714d05a13d0ffe02c7ef986f63df4da470076bf6ca68f3ace5 | """
===========================
Creating annotated heatmaps
===========================
It is often desirable to show data which depends on two independent
variables as a color coded image plot. This is often referred to as a
heatmap. If the data is categorical, this would be called a categorical
heatmap.
Matplotlib's :meth:`imshow <matplotlib.axes.Axes.imshow>` function makes
production of such plots particularly easy.
The following examples show how to create a heatmap with annotations.
We will start with an easy example and expand it to be usable as a
universal function.
"""
##############################################################################
#
# A simple categorical heatmap
# ----------------------------
#
# We may start by defining some data. What we need is a 2D list or array
# which defines the data to color code. We then also need two lists or arrays
# of categories; of course the number of elements in those lists
# need to match the data along the respective axes.
# The heatmap itself is an :meth:`imshow <matplotlib.axes.Axes.imshow>` plot
# with the labels set to the categories we have.
# Note that it is important to set both, the tick locations
# (:meth:`set_xticks<matplotlib.axes.Axes.set_xticks>`) as well as the
# tick labels (:meth:`set_xticklabels<matplotlib.axes.Axes.set_xticklabels>`),
# otherwise they would become out of sync. The locations are just
# the ascending integer numbers, while the ticklabels are the labels to show.
# Finally we can label the data itself by creating a
# :class:`~matplotlib.text.Text` within each cell showing the value of
# that cell.
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# sphinx_gallery_thumbnail_number = 2
vegetables = ["cucumber", "tomato", "lettuce", "asparagus",
"potato", "wheat", "barley"]
farmers = ["Farmer Joe", "Upland Bros.", "Smith Gardening",
"Agrifun", "Organiculture", "BioGoods Ltd.", "Cornylee Corp."]
harvest = np.array([[0.8, 2.4, 2.5, 3.9, 0.0, 4.0, 0.0],
[2.4, 0.0, 4.0, 1.0, 2.7, 0.0, 0.0],
[1.1, 2.4, 0.8, 4.3, 1.9, 4.4, 0.0],
[0.6, 0.0, 0.3, 0.0, 3.1, 0.0, 0.0],
[0.7, 1.7, 0.6, 2.6, 2.2, 6.2, 0.0],
[1.3, 1.2, 0.0, 0.0, 0.0, 3.2, 5.1],
[0.1, 2.0, 0.0, 1.4, 0.0, 1.9, 6.3]])
fig, ax = plt.subplots()
im = ax.imshow(harvest)
# We want to show all ticks...
ax.set_xticks(np.arange(len(farmers)))
ax.set_yticks(np.arange(len(vegetables)))
# ... and label them with the respective list entries
ax.set_xticklabels(farmers)
ax.set_yticklabels(vegetables)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(vegetables)):
for j in range(len(farmers)):
text = ax.text(j, i, harvest[i, j],
ha="center", va="center", color="w")
ax.set_title("Harvest of local farmers (in tons/year)")
fig.tight_layout()
plt.show()
#############################################################################
# Using the helper function code style
# ------------------------------------
#
# As discussed in the :ref:`Coding styles <coding_styles>`
# one might want to reuse such code to create some kind of heatmap
# for different input data and/or on different axes.
# We create a function that takes the data and the row and column labels as
# input, and allows arguments that are used to customize the plot
#
# Here, in addition to the above we also want to create a colorbar and
# position the labels above of the heatmap instead of below it.
# The annotations shall get different colors depending on a threshold
# for better contrast against the pixel color.
# Finally, we turn the surrounding axes spines off and create
# a grid of white lines to separate the cells.
def heatmap(data, row_labels, col_labels, ax=None,
cbar_kw={}, cbarlabel="", **kwargs):
"""
Create a heatmap from a numpy array and two lists of labels.
Parameters
----------
data
A 2D numpy array of shape (N, M).
row_labels
A list or array of length N with the labels for the rows.
col_labels
A list or array of length M with the labels for the columns.
ax
A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
not provided, use current axes or create a new one. Optional.
cbar_kw
A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
cbarlabel
The label for the colorbar. Optional.
**kwargs
All other arguments are forwarded to `imshow`.
"""
if not ax:
ax = plt.gca()
# Plot the heatmap
im = ax.imshow(data, **kwargs)
# Create colorbar
cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
# We want to show all ticks...
ax.set_xticks(np.arange(data.shape[1]))
ax.set_yticks(np.arange(data.shape[0]))
# ... and label them with the respective list entries.
ax.set_xticklabels(col_labels)
ax.set_yticklabels(row_labels)
# Let the horizontal axes labeling appear on top.
ax.tick_params(top=True, bottom=False,
labeltop=True, labelbottom=False)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
rotation_mode="anchor")
# Turn spines off and create white grid.
for edge, spine in ax.spines.items():
spine.set_visible(False)
ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
ax.tick_params(which="minor", bottom=False, left=False)
return im, cbar
def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=["black", "white"],
threshold=None, **textkw):
"""
A function to annotate a heatmap.
Parameters
----------
im
The AxesImage to be labeled.
data
Data used to annotate. If None, the image's data is used. Optional.
valfmt
The format of the annotations inside the heatmap. This should either
use the string format method, e.g. "$ {x:.2f}", or be a
`matplotlib.ticker.Formatter`. Optional.
textcolors
A list or array of two color specifications. The first is used for
values below a threshold, the second for those above. Optional.
threshold
Value in data units according to which the colors from textcolors are
applied. If None (the default) uses the middle of the colormap as
separation. Optional.
**kwargs
All other arguments are forwarded to each call to `text` used to create
the text labels.
"""
if not isinstance(data, (list, np.ndarray)):
data = im.get_array()
# Normalize the threshold to the images color range.
if threshold is not None:
threshold = im.norm(threshold)
else:
threshold = im.norm(data.max())/2.
# Set default alignment to center, but allow it to be
# overwritten by textkw.
kw = dict(horizontalalignment="center",
verticalalignment="center")
kw.update(textkw)
# Get the formatter in case a string is supplied
if isinstance(valfmt, str):
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
# Loop over the data and create a `Text` for each "pixel".
# Change the text's color depending on the data.
texts = []
for i in range(data.shape[0]):
for j in range(data.shape[1]):
kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
texts.append(text)
return texts
##########################################################################
# The above now allows us to keep the actual plot creation pretty compact.
#
fig, ax = plt.subplots()
im, cbar = heatmap(harvest, vegetables, farmers, ax=ax,
cmap="YlGn", cbarlabel="harvest [t/year]")
texts = annotate_heatmap(im, valfmt="{x:.1f} t")
fig.tight_layout()
plt.show()
#############################################################################
# Some more complex heatmap examples
# ----------------------------------
#
# In the following we show the versatility of the previously created
# functions by applying it in different cases and using different arguments.
#
np.random.seed(19680801)
fig, ((ax, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6))
# Replicate the above example with a different font size and colormap.
im, _ = heatmap(harvest, vegetables, farmers, ax=ax,
cmap="Wistia", cbarlabel="harvest [t/year]")
annotate_heatmap(im, valfmt="{x:.1f}", size=7)
# Create some new data, give further arguments to imshow (vmin),
# use an integer format on the annotations and provide some colors.
data = np.random.randint(2, 100, size=(7, 7))
y = ["Book {}".format(i) for i in range(1, 8)]
x = ["Store {}".format(i) for i in list("ABCDEFG")]
im, _ = heatmap(data, y, x, ax=ax2, vmin=0,
cmap="magma_r", cbarlabel="weekly sold copies")
annotate_heatmap(im, valfmt="{x:d}", size=7, threshold=20,
textcolors=["red", "white"])
# Sometimes even the data itself is categorical. Here we use a
# :class:`matplotlib.colors.BoundaryNorm` to get the data into classes
# and use this to colorize the plot, but also to obtain the class
# labels from an array of classes.
data = np.random.randn(6, 6)
y = ["Prod. {}".format(i) for i in range(10, 70, 10)]
x = ["Cycle {}".format(i) for i in range(1, 7)]
qrates = np.array(list("ABCDEFG"))
norm = matplotlib.colors.BoundaryNorm(np.linspace(-3.5, 3.5, 8), 7)
fmt = matplotlib.ticker.FuncFormatter(lambda x, pos: qrates[::-1][norm(x)])
im, _ = heatmap(data, y, x, ax=ax3,
cmap=plt.get_cmap("PiYG", 7), norm=norm,
cbar_kw=dict(ticks=np.arange(-3, 4), format=fmt),
cbarlabel="Quality Rating")
annotate_heatmap(im, valfmt=fmt, size=9, fontweight="bold", threshold=-1,
textcolors=["red", "black"])
# We can nicely plot a correlation matrix. Since this is bound by -1 and 1,
# we use those as vmin and vmax. We may also remove leading zeros and hide
# the diagonal elements (which are all 1) by using a
# :class:`matplotlib.ticker.FuncFormatter`.
corr_matrix = np.corrcoef(np.random.rand(6, 5))
im, _ = heatmap(corr_matrix, vegetables, vegetables, ax=ax4,
cmap="PuOr", vmin=-1, vmax=1,
cbarlabel="correlation coeff.")
def func(x, pos):
return "{:.2f}".format(x).replace("0.", ".").replace("1.00", "")
annotate_heatmap(im, valfmt=matplotlib.ticker.FuncFormatter(func), size=7)
plt.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The usage of the following functions and methods is shown in this example:
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
|
94b32fe158e313afb4daf05a042e72ef6b7fb44afeb253166ee8787f03a8cf9e | """
============================
Clipping images with patches
============================
Demo of image that's been clipped by a circular patch.
"""
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.cbook as cbook
with cbook.get_sample_data('grace_hopper.png') as image_file:
image = plt.imread(image_file)
fig, ax = plt.subplots()
im = ax.imshow(image)
patch = patches.Circle((260, 200), radius=200, transform=ax.transData)
im.set_clip_path(patch)
ax.axis('off')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.artist.Artist.set_clip_path
|
c4e6cedea426a5941ff15cfc218eeb3d3f35e2295b1a4ee3e4be304fe2452658 | """
==================
Quiver Simple Demo
==================
A simple example of a `~.axes.Axes.quiver` plot with a `~.axes.Axes.quiverkey`.
For more advanced options refer to
:doc:`/gallery/images_contours_and_fields/quiver_demo`.
"""
import matplotlib.pyplot as plt
import numpy as np
X = np.arange(-10, 10, 1)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
fig, ax = plt.subplots()
q = ax.quiver(X, Y, U, V)
ax.quiverkey(q, X=0.3, Y=1.1, U=10,
label='Quiver key, length = 10', labelpos='E')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
import matplotlib
matplotlib.axes.Axes.quiver
matplotlib.pyplot.quiver
matplotlib.axes.Axes.quiverkey
matplotlib.pyplot.quiverkey
|
25d44c28dbcaa4f5f3ab090d04c626c0ec3e7c922f077b1ae089ccd5f1d67eb9 | '''
=========
Barb Demo
=========
Demonstration of wind barb plots
'''
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-5, 5, 5)
X, Y = np.meshgrid(x, x)
U, V = 12 * X, 12 * Y
data = [(-1.5, .5, -6, -6),
(1, -1, -46, 46),
(-3, -1, 11, -11),
(1, 1.5, 80, 80),
(0.5, 0.25, 25, 15),
(-1.5, -0.5, -5, 40)]
data = np.array(data, dtype=[('x', np.float32), ('y', np.float32),
('u', np.float32), ('v', np.float32)])
fig1, axs1 = plt.subplots(nrows=2, ncols=2)
# Default parameters, uniform grid
axs1[0, 0].barbs(X, Y, U, V)
# Arbitrary set of vectors, make them longer and change the pivot point
# (point around which they're rotated) to be the middle
axs1[0, 1].barbs(
data['x'], data['y'], data['u'], data['v'], length=8, pivot='middle')
# Showing colormapping with uniform grid. Fill the circle for an empty barb,
# don't round the values, and change some of the size parameters
axs1[1, 0].barbs(
X, Y, U, V, np.sqrt(U ** 2 + V ** 2), fill_empty=True, rounding=False,
sizes=dict(emptybarb=0.25, spacing=0.2, height=0.3))
# Change colors as well as the increments for parts of the barbs
axs1[1, 1].barbs(data['x'], data['y'], data['u'], data['v'], flagcolor='r',
barbcolor=['b', 'g'], flip_barb=True,
barb_increments=dict(half=10, full=20, flag=100))
# Masked arrays are also supported
masked_u = np.ma.masked_array(data['u'])
masked_u[4] = 1000 # Bad value that should not be plotted when masked
masked_u[4] = np.ma.masked
# Identical plot to panel 2 in the first figure, but with the point at
# (0.5, 0.25) missing (masked)
fig2, ax2 = plt.subplots()
ax2.barbs(data['x'], data['y'], masked_u, data['v'], length=8, pivot='middle')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.barbs
matplotlib.pyplot.barbs
|
35a1ec742d3c94e3b4a3c3b86438b42ab02a5abfad45016d1fb44ddcba7e31b4 | """
============
Barcode Demo
============
This demo shows how to produce a one-dimensional image, or "bar code".
"""
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
# the bar
x = np.random.rand(500) > 0.7
barprops = dict(aspect='auto', cmap='binary', interpolation='nearest')
fig = plt.figure()
# a vertical barcode
ax1 = fig.add_axes([0.1, 0.1, 0.1, 0.8])
ax1.set_axis_off()
ax1.imshow(x.reshape((-1, 1)), **barprops)
# a horizontal barcode
ax2 = fig.add_axes([0.3, 0.4, 0.6, 0.2])
ax2.set_axis_off()
ax2.imshow(x.reshape((1, -1)), **barprops)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
|
16a029940e24d61251da597ea81fdbacabafa899b45529e70ea4df2ce5258f5d | """
============================
Contourf and log color scale
============================
Demonstrate use of a log color scale in contourf
"""
import matplotlib.pyplot as plt
import numpy as np
from numpy import ma
from matplotlib import ticker, cm
N = 100
x = np.linspace(-3.0, 3.0, N)
y = np.linspace(-2.0, 2.0, N)
X, Y = np.meshgrid(x, y)
# A low hump with a spike coming out.
# Needs to have z/colour axis on a log scale so we see both hump and spike.
# linear scale only shows the spike.
Z1 = np.exp(-(X)**2 - (Y)**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
z = Z1 + 50 * Z2
# Put in some negative values (lower left corner) to cause trouble with logs:
z[:5, :5] = -1
# The following is not strictly essential, but it will eliminate
# a warning. Comment it out to see the warning.
z = ma.masked_where(z <= 0, z)
# Automatic selection of levels works; setting the
# log locator tells contourf to use a log scale:
fig, ax = plt.subplots()
cs = ax.contourf(X, Y, z, locator=ticker.LogLocator(), cmap=cm.PuBu_r)
# Alternatively, you can manually set the levels
# and the norm:
# lev_exp = np.arange(np.floor(np.log10(z.min())-1),
# np.ceil(np.log10(z.max())+1))
# levs = np.power(10, lev_exp)
# cs = ax.contourf(X, Y, z, levs, norm=colors.LogNorm())
cbar = fig.colorbar(cs)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods and classes is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.axes.Axes.legend
matplotlib.pyplot.legend
matplotlib.ticker.LogLocator
|
92aa4ea5b9ee63ee4b0288814dc3af01a8ac952d3145e56a8966f9916e827ecb | """
===============
Watermark image
===============
Using a PNG file as a watermark.
"""
import numpy as np
import matplotlib.cbook as cbook
import matplotlib.image as image
import matplotlib.pyplot as plt
with cbook.get_sample_data('logo2.png') as file:
im = image.imread(file)
fig, ax = plt.subplots()
ax.plot(np.sin(10 * np.linspace(0, 1)), '-o', ms=20, alpha=0.7, mfc='orange')
ax.grid()
fig.figimage(im, 10, 10, zorder=3, alpha=.5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.image
matplotlib.image.imread
matplotlib.pyplot.imread
matplotlib.figure.Figure.figimage
|
a3f5fd852734c2ff4e3f9f70b82be665fd9871099df088b4a2534688eaf75d24 | """
==========
Streamplot
==========
A stream plot, or streamline plot, is used to display 2D vector fields. This
example shows a few features of the :meth:`~.axes.Axes.streamplot` function:
* Varying the color along a streamline.
* Varying the density of streamlines.
* Varying the line width along a streamline.
* Controlling the starting points of streamlines.
* Streamlines skipping masked regions and NaN values.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
w = 3
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
U = -1 - X**2 + Y
V = 1 + X - Y**2
speed = np.sqrt(U**2 + V**2)
fig = plt.figure(figsize=(7, 9))
gs = gridspec.GridSpec(nrows=3, ncols=2, height_ratios=[1, 1, 2])
# Varying density along a streamline
ax0 = fig.add_subplot(gs[0, 0])
ax0.streamplot(X, Y, U, V, density=[0.5, 1])
ax0.set_title('Varying Density')
# Varying color along a streamline
ax1 = fig.add_subplot(gs[0, 1])
strm = ax1.streamplot(X, Y, U, V, color=U, linewidth=2, cmap='autumn')
fig.colorbar(strm.lines)
ax1.set_title('Varying Color')
# Varying line width along a streamline
ax2 = fig.add_subplot(gs[1, 0])
lw = 5*speed / speed.max()
ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw)
ax2.set_title('Varying Line Width')
# Controlling the starting points of the streamlines
seed_points = np.array([[-2, -1, 0, 1, 2, -1], [-2, -1, 0, 1, 2, 2]])
ax3 = fig.add_subplot(gs[1, 1])
strm = ax3.streamplot(X, Y, U, V, color=U, linewidth=2,
cmap='autumn', start_points=seed_points.T)
fig.colorbar(strm.lines)
ax3.set_title('Controlling Starting Points')
# Displaying the starting points with blue symbols.
ax3.plot(seed_points[0], seed_points[1], 'bo')
ax3.axis((-w, w, -w, w))
# Create a mask
mask = np.zeros(U.shape, dtype=bool)
mask[40:60, 40:60] = True
U[:20, :20] = np.nan
U = np.ma.array(U, mask=mask)
ax4 = fig.add_subplot(gs[2:, :])
ax4.streamplot(X, Y, U, V, color='r')
ax4.set_title('Streamplot with Masking')
ax4.imshow(~mask, extent=(-w, w, -w, w), alpha=0.5,
interpolation='nearest', cmap='gray', aspect='auto')
ax4.set_aspect('equal')
plt.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
import matplotlib
matplotlib.axes.Axes.streamplot
matplotlib.pyplot.streamplot
matplotlib.gridspec
matplotlib.gridspec.GridSpec
|
ed613deb768e6324e92be63e8851332e93ec18d55a452f6c16cb1413b0f2fe67 | """
==========
pcolormesh
==========
Shows how to combine Normalization and Colormap instances to draw
"levels" in :meth:`~.axes.Axes.pcolor`, :meth:`~.axes.Axes.pcolormesh`
and :meth:`~.axes.Axes.imshow` type plots in a similar
way to the levels keyword argument to contour/contourf.
"""
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.colors import BoundaryNorm
from matplotlib.ticker import MaxNLocator
import numpy as np
# make these smaller to increase the resolution
dx, dy = 0.05, 0.05
# generate 2 2d grids for the x & y bounds
y, x = np.mgrid[slice(1, 5 + dy, dy),
slice(1, 5 + dx, dx)]
z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x)
# x and y are bounds, so z should be the value *inside* those bounds.
# Therefore, remove the last value from the z array.
z = z[:-1, :-1]
levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max())
# pick the desired colormap, sensible levels, and define a normalization
# instance which takes data values and translates those into levels.
cmap = plt.get_cmap('PiYG')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
fig, (ax0, ax1) = plt.subplots(nrows=2)
im = ax0.pcolormesh(x, y, z, cmap=cmap, norm=norm)
fig.colorbar(im, ax=ax0)
ax0.set_title('pcolormesh with levels')
# contours are *point* based plots, so convert our bound into point
# centers
cf = ax1.contourf(x[:-1, :-1] + dx/2.,
y[:-1, :-1] + dy/2., z, levels=levels,
cmap=cmap)
fig.colorbar(cf, ax=ax1)
ax1.set_title('contourf with levels')
# adjust spacing between subplots so `ax1` title and `ax0` tick labels
# don't overlap
fig.tight_layout()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:
matplotlib.axes.Axes.pcolormesh
matplotlib.pyplot.pcolormesh
matplotlib.axes.Axes.contourf
matplotlib.pyplot.contourf
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.BoundaryNorm
matplotlib.ticker.MaxNLocator
|
54f2eee4ca3e82c4c4a0eacf3c46c4ab51a98528694cedc439cdf6a23470122e | """
================
Spectrogram Demo
================
Demo of a spectrogram plot (`~.axes.Axes.specgram`).
"""
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
dt = 0.0005
t = np.arange(0.0, 20.0, dt)
s1 = np.sin(2 * np.pi * 100 * t)
s2 = 2 * np.sin(2 * np.pi * 400 * t)
# create a transient "chirp"
s2[t <= 10] = s2[12 <= t] = 0
# add some noise into the mix
nse = 0.01 * np.random.random(size=len(t))
x = s1 + s2 + nse # the signal
NFFT = 1024 # the length of the windowing segments
Fs = int(1.0 / dt) # the sampling frequency
fig, (ax1, ax2) = plt.subplots(nrows=2)
ax1.plot(t, x)
Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900)
# The `specgram` method returns 4 objects. They are:
# - Pxx: the periodogram
# - freqs: the frequency vector
# - bins: the centers of the time bins
# - im: the matplotlib.image.AxesImage instance representing the data in the plot
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.specgram
matplotlib.pyplot.specgram
|
e7204328284d8803792284a40e83a4ff211fe6641fdae0e6396f40fb3a054a3b | """
================
The Sankey class
================
Demonstrate the Sankey class by producing three basic diagrams.
"""
import matplotlib.pyplot as plt
from matplotlib.sankey import Sankey
###############################################################################
# Example 1 -- Mostly defaults
#
# This demonstrates how to create a simple diagram by implicitly calling the
# Sankey.add() method and by appending finish() to the call to the class.
Sankey(flows=[0.25, 0.15, 0.60, -0.20, -0.15, -0.05, -0.50, -0.10],
labels=['', '', '', 'First', 'Second', 'Third', 'Fourth', 'Fifth'],
orientations=[-1, 1, 0, 1, 1, 1, 0, -1]).finish()
plt.title("The default settings produce a diagram like this.")
###############################################################################
# Notice:
#
# 1. Axes weren't provided when Sankey() was instantiated, so they were
# created automatically.
# 2. The scale argument wasn't necessary since the data was already
# normalized.
# 3. By default, the lengths of the paths are justified.
###############################################################################
# Example 2
#
# This demonstrates:
#
# 1. Setting one path longer than the others
# 2. Placing a label in the middle of the diagram
# 3. Using the scale argument to normalize the flows
# 4. Implicitly passing keyword arguments to PathPatch()
# 5. Changing the angle of the arrow heads
# 6. Changing the offset between the tips of the paths and their labels
# 7. Formatting the numbers in the path labels and the associated unit
# 8. Changing the appearance of the patch and the labels after the figure is
# created
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[],
title="Flow Diagram of a Widget")
sankey = Sankey(ax=ax, scale=0.01, offset=0.2, head_angle=180,
format='%.0f', unit='%')
sankey.add(flows=[25, 0, 60, -10, -20, -5, -15, -10, -40],
labels=['', '', '', 'First', 'Second', 'Third', 'Fourth',
'Fifth', 'Hurray!'],
orientations=[-1, 1, 0, 1, 1, 1, -1, -1, 0],
pathlengths=[0.25, 0.25, 0.25, 0.25, 0.25, 0.6, 0.25, 0.25,
0.25],
patchlabel="Widget\nA") # Arguments to matplotlib.patches.PathPatch()
diagrams = sankey.finish()
diagrams[0].texts[-1].set_color('r')
diagrams[0].text.set_fontweight('bold')
###############################################################################
# Notice:
#
# 1. Since the sum of the flows is nonzero, the width of the trunk isn't
# uniform. The matplotlib logging system logs this at the DEBUG level.
# 2. The second flow doesn't appear because its value is zero. Again, this is
# logged at the DEBUG level.
###############################################################################
# Example 3
#
# This demonstrates:
#
# 1. Connecting two systems
# 2. Turning off the labels of the quantities
# 3. Adding a legend
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[], title="Two Systems")
flows = [0.25, 0.15, 0.60, -0.10, -0.05, -0.25, -0.15, -0.10, -0.35]
sankey = Sankey(ax=ax, unit=None)
sankey.add(flows=flows, label='one',
orientations=[-1, 1, 0, 1, 1, 1, -1, -1, 0])
sankey.add(flows=[-0.25, 0.15, 0.1], label='two',
orientations=[-1, -1, -1], prior=0, connect=(0, 0))
diagrams = sankey.finish()
diagrams[-1].patch.set_hatch('/')
plt.legend()
###############################################################################
# Notice that only one connection is specified, but the systems form a
# circuit since: (1) the lengths of the paths are justified and (2) the
# orientation and ordering of the flows is mirrored.
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.sankey
matplotlib.sankey.Sankey
matplotlib.sankey.Sankey.add
matplotlib.sankey.Sankey.finish
|
18b4aeb9e36f642d55023156420c75d44b5678c5098d16e0736da064461dd78d | """
===============
Hinton diagrams
===============
Hinton diagrams are useful for visualizing the values of a 2D array (e.g.
a weight matrix): Positive and negative values are represented by white and
black squares, respectively, and the size of each square represents the
magnitude of each value.
Initial idea from David Warde-Farley on the SciPy Cookbook
"""
import numpy as np
import matplotlib.pyplot as plt
def hinton(matrix, max_weight=None, ax=None):
"""Draw Hinton diagram for visualizing a weight matrix."""
ax = ax if ax is not None else plt.gca()
if not max_weight:
max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))
ax.patch.set_facecolor('gray')
ax.set_aspect('equal', 'box')
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
for (x, y), w in np.ndenumerate(matrix):
color = 'white' if w > 0 else 'black'
size = np.sqrt(np.abs(w) / max_weight)
rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
facecolor=color, edgecolor=color)
ax.add_patch(rect)
ax.autoscale_view()
ax.invert_yaxis()
if __name__ == '__main__':
# Fixing random state for reproducibility
np.random.seed(19680801)
hinton(np.random.rand(20, 20) - 0.5)
plt.show()
|
836d230537dd8c5b95c2424277ee9f65a5c3d0e129b1f08e47b1e895d5fb2ed8 | """
===========
Hillshading
===========
Demonstrates a few common tricks with shaded plots.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LightSource, Normalize
def display_colorbar():
"""Display a correct numeric colorbar for a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
cmap = plt.cm.copper
ls = LightSource(315, 45)
rgb = ls.shade(z, cmap)
fig, ax = plt.subplots()
ax.imshow(rgb, interpolation='bilinear')
# Use a proxy artist for the colorbar...
im = ax.imshow(z, cmap=cmap)
im.remove()
fig.colorbar(im)
ax.set_title('Using a colorbar with a shaded plot', size='x-large')
def avoid_outliers():
"""Use a custom norm to control the displayed z-range of a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
# Add some outliers...
z[100, 105] = 2000
z[120, 110] = -9000
ls = LightSource(315, 45)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4.5))
rgb = ls.shade(z, plt.cm.copper)
ax1.imshow(rgb, interpolation='bilinear')
ax1.set_title('Full range of data')
rgb = ls.shade(z, plt.cm.copper, vmin=-10, vmax=10)
ax2.imshow(rgb, interpolation='bilinear')
ax2.set_title('Manually set range')
fig.suptitle('Avoiding Outliers in Shaded Plots', size='x-large')
def shade_other_data():
"""Demonstrates displaying different variables through shade and color."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z1 = np.sin(x**2) # Data to hillshade
z2 = np.cos(x**2 + y**2) # Data to color
norm = Normalize(z2.min(), z2.max())
cmap = plt.cm.RdBu
ls = LightSource(315, 45)
rgb = ls.shade_rgb(cmap(norm(z2)), z1)
fig, ax = plt.subplots()
ax.imshow(rgb, interpolation='bilinear')
ax.set_title('Shade by one variable, color by another', size='x-large')
display_colorbar()
avoid_outliers()
shade_other_data()
plt.show()
|
c55cf88cf3dabbb745832b452d66f4a0cb4f95385b1bebb1f5822c2edd6db388 | """
=======================
Left ventricle bullseye
=======================
This example demonstrates how to create the 17 segment model for the left
ventricle recommended by the American Heart Association (AHA).
"""
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
def bullseye_plot(ax, data, segBold=None, cmap=None, norm=None):
"""
Bullseye representation for the left ventricle.
Parameters
----------
ax : axes
data : list of int and float
The intensity values for each of the 17 segments
segBold : list of int, optional
A list with the segments to highlight
cmap : ColorMap or None, optional
Optional argument to set the desired colormap
norm : Normalize or None, optional
Optional argument to normalize data into the [0.0, 1.0] range
Notes
-----
This function create the 17 segment model for the left ventricle according
to the American Heart Association (AHA) [1]_
References
----------
.. [1] M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs,
S. Kaul, W. K. Laskey, D. J. Pennell, J. A. Rumberger, T. Ryan,
and M. S. Verani, "Standardized myocardial segmentation and
nomenclature for tomographic imaging of the heart",
Circulation, vol. 105, no. 4, pp. 539-542, 2002.
"""
if segBold is None:
segBold = []
linewidth = 2
data = np.array(data).ravel()
if cmap is None:
cmap = plt.cm.viridis
if norm is None:
norm = mpl.colors.Normalize(vmin=data.min(), vmax=data.max())
theta = np.linspace(0, 2 * np.pi, 768)
r = np.linspace(0.2, 1, 4)
# Create the bound for the segment 17
for i in range(r.shape[0]):
ax.plot(theta, np.repeat(r[i], theta.shape), '-k', lw=linewidth)
# Create the bounds for the segments 1-12
for i in range(6):
theta_i = np.deg2rad(i * 60)
ax.plot([theta_i, theta_i], [r[1], 1], '-k', lw=linewidth)
# Create the bounds for the segments 13-16
for i in range(4):
theta_i = np.deg2rad(i * 90 - 45)
ax.plot([theta_i, theta_i], [r[0], r[1]], '-k', lw=linewidth)
# Fill the segments 1-6
r0 = r[2:4]
r0 = np.repeat(r0[:, np.newaxis], 128, axis=1).T
for i in range(6):
# First segment start at 60 degrees
theta0 = theta[i * 128:i * 128 + 128] + np.deg2rad(60)
theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
z = np.ones((128, 2)) * data[i]
ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
if i + 1 in segBold:
ax.plot(theta0, r0, '-k', lw=linewidth + 2)
ax.plot(theta0[0], [r[2], r[3]], '-k', lw=linewidth + 1)
ax.plot(theta0[-1], [r[2], r[3]], '-k', lw=linewidth + 1)
# Fill the segments 7-12
r0 = r[1:3]
r0 = np.repeat(r0[:, np.newaxis], 128, axis=1).T
for i in range(6):
# First segment start at 60 degrees
theta0 = theta[i * 128:i * 128 + 128] + np.deg2rad(60)
theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
z = np.ones((128, 2)) * data[i + 6]
ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
if i + 7 in segBold:
ax.plot(theta0, r0, '-k', lw=linewidth + 2)
ax.plot(theta0[0], [r[1], r[2]], '-k', lw=linewidth + 1)
ax.plot(theta0[-1], [r[1], r[2]], '-k', lw=linewidth + 1)
# Fill the segments 13-16
r0 = r[0:2]
r0 = np.repeat(r0[:, np.newaxis], 192, axis=1).T
for i in range(4):
# First segment start at 45 degrees
theta0 = theta[i * 192:i * 192 + 192] + np.deg2rad(45)
theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
z = np.ones((192, 2)) * data[i + 12]
ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
if i + 13 in segBold:
ax.plot(theta0, r0, '-k', lw=linewidth + 2)
ax.plot(theta0[0], [r[0], r[1]], '-k', lw=linewidth + 1)
ax.plot(theta0[-1], [r[0], r[1]], '-k', lw=linewidth + 1)
# Fill the segments 17
if data.size == 17:
r0 = np.array([0, r[0]])
r0 = np.repeat(r0[:, np.newaxis], theta.size, axis=1).T
theta0 = np.repeat(theta[:, np.newaxis], 2, axis=1)
z = np.ones((theta.size, 2)) * data[16]
ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
if 17 in segBold:
ax.plot(theta0, r0, '-k', lw=linewidth + 2)
ax.set_ylim([0, 1])
ax.set_yticklabels([])
ax.set_xticklabels([])
# Create the fake data
data = np.array(range(17)) + 1
# Make a figure and axes with dimensions as desired.
fig, ax = plt.subplots(figsize=(12, 8), nrows=1, ncols=3,
subplot_kw=dict(projection='polar'))
fig.canvas.set_window_title('Left Ventricle Bulls Eyes (AHA)')
# Create the axis for the colorbars
axl = fig.add_axes([0.14, 0.15, 0.2, 0.05])
axl2 = fig.add_axes([0.41, 0.15, 0.2, 0.05])
axl3 = fig.add_axes([0.69, 0.15, 0.2, 0.05])
# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap = mpl.cm.viridis
norm = mpl.colors.Normalize(vmin=1, vmax=17)
# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar. There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb1 = mpl.colorbar.ColorbarBase(axl, cmap=cmap, norm=norm,
orientation='horizontal')
cb1.set_label('Some Units')
# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap2 = mpl.cm.cool
norm2 = mpl.colors.Normalize(vmin=1, vmax=17)
# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar. There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb2 = mpl.colorbar.ColorbarBase(axl2, cmap=cmap2, norm=norm2,
orientation='horizontal')
cb2.set_label('Some other units')
# The second example illustrates the use of a ListedColormap, a
# BoundaryNorm, and extended ends to show the "over" and "under"
# value colors.
cmap3 = mpl.colors.ListedColormap(['r', 'g', 'b', 'c'])
cmap3.set_over('0.35')
cmap3.set_under('0.75')
# If a ListedColormap is used, the length of the bounds array must be
# one greater than the length of the color list. The bounds must be
# monotonically increasing.
bounds = [2, 3, 7, 9, 15]
norm3 = mpl.colors.BoundaryNorm(bounds, cmap3.N)
cb3 = mpl.colorbar.ColorbarBase(axl3, cmap=cmap3, norm=norm3,
# to use 'extend', you must
# specify two extra boundaries:
boundaries=[0] + bounds + [18],
extend='both',
ticks=bounds, # optional
spacing='proportional',
orientation='horizontal')
cb3.set_label('Discrete intervals, some other units')
# Create the 17 segment model
bullseye_plot(ax[0], data, cmap=cmap, norm=norm)
ax[0].set_title('Bulls Eye (AHA)')
bullseye_plot(ax[1], data, cmap=cmap2, norm=norm2)
ax[1].set_title('Bulls Eye (AHA)')
bullseye_plot(ax[2], data, segBold=[3, 5, 6, 11, 12, 16],
cmap=cmap3, norm=norm3)
ax[2].set_title('Segments [3,5,6,11,12,16] in bold')
plt.show()
|
40070e46317ac91bd8eb45acf488a84ad0341613e14b4d4f1821f2b358789556 | """
=======================
Topographic hillshading
=======================
Demonstrates the visual effect of varying blend mode and vertical exaggeration
on "hillshaded" plots.
Note that the "overlay" and "soft" blend modes work well for complex surfaces
such as this example, while the default "hsv" blend mode works best for smooth
surfaces such as many mathematical functions.
In most cases, hillshading is used purely for visual purposes, and *dx*/*dy*
can be safely ignored. In that case, you can tweak *vert_exag* (vertical
exaggeration) by trial and error to give the desired visual effect. However,
this example demonstrates how to use the *dx* and *dy* kwargs to ensure that
the *vert_exag* parameter is the true vertical exaggeration.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cbook import get_sample_data
from matplotlib.colors import LightSource
with np.load(get_sample_data('jacksboro_fault_dem.npz')) as dem:
z = dem['elevation']
#-- Optional dx and dy for accurate vertical exaggeration ----------------
# If you need topographically accurate vertical exaggeration, or you don't
# want to guess at what *vert_exag* should be, you'll need to specify the
# cellsize of the grid (i.e. the *dx* and *dy* parameters). Otherwise, any
# *vert_exag* value you specify will be relative to the grid spacing of
# your input data (in other words, *dx* and *dy* default to 1.0, and
# *vert_exag* is calculated relative to those parameters). Similarly, *dx*
# and *dy* are assumed to be in the same units as your input z-values.
# Therefore, we'll need to convert the given dx and dy from decimal degrees
# to meters.
dx, dy = dem['dx'], dem['dy']
dy = 111200 * dy
dx = 111200 * dx * np.cos(np.radians(dem['ymin']))
#-------------------------------------------------------------------------
# Shade from the northwest, with the sun 45 degrees from horizontal
ls = LightSource(azdeg=315, altdeg=45)
cmap = plt.cm.gist_earth
fig, axes = plt.subplots(nrows=4, ncols=3, figsize=(8, 9))
plt.setp(axes.flat, xticks=[], yticks=[])
# Vary vertical exaggeration and blend mode and plot all combinations
for col, ve in zip(axes.T, [0.1, 1, 10]):
# Show the hillshade intensity image in the first row
col[0].imshow(ls.hillshade(z, vert_exag=ve, dx=dx, dy=dy), cmap='gray')
# Place hillshaded plots with different blend modes in the rest of the rows
for ax, mode in zip(col[1:], ['hsv', 'overlay', 'soft']):
rgb = ls.shade(z, cmap=cmap, blend_mode=mode,
vert_exag=ve, dx=dx, dy=dy)
ax.imshow(rgb)
# Label rows and columns
for ax, ve in zip(axes[0], [0.1, 1, 10]):
ax.set_title('{0}'.format(ve), size=18)
for ax, mode in zip(axes[:, 0], ['Hillshade', 'hsv', 'overlay', 'soft']):
ax.set_ylabel(mode, size=18)
# Group labels...
axes[0, 1].annotate('Vertical Exaggeration', (0.5, 1), xytext=(0, 30),
textcoords='offset points', xycoords='axes fraction',
ha='center', va='bottom', size=20)
axes[2, 0].annotate('Blend Mode', (0, 0.5), xytext=(-30, 0),
textcoords='offset points', xycoords='axes fraction',
ha='right', va='center', size=20, rotation=90)
fig.subplots_adjust(bottom=0.05, right=0.95)
plt.show()
|
806f7865231b086b184671933a3d98c65962371c2a22b9de6919b1b7b515f964 | """
======================================
Long chain of connections using Sankey
======================================
Demonstrate/test the Sankey class by producing a long chain of connections.
"""
import matplotlib.pyplot as plt
from matplotlib.sankey import Sankey
links_per_side = 6
def side(sankey, n=1):
"""Generate a side chain."""
prior = len(sankey.diagrams)
for i in range(0, 2*n, 2):
sankey.add(flows=[1, -1], orientations=[-1, -1],
patchlabel=str(prior + i),
prior=prior + i - 1, connect=(1, 0), alpha=0.5)
sankey.add(flows=[1, -1], orientations=[1, 1],
patchlabel=str(prior + i + 1),
prior=prior + i, connect=(1, 0), alpha=0.5)
def corner(sankey):
"""Generate a corner link."""
prior = len(sankey.diagrams)
sankey.add(flows=[1, -1], orientations=[0, 1],
patchlabel=str(prior), facecolor='k',
prior=prior - 1, connect=(1, 0), alpha=0.5)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[],
title="Why would you want to do this?\n(But you could.)")
sankey = Sankey(ax=ax, unit=None)
sankey.add(flows=[1, -1], orientations=[0, 1],
patchlabel="0", facecolor='k',
rotation=45)
side(sankey, n=links_per_side)
corner(sankey)
side(sankey, n=links_per_side)
corner(sankey)
side(sankey, n=links_per_side)
corner(sankey)
side(sankey, n=links_per_side)
sankey.finish()
# Notice:
# 1. The alignment doesn't drift significantly (if at all; with 16007
# subdiagrams there is still closure).
# 2. The first diagram is rotated 45 deg, so all other diagrams are rotated
# accordingly.
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.sankey
matplotlib.sankey.Sankey
matplotlib.sankey.Sankey.add
matplotlib.sankey.Sankey.finish
|
916a59311abb3a31e725cd63719bd1279f1a9780139cc44fd2b7f20a840f22d5 | """
==================
Anscombe's Quartet
==================
"""
"""
Edward Tufte uses this example from Anscombe to show 4 datasets of x
and y that have the same mean, standard deviation, and regression
line, but which are qualitatively different.
matplotlib fun for a rainy day
"""
import matplotlib.pyplot as plt
import numpy as np
x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])
y1 = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68])
y2 = np.array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74])
y3 = np.array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73])
x4 = np.array([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8])
y4 = np.array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89])
def fit(x):
return 3 + 0.5 * x
xfit = np.array([np.min(x), np.max(x)])
plt.subplot(221)
plt.plot(x, y1, 'ks', xfit, fit(xfit), 'r-', lw=2)
plt.axis([2, 20, 2, 14])
plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20))
plt.text(3, 12, 'I', fontsize=20)
plt.subplot(222)
plt.plot(x, y2, 'ks', xfit, fit(xfit), 'r-', lw=2)
plt.axis([2, 20, 2, 14])
plt.setp(plt.gca(), xticks=(0, 10, 20), xticklabels=[],
yticks=(4, 8, 12), yticklabels=[], )
plt.text(3, 12, 'II', fontsize=20)
plt.subplot(223)
plt.plot(x, y3, 'ks', xfit, fit(xfit), 'r-', lw=2)
plt.axis([2, 20, 2, 14])
plt.text(3, 12, 'III', fontsize=20)
plt.setp(plt.gca(), yticks=(4, 8, 12), xticks=(0, 10, 20))
plt.subplot(224)
xfit = np.array([np.min(x4), np.max(x4)])
plt.plot(x4, y4, 'ks', xfit, fit(xfit), 'r-', lw=2)
plt.axis([2, 20, 2, 14])
plt.setp(plt.gca(), yticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20))
plt.text(3, 12, 'IV', fontsize=20)
# verify the stats
pairs = (x, y1), (x, y2), (x, y3), (x4, y4)
for x, y in pairs:
print('mean=%1.2f, std=%1.2f, r=%1.2f' % (np.mean(y), np.std(y),
np.corrcoef(x, y)[0][1]))
plt.show()
|
f8f66dcc8df46cf16489bfde472d2e708fb335403d1baeb814c609f880dc7491 | """
============
MRI With EEG
============
Displays a set of subplots with an MRI image, its intensity
histogram and some EEG traces.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.cm as cm
from matplotlib.collections import LineCollection
from matplotlib.ticker import MultipleLocator
fig = plt.figure("MRI_with_EEG")
# Load the MRI data (256x256 16 bit integers)
with cbook.get_sample_data('s1045.ima.gz') as dfile:
im = np.frombuffer(dfile.read(), np.uint16).reshape((256, 256))
# Plot the MRI image
ax0 = fig.add_subplot(2, 2, 1)
ax0.imshow(im, cmap=cm.gray)
ax0.axis('off')
# Plot the histogram of MRI intensity
ax1 = fig.add_subplot(2, 2, 2)
im = np.ravel(im)
im = im[np.nonzero(im)] # Ignore the background
im = im / (2**16 - 1) # Normalize
ax1.hist(im, bins=100)
ax1.xaxis.set_major_locator(MultipleLocator(0.4))
ax1.minorticks_on()
ax1.set_yticks([])
ax1.set_xlabel('Intensity (a.u.)')
ax1.set_ylabel('MRI density')
# Load the EEG data
n_samples, n_rows = 800, 4
with cbook.get_sample_data('eeg.dat') as eegfile:
data = np.fromfile(eegfile, dtype=float).reshape((n_samples, n_rows))
t = 10 * np.arange(n_samples) / n_samples
# Plot the EEG
ticklocs = []
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_xlim(0, 10)
ax2.set_xticks(np.arange(10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin) * 0.7 # Crowd them a bit.
y0 = dmin
y1 = (n_rows - 1) * dr + dmax
ax2.set_ylim(y0, y1)
segs = []
for i in range(n_rows):
segs.append(np.column_stack((t, data[:, i])))
ticklocs.append(i * dr)
offsets = np.zeros((n_rows, 2), dtype=float)
offsets[:, 1] = ticklocs
lines = LineCollection(segs, offsets=offsets, transOffset=None)
ax2.add_collection(lines)
# Set the yticks to use axes coordinates on the y axis
ax2.set_yticks(ticklocs)
ax2.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])
ax2.set_xlabel('Time (s)')
plt.tight_layout()
plt.show()
|
a935a91e6ae2421ff53a35bd5d180465edaf67d85f2c1793f3d73b2e6dc98429 | """
===
MRI
===
This example illustrates how to read an image (of an MRI) into a NumPy
array, and display it in greyscale using `imshow`.
"""
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import numpy as np
# Data are 256x256 16 bit integers.
with cbook.get_sample_data('s1045.ima.gz') as dfile:
im = np.frombuffer(dfile.read(), np.uint16).reshape((256, 256))
fig, ax = plt.subplots(num="MRI_demo")
ax.imshow(im, cmap="gray")
ax.axis('off')
plt.show()
|
9bb7ca311f3396be271b4601e504d3c586b8546855e0b224557b8551894fe91c | """
===========================================================
SkewT-logP diagram: using transforms and custom projections
===========================================================
This serves as an intensive exercise of Matplotlib's transforms and custom
projection API. This example produces a so-called SkewT-logP diagram, which is
a common plot in meteorology for displaying vertical profiles of temperature.
As far as Matplotlib is concerned, the complexity comes from having X and Y
axes that are not orthogonal. This is handled by including a skew component to
the basic Axes transforms. Additional complexity comes in handling the fact
that the upper and lower X-axes have different data ranges, which necessitates
a bunch of custom classes for ticks, spines, and axis to handle this.
"""
from contextlib import ExitStack
from matplotlib.axes import Axes
import matplotlib.transforms as transforms
import matplotlib.axis as maxis
import matplotlib.spines as mspines
from matplotlib.projections import register_projection
# The sole purpose of this class is to look at the upper, lower, or total
# interval as appropriate and see what parts of the tick to draw, if any.
class SkewXTick(maxis.XTick):
def draw(self, renderer):
# When adding the callbacks with `stack.callback`, we fetch the current
# visibility state of the artist with `get_visible`; the ExitStack will
# restore these states (`set_visible`) at the end of the block (after
# the draw).
with ExitStack() as stack:
for artist in [self.gridline, self.tick1line, self.tick2line,
self.label1, self.label2]:
stack.callback(artist.set_visible, artist.get_visible())
needs_lower = transforms.interval_contains(
self.axes.lower_xlim, self.get_loc())
needs_upper = transforms.interval_contains(
self.axes.upper_xlim, self.get_loc())
self.tick1line.set_visible(
self.tick1line.get_visible() and needs_lower)
self.label1.set_visible(
self.label1.get_visible() and needs_lower)
self.tick2line.set_visible(
self.tick2line.get_visible() and needs_upper)
self.label2.set_visible(
self.label2.get_visible() and needs_upper)
super(SkewXTick, self).draw(renderer)
def get_view_interval(self):
return self.axes.xaxis.get_view_interval()
# This class exists to provide two separate sets of intervals to the tick,
# as well as create instances of the custom tick
class SkewXAxis(maxis.XAxis):
def _get_tick(self, major):
return SkewXTick(self.axes, None, '', major=major)
def get_view_interval(self):
return self.axes.upper_xlim[0], self.axes.lower_xlim[1]
# This class exists to calculate the separate data range of the
# upper X-axis and draw the spine there. It also provides this range
# to the X-axis artist for ticking and gridlines
class SkewSpine(mspines.Spine):
def _adjust_location(self):
pts = self._path.vertices
if self.spine_type == 'top':
pts[:, 0] = self.axes.upper_xlim
else:
pts[:, 0] = self.axes.lower_xlim
# This class handles registration of the skew-xaxes as a projection as well
# as setting up the appropriate transformations. It also overrides standard
# spines and axes instances as appropriate.
class SkewXAxes(Axes):
# The projection must specify a name. This will be used be the
# user to select the projection, i.e. ``subplot(111,
# projection='skewx')``.
name = 'skewx'
def _init_axis(self):
# Taken from Axes and modified to use our modified X-axis
self.xaxis = SkewXAxis(self)
self.spines['top'].register_axis(self.xaxis)
self.spines['bottom'].register_axis(self.xaxis)
self.yaxis = maxis.YAxis(self)
self.spines['left'].register_axis(self.yaxis)
self.spines['right'].register_axis(self.yaxis)
def _gen_axes_spines(self):
spines = {'top': SkewSpine.linear_spine(self, 'top'),
'bottom': mspines.Spine.linear_spine(self, 'bottom'),
'left': mspines.Spine.linear_spine(self, 'left'),
'right': mspines.Spine.linear_spine(self, 'right')}
return spines
def _set_lim_and_transforms(self):
"""
This is called once when the plot is created to set up all the
transforms for the data, text and grids.
"""
rot = 30
# Get the standard transform setup from the Axes base class
super()._set_lim_and_transforms()
# Need to put the skew in the middle, after the scale and limits,
# but before the transAxes. This way, the skew is done in Axes
# coordinates thus performing the transform around the proper origin
# We keep the pre-transAxes transform around for other users, like the
# spines for finding bounds
self.transDataToAxes = (
self.transScale
+ self.transLimits
+ transforms.Affine2D().skew_deg(rot, 0)
)
# Create the full transform from Data to Pixels
self.transData = self.transDataToAxes + self.transAxes
# Blended transforms like this need to have the skewing applied using
# both axes, in axes coords like before.
self._xaxis_transform = (
transforms.blended_transform_factory(
self.transScale + self.transLimits,
transforms.IdentityTransform())
+ transforms.Affine2D().skew_deg(rot, 0)
+ self.transAxes
)
@property
def lower_xlim(self):
return self.axes.viewLim.intervalx
@property
def upper_xlim(self):
pts = [[0., 1.], [1., 1.]]
return self.transDataToAxes.inverted().transform(pts)[:, 0]
# Now register the projection with matplotlib so the user can select it.
register_projection(SkewXAxes)
if __name__ == '__main__':
# Now make a simple example using the custom projection.
from io import StringIO
from matplotlib.ticker import (MultipleLocator, NullFormatter,
ScalarFormatter)
import matplotlib.pyplot as plt
import numpy as np
# Some example data.
data_txt = '''
978.0 345 7.8 0.8
971.0 404 7.2 0.2
946.7 610 5.2 -1.8
944.0 634 5.0 -2.0
925.0 798 3.4 -2.6
911.8 914 2.4 -2.7
906.0 966 2.0 -2.7
877.9 1219 0.4 -3.2
850.0 1478 -1.3 -3.7
841.0 1563 -1.9 -3.8
823.0 1736 1.4 -0.7
813.6 1829 4.5 1.2
809.0 1875 6.0 2.2
798.0 1988 7.4 -0.6
791.0 2061 7.6 -1.4
783.9 2134 7.0 -1.7
755.1 2438 4.8 -3.1
727.3 2743 2.5 -4.4
700.5 3048 0.2 -5.8
700.0 3054 0.2 -5.8
698.0 3077 0.0 -6.0
687.0 3204 -0.1 -7.1
648.9 3658 -3.2 -10.9
631.0 3881 -4.7 -12.7
600.7 4267 -6.4 -16.7
592.0 4381 -6.9 -17.9
577.6 4572 -8.1 -19.6
555.3 4877 -10.0 -22.3
536.0 5151 -11.7 -24.7
533.8 5182 -11.9 -25.0
500.0 5680 -15.9 -29.9
472.3 6096 -19.7 -33.4
453.0 6401 -22.4 -36.0
400.0 7310 -30.7 -43.7
399.7 7315 -30.8 -43.8
387.0 7543 -33.1 -46.1
382.7 7620 -33.8 -46.8
342.0 8398 -40.5 -53.5
320.4 8839 -43.7 -56.7
318.0 8890 -44.1 -57.1
310.0 9060 -44.7 -58.7
306.1 9144 -43.9 -57.9
305.0 9169 -43.7 -57.7
300.0 9280 -43.5 -57.5
292.0 9462 -43.7 -58.7
276.0 9838 -47.1 -62.1
264.0 10132 -47.5 -62.5
251.0 10464 -49.7 -64.7
250.0 10490 -49.7 -64.7
247.0 10569 -48.7 -63.7
244.0 10649 -48.9 -63.9
243.3 10668 -48.9 -63.9
220.0 11327 -50.3 -65.3
212.0 11569 -50.5 -65.5
210.0 11631 -49.7 -64.7
200.0 11950 -49.9 -64.9
194.0 12149 -49.9 -64.9
183.0 12529 -51.3 -66.3
164.0 13233 -55.3 -68.3
152.0 13716 -56.5 -69.5
150.0 13800 -57.1 -70.1
136.0 14414 -60.5 -72.5
132.0 14600 -60.1 -72.1
131.4 14630 -60.2 -72.2
128.0 14792 -60.9 -72.9
125.0 14939 -60.1 -72.1
119.0 15240 -62.2 -73.8
112.0 15616 -64.9 -75.9
108.0 15838 -64.1 -75.1
107.8 15850 -64.1 -75.1
105.0 16010 -64.7 -75.7
103.0 16128 -62.9 -73.9
100.0 16310 -62.5 -73.5
'''
# Parse the data
sound_data = StringIO(data_txt)
p, h, T, Td = np.loadtxt(sound_data, unpack=True)
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(6.5875, 6.2125))
ax = fig.add_subplot(111, projection='skewx')
plt.grid(True)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
ax.semilogy(T, p, color='C3')
ax.semilogy(Td, p, color='C2')
# An example of a slanted line at constant X
l = ax.axvline(0, color='C0')
# Disables the log-formatting that comes with semilogy
ax.yaxis.set_major_formatter(ScalarFormatter())
ax.yaxis.set_minor_formatter(NullFormatter())
ax.set_yticks(np.linspace(100, 1000, 10))
ax.set_ylim(1050, 100)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.set_xlim(-50, 50)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.transforms
matplotlib.spines
matplotlib.spines.Spine
matplotlib.spines.Spine.register_axis
matplotlib.projections
matplotlib.projections.register_projection
|
1851e7b8795061617407659a65cb989ea29a28cada1ddf4448661120372d9e19 | """
===================
Rankine power cycle
===================
Demonstrate the Sankey class with a practical example of a Rankine power cycle.
"""
import matplotlib.pyplot as plt
from matplotlib.sankey import Sankey
fig = plt.figure(figsize=(8, 9))
ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[],
title="Rankine Power Cycle: Example 8.6 from Moran and "
"Shapiro\n\x22Fundamentals of Engineering Thermodynamics "
"\x22, 6th ed., 2008")
Hdot = [260.431, 35.078, 180.794, 221.115, 22.700,
142.361, 10.193, 10.210, 43.670, 44.312,
68.631, 10.758, 10.758, 0.017, 0.642,
232.121, 44.559, 100.613, 132.168] # MW
sankey = Sankey(ax=ax, format='%.3G', unit=' MW', gap=0.5, scale=1.0/Hdot[0])
sankey.add(patchlabel='\n\nPump 1', rotation=90, facecolor='#37c959',
flows=[Hdot[13], Hdot[6], -Hdot[7]],
labels=['Shaft power', '', None],
pathlengths=[0.4, 0.883, 0.25],
orientations=[1, -1, 0])
sankey.add(patchlabel='\n\nOpen\nheater', facecolor='#37c959',
flows=[Hdot[11], Hdot[7], Hdot[4], -Hdot[8]],
labels=[None, '', None, None],
pathlengths=[0.25, 0.25, 1.93, 0.25],
orientations=[1, 0, -1, 0], prior=0, connect=(2, 1))
sankey.add(patchlabel='\n\nPump 2', facecolor='#37c959',
flows=[Hdot[14], Hdot[8], -Hdot[9]],
labels=['Shaft power', '', None],
pathlengths=[0.4, 0.25, 0.25],
orientations=[1, 0, 0], prior=1, connect=(3, 1))
sankey.add(patchlabel='Closed\nheater', trunklength=2.914, fc='#37c959',
flows=[Hdot[9], Hdot[1], -Hdot[11], -Hdot[10]],
pathlengths=[0.25, 1.543, 0.25, 0.25],
labels=['', '', None, None],
orientations=[0, -1, 1, -1], prior=2, connect=(2, 0))
sankey.add(patchlabel='Trap', facecolor='#37c959', trunklength=5.102,
flows=[Hdot[11], -Hdot[12]],
labels=['\n', None],
pathlengths=[1.0, 1.01],
orientations=[1, 1], prior=3, connect=(2, 0))
sankey.add(patchlabel='Steam\ngenerator', facecolor='#ff5555',
flows=[Hdot[15], Hdot[10], Hdot[2], -Hdot[3], -Hdot[0]],
labels=['Heat rate', '', '', None, None],
pathlengths=0.25,
orientations=[1, 0, -1, -1, -1], prior=3, connect=(3, 1))
sankey.add(patchlabel='\n\n\nTurbine 1', facecolor='#37c959',
flows=[Hdot[0], -Hdot[16], -Hdot[1], -Hdot[2]],
labels=['', None, None, None],
pathlengths=[0.25, 0.153, 1.543, 0.25],
orientations=[0, 1, -1, -1], prior=5, connect=(4, 0))
sankey.add(patchlabel='\n\n\nReheat', facecolor='#37c959',
flows=[Hdot[2], -Hdot[2]],
labels=[None, None],
pathlengths=[0.725, 0.25],
orientations=[-1, 0], prior=6, connect=(3, 0))
sankey.add(patchlabel='Turbine 2', trunklength=3.212, facecolor='#37c959',
flows=[Hdot[3], Hdot[16], -Hdot[5], -Hdot[4], -Hdot[17]],
labels=[None, 'Shaft power', None, '', 'Shaft power'],
pathlengths=[0.751, 0.15, 0.25, 1.93, 0.25],
orientations=[0, -1, 0, -1, 1], prior=6, connect=(1, 1))
sankey.add(patchlabel='Condenser', facecolor='#58b1fa', trunklength=1.764,
flows=[Hdot[5], -Hdot[18], -Hdot[6]],
labels=['', 'Heat rate', None],
pathlengths=[0.45, 0.25, 0.883],
orientations=[-1, 1, 0], prior=8, connect=(2, 0))
diagrams = sankey.finish()
for diagram in diagrams:
diagram.text.set_fontweight('bold')
diagram.text.set_fontsize('10')
for text in diagram.texts:
text.set_fontsize('10')
# Notice that the explicit connections are handled automatically, but the
# implicit ones currently are not. The lengths of the paths and the trunks
# must be adjusted manually, and that is a bit tricky.
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.sankey
matplotlib.sankey.Sankey
matplotlib.sankey.Sankey.add
matplotlib.sankey.Sankey.finish
|
3bdbdfb5ed755855445230175edf151b33475c2fe6c747cf70e96c65e93e2c8f | """
======================================
Radar chart (aka spider or star chart)
======================================
This example creates a radar chart, also known as a spider or star chart [1]_.
Although this example allows a frame of either 'circle' or 'polygon', polygon
frames don't have proper gridlines (the lines are circles instead of polygons).
It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
matplotlib.axis to the desired number of vertices, but the orientation of the
polygon is not aligned with the radial axes.
.. [1] http://en.wikipedia.org/wiki/Radar_chart
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes.
This function creates a RadarAxes projection and registers it.
Parameters
----------
num_vars : int
Number of variables for radar chart.
frame : {'circle' | 'polygon'}
Shape of frame surrounding axes.
"""
# calculate evenly-spaced axis angles
theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
class RadarAxes(PolarAxes):
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# rotate plot such that the first axis is at the top
self.set_theta_zero_location('N')
def fill(self, *args, closed=True, **kwargs):
"""Override fill so that line is closed by default"""
return super().fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super().plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(np.degrees(theta), labels)
def _gen_axes_patch(self):
# The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
# in axes coordinates.
if frame == 'circle':
return Circle((0.5, 0.5), 0.5)
elif frame == 'polygon':
return RegularPolygon((0.5, 0.5), num_vars,
radius=.5, edgecolor="k")
else:
raise ValueError("unknown value for 'frame': %s" % frame)
def _gen_axes_spines(self):
if frame == 'circle':
return super()._gen_axes_spines()
elif frame == 'polygon':
# spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
spine = Spine(axes=self,
spine_type='circle',
path=Path.unit_regular_polygon(num_vars))
# unit_regular_polygon gives a polygon of radius 1 centered at
# (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
# 0.5) in axes coordinates.
spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
+ self.transAxes)
return {'polar': spine}
else:
raise ValueError("unknown value for 'frame': %s" % frame)
register_projection(RadarAxes)
return theta
def example_data():
# The following data is from the Denver Aerosol Sources and Health study.
# See doi:10.1016/j.atmosenv.2008.12.017
#
# The data are pollution source profile estimates for five modeled
# pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
# species. The radar charts are experimented with here to see if we can
# nicely visualize how the modeled source profiles change across four
# scenarios:
# 1) No gas-phase species present, just seven particulate counts on
# Sulfate
# Nitrate
# Elemental Carbon (EC)
# Organic Carbon fraction 1 (OC)
# Organic Carbon fraction 2 (OC2)
# Organic Carbon fraction 3 (OC3)
# Pyrolized Organic Carbon (OP)
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 4)Inclusion of both gas-phase species is present...
data = [
['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
('Basecase', [
[0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
[0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
[0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
[0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
[0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
('With CO', [
[0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
[0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
[0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
[0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
[0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
('With O3', [
[0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
[0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
[0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
[0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
[0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
('CO & O3', [
[0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
[0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
[0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
[0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
[0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
]
return data
if __name__ == '__main__':
N = 9
theta = radar_factory(N, frame='polygon')
data = example_data()
spoke_labels = data.pop(0)
fig, axes = plt.subplots(figsize=(9, 9), nrows=2, ncols=2,
subplot_kw=dict(projection='radar'))
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
colors = ['b', 'r', 'g', 'm', 'y']
# Plot the four cases from the example data on separate axes
for ax, (title, case_data) in zip(axes.flatten(), data):
ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
horizontalalignment='center', verticalalignment='center')
for d, color in zip(case_data, colors):
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.set_varlabels(spoke_labels)
# add legend relative to top-left plot
ax = axes[0, 0]
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
legend = ax.legend(labels, loc=(0.9, .95),
labelspacing=0.1, fontsize='small')
fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
horizontalalignment='center', color='black', weight='bold',
size='large')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.path
matplotlib.path.Path
matplotlib.spines
matplotlib.spines.Spine
matplotlib.projections
matplotlib.projections.polar
matplotlib.projections.polar.PolarAxes
matplotlib.projections.register_projection
|
f08683f0a948d7653e1b8c9b128423c194e0e692c9e3e42bf3d22675c463f4ea | """
==================
ggplot style sheet
==================
This example demonstrates the "ggplot" style, which adjusts the style to
emulate ggplot_ (a popular plotting package for R_).
These settings were shamelessly stolen from [1]_ (with permission).
.. [1] https://web.archive.org/web/20111215111010/http://www.huyng.com/archives/sane-color-scheme-for-matplotlib/691/
.. _ggplot: https://ggplot2.tidyverse.org/
.. _R: https://www.r-project.org/
"""
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
# Fixing random state for reproducibility
np.random.seed(19680801)
fig, axes = plt.subplots(ncols=2, nrows=2)
ax1, ax2, ax3, ax4 = axes.ravel()
# scatter plot (Note: `plt.scatter` doesn't use default colors)
x, y = np.random.normal(size=(2, 200))
ax1.plot(x, y, 'o')
# sinusoidal lines with colors from default color cycle
L = 2*np.pi
x = np.linspace(0, L)
ncolors = len(plt.rcParams['axes.prop_cycle'])
shift = np.linspace(0, L, ncolors, endpoint=False)
for s in shift:
ax2.plot(x, np.sin(x + s), '-')
ax2.margins(0)
# bar graphs
x = np.arange(5)
y1, y2 = np.random.randint(1, 25, size=(2, 5))
width = 0.25
ax3.bar(x, y1, width)
ax3.bar(x + width, y2, width,
color=list(plt.rcParams['axes.prop_cycle'])[2]['color'])
ax3.set_xticks(x + width)
ax3.set_xticklabels(['a', 'b', 'c', 'd', 'e'])
# circles with colors from default color cycle
for i, color in enumerate(plt.rcParams['axes.prop_cycle']):
xy = np.random.normal(size=2)
ax4.add_patch(plt.Circle(xy, radius=0.3, color=color['color']))
ax4.axis('equal')
ax4.margins(0)
plt.show()
|
cd8f43d161408299ae26df7a18020a9f782148546026a6360dae2b408eb556db | """
===========================
Dark background style sheet
===========================
This example demonstrates the "dark_background" style, which uses white for
elements that are typically black (text, borders, etc). Note that not all plot
elements default to colors defined by an rc parameter.
"""
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('dark_background')
fig, ax = plt.subplots()
L = 6
x = np.linspace(0, L)
ncolors = len(plt.rcParams['axes.prop_cycle'])
shift = np.linspace(0, L, ncolors, endpoint=False)
for s in shift:
ax.plot(x, np.sin(x + s), 'o-')
ax.set_xlabel('x-axis')
ax.set_ylabel('y-axis')
ax.set_title("'dark_background' style sheet")
plt.show()
|
83afb0896300250e2ed843f54c188553d0cf9a4be140423e7485b834cbdb2ddc | """
========================================
Bayesian Methods for Hackers style sheet
========================================
This example demonstrates the style used in the Bayesian Methods for Hackers
[1]_ online book.
.. [1] http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
"""
from numpy.random import beta
import matplotlib.pyplot as plt
plt.style.use('bmh')
def plot_beta_hist(ax, a, b):
ax.hist(beta(a, b, size=10000), histtype="stepfilled",
bins=25, alpha=0.8, density=True)
fig, ax = plt.subplots()
plot_beta_hist(ax, 10, 10)
plot_beta_hist(ax, 4, 12)
plot_beta_hist(ax, 50, 12)
plot_beta_hist(ax, 6, 55)
ax.set_title("'bmh' style sheet")
plt.show()
|
73a070a53d3d6f73659c742c805d0434a742635f3e8cc929c594a0d5671e4067 | """
======================
Style sheets reference
======================
This script demonstrates the different available style sheets on a
common set of example plots: scatter plot, image, bar graph, patches,
line plot and histogram,
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
def plot_scatter(ax, prng, nb_samples=100):
"""Scatter plot.
"""
for mu, sigma, marker in [(-.5, 0.75, 'o'), (0.75, 1., 's')]:
x, y = prng.normal(loc=mu, scale=sigma, size=(2, nb_samples))
ax.plot(x, y, ls='none', marker=marker)
ax.set_xlabel('X-label')
return ax
def plot_colored_sinusoidal_lines(ax):
"""Plot sinusoidal lines with colors following the style color cycle.
"""
L = 2 * np.pi
x = np.linspace(0, L)
nb_colors = len(plt.rcParams['axes.prop_cycle'])
shift = np.linspace(0, L, nb_colors, endpoint=False)
for s in shift:
ax.plot(x, np.sin(x + s), '-')
ax.set_xlim([x[0], x[-1]])
return ax
def plot_bar_graphs(ax, prng, min_value=5, max_value=25, nb_samples=5):
"""Plot two bar graphs side by side, with letters as x-tick labels.
"""
x = np.arange(nb_samples)
ya, yb = prng.randint(min_value, max_value, size=(2, nb_samples))
width = 0.25
ax.bar(x, ya, width)
ax.bar(x + width, yb, width, color='C2')
ax.set_xticks(x + width)
ax.set_xticklabels(['a', 'b', 'c', 'd', 'e'])
return ax
def plot_colored_circles(ax, prng, nb_samples=15):
"""Plot circle patches.
NB: draws a fixed amount of samples, rather than using the length of
the color cycle, because different styles may have different numbers
of colors.
"""
for sty_dict, j in zip(plt.rcParams['axes.prop_cycle'], range(nb_samples)):
ax.add_patch(plt.Circle(prng.normal(scale=3, size=2),
radius=1.0, color=sty_dict['color']))
# Force the limits to be the same across the styles (because different
# styles may have different numbers of available colors).
ax.set_xlim([-4, 8])
ax.set_ylim([-5, 6])
ax.set_aspect('equal', adjustable='box') # to plot circles as circles
return ax
def plot_image_and_patch(ax, prng, size=(20, 20)):
"""Plot an image with random values and superimpose a circular patch.
"""
values = prng.random_sample(size=size)
ax.imshow(values, interpolation='none')
c = plt.Circle((5, 5), radius=5, label='patch')
ax.add_patch(c)
# Remove ticks
ax.set_xticks([])
ax.set_yticks([])
def plot_histograms(ax, prng, nb_samples=10000):
"""Plot 4 histograms and a text annotation.
"""
params = ((10, 10), (4, 12), (50, 12), (6, 55))
for a, b in params:
values = prng.beta(a, b, size=nb_samples)
ax.hist(values, histtype="stepfilled", bins=30,
alpha=0.8, density=True)
# Add a small annotation.
ax.annotate('Annotation', xy=(0.25, 4.25),
xytext=(0.9, 0.9), textcoords=ax.transAxes,
va="top", ha="right",
bbox=dict(boxstyle="round", alpha=0.2),
arrowprops=dict(
arrowstyle="->",
connectionstyle="angle,angleA=-95,angleB=35,rad=10"),
)
return ax
def plot_figure(style_label=""):
"""Setup and plot the demonstration figure with a given style.
"""
# Use a dedicated RandomState instance to draw the same "random" values
# across the different figures.
prng = np.random.RandomState(96917002)
# Tweak the figure size to be better suited for a row of numerous plots:
# double the width and halve the height. NB: use relative changes because
# some styles may have a figure size different from the default one.
(fig_width, fig_height) = plt.rcParams['figure.figsize']
fig_size = [fig_width * 2, fig_height / 2]
fig, axes = plt.subplots(ncols=6, nrows=1, num=style_label,
figsize=fig_size, squeeze=True)
axes[0].set_ylabel(style_label)
plot_scatter(axes[0], prng)
plot_image_and_patch(axes[1], prng)
plot_bar_graphs(axes[2], prng)
plot_colored_circles(axes[3], prng)
plot_colored_sinusoidal_lines(axes[4])
plot_histograms(axes[5], prng)
fig.tight_layout()
return fig
if __name__ == "__main__":
# Setup a list of all available styles, in alphabetical order but
# the `default` and `classic` ones, which will be forced resp. in
# first and second position.
style_list = ['default', 'classic'] + sorted(
style for style in plt.style.available if style != 'classic')
# Plot a demonstration figure for every available style sheet.
for style_label in style_list:
with plt.style.context(style_label):
fig = plot_figure(style_label=style_label)
plt.show()
|
22f6f924cd830e5bbe036eecc2acefcf5e2571d405024e678ef07535f493b6a5 | """
===========================
FiveThirtyEight style sheet
===========================
This shows an example of the "fivethirtyeight" styling, which
tries to replicate the styles from FiveThirtyEight.com.
"""
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('fivethirtyeight')
x = np.linspace(0, 10)
# Fixing random state for reproducibility
np.random.seed(19680801)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x) + x + np.random.randn(50))
ax.plot(x, np.sin(x) + 0.5 * x + np.random.randn(50))
ax.plot(x, np.sin(x) + 2 * x + np.random.randn(50))
ax.plot(x, np.sin(x) - 0.5 * x + np.random.randn(50))
ax.plot(x, np.sin(x) - 2 * x + np.random.randn(50))
ax.plot(x, np.sin(x) + np.random.randn(50))
ax.set_title("'fivethirtyeight' style sheet")
plt.show()
|
dbbd1fdae424089837ad119dcb4020ecb01a6b25d7c613d9e07b024c0634193f | """
==========================
Solarized Light stylesheet
==========================
This shows an example of "Solarized_Light" styling, which
tries to replicate the styles of:
- `<http://ethanschoonover.com/solarized>`__
- `<https://github.com/jrnold/ggthemes>`__
- `<http://pygal.org/en/stable/documentation/builtin_styles.html#light-solarized>`__
and work of:
- `<https://github.com/tonysyu/mpltools>`__
using all 8 accents of the color palette - starting with blue
ToDo:
- Create alpha values for bar and stacked charts. .33 or .5
- Apply Layout Rules
"""
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10)
with plt.style.context('Solarize_Light2'):
plt.plot(x, np.sin(x) + x + np.random.randn(50))
plt.plot(x, np.sin(x) + 2 * x + np.random.randn(50))
plt.plot(x, np.sin(x) + 3 * x + np.random.randn(50))
plt.plot(x, np.sin(x) + 4 + np.random.randn(50))
plt.plot(x, np.sin(x) + 5 * x + np.random.randn(50))
plt.plot(x, np.sin(x) + 6 * x + np.random.randn(50))
plt.plot(x, np.sin(x) + 7 * x + np.random.randn(50))
plt.plot(x, np.sin(x) + 8 * x + np.random.randn(50))
# Number of accent colors in the color scheme
plt.title('8 Random Lines - Line')
plt.xlabel('x label', fontsize=14)
plt.ylabel('y label', fontsize=14)
plt.show()
|
88798036ba7e3c46ba253eecf2f8e0685d3fd93e6affa5b719786675ff2ff59f | """
=====================
Grayscale style sheet
=====================
This example demonstrates the "grayscale" style sheet, which changes all colors
that are defined as rc parameters to grayscale. Note, however, that not all
plot elements default to colors defined by an rc parameter.
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
def color_cycle_example(ax):
L = 6
x = np.linspace(0, L)
ncolors = len(plt.rcParams['axes.prop_cycle'])
shift = np.linspace(0, L, ncolors, endpoint=False)
for s in shift:
ax.plot(x, np.sin(x + s), 'o-')
def image_and_patch_example(ax):
ax.imshow(np.random.random(size=(20, 20)), interpolation='none')
c = plt.Circle((5, 5), radius=5, label='patch')
ax.add_patch(c)
plt.style.use('grayscale')
fig, (ax1, ax2) = plt.subplots(ncols=2)
fig.suptitle("'grayscale' style sheet")
color_cycle_example(ax1)
image_and_patch_example(ax2)
plt.show()
|
b7d33228b49d1df552e693124f2f184470872a643eb9d5da3c5c00f7a8cd5279 | """
================
Pyplot Formatstr
================
Use a format string to colorize a `~matplotlib.axes.Axes.plot` and set its
markers.
"""
import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.plot
matplotlib.axes.Axes.plot
|
3655d91fcea2eeb7112eceb931b06b2384c7682e7229de683ddf88f73219942e | """
====================
Auto Subplots Adjust
====================
Automatically adjust subplot parameters. This example shows a way to determine
a subplot parameter from the extent of the ticklabels using a callback on the
:doc:`draw_event</users/event_handling>`.
Note that a similar result would be achieved using `~.Figure.tight_layout`
or `~.Figure.constrained_layout`; this example shows how one could customize
the subplot parameter adjustment.
"""
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig, ax = plt.subplots()
ax.plot(range(10))
ax.set_yticks((2,5,7))
labels = ax.set_yticklabels(('really, really, really', 'long', 'labels'))
def on_draw(event):
bboxes = []
for label in labels:
bbox = label.get_window_extent()
# the figure transform goes from relative coords->pixels and we
# want the inverse of that
bboxi = bbox.inverse_transformed(fig.transFigure)
bboxes.append(bboxi)
# this is the bbox that bounds all the bboxes, again in relative
# figure coords
bbox = mtransforms.Bbox.union(bboxes)
if fig.subplotpars.left < bbox.width:
# we need to move it over
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()
return False
fig.canvas.mpl_connect('draw_event', on_draw)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.artist.Artist.get_window_extent
matplotlib.transforms.Bbox
matplotlib.transforms.Bbox.inverse_transformed
matplotlib.transforms.Bbox.union
matplotlib.figure.Figure.subplots_adjust
matplotlib.figure.SubplotParams
matplotlib.backend_bases.FigureCanvasBase.mpl_connect
|
65738cbef110ccb17921ee43cc03006ae253ccb15511e786bbccfd3bb447df98 | """
============
Boxplot Demo
============
Example boxplot code
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low))
###############################################################################
fig1, ax1 = plt.subplots()
ax1.set_title('Basic Plot')
ax1.boxplot(data)
###############################################################################
fig2, ax2 = plt.subplots()
ax2.set_title('Notched boxes')
ax2.boxplot(data, notch=True)
###############################################################################
green_diamond = dict(markerfacecolor='g', marker='D')
fig3, ax3 = plt.subplots()
ax3.set_title('Changed Outlier Symbols')
ax3.boxplot(data, flierprops=green_diamond)
###############################################################################
fig4, ax4 = plt.subplots()
ax4.set_title('Hide Outlier Points')
ax4.boxplot(data, showfliers=False)
###############################################################################
red_square = dict(markerfacecolor='r', marker='s')
fig5, ax5 = plt.subplots()
ax5.set_title('Horizontal Boxes')
ax5.boxplot(data, vert=False, flierprops=red_square)
###############################################################################
fig6, ax6 = plt.subplots()
ax6.set_title('Shorter Whisker Length')
ax6.boxplot(data, flierprops=red_square, vert=False, whis=0.75)
###############################################################################
# Fake up some more data
spread = np.random.rand(50) * 100
center = np.ones(25) * 40
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
d2 = np.concatenate((spread, center, flier_high, flier_low))
data.shape = (-1, 1)
d2.shape = (-1, 1)
###############################################################################
# Making a 2-D array only works if all the columns are the
# same length. If they are not, then use a list instead.
# This is actually more efficient because boxplot converts
# a 2-D array into a list of vectors internally anyway.
data = [data, d2, d2[::2,0]]
fig7, ax7 = plt.subplots()
ax7.set_title('Multiple Samples with Different sizes')
ax7.boxplot(data)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.boxplot
matplotlib.pyplot.boxplot
|
d1b70c75b13fa20125a2ed5964124e0ac57c858c6bf0a7f221f5dfa8b95b9b3a | """
=========================
Fig Axes Customize Simple
=========================
Customize the background, labels and ticks of a simple plot.
"""
import matplotlib.pyplot as plt
###############################################################################
# ``plt.figure`` creates a ```matplotlib.figure.Figure`` instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow')
ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor('lightslategray')
for label in ax1.xaxis.get_ticklabels():
# label is a Text instance
label.set_color('tab:red')
label.set_rotation(45)
label.set_fontsize(16)
for line in ax1.yaxis.get_ticklines():
# line is a Line2D instance
line.set_color('tab:green')
line.set_markersize(25)
line.set_markeredgewidth(3)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axis.Axis.get_ticklabels
matplotlib.axis.Axis.get_ticklines
matplotlib.text.Text.set_rotation
matplotlib.text.Text.set_fontsize
matplotlib.text.Text.set_color
matplotlib.lines.Line2D
matplotlib.lines.Line2D.set_color
matplotlib.lines.Line2D.set_markersize
matplotlib.lines.Line2D.set_markeredgewidth
matplotlib.patches.Patch.set_facecolor
|
0382e5895b88a6df4c5f12b642c8d73a4a985bbc0993a88f1b5b5bc3969b42ed | """
===========
Pyplot Text
===========
"""
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
# the histogram of the data
n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.hist
matplotlib.pyplot.xlabel
matplotlib.pyplot.ylabel
matplotlib.pyplot.text
matplotlib.pyplot.grid
matplotlib.pyplot.show
|
15e03afd73484d4de90ae4892449b5f297b51b8d5dd63f44d08fe3553ed2d24f | """
============
Fill Between
============
Fill the area between two curves.
"""
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-5, 5, 0.01)
y1 = -5*x*x + x + 10
y2 = 5*x*x + x
fig, ax = plt.subplots()
ax.plot(x, y1, x, y2, color='black')
ax.fill_between(x, y1, y2, where=y2 >y1, facecolor='yellow', alpha=0.5)
ax.fill_between(x, y1, y2, where=y2 <=y1, facecolor='red', alpha=0.5)
ax.set_title('Fill Between')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.fill_between
|
d3c7a845922ba4dcb73fa61e8f9738ca84d3de0c032eb14d27afb82944ef561f | """
==================
Simple axes labels
==================
Label the axes of a plot.
"""
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
fig.subplots_adjust(top=0.8)
ax1 = fig.add_subplot(211)
ax1.set_ylabel('volts')
ax1.set_title('a sine wave')
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2 * np.pi * t)
line, = ax1.plot(t, s, lw=2)
# Fixing random state for reproducibility
np.random.seed(19680801)
ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(np.random.randn(1000), 50)
ax2.set_xlabel('time (s)')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.set_xlabel
matplotlib.axes.Axes.set_ylabel
matplotlib.axes.Axes.set_title
matplotlib.axes.Axes.plot
matplotlib.axes.Axes.hist
matplotlib.figure.Figure.add_axes
|
f560b4f1f1a30c00b58eb8ee7a70b8d09f60ce1aa83b670c86994e1f95ddb10c | """
================
Annotation Polar
================
This example shows how to create an annotation on a polar graph.
For a complete overview of the annotation capabilities, also see the
:doc:`annotation tutorial</tutorials/text/annotations>`.
"""
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2 * 2*np.pi * r
line, = ax.plot(theta, r, color='#ee8d18', lw=3)
ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords='figure fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='bottom',
)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.projections.polar
matplotlib.axes.Axes.annotate
matplotlib.pyplot.annotate
|
a42c8fc4361ce9cabd243ecd07ffb2f5445f6d32a279f3257f155c8115a2c15d | """
===========
Text Layout
===========
Create text with different alignment and rotation.
"""
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
# axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(
(left, bottom), width, height,
fill=False, transform=ax.transAxes, clip_on=False
)
ax.add_patch(p)
ax.text(left, bottom, 'left top',
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)
ax.text(left, bottom, 'left bottom',
horizontalalignment='left',
verticalalignment='bottom',
transform=ax.transAxes)
ax.text(right, top, 'right bottom',
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes)
ax.text(right, top, 'right top',
horizontalalignment='right',
verticalalignment='top',
transform=ax.transAxes)
ax.text(right, bottom, 'center top',
horizontalalignment='center',
verticalalignment='top',
transform=ax.transAxes)
ax.text(left, 0.5*(bottom+top), 'right center',
horizontalalignment='right',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)
ax.text(left, 0.5*(bottom+top), 'left center',
horizontalalignment='left',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)
ax.text(0.5*(left+right), 0.5*(bottom+top), 'middle',
horizontalalignment='center',
verticalalignment='center',
fontsize=20, color='red',
transform=ax.transAxes)
ax.text(right, 0.5*(bottom+top), 'centered',
horizontalalignment='center',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)
ax.text(left, top, 'rotated\nwith newlines',
horizontalalignment='center',
verticalalignment='center',
rotation=45,
transform=ax.transAxes)
ax.set_axis_off()
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.text
matplotlib.pyplot.text
|
60a697d2879d05f0bfafbf3465d341a47e1e5b28e4b742b6777749e42a844193 | """
=====================
Whats New 1 Subplot3d
=====================
Create two three-dimensional plots in the same figure.
"""
from matplotlib import cm
#from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis,
linewidth=0, antialiased=False)
ax.set_zlim3d(-1.01, 1.01)
#ax.zaxis.set_major_locator(LinearLocator(10))
#ax.zaxis.set_major_formatter(FormatStrFormatter('%.03f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
from mpl_toolkits.mplot3d.axes3d import get_test_data
ax = fig.add_subplot(1, 2, 2, projection='3d')
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
import mpl_toolkits
matplotlib.figure.Figure.add_subplot
mpl_toolkits.mplot3d.axes3d.Axes3D.plot_surface
mpl_toolkits.mplot3d.axes3d.Axes3D.plot_wireframe
mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlim3d
|
f338539352d7ac15d7af17ba5cb19374dc4d58026eceb4c207879badf7469547 | """
=============
Text Commands
=============
Plotting text of many different kinds.
"""
import matplotlib.pyplot as plt
fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title('axes title')
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)
ax.text(3, 2, 'unicode: Institut f\374r Festk\366rperphysik')
ax.text(0.95, 0.01, 'colored text in axes coords',
verticalalignment='bottom', horizontalalignment='right',
transform=ax.transAxes,
color='green', fontsize=15)
ax.plot([2], [1], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
arrowprops=dict(facecolor='black', shrink=0.05))
ax.axis([0, 10, 0, 10])
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.figure.Figure.suptitle
matplotlib.figure.Figure.add_subplot
matplotlib.figure.Figure.subplots_adjust
matplotlib.axes.Axes.set_title
matplotlib.axes.Axes.set_xlabel
matplotlib.axes.Axes.set_ylabel
matplotlib.axes.Axes.text
matplotlib.axes.Axes.annotate
|
afc5990ae36ce21dad4345cf97386f698e9395e8a3e056a2a0766b5c17e816c3 | """
=======================
Adding lines to figures
=======================
Adding lines to a figure without any axes.
"""
import matplotlib.pyplot as plt
import matplotlib.lines as lines
fig = plt.figure()
l1 = lines.Line2D([0, 1], [0, 1], transform=fig.transFigure, figure=fig)
l2 = lines.Line2D([0, 1], [1, 0], transform=fig.transFigure, figure=fig)
fig.lines.extend([l1, l2])
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.figure
matplotlib.lines
matplotlib.lines.Line2D
|
a244954bcf76e947b9308706513ccba5c1a152224ba1e4a5518470e371480305 | """
============
Dollar Ticks
============
Use a `~.ticker.FormatStrFormatter` to prepend dollar signs on y axis labels.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
# Fixing random state for reproducibility
np.random.seed(19680801)
fig, ax = plt.subplots()
ax.plot(100*np.random.rand(20))
formatter = ticker.FormatStrFormatter('$%1.2f')
ax.yaxis.set_major_formatter(formatter)
for tick in ax.yaxis.get_major_ticks():
tick.label1.set_visible(False)
tick.label2.set_visible(True)
tick.label2.set_color('green')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.ticker
matplotlib.ticker.FormatStrFormatter
matplotlib.axis.Axis.set_major_formatter
matplotlib.axis.Axis.get_major_ticks
matplotlib.axis.Tick
|
896be2c69569cac0bc425ee04b3e885c1f2505f2055d5c874a7abb1f360a514d | """
=================
Annotating a plot
=================
This example shows how to annotate a plot with an arrow pointing to provided
coordinates. We modify the defaults of the arrow, to "shrink" it.
For a complete overview of the annotation capabilities, also see the
:doc:`annotation tutorial</tutorials/text/annotations>`.
"""
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)
ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05),
)
ax.set_ylim(-2, 2)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.annotate
matplotlib.pyplot.annotate
|
11899d0737a9cb23cca581ea0dc927f6fa31bce4dcd7b36760cc938a189d4dba | """
==============
Align y-labels
==============
Two methods are shown here, one using a short call to `.Figure.align_ylabels`
and the second a manual way to align the labels.
"""
import numpy as np
import matplotlib.pyplot as plt
def make_plot(axs):
box = dict(facecolor='yellow', pad=5, alpha=0.2)
# Fixing random state for reproducibility
np.random.seed(19680801)
ax1 = axs[0, 0]
ax1.plot(2000*np.random.rand(10))
ax1.set_title('ylabels not aligned')
ax1.set_ylabel('misaligned 1', bbox=box)
ax1.set_ylim(0, 2000)
ax3 = axs[1, 0]
ax3.set_ylabel('misaligned 2', bbox=box)
ax3.plot(np.random.rand(10))
ax2 = axs[0, 1]
ax2.set_title('ylabels aligned')
ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel('aligned 1', bbox=box)
ax2.set_ylim(0, 2000)
ax4 = axs[1, 1]
ax4.plot(np.random.rand(10))
ax4.set_ylabel('aligned 2', bbox=box)
# Plot 1:
fig, axs = plt.subplots(2, 2)
fig.subplots_adjust(left=0.2, wspace=0.6)
make_plot(axs)
# just align the last column of axes:
fig.align_ylabels(axs[:, 1])
plt.show()
#############################################################################
#
# .. seealso::
# `.Figure.align_ylabels` and `.Figure.align_labels` for a direct method
# of doing the same thing.
# Also :doc:`/gallery/subplots_axes_and_figures/align_labels_demo`
#
#
# Or we can manually align the axis labels between subplots manually using the
# `set_label_coords` method of the y-axis object. Note this requires we know
# a good offset value which is hardcoded.
fig, axs = plt.subplots(2, 2)
fig.subplots_adjust(left=0.2, wspace=0.6)
make_plot(axs)
labelx = -0.3 # axes coords
for j in range(2):
axs[j, 1].yaxis.set_label_coords(labelx, 0.5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.figure.Figure.align_ylabels
matplotlib.axis.Axis.set_label_coords
matplotlib.axes.Axes.plot
matplotlib.pyplot.plot
matplotlib.axes.Axes.set_title
matplotlib.axes.Axes.set_ylabel
matplotlib.axes.Axes.set_ylim
|
c2d1587e808b0f25a3b4f1eeb8e327068d2163705eb9cba6bbec44f12be27896 | """
==================
Annotate Transform
==================
This example shows how to use different coordinate systems for annotations.
For a complete overview of the annotation capabilities, also see the
:doc:`annotation tutorial</tutorials/text/annotations>`.
"""
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)
xdata, ydata = 5, 0
xdisplay, ydisplay = ax.transData.transform_point((xdata, ydata))
bbox = dict(boxstyle="round", fc="0.8")
arrowprops = dict(
arrowstyle = "->",
connectionstyle = "angle,angleA=0,angleB=90,rad=10")
offset = 72
ax.annotate('data = (%.1f, %.1f)'%(xdata, ydata),
(xdata, ydata), xytext=(-2*offset, offset), textcoords='offset points',
bbox=bbox, arrowprops=arrowprops)
disp = ax.annotate('display = (%.1f, %.1f)'%(xdisplay, ydisplay),
(xdisplay, ydisplay), xytext=(0.5*offset, -offset),
xycoords='figure pixels',
textcoords='offset points',
bbox=bbox, arrowprops=arrowprops)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.transforms.Transform.transform_point
matplotlib.axes.Axes.annotate
matplotlib.pyplot.annotate
|
9fed8b7faf1d356f35fd1fbf388aca4b7a89d3a96835c14f8bacadc540ba73de | """
===================
Pyplot Two Subplots
===================
Create a figure with two subplots with `pyplot.subplot`.
"""
import numpy as np
import matplotlib.pyplot as plt
def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), color='tab:blue', marker='o')
plt.plot(t2, f(t2), color='black')
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), color='tab:orange', linestyle='--')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.figure
matplotlib.pyplot.subplot
|
c26a952ba6afbaf94f98307cffad783f6f6e36617c1a4cc0c84a12a58dc5d32d | """
=============
Pyplot Simple
=============
A most simple plot, where a list of numbers is plotted against their index.
"""
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.plot
matplotlib.pyplot.ylabel
matplotlib.pyplot.show
|
61f1f98fbd6aa81102d1aacccacb514ead78956704dca55356719f022596162d | """
=======================
Whats New 0.98.4 Legend
=======================
Create a legend and tweak it with a shadow and a box.
"""
import matplotlib.pyplot as plt
import numpy as np
ax = plt.subplot(111)
t1 = np.arange(0.0, 1.0, 0.01)
for n in [1, 2, 3, 4]:
plt.plot(t1, t1**n, label="n=%d"%(n,))
leg = plt.legend(loc='best', ncol=2, mode="expand", shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axes.Axes.legend
matplotlib.pyplot.legend
matplotlib.legend.Legend
matplotlib.legend.Legend.get_frame
|
178f52c02a4d5589814a44850caf6b9d9dad4e3f5bfed24a59e6c237e91a79ea | """
============
Pyplot Three
============
Plot three line plots in a single call to `~matplotlib.pyplot.plot`.
"""
import numpy as np
import matplotlib.pyplot as plt
# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.plot
matplotlib.axes.Axes.plot
|
160d2e5211c41c5c849bed2ccaf27d922582c8a80ab4a9db67a9f41756ec71b5 | """
======================
Whats New 0.98.4 Fancy
======================
Create fancy box and arrow styles.
"""
import matplotlib.patches as mpatch
import matplotlib.pyplot as plt
figheight = 8
fig = plt.figure(figsize=(9, figheight), dpi=80)
fontsize = 0.4 * fig.dpi
def make_boxstyles(ax):
styles = mpatch.BoxStyle.get_styles()
for i, (stylename, styleclass) in enumerate(sorted(styles.items())):
ax.text(0.5, (float(len(styles)) - 0.5 - i)/len(styles), stylename,
ha="center",
size=fontsize,
transform=ax.transAxes,
bbox=dict(boxstyle=stylename, fc="w", ec="k"))
def make_arrowstyles(ax):
styles = mpatch.ArrowStyle.get_styles()
ax.set_xlim(0, 4)
ax.set_ylim(0, figheight)
for i, (stylename, styleclass) in enumerate(sorted(styles.items())):
y = (float(len(styles)) - 0.25 - i) # /figheight
p = mpatch.Circle((3.2, y), 0.2, fc="w")
ax.add_patch(p)
ax.annotate(stylename, (3.2, y),
(2., y),
# xycoords="figure fraction", textcoords="figure fraction",
ha="right", va="center",
size=fontsize,
arrowprops=dict(arrowstyle=stylename,
patchB=p,
shrinkA=5,
shrinkB=5,
fc="w", ec="k",
connectionstyle="arc3,rad=-0.05",
),
bbox=dict(boxstyle="square", fc="w"))
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax1 = fig.add_subplot(121, frameon=False, xticks=[], yticks=[])
make_boxstyles(ax1)
ax2 = fig.add_subplot(122, frameon=False, xticks=[], yticks=[])
make_arrowstyles(ax2)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.patches
matplotlib.patches.BoxStyle
matplotlib.patches.BoxStyle.get_styles
matplotlib.patches.ArrowStyle
matplotlib.patches.ArrowStyle.get_styles
matplotlib.axes.Axes.text
matplotlib.axes.Axes.annotate
|
147131ca07830e755c28fff637f0a8ca0653fc72d2a0e411edf2dfd9cea590f2 | """
========================
Whats New 0.99 Axes Grid
========================
Create RGB composite images.
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes
def get_demo_image():
# prepare image
delta = 0.5
extent = (-3, 4, -4, 3)
x = np.arange(-3.0, 4.001, delta)
y = np.arange(-4.0, 3.001, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
return Z, extent
def get_rgb():
Z, extent = get_demo_image()
Z[Z < 0] = 0.
Z = Z / Z.max()
R = Z[:13, :13]
G = Z[2:, 2:]
B = Z[:13, 2:]
return R, G, B
fig = plt.figure()
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])
r, g, b = get_rgb()
kwargs = dict(origin="lower", interpolation="nearest")
ax.imshow_rgb(r, g, b, **kwargs)
ax.RGB.set_xlim(0., 9.5)
ax.RGB.set_ylim(0.9, 10.6)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import mpl_toolkits
mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
mpl_toolkits.axes_grid1.axes_rgb.RGBAxes.imshow_rgb
|
4581c8db42ca7ab532e43e610486484fb1fb85573e3144f6f5ba1195f13203b6 | """
===============
Pyplot Mathtext
===============
Use mathematical expressions in text labels. For an overview over MathText
see :doc:`/tutorials/text/mathtext`.
"""
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)
plt.plot(t,s)
plt.title(r'$\alpha_i > \beta_i$', fontsize=20)
plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20)
plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$',
fontsize=20)
plt.xlabel('time (s)')
plt.ylabel('volts (mV)')
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.pyplot.text
matplotlib.axes.Axes.text
|
575a54882dbc489c7124776106df035628e6491c40c97b93aa74e2402d132882 | """
======================
Whats New 0.99 Mplot3d
======================
Create a 3D surface plot.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis)
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import mpl_toolkits
mpl_toolkits.mplot3d.Axes3D
mpl_toolkits.mplot3d.Axes3D.plot_surface
|
53463bfa0434f0f80f24db2c82acda287f21112bb877e51c0344c412517eb57c | """
=====================
Whats New 0.99 Spines
=====================
"""
import matplotlib.pyplot as plt
import numpy as np
def adjust_spines(ax,spines):
for loc, spine in ax.spines.items():
if loc in spines:
spine.set_position(('outward', 10)) # outward by 10 points
else:
spine.set_color('none') # don't draw spine
# turn off ticks where there is no spine
if 'left' in spines:
ax.yaxis.set_ticks_position('left')
else:
# no yaxis ticks
ax.yaxis.set_ticks([])
if 'bottom' in spines:
ax.xaxis.set_ticks_position('bottom')
else:
# no xaxis ticks
ax.xaxis.set_ticks([])
fig = plt.figure()
x = np.linspace(0,2*np.pi,100)
y = 2*np.sin(x)
ax = fig.add_subplot(2,2,1)
ax.plot(x,y)
adjust_spines(ax,['left'])
ax = fig.add_subplot(2,2,2)
ax.plot(x,y)
adjust_spines(ax,[])
ax = fig.add_subplot(2,2,3)
ax.plot(x,y)
adjust_spines(ax,['left','bottom'])
ax = fig.add_subplot(2,2,4)
ax.plot(x,y)
adjust_spines(ax,['bottom'])
plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
import matplotlib
matplotlib.axis.Axis.set_ticks
matplotlib.axis.XAxis.set_ticks_position
matplotlib.axis.YAxis.set_ticks_position
matplotlib.spines
matplotlib.spines.Spine
matplotlib.spines.Spine.set_color
matplotlib.spines.Spine.set_position
|
13fe7b23bba050ac70c4adde8598f5865d39da3514b3fd29d9e8975f635da7d9 | r"""
================
Nested GridSpecs
================
This example demonstrates the use of nested `GridSpec`\s.
"""
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
from itertools import product
def squiggle_xy(a, b, c, d):
i = np.arange(0.0, 2*np.pi, 0.05)
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig = plt.figure(figsize=(8, 8))
# gridspec inside gridspec
outer_grid = gridspec.GridSpec(4, 4, wspace=0.0, hspace=0.0)
for i in range(16):
inner_grid = gridspec.GridSpecFromSubplotSpec(3, 3,
subplot_spec=outer_grid[i], wspace=0.0, hspace=0.0)
a = i // 4 + 1
b = i % 4 + 1
for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):
ax = fig.add_subplot(inner_grid[j])
ax.plot(*squiggle_xy(a, b, c, d))
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
all_axes = fig.get_axes()
# show only the outside spines
for ax in all_axes:
for sp in ax.spines.values():
sp.set_visible(False)
if ax.is_first_row():
ax.spines['top'].set_visible(True)
if ax.is_last_row():
ax.spines['bottom'].set_visible(True)
if ax.is_first_col():
ax.spines['left'].set_visible(True)
if ax.is_last_col():
ax.spines['right'].set_visible(True)
plt.show()
|
65f550cfd5bc1668994eef1d331961a18151e073d7715481c8af8f2022f08c13 | """
===============
Simple Legend02
===============
"""
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
line1, = ax.plot([1, 2, 3], label="Line 1", linestyle='--')
line2, = ax.plot([3, 2, 1], label="Line 2", linewidth=4)
# Create a legend for the first line.
first_legend = ax.legend(handles=[line1], loc='upper right')
# Add the legend manually to the current Axes.
ax.add_artist(first_legend)
# Create another legend for the second line.
ax.legend(handles=[line2], loc='lower right')
plt.show()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.